
Tools for Unit Test — JUnit

Stuart Anderson

Stuart Anderson Tools for Unit Test — JUnit c©2011

1

JUnit
JUnit is a framework for writing tests

• Written by Erich Gamma (Design Patterns) and Kent Beck (eXtreme
Programming)
• JUnit uses Java’s reflection capabilities (Java programs can examine their

own code) and (as of version 4) annotations
• JUnit allows us to:

– define and execute tests and test suites
– Use test as an effective means of specification
– write code and use the tests to support refactoring
– integrate revised code into a build

• JUnit is available on several IDEs, e.g. BlueJ, JBuilder, and Eclipse have JUnit
integration to some extent.

Stuart Anderson Tools for Unit Test — JUnit c©2011

Slide 1: For more info on JUnit

The JUnit site provides a wealth of useful information on JUnit and the host of
JUnit-based products.

http://www.junit.org/

http://www.junit.org/

1/2 2

JUnit’s Terminology

• A test runner is software that runs tests and reports results.

Many implementations: standalone GUI, command line, integrated into IDE

• A test suite is a collection of test cases.

• A test case tests the response of a single method to a particular set of inputs.

• A unit test is a test of the smallest element of code you can sensibly test,
usually a single class.

Stuart Anderson Tools for Unit Test — JUnit c©2011

2/2 3

JUnit’s Terminology

• A test fixture is the environment in which a test is run. A new fixture is set
up before each test case is executed, and torn down afterwards.

Example: if you are testing a database client, the fixture might place the
database server in a standard initial state, ready for the client to connect.

• An integration test is a test of how well classes work together.

JUnit provides some limited support for integration tests.

• Proper unit testing would involve mock objects – fake versions of the other
classes with which the class under test interacts.

JUnit does not help with this. It is worth knowing about, but not always
necessary.

Stuart Anderson Tools for Unit Test — JUnit c©2011

1/2 4

Structure of a JUnit (4) test class
We want to test a class named Triangle

• This is the unit test for the Triangle class; it defines objects used by one or
more tests.

public class TriangleTestJ4{

}

• This is the default constructor.

public TriangleTest(){ }

Stuart Anderson Tools for Unit Test — JUnit c©2011

2/2 5

Structure of a JUnit (4) test class

• @Before public void init()

Creates a test fixture by creating and initialising objects and values.

• @After public void cleanUp()

Releases any system resources used by the test fixture. Java usually does
this for free, but files, network connections etc. might not get tidied up
automatically.

• @Test public void noBadTriangles(), @Test public void scaleneOk(), etc.

These methods contain tests for the Triangle constructor and its
isScalene() method.

Stuart Anderson Tools for Unit Test — JUnit c©2011

1/2 6

Making Tests: Assert

• Within a test,

– Call the method being tested and get the actual result.
– assert a property that should hold of the test result.
– Each assert is a challenge on the test result.

• If the property fails to hold then assert fails, and throws an
AssertionFailedError:

– JUnit catches these Errors, records the results of the test and displays them.

Stuart Anderson Tools for Unit Test — JUnit c©2011

2/2 7

Making Tests: Assert

• static void assertTrue(boolean test)

static void assertTrue(String message, boolean test)

Throws an AssertionFailedError if the test fails. The optional message is
included in the Error.

• static void assertFalse(boolean test)

static void assertFalse(String message, boolean test)

Throws an AssertionFailedError if the test succeeds.

Stuart Anderson Tools for Unit Test — JUnit c©2011

8

Aside: Throwable

• java.lang.Error: a problem that an application would not normally try to
handle — does not need to be declared in throws clause.

e.g. command line application given bad parameters by user.

• java.lang.Exception: a problem that the application might reasonably cope
with — needs to be declared in throws clause.

e.g. network connection timed out during connect attempt.

• java.lang.RuntimeException: application might cope with it, but rarely
— does not need to be declared in throws clause.

e.g. I/O buffer overflow.

Stuart Anderson Tools for Unit Test — JUnit c©2011

Example 9

Triangle class
For the sake of example, we will create and test a trivial Triangle class:

• The constructor creates a Triangle object, where only the lengths of the sides
are recorded and the private variable p is the longest side.

• The isScalene method returns true if the triangle is scalene.

• The isEquilateral method returns true if the triangle is equilateral.

• We can write the test methods before the code. This has advantages in
separating coding from testing.

But Eclipse helps more if you create the class under test first: Creates test
stubs (methods with empty bodies) for all methods and constructors.

Stuart Anderson Tools for Unit Test — JUnit c©2011

10

Notes on creating tests

• Size: Often the amount of (very routine) test code will exceed the size of the
code for small systems.

• Complexity: Testing complex code can be a complex business and the tests
can get quite complex.

• Effort: The effort taken in creating test code is repaid in reduced development
time, most particularly when we go on to use the test subject in anger (i.e.
real code).

• Behaviour: Creating a test often helps clarify our ideas on how a method
should behave (particularly in exceptional circumstances).

Stuart Anderson Tools for Unit Test — JUnit c©2011

Example 11

A JUnit 3 test for Triangle
import junit.framework.TestCase;

public class TriangleTest extends TestCase {

private Triangle t;

// Any method named setUp will be executed before each test.

protected void setUp() {

t = new Triangle(5,4,3);

}

protected void tearDown() {} // tearDown will be executed afterwards

public void testIsScalene() { // All tests are named test[Something]

assertTrue(t.isScalene());

}

public void testIsEquilateral() {

assertFalse(t.isEquilateral());

}

}

Stuart Anderson Tools for Unit Test — JUnit c©2011

Example 12

A JUnit 4 test for Triangle

more imports are necessaryR

no need to inherit from TestCaseR

Use annotations...R

...rather than special namesR

package st;

import static org.junit.Assert.*;

import org.junit.Before;

import org.junit.Test;

public class TestTriangle {

private Triangle t;

@Before public void setUp() throws Exception {

t = new Triangle(3, 4, 5);

}

@Test public void scaleneOk() {

assertTrue(t.isScalene());

}

}

Stuart Anderson Tools for Unit Test — JUnit c©2011

13

The Triangle class itself

• Is JUnit too much for small programs?

• Not if you think it will reduce errors.

• Tests on this scale of program often turn up errors or omissions – construct
the tests working from the specification

• Sometimes you can omit tests for some particularly straightforward parts of
the system

Stuart Anderson Tools for Unit Test — JUnit c©2011

Slide 13: The Triangle class itself
public class Triangle {

private int p; // Longest edge

private int q;

private int r;

public Triangle(int s1, int s2, int s3) {

if (s1>s2) {

p = s1; q = s2;

} else {

p = s2; q = s1;

}

if (s3>p) {

r = p; p = s3;

} else {

r = s3;

}

}

public boolean isScalene() {

return ((r>0) && (q>0) && (p>0) &&

(p<(q+r))&& ((q>r) || (r>q)));

}

public boolean isEquilateral() {

return p == q && q == r;

}

}

14

Assert methods II

• assertEquals(expected, actual)
assertEquals(String message, expected, actual)
This method is heavily overloaded: expected and actual must be both objects
or both of the same primitive type. For objects, uses your equals method,
if you have defined it properly, as public boolean equals(Object o) —
otherwise it uses ==

• assertSame(Object expected, Object actual)
assertSame(String message, Object expected, Object actual)
Asserts that two objects refer to the same object (using ==)
• assertNotSame(Objectexpected, Objectactual)
assertNotSame(String message, Object expected, Object actual)
Asserts that two objects do not refer to the same object

Stuart Anderson Tools for Unit Test — JUnit c©2011

15

Assert methods III

• assertNull(Object object)
assertNull(String message, Object object)
Asserts that the object is null
• assertNotNull(Object object)
assertNotNull(String message, Objectobject)
Asserts that the object is null
• fail()
fail(String message)
Causes the test to fail and throw an AssertionFailedError — Useful as a
result of a complex test, when the other assert methods are not quite what
you want

Stuart Anderson Tools for Unit Test — JUnit c©2011

1/2 16

The assert statement in Java

• Earlier versions of JUnit had an assert method instead of an assertTrue

method — The name had to be changed when Java 1.4 introduced the assert
statement

• There are two forms of the assert statement:

– assert boolean condition ;
– assert boolean condition : error message ;

Both forms throw an AssertionFailedError if the boolean condition is
false. The second form, with an explicit error message, is seldom necessary.

Stuart Anderson Tools for Unit Test — JUnit c©2011

2/2 17

The assert statement in Java
When to use an assert statement:

• Use it to document a condition that you ‘know’ to be true

• Use assert false; in code that you ‘know’ cannot be reached (such as a
default case in a switch statement)

• Do not use assert to check whether parameters have legal values, or other
places where throwing an Exception is more appropriate

• Can be dangerous: customers are not impressed by a library bombing out
with an assertion failure.

Stuart Anderson Tools for Unit Test — JUnit c©2011

18

JUnit in Eclipse
To create a test class, select
File → New → JUnit Test Case

and enter the name of your test case

PackageR

Test classR

Decide what stubs you want to createR

Identify the class under testR

Stuart Anderson Tools for Unit Test — JUnit c©2011

19

Creating a Test

Decide what you want to testR

Stuart Anderson Tools for Unit Test — JUnit c©2011

20

Template for New Test

Stuart Anderson Tools for Unit Test — JUnit c©2011

21

Running JUnit

Stuart Anderson Tools for Unit Test — JUnit c©2011

22

Results

Results are hereR

Stuart Anderson Tools for Unit Test — JUnit c©2011

1/2 23

Issues with JUnit
JUnit has a model of calling methods and checking results against the expected
result. Issues are:

• State: objects that have significant internal state (e.g. collections with some
additional structure) are harder to test because it may take many method calls
to get an object into a state you want to test. Solutions:

– Write long tests that call some methods many times.
– Add additional methods in the interface to allow observation of state (or

make private variables public?)
– Add additional methods in the interface that allow the internal state to be

set to a particular value
– “Heisenbugs” can be an issue in these cases (changing the observations

changes what is observed).

Stuart Anderson Tools for Unit Test — JUnit c©2011

2/2 24

Issues with JUnit

• Other effects, e.g. output can be hard to capture correctly.

• JUnit tests of GUIs are not particularly helpful (recording gestures might be
helpful here?)

Stuart Anderson Tools for Unit Test — JUnit c©2011

25

Positives

• Using JUnit encourages a ‘testable’ style, where the result of a calling a
method is easy to check against the specification:
– Controlled use of state
– Additional observers of the state (testing interface)
– Additional components in results that ease checking

• It is well integrated into a range of IDEs (e.g. Eclipse)
• Tests are easy to define and apply in these environments.
• JUnit encourages frequent testing during development — e.g. XP (eXtreme

Programming) ‘test as specification’
• JUnit tends to shape code to be easily testable.
• JUnit supports a range of extensions that support structured testing (e.g.

coverage analysis) – we will see some of these extensions later.

Stuart Anderson Tools for Unit Test — JUnit c©2011

Framework for Integrated Test (FIT) 26

Another Framework for Testing

• Framework for Integrated Test (FIT), by Ward Cunningham (inventor of wiki)

• Allows closed loop between customers and developers:

– Takes HTML tables of expected behaviour from customers or spec.
– Turns those tables into test data: inputs, activities and assertions regarding

expected results.
– Runs the tests and produces tabular summaries of the test runs.

• Only a few years old, but lots of people seem to like it — various practitioners
seem to think it is revolutionary.

Stuart Anderson Tools for Unit Test — JUnit c©2011

Slide 26: Another Framework for Testing

• Framework for Integrated Test (FIT), is a tool which enhances communication
between developers and users by allowing users to write tests in the form of
structured (HTML) tables.

For more info on FIT: http://fit.c2.com

• FitNesse hooks FIT up to a wiki, making collaborative development of tests
even easier.

http://fitnesse.org/

http://fit.c2.com
http://fitnesse.org/

27

Readings
Required Readings

• JUnit Test Infected: Programmers Love Writing Tests
an introduction to JUnit.
• Using JUnit With Eclipse IDE

an O’Reilly article
• Unit Testing in Jazz Using JUnit

an NCSU Open Lab article on using JUnit with Eclipse

Suggested Readings

• Michael Olan. 2003. Unit testing: test early, test often. J. Comput. Small
Coll. 19, 2 (December 2003), 319-328.

Stuart Anderson Tools for Unit Test — JUnit c©2011

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://www.onjava.com/pub/a/onjava/2004/02/04/juie.html
http://open.ncsu.edu/se/tutorials/junit/
http://portal.acm.org/citation.cfm?id=948785.948830

28

Resources
Getting started with Eclipse and JUnit

Activity: to start using JUnit within Eclipe review and try the example of
defining tests for a Triangle class.

[link to Activity]

Video: this video tutorial shows how to create a new Eclipse project and start
writing JUnit tests first.

[link to Video]

Stuart Anderson Tools for Unit Test — JUnit c©2011

http://www.inf.ed.ac.uk/teaching/courses/st/2010-2011/tutorials/tutorial1.html
http://www.inf.ed.ac.uk/teaching/courses/st/2010-2011/resources/videos/starting_an_eclipse_project.HTML

29

Get testing!
Start up Eclipse and:

1. Create a new Java project
2. Add a new package, ‘‘st’’
3. Create st.Triangle; grab the source from the Junit lecture’s Activity in the

resources
4. Create a new source folder called ‘‘tests’’ if you like (with a new ‘‘st’’

package)
5. Create a new JUnit test for st.Triangle
6. And get testing!
7. Follow the video from the Junit lecture’s resources for more details.

Stuart Anderson Tools for Unit Test — JUnit c©2011

