

This page intentionally left blank

Einstein famously posited, “Everything should be made as simple as possible, but not
simpler.” This modern corollary to Occam’s Razor is often honored in the breach,
especially the final three words, and especially in the IT industry. Distributed sys-
tems, like security and error handling, are inherently difficult, and no amount of
layered abstraction will overcome that simple fact. A deep understanding of what
makes distributed systems architecture different from monolithic systems architec-
ture is critically important in a networked world of services such as that promised
by Service Oriented Architecture, and Puder, Römer and Pilhofer deliver that deep
understanding in a straightforward, step-by-step fashion, from the inside out—as
simple as possible, but not simpler. Every application developer today is a distributed
systems developer, and this book therefore belongs on the bookshelf of every developer,
architect and development manager.

Richard Mark Soley, Ph.D.
Chairman and CEO
Object Management Group, Inc.

This page intentionally left blank

DISTRIBUTED SYSTEMS
ARCHITECTURE

This page intentionally left blank

DISTRIBUTED SYSTEMS
ARCHITECTURE

A Middleware Approach

ARNO PUDER
San Francisco State University

KAY RÖMER
Swiss Federal Institute of Technology

FRANK PILHOFER
Mercury Computer Systems, Inc.

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Senior Editor Tim Cox
Publishing Services Manager Simon Crump
Assistant Editor Richard Camp
Editorial Assistant Jessica Evans
Cover Design Ross Carron
Cover Image “Corinth Canal” © Hulton Archive/Getty Images
Cover Photographer Three Lions
Composition VTEX Typesetting Services
Technical Illustration Dartmouth Publishing, Inc
Copyeditor Ken DellaPenta
Proofreader Jacqui Brownstein
Indexer Broccoli Information Management
Interior printer Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2006 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission
of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK:
phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also com-
plete your request on-line via the Elsevier homepage (http://elsevier.com) by selecting “Customer Support” and
then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Puder, Arno.
Distributed systems architecture: a middleware approach / Arno Puder, Kay Römer, Frank Pilhofer.

p. cm.
Includes bibliographical references and index.
ISBN 1-55860-648-3
1. Electronic data processing–Distributed processing. 2. Computer architecture. I. Römer, Kay. II. Pilhofer,
Frank. III. Title.

QA76.9.D5P83 2005
004.2′2–dc22 2005049841

ISBN 13: 978-1-55860-648-7
ISBN 10: 1-55860-648-3

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
05 06 07 08 09 5 4 3 2 1

Dedication

“To everyone in the M developer community”

  

Arno Puder received his master’s degree in computer science from the Univer-
sity of Kaiserslautern and his Ph.D. from the University of Frankfurt/Main,
Germany. After working for Deutsche Telekom AG and AT&T Labs, he is cur-
rently a professor of computer science at San Francisco State University. His
special interests include distributed systems and wireless sensor networks.

Kay Römer is currently a senior researcher and lecturer at ETH Zurich (Swiss
Federal Institute of Technology), Switzerland. He received his Ph.D. in com-
puter science from ETH with a thesis on sensor networks. Kay holds a master’s
degree in computer science from the University of Frankfurt/Main, Germany.
His research interests encompass sensor networks, software infrastructures for
ubiquitous computing, and middleware for distributed systems.

Frank Pilhofer received his masters in computer science from the University
of Frankfurt/Main, Germany. After completing MICO’s CORBA Components
implementation, he joined Mercury Computer Systems, where he now works
on component-based, real-time data streaming middleware for Software Radio.

viii



The idea for this book came from our interest in producing a practical
book about middleware for distributed systems. Our inspiration was Andrew
S. Tanenbaum’s legendary textbook on operating systems (see [35]). From a
pedagogical standpoint, Tanenbaum developed an important bridge between
theory and practice by first developing an operating system and then structur-
ing a textbook based on its implementation. He therefore not only explains the
concepts governing operating systems but also demonstrates how these concepts
are converted into lines of code.

We have taken a similar approach in our own book, but focusing instead on
middleware for distributed systems. Our first task in preparing to write this book
was to develop an infrastructure for distributed systems. To avoid reinventing
the wheel, we selected the freely available CORBA specification as the basis for
our implementation. There are many different middleware standards available,
and Web Services especially have gained momentum in recent years. But the
concepts we explain in this book are universal and independent of a specific
middleware technology.

The result of our implementation efforts is M. Originally the acronym
M stood for Mini CORBA, based on Minix (Mini Unix) and developed by
Tanenbaum. There were two things that were not available to Tanenbaum at the
time: the World Wide Web and a strong Open Source community. Although it
was not our initial intention, M evolved into a complete CORBA implemen-
tation. As a result of this development, we decided to change the interpretation
of the acronym M into Mico Is CORBA as a tribute to the GNU project,
which was the first to promote the idea of free software.

Because we ourselves have invested far more work in M than was our
intention at the outset, we see this book as coming full circle in terms of our
original ambitions. This book deals with the design and the architecture of mid-

ix

x Preface

dleware platforms. True to the approach taken by Tanenbaum, we use M as
a concrete example. We hope that the experience we gained in the development
of M and have documented in this book will be of benefit to the reader.

In a project of this scope, it is impossible to thank everyone who has sup-
ported us. Numerous people have helped us to make M what it is today.
Those who assisted us with the implementation of M are noted in the change
logs with their respective contributions. We thank all of them and express our
deepest respect for their work.

We thank all of the reviewers, Andrew Forrest, Eric Ironside, Letha Etz-
korn, Michi Henning, Dr. Priya Narasimhan, Karel Gardas, Gregor Hohpe and
Twittie Senivonqse.

Arno Puder, Kay Römer, and Frank Pilhofer
San Francisco, Zurich, and Boston
January 2005



About the Authors viii
Preface ix

1 I 1

1.1 Infrastructures for Distributed Applications 1
1.2 Thematic Organization 3
1.3 Target Group 3
1.4 Chapter Overviews 4
1.5 Ancillary Materials 5

2 B C 7

2.1 Distributed Systems 7
2.1.1 Characterization 7
2.1.2 Transparency 9
2.1.3 Communication Mechanisms 10
2.1.4 Client/Server Model 12
2.1.5 Failure Semantics 14

2.2 Object Model 16
2.2.1 Characterization 16
2.2.2 Terminology 17

2.3 Middleware 21
2.3.1 Middleware Tasks 21
2.3.2 The Structure of a Middleware Platform 22
2.3.3 Standardization of a Middleware 23
2.3.4 Portability and Interoperability 24

2.4 Sample Application 25
2.4.1 The Account Example 25

xi

xii Contents

2.4.2 C++ Implementation 27
2.4.3 Distribution of the Sample Application 29

2.5 Summary 30

3 I  CORBA 33

3.1 Object Management Architecture 34
3.2 Overview of CORBA 35

3.2.1 CORBA Object Model 37
3.2.2 Interface Definition Language 37
3.2.3 IDL-Language Mappings 38
3.2.4 Object Request Broker 38
3.2.5 Invocation and Object Adapters 39
3.2.6 Interoperability 39

3.3 The Creation Process of a CORBA Application 40
3.4 Application Development in C++ 42

3.4.1 IDL Specification 42
3.4.2 IDL Language Mapping for C++ 43
3.4.3 C++ Server Implementation 44
3.4.4 C++ Client Implementation 48

3.5 Compiling and Executing the Application 50
3.5.1 Compiling the Application 50
3.5.2 Executing the Application 51

3.6 Application Development in Java 53
3.6.1 Java Server Implementation 53
3.6.2 Java Client Implementation 56
3.6.3 Compiling and Executing the Java Implementation 56

3.7 The Bootstrapping Problem 57
3.7.1 File-Based Bootstrapping 58
3.7.2 Object URLs 58
3.7.3 Command Line Arguments 58

3.8 Naming Service 59
3.8.1 Overview 59
3.8.2 Name Server Daemon 60
3.8.3 Example 61

3.9 Summary 64

4 µORB 65

4.1 µORB Architecture 65
4.2 Transport Layer 67
4.3 Presentation Layer 70

Contents xiii

4.3.1 Value Ranges of Types 70

4.3.2 Representation of Type Instances 71

4.3.3 Modeling of the Presentation Layer 74

4.4 Interoperability Layer 75
4.4.1 Protocol for Remote Operation Invocation 75

4.4.2 Structure of Protocol Data Units 77

4.4.3 Modeling of Protocol Data Units 79

4.5 Proxies 81
4.6 Object Services 83

4.6.1 Life Cycle of an Object 83

4.6.2 Object References 84

4.6.3 Services on the Server Side 86

4.7 Summary 88

5 ORB D 91

5.1 ORB Functionality 92
5.2 ORB Architectures 93
5.3 Design of M’ ORB 94

5.3.1 Invocation Adapter Interface 95

5.3.2 Object Adapter Interface 98

5.3.3 Invocation Table 99

5.3.4 Scheduler 100

5.3.5 Object Generation 106

5.3.6 Bootstrapping 106

5.3.7 Dynamic Extensibility 108

5.4 Summary, Evaluation, and Alternatives 108

6 I 111

6.1 Model 111
6.2 Inter-ORB Protocols 113

6.2.1 Interoperable Object References 114

6.2.2 General Inter-ORB Protocol 115

6.2.3 Environment-Specific Inter-ORB Protocols 116

6.3 Design of M’s Interoperability 117
6.3.1 Framework 117

6.3.2 GIOP 121

6.4 Summary, Evaluation, and Alternatives 124

xiv Contents

7 O A 125

7.1 Terminology 125
7.2 Functionality 127

7.2.1 Object Management 128
7.2.2 Servant Management 130
7.2.3 Generation of Object References 130
7.2.4 Mapping Objects to Servants 131
7.2.5 Execution of Method Invocations 131

7.3 The Portable Object Adapter 133
7.3.1 Overview 133
7.3.2 Policies 135
7.3.3 POA Manager 137
7.3.4 Request Processing 138
7.3.5 Persistence 141

7.4 Design of M’s POA 143
7.4.1 Object Key Generation 144
7.4.2 Persistence 146
7.4.3 POA Mediator 146
7.4.4 Collocation 149

8 I A 153

8.1 Functionality 153
8.1.1 Representation of IDL Data Types 154
8.1.2 Type Checking 155

8.2 Dynamic Invocation Interface 156
8.3 Static Invocation Interface 157
8.4 Design of M’s DII 159
8.5 Design of M’s SII 161
8.6 Summary 162

9 IDL C 163

9.1 Invocation Adapters 163
9.1.1 Dynamic versus Static Invocation Adapters 164
9.1.2 Support of Static Invocation Adapters 165
9.1.3 M’ Static Invocation Adapter 166

9.2 Compiler Fundamentals 168
9.2.1 Formal Languages and Grammars 168
9.2.2 Parse Trees 170
9.2.3 Structure of a Compiler 170

Contents xv

9.3 Abstract Syntax Tree for IDL Specifications 172
9.4 M’s IDL Compiler 175

9.4.1 Class Structure 175
9.4.2 Front End 177
9.4.3 Back End 179

9.5 Summary, Evaluation, and Alternatives 180

10 CORBA  B 183

10.1 CORBA Components 183
10.1.1 Component-Based Development 183
10.1.2 The CORBA Component Model 185
10.1.3 An Example Component 192
10.1.4 Implementation Overview 199
10.1.5 Discussion 201

10.2 Web Services 206
10.2.1 Overview of XML 207
10.2.2 Service Descriptions through WSDL 208
10.2.3 Server-Side Mapping 211
10.2.4 Interoperability through SOAP 213
10.2.5 Service Lookup through UDDI 214
10.2.6 CORBA or Web Services? 216

10.3 Middleware for Ubiquitous Computing 217
10.3.1 Ubiquitous Computing in a Nutshell 217
10.3.2 Middleware Challenges 219
10.3.3 Case Study: Sensor Networks 223
10.3.4 Conclusions 228

10.4 Summary 229

A M I 231

A.1 Installing M on UNIX 231
A.2 Installing M on Windows 234
A.3 Road Map 235

B M I O 237

B.1 ORB 237
B.2 Interface Repository 243
B.3 Portable Object Adapter 244

B.3.1 M Daemon 245
B.3.2 Implementation Repository 246

xvi Contents

B.4 IDL Compiler 249
B.5 Compiler and Linker Wrappers 253

B.5.1 Examples 254

C M I D 257

C.1 Path of an Operation Invocation through an ORB 257
C.1.1 Client Side 259
C.1.2 Server Side 262

C.2 Integration of a New Invocation Adapter 266
C.3 Integration of a New Object Adapter 269
C.4 Integration of a New Transport Mechanism 272

C.4.1 XAddress 273
C.4.2 XAddressParser 274
C.4.3 XProfile 275
C.4.4 XProfileDecoder 277
C.4.5 XTransport 277
C.4.6 XTransportServer 279
C.4.7 Dispatcher 280
C.4.8 Initialization 283

C.5 The Structure of Generated Program Code 284

D S A 291

D.1 Stand-alone Application in C++ 291
D.2 IDL Specification 293
D.3 Implementation of the Server in C++ 293
D.4 Implementation of the Client in C++ 295
D.5 Implementation of the Server in Java 296
D.6 Implementation of the Client in Java 298

List of Figures 301
Acronyms 305
Glossary 309
Bibliography 313
Index 317

C 1


The goal of this introduction is to present an overview of the content of this
book. We will also use it as a vehicle for explaining our motivation behind writ-
ing the book and the objectives we set out to achieve. We identify the target
group we want to reach with this book and then present a chapter-by-chapter
breakdown of the topics discussed.

1.1   


The pervasiveness of networking technology both locally (e.g., local area net-
works) and globally (e.g., the Internet) enables the proliferation of distributed
applications. Since the parts of a distributed application execute in different
physical locations, these applications offer a number of advantages: geographical
constraints can be matched, applications become fault tolerant through replica-
tion, and performance can be improved by parallelizing a task—to name just a
few. Taking a closer look at the execution environment reveals its heterogene-
ity: different hardware platforms, network technologies, operating systems, and
programming languages can make the development of distributed applications
a big challenge.

What is needed for distributed systems, therefore, is an infrastructure that Middleware

suitably supports the development and the execution of distributed applica-
tions. A middleware platform presents such an infrastructure because it provides
a buffer between the applications and the network (see Figure 1.1). The net-
work merely supplies a transport mechanism; access to it depends heavily on
technological factors and differs between various physical platforms. Middle-

1

2 C  Introduction

 . Middleware as an infrastructure for distributed systems.

ware homogenizes access to networks and offers generic services for applications.
It also bridges technological domains and encapsulates the differences between
different systems.

In this book we describe middleware from two different perspectives: fromTwo views of
middleware the view of applications programmers and from the view of systems program-

mers. Applications programmers regard middleware as a tool that helps them in
the development of distributed applications. These programmers are not nor-
mally interested in how the middleware is implemented but only in how it is
used. Applications programmers see the distribution platform as a black box
with a well-defined interface and prescribed functionality.

Systems programmers take a complementary view. They regard the distribu-
tion platform as a white box and are interested primarily in its internal processes.
The application running on a middleware is of minor importance. The common
reference point for both types of programmer is the interface to the middleware
that is used by applications programmers and provided by systems programmers.

Our approach is to look at middleware from both points of view and to use
this information as the basis for honing the knowledge of systems and applica-
tions programmers. Systems programmers are presented with the requirements
of the applications side for which solutions have to be produced. Knowledge
about the inner workings of distribution platforms helps applications program-
mers make optimal use of the functions available. The concept of the two view-
points runs through the book like a thread. Our objective is to provide a com-
prehensive look at the architecture and the design of middleware.

1.2. Thematic Organization 3

1.2  

Many different middleware technologies are available today, among them
CORBA (Common Object Request Broker Architecture) and Web Services. In
this book we emphasize the concepts for designing and implementing a mid-
dleware platform, and the concrete technology is only of a secondary nature.
Although Web Services have gained momentum in recent years, we feel that the
CORBA specification is still more mature. But the principles explained in this
book are universal and apply to all middleware platforms.

There are many advantages to using CORBA as an underlying basis. For one CORBA-based
middlewarething, it allows us to base our examples and explanations on an established in-

dustry standard for which numerous products are available. The freely available
CORBA specification can be referred to as secondary literature. Also numerous
excellent books have been written on CORBA. Finally, knowledge about the
internal processes of CORBA platforms is helpful for developing a general un-
derstanding about CORBA, and this comes in handy for anyone working with
commercial CORBA products.

All source code in this book as well as M itself is completely imple-
mented in C++. An elementary knowledge of the programming language C++ C++ knowledge a

prerequisiteis therefore essential for understanding the examples. Some of the introductory
examples are also presented in Java. We regard a programming language merely
as an aid in implementing the concepts we introduce. The reader will find it a
useful exercise to map the concepts presented in the book to other programming
languages. Along with having C++ experience, the reader will find that experi-
ence with a development environment under UNIX or Windows is necessary
for understanding the programs presented in this book.

1.3  

We have aimed this book at students who are at an advanced stage of their
studies and at professional developers who want to use middleware for their
work. Different interests motivate these two groups. Students can use this book Target group

includes students
and professional
developers

as a textbook to help them to learn how middleware platforms function. This
book has been successfully used in a graduate class on distributed systems, in
which the students had to write a distributed application based on CORBA
using C++ and Java. As part of their project, the students had to use µORB
(described in Chapter 4) to get first-hand experience with the inner workings
of a middleware platform. The material used for the term project are available
online (see Section 1.5).

4 C  Introduction

The relevance of the topics covered in this book to professional program-
mers is linked to the success of M as an Open Source project. Open Source
has become respectable in the commercial world, and more and more com-
panies are now making use of the benefits it offers. The availability of source
code enables Open Source to be adapted to meet specific needs—something
that comparable commercial products cannot offer. This book lays the founda-
tions for an understanding of the internal workings of M—a prerequisite for
such adaptations.

1.4  

This book is logically structured in several parts. The first part, which includes
Chapters 2 through 4, covers the basics and presents an overview of middleware
in general and CORBA in particular. All the discussions in these chapters are
independent of M. The second part, which includes Chapters 5 through 9,
then goes into detail about M’s design and architecture. Chapter 10 gives
a broader view on current and future middleware technologies. The final part
of this book is composed of the appendices which serve as a brief M user
manual. The book is structured so that the chapters can be read in sequence.
However, the appendices, which explicitly deal with M, can be referenced
from the index as a direct information source.

A brief overview of the content of each of the chapters follows:Chapter overview
of
this book

Chapter 2 introduces the basic concepts required for understanding the con-
tent of the book. It also presents a simple sample application to help clarify
some of the concepts.

Chapter 3 presents a brief introduction to CORBA. The sample application
presented in the previous chapter is implemented on a distributed basis
through the use of CORBA.

Chapter 4 describes the µORB. The µORB is a mini ORB that is used
to present some components of CORBA-based middleware in a compact
form.

Chapter 5 is the first of five chapters that deal solely with the internal details of
M. This chapter presents the microkernel architecture of M’s Object
Request Broker.

1.5. Ancillary Materials 5

Chapter 6 describes the implementation of CORBA’s interoperability frame-
work. In M the implementation of IIOP is based on the microkernel
approach presented in the previous chapter.

Chapter 7 describes the binding of object implementations to the Object Re-
quest Broker on the server side. The CORBA standard introduces its own
component, called an object adapter.

Chapter 8 discusses the interface between caller and Object Request Broker—
this time from the client side. The invocation adapters responsible for this
task are likewise integrated in the ORB through the microkernel approach.

Chapter 9 introduces the architecture of M’s IDL compiler and describes
how IDL compilers and interface repositories are closely related.

Chapter 10 concludes this book by giving an overview of emerging technolo-
gies in the middleware domain. We also briefly touch on the main differ-
ences between CORBA and Web Services.

In addition to the chapters listed, the book includes extensive appendices Appendices contain
further technical
information

with further information about M:

Appendix A provides some information on the installation process for M.

Appendix B provides an implementation overview of M. It discusses some
M-specific details such as M’s Interface Repository and Implementa-
tion Repository.

Appendix C gives further information on some specific internals of M, in-
cluding how to integrate new transport mechanisms.

Appendix D reproduces the complete source code for the CORBA sample ap-
plication presented in Chapter 3.

1.5  

As an Open Source project, M boasts its own home page, which you can
find at www.mico.org. There you will find the current source code for M Ancillary materials

available over
WWW

along with other information about this particular implementation in the form
of a user handbook, frequently asked questions (FAQ), and an archive of mailing
lists.

6 C  Introduction

Another thing we have done is to set up a special Web page specifically for
this book. You can access this Web page at www.mico.org/textbook. In addition to
updated references, the Web page includes the complete source code for all sam-
ple programs discussed in this book. You will also find a programming project
based on µORB and M that can be used as a term project for a graduate-level
course.

C 2
 

We start this book with a short chapter on basic concepts. The idea is not to
overwhelm the reader with explanations but only to provide as much informa-
tion as is necessary to understand the content of the following chapters. The
reader should check the literature for additional information on the individual
topics (for example, see [10], [11], and [34]). We begin by first presenting some
basic concepts related to distributed systems. This is followed by a description
of an object model that is particularly suitable for modeling distributed applica-
tions. We then present a first overview of the structure and tasks of middleware.
We conclude the chapter by presenting a simple sample application that is con-
tinued in the subsequent two chapters.

2.1  

The theory behind distributed systems forms the basis for the middleware dis-
cussed in this book. This section explains some of the aspects of distributed sys-
tems that are necessary for understanding the material discussed in the chapters
that follow. We can only provide an overview here of the theory behind distrib-
uted systems. The reader should refer to the literature for further information
on this subject (for example, see [10] or [26]).

2.1.1 Characterization

The literature presents various definitions of what a distributed system is. Ac- Characterization of
a distributed systemcording to [3], a distributed system is characterized as follows:

7

8 C  Basic Concepts

 . Structure of a distributed system.

A distributed system is an information-processing system that contains a number of
independent computers that cooperate with one another over a communications
network in order to achieve a specific objective.

This definition pinpoints a number of aspects of distributed systems. Al-
though the elementary unit of a distributed system is a computer that is
networked with other computers, the computer is autonomous in the way
it carries out its actions. Computers are linked to one another over a com-
munications network that enables an exchange of messages between comput-
ers (see Figure 2.1). The objective of this message exchange is to achieve
a cooperation between computers for the purpose of attaining a common
goal.

A physical view of a distributed system describes this technology. It in-
cludes computers as nodes of the communications network along with details
about the communications network itself. In contrast, a logical view of a dis-
tributed system highlights the applications aspects. Figure 2.1 can therefore also
be interpreted as a set of cooperating processes. The distribution aspect refersDistribution of

state
and behavior

to the distribution of state (data) and behavior (code) of an application. The
process encapsulates part of the state and part of the behavior of an application,
and the application’s semantics are achieved through the cooperation of several
processes. The logical distribution is independent of the physical one. For ex-
ample, processes do not necessarily have to be linked over a network but instead
can all be found on one computer.

Distributed systems offer a variety of advantages compared to centrally or-
ganized mainframes. Decentralization is a more economic option because net-Advantages

worked computing systems offer a better price/performance ratio than main-
frame systems. The introduction of redundancy increases availability when parts
of a system fail. Applications that can easily be run simultaneously also offer ben-
efits in terms of faster performance vis-à-vis centralized solutions. Distributed
systems can be extended through the addition of components, thereby provid-
ing better scalability compared to centralized systems.

2.1. Distributed Systems 9
 . Advantages and disadvantages of centralized versus distributed systems

Criteria Centralized system Distributed system
Economics low high
Availability low high
Complexity low high
Consistency simple difficult
Scalability poor good
Technology homogenous heterogenous
Security high low

The advantages offered by distributed systems are also countered by some Disadvantages

disadvantages. The more components in a system, the greater the risk that the
rest of the system will suffer unless special measures are taken in the event
that one of the components fails. Special mechanisms are needed to avert these
failures and make them transparent to the user. Moreover, the many compo-
nents that make up a distributed system are potential sources of failures. Due
to the physical and time separation, consistency (for example, with distributed
databases) is more of a problem than with centralized systems. Leslie Lamport
presents a (cynical) alternative characterization that highlights the complexity of
distributed systems (the complete email and quote can be found at the following
URL: http://research.microsoft.com/users/lamport/pubs/distributed-system.txt):

A distributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable.

Another problem with these systems lies in the heterogeneity of their com-
ponents. The larger the geographical area over which a distributed system is
used, the greater the probability that different types of technology will be in-
corporated. Special mechanisms are needed to link together the different tech-
nologies in a network. The sprawling nature of a distributed system also raises a
question about security, because the parts of a system that cannot be controlled
are vulnerable to hackers and the like. Consequently, special mechanisms have
to be introduced to safeguard security.

Table 2.1 summarizes the key advantages and disadvantages of distributed
systems compared to centralized systems. Each application has to be looked at
separately to determine whether there is a benefit to running it as a distributed
application. Nevertheless, new concepts and tools are always required for work-
ing with distributed systems.

2.1.2 Transparency

The above characterization of distributed systems introduces them as a set of
mutually cooperating processes. This aspect places the emphasis on the separa-

10 C  Basic Concepts

tion and, consequently, the possible distribution of the components of a system.
This can prove to be a disadvantage to the applications programmer because
of the additional complexity involved in dealing with distributed systems com-
pared to centralized systems. It is desirable to conceal the complexity of dis-
tributed systems. In the literature this characteristic is described as transparency.
Thus the complexity resulting from the distribution should be made transparent
(i.e., invisible) to the applications programmer. The aim behind this is to present
a distributed system as a centralized system in order to simplify the distribution
aspect.

The literature cites numerous criteria for the transparency of distributed
systems, with most of these criteria based on those from the Advanced Network
Systems Architecture (ANSA) (see [2]). The following criteria for transparency
are important for the context for this book:Transparency

criteria

Location transparency: Components can be accessed without having to know
where they are physically located.

Access transparency: The ways in which access takes place to local and remote
components are identical.

Failure transparency: Users are unaware of a failure of a component.

Technology transparency: Different technologies, such as programming lan-
guages and operating systems, are hidden from the user.

Concurrency transparency: Users are unaware that they are sharing compo-
nents with other users.

It is costly and complicated to implement the mechanisms needed to meet
the transparency criteria. For example, distributed systems have new types of
fault situations that have to be dealt with that do not occur in centralized sys-
tems. As the degree of desired failure transparency increases, the mechanisms
that implement the transparency (also see Section 2.1.5) become more complex.
One of the main objectives of a middleware platform is to offer mechanisms that
help to implement the above transparency criteria.

2.1.3 Communication Mechanisms

Processes are active components with a state and a behavior. The state consists
of the data that is managed by the process. The behavior corresponds to theCooperation based

on message
exchange

implementation of the applications logic. The processes cooperate with one an-
other through message exchange. A message consists of a sequence of bytes that

2.1. Distributed Systems 11

 . Message exchange between two processes.

are transported between two processes via a communications medium. Certain
rules apply to the way in which a message is structured internally so that it can
be interpreted by the process received.

We limit our discussion to the communication that takes place between
two processes. The subject of group communication between more than two
processes is not appropriate to the context of this book. In message exchange one
process assumes the role of sender and another process that of receiver. A space-
time diagram can be used to visualize the process during a communications
procedure. In Figure 2.2, time runs from left to right. Process 1 is the sender,
and process 2 is the receiver.

A process is either in an active or a passive state (the active state is indicated
in Figure 2.2 by the thick black lines). A process can only carry out calcula-
tions during an active state. Various events, such as the receipt of a message, can
change the state of a process. In Figure 2.2, the sender is making some calcula-
tions and changes to the passive state when it sends a message. If the message
arrives at the receiver, the receiver changes to an active phase and makes calcula-
tions based on the content of the message.

A simple classification scheme of communication mechanisms is the follow- Classification

ing (also see [27]). We first look at different patterns in the message flow between
sender and receiver. The message exchange shown in Figure 2.2 is an example of
message-oriented communication: The sender transmits a message to the receiver
but does not wait for a reply. Message exchange takes place in only one direc-
tion. In the case of request-oriented communication, the receiver responds to the
sender with a reply message. The communications process is not complete until Communication

patternsthe sender has received a reply to his request.
The synchronicity of a communication mechanism is orthogonal to the

communications patterns from a message-oriented and request-oriented stand-
point. The synchronicity describes the time separation between sender and re- Degree of

synchronizationceiver. In synchronous communication the sender is passive during the communi-
cations process until the message has arrived at the receiver. Conversely, during
asynchronous communication the sender remains active after a message has been

12 C  Basic Concepts

 . Classification of communication mechanisms

Communications Level of synchronization
pattern Asynchronous Synchronous
Message-oriented no-wait-send rendezvous
Request-oriented remote service invocation remote procedure call

sent. With this kind of communication, a sender can transmit messages more
quickly than the receiver is able to accept them, and thus the transport sys-
tem must be capable of buffering messages. Although the buffering of messages
in the transport system is not necessary in the case of synchronous commu-
nication, sender and receiver are still coupled to one another timewise. Asyn-
chronous communication is better, however, at supporting the parallelism of
processes.

The two communications patterns and two types of synchronization pro-
duce four categories for the classification of communication mechanisms (see
Table 2.2).

Remote procedure call (RPC) is an example of synchronous request-oriented
communication. The sender sends a request to the receiver and is passive un-
til the receiver delivers the results of the request. An example of asynchronous
request-oriented communication is remote service invocation (RSI). During this
type of communication, the sender remains active while the receiver is process-
ing the request. Although RSI makes better use of the parallelism offered in
distributed systems, RPC is based on popular programming paradigms and is
therefore intuitive in its interpretation.

Datagram services are an example of asynchronous message-oriented com-
munication. The sender transmits a message to the receiver without wait-
ing for a reply or changing to the passive state. The rendezvous, however, is
used in the synchronization of two processes and is an example of synchro-
nous message-oriented communication. Synchronous communication is used
in the rendezvous to establish a common (logical) time between sender and re-
ceiver.

2.1.4 Client/Server Model

The client/server model introduces two roles that can be assumed by processes:
the role of service user (client) and the role of service provider (server). The dis-Client and server as

roles of objects tribution of roles implies an asymmetry in the distributed execution of an ap-
plication. The server offers a service to which one or more clients has access
(see Figure 2.3). Here processes act as natural units in the distribution. In the
context of distributed systems, the communication between client and server
can be based on one of the mechanisms mentioned in the previous section. The

2.1. Distributed Systems 13

 . Client/server model.

client/server model only introduces roles that can be assumed by a process. At a
given point in time, a process can assume the role of both client and server. This
scenario occurs, for example, when the server is carrying out a task and delegates
a subtask to a subordinate server.

The RPC introduced in the last section offers a fundamental communica-
tion mechanism for client/server interaction. The client is the initiator of an
RPC, and the server provides the implementation of the remotely executed pro-
cedure. The request message in Figure 2.3 contains all current input parameters
for the procedure call. Conversely, the response message contains all results for
the corresponding request produced by the server. The advantage of using re-
mote procedure call as a communication mechanism for the client/server model
is that it incorporates procedural programming paradigms and is therefore eas-
ily understood. The implementation of the procedure is an integral part of the
server, and the invocation of the procedure is part of the application running in
the client.

An advantage of the client/server model is the intuitive splitting of appli- Advantages

cations into a client part and a server part. Based on conventional abstractions
such as procedural programming, it simplifies the design and the development
of distributed applications. Over and above this, it makes it easy to migrate or
integrate existing applications into a distributed environment. The client/server
model also makes effective use of resources when a large number of clients are ac-
cessing a high-performance server. Another advantage of the client/server model
is the potential for concurrency.

From a different point of view, all these advantages could also be considered Disadvantages

disadvantages. For example, the restriction to procedural programming para-
digms excludes other approaches such as functional or declarative programming.
Furthermore, even procedural paradigms cannot always ensure that transparency
is maintained between local and remote procedure calls since transparency can
no longer be achieved in the case of radical system failure. The concurrency

14 C  Basic Concepts

mentioned earlier as an advantage can also lead to problems because of its re-
quirement that processes be synchronized.

2.1.5 Failure Semantics

Ideally, there should be no difference between a local and a remote procedure
call. However, the distribution of an application can result in a number of fail-
ures that would not occur with a centralized solution. Of all the possible failures
that can occur, we will look at two particular types in detail: the loss of messages
and the crash of a process. The different failures are shown in Figure 2.4.

Loss of request message (1): If a request message is lost, the client must re-
transmit the message after a timeout. However, the client cannot differen-
tiate between different types of failures. For example, if the result message
is the one that is lost, a retransmission of the request message could result
in the procedure being executed twice. The same problem occurs with long
procedures when too short a timeout is selected.

Loss of result message (2): The procedure was executed on the server, but the
result message for the client is lost. The client retransmits the request after
a timeout. If the server does not recognize what happened, it executes the
procedure again. This can cause a problem with procedures that change the
state of the server.

Server breakdown (3): If the server breaks down due to a failure, it has to be
determined whether a partial execution of the procedure had already pro-
duced side effects in the state. For example, if the content of a database is
modified during the procedure, it is not trivial to allow the execution to
recover and continue in an ordered way after the crash of the server.

Client breakdown (4): A client process that breaks down during the execution
of a remote procedure call is also referred to as an orphaned invocation. The

 . Error situations with RPC.

2.1. Distributed Systems 15

question here is what the server does with the results or where it should send
them.

Ideally, a remote procedure call should implement exactly once semantics—
the invocation by a client will result in exactly one execution on the part of Exactly once

semanticsthe server and also only delivers one result. However, it is not easy to achieve
these semantics. Different applications have different requirements for quality
of service in terms of failure detection and recovery. For instance, exactly once
semantics are particularly desirable for bank transactions. However, repeated
executions and numerous result messages would not be a problem in the case of a
simple information terminal that only calls up data from a remote server without
changing the state of the server (also referred to as idempotent operations). In
this case, weak assurances of quality of service are sufficient in certain failure
situations.

Maybe semantics provide no mechanism for lost messages or process break- Maybe semantics

downs. Depending on the particular failure, the procedure can be carried out
zero times or once on the server side. Consequently, the client receives at most
one result. Maybe semantics essentially provide no guarantees. So long as no fail-
ures occur, the remote procedure call is properly carried out. These semantics are
also referred to as best-effort.

At-least-once semantics guarantee that a remote procedure call will be ex- At-least-once
semanticsecuted on the server side at least once in the event of message loss. After a

timeout, the client repeats the remote procedure call until it receives a response
from the server. What can happen as a result, however, is that a procedure will
be carried out several times on the server. It is also possible that a client will
receive several responses due to the repeated executions. At-least-once seman-
tics do not provide a confirmation if the server breaks down. At-least-once se-
mantics are appropriate with idempotent procedures that do not cause state
changes on the server and therefore can be executed more than once without
any harm.

 . Failure semantics with RPC

Failure Fault-free Message Server
semantics operation loss breakdown

Execution: 1 Execution: 0/1 Execution: 0/1
Maybe

Result: 1 Result: 0 Result: 0
Execution: 1 Execution: � 1 Execution: � 0

At-least-once
Result: 1 Result: � 1 Result: � 0
Execution: 1 Execution: 1 Execution: 0/1

At-most-once
Result: 1 Result: 1 Result: 0
Execution: 1 Execution: 1 Execution: 1

Exactly once
Result: 1 Result: 1 Result: 1

16 C  Basic Concepts

At-most-once semantics guarantee that the procedure will be executed atAt-most-once
semantics most once—both in the case of message loss and server breakdown. If the server

does not break down, exactly one execution and exactly one result are even guar-
anteed. These semantics require a complex protocol with message buffering and
numbering. Table 2.3 summarizes the failure semantics discussed along with
their characteristics.

2.2  

The information technology systems that are the subject of this book are charac-
terized by an inherent complexity. This complexity is due quantitatively to the
growing size of these systems and qualitatively to demands for greater function-
ality. Such systems require a methodical structuring to deal with this complexity.
The principles of object modeling are particularly suitable for representing com-
plex problem areas.

2.2.1 Characterization

A model is the systematic representation of a problem domain to make it possible
or easier to examine or research. The model describes which principles are usedTasks of a model

to produce this representation during the modeling. Concepts that reflect the
philosophy behind the approach to a problem area are anchored in the model.
Each model defines concepts that focus on specific aspects of the problem area
being modeled. The aim of an object model is to provide a systematic represen-
tation of the problem area on the basis of the concepts abstraction, modularity,
encapsulation, and hierarchy (see [8] and [30]).

Abstraction: Abstraction is a description of a problem area in which a distinc-
tion is made between relevant and nonrelevant aspects. Simplification of
a representation is necessary in dealing with the complexity of a problem
area. Different abstractions can be generated from one problem area. The
decision regarding which aspects are relevant for a particular abstraction de-
pends on the subjective viewpoint of the observer. Furthermore, the abstrac-
tion determines the terminology used to describe the relevant characteristics
of a problem area.

Modularity: A problem area is partitioned through modularization. This par-
titioning can be dealt with in different ways depending on a subjective
view. The subsets defined by the partitioning reflect the different aspects of

2.2. Object Model 17

the problem area and are distinguished from other subsets by well-defined
boundaries. A subset of the problem area represents its own problem area.

Encapsulation: Encapsulation is used to hide all details that are classified as not
relevant to a representation. Whereas abstraction describes an outer view,
the encapsulation conceals the interior view of the implementation of the
behavior established by the abstraction. Encapsulation guarantees that no
dependencies between components can occur due to internal implementa-
tion details. A consequence of encapsulation is the necessity for an interface
that separates the outer view from the inner one. All information that an
observer can derive from the outside of a representation is exclusively com-
bined in the interface to the representation.

Hierarchy: A hierarchy establishes the relationship between abstractions of dif-
ferent problem areas. Two hierarchies used in an object model are special-
ization (is-a) and aggregation (part-of). A specialization relationship exists
between two abstractions if one of the abstractions has all the characteristics
of the other one. The aggregation relationship allows an abstraction to refer
to another abstraction for part of its own definition.

The structuring of a problem area according to an object model is based on
the four concepts of abstraction, modularity, encapsulation, and hierarchy. The
representation of the problem area resulting from the modeling allows levels of
freedom that depend on the subjective viewpoint of the observer. A canonical
representation of a problem area based on the concepts of an object model does
not exist.

2.2.2 Terminology

The concepts of an object model presented in the last section are applied in
structuring complex problem domains. The result of the modeling is a repre-
sentation that is used as the point of departure for other studies and discussions.
Standardized terminology is required for the systematic representation.



The main concept of object models is the object. The decomposition of a prob- Object

lem domain using the concepts incorporated in the object model results in a set
of objects (see Figure 2.5). An object is a thing of our imagination that can be
abstract or even concrete in nature. Although the choice of granularity for an
object is relative to the observer, an object distinguishes itself from other objects
solely on the basis of its definition by well-defined interfaces. The granularity

18 C  Basic Concepts

 . Decomposition of a problem domain into a set of objects.

in the approach to the problem area determines the level of abstraction. The
demarcation between objects creates the modularization needed in the object
model. An object is therefore a self-contained problem area.

Objects are carriers of an identity. All objects are differentiated on the basisIdentity

of their unique identity. According to the concept of identity, objects are suffi-
ciently distinguishable by their inherent existence and not necessarily by their
individual characteristics. As well as by its identity, an object is characterized by
its state and its behavior. These two characteristics need not be orthogonal toState and behavior

one another since behavior is usually influenced by the state. State and behav-
ior define the functionality an object provides and which can be used by other
objects. The implementation realizes the functionality of an object based on a
programming language.

The concepts of an object model have to be supported in the programming
language by conventions or special language constructs. For example, the con-
cepts of state and behavior in an imperative programming language correspond
to the programming language constructs data and functions.

As a result of the encapsulation required in object models, an object needs a
well-defined interface that can be used as an access point by other objects, thusInterface

enabling access to its functionality. The interface separates an inner and an outer
view of an object. The outer view provides information about the functionality
of an object; the inner view reveals the implementation details. The interface
as a fixed access point reduces the dependencies between objects. Implemen-
tations can be interchanged so long as the outwardly apparent functionality is
preserved.

2.2. Object Model 19



The identity enables the unique addressing of an object via its interface (see Fig-
ure 2.5). Queries to an object can be sent in the form of messages to its interface,
which in turn responds to it through messages. A message consists of a selector
and a finite number of parameters. The selector is used to select the functional- Selector

ity offered by an object. The parameters included in a message are identified as
input parameters if they are contained in a request or output parameters if they
are contained in a reply.

An object model does not stipulate a precise structure for selectors or pa-
rameters. Rather the structure is normally based on a programming language
paradigm. For example, if the structure of a message is based on an imperative
programming language, the selector consists of the function name together with
an ordered sequence of parameter types of the function. The selector is then
also denoted as the signature of a message and the interface as an operational Signature

interface. The part of the implementation that provides the functionality of a
message in an object is referred to as a method or an operation. The process of Method selection

directing an incoming message to an implementing method is called method
dispatching.

In the object model, communication between objects typically follows
the synchronous, request-oriented communication pattern introduced in Sec-
tion 2.1.3. A prerequisite for communication process is that the sender of a
message has a reference to the addressee. The reference embodies knowledge Reference

about the object identity that is necessary for unique addressing. It manifests
the view an object has of a referenced object. An expression describes the use of a Expression

message to a referenced object. For example, the expression a.deposit(100) indi-
cates the use of a message on an object with an operational interface, which can
be referenced over the identifier a (see Figure 2.6).

 . Method selection using the signature of a message.

20 C  Basic Concepts

The message in this example has the signature deposit(in long). The key-
word in stands for an input parameter of the operation. When an operation is
invoked, input parameters are bound to concrete values (such as the value 100
in Figure 2.6). The expression a.deposit(100) is part of the implementation of
the client object. The identifier a references the operational interface of an ac-
count object. Based on the signature of the incoming message, the method
deposit(in long amount) is selected. The actual parameter 100 is bound to
the formal parameter amount of the method, and the implementation is exe-
cuted.

   

Types enable objects to be classified according to prescribed criteria. Subsets ofType

objects can therefore be categorized according to certain characteristics. A type
is a specification of conditions. If the conditions apply to an object, the object
belongs to a type. If the conditions formulated in the type apply to the object,
then this object is an instance of the type.Instance

The view defined through a reference to an object can be specified through
a reference type. The reference type does not necessarily have to be identical with
the object type because the view defined through the reference for its part rep-
resents an abstraction based on certain details of the object type. To guarantee
access safety to the functionality offered by an object, the reference type has toAccess safety

have a certain relationship to the object type. Type conformity defines the criteria
that can be applied to determine if two types conform with one another so that
access safety is guaranteed.

Monomorphic type conformity demands an exact agreement between refer-Monomorphic and
polymorphic type
conformity

ence and object type, which constitutes conformity between the current and the
formal parameter types of a message. In this case, conformity equates to syn-
tactic equivalence. Polymorphic type conformity can be used to add flexibility to
this strict definition. For example, access safety is maintained if the normal ac-
count in Figure 2.6 is replaced by a savings account. This applies because of the
semantics of the is-a relationship according to which a savings account is a spe-
cialization of an account. Polymorphic type conformity is only achievable if the
development or runtime environment offers mechanisms for maintaining access
safety through type conversions, thereby initiating polymorphism.

2.3. Middleware 21

2.3 

The preceding sections showed that distributed systems create new problems
that do not exist in centralized systems. The question is how suitable concepts
and mechanisms can be used to develop and execute applications in distributed
systems. It is obvious that new concepts and mechanisms are necessary, but not
at which level they should be embedded. In principle, different options exist—
from support at the hardware level all the way to the extension of programming
languages to enable support of distributed applications. Software solutions typ-
ically provide the greatest flexibility because of their suitability for integrating
existing technologies (such as operating systems and programming languages).

These conditions lead to the concept of middleware. Middleware offers gen-
eral services that support distributed execution of applications. The term mid-
dleware suggests that it is software positioned between the operating system and
the application. Viewed abstractly, middleware can be envisaged as a “tablecloth”
that spreads itself over a heterogeneous network, concealing the complexity of
the underlying technology from the application being run on it.

2.3.1 Middleware Tasks

We start this section by looking at the tasks carried out by middleware. We
will limit the discussion to the middleware support of an object-based applica-
tion because the concepts of an object model ideally reflect the characteristics
of distributed systems. An object encapsulates state and behavior and can only
be accessed via a well-defined interface. The interface hides the details that are
specific to the implementation, thereby helping to encapsulate different tech-
nologies. An object therefore becomes a unit of distribution. Recall that objects
communicate with each other by exchanging messages.

For the context of this book, we define the following middleware tasks: Tasks of
middleware

Object model support: Middleware should offer mechanisms to support the
concepts incorporated in the object model.

Operational interaction: Middleware should allow the operational interaction
between two objects. The model used is the method invocation of an object-
oriented programming language.

Remote interaction: Middleware should allow the interaction between two
objects located in different address spaces.

22 C  Basic Concepts

Distribution transparency: From the standpoint of the program, interaction
between objects is identical for both local and remote interactions.

Technological independence: The middleware supports the integration of dif-
ferent technologies.

2.3.2 The Structure of a Middleware Platform

As we mentioned earlier, middleware is conceptually located between the ap-
plication and the operating system (see Figure 2.7). Because an object model
serves as the underlying paradigm, the application is represented as a set of in-
teracting objects. Each object is explicitly allocated to a hardware platform (i.e.,
we do not consider cases in which an object logically extends beyond computer
boundaries).

The middleware hides the heterogeneity that occurs in a distributed system.Types of
heterogeneity This heterogeneity exists at different places:

Programming languages: Different objects can be developed in different pro-
gramming languages.

Operating system: Operating systems have different characteristics and capa-
bilities.

Computer architectures: Computers differ in their technical details (e.g., data
representations).

 . Middleware for the support of object-based applications.

2.3. Middleware 23

Networks: Different computers are linked together through different network
technologies.

Middleware overcomes this heterogeneity by offering equal functionality at
all access points. Applications have access to this functionality through an Appli-
cation Programming Interface (API). Because the API depends on the program-
ming language in which the application is written, the API has to be adapted to
the conditions of each programming language that is supported by the middle-
ware.

An applications programmer typically sees middleware as a program library
and a set of tools. The form these take naturally depends on the development
environment that the programmer is using. Along with the programming lan-
guage selected, this is also affected by the actual compiler/interpreter used to
develop a distributed application.

2.3.3 Standardization of a Middleware

If we were to project a middleware to a global, worldwide network, we would
find special characteristics that differ from those of a geographically restricted
distributed system. At the global level, middleware spans several technological
and political domains, and it can no longer be assumed that a homogenous
technology exists within a distributed system.

Due to the heterogeneity and the complexity associated with it, we can-
not assume that one vendor alone is able to supply middleware in the form
of products for all environments. From the standpoint of market policy, it is
generally desirable to avoid having the monopoly on a product and to support
innovation through competition. However, the implementation of middleware
through several competing products should not result in partial solutions that
are not compatible.

Compatibility is only possible if all vendors of middleware adhere to a stan-
dard. The standard must therefore stipulate the specification for a product—an Products that

conform to a
standard

abstract description of a desired behavior that allows a degree of freedom in
the execution of an implementation. It serves as a blueprint according to which
different products (i.e., implementations) can be produced.

A specification as a standard identifies the verifiable characteristics of a sys-
tem. If a system conforms to a standard, it is fulfilling these characteristics. From
the view of the customer, standards offer a multitude of advantages. In an ideal
situation a standard guarantees vendor independence, thereby enabling a cus-
tomer to select from a range of products without having to commit to one par-
ticular vendor. For customers this means protection of the investments they have

24 C  Basic Concepts

to make in order to use a product. The following characteristics are associated
with open standards:Characteristics of

an
open standard

Nonproprietary: The standard itself is not subject to any commercial interests.

Freely available: Access to the standard is available to everyone.

Technology independent: The standard represents an abstraction of concrete
technical mechanisms and only defines a system to the extent that is neces-
sary for compatibility between products.

Democratic creation process: The creation and subsequent evolution of the
standard is not ruled by the dominance of one company but takes place
through democratic processes.

Product availability: A standard is only effective if products exist for it. In this
respect a close relationship exists between a standard and the products that
can technically be used in conjunction with the standard.

2.3.4 Portability and Interoperability

In the context of middleware, a standard has to establish the interfaces between
different components to enable their interaction with one another. We want
to distinguish between two types of interface: horizontal and vertical (see Fig-Two different

interfaces in
middleware

ure 2.8). The horizontal interface exists between an application and the middle-
ware and defines how an application can access the functionality of the middle-
ware. This is also referred to as an Application Programming Interface (API). The
standardization of the interface between middleware and application results in

 . Portability and interoperability.

2.4. Sample Application 25

the portability of an application to different middleware because the same API Portability

exists at each access point.
In addition to the horizontal interface, there is a vertical interface that de-

fines the interface between two instances of a middleware platform. This vertical
interface is typically defined through a protocol on the basis of messages, referred
to as protocol data units (PDUs). A PDU is a message sent over the network. Both
client and server exchange PDUs to implement the protocol. The vertical inter-
face separates technological domains and ensures that applications can extend
beyond the influence area of the product of middleware. The standardization of
this interface allows interoperability between applications. Interoperability

Applications programmers are typically only interested in the horizontal in-
terface because it defines the point of contact to their applications. From the
view of the applications programmer, the vertical interface is of minor impor-
tance for the development of an application. Yet an implicit dependency exists
between vertical and horizontal interfaces. For example, coding rules for the
PDUs have to exist in the vertical interface for all data types available in the
horizontal interface of an application.

2.4  

In this section we will present a simple application that serves as the basis for the
examples appearing in the subsequent two chapters. The degree of completeness
of the example is of minor importance for our discussion. It is intentionally kept
simple in order to focus on middleware issues. In the two chapters that follow,
we will then show how this application can be distributed across address space
boundaries.

2.4.1 The Account Example

The first steps in any software development process are the analysis and design
of the problem domain. The result of this process is a formal description of the
application that is to be developed. One possible way to describe the application
is through the Unified Modeling Language (UML). In the following we introduce
a simple application where the design is trivial. Our emphasis is the distribution
of the application with the help of a middleware, not the analysis and design
process itself.

The application that will be used in this and subsequent chapters models a
customer who wishes to do operations on a bank account. Here we are not con-

26 C  Basic Concepts

 . Sequence diagram for account use case.

cerned with different types of accounts, or how accounts are created by a bank.
In order to keep the scenario simple, we assume that only one customer and
one account exist, each represented through an object. The account maintains a
balance, and the customer can deposit and withdraw money through appropri-
ate operations. The customer can furthermore inquire as to the balance of the
account.

We use UML to further formalize the account application. UML introduces
the notion of a sequence diagram that describes a use case of our application. ForSequence diagram

example, one possible use case might be that the customer deposits 700 units
and then asks the account for the current balance. Assuming that the previous
balance was 0, the new balance should be 700. This is only one of many possible
use cases. For complex applications we would have several such use cases to
describe the behavior of the application.

The use case described in the previous paragraph is depicted in Figure 2.9.
The notation is based on the UML notation for sequence diagrams. The two
actors—the customer and the account—are listed horizontally. Time flows from
top to bottom. The arrows show invocations and responses between the two
actors. The white bars indicate activity. In combination, the white bars and the
arrows show clearly how the thread of execution is passed between the customer
and the account.

The next step in designing the application is to decompose the problem do-
main into classes. UML offers another notation for class diagrams. For our sim-Class diagram

ple account application, we will only introduce one class: Account. Figure 2.10
shows the class diagram for the account application.

A class is represented by a rectangle that is further divided in three sections.
The top section contains the name of the class. The middle section contains the

2.4. Sample Application 27

 . UML class diagram for the account example.

description of the state. For the account class we only need one variable repre-
senting the balance of the account. Sometimes the state is not explicitly men-
tioned in the class diagram, especially if we only want to highlight the interface.
The bottom section of the class diagram lists all the operations that instances
of this class accept. The signature describes the input/output behavior of each
operation, similar to prototype definitions in C++.

2.4.2 C++ Implementation

The UML diagrams in the previous sections describe a design for the bank ac-
count scenario. The class structure for an object-oriented programming lan-
guage such as C++ is derived directly from the design. Our initial interest
in the following is the conversion of the UML diagram into a stand-alone
(i.e., not distributed) application. When UML classes are mapped to C++
classes, we introduce a naming convention according to which the C++ class
name is assigned the suffix _impl. The following code fragment shows the
implementation of the account application based on the programming lan-
guage C++: C++

implementation of
account application1: // File: account.cc

2:

3: #include <iostream>

4: #include <assert.h>

5:

6: using namespace std;

7:

8: // Implementation for interface Account

9: class Account_impl

10: {

11: private:

12: int _balance;

13:

14: public:

28 C  Basic Concepts

15: Account_impl ()

16: {

17: _balance = 0;

18: }

19:

20: void deposit (int amount)

21: {

22: cout << "Server: deposit " << amount << endl;

23: _balance += amount;

24: }

25:

26: void withdraw (int amount)

27: {

28: cout << "Server: withdraw " << amount << endl;

29: if (_balance >= amount)

30: _balance -= amount;

31: else

32: cout << "Server: withdraw failed" << endl;

33: }

34:

35: int balance ()

36: {

37: cout << "Server: balance " << _balance << endl;

38: return _balance;

39: }

40: };

41:

42: int

43: main (int argc, char *argv[])

44: {

45: int balance;

46: Account_impl* account = new Account_impl();

47: account->deposit (700);

48: balance = account->balance ();

49: cout << "Client: balance is " << balance << endl;

50: account->withdraw (50);

51: balance = account->balance ();

52: cout << "Client: balance is " << balance << endl;

53: account->withdraw (200);

54: balance = account->balance ();

55: cout << "Client: balance is " << balance << endl;

2.4. Sample Application 29

56:

57: return 0;

58: }

Since we assume C++ knowledge, the above code should be trivial to un-
derstand. The one point to make is that the application can be broken up into
a client and a server portion. Lines 9–40 define the server (i.e., the account),
and lines 42–58 define the client (i.e., the customer). In the following section
we show how this stand-alone program residing in one address space can be
distributed across different address spaces.

2.4.3 Distribution of the Sample Application

The sample application as presented in the last subsection is completely
processed within one address space. Figure 2.11 shows the different components
of the bank scenario in the form of a layer model in which the higher layers use
the functionality of the layers below them. The interfaces between the layers are
defined by the API, which in our example is the declaration of class Account.
The server layer contains the account object. The client layer accesses this object
through references (i.e., C++ pointers). It is important to note that the layers
express a dependency relationship. Higher layers depend on lower layers. In that
sense, the client depends on the server, but not vice versa.

The separation of client and server into different address spaces assumes that
the actual parameters are being transmitted between processes since a common
address space no longer exists. All data belonging to the parameters of an inter-
action between a client and a server must therefore be transmitted explicitly to
the address space of the server. The data must be self-contained; that is, it is not
allowed to contain a pointer that is only valid in the context of the client.

 . Complete application in an address space.

30 C  Basic Concepts

 . Distributed execution of the application.

Figure 2.12 illustrates the principle with the client and server in different
address spaces. A proxy of the server (component in dark gray shading) exists
on the client side. This proxy offers the same API as the server itself. Its tasks
include transmitting all current parameters over a communications channel to
the remote address space.

In the remote address space, a proxy of the client accepts the data and exe-
cutes the actual invocation on the server. Outwardly it is not possible to distin-
guish the proxies from their “originals,” so the distribution of client and server
is transparent. The arrangement of the components in Figure 2.12 is derived
through a simple transformation of Figure 2.11. The client and server portions
of the stand-alone application in Figure 2.11 are separated. The proxies are used
to fill the gaps on either side so that client and server are unaware of the separa-
tion.

2.5 

This chapter provides a short overview of the basic concepts that are impor-
tant for the rest of the book. The reader is advised to refer to the literature for
additional information about the individual topics in this chapter. A separate re-
search area with extensive literature exists for each of the topics covered. Readers
with a further interest in an overview of the subject or their first introduction to
a topic can refer to the bibliography at the back of this book.

Middleware provides mechanisms and tools that simplify the develop-
ment of distributed applications. One of its objectives is distribution trans-
parency, which reduces the complexity of dealing with extensively distributed
systems. We devote the following chapters to the architecture, design, and im-
plementation of middleware. We start by presenting a CORBA-based middle-

2.5. Summary 31

ware platform from the view of an applications programmer and showing how
the bank application described in this chapter can be executed on this plat-
form.

This page intentionally left blank

C 3
  

This chapter deals with the fundamental concepts of CORBA (see [28]). This
chapter could have been written using any middleware technology; however,
we have chosen CORBA because of its maturity and significance in the mar-
ketplace. The specification for CORBA, published by the OMG, is based on
an object model described in the Object Management Architecture (OMA).
We start by looking at the characteristics of the OMA in Section 3.1 and then
those of CORBA in Section 3.2. Those sections provide a high-level overview
of CORBA. While this part is more theoretical, it will provide the foundation
for the rest of the chapter that is devoted to CORBA from the view of an ap-
plications programmer. Section 3.3 demonstrates the development process of a
CORBA application. A complete CORBA application, based on the bank ac-
count scenario introduced in the last chapter, is then presented in Section 3.4.

This chapter is an introduction to CORBA, and presents all the back- ORB, product-
independent
introduction to
CORBA

ground information necessary for understanding the material presented in the
subsequent chapters. The view of CORBA presented corresponds to that of
an applications programmer and is largely independent of M. It should be
pointed out that the explanations in this chapter by no means cover all aspects
of CORBA. Readers should refer to secondary literature for further information
(for example, see [14]). Although we only dedicate one chapter to the introduc-
tion to CORBA, it also features a complete CORBA application written in C++
and Java.

33

34 C  Introduction to CORBA

3.1   

The Object Management Group (OMG) was founded in 1989 as an interna-
tional, nonprofit consortium and has many members from the field of informa-OMG is the

publisher of the
CORBA
specification

tion technology worldwide. The task of the OMG consists of publishing and
updating specifications that describe an object-oriented infrastructure as the ba-
sis for information processing. The OMG functions as the publisher of the freely
available specification and coordinates contributions and modifications to the
standard submitted by members of the consortium.

We will be dealing with two standards published by the OMG. The first
standard is the Object Management Architecture (OMA), which describes a
general platform for the development of distributed, object-oriented applica-
tions. The second standard is the Common Object Request Broker Architecture
(CORBA), which is a specialization of OMA and describes an actual middle-
ware platform. We will be looking at CORBA in detail in the following section,
but we will first start with an overview of OMA.

The main features of the OMA are an abstract object model and a referenceObject
Management
Architecture

architecture. The OMA object model differentiates between object semantics and
object implementation. The object semantics describe the object characteristics

 . OMA reference architecture.

3.2. Overview of CORBA 35

that are outwardly visible to clients; the object implementation deals with the
concepts needed to execute objects. The OMA puts the main emphasis on the
object semantics, and the aspect of object implementation is only defined in
broad terms to enable maximum flexibility in the implementation of objects.

Whereas the OMA object model provides an abstract characterization of ob-
jects, the reference architecture defines relationships between objects. Figure 3.1
shows the structure of the reference model. The main component is the Object
Request Broker (ORB), which functions as a software bus that enables commu-
nication between objects in four different categories:

Object services: This category combines the horizontal system services that are
application-independent and can be used in different contexts. Examples of
object services include naming, trading, and security services.

Common facilities: The common facilities provide horizontal end user services
that are typically required in different application contexts. An example is
the printing service.

Domain interfaces: The domain interfaces represent vertical services for spe-
cial application areas. Examples of domain interfaces are medical, telecom-
munications, and financial services.

Application interfaces: The application interfaces represent application-spe-
cific services. In contrast to the three other categories, application interfaces
are not included in the OMG standardization efforts.

Object frameworks, which represent a type of distributed class library for Object framework

a specific application area, can be created by the OMG or a user through an
implementation of the interfaces specified. In the process the implementation of
an object can access the functionality of objects in other categories. Figure 3.2
shows the structure of such a framework. In this example, the implementation
of common facilities makes use of the object services.

3.2   

The Common Object Request Broker Architecture (CORBA) is derived from an CORBA

instantiation of the OMA presented in the last section. Figure 3.3 presents an
overview of the key CORBA components. The components that are part of
CORBA are shaded in gray, and the components of the embedded application

36 C  Introduction to CORBA

 . Object framework.

 . Components of a CORBA-based middleware.

are those with a white background. The following sections look at the different
building blocks of a CORBA platform.

3.2. Overview of CORBA 37

3.2.1 CORBA Object Model

The difference between the CORBA object model and the OMA object model CORBA object
modelis that the CORBA object model transforms the abstract object model of the

OMA into a concrete form. For example, in contrast to the OMA, the CORBA
object model defines a number of basic types (Boolean, Char, Long, etc.) as well
as constructed types (struct, union, sequence, etc.). Moreover, the CORBA ob-
ject model defines the signature and the invocation semantics of the operations
defined in an interface. The signature of an operation consists of

Invocation semantics: Specifies which failure semantics are used for an opera-
tion (supported are best-effort or at-most-once).

Result type: Defines the type of return value, which can also be void. The re-
turn value is the same as an output parameter.

Operation name: Indicates the name of an operation. A name consists of an
identifier and must be unique within an interface.

Parameter list: Each parameter has a type as well as a tag that identifies the
parameter as an input or an output parameter or a combined input/output
parameter.

Exception list: An optional list of exception types that can occur during the
processing of an operation. An exception signals an error to the caller of the
operation.

Context list: An optional list of context information. The context information
consists of implicit input parameters that are defined by the client before an
operation invocation and transmitted along with the actual parameters to
the invoked entity.

The CORBA object model briefly outlined above is based on the Interface
Definition Language (IDL), which enables a formal specification of the types of
the object model and, particularly, the interfaces from objects.

3.2.2 Interface Definition Language

The Interface Definition Language (IDL) is used to specify object interfaces inde-
pendently of a specific programming language. This makes IDL the basis for the
separation of the interface and the implementation of an object. CORBA-IDL
is a declarative language—it contains no algorithmic constructs for the descrip-

38 C  Introduction to CORBA

tion of loops, branching, and so forth. Its syntax is extensively based on that
of C++, but it includes some additional constructs to accommodate the special
characteristics of distributed environments (for example, the identification of
parameters as input or output parameters).

The elements of CORBA-IDL permit the definition of types that are con-CORBA-IDL
permits description
of object interfaces

formant to the CORBA object model. IDL provides the mechanism of interface
inheritance to enable existing types to be reused in the construction of new ones.
Many object-oriented programming languages typically use implementation in-
heritance, which enables the inheritance of interfaces and their implementations.
Interface inheritance, in contrast, only allows the reuse of interfaces. However,
appropriate mechanisms of the implementation language (for example, inheri-
tance, delegation, and aggregation) can be used so that existing program code
can be reused in the construction of new CORBA objects.

3.2.3 IDL-Language Mappings

The mapping of IDL interfaces to a particular programming language such as
C++ is defined by an IDL language mapping. The OMG currently defines lan-Connection

between IDL and a
high-level
programming
language

guage mappings for C, C++, Smalltalk, Python, Ada 95, COBOL, PL/1, and
Java. IDL compilers automate the use of this language mapping by translating
an IDL specification to the corresponding code in one of the programming lan-
guages mentioned.

The basic types and constructed types of CORBA-IDL are mapped to the
corresponding data types of the target language. Each IDL interface is mapped
to two proxies: a stub and a skeleton. Similar to an RPC, the stub is located in
the client and behaves like a remote CORBA object in relation to the caller. The
skeleton is in the server and behaves like the remote caller in relation to the local
CORBA object.

The details of the IDL language mapping heavily depend on the program-
ming language being considered. For example, in object-oriented programmingLanguage mappings

depend on the
programming
language

languages, IDL interfaces are mapped to classes; in procedural programming
languages, functions and procedures take on these tasks. However, the CORBA
standard makes no statements about the internal implementation of the proxies;
it only states that the interface of the proxy objects is subject to the rules of IDL
language mapping.

3.2.4 Object Request Broker
ORB is the central
component in
CORBA

The Object Request Broker (ORB) transmits operation invocations from a
client to a server that can be located in the same address space, in different

3.2. Overview of CORBA 39

address spaces on the same computer, or on different computers. It therefore
ensures that communication between objects in a distributed environment is
transparent for the objects.

Special components are used as the interface between the ORB and the
application. On the client side the invocation adapter enables an operation to
be generated and invoked. In a similar way, the object adapter on the server side
allows an invocation to be delivered to the object implementation. The task of
the ORB is to accept operations at the invocation adapter and to forward and
deliver them to the appropriate object adapter.

3.2.5 Invocation and Object Adapters

Clients use invocation adapters either indirectly through stub objects or directly Client-side
interface to ORBin order to transfer method invocations to the ORB. Invocation adapters are

components that are separate from the ORB because the functionality needed to
initiate method invocations can vary considerably. A special invocation adapter
can be used for certain requirements.

Similar to invocation adapters, object adapters form the connection between
ORB and object implementations. They too are separate components from the
ORB because different types of object implementations place different demands Server-side

interface to ORBon object adapters. Object adapters manage the life cycles of CORBA objects
and handle the execution of operation invocations. Consequently, object imple-
mentations are bound to an object adapter through skeletons.

3.2.6 Interoperability

The CORBA standard specifies inter-ORB protocols that have to be supplied
by each compliant CORBA implementation in order to guarantee cooperation
between different CORBA products. The standard defines an interoperability
framework that is independent of a concrete transport mechanism. This frame-
work is defined in the standard through the General Inter-ORB Protocol (GIOP).
The interoperability framework must be adapted to the peculiarities of the trans-
port mechanism. This applies to technical details, such as the addressing of a
communication end point. The CORBA specification defines an inter-ORB
protocol that is based on TCP as the transport mechanism. In the standard this
protocol is referred to as the Internet Inter-ORB Protocol (IIOP).

40 C  Introduction to CORBA

3.3      


In this section we examine the development of a CORBA application from
the view of an applications programmer. As was explained in the last section,
CORBA is a specification that allows freedom in its implementation. For ex-Different

implementations of
ORB

ample, the standard does not prescribe a specific way to implement the ORB.
One possibility to implement the ORB could be to integrate the ORB into the
operating system. The functionality of CORBA would thus be made available
through an API, analogous to the socket or any other API being offered by the
operating system. Another way to implement the ORB would be to augment a
high-level programming language compiler. For example, a C++ compiler could
be changed in such a way that it natively understood the aforementioned IDL.

The majority of all known CORBA implementations, including M, use
another approach to implement the CORBA specification: as a set of libraries
and tools. This approach is the most flexible because the ORB developer can
use compiler and operating systems without having to change those. Figure 3.4
depicts a typical configuration of a CORBA client and server. Both server and
client are processes executing on an operating system. The server listens on a
TCP socket, and the client opens a TCP connection to the remote server. The
“language” spoken over this TCP connection is IIOP.

It is worth mentioning that this configuration is typical for client/server
applications running on the Internet. The World Wide Web is one example: a
browser on the client side “speaks” with a Web server via HTTP (HyperText
Transfer Protocol). As with any such application, client and server need not be
written in the same programming language. For example, the client in Figure 3.4
could be written in Java and the server in C++. The only important thing is that
client and server agree on a protocol. Of course, using a different programming
language usually means using a different tool chain. M only supports C++,
and we will have to use a Java-ORB to implement the sample application in Java.

The first step in developing a CORBA application typically involves iden-
tifying the object interfaces using the IDL. The IDL specification serves as an

 . A CORBA application in context.

3.3. The Creation Process of a CORBA Application 41

 . The creation of a CORBA application.

agreement between client and server. Once the IDL specification is determined,
developers can independently develop the client and the server in their preferred
programming languages. It is important to note that the IDL specification serves
as a contract between client and server. The contract states what operations the
server is offering at the interface and what therefore the client can expect in
terms of functionality.

To look at it from a different perspective, the IDL fulfills the requirement
of encapsulation postulated in the object model. The IDL is language inde-
pendent, and the client does not need to know in which language the server
is implemented. The IDL language mappings of the respective programming
language control the binding to the respective ORB on both the client and the
server sides.

Once the implementations (i.e., source code) of the client and the server
are available (top layer in Figure 3.5), they are translated and bound to an ex-
ecutable file (lowest layer in Figure 3.5). The IDL compiler is used to generate
the proxy objects from the IDL specifications. In this case, the stub is generated
in the same programming language as the client, and the skeleton in the same
programming language as the server. The IDL compiler of the corresponding
ORB is the one that must be used to generate the proxy objects.

The process of creating a CORBA application consists of four steps. Steps involved in
creating a CORBA
application

1. The application-specific part is contributed by the developer and imple-
ments the application’s logic.

2. The proxy objects are generated automatically from an IDL specification
through the use of an IDL compiler.

42 C  Introduction to CORBA

3. All source code files (those written by the programmer and those automati-
cally generated by the IDL compiler) are translated to object files by a com-
piler.

4. The object files are linked together with the ORB library to the final exe-
cutables.

3.4    C++
We will now use the basic concepts of the OMA and CORBA to show a com-
plete CORBA application. The application is the account scenario presented in
the previous chapter. It is not our aim to explain all details of a CORBA plat-
form because this is not within the scope of this book. Instead our goal is to
show a complete application from the view of a developer. We will present the
implementation for both C++ and Java.

The application described below exclusively uses CORBA-compliant func-
tionality. This means that the application is portable to other ORB implemen-
tations. We start by describing the IDL specification of the account applicationAccount scenario

under CORBA and then separately show the implementation of the server and of the client.
All code fragments used appear in their entirety in Appendix D. The complete
source code has consecutive line numbers to facilitate the relationship between
code fragments presented in this chapter.

3.4.1 IDL Specification

The first step in developing a CORBA application is to specify the interfaces.
We have identified only one interface in the account scenario presented in the
last chapter: the interface of an account object. This interface has to be defined
on the basis of CORBA IDL. The IDL syntax resembles that of C++. It should
again be noted that IDL is a specification language and not an implementation
language. Only the interfaces of the objects identified in the system are speci-
fied. The implementation follows later and is based on the higher programming
languages such as C++ or Java. The IDL specification of our account object is
fairly straightforward:Interface Account

61: interface Account {

62: void deposit (in long amount);

63: void withdraw (in long amount);

64: long balance ();

65: };

3.4. Application Development in C++ 43

Note that the syntax of those few lines follows that of CORBA-IDL. At a
first glance, the specification of interface Account resembles that of a C++ class
declaration. The keyword interface signals the introduction of a new CORBA
interface. The three main operations (deposit, withdraw, balance) of an account
are specified in this definition. Each operation has a signature that defines the
input/output behavior of that operation. Again, it resembles the signature in
C++. The type long is one of many built-in types provided by CORBA. long is a
signed, 32-bit long integer value. The keyword in declares the formal argument
as an input parameter (i.e., a parameter that is transmitted from client to server).
Besides in, CORBA also supports out and inout (a parameter that is an input
as well as an output parameter).

3.4.2 IDL Language Mapping for C++

The CORBA standard describes IDL language mappings for various program-
ming languages. In the following we first focus on C++; we will look at Java in
a later section of this chapter. The language mapping rules define how different
IDL constructs are to be mapped to C++ constructs. Because every compliant
ORB implementation has to adhere to these rules, the portability of an applica-
tion is largely guaranteed.

The details of the IDL language mapping prescribed by CORBA are com-
plex and cannot be fully covered here. We have limited our discussion to some
general comments that are sufficient for the purposes of our account applica-
tion. The IDL basic type long is mapped to the C++ type CORBA::Long defined
in the ORB library along with an integer value range of −231 to 231 − 1. The
question is why the IDL type long is not mapped to one of the built-in types
of C++ (e.g., int). The surprising reason is that the C++ language does not de-
fine a value range for type int; that is, sizeof(int) may yield different results
for different C++ compilers. Since we need to ensure that the IDL type long

always has the value range −231 to 231 − 1, the CORBA specification solves
this problem by introducing the type CORBA::Long. It is the ORB’s responsibilty
to typedef this type to something that has the exact same value range.

For each interface described in IDL, the CORBA language mapping rules
for C++ define several C++ classes that the IDL compiler needs to generate.
These classes basically make up the stub and skeleton and support the program-
mer in dealing with remote objects. The IDL language mapping for C++ defines
some naming conventions for the class names. For example, the IDL compiler
generates the following C++ classes for the IDL interface Account: Classes created from

an IDL interface

44 C  Introduction to CORBA

Account is an abstract base class that contains all local definitions for the inter-
face Account. This class also includes the class method _narrow, which will
be discussed later. As all interfaces, the C++ class Account is derived from
the class CORBA::Object, which is part of the CORBA library.

POA_Account is the skeleton of the interface Account. The prefix POA_ is a con-
vention in accordance with the Portable Object Adapter (POA), which is
an object adapter described in the CORBA specification. The implemen-
tation of the interface Account provided by the developer is derived from
POA_Account.

Account_var is a helper class whose instances represent pointers to a CORBA
object. The client uses this class to hold a reference to a remote CORBA
object. Note that an instance of Account_var represents a reference to
the CORBA object, not the CORBA object itself. That is, when the Ac-

count_var instance is destroyed because the flow of execution leaves the
current scope, this does not affect the life cycle of the remote CORBA ob-
ject that will continue to exist.

All IDL interfaces are derived from the C++ class CORBA::Object. In some
situations the type of an object has to be specialized. The IDL compiler gener-
ates the C++ class method _narrow for type-safe downcasting. If type-safe spe-
cialization is not possible, this method returns a null pointer. Examples in the
following sections clarify this point.

3.4.3 C++ Server Implementation

The IDL specification describes only the interface of objects, not the implemen-
tation of their behavior. An interface needs to be implemented in a high-level
programming language such as C++ or Java. In this section we first introduce
the implementation of the account interface using C++. A later section will show
the implementation based on Java.

The developer first needs to implement the skeleton generated by the IDL
compiler. As mentioned in the previous section, the IDL compiler generates for
each IDL interface an abstract base class in C++. In order to implement the
abstract base class, we need to derive a class that provides the implementation
for each operation specified in the interface (the complete source code for the
server appears in Section D.3 on page 293):Implementing the

interface

74: // Implementation for interface Account

75: class Account_impl : virtual public POA_Account

76: {

3.4. Application Development in C++ 45

77: private:

78: CORBA::Long _balance;

79:

80: public:

81: Account_impl ()

82: {

83: _balance = 0;

84: }

Similar to the naming conventions presented in the last chapter, the im-
plementation of an interface is identified by the suffix _impl. The C++ class
Account_impl inherits from the class POA_Account, which represents the skele-
ton of the interface Account that is generated by the IDL compiler. Incoming
operation invocations are forwarded from the object adapter to the skeleton,
which is responsible for the invocation of the respective operation. The account
object maintains a balance, which is the state of that object (line 78). When in-
stantiating a new account object, the balance is initialized to 0 in the constructor
(line 83).

The definition of class Account_impl continues by providing implementa-
tion for the three operations that are specified in interface Account. Those three
methods are defined as pure virtual in the base class POA_Account, and imple-
menting these makes the derived class concrete. The following code excerpt
shows the implementation of the method withdraw:

92: void withdraw (CORBA::Long amount)

93: {

94: cout << "Server: withdraw " << amount << endl;

95: if (_balance >= amount)

96: _balance -= amount;

97: else

98: cout << "Server: withdraw failed" << endl;

99: }

The implementation of the other two operations deposit and balance

are equally simple. The signature of operation withdraw follows the language-
mapping rules for C++. In IDL, the operation withdraw was declared with just
one input parameter of type long. This input parameter is mapped to the C++
type CORBA::Long. Note that the definition of this type is part of the ORB li-
brary.

The implementation of the interface Account is only part of what is re-
quired for a CORBA server. What is still missing on the server side is the main Initialization on

server side

46 C  Introduction to CORBA

program that initializes the ORB, creates an account object, and then waits for
incoming operation invocations. Following is an extract that demonstrates the
initialization of the ORB and the object adapter:

108: int

109: main (int argc, char *argv[])

110: {

111: // Initialize the ORB

112: CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

113:

114: // Obtain a reference to the RootPOA and its Manager

115: CORBA::Object_var poaobj =

116: orb->resolve_initial_references ("RootPOA");

117: PortableServer::POA_var poa =

118: PortableServer::POA::_narrow (poaobj);

119: PortableServer::POAManager_var mgr =

120: poa->the_POAManager();

As is customary in C++, the entry point of the program is defined through
the function main (line 109). The initialization of the ORB using the class
method ORB_init defined in the ORB library is found in line 112. For the input
parameters the ORB requires the command line parameters where ORB-specific
parameters are automatically processed and removed during initialization.

The return value of class method ORB_init is a pointer to the ORB. The
ORB is used to access certain functionality of the CORBA platform. For ex-
ample, the method resolve_initial_references in line 116 serves as a simpleBootstrap

mechanism to reach
first object reference

bootstrap mechanism for obtaining object references for certain services spec-
ified in the standard. Each of these services has a unique identification string
(“RootPOA” in the case of the POA object adapter). It may look a bit awkward,
but this is the way to obtain a pointer to the POA. It is interesting to note that
the object adapter is treated like a CORBA object. What makes it different from
a normal CORBA object is the locality: the reference to a POA object cannot
be transmitted as a parameter to another address space.

The return value of the method resolve_initial_references is of the
CORBA::Object type, the abstract base class of all CORBA objects. However,
the invocation in line 116 actually returns a reference to the POA object that
is defined through the type PortableServer::POA derived from CORBA::ObjectType-safe downcast

in CORBA in the ORB library. Consequently, the reference type must be specialized from
CORBA::Object to PortableServer::POA. This corresponds to a downcast in the
language C++. A downcast changes the type of a pointer, without changing
where the pointer points to. In CORBA, each CORBA object defines a class

3.4. Application Development in C++ 47

method _narrow that permits type-safe downcast (line 118). Note that variables
poa and poaobj both point to the same object, but they are of different type.

According to the CORBA specification, a POA manager exists for each
POA. We will deal with the tasks of the POA manager later. However, a pointer
to the POA manager is already stored in variable mgr in line 119 for later use.
Once the ORB has been initialized, an account object can be instantiated and
accessed by remote clients. The following code fragment shows the procedure
required:

122: // Create an Account

123: PortableServer::Servant account_servant =

124: new Account_impl;

125:

126: // Activate the Account

127: CORBA::Object_var the_account =

128: account_servant->_this();

129:

130: // Write the object’s IOR to a file

131: CORBA::String_var ior =

132: orb->object_to_string (the_account);

133: ofstream of ("account.ior");

134: of << ior;

135: of.close ();

The POA distinguishes between an object and a servant. A servant provides Servant

the implementation of an object. A CORBA object cannot execute operation
invocations until it is assigned to a servant. This process is called activation. In
line 123 only an account servant is initially created. At this point a CORBA
object does not yet exist. The life cycles of servants and CORBA objects are
independent of one another. Due to the distinction between object and servant,
they are not even polymorphic to each other (i.e., the class POA_Account is not
derived from the class CORBA::Object). A call of method _this (line 128) gener-
ated by the IDL compiler activates the CORBA account object. The invocation
of _this produces the following results: Implicit object

activation with
POA

1. The object is activated by the association between servant and object; that
is, it can receive and process incoming operation invocations.

2. A reference to the object is produced and returned. This reference can be
forwarded to the client.

48 C  Introduction to CORBA

This raises the question of how a client obtains the reference to the account
object. A portable solution that works with all compliant CORBA implemen-Interoperable object

reference tations is the generation of an Interoperable Object Reference (IOR). This IOR
must then be forwarded to clients over a transport mechanism that is located
outside of CORBA. The reference to the account object is converted into an
IOR using the ORB method object_to_string (line 131). Then the IOR of
the account object is written to a file called “account.ior” (lines 133–135).

After the new CORBA object has been created and activated, the ORB on
the server side enters an event loop that waits for incoming operation invoca-
tions:Main loop of ORB

139: mgr->activate ();

140: orb->run();

First, however, like other CORBA objects, the object adapter must be acti-
vated (line 139). The POA manager mentioned earlier has the task of activating
the POA object. The only thing that is still required is the invocation of the
method run of the ORB, whereupon the ORB enters an event loop that waits
for incoming operation invocations. In our sample application, the execution
of the method run never returns. The server process responds to client requests
until it is terminated manually.

3.4.4 C++ Client Implementation

The server explained in the previous section runs in its own UNIX process. As
we saw earlier, it has its own main function. The last part of our CORBA ap-
plication is the implementation of the client. In this section we demonstrate the
implementation done in C++. It is important to note up front that the client has
its own main function and will run as a separate UNIX process. The complete
source code for the client can be found in Section D.4 on page 295. Again the
entry point is defined by the function main. The following code fragment shows
the ORB initialization on the client side:

156: int

157: main (int argc, char *argv[])

158: {

159: // Initialize the ORB

160: CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

The initialization is identical to that of the server. However, unlike the
server, the client does not need to initialize the object adapter. The POA only

3.4. Application Development in C++ 49

needs to be initialized when the process contains server objects that can be ac-
cessed by remote clients. Since this is not the case for our account client, there
is no need for POA initialization. Once the ORB is initialized, the IOR of the
account object is read from a file: Client connects to

an account object

162: // Connect to the Account

163: ifstream f ("account.ior");

164: string ior;

165: f >> ior;

166: CORBA::Object_var obj =

167: orb->string_to_object (ior.c_str());

168: Account_var account = Account::_narrow (obj);

Note that the file “account.ior” is the same as the server. Therefore, the
client reads the content of that file that the server wrote before. This is how
the client obtains the knowledge of where the server is located. As we will see
later, this information is contained in the IOR, which itself is stored in the file
“account.ior”. The ORB is used to transform the IOR into an object refer-
ence (line 167). The result is a reference of the type CORBA::Object. Similar to
what happens for a POA object on the server side, the reference type has to be
downcast because the IOR actually refers to an account object. For type-safe
downcast the IDL compiler generates a class method with the name _narrow for
each interface (line 168).

Once a reference to the bank object exists, operation invocations can be
executed on it. The following code fragment demonstrates a possible scenario:

170: // Deposit and withdraw some money

171: account->deposit (700);

172: cout << "Client: balance is "

173: << account->balance () << endl;

174: account->withdraw (50);

175: cout << "Client: balance is "

176: << account->balance () << endl;

177: account->withdraw (200);

178: cout << "Client: balance is "

179: << account->balance () << endl;

In lines 170–179 some deposit and withdraw operations are being carried
out on the remote account. After each operation, the client prints out the cur-
rent account balance. Our sample application does not provide an explicit mech-
anism for the deletion of objects. The question arises of what happens with the

50 C  Introduction to CORBA

account object within the server process when a client process is terminated.
Because CORBA does not provide a distributed garbage collection, the accountCORBA has no

distributed garbage
collection

object continues to exist after the client is terminated. If the client is run a sec-
ond time, it will connect to the same account objects.

3.5    


Now that the sample application has been described, we continue this chapter
with a look at some of the practical aspects of application programming under
CORBA. The generation of executable program files and their subsequent exe-
cution are explained in the following two subsections. The descriptions are spe-
cific to M but can easily be applied with little modification to other CORBA
implementations. The following explanations assume that M is installed on
the system where the application is compiled.

3.5.1 Compiling the Application

The individual source files of the application are stored in different files accord-
ing to functionality. The following files are relevant to the account application:Files of sample

application

account.idl: IDL specification of the interfaces (see Section 3.4.1).

account.cc: Contains stubs and skeletons of object interfaces. This file is gen-
erated automatically by the IDL compiler.

server.cc: Implementation of the server (see Section 3.4.3).

client.cc: Implementation of the client (see Section 3.4.4).

This decomposition of the application into different translation units en-Compiling and
linking the
application

ables the account application to be generated through the following command
sequence based on M:

1: idl account.idl

2: mico-c++ -I. -c account.cc -o account.o

3: mico-c++ -I. -c server.cc -o server.o

4: mico-c++ -I. -c client.cc -o client.o

5: mico-ld -o server server.o account.o -lmicoX.Y.Z

6: mico-ld -o client client.o account.o -lmicoX.Y.Z

3.5. Compiling and Executing the Application 51

The command idl invokes the IDL compiler (line 1). The execution of
the command results in the creation of the file account.cc, which contains the
proxy objects. The shell scripts mico-c++ and mico-ld are part of the M
installation and encapsulate invocations of the C++ compiler and the linker
under UNIX. The object files of the individual translation units are created
in lines 2–4. The executable program of the server is linked in line 5 and the
program of the client in line 6. The library micoX.Y.Z contains the ORB library
of M. The placeholder X.Y.Z represents the three-digit version number of
the M installation.

3.5.2 Executing the Application

The compilation and linking of the account application produce two executable
program files: one each for the client and the server. The server first has to be
called up before the client can be started. As explained earlier, the server writes
the IOR of the account object it creates to a file called “account.ior”. Note
that the IOR will be different every time the server is executed. This is done on
purpose to make sure the client notices a server crash. If the IOR were the same
with every server execution, the client might not notice if the server crashes and
restarts. The following dump shows a possible content of file “account.ior”:

IOR:010000001000000049444c3a4163636f756e743a312e30\

0001000000000000002c000000010100000a0000003132372e\

302e302e31001685140000002f31393938332f313036313334\

373034342f5f30

Except for the prefix IOR:, the IOR is a sequence of hexadecimal values. The
exact content of the IOR depends on the system on which the server is started.
M has the tool iordump that can be used to decode the IOR and display it in
a readable form. For the above IOR the tool shows the following information:

Repo Id: IDL:Account:1.0

IIOP Profile

Version: 1.0

Address: inet:127.0.0.1:34070

Key: 2f 31 39 39 38 33 2f 31 30 36 31 33 34 37 30 34

34 2f 5f 30

The repository ID indicates the interface type of the object referred to by Repository ID

the IOR. In CORBA the interface type is represented by a character string con-

52 C  Introduction to CORBA

sisting of three components. The prefix IDL indicates that the interface is based
on CORBA IDL. The character string Account is the name of the interface that
is implemented by the referenced object. The suffix 1.0 provides the version
number of the interface.

Another IOR component is the information about the transport address. InTransport address

our example the address is a TCP address, which is indicated by the prefix inet.
It is followed by the TCP address, which consists of an IP address and a port
number.

The IP address and port number are not sufficient to locate a CORBA
object because they only address one process on a specific host. But this one
process can contain several CORBA objects. Another component of the IOR,
called the object key, is required to locate a CORBA object with respect to aObject key

process. The triple (IP address, port number, object key) uniquely identifies a
CORBA object. From the client’s perspective, the object key is just a sequence
of octets. The client does not need to understand the inner structure of this byte
sequence. Only the server that created the object key uses it to locate the target
object.

The client can be executed once the server has been started and the IOR
has been written to the file “account.ior”. The client reads the content of this
file to establish a connection to the remote account object located in the server.
Note that it is possible to copy the IOR to a different system (e.g., via FTP or
email) and run the client from a remote machine. Since the TCP/IP address is
contained in the IOR, the client will be able to establish a connection with the
server. Running the client yields the following output on the console:Client output

Client: balance is 700

Client: balance is 650

Client: balance is 450

As the client produces the above messages, the server also writes some log mes-
sages to its console:

Server: deposit 700

Server: balance 700

Server: withdraw 50

Server: balance 650

Server: withdraw 200

Server: balance 450

Note that the output of the nondistributed version of the account imple-
mentation introduced in Section 2.4.2 on page 27 is just an interleaved version

3.6. Application Development in Java 53

of the console output written by the client and the server. The client can be
restarted any number of times as long as the server is running. Since the ac-
count object in the server saves the balance between successive invocations of
the client, the output of client and server will change slightly with each run of
the client. With each execution the client first deposits 700, and then withdraws
50 followed by 200, so that the final balance of the server will be effectively
increased by 450.

3.6    

The previous section demonstrated how to implement the account scenario in
C++. Both client and server were implemented in the same language. One of
the strengths of CORBA is that it supports heterogneity at the programming
language level. In the following we will reimplement the same application in
Java. The resulting Java code will compile on any CORBA-compliant Java ORB.
Here we will use the free JDK Java platform released by Sun.

3.6.1 Java Server Implementation

We start our explanations of the Java version with the server. Just like in the
C++ version, the implementation of the server is based on an IDL specification.
It is important to note that the Java version is based on the same IDL specifica-
tion used for the C++ implementation; that is, the Java implementation of the
account server is also based on the IDL introduced in Section 3.4.1. It should
become clearer now why the IDL specification is also referred to as a contract:
the contract is binding no matter what programming language or what CORBA
implementation is used.

Since C++ is obviously quite different from Java, different IDL language-
mapping rules have to be used. As explained earlier, the CORBA standard de-
fines different language-mapping rules for different programming languages.
This will become immediately evident by looking at the implementation of the
IDL interface Account (the complete source code of the Java server-side imple-
mentation can be found in Section D.5 on page 296):

190: class AccountImpl extends AccountPOA

191: {

192: private int _balance;

193:

194: public AccountImpl ()

54 C  Introduction to CORBA

195: {

196: _balance = 0;

197: }

This code fragment resembles the server implementation for C++. Here
again the implementation class inherits from the skeleton generated by the IDL
compiler. But in contrast to C++, the name of the skeleton class is different. In
C++, is called POA_Account; in Java it is called AccountPOA (line 190). These dif-
ferences often have historic reasons. Apart from that difference, the Java version
also defines a private member variable for the account balance (line 192) that is
initialized to 0 in the constructor (lines 194–197). The implementations of the
three account operations deposit, withdraw, and balance are as one would ex-
pect. Just as for the C++ version, we show the implementation of the operation
withdraw in Java:

203: public void withdraw (int amount)

204: {

205: System.out.println ("Server: withdraw " + amount);

206: if (_balance >= amount)

207: _balance -= amount;

208: else

209: System.out.println ("Server: withdraw failed");

210: }

The only noteworthy detail to point out is the language mapping of the
IDL type long. Whereas in C++ the type CORBA::Long was used to represent this
IDL type, Java simply uses the integral type int as can be seen in the signature
of the operation withdraw (line 203). Since Java is identical for all platforms, it
is guaranteed that the Java type int has the same value range as the CORBA
type long.

We turn our attention to the implementation of the main function, which
is defined in Java by the static class method main:

219: public class Server {

220:

221: public static void main (String args[])

222: {

223: try {

224: // Initialize the ORB

225: ORB orb = ORB.init (args, null);

226:

3.6. Application Development in Java 55

227: // Obtain a reference to the RootPOA and its Manager

228: org.omg.CORBA.Object poaobj =

229: orb.resolve_initial_references ("RootPOA");

230: POA poa = POAHelper.narrow (poaobj);

231: POAManager mgr = poa.the_POAManager();

This code excerpt is identical in functionionality to the C++ version. There
are only some noteworthy comments with regards to the IDL-to-Java language
mapping. First, the language mapping does not prescribe the generation of _var
pointers. In C++ the IDL generated a C++ type Account_var from the IDL in-
terface Account. The purpose of Account_var was to serve as a smart pointer that
automatically disposes of any local memory when no longer needed. Since Java
has a garbage collector, this behavior is given for free by the Java runtime system.

Second, the way type-safe downcasts are done is different in Java. The IDL-
to-Java language mapping mandates that a so-called helper class is to be generated
for each IDL interface. For example, the helper class of IDL interface Account

is the Java class AccountHelper, which is automatically generated by the IDL
compiler. Likewise, the helper class of class POA is called POAHelper. The familiar
narrow method that was used in C++ is declared as a static class member method
of this helper class.

Following the ORB initialization, an account object can be instantiated and
accessed by remote clients. The following code fragment shows the procedure
required:

233: // Create an Account servant

234: AccountImpl account_servant = new AccountImpl ();

235:

236: // Activate the Account object

237: org.omg.CORBA.Object the_account =

238: account_servant._this();

239:

240: // Write the object’s IOR to a file

241: String ior = orb.object_to_string (the_account);

242: java.io.FileWriter file =

243: new java.io.FileWriter ("account.ior", false);

244: file.write (ior + "\n", 0, ior.length() + 1);

245: file.flush();

246: file.close();

This code excerpt is again very similar to the C++ version. An account ser-
vant is created (line 234), activated by calling the _this() method (line 238)

56 C  Introduction to CORBA

and the IOR of the account object written to a file called “account.ior” (lines
240–246). After the new CORBA object has been created and activated, the
ORB on the server side enters an event loop that waits for incoming operation
invocations:Main loop of ORB

250: mgr.activate();

251: orb.run();

3.6.2 Java Client Implementation

We complete our short CORBA tutorial by presenting the client-side imple-
mentation of the account application. The following code is identical in terms
of functionality with the C++ version of the client presented in Section 3.4.4 on
page 49. The code fragment below is included in its entirety in Section D.6 on
page 298:Reimplementation

of client in Java

285: account.deposit (700);

286: System.out.println ("Client: balance is " +

287: account.balance ());

288: account.withdraw (50);

289: System.out.println ("Client: balance is " +

290: account.balance ());

291: account.withdraw (200);

292: System.out.println ("Client: balance is " +

293: account.balance());

3.6.3 Compiling and Executing the Java Implementation

The way to compile the application presented in the previous two subsections
depends on which Java CORBA implementation is being used. Sun’s reference
implementation of the Java language also includes a complete CORBA imple-
mentation. This implementation, known as the Java Developer Kit (JDK), can
be downloaded for free from Sun’s Java Web site java.sun.com. Using the JDK,
the Java version of the account example can be compiled as follows:

idlj -fall Account.idl

javac Client.java

javac Server.java

idlj is Sun’s IDL compiler that generates all the necessary stubs and skeletons
out of the IDL specification. Note that because every public Java class has to

3.7. The Bootstrapping Problem 57

reside in its own source file, the IDL compiler generates numerous files. It is
sufficient to compile the files Client.java and Server.java. The Java compiler
will automatically compile all other dependent .java files.

After the application is successfully compiled, it can simply be executed
by first running the server and then the client. The server writes the IOR of
the account object to a file called “account.ior”, which the client subsequently
reads.

Just before concluding the discussion of the account example, there is one
point worth mentioning again. We have explained the implementation of the
account application in the languages C++ and Java. It is important to note that
the resulting client and server implementations can be arbitrarily mixed. There
are two clients and two servers, each one written in Java and in C++. This results
in four different permutations to combine a client and a server (e.g., Java client
with Java server, Java client with C++ server, etc.). Since all clients and servers
speak IIOP over the network, all those permutations are permissible. This is the
very core of interoperability.

3.7   

The problem of how the client obtains the first object reference of a server is
called the bootstrapping problem. The problem with bootstrapping a CORBA
application is how the client is given an initial object reference. In order to solve
this problem, information has to flow from server to client (i.e., this informa-
tion is the object reference to the server). But since the client does not yet know
about the server, this flow of information has to happen outside of the CORBA
framework. This means that we cannot use CORBA to transmit the initial ob-
ject reference.

A subsequent section will introduce the CORBA naming service. A naming
service maps symbolic names to CORBA object references, just like the Domain
Naming Service (DNS) of the Internet maps DNS names to IP addresses. But
when carefully thinking about the bootstrapping problem, the question arises
how the client knows about the naming service. We always end up at a point
where a client needs to obtain an initial object reference. There are different
solutions to this problem, and it is essential to understand all of the alternatives.
There are several, and there is no “best” one; you can choose which one fits your
expectations best.

58 C  Introduction to CORBA

3.7.1 File-Based Bootstrapping

In our sample application we introduced in this chapter, we have used what
is called file-based bootstrapping. The initial reference to the server object was
relayed to the client by way of a file. The object reference is stringified and
written to a file. The client can then read the content of that file and convert it
back to an object reference. File-based bootstrapping is very attractive if server
and client share a file system, either a local one or via NFS. Otherwise, the file
has to be transported over the network, for example, by FTP, WWW, or email.

3.7.2 Object URLs

CORBA now offers the use of “object URLs” instead of stringified object refer-
ences. The term URL stands for Uniform Resource Locator. A URL is the stan-
dard way to name resources in the World Wide Web. CORBA has adopted this
naming schema to obtain an initial object reference. The two object URLs we
describe here have the prefix file: or http:. The former allows us to read a
stringified object reference from a file; the latter allows to read a stringified ob-
ject reference from a Web server. With file:, we can bypass reading a string out
of a file, but directly use a file: URL with string_to_object, as in

obj = orb->string_to_object ("file:///tmp/account.ior");

Unfortunately, file: URLs require an absolute file name. If the client ex-
pects a file in the current directory, it would have to construct an absolute file
name with the help of the getcwd system call. When using an http: URL, the
server’s administrator puts a file holding the stringified object reference up on a
Web server, and you can directly reference it from everywhere, as in

obj = orb->string_to_object ("http://www.acme.org/account.ior");

which loads the object reference from the Web site www.acme.org. The benefit
of the http: URL is that client and server do not need to share the same file
system.

3.7.3 Command Line Arguments

One of the problems in bootstrapping a CORBA application is that the initial
object reference is often hardcoded in the client application. This makes the
client application dependent on many factors such as file name and location.

3.8. Naming Service 59

A better way is to pass the initial object reference as a command line argument
to the client. The CORBA specification offers a standard way to do this via
the -ORBInitRef option. As with all command line parameters that begin with
-ORB, this option is processed during the initialization of the ORB (this is the
reason the command line arguments are passed as parameters to the ORB_init()

method). An IOR can be passed in the following way:

client -ORBInitRef Account=file:///tmp/account.ior

The application can then read the argument using the resolve_initial_refer-

ences() method offered by the ORB. Here is a little code excerpt:

CORBA::Object_var obj =

orb->resolve_initial_references ("Account");

The argument Account that is passed as an argument to resolve_initial_

references() is the same as was used with the -ORBInitRef command line op-
tion. This way, several initial references can be passed to the application if nec-
essary.

3.8  

The naming service is an essential component of any distributed application.
Since virtually all applications will need this service, we give some details on how
to use it. The CORBA standard contains a specification of a naming service. The
explanations and examples presented in this section are independent of a specific
implementation and should work with all CORBA-compliant ORBs. We first
provide a short overview of the CORBA naming service and then augment the
familiar account application to make use of the naming service.

3.8.1 Overview

In a distributed environment, you need to address the problem of propagating
references from server objects to clients. Earlier in this chapter we have intro-
duced different solutions to this bootstrapping problem. The only portable and
CORBA-compliant solution is to pass stringified object references in one way
or another. But even after passing the initial object reference, finding an object
is a nontrivial task. A solution to this problem is the topic of this section.

60 C  Introduction to CORBA

 . A naming graph.

The CORBA standard as issued by the OMG describes a naming serviceNaming service

as part of the Common Object Services Specification (COSS). In order to un-
derstand this standard, we need to introduce a bit of terminology. As already
mentioned earlier, a naming service maps names to addresses. This mapping is
called a binding in CORBA. The addresses actually are object references or, to
be more specific, instances of the IDL type Object.

A name always exists relative to a naming context. A naming context is itselfNaming context

an object that can be assigned a name. This way a hierarchical namespace can
be constructed. In a mathematical sense, all bindings in a CORBA environment
can be modeled by a directed graph, also called a naming graph in CORBANaming graph

terminology. The nodes in Figure 3.6 denote objects, and the labeled vertices
denote references. The black nodes are naming-context objects maintained by
the naming service, and the white nodes are application-specific objects.

There is no need for a unique root, but all vertices stemming from one
node need to be unique. A name is always relative to a naming context; there
are no absolute names in CORBA. A name is therefore an ordered sequence of
components relative to a naming context. Since naming contexts are themselves
CORBA objects, the naming graph can span host boundaries.

A component of a name is a tuple consisting of an identifier attribute and a
kind attribute (this distinction is not shown in Figure 3.6). The purpose of theName consists of

identifier and kind
attributes

kind attribute is to distinguish between different kinds of names with the same
identifier. Both identifier and kind attributes are represented in the CORBA
naming service through IDL type string and are not interpreted by the naming
service.

3.8.2 Name Server Daemon

While the CORBA specification defines the interface to the naming service,
it does not prescribe how to implement it. The most common approach is to

3.8. Naming Service 61

 . The trading triangle.

implement the service through a so-called daemon process. This daemon runs
as a separate process and replies to queries from clients and servers.

The so-called trading triangle of naming service daemon, client, and server
is depicted in Figure 3.7. As the first step, the server binds its object reference
under a certain name with the naming service. In the second step, the client
resolves a name to an object reference using the appropriate interface offered
by the naming service. Once the client has obtained a reference to the server as
a response from the naming service, it starts to interact with the server. In the
following sections we present a step-by-step approach to show how the trading
triangle works in practice.

3.8.3 Example

This section provides a little example of how to make use of the naming service.
It augments the account application discussed in previous sections to make use
of the naming service. Since there are only minor changes to the source code
discussed so far, we have not included the complete versions in the appendix.
The home page for this book includes the complete version.

 

First, we discuss the server implementation using the naming service. Concep-
tually, the server creates an account object as discussed earlier. Then the server
binds the reference to this object with the naming service. Since the naming
service is itself implemented as a CORBA object, the first step is to obtain a
reference to this object, which is shown in the following code excerpt: Server

implementation

62 C  Introduction to CORBA

CORBA::Object_var nsobj =

orb->resolve_initial_references ("NameService");

CosNaming::NamingContext_var nc =

CosNaming::NamingContext::_narrow (nsobj);

As discussed in the section on the bootstrapping problem, we use the ORB
method resolve_initial_references() to obtain a reference to the naming ser-
vice. This will return the reference specified with the -ORBInitRef command
line option. The next step is to downcast the reference to type NamingContext.
Remember that all objects are named relative to a naming context.

The next step is to establish a new binding for the account object. We chose
“myAccount” for the name, but without a specific kind attribute. The predefined
type CosNaming::Name corresponds to an ordered sequence of tuples consisting of
identifier and kind attributes, as described earlier. Here is the IDL specification
of Name as defined in the COSS standard. This excerpt is taken straight from the
CORBA specification for the naming service:Specification of

CosNaming::Name

// IDL

module CosNaming {

typedef string Istring;

struct NameComponent {

Istring id;

Istring kind;

};

typedef sequence <NameComponent> Name;

};

Now that we have defined a name for the account object, all that is left to
do is to create a binding. This is simply done using the bind() operation of the
naming-context object. The account object will become known under the name
“myAccount”. Here is the code for the bind operation:

CosNaming::Name name;

name.length (1);

name[0].id = (const char*) "myAccount";

name[0].kind = (const char *) "";

nc->bind (name, the_account);

3.8. Naming Service 63

Once the bind operation has completed, the naming service daemon has
stored the binding for “myAccount” to the new account object. The server then
completes its initialization as previously outlined and enters the event loop wait-
ing for client requests.

 

Once the server has created a new binding for the account object, a client can
query the name server. This operation is called resolve(). The only two things
the client needs to know are the initial reference to the naming service and the
name of the object. The former is passed as a command line argument in a
similar way as shown for the server, and the latter is the name “myAccount”,
which must be known to the client. The following code excerpt shows how the
resolve operation happens after the ORB initialization:

CORBA::Object_var nsobj =

orb->resolve_initial_references ("NameService");

CosNaming::NamingContext_var nc =

CosNaming::NamingContext::_narrow (nsobj);

CosNaming::Name name;

name.length (1);

name[0].id = (const char*) "myAccount";

name[0].kind = (const char *) "";

CORBA::Object_var obj;

obj = nc->resolve (name);

Account_var account = Account::_narrow (obj);

The name, which is again of IDL type Name, must match the name that
the server used during the creation of the binding. Now we use the operation
resolve() to query the name server for an appropriate object. Since a binding
maps names to object references, we need to downcast the result of the resolve
operation to type Account.

The home page for this book contains the complete source code of the
account example with all the variations discussed here. Also included are UNIX
shell scripts that facilitate the execution of the application. In particular there

64 C  Introduction to CORBA

is one script that launches the naming service daemon as well as the client and
server to demonstrate how the trading triangle works in practice.

3.9 

This chapter presented an overview of the CORBA specification published by
the OMG. Only some of the details of the specification could be highlighted.
We recommend that the reader refer to secondary literature on the subject. We
also suggest that you take a look at the original specification for the CORBA
standard. Although the standard is not a substitute for a textbook on CORBA,
it offers valuable information that is not available in many books. The CORBA
specification is available free of charge from the OMG Web site at www.omg.org.

The example we used in this chapter presented the CORBA application
from the point of view of an applications programmer. The CORBA standard
specifies the interface to middleware for compliant ORB implementations. Even
if the technology used in the different ORB implementations is not the same,
the applications (such as our account application) created on them are portable.
In the remaining chapters of this book, we will be looking at middleware from
the point of view of the systems programmer instead of an applications pro-
grammer. We first present µORB in detail and then M.

C 4
µ

We use this chapter to present µORB—a mini-CORBA implementation. Be-
cause µORB implements a subset of CORBA, the technical terms used in
this chapter are CORBA based. However, the concepts introduced translate
to other middleware technologies as well. The goal is to use a compact, easy-
to-understand version to describe the elementary components of a middleware
platform. Although µORB only comprises a few hundred lines of program code, µORB understands

a limited IIOPit is still possible to execute the bank application on it. Moreover, the bank ap-
plication under µORB is interoperable over IIOP to its CORBA counterpart;
that is, the clients and servers of µORB and CORBA can be combined in any
combination.

Our aim is to keep the implementation of µORB as compact as pos-
sible. Consequently, we have limited its functionality considerably compared
to CORBA-compliant middleware. Despite these limitations, we are able
to explain the key concepts that are helpful in understanding the M

architecture. Moreover, µORB is suitable as an experimental platform for
other modifications. The complete source code for µORB is available at
www.mico.org/textbook/.

4.1 µ 

From a programming standpoint, µORB is a C++ program library that is linked
to an application. Figure 4.1 shows the relationship between µORB, an appli-
cation that is run on µORB, and the underlying operating system. The internal
structure of µORB, which is highlighted in Figure 4.1 by a black border, is

65

66 C  µORB

 . Components of µORB.

based on a layered model. The arrangement of the components over the layer-
ing shows their interdependency. A layer offers the layer above it a service and
in turn uses the functionality of the layer below.

µORB consists of five separate layers:Layers of µORB

Transport layer: The transport layer allows the exchange of data beyond ad-
dress space boundaries. Its functionality is typically based on that of the
operating system.

Presentation layer: The presentation layer structures a byte sequence and hides
the differences between hardware architectures in terms of how they present
data.

Interoperability layer: The interoperability layer implements a reduced ver-
sion of the IIOP protocol.

Proxies: The proxy objects include the application-specific stubs and skeletons
that guarantee type-safe access to objects of the bank application.

Object services: This layer offers generic object services, such as the manage-
ment of object references.

4.2. Transport Layer 67

4.2  

A transport layer is required for transporting data beyond the boundaries of an
address space. From the point of view of the transport layer, the data being Transport layer

links address spacestransported consist of unstructured byte sequences. The transport layer is im-
plemented by a concrete transport mechanism. The task of the transport layer is
to abstract from platform-specific transport mechanisms and to offer a homoge-
neous interface to the presentation layer. The transport layer is typically merely
a wrapper of the network functions offered by an operating system. Similar to
the introduction of the bank scenario, an analysis of requirements presents the
characteristics of the transport layer that form the basis for a design:

1. The transport layer guarantees a reliable end-to-end connection between
precisely two address spaces.

2. Data can be sent bidirectionally in the form of unstructured byte sequences
of any length.

3. Different transport mechanisms should be supported.

The transport layer offers reliable end-to-end connections; that is, details
of the underlying transport mechanism are hidden above the transport layer.
Many transport mechanisms, such as TCP, already offer reliable connections.
However, implementation of the transport layer using an unreliable transport
mechanism makes it more difficult to guarantee suitable semantics above the
transport layer.

The requirement that the transport layer should link exactly two address
spaces together is aimed at reducing the complexity of the middleware. If this
restriction did not exist, the administration of the transport channels between
various address spaces would be complex. As a consequence, µORB only per-
mits the objects belonging to an application to be distributed among exactly two
address spaces.

The transport layer views data that are exchanged between a client and a
server over the transport layer as unstructured, variable-length byte sequences.
However, the transport layer is not expected to transmit continuous media, a
capability required by multimedia applications. On the other hand, the assump-
tion is that it will support different transport mechanisms.

The following use case suggests the type of modeling required at the class
level: Applications

scenario of the
transport layer

68 C  µORB

1. The server establishes a communication end point and waits for a connec-
tion setup request.

2. The client creates a communication end point and connects it to the server.

3. The client sends data and waits for a response.

4. The server receives the data of the client and then sends a response.

5. After the client receives the response from the server, both close their com-
munication end points.

Note that in this use case the words “client” and “server” do not refer to objects.
They refer instead to roles taken in interaction with the transport layer, thus
indicating an asymmetry in the use of the transport layer. Clients and servers
define a communications channel on the basis of the corresponding communica-
tion end points. The communication end points are specified by an address that
represents a mutual consent between client and server. An address of the trans-
port layer typically contains a network address that refers to the actual transport
mechanism. Different transport mechanisms can have different address formats
and details. Thus a generally valid format does not exist.

Three classes are introduced for modeling the transport layer: Buffer, Ad-Classes Buffer,
Address, and
Transport model
transport layer

dress, and Transport. The class Buffer represents the storage area associated
with a chunk of memory. Instances of this class are used as containers for the
unstructured byte sequences that are transmitted between address spaces via a
transport mechanism. The interface of the class Buffer offers methods for set-
ting up and managing a memory chunk.

The class Address represents the address of a particular transport mecha-
nism, and the class Transport represents the transport mechanism itself. The
address here is used as a factory for the transport mechanism. The two classesAddress serves

as a factory for
Transport

instances

themselves are abstract because they only form the interface for the actual trans-
port mechanism. Therefore, two concrete classes have to be defined for each
transport mechanism: one for the address and one for the transport mecha-
nism itself. These classes are derived from the abstract base classes Address and
Transport. Figure 4.2 shows a TCP-based transport mechanism in UML nota-
tion.

The preceding use case clarifies the use of the transport layer and can be
translated into the following C++ code fragment:

1: // Server

2: TCPAddress saddr ("localhost", 1234);

3: Transport *server_transport = saddr.create_transport ();

4.2. Transport Layer 69

 . UML class diagram of transport layer.

4: server_transport->accept ();

5:

6: Buffer* recv_buf = new Buffer;

7: int r = server_transport->recv (recv_buf, 10);

8: server_transport->close ();

9:

10: // Client

11: Buffer* buf = ...

12: TCPAddress caddr ("localhost", 1234);

13: Transport *client_transport = caddr.create_transport ();

14: client_transport->open ();

15: client_transport->send (buf);

16: client_transport->close ();

The transport mechanism used here is based on TCP/IP, which explains Transport
mechanism on
server side

why instances of the class TCPAddress are used. A tuple (computer name, port
number) establishes the communication end point for client and server (lines 2
and 12). The server generates the communication end point from the address in
line 3, and using the method accept() waits for a connection setup request from
the client. This method blocks the server until the client sets up a connection.
The server then creates a data area using the class Buffer (line 6) and waits
until a maximum of 10 bytes are received (line 7). The maximum number of
bytes to be received is indicated as a parameter of the method recv(). The result
that this method returns is the exact number of bytes received. The method
close() is then used on the server side to terminate the connection to the client
(line 8).

70 C  µORB

The client proceeds in a similar way. However, instead of waiting for an in-Transport
mechanism on
client side

coming connection setup request, it initiates the connection to the server using
the method open() (line 14). The method send() then transports a previously
created data area to the server in line 15. The entire data area is sent without
any transformation of the data. In line 16 the client terminates the connection
to the server.

4.3  

The task of the transport layer presented in the last section is to transport un-
structured byte sequences between address spaces. The byte sequence naturallyPresentation layer

structures a byte
sequence

has an inner structure since the actual parameters of remote operation invo-
cations are coded in it. The task of the presentation layer is to structure byte
sequences. The class Buffer that has already been discussed serves as the link
between the presentation and the transport layers.

µORB implements conventions of the CORBA standard to be interoper-
able with CORBA-based middleware. The presentation layer is defined within
the CORBA specification through the Common Data Representation (CDR), theCommon Data

Representation rules of which we discuss below.

4.3.1 Value Ranges of Types

The presentation layer must be able to represent instances of different data types
in the form of byte sequences. Some data types were already used in the bank
scenario, such as the type ULong for representing a sum of money. Until now
it has been implicitly assumed that there is an agreement about the semantics
of the data types. This agreement is independent of any specific programming
language and is valid in the entire domain where the middleware is used. For
each programming language the mapping of the types used in the middleware
to the types defined in the programming language has to be provided.

The first step in defining the presentation layer therefore consists of a spec-
ification of the data types occurring in the system. A distinction is usually made
between elementary and constructed types. Elementary types, also called basicElementary and

constructed types types, define atomic types, such as Long, Short, and Char. In addition to the
atomic or indivisible types, there are constructed types such as struct, union,
array, and sequence. The value ranges of constructed types is dependent on the
value ranges of the basic types because in the end the definition of a constructed
type is always a composition of a sequence of basic types. Table 4.1 summarizes

4.3. Presentation Layer 71
 . Value ranges

Type Value range
Boolean Binary value
Char 8-bit ISO Latin 1 8859.1 characters
Octet 8-bit value
Short Integer value in interval [−215 · · · 215 − 1]
UShort Integer value in interval [0 · · · 216 − 1]
Long Integer value in interval [−231 · · · 231 − 1]
ULong Integer value in interval [0 · · · 232 − 1]
String Sequence of Char instances
sequence Sequence of instances of an arbitrary type
struct Aggregation of arbitrary types
enum Enumeration with maximum 232 elements

the types used here along with their respective value ranges. No types other than
those listed in Table 4.1 are permitted in µORB. The value ranges match the
ones that the CDR defines for the corresponding types.

4.3.2 Representation of Type Instances

The stipulation of the range of values for the types that occur in a system says
nothing about how they are represented physically. The following factors have
to be considered in the context of the presentation layer:

Endianness: Hardware architectures differ from one another in their physical
representation of basic types.

Alignment: The alignment of basic types affects the performance of storage
access.

Complex types: How are instances of constructed types represented?

We will deal with each of these points below.



Hardware architectures may specify different coding rules for simple numeric
values. For example, due to its range of values, the type ULong from Table 4.1
requires 4 bytes for its representation. If b1, b2, b3, and b4 are these 4 bytes, then
the represented value of the type ULong is derived from the formula b1 × 20 +
b2 ×28 +b3 ×216 +b4 ×224. Depending on the order of b1 · · ·b4 in memory, Little Endian and

Big Endianthe architecture is called either Little Endian or Big Endian (see Figure 4.3).

72 C  µORB

 . Different arrangements in the representation of a ULong.

The following portable C++ code fragment establishes whether the hard-
ware architecture it was executed on is a Little or a Big Endian system. The idea
is to find out whether the order in memory is the byte sequence 1,0,0,0 (Little
Endian) or 0,0,0,1 (Big Endian) for the value 1.

union {

long l;

char c[sizeof (long)];

} u;

u.l = 1;

if (u.c[0] == 0) // Host is big endian

The CDR in the CORBA specification specifies support for the coding pro-
cedures Little Endian and Big Endian. The presentation layer of µORB must
therefore be able to deal with both coding procedures.



It is not only how data are ordered in the main memory of a computer but
also their alignment that is important. Typically, it is not individual bytes but
precisely defined groups of the bytes that are read from memory through a read
operation. The reason is that the memory blocks of a system are not arranged
in individual bytes but in multiples thereof. Therefore, it makes sense to align
an instance of a ULong at a boundary because otherwise two read operations
would be required from main memory. Consequently, the usual procedure is to
use padding when coding more extensive data in order to guarantee the dataPadding

are aligned at integer multiples. Although this effectively increases the length
of the byte sequence being transmitted, it makes access to the individual data

4.3. Presentation Layer 73
 . Size and alignment of base types

Type Size Alignment
Boolean 8 bits 1
Char 8 bits 1
Octet 8 bits 1
Short 2 bytes 2
UShort 2 bytes 2
Long 4 bytes 4
ULong 4 bytes 4
enum 4 bytes 4

more efficient. Table 4.2 illustrates the alignment of basic types as defined in the
CDR. For example, an alignment of 2 means that the corresponding data has to
be aligned at an even address in main storage.

 

The complex types supported by µORB include string, struct, and sequence.
All these types are represented as a composition of basic types. No special mark-
ers that could be used to detect complex data types within a byte sequence are Coding of

constructed typesintroduced.
The representation of a struct in the presentation layer is the sequence of

its member variables. If the member types are complex types, then the same
principle is applied to them recursively. The coding of a string instance begins
with a ULong, which indicates the length of the character string—including a
terminating null character. The individual characters that make up the character
string follow it—again including the terminating null. A sequence instance is
represented in a similar way. First the ULong indicates the number of elements in
the sequence. Then the elements themselves are coded.

The following IDL data type clarifies the CDR coding:

// IDL

struct S {

sequence<octet> x;

long y;

};

An actual instance of this data type shall define a length of 3 for the sequence of
the variable x. The elements of the sequence shall be the hex values 0x11, 0x22,
and 0x33. The content of the variable y is 0x12345678. The byte sequence
created for this struct instance based on Little Endian coding is as follows:

74 C  µORB

 . Sample coding of the struct S

Pos. Hex Description
0 03 00 00 00 Length of sequence
4 11 22 33 Content of sequence
7 00 Padding
8 78 56 34 12 ULong value

Hex sequence: 03 00 00 00 11 22 33 00 78 56 34 12

Position: 0 1 2 3 4 5 6 7 8 9 1011

Table 4.3 shows the byte sequence in a structured form. Note that the indi-
vidual basic types used for the coding are aligned on their corresponding multi-
ples. This explains the padding before the representation of the variable y.

4.3.3 Modeling of the Presentation Layer

The following analysis summarizes the requirements of the presentation layer ofRequirements of the
presentation layer µORB:

1. The presentation layer should be able to code and decode basic types.

2. Constructed types are represented as a sequence of basic types.

3. Both Little Endian and Big Endian coding should be permitted.

4. Data are aligned at their natural boundaries.

The introduction of an abstract basic class Codec (stands for “coding,
decoding”), which defines the interface required of the presentation layer (see
Figure 4.4), would support different coding procedures. The presentation layer
manages unstructured byte sequences using the class Buffer introduced in Sec-
tion 4.2. Whereas the class Codec processes a byte sequence using a Buffer in-
stance, the class Transport presented earlier transmits the byte sequence to a
different address space.

Different coding procedures are derived from the basic class Codec. Accord-
ing to the rules of the CDR, there are two different coders (LECodec and BECodec)
that always file data in a Little Endian or a Big Endian format, irrespective ofExample of CDR

coder the computer’s hardware architecture. The following code fragment, showing
the coding of the instance of struct S given in the preceding section, helps to
explain the use of classes at the C++ level:

1: Buffer* buf = new Buffer;

2: Codec* encoder = new LECodec (buf);

4.4. Interoperability Layer 75

 . UML class diagram of data coder/decoder.

3:

4: encoder->put_ulong (3);

5: encoder->put_octet (0x11);

6: encoder->put_octet (0x22);

7: encoder->put_octet (0x33);

8: encoder->put_ulong (0x12345678)

The variable encoder is used to code the parameters (line 2). First the num-
ber of elements of sequence are coded, followed by the three octet instances.
The ULong of the struct is then filed (line 8). The class Codec automatically
adds the filler bytes (padding) to the data stream where they are required. Note
that the byte sequence filed after line 8 in the Buffer instance does not con-
tain any type information. The developer is responsible for ensuring that the
decoding takes place in the same order as the information was written.

4.4  

The components of µORB presented so far have been responsible for the ex-
change between address spaces and representation of data. This section examines
how messages that flow between sender and receiver must be structured for the
execution of a remote operation invocation.

4.4.1 Protocol for Remote Operation Invocation

We will now develop a protocol for remote operation invocation using the pre-
sentation layer discussed in the last section. Because of our compliance with the
conventions of the CORBA standard, µORB is interoperable with the CORBA
application that was introduced in the last chapter. Again we begin with an
analysis of requirements, this time for an interoperability protocol: Requirements of

interoperability
protocol

76 C  µORB

 . Protocol between client and server.

1. The protocol is based on a reliable, end-to-end transport layer.

2. The protocol decouples the different technological domains that exist at the
communication end points.

3. The protocol enables interaction between two objects that exist in different
address spaces, based on an abstraction of the operation invocation.

4. The sender determines the coding rules.

From the point of view of an object-oriented application, the interaction
between a client and a server consists of two messages (see Figure 4.5). The first
message is used by the client to transmit the actual parameters of an operation to
the server, thus initiating the execution of the operation (request). In addition toRequest

the actual parameters, the server also needs information about which operation
is to be executed on which object. The message sent by the client to the server
must include appropriate information for addressing the target object and the
target operation.

Once the server completes the operation, the results must be transmitted in
the reverse direction to the client (reply). It should be noted that, based on theReply

analysis of requirements listed in Section 4.2, the transport layer guarantees a
reliable end-to-end connection. This is the only reason why two messages are
sufficient. An unreliable connection would require the use of additional mes-
sages (such as acknowledgment messages).

As we explained in the last section, there are two different coding rules. The
question is how the sender and the receiver reach agreement on a uniform cod-
ing rule. According to the solution proposed by CORBA, the sender selects theSender selects

coding
procedure

coding, and the receiver is responsible for translating it into its local representa-
tion. Consequently, a special flag is added to each data packet. This flag enables

4.4. Interoperability Layer 77

the receiver to detect whether the data in this packet is in a Little Endian or
in a Big Endian format. The advantage of this procedure is that the sender and
the receiver do not explicitly have to negotiate any coding. If both sides use the
same format, there is no need for any conversion of the data being transmitted.

4.4.2 Structure of Protocol Data Units

The General Inter-ORB Protocol (GIOP) in CORBA defines a number of Pro-
tocol Data Units (PDUs) that are used in the interaction of objects in distributed
systems. In the context of µORB, we are only interested in the request and re-
ply PDUs that enable basic remote operation invocation. The general structure
of these PDUs is shown in Figure 4.6. The structure of the first 12 bytes (also
called the header) is identical for both PDUs. The header is then followed by
a body that is different for each PDU. In the CORBA standard the structure
of PDUs is specified through IDL. The coding rules established in the CDR
ensure that a PDU is correctly mapped as a byte sequence. The definition of the
PDU header follows:

1: // IDL

2:

3: struct Version {

4: octet major;

5: octet minor;

6: };

7:

8: struct MessageHeader {

9: char magic[4];

10: Version GIOP_version;

11: boolean byte_order;

12: octet message_type;

13: unsigned long message_size;

14: };

Each GIOP PDU begins with an identification consisting of the four letters
GIOP, which enables valid GIOP messages (line 9) to be recognized. The version
number of the protocol follows the identification. µORB exclusively uses GIOP
Version 1.0, which we use for the structure of the request and reply PDUs.
The next component provides the format of the coding of the respective PDU
(line 11). The value TRUE stands for Little Endian, and the value FALSE stands
for Big Endian. The next piece of data distinguishes between request and reply

78 C  µORB

 . Structure of protocol data units.

messages (line 12). The value 0 refers to a request PDU, and the value 1 to a
reply PDU. The length of the GIOP body is the last information supplied in the
header (line 13). The coding of this value is already based on the format given
in line 11.

We continue by describing the structure of the body of a GIOP message.
The structure of the body depends on whether it is a request PDU or a reply
PDU. The body of both PDU types is in turn divided into a header and a body.
We will first look at the header of a request PDU:Header of a request

PDU

1: // IDL

2:

3: struct RequestHeader {

4: ServiceContextList service_context;

5: unsigned long request_id;

6: boolean response_expected;

7: sequence<octet> object_key;

8: string operation;

9: Principal requesting_principal;

10: };

The information given in lines 4 and 9 is not of interest to us in the context
of µORB, but it has to be provided to prevent a violation of CORBA interop-
erability. In both cases these are sequence instances that are always simply coded
with 0 elements in µORB. The other information in the request header is rele-
vant. The request ID is used for the explicit numbering of all outgoing request
PDUs (line 5). The request ID can be used to match a later-arriving reply PDU
to a request. Line 6 allows the sender of a request PDU to indicate whether it
expects a reply. In µORB this field is always set to TRUE.

4.4. Interoperability Layer 79

Line 7 indicates the object key for the operation invocation (see Sec-
tion 3.5.2). The object key is specified as a sequence of octets and addresses
an object on the receiver side. The final information in the request header gives
the name of the operation that is to be executed (line 8). This parameter is coded
as a character string. The request header is followed by the request body, which
contains all current input parameters for the operation.

Following is the structure of the reply header, which is less complex: Header of a reply
PDU

1: // IDL

2:

3: enum ReplyStatusType {

4: NO_EXCEPTION,

5: USER_EXCEPTION,

6: ...

7: };

8:

9: struct ReplyHeader {

10: ServiceContextList service_context;

11: unsigned long request_id;

12: ReplyStatusType reply_status;

13: };

In µORB the information in line 10 is always coded as a sequence with 0
elements, similar to the request PDU. The request ID in line 11 must agree with
the one of the corresponding request PDU. This enables the receiver to match
request and reply PDUs to one another. The reply status in line 12 signals ei-
ther a normal execution (NO_EXCEPTION) or an error triggered by the application
(USER_EXCEPTION) to the client. Consequently, the body of the reply PDU con-
tains either all output parameters of the operation or the coding of an exception.

4.4.3 Modeling of Protocol Data Units

Instances of the class PDU pictured in Figure 4.7 manage request and reply PDUs.
A PDU is linked to a communication end point over which it sends and receives
protocol data units. For the coding of PDU-specific data, such as the current
parameters of an operation invocation, a PDU entity provides a Codec and a
Buffer instance that edit the data outside the PDU.

The following C++ code fragment from the implementation of the
PDU::send() method shows the actions carried out when a PDU is sent: Sending a GIOP

message

80 C  µORB

 . UML class diagram of PDU.

1: void PDU::send ()

2: {

3: Buffer* giop_header = new Buffer;

4: Codec *codec;

5:

6: if (Codec::is_little_endian())

7: codec = new LECodec (giop_header);

8: else

9: codec = new BECodec (giop_header);

10:

11: codec->put_char (’G’); // magic cookie

12: codec->put_char (’I’);

13: codec->put_char (’O’);

14: codec->put_char (’P’);

15:

16: codec->put_octet (1); // GIOP Version 1.0

17: codec->put_octet (0);

18:

19: codec->put_octet (Codec::is_little_endian() ? 1 : 0);

20: codec->put_octet (_pdu_type);

21: codec->put_ulong (_giop_body->length ());

22:

23: _transp->send (giop_header);

24: _transp->send (_giop_body);

25: }

The GIOP body of the PDU being sent was constructed in the Buffer

instance _giop_body before the PDU::send() method was invoked. The code
fragment above essentially shows how the GIOP header is structured. First a

4.5. Proxies 81

Codec instance that supports the native coding of the system is created (lines 6–
9). Then the GIOP header with its components is built up (lines 11–21). Once
this is completed, first the GIOP header and then the GIOP body are sent to the
remote communication end point. The communication end point is referenced
through a Transport instance with the variable _transp (lines 23 and 24).

4.5 

The µORB components presented so far are already sufficient for the execution
of a simple distributed operation invocation between two objects. The proxies
close the gap between the middleware and the bank application. To keep the
complexity of µORB to a minimum, we have not included the implementation
of an object adapter. As can be gleaned from Figure 2.12, each object that can be
accessed from another address space requires two proxies, one each to represent
both the client and the server in their address spaces. This section concerns
itself with how these proxies are structured. We again begin with an analysis of
requirements: Requirements of a

proxy

1. The proxies are to execute an operation invocation between address spaces.

2. There should be no syntactic difference between a local operation invoca-
tion and a remote one.

3. It is not necessary to realize the architectural object adapter component.

Figure 4.8 shows the class structure for the interface Account of our bank
application. All classes can be divided into three categories, which are separated
by a dotted line in Figure 4.8. First are some generic classes that are used as
base classes for all proxies. The generic classes are part of the µORB library.
These classes are followed by the classes of proxy objects, which are naturally
dependent on the application. In CORBA these classes are normally generated
through an IDL compiler; in µORB they are written by hand. The last classes
are the ones the applications programmer provides as an implementation of the
interface. All these classes are examined in detail below:

Request represents a remote operation invocation on the client side. This class
is essentially a wrapper for the PDU class presented in the last section.

82 C  µORB

 . UML diagram of proxy classes for the interface Account.

ServerRequest represents a remote operation invocation on the server side and
is also a wrapper for the PDU class.

Object is the common base class of all proxies. The class Object is used as a
factory for Request objects.

ObjectImpl is the common base class of all object implementations. This class
receives ServerRequest instances and forwards them to the right skeleton.

Account serves as an abstract base class and contains the signatures and type
definitions of the interface.

Account_stub is the stub on the client side that creates the Request object and
fills it with the current parameters.

Account_skel is the skeleton on the server side. It forwards an incoming oper-
ation invocation to the appropriate operation.

Account_impl contains the implementation of the interface Account.

Since µORB does not implement a POA, there is a different naming con-µORB has no
object adapter vention for designating the skeleton (suffix _skel instead of prefix POA_). The

class ObjectImpl incorporates a pure virtual method invoke that forwards an
incoming operation invocation, represented by an instance of the class Server-
Request, to the skeleton. The operations dispatcher is found in the implemen-

4.6. Object Services 83

tation of the invoke method in the skeletons. Based on the operation name, the
skeletons decide whether the corresponding operation belongs to their interface.

The class Account is an abstract base class because all the operations defined
in the interface Account are defined there as pure virtual methods. The class
Account_stub provides implementations for these pure virtual methods that es-
sentially create a Request object. The skeleton Account_skel, however, continues
to be an abstract base class, and the implementations of the operations of the
interface Account are not provided until the derived class Account_impl.

4.6  

The last component of µORB is the object services. These deal with general
functions for the objects managed by µORB, including support of the life cycle
of an object, management of object references, and server-side support of object
implementations. These three areas are examined in detail below.

4.6.1 Life Cycle of an Object

Objects experience a life cycle: they are created, they process operation invoca-
tions for a period of time, and then they are finally deleted. Until now we have
only discussed the active phase, during which an object reacts to incoming op-
eration invocations. Before an object reaches this state, it first has to be created.
When an object is created, it is also registered within the middleware so that the
system is notified of the existence of the new object. A distinction is made in
µORB between the following phases of an object life cycle: Life cycle of an

object

Nonexistent: The object does not exist and therefore no references can yet be
assigned.

Active: The object exists and is ready to accept and to process operation invo-
cations. References can only be assigned to active objects.

Terminated: The object is no longer able to accept operation invocations.

The two states “nonexistent” and “terminated” are not identical because in a
terminated state references may still exist to objects that are no longer active. An
object passes through the three states in the sequence indicated above.

The events that activate or terminate an object lie outside the µORB. Typ-
ically it is the context of an application that determines when an object is acti-

84 C  µORB

vated or terminated. Some programming languages, such as Smalltalk and Java,Distributed garbage
collection is not
implemented

automatically terminate objects as soon as no reference to them exists. This
method is referred to as garbage collection in the literature and in principle can
be applied to distributed systems. However, due to the complexity associated
with garbage collection, it is not easy for a CORBA-compliant implementation
to support distributed garbage collection.

4.6.2 Object References

An object reference represents the client’s view of a referenced object. The view
is defined by the type of the reference as well as by the address over which theObject reference

gives type and
address of an object

object can be reached. The address is defined through an instance of the class
Address and an object key (also see Section 3.5.2). In µORB the object key
identifies an object relative to its address space. The CORBA standard defines
the structure of an object reference through the Interoperable Object Reference
(IOR). The definition of an IOR is also based on CORBA’s own IDL:

1: // IDL

2: typedef unsigned long ProfileId;

3: const ProfileId TAG_INTERNET_IOP = 0;

4:

5: struct TaggedProfile {

6: ProfileId tag;

7: sequence<octet> profile_data;

8: };

9:

10: struct IOR {

11: string type_id;

12: sequence<TaggedProfile> profiles;

13: };

An IOR essentially consists of a type identification (line 11), which indicates
the type of the referenced object, and information providing the communica-
tion end points over which the object can be reached (line 12). Note that an
object potentially can be reached over various communication end points based
on different transport mechanisms. These transport mechanisms are all listed
separately through a sequence in the IOR. In the case of µORB, we are only in-
terested in communication end points based on TCP. CORBA defines a separate
identification for a TCP-based address (line 3) for this protocol. The following
information is important for TCP-based transport mechanisms:Information in a

TCP-based address

4.6. Object Services 85

14: // IDL

15: struct Version {

16: octet major;

17: octet minor;

18: };

19:

20: struct ProfileBody {

21: Version iiop_version;

22: string host;

23: unsigned short port;

24: sequence<octet> object_key;

25: };

The structure ProfileBody in line 20 gives the complete address of an object
in a distributed system. This includes the IP address (line 22), the port number
(line 23), and the object key (line 24). The structure ProfileBody from line 20
is coded as a normal CDR stream, and the resulting byte sequence is embed-
ded in the structure profile_data in line 7. This type of embedding enables
new transport mechanisms with their own address conventions to be supported
at a later time, without necessitating any changes to the underlying structure
of the IOR. The CORBA specification refers to this technique as encapsula-
tion.

If a reference is sent as the parameter of an operation in a CORBA-based
middleware platform, it is represented as an instance of the structure IOR from
line 10. The representation of an IOR as a character string shown on page 51
is also based on this structure. The byte sequence that originates during the
coding of the structure IOR is simply indicated in the form of hexadecimal val-
ues. The first octet of the IOR presents the Endian format of the remaining
coding. During embedding (as it occurs, for example, with an IOR for the
structure ProfileBody (line 20) as an element of the sequence profile_data

in line 7), a separate Endian format can be specified for the coding of the
embedding. Table 4.4 shows the byte-by-byte coding of the IOR shown on
page 51.

In µORB the class ObjectReference converts the attributes of an IOR (see
Figure 4.9). However, the complexity is reduced because this class can manage
the information for only one communication end point. As indicated in Fig-
ure 4.9, an object reference in µORB consists of a type identification, a com-
munication end point for the transport layer, and an object key.

86 C  µORB

 . Coding of IOR on page 51

Position Hex. Description
0 01 Little Endian coding
1 00 00 00 Padding
4 0d 00 00 00 Length type_id = 13
8 49 44 4c 3a 41 63 63 6f "IDL:Account:1.0\0"

75 6e 74 3a 31 2e 30 00

24 01 00 00 00 A tagged profile
28 00 00 00 00 TAG_INTERNET_IOP

32 2c 00 00 00 Length profile_data = 44 octets
36 01 Little Endian coding
37 01 00 IIOP Version 1.0
39 00 Padding
40 0a 00 00 00 Length host = 10
44 31 32 37 2e 30 2e 30 2e "127.0.0.1\0"

31 00

54 16 85 TCP Port = 34070
56 14 00 00 00 Length object_key = 20 octets
60 2f 31 39 39 38 33 2f 31 Object key

30 36 31 33 34 37 30 34

34 2f 5f 30

 . UML diagram of class ObjectReference.

4.6.3 Services on the Server Side

Several objects that are managed by the middleware are typically found in one
address space. The ORB’s tasks on the server side include registering active ob-
jects and forwarding incoming operation invocations to the appropriate Ob-

jectImpl instances. The following requirements are placed on the server-side
services of µORB:

1. Management of several object implementations.Requirements of
server-side services

2. Forwarding of incoming operation invocations to correct object implemen-
tations.

4.6. Object Services 87

 . UML diagram of class ORB.

3. Acceptance by the middleware of incoming operation invocations at pre-
cisely one communication end point.

Figure 4.10 presents the class diagram for the support of server-side ob-
ject services within µORB. At the center is the class ORB, based on the Object
Request Broker of the CORBA architecture. The class ORB manages several Ob-
jectImpl instances that can register and deregister with the ORB at any time.
The ORB waits for a connection setup request at a transport address. Therefore,
exactly one connection can be established with µORB from another address
space.

If a connection is set up at the transport level, the ORB receives and
processes incoming operation invocations. An incoming operation invocation
is represented by an instance of the class ServerRequest. This class manages
two PDU instances: one for the request PDU and one for the corresponding
reply PDU. The task of the ORB is to forward a ServerRequest instance to the
correct object implementation. The following code fragment shows the main
loop of µORB: Main loop of

µORB

1: void ORB::run ()

2: {

3: // ...

4: _transp->accept ();

5:

6: while (1) {

7: PDU pdu (_transp);

8: PDUType pdu_type = pdu.recv_next_pdu ();

88 C  µORB

9:

10: ServerRequest req (&pdu);

11:

12: _obj_key_impl_map [req.obj_key ()]->invoke (req);

13:

14: req.send_reply ();

15: }

16: // never reached

17: }

The ORB begins to process remote operation invocations by entering the
main loop in the method ORB::run(). First the ORB waits for an incoming
connection at the transport address that it received as a parameter (line 4). It
then moves into an endless loop in which incoming operation invocations are
continually processed. The first step consists of receiving a request PDU (line 8).
Based on the incoming request PDU, a ServerRequest instance is set up in
line 10.

The ServerRequest instance serves as a parameter for the invocation of theServerRequest

represents an
incoming operation
invocation

object implementations. The ORB manages the mapping of object keys to Ob-

jectImpl instances in order to provide the correct object implementation. The
method ServerRequest::obj_key() supplies the object key of the request PDU
that arrives, which is then used as the index for this mapping. The instruction
in line 12 leads to the invocation of the method ObjectImpl::invoke() of the
correct object implementation. The method ObjectImpl::invoke() in turn in-
vokes the appropriate skeleton, which in turn invokes the appropriate operation
implementation. After the invocation the results (i.e., output parameters, return
value, or exceptions of the remote operation) are transmitted back to the client
over a reply PDU (line 14).

4.7 

Middleware handles a variety of tasks. This chapter showed the design of
µORB, which enables the distributed execution of applications. We especially
emphasized the design of the individual components of middleware. The re-
sult is a complete middleware in the sense that it guarantees the distribution
transparency of the bank application introduced in a previous chapter. It should
be noted that some functional modifications were needed in order to reduce
the complexity of the presentation. These modifications apply specifically to the
following points:

4.7. Summary 89

Transport layer: µORB limits the distribution of objects to exactly two ad-
dress spaces. This is, of course, not a realistic limitation, and a procedure
involving a complicated management of several transport channels must be
used.

Nested callbacks: An operation invocation on the client side blocks µORB
until the server sends the results. During this time the µORB on the client
side cannot accept any other operation invocations, which makes sense with
many applications.

Interoperability protocol: µORB only understands two messages of the
GIOP (request and reply messages). However, the CORBA interoperability
protocol provides eight messages for different requirements in the case of
distributed object communication.

Object adapters: In µORB, proxy objects directly link an object implementa-
tion to the ORB. CORBA, however, provides for the use of object adapters
that allow better flexibility on the server side.

Proxy objects: Proxy objects that are generated manually are prone to error.
It is more effective to use appropriate tools for an automatic generation of
stubs and skeletons.

It is evident from this list that a “complete” middleware requires consid-
erably more effort. However, the concepts introduced in this chapter should
provide the foundation for an understanding of M’s architecture.

This page intentionally left blank

C 5
 

The Object Request Broker (ORB) is the key component of the CORBA ar-
chitecture. Its key responsibility is to forward method invocations from a client
to an object implementation, including the tasks associated with this process
in heterogeneous environments. In particular, invoked objects may be located
in the same process as the caller, in a different process on the same computer,
or on a remote computer. Also, objects can be implemented using different pro-
gramming languages, running on different operating systems and hardware, and
connected by diverse types of networks. The ORB has to provide a consistent
interface to invoke these different types of objects.

Because the ORB is closely linked with the other components of a CORBA Expandability

system (partially through proprietary interfaces), the developers of specialized
ORBs were forced to develop new versions of these components of the CORBA
system or not to provide them at all. This happens with some research projects
in the integration of Quality of Service (QoS) aspects into CORBA ([25]
and [32]).

So this is the starting point for M as a platform for research and training Microkernel
architectureprojects: the development of an extendible and modifiable ORB. The microker-

nel approach from the area of operating systems has been applied to CORBA
for this purpose. For this, the minimal necessary ORB functionality has to be
identified, such that modifications and extensions can be implemented outside
the ORB as services.

Consequently, the following sections start by compiling the tasks of an
ORB. An analysis will be undertaken to determine which components are re-
quired for fulfilling these tasks, which of these components can be implemented
as ORB core components, and which as services. Lastly, an overview of the de-
sign of a microkernel ORB will be presented.

91

92 C  ORB Design

5.1  

From a conceptual standpoint, an ORB offers all the functionality that is inde-
pendent of certain types of objects. The object adapter carries out object-specific
tasks. The ORB is in a sense the smallest common denominator in functionality
among all conceivable types of objects. Its responsibilities include

• Object generation

• Bootstrapping

• Method invocation

—Object localization

—Invocation forwarding

—Demultiplexing between object adapters

Object references contain addressing information along with the type andObject references

the identity of the object. The generation of type and identity is the task of
object adapters, and the ORB provides the addressing information. Object
adapters and the ORB must therefore cooperate closely in the creation of object
references.

Once the objects are created, there is the question of how a client is in-Bootstrapping

formed of the object reference. A commonly used approach is the use of a nam-
ing service. Because the naming service itself is realized as a set of CORBA ob-
jects, the question is how the client finds out the object reference of the naming
service. To solve this bootstrapping problem, the ORB offers clients an inte-
grated bootstrapping service.

From the view of an ORB, a method invocation consists of three tasks: First,Method invocation

after an invocation adapter (see Section 3.2.5) initiates a method invocation,
the location of the target object has to be looked up based on the target object
reference. Second, in the event that the target object is not located in the address
space of the caller, the method invocation must be forwarded to the address
space of the target object through the use of suitable transport mechanisms.
Third, the object adapter responsible for the target object is identified on the
basis of the object reference of the target object. The object adapter then invokes
the method on the target object. Any results are returned to the caller on the
reverse path.

5.2. ORB Architectures 93

5.2  

Conceptually, the ORB is a cross-address system, like the one shown in Fig- ORB
implementationsure 5.1. It permits transparent communication between objects in different ad-

dress spaces.
So there are many opportunities for converting this conceptual idea into

an implementation. A distinction is essentially made between a centralized ap-
proach and a distributed approach (see Figure 5.2). With a distributed approach
the ORB is implemented as a library that is linked to each CORBA application.
The ORBs in different address spaces then communicate with one another on a
direct path. For security, reliability, and performance reasons, this library could
also be located directly in the underlying operating system. The distributed ap- Distributed

approachproach is characterized by the following:

 . ORB as a cross-address object bus.

 . Centralized versus distributed ORB implementation.

94 C  ORB Design

Good performance because clients and server communicate directly with
one another

Complex management because information is distributed over local ORBs

In a centralized solution the ORB is implemented as a separate process. AllCentralized
approach communication between two CORBA applications takes place over this server.

Of course hybrid solutions are also possible. In this case, part of the communi-
cation avoids the indirect route over the central ORB. The centralized approach
is characterized by the following:

Simple management because all information is available in a central location

Reduced performance because communication between clients and servers
is not on a direct route

Central point of failure

Poor scalability

Totally new developments of CORBA implementations (such as M) al-
most exclusively follow the distributed approach because of the disadvantages
inherent in the centralized approach. The centralized approach may be used
when new programming languages or systems are being linked to an existing
ORB.

5.3   ’ 

M’s ORB is implemented as a library that is linked to each program as de-
picted in the right-hand side of Figure 5.2. That is, each program has its own
local ORB, which consists of a set of objects implemented in C++. However,
in order to achieve a maximum of flexibility in terms of extending and modify-Requirements for

expandability ing the ORB, M follows a microkernel approach, where the functionality of
the local ORB is restricted to the bare minimum. Additional functionality can
be plugged into the ORB by extending the ORB with additional components
or services such as invocation adapters, object adapters, and transport protocols.
Simultaneous use of many of these components is essential.

From the point of view of the ORB, the components mentioned are divided
into two categories: components that request method invocations to the ORB
and components that execute method invocations on behalf of the ORB:

5.3. Design of M’ ORB 95

• Components that trigger method invocations:

—Invocation adapters

—Server-side transport modules (receive network packets and request a
method invocation to the ORB)

• Components that execute method invocations:

—Object adapters

—Client-side transport modules (take over method invocation from ORB
and send network packet)

So it suffices for an ORB to be equipped with a generalized invocation adapter Invocation and
object adaptersinterface as well as a generalized object adapter interface. In addition to these

interfaces, the ORB has an invocation table in which it keeps a record of the
method invocations currently being executed.

Because a CORBA system has many subtasks that have to be processed Scheduling

simultaneously (see Section 5.3.4), an ORB also has a scheduler. The scheduler
itself is implemented as a service outside the ORB due to the variety of demands
placed on it (multithreaded versus single-threaded, real-time-enabled). Again
the ORB only supplies a suitable scheduler interface.

Section 5.1 pointed out that the creation of object references requires a close Generation of object
referencescooperation between object adapter (provides type and identity) and ORB (pro-

vides address). Due to the arrangement of transport modules outside the ORB,
it is the transport module and not the ORB that has the addresses where an
object can be found. Therefore, the ORB must supply a mechanism for com-
munication between the transport modules and the object adapters.

All interfaces are designed so components can be registered and deregistered Loadable modules

with the ORB anytime during runtime. Because a microkernel ORB offers an
interface for loading modules, it can even be extended through the addition of
new object adapters, transport modules, and so forth during runtime.

Figure 5.3 presents an overview of the major components in a microkernel
ORB. The individual components and interfaces of the ORB will be covered in
detail in the following sections.

5.3.1 Invocation Adapter Interface

The invocation adapter interface is used to initiate a remote method invocation
on an ORB. To execute method invocations, stub objects indirectly use this

96 C  ORB Design

 . Microkernel ORB.

interface via the Static Invocation Interface (SII). Method invocations gener-
ated via the Dynamic Invocation Interface (DII) by CORBA applications also
indirectly use this interface. Transport modules on the client side (box 5 in Fig-
ure 5.3) receive messages from ORBs in other address spaces and transform these
messages into invocations to the invocation adapter interface of the local ORB.

The difficulty in designing an invocation adapter interface is that the com-Invocation adapters
require type
information

ponents directly using this interface do not have equal detail of information
about the method invocation being executed. The signature of the invoked
method, including the parameter types, is usually known to invocation adapters
such as DII and SII, but this is usually not the case with transport modules on
the server side. The reason for this is that inter-ORB protocols such as IIOP try
to minimize the amount of information being transmitted. Therefore, they only
supply the object reference, the method name, and the values of the parameters,
but not their types, because the invoked object is able to reconstruct this infor-
mation from the method name. The transport module on the server side could
theoretically use the interface repository to obtain the type information. The
problem is that, first, it is entirely possible that no type information for a partic-
ular method is available in the repository and, second, the level of performance

5.3. Design of M’ ORB 97

would be impacted considerably because a repository other than the local one
might have to be consulted for each method invocation.

As a consequence, due to the lack of type information, server-side trans-
port modules normally cannot reconstruct the values of parameters of method
invocations from the byte streams of coded parameters. This reconstruction is
not possible until much later when the method invocation reaches the target
object that knows the signature of the invoked method, as described above. At
the same time it should be transparent to the target object whether the method
invocation was initiated locally from DII, SII, or a transport module.

The principle of lazy evaluation is used to resolve this problem. Here evalu- Lazy evaluation

ation of the expressions of a programming language is deferred until the value of
the expression is actually needed and all input values for the evaluation are avail-
able. A thunk object, which contains the expression itself and all the information Thunk objects

needed to evaluate it, is created for each expression requiring lazy evaluation.
The thunk is not evaluated until the value of the expression is required.

Lazy evaluation was included in Algol 60 as a method for passing parameters
by name. Another important application of this technology is the lazy evaluation
of data streams in Lisp, first described in [21]. The name thunk originates from
the implementation of the name invocation in Algol 60. The origin of the word
is unknown, but it is said that it resembles the sound produced by data in a
running Algol 60 system when it is being written to the stack [1].

What this means to the invocation adapter interface of an ORB is that a
special thunk object containing the coded parameters and other information
important to the decoding (such as a reference to the decoding procedure to
be used) is generated for the method invocation. The thunk object is not sup-
plied with the known type information or evaluated (i.e., the parameters de-
coded) until the values of the parameters for invoking the method are actually
needed.

The invocation adapter interface must be asynchronous if several method Asynchrony

invocations are to be executed simultaneously. This means that the control flow
returns directly to the caller once a method invocation has been initiated in the
ORB. The semantics for what under CORBA is usually a synchronous method
invocation can therefore be simulated. The interface supports the operations:

invoke(O,M,T) → H

cancel(H) → {}
wait({Hi}) → H

results(H) → T

98 C  ORB Design

The operation invoke supplies the ORB with a method invocation in theOperations of
invocation adapter
interface

form of a tuple (O,M,T), consisting of a target object O, the method name M,
and parameters in the form of a thunk T, and returns a handle H for the ini-
tiated method invocation. The method invocation associated with the handle
can be canceled by the operation cancel. Note, however, that this cancellation is
only a local operation that marks the associated record in the ORB for removal.
The remote process that actually executed the method invocation is not affected.
The operation wait waits for the completion of one of the method invocations
indicated in the form of a set of handles and supplies the handle of the first com-
pleted method invocation as a result. Lastly, the operation results can be used to
obtain the results of the method invocation in the form of a thunk T from the
ORB. Lazy evaluation also has to be used for the results because the types of
output parameters, return value, or exception are first known in the stub object
that triggered the method invocation.

5.3.2 Object Adapter Interface

An object adapter interface is in a sense the opposite of an invocation adapter
interface. An ORB uses this interface to forward a method invocation to the
component responsible for its execution. This can either be an object adapter
that executes the method invocation directly or a transport module that forwards
the method invocation to another address space.

The difficulty in designing this interface is that it is supposed to hide the
dissimilarities of object adapters and transport modules from the ORB. How-
ever, the ORB still must be able to determine from the object reference which
transport module is responsible for the execution of a method invocation on the
target object.

The way to solve this problem is to allow the object adapter or the transport
module—and not the ORB—to make this choice. The interface offered to the
ORB by the object adapters and transport modules comprises the following
operations:

has_object(O) → {TRUE,FALSE}
invoke(O,M,T,H) → {}

cancel(H) → {}

The ORB can use has_object to query an object adapter or a transport mod-Operations of object
adapter interface ule whether it is responsible for the object reference O . An important require-

5.3. Design of M’ ORB 99

ment of has_object is that has_object(O) returns TRUE for at most one object
adapter or transport module for each possible object reference O. This is the
only way that a unique association among object references and object adapters
is possible for the ORB. The operation invoke transfers a method invocation in
the form of a tuple (O,M,T,H), consisting of an object reference O, method
name M, parameters in the form of a thunk T, and a handle H to the object
adapter or transport module. If necessary, the ORB can cancel a method invo-
cation through cancel.

Object adapter interfaces also have to be asynchronous if several method Asynchrony

invocations are to be executed simultaneously. Consequently, in addition to op-
erations for registering and deregistering object adapters, the interface offered by
the ORB to object adapters and transport modules also includes the operation
answer_invoke:

register(OA) → {}
unregister(OA) → {}

answer_invoke(H,T) → {}

Object adapters and transport modules use answer_invoke to inform the ORB
through a thunk T of the results of a method invocation specified by the han-
dle H.

5.3.3 Invocation Table

Due to the asynchrony of the object adapter interface, the ORB has to keep
a record of currently active method invocations. For this purpose it has a
table of these method invocations. The table contains entries of the form
(H,O,M,Tin, Tout), consisting of handle H, object reference O of the target
object, method name M, thunk Tin for the input parameters, and (sometimes
empty) thunk Tout for results.

Therefore, from the point of view of an ORB, a method invocation is
executed in three steps. First the ORB accepts a method invocation from an
invocation-generating component and forwards it to the invocation-executing
component:

1. Acceptance of method invocation (O,M,Tin) via invoke. Method invocation
procedures

2. Generation of a new handle H and entry of (H,O,M,Tin,NIL) in the
invocation table.

100 C  ORB Design

3. Selection of component responsible for executing the invocation and trans-
fer of the method invocation to this component.

4. H is returned as the result of invoke.

The component executing the invocation then processes the method invocation
and notifies the ORB of the results of the method invocation:

5. Acceptance of Tout for the method invocation with handle H at the object
adapter interface via answer_invoke.

6. Replacement of the associated entry (H,O,M,Tin,NIL) in the table of ac-
tive method invocations with entry (H,O,M,Tin, Tout).

For the third and last step the component generating the invocation may use
wait({Hi}) to wait for the completion of one of the invocations indicated by the
handles {Hi}. Internally, the ORB then blocks until answer_invoke is invoked
for one of the handles and then returns this handle to the caller. The component
generating the invocation then uses results(H) to fetch the results of the method
invocation with handle H at the invocation adapter interface:

7. Find entry with handle H in the invocation table.

8. Tout is returned as the result of invoke, and the entry with handle H is
deleted from the invocation table.

5.3.4 Scheduler

There are various situations in a complex system like an ORB in which many
tasks have to be executed simultaneously. The following examples list some of
these situations:

E .. An extension of the microkernel ORB implements two trans-
port protocols: the TCP-based IIOP and a special ATM-based Realtime Inter-
ORB Protocol (RIOP). Both transport protocols must independently wait for
and then evaluate incoming TCP and ATM messages. �

E .. Situations exist in which two or more CORBA objects mutu-
ally invoke methods to one another. One example of this is a callback, where
a client invokes a method in the server, which in turn invokes a method (the
callback method) in the client while the original invocation is still pending.

5.3. Design of M’ ORB 101

 . Nested method invocation.

See Figure 5.4 for an illustration of this scenario. To ensure that this operation
functions and does not result in a deadlock, the ORB must be able to wait for
both the completion of the method invocation and the arrival of new method
invocations (e.g., the callback). �

What complicates matters is that the ORB is not always able to foresee these Challenges

situations because any number of transport modules can be integrated into a
system during runtime and then removed again. As an extendable platform, the
microkernel ORB should function in both single- and in multithreaded envi-
ronments. Thus the problem cannot simply be solved by using a thread package.
Consequently, the ORB itself must offer some form of scheduler that allocates
processing time to the program parts that are to be executed simultaneously.
Because scheduling algorithms largely depend on the area of application of an
ORB, the scheduler should be interchangeable and therefore must be embedded
as a service outside the microkernel ORB.

 

What is needed is a scheduling mechanism with the following characteristics:

• Functions in single- and multithreaded environments Requirements of
scheduler

• Allows the implementation of different scheduling algorithms

102 C  ORB Design

The following assumptions about the subtasks are made in the design of
such a mechanism:

1. The code of the tasks to be executed in parallel can be divided into twoAssumptions

categories:

—Wait operations that wait for the occurrence of certain events

—Calculation operations are all operations that are not wait operations

2. The time required to carry out each sequence of calculation operations for
a task is negligible.

3. There are only a limited number of different events (e.g., message arrived,
timeout).

Note the following concerning assumption 1: At first glance some opera-Breakdown into
wait and
computing
operations

tions cannot easily be classified into one of the two categories and are a combi-
nation of both. For example, in some cases input/output operations can block
until input/output is completed. However, these hybrid operations can be trans-
formed into a sequence of pure wait and calculation operations.

E .. The operation

read_blocking (socket, buffer, buffer_size)

reads the number of bytes indicated in buffer_size in buffer from the network
connection that is represented by socket. The operation blocks until the number
of bytes indicated in buffer_size are received. Thus, read_blocking() is neither
a wait operation nor a calculation operation but is both. The code piece

while (buffer_size > 0) {

wait_for_data (socket);

read = read_not_blocking (socket, buffer, buffer_size)

buffer += read;

buffer_size -= read;

}

also reads the number of bytes indicated in buffer_size in buffer from the
network connection socket. In this case, use is made of the wait operation
wait_for_data(socket) that is waiting for the event Data has arrived on the

5.3. Design of M’ ORB 103

connection socket and the computing operation read_not_blocking that reads
what is currently available without blocking. �

Referring to assumption 2, “negligible” in this case means that for any pre- Time limits

scribed time span �t > 0, the time required for the execution of each sequence
of computing operations for all subtasks is less than or equal to �t . This is
by no means an obvious assumption. One should note, however, that each se-
quence of computing operations that does not comply with this condition can
be transformed into a set of equivalent computing operations that comply with
this condition. All that is needed is the simple insertion of a dummy wait op-
eration in the middle (timewise) of the sequence. This then produces two new
sequences of computing operations that either comply with the conditions or
not. If the new sequence does not comply, the procedure is repeated until all
sequences comply.

Referring to assumption 3, in principle a single primitive suffices for inter- Event types

process communication, such as a semaphore with the associated event Down
on Semaphore X possible. All conceivable events can be mapped to this primitive
[35]. However, some events occur so frequently that it makes sense to make
them directly available:

• Input possible on channel X

• Output possible on channel X

• Timeout T expired

As shown above, a CORBA runtime system contains different subtasks that
basically have to be executed simultaneously. According to assumption 1, sub-
tasks can be divided into blocks consisting of a wait operation followed by cal- Blocks

culations. Since each subtask is executed sequentially and execution time of cal-
culations is negligible according to assumption 2, most of the time each subtask
waits for the occurrence of a certain event. Scheduling then means waiting for
the occurrence of one of those events and executing the respective block.

For many applications, such a nonpreemptive scheduling is sufficient. How-
ever, as the scheduling does not only apply to the CORBA runtime system itself,
but also to application code (e.g., the method implementations of a CORBA
object), splitting long methods into smaller blocks may be inconvenient for the
application developer. If the application is additionally subject to real-time con-
straints (i.e., certain tasks have to be completed with given deadlines), non-
preemptive scheduling may not be sufficient. However, the scheduler abstrac-

104 C  ORB Design

tion presented here does allow the use of scheduling algorithms that support
preemption—for example, using thread packages.

M’s scheduler abstraction basically implements waiting for a given set ofScheduler functions

events to occur. When a block is “executed,” the associated event is registered
with the scheduler, which notes which block is associated with the event. Using
appropriate mechanisms, the scheduler waits for the occurrence of the next reg-
istered event. It then removes the corresponding entry from its list of pending
events and executes the block associated with the event. The scheduling algo-
rithm controls what happens when many events occur simultaneously.

E .. Figure 5.5 shows two subtasks, A (consisting of two blocks)
and B (consisting of one block). A wait operation occurs at the beginning of
each block; the rest of the block (shaded area) consists of calculation operations.
The dotted arrows show the control flow between the blocks. The execution
of subtasks starts at block A1 for subtask A and B1 for subtask B . So initially
the associated events E1 and E3 are registered with the scheduler. The sched-
uler uses the method schedule() to implement the scheduling. This method
is invoked at the start and continues through to the end of the program. The
scheduler now waits for event E1 or E3 to occur. Assuming that E1 occurs first,
E1 is removed from the list of the scheduler and block A1 is executed. In ac-

 . Scheduler.

5.3. Design of M’ ORB 105

cordance with the control flow, block A2 has to be executed next. This means
that event E2 is registered with the scheduler, and the scheduling starts from the
beginning. �

The characteristics of this approach are as follows: Scheduler
characteristics

Complete separation of interface and implementation of the scheduler

Functions in single-threaded environments and can utilize the advantages
of a multithreaded environment (for example, one thread per subtask)

Program must be specially structured

No preemption in single-threaded environments

 

What makes it difficult to design a general interface to the scheduler abstraction
above is that each scheduling algorithm requires special configuration data. For
example, round robin requires the duration of a time slice, with scheduling by
priority, a priority has to be assigned for each subtask. The user must therefore
be aware of which scheduling algorithm is being applied, which means that a
general interface cannot be used to encapsulate all scheduling algorithms.

On the other hand, it turns out that using a special scheduler in CORBA Exchange of
schedulersystems is often linked to other special components that use the services of

the scheduler in the system. For example, for applications in real-time envi-
ronments, TAO [32] contains special real-time inter-ORB protocols and real-
time object adapters that use a real-time scheduler. Therefore, for M to be
equipped with real-time features, the scheduler and the components that use the
scheduler would have to be interchanged simultaneously. This would enable the
components using the scheduler to know the algorithm used in the interchanged
scheduler.

M schedulers therefore offer two interfaces: a general interface indepen- General and
specialized
interfaces

dent of algorithms and specific to the configuration data (such as priorities and
deadlines) and a specialized interface customized to the algorithm used. When
invocations are executed via the general interface, the missing configuration data
is replaced by appropriate default values. System components that do require a
special scheduling algorithm use the specialized interface. Other components
that do not depend on specific scheduler instances use the general interface.

106 C  ORB Design

5.3.5 Object Generation

An object reference is a tuple ({Li}, T, I) consisting of the locators Li , theLocator

type T, and the identity I of an object. A locator describes the mechanism
that allows an object to be accessed. Because different mechanisms could be
available for accessing an object, each object reference may have not only one
but a number of locators.

Locators are closely related to addresses, since a locator identifies the loca-
tion of an object as does an address. The difference between the two is the more
abstract nature of an address. Although an address can provide unique identifi-
cation of an object, it does not necessarily describe a way to locate the object.
Therefore, a tuple [country, city, street, house number] is an address but not a
locator. A locator could be a route description.

E .. The locators described above are similar in their function to the
Uniform Resource Locators (URL) [5], familiar from the WWW world. In the
same vein, the syntax of locators in M visible to the user is similar to that of
URLs. Locators for objects that can be accessed via IIOP follow this format:

inet:<ip-address>:<port-number>

In comparison, communication between processes on the same computer is sup-
ported by named pipes that are visible as special files in a file system. The format
of the associated locators is

unix:<path>

The special locator local: is used to access objects in the same address space. �

Object adapters work closely with the ORB to create new object references.Object reference
template The object adapter contributes the type and the identity; the locators originate

from the server-side transport modules that enable access to the address space
from outside. As shown in Figure 5.6, the ORB supplies a template in which the
transport modules enter locators; this template is used for the communication
between object adapters and transport modules. Through the addition of type
and identity to the template, the object adapter generates a new object reference.

5.3.6 Bootstrapping

One of the fundamental tasks of distributed systems is service mediation—aService provision

bringing together of service providers and service users. A fundamental distinc-

5.3. Design of M’ ORB 107

 . Generation of object references.

tion is made between two approaches: name-oriented mediation and content-
oriented mediation. In the first case, the mediation is carried out through names
the user allocates to services. In the second case, the mediation is based on char-
acteristics of the service. The first type of mediators is called name services; the
second type, traders.

In CORBA these mediators are carried out as an object service, which is a
set of CORBA objects located outside the ORB core. However, this raises the
question of how a service user obtains knowledge about the object reference of
the mediator (name service or trader), also referred to as a bootstrapping problem.

The CORBA specification offers a solution to this problem with the ORB Initial object
referencessupplying an interface for querying initial object references based on a name (such

as NameService for the object reference of the name service):

// IDL

interface ORB {

...

Object resolve_initial_references (in string name);

...

};

108 C  ORB Design

M provides a set of different options to configure the object references that
can be retrieved via this interface. All of these are based on representations of
object references as strings, which contain locator(s), object type, and identity
in an encoded form. As discussed in Section 3.4.3, CORBA defines stringified
IORs that contain this information in an opaque, unreadable form. However, as
part of the Interoperable Naming Service (INS), more readable stringified rep-
resentations of object references have been introduced that are similar to URLs
as known from the Web. Additionally, it is possible to specify Web URLs that
point to a place (e.g., file or Web server) where the stringified object reference is
stored or can be retrieved from (see Section 3.7). Essentially, traditional stringi-
fied IORs and all the variants of URLs can be used interchangeably. The ORB
contains functions to parse and interpret all these different representations in
order to obtain the internal representation of an object reference.

For bootstrapping with the above interface, a mapping of a service name
(e.g., NameService) to such a string representation of an object reference can be
specified on the command line or in a configuration file.

5.3.7 Dynamic Extensibility

For some applications it may be desirable to extend an executing CORBA appli-
cation with new modules (e.g., other transport modules). With many compiled
languages such as C++, loading such modules into a running program requires
appropriate support by the operating system. In particular, cross-references be-
tween the running program and the loaded module must be resolved using a
dynamic linker. Through its use of the dynamic linker, M offers the possibil-Dynamic linking

ity of extending running CORBA systems through the addition of new modules,
such as object adapters.

5.4 , , 


The microkernel approach has been applied to CORBA to enable the designMicrokernel
approach of extensible and modifiable CORBA platforms. This has involved dividing the

components of a CORBA system into microkernel components and services
(components outside the microkernel ORB) and designing the necessary inter-
faces for the microkernel ORB. What comes to light is that the services can
essentially be broken down into invocation-generating and invocation-executing
services, with each group requiring a special interface to the microkernel ORB.

5.4. Summary, Evaluation, and Alternatives 109

 . Microkernel ORB as demultiplexer during method invocation.

As shown in Figure 5.7, in simplified terms the function of the microkernel
ORB during method invocation is to select an invocation-executing compo-
nent.

A microkernel ORB incorporates the following characteristics:

Easy extensibility through the addition or exchange of services

Extensibility restricted to service types that are considered during the design
of the microkernel ORB

Additional overheads

The additional overhead required is a disadvantage often associated with generic
approaches. Conventional CORBA systems in which a specific communication
mechanism, a specific object adapter, and the ORB core are merged to create
a monolithic component allow for a great deal of optimization. This type of
optimization is not possible when components are separated because a micro-
kernel ORB is used. For example, some conventional CORBA systems incor-
porate a centralized table that allocates CORBA object servants (see Chapter 7)
and communication end points (see Chapter 6). In contrast, with a microker-
nel ORB each communication module and each object adapter has to have a
separate table.

In general, extensibility of the microkernel ORB is limited to remote
method invocations. The introduction of new communication abstractions such
as data streams is not supported. Because data streams cannot be mapped to the

110 C  ORB Design

method invocation semantics of the current CORBA specification, extensions
would be required in some cases to enable the integration of data streams. The
problem is that these extensions cannot be implemented as services and would
therefore necessitate changes to the microkernel ORB.

Another approach for implementing an extensible ORB could be the provi-Frameworks

sion of a framework [12], such as ACE [31] or the framework that originated in
the ReTINA environment [36], which could be used to implement ORBs. The
idea behind this approach is that specialized ORBs could be produced through
the configuration and assembly of preproduced components. Unfortunately, the
implementation of a CORBA system even with a powerful framework is com-
plex, as demonstrated in the TAO example [32].

C 6


In many cases, an invoked object and its caller do reside in different processes,
often executed on different computers connected by a network. In order to en-
able such invocations across process boundaries and over the network, appropri-
ate meachanisms and protocols are needed to support interoperability of these
processes.

In earlier CORBA specifications (before version 2.0), these issues were left
to the vendors of CORBA products. Indeed, different CORBA products con-
tained different, incompatible protocols for invoking methods accross process
boundaries. However, in many practical settings it is desireable to use different
CORBA implementations for the client(s) and object implementation(s) (e.g.,
supporting different programming languages). In order to enable interoperabil-
ity between different CORBA implementations by different vendors, CORBA
2.0 introduced a general interoperability architecture that supports interoper-
ability between different CORBA ORBs.

We start this chapter by looking at the model that serves as the basis for
interoperability in CORBA and at the corresponding protocols specified by
CORBA. We then describe how this framework has been adopted by M

based on the microkernel ORB described in Chapter 5.

6.1 

With respect to interoperability, objects are considered an indivisible whole. Objects as basic
unitsConsequently, for example, all methods of an object can be invoked through the

same access mechanism. Nevertheless, objects can vary considerably in terms of

111

112 C  Interoperability

their interoperability characteristics. Following are some examples of such char-
acteristics:

• Middleware platform in which an object existsInteroperability
characteristics of
objects • CORBA implementation in which an object exists

• Protocol used to access an object

• Security requirements dictating access to an object

As indicated by these examples, interoperability is not only closely linked to
the protocols used for communication between objects but also to the object
services utilized (such as security service).

In our study of interoperability, objects with the same values in terms of
interoperability attributes are combined into groups called domains. Objects areObject domains

located either totally in a domain or totally outside a domain, which reflects
the “indivisibility attribute” mentioned earlier. Objects can be located in one
domain, in more than one domain, or not in any domain. As a result, domains
can be disjoint, can overlap, or can contain one another.

Interoperability therefore deals with the way in which objects from differentBridges

domains can communicate with one another. What this requires is a bijective
mapping between the different behaviors within the domains. This mapping is
called a bridge. Mappings executed by a bridge must be bijective because each
server in an object-oriented system is potentially also a client since object refer-
ences (for example, callback objects) can be supplied as parameters.

There are two types of bridges (see Figure 6.1):

 . Direct versus indirect bridges.

6.2. Inter-ORB Protocols 113

• Direct bridges

• Indirect bridges

With a direct bridge, the behavior within a domain is translated directly into Direct bridges

the behavior within the other domains. Therefore, for each pair of domains, a
translator is needed that translates the behavior between the two domains. The
direct bridge is characterized as follows:

One translation operation between two domains

The number of translators is squared to the number of domains

Indirect bridges use a canonical intermediate format. Each domain has exactly Indirect bridges

one translator that transfers the behavior in the domain into an intermediate
format and vice versa. This approach is characterized by the following:

The number of translators is linear to the number of domains

Two translation operations between two domains

The translators can be located at different levels. A distinction is made be- Implementation of
bridgestween

• Translators at the ORB level

• Translators at the application level

Translators at the ORB level are a part of the CORBA system and are usually pro-
vided by CORBA vendors, whereas translators at the application level are located
outside the ORB and can be implemented by a user via DII, DSI, and interface
repository. Because all calls in an application-level translator pass through DII
and DSI, translators at the ORB level are considerably more efficient than those
at the application level.

6.2 - 

Based on the interoperability model described in Section 6.1, the CORBA Interoperability
levelsspecification defines data formats and protocols for constructing bridges be-

114 C  Interoperability

 . Interoperability support through CORBA.

tween object domains. This provides interoperability support at two lev-
els:

• Between different CORBA ORBs over a “native” protocol

• Between different CORBA ORBs over legacy protocols

The General Inter-ORB Protocol (GIOP) is CORBA’s native protocol to
enable interoperability between CORBA ORBs. So-called Environment-Specific
Inter-ORB Protocols (ESIOPs) also support interoperability between CORBA
ORBs, but by tunneling CORBA requests over legacy protocols of other mid-
dleware systems.

GIOP is not bound to any particular transport protocol and therefore can-
not be implemented directly; mappings from GIOP to transport protocols firstGIOP and ESIOP

have to be defined. For example, the Internet Inter-ORB Protocol (IIOP) defines
a mapping from GIOP to TCP/IP.

GIOP and ESIOPs use a common architecture that enables objects to beIOR

referenced across domain boundaries. These are called Interoperable Object Ref-
erences (IORs). IORs, GIOP, and ESIOPs are dealt with in detail in the following
sections. Figure 6.2 shows the relationship between GIOP, IIOP, and different
ESIOP.

6.2.1 Interoperable Object References

An important characteristic that distinguishes domains is the way in which they
represent object references. A common intermediate format is required for ob-
ject references to guarantee interoperability across domain boundaries. The spec-
ification of this intermediate format (as well as the format for the representation

6.2. Inter-ORB Protocols 115

of IDL data types) is actually the responsibility of a protocol such as GIOP.
However, CORBA provides a general framework for the representation of object
references that has to be mapped to the respective protocol used. The structure
of IORs is oriented to the information required by a bridge:

• Is the object NIL? Information needed
by bridges• What is the object type?

• Which protocols can be used to access the object?

• Which object services are involved?

IORs are specified through CORBA-IDL based on this information model.
Through IDL the IORs are mapped automatically to specific protocols such
as GIOP based on the rules for mapping IDL data types to a transfer syntax.

Due to the potential extensibility of the usable protocols and object ser-
vices, the structure of much of the information contained in an IOR (such as
addresses) was unknown at the time the IOR framework was designed. An IOR
therefore consists of the object’s type identifier (type_id) and a set of profiles.
Each profile contains all information that is necessary for access to the corre- IOR profiles

sponding object through a particular access mechanism. If different mechanisms
can be used to access an object, the IOR contains a profile for each mechanism.
IORs without profiles represent a NIL object. A profile consists of a global iden-
tifier (tag) allocated by the OMG and unstructured data (profile_data). Each
Inter-ORB protocol must specify the structure of this data.

The standard specifies a mechanism for converting IORs into character
strings and vice versa to enable the easy transfer of IORs (for example, via email).

6.2.2 General Inter-ORB Protocol

Interoperability between different CORBA ORBs is based on the GIOP. Note
that although a CORBA ORB is not required to provide GIOP in order to be
compliant with the CORBA specfication, most CORBA products do in fact
implement GIOP. This often cancels out the need for a bridge when ORBs of
different vendors are working together.

GIOP was designed for use over different connection-oriented protocols
(such as TCP) and consists of three components:

• Common Data Representation (CDR) defines a mapping of IDL data types GIOP specification

to a byte stream.

116 C  Interoperability

• GIOP-message formats map ORB functionality (such as method invocations)
to protocol messages.

• Protocol state machine defines sequences of possible messages exchanges (e.g.,
a reply message must be preceded by a request message).

The protocol messages themselves are specified by CORBA IDL and are
also mapped through CDR to a byte stream that is to be transmitted. GIOP is
abstract because it is not bound to any particular transport protocol. The spec-
ification merely contains some assumptions about the characteristics of usable
transport protocols:

• Connection-oriented: The connection must be open before messages areRequirements of
transport layer transmitted and then closed afterwards.

• Reliable: Messages are not reordered and are only sent once.

• Byte-stream-oriented: There are no length restrictions for messages being
transmitted and no packet boundaries.

• Failure notification: The user is informed in the case of failure.

Before GIOP can be used over a transport protocol that incorporates these
characteristics, a definition of the mapping of GIOP to the respective protocol is
required. IIOP is a mapping of GIOP to TCP/IP that each standard-compliant
ORB must provide. Aside from IIOP, the CORBA standard does not currently
define any other GIOP mappings. However, some products use special map-
pings. For example, the Realtime Inter-ORB Protocol (RIOP) used in TAO [32]
is a mapping of GIOP to ATM. In addition to specifying the transport protocol
to be used, each GIOP mapping defines the structure of the protocol profiles
used in IORs (see Section 6.2.1). For example, an IIOP protocol profile con-
tains the Internet address and the TCP port number of the communication end
point where the object belonging to the IOR is located.

6.2.3 Environment-Specific Inter-ORB Protocols

While GIOP is CORBA’s native interoperability protocol between ORBs (also
of different vendors), ESIOPs enable the interoperation of ORBs using exist-
ing legacy protocols of other middleware systems (e.g., DCE). ESIOPs therefore
enable the intergration of other middleware platforms with CORBA at the pro-
tocol level. The provision of ESIOPs by CORBA vendors is optional.

6.3. Design of M’s Interoperability 117

Each ESIOP defines the mapping of IDL data types to the data types of the ESIOP specification

middleware being linked. The mapping of ORB functionality to the commu-
nication mechanisms of the other platform is also defined. Lastly, each ESIOP
specifies the format of the IOR protocol profiles.

The first ESIOP defined by the OMG was the DCE Common Inter-ORB DCE-CIOP

Protocol (DCE-CIOP), introduced with CORBA 2.0. This protocol enables a
simple integration of CORBA and OSF-DCE applications.

6.3   ’ 

As an extendible CORBA platform, M offers a general framework for the GIOP framework

implementation of interoperability mechanisms. Based on this framework, we
will present a design for the support of GIOP in M. Use of the framework
not only enables the implementation of a certain GIOP mapping such as IIOP
but also the provision of GIOP as a general mechanism.

6.3.1 Framework

Along with some general tools, the interoperability framework provides mecha-
nisms on the OSI model’s transport, presentation, and application layers. Most
of these mechanisms are abstract in the sense that they are not linked to any
particular protocol or data format. They are not linked to a concrete protocol or
data format except through inheritance (derivation) from the framework classes
and the implementation of additional methods. Figure 6.3 shows a UML dia-
gram of the abstract components in the framework.

 

Efficient storage management is the key to an effective CORBA system. It is
particularly important to avoid data copying as much as possible. The fol-
lowing is a list of some important locations where data potentially has to be
copied:

• Between network hardware and interoperability modules Data copying

• Between interoperability modules and ORB kernel

• Between ORB kernel and object adapters

118 C  Interoperability

 . UML diagram of interoperability framework.

• Between object adapters and object implementations

• With data marshalling

An important element of an interoperability framework is the ability to
transform data items (e.g., an integer value) into a sequence of bytes that can be
sent to a remote program as part of a network message. The process of convert-
ing a data item to such a byte sequence is commonly referred to as marshalling,Marshalling

and the reverse process of reconstructing a data item from a byte sequence is
called demarshalling. The amount of storage space that will be required for dataDemarshalling

marshalling (i.e., the size of the resulting byte sequence) is often not known in
advance. Therefore, in some cases data that has already been marshalled has to
be copied into a larger storage area during marshalling.

The framework offers Buffer objects that manage contiguous storage areas,Buffer

thereby limiting the amount of data that requires copying. These storage areas
can be increased without copying through a close cooperation with dynamic
storage management. Moreover, each Buffer has a reference counter. Thus the
reference counter can simply be increased anywhere that stored data potentially
has to be copied. If the Buffer is no longer required, the reference counter is
decremented. If the reference counter reaches zero, the Buffer is deleted.

6.3. Design of M’s Interoperability 119

 

The framework offers suitable abstractions on the transport layer for connection-
oriented transport protocols. Transport and TransportServer objects model the
semantics of a connection-oriented protocol just as the GIOP expects. Just like
GIOP, these objects are abstract in the sense that they are not linked to any
specific protocol. Through inheritance these abstract objects can be bound to a
specific protocol, such as TCP.

Transport objects model a communication end point using the following Transport

operations:

• Establish/terminate a connection to a remote TransportServer

• Transmit data from a buffer

• Receive data in a buffer

Invisibly to the user, the Transport objects work closely with the scheduler de-
scribed in Section 5.3.4 to send and receive data. TransportServer objects model
special communication end points that are used to set up new connections on
the server side. If a remote Transport object sets up a connection to a Trans-

portServer object, then the TransportServer object generates a new Transport TransportServer

object that can be used in exchanging data with the remote Transport object.
Address objects are used to address communication end points. They offer Address

the following functions:

• Conversion of an address into a character string

• Conversion of a character string into an address

• Factory for Transport, TransportServer, and IORProfile objects

AddressParser objects are used for reconverting character strings into Ad- AddressParser

dress objects. A class derived from AddressParser must be provided for each
address type.

Address objects are used as a factory [13] for creating Transport, Transport-
Server, and IORProfile objects. (Note that IORProfile objects model the pro-
tocol profiles for the interoperable object references described in Section 6.2.1
and are provided by the framework as a mechanism for the application layer.)

120 C  Interoperability

For example, if an address exists in the form of a character string entered
by the user, it can be converted into an Address object through the use of an
AddressParser. Without the knowledge of which specific protocol the address
belongs to, the Address object can create a Transport object that implements
the protocol matching the address. Lastly, a connection can be established to
the communication end point with this address and data exchanged without
knowledge of which protocol was used.

Address and AddressParser objects are also abstract and must be linked to
a particular protocol through inheritance.

 

The framework offers support on the presentation layer for marshalling and
demarshalling IDL data types. DataEncoder objects convert IDL data types intoEncoder and

decoder a byte stream that is filed in a Buffer object. DataDecoder objects read a byte
stream from the Buffer object and convert it into IDL data types. DataEncoder
and DataDecoder objects are also abstract and have to be linked to a specific
marshalling format such as CDR through inheritance.

 

The application layer of the framework offers support in the creation and the
decoding of the messages of an inter-ORB protocol, such as GIOP. AmongIOP codec

other things, GIOPCodec objects provide operations for creating and decoding
the following messages:

1. Invocation request

2. Invocation response

3. Cancel request

These messages are used to carry out method invocations (1, 2) and to cancel
method invocations currently being processed (3). A DataEncoder object is used
to generate a message that it then files as a byte stream in a Buffer object. When
a message is received, the byte stream read from a Buffer object is decoded via
an DataDecoder object.

Another component of the application layer consists of IOR objects that
model the interoperable object references described in Section 6.2.1. Along with
the type and the identification of a CORBA object, each IOR object contains a

6.3. Design of M’s Interoperability 121

set of protocol profiles. The latter are modeled by IORProfile objects in the IORProfile

framework and have to be bound to a particular protocol through inheritance.
At a minimum, protocol profiles contain the address where the corresponding
CORBA object can be found. Consequently, Address objects can be used as a
factory for creating the appropriate IORProfile objects.

6.3.2 GIOP

The abstract framework described in the preceding subsection enables GIOP to
be implemented as an abstract mechanism independent of a particular transport
protocol such as TCP. For a specific GIOP mapping such as IIOP, the corre-
sponding abstract components of the framework have to be linked to concrete
protocols through inheritance. For example, Table 6.1 lists the components used
for IIOP.

Figure 6.4 shows how the two components GIOP client and GIOP server
support GIOP in M. From the view of the ORB, the GIOP client is an GIOP client and

GIOP serverinvocation-executing component that—like an object adapter—accepts method
invocations from the ORB but then converts them into GIOP messages and
sends them to a GIOP server. The GIOP server is an invocation-generating
component that receives messages, converts them into method invocations, and
then sends them to the local ORB. The two subsections that follow take a closer
look at the structure of GIOP clients and servers.

 

Figure 6.5 shows how components of the framework are used to implement
the GIOP client. A GIOPCodec converts a method invocation arriving from the

 . IIOP components

Components Inherits from Description
TCPTransport Transport TCP communication end point
TCPTransportServer TransportServer TCP communication end point for establishing new con-

nections
InetAddress Address Internet address, contains IP address and port number
InetAddressParser AddressParser Parser for Internet addresses
CDREncoder DataEncoder Components for marshalling IDL data types in accordance

with CDR
CDRDecoder DataDecoder Components for demarshalling IDL data types in accor-

dance with CDR
IIOPProfile IORProfile IIOP protocol profile, contains IP address, port number,

IIOP version, and object ID
GIOPCodec Components for creation and decoding of GIOP message

122 C  Interoperability

 . GIOP support in M.

 . GIOP client.

ORB (request in Figure 6.5) into a protocol message and files it as a byte stream
in a Buffer. The GIOPCodec uses a suitable DataEncoder to marshal the data
types. Connections to GIOP servers are represented in the client by Transport

objects. For reasons of efficiency, a connection to a GIOP server exists beyond
the duration of a method invocation so that later method invocations to the
same GIOP server can use the same connection. Consequently, the GIOP client
uses a table to keep a record of existing connections and the addresses of the
corresponding servers. When it sends a message, the GIOP client extracts the
address of the appropriate GIOP server from the object reference of the target
object of the method invocation and consults its table. If the address is not listedConnection table

in the table, it sets up a new connection and enters it into the table. The message
is then sent via the Transport object.

6.3. Design of M’s Interoperability 123

The results of the method invocation are filed in a Buffer and decoded
by the GIOPCodec with the help of a DataDecoder. The result (response in Fig-
ure 6.5) is made known to the ORB.

 

The GIOP server is the counterpart of the GIOP client. It also has to use a table
to keep a record of the connections that exist to the GIOP client. If a GIOP
client wants to send a message to a GIOP server, it first has to establish a con-
nection to the server. As shown in Figure 6.6, it sends a connection request to
the server that arrives at the TransportServer object in the GIOP server (con-
nect in Figure 6.6). A Transport object for the new connection is then created
in the server and entered into the connection table. The GIOP client is now Connection table

able to exchange messages with the GIOP server.
If a message arrives at the server, it is decoded by the GIOPCodec using a

DataDecoder. The resulting method invocation (request in Figure 6.6) is sent
to the ORB for execution. If the ORB later notifies the GIOP server of the
result of the method invocation (response in Figure 6.6), the GIOPCodec then
uses DataEncoder to marshal the result into a Buffer. Lastly, the server con-
sults its connection table to find the Transport object over which the message
is to be sent to the GIOP client. In contrast to the client, the GIOP server
can assume that a corresponding entry already exists in the table, since the
client had already opened the connection to receive the method invocation mes-
sage.

 . GIOP server.

124 C  Interoperability

6.4 , , 


The construction of interoperability components is supported in M by an
abstract framework that is not bound to any particular protocol. On the basis
of this framework, GIOP in M can be implemented without being bound
to specific transport protocols such as TCP. For the support of certain GIOP
mappings such as IIOP, the abstract components of the framework merely have
to be linked to concrete protocols through inheritance.

GIOP support is implemented through two services outside the microker-
nel ORB presented in Chapter 5: the GIOP client transforms the method invo-
cations received from the ORB into network packets; the GIOP server receives
these network packets and converts them into method invocations on the ORB.
This approach is characterized as follows:

Simple integration of new GIOP mappingsAdvantages and
disadvantages

Simple integration of new inter-ORB protocols (e.g., ESIOPs)

Additional overhead

The additional overhead means that a lookup is required in the connection
table for each method invocation. With a conventional ORB implementation
in which the interoperability modules are part of the ORB, the allocation to the
Transport objects can be stored directly in stub objects. In this case, no table
and consequently no lookup are required. If suitable data structures are used
(for example, hash tables), the disadvantage is negligible in practice.

C 7
 

Object adapters separate object-specific behavior from the ORB kernel. This
additional layer exists to allow for different object adapters to support the nu-
merous functionality requirements that exist in a server. For example, the needs
of a server representing an object database—which may provide numerous in-
dividual objects that cannot all exist in memory at the same time—are very
different from a server that provides a printing service.

This chapter begins with an overview of the functionality of object adapters.
The overview is followed by some examples of object adapters, including the
Portable Object Adapter (POA) that must be supplied by all standard-conformant
CORBA implementations. The chapter concludes with a discussion of the ob-
ject adapters implemented by M based on the mechanisms presented in
Chapter 5.

7.1 

Object ID: Part of the identity of a CORBA object; assigned either by the ob-
ject adapter or by the user. Object IDs are unique within an object adapter.

Object key: Identifies a CORBA object within an ORB. It includes the ob-
ject ID and an identifier that uniquely identifies the object adapter that
the object is active in. The ORB uses this identifier to determine the ob-
ject adapter responsible for the associated object; then the object adapter
separates the object ID from the object key to select the target object of a
method invocation.

125

126 C  Object Adapters

Object reference: Sometimes also called “interoperable object reference” (IOR).
The object reference represents the globally unique identity of a CORBAObject reference =

global address of an
object

object. It includes the object key as well as address information that identi-
fies the ORB that the object is collocated with (the “IOR template”). The
object reference can be used to access a CORBA object remotely. To appli-
cations, an object reference is opaque, only to be interpreted by an ORB.
Object references can be “stringified” to be stored in a file or for display.

Servants: Programming-language constructs that incorporate the state and
the behavior (implementation) that is associated with a CORBA object.
Servants are activated with an object adapter and are the target of CORBAServant = object

implementation invocations. In procedural languages such as C, a servant is a collection
of functions (behavior) and data fields (state); in object-oriented languages
such as C++ or Java, servants are instances of a class.

CORBA object: Defined by its identity, state, and behavior. Based on the ter-Object = identity +
state + behavior minology introduced so far, a CORBA object is represented by an object ref-

erence and a servant. In many cases, there is a one-to-one mapping between
object references and servants; in many applications, there is one servant
per object reference and vice versa. However, object adapters allow different
usage patterns to exist.

Skeletons: Programming-language constructs that enable object adapters to ex-
ecute methods on servants. Skeletons present a known (private) interface toSkeleton = linking

servant to object
adapter

the object adapter and delegate invocations to the servant. “Static” skele-
tons are usually generated according to an interface by the IDL compiler;
however, there is also a special “dynamic” skeleton interface (DSI) that can
be used to execute invocations on objects for which no IDL compiler-
generated skeletons exist. In C++, servants inherit skeletons.

Creation: The onset of the existence of a CORBA object.

Activation: Brings a CORBA object into a state in which it is able to receive
method invocations. Activation may or may not include incarnation.

Incarnation: The act of associating a CORBA object with a servant.

Etherealization: Releases the connection between a CORBA object and the
associated servant.

Deactivation: Brings a CORBA object into a state in which it is not able to
execute method invocations. An object may be inactive temporarily; that is,
it is possible to reactivate an object after deactivation.

7.2. Functionality 127

Destruction: Irrevocably ends the existence of a CORBA object.

Active Object Map: A per-object adapter map that records the current map-
ping between CORBA objects (in the form of object IDs, which, as seen
above, completely identify a CORBA object within an object adapter) and
servants.

7.2 

Gamma et al. [13] define an object adapter as a design pattern to achieve a
“reusable class that cooperates with unrelated or unforeseen classes.” According
to their definition, an object adapter receives a client’s request and translates it
into a request that is understood by the “adaptee.”

This definition matches object adapters in a CORBA system quite well. An
object adapter’s primary task is a simple one of dispatching incoming client’s
requests—that the object adapter is handed by its client, the ORB kernel—to
the adaptee, a servant. In the process, the request must be translated; the object
request, which arrives from the Object Request Broker as a blob of binary data,
must be demarshalled into the method parameters that the servant expects.

The premise of request unmarshalling and dispatching must be supple-
mented with some associated functionality. An object adapter’s functionality can
be segmented into five categories:

• Management of servants: An object adapter must provide a user—the im-
plementer of a service—with an interface to register request recipients, ser-
vants. The user must then be able to selectively activate and deactivate ser-
vants on a per-object basis.

• Management of objects: The object adapter must provide an interface to man-
age objects throughout their life cycle. This involves associating a state of the
object life cycle with the object identities that an object adapter manages.

• Generation and interpretation of object references: The object adapter must
be able to create and interpret object references that encapsulate a certain
object identity.

• Mapping objects to servants: For incoming requests, an object adapter must
be able to map the object identity requested by the client to a particular
servant as a target for the method invocation.

128 C  Object Adapters

• Method invocation: After interpreting an object reference, and identifying
the target servant, the object adapter must be able to execute the method
invocation.

7.2.1 Object Management

When seen from the client side, an object is in either of two states: requests can
be processed, or they can’t. In the former case, the client will receive the expected
result; in the latter case, it gets an OBJ_NOT_EXIST exception.

On the server side, an object’s state is more fine-grained. There is a total ofObject life cycle

four states that an object adapter can associate with a CORBA object, as shown
in Figure 7.1.

An object begins and ends its life cycle in the nonexistent state. In this state,
an object adapter has no information about an object. This state is left during
object creation and reentered by object destruction.

During creation, the object adapter is made aware of an object’s identity,
and the object enters the inactive state. Once an object is created, the object

 . Life cycle of a CORBA object.

7.2. Functionality 129

adapter is able to generate and export object references. However, clients are
unable to distinguish between inactive and nonexistent objects, as the object is
still unable to receive method invocations.

Activation makes an object accessible by clients. In the ethereal state, an
object is ready to receive requests, but there is yet no servant associated with
the object. In the case of incoming method invocations, object adapters have
different options for treating the request:

• Rejection: The invocation is rejected with an error message.

• Holding: The invocation is deferred. If the object becomes active, the invo-
cation is executed; if the object becomes inactive, it is rejected.

• On-demand activation: An object adapter could actively invoke some user
callback code to incarnate a servant for activation.

Incarnation associates an ethereal object with a servant. Method invocations can
now be executed.

Note that transitions between these states need not be distinct. In fact, this
is the more common case. Usually, creation, activation, and incarnation hap-
pen at the same time, and later, objects are usually etherealized and deactivated
simultaneously. Frequently, the ethereal state is not considered, and in many Common difference

in “activation”
terminology

terminologies, “activation” implicitly includes incarnation, and “deactivation”
implicitly includes etherealization.

As another dimension of object state, objects can be characterized as being
transient or persistent. Even though this distinction is made at the object adapter
level, it is more commonly associated with the object itself. An object is called Transient versus

persistent objectspersistent if and only if the object adapter is persistent—and likewise for tran-
sience.

The life cycle of transient object adapters and of the transient objects it
holds is bounded by the life cycle of the server process they were created by. If
the server process is terminated, all its transient object adapters and transient
objects are implicitly destroyed. Persistent objects, however, are implicitly deac-
tivated when the server process is terminated, but not destructed. Therefore, it
is possible to reactivate persistent objects when the server restarts.

Persistent objects allow a servant to evolve or migrate, ideally without inter-
ruption in service.

130 C  Object Adapters

7.2.2 Servant Management

While an object adapter has to provide an interface to associate servants with
active objects as part of object incarnation, a servant’s life cycle is usually handled
by the application.

Note that the life cycle of servants may be entirely independent of the life
cycle of any objects it may be associated with. Object creation may be disasso-Servant life cycle !=

Object life cycle ciated from servant creation—a servant need not exist until object incarnation.
Also, a servant can be destructed when an object is etherealized, and a different
servant could be created for its next incarnation.

An object adapter must notify servants of incarnation and etherealization,
that is, of an association that is made between the servant and an active object.
This is especially important for persistent objects, so that the servant may have
a chance to store or load its state in or from persistent storage.

Another complication in servant management is introduced by multithread-
ing. In a multithreaded server, a servant might still be processing requests upon
etherealization. In that case, an object adapter must provide hooks that allow
a servant to be destructed after all invocations have completed, to avoid race
conditions.

7.2.3 Generation of Object References

An object reference is the global address of an object; clients can use the object
reference to send requests to an object.

In order to generate an object reference, the object adapter retrieves the ob-
ject reference template from the ORB (see Section 5.3.5). The template contains
addressing information for the ORB only. The object adapter then complements
that information with an object key that uniquely identifies an object within an
ORB.

An object key contains or implies two separate pieces of information: a
unique identifier for the object adapter that created this object, and the object
ID that identifies an object within the object adapter. Within a specific object
adapter, the object ID represents the full object identity.

Object IDs can be assigned to objects implicitly by the object adapter or
explicitly by the user.

The ORB receives the object key as part of an incoming request and uses it
to determine the object adapter to delegate the request to. The object adapter
then extracts the object ID and uses it as an identifier to locate a servant.

7.2. Functionality 131

7.2.4 Mapping Objects to Servants

For incoming requests, an object adapter must be able to identify a specific
servant that is able to process the request. The user must thus be able to create
associations between objects and servants.

An easy way to accomplish the mapping would be an active object map
and an interface to create and remove entries from the map. The object adapter
could then consult the map to find a servant or to reject the request if no entry
exists for an object.

However, this approach by itself is not scalable because the number of ob-
jects that a server can handle would be limited by the size of the active object
map. In addition to the active object map, object adapters can support various
patterns to allow for the handling of an arbitrary number of objects, such as
on-demand incarnation of servants or default servants.

The common case for mapping objects to servants is a 1-to-1 mapping, that
is, there is exactly one servant that is associated with an object. However, other
cardinalities are possible:

• 1-to-1: The common case—an object is associated with a single servant and Object-to-servant
mapping
cardinalities

vice versa.

• 1-to-0: If there is no servant that is associated with an object, the object is
ethereal or inactive.

• N -to-1: One servant can be associated with many objects. In this case, the
servant needs information to identify the object that it implements for each
invocation.

• 1-to-N : There can be more than one servant per object (for example, to
support load balancing).

7.2.5 Execution of Method Invocations

Methods can be executed if an object is in the active state. As Figure 7.2 illus-
trates, a method invocation passes through several dispatching stages before it is
finally executed. First the object adapter uses the object reference to determine Dispatching a

method invocationthe target object for the method invocation and the servant attached to it; this
may require on-demand incarnation if the object is currently ethereal.

Associated with each servant is a skeleton. In step 2, the servant selects a
skeleton that matches the servant type. The skeleton decodes (unmarshals) the
method’s input parameters (see Section 5.3.1), and in step 3 hands over control

132 C  Object Adapters

 . Dispatching a method invocation.

to the user implementation, according to the method name that is passed along
as part of the client request.

Skeletons establish the connection between object adapter and the method
implementation. Their structure therefore depends on the object adapter as well
as on the language mapping used. For example, there is a considerable difference
between skeletons in procedural programming languages such as C and those in
object-oriented programming languages. In C++, skeletons are associated with
servants by inheritance.

Skeletons are usually static: generated by the IDL compiler according to anStatic versus
dynamic skeletons interface definition, static skeletons are specific to that interface. Here, “static”

refers to the fact that a static skeleton can make use of the programming lan-
guage’s static typing, as the types of parameters are known a priori, at compile
time.

There are also dynamic skeletons, which are implemented by the applica-
tions programmer. Since CORBA requests do not contain type information,
a dynamic skeleton needs to supply that information in order to interpret in-
coming requests. However, unlike a static skeleton, type information is not re-
quired at compile time. For example, a dynamic skeleton could access an inter-
face repository to dynamically find out about a method’s parameter types.

Static skeletons are much easier to use. In C++, a static skeleton hands over
control to an implementation using pure virtual operations that are overloaded
in a user-implemented class that inherits the skeleton, so the implementation is
not concerned with request processing, type information, or the unmarshalling
of parameters. Also, static skeletons perform better than dynamic skeletons be-
cause compile time type knowledge allows for numerous optimizations. For both
reasons, static skeletons are used almost exclusively.

7.3. The Portable Object Adapter 133

Dynamic skeletons are useful in two niches. One is in applications where
advance type information is not available—for example, in a bridge between
CORBA and Web services. Such a bridge should be able to handle any requests;
it should not be limited to a narrow set of types for which compile time knowl-
edge is available. The bridge could therefore use a dynamic skeleton, and retrieve
the required type information from a type repository at runtime. The other
niche for dynamic skeletons is in footprint constrained environments. Each sta-
tic skeleton requires some amount of object code, while a dynamic skeleton may
even support multiple object types simultaneously.

7.3    

The Portable Object Adapter (POA) was introduced in CORBA 2.2, published
in 1998, and it became the only object adapter defined by CORBA. It replaced
the Basic Object Adapter (BOA), which was introduced by the first version of
CORBA and largely unchanged since 1991.

The BOA was to be a “simple and generic” type of object adapter to be used,
as its name suggests, for basic purposes. It was never designed to be a general-
purpose object adapter. The OMG expected more sophisticated object adapters
to be specified over time, which never happened. Instead, ORBs implemented
vendor-specific extensions on top of the deficient BOA specification, rendering
the idea of portable server code impossible.

With the introduction of the Portable Object Adapter, the BOA was re-
moved from the CORBA specification.

Over the years, other object adapters like a “Library Object Adapter” or an
“Object-Oriented Database Adapter” were suggested, but never realized.

Today, most ORBs implement the Portable Object Adapter only, and the
rest of this chapter details the POA’s functionality and describes its implemen-
tation in M.

CORBA 3.0 introduces the CORBA Component Model (CCM), which
includes the “Container Programming Model,” in which a container takes on
the role of an object adapter for its components.

7.3.1 Overview

The Portable Object Adapter is the result of the experience gathered from cop-
ing with the inadequacies of the BOA and its vendor-specific extensions. The
foremost design goals for the POA were

134 C  Object Adapters

• Portability: By defining comprehensive interfaces and their semantics for the
POA, it should be possible to port source code between different vendors’
ORB without changes.

• Configurability: Configuration options allow the selective enabling or dis-
abling of certain standard POA features, influencing its behavior.

• Flexibility: By providing hooks to control a servant’s life cycle and readiness
to receive requests, the POA should be usable even for servers with exotic
requirements. Sensible defaults exist to make the programming of simple
servers as easy as possible.

Many POA instances can exist in a server, organized in a hierarchical struc-
ture. The Root POA is created by the ORB; more POA instances can then be
created by the user as children of existing ones.

Each POA maintains its own Active Object Map, a table mapping currently
active objects to servants. Objects are activated with a particular POA instance
and henceforth associated with “their” POA, identified by a unique Object ID
within its namespace.

Synchronization between POAs is achieved by POA Managers, which con-
trol the readiness of one or more POAs to receive requests. Figure 7.3 shows an
example of using many POAs: in this diagram, the Root POA has two children,
and the POA named ABC has another child, with which it shares a separate POA
Manager. Servants can be registered with any of the four POA instances.

Apart from providing control over synchronization, the POA provides many
hooks that enable a user to influence request processing:

• Many POA features are controlled via configurable policies.

 . Portable Object Adapter.

7.3. The Portable Object Adapter 135

• The life cycle of servants can be controlled and monitored by servant man-
agers.

• Default servants can service many objects at once.

• Adapter activators can be used to create new POAs on demand, if necessary.

The following sections will examine these concepts more closely.

7.3.2 Policies

Each POA has its own separate set of policies, which adjust different aspects of
a POA’s behavior. Policies are configured by the user upon POA creation and
cannot be changed over its lifetime. Since objects are associated with a fixed
POA instance, some policies can also be said to be that of an object’s—most
obvious with the lifespan policy.

Thread policy: Addresses multithreading issues. Can be set to either “Single
Thread” (SINGLE_THREAD_MODEL) if the servants are not thread-aware and
requests must be serialized, or to “ORB controlled” (ORB_CTRL_MODEL) if
servants are reentrant and requests can be processed regardless of ongoing
invocations. While the “Single Thread” option allows reentrant calls that
an implementation makes to itself (including, for example, callbacks during
a remote invocation), a third “Main Thread” (MAIN_THREAD_MODEL) option
does not.

Lifespan policy: Can be either “transient” or “persistent.” The lifespan of tran-
sient objects (i.e., objects that are registered in a POA with the transient
lifespan policy) is limited by the lifespan of the POA instance they were ac-
tivated in. Once a POA with the transient lifespan policy is destroyed (for
example, as part of server shutdown), all objects that were activated with
that POA are destructed, and their object references become permanently
invalid. Objects that are activated in a POA with the persistent lifespan pol-
icy (“persistent objects”) can outlive their POA and even their server. Miss-
ing POAs for persistent objects can be recreated, and if their server is shut
down, it may be restarted at a later time and continue serving the object.

Object ID uniqueness policy: Slightly misnamed, “Servant Uniqueness”
might be more appropriate, as it controls whether a single servant can be
registered (activated) with the POA more than once to serve more than one
object (MULTIPLE_ID) or not (UNIQUE_ID).

136 C  Object Adapters

 . POA policy defaults for the root POA and other POAs

Policy Root POA Default
Thread policy ORB_CTRL_MODEL ORB_CTRL_MODEL

Lifespan policy TRANSIENT TRANSIENT

Object ID uniqueness UNIQUE_ID UNIQUE_ID

ID assignment SYSTEM_ID SYSTEM_ID

Servant retention RETAIN RETAIN

Request processing USE_ACTIVE_OBJECT_MAP_ONLY USE_ACTIVE_OBJECT_MAP_ONLY

Implicit activation IMPLICIT_ACTIVATION NO_IMPLICIT_ACTIVATION

ID assignment policy: Selects whether Object IDs are generated by the POA
(SYSTEM_ID) or are selected by the user (USER_ID)—for example, to associate
objects with application-specific identity information, such as a database
table key. If a single servant is registered more than once to serve multiple
objects, it could use a user-selected Object ID (which would be different for
multiple activations) at runtime to discriminate between them.

Servant retention policy: Normally, when an object is activated, the associa-
tion between the object (or rather, its Object ID) and the servant is stored
in the Active Object Map (RETAIN). This behavior can be changed if desired
(NON_RETAIN). A user might not want to store active objects in the Active
Object Map if the POA is expected to handle a large or even unbounded
number of objects that would inflate the Active Object Map. If the POA
does not maintain a list of active objects, the user must provide either a ser-
vant manager or a default servant to aid the POA in selecting servants for
incoming invocations.

Request processing policy: Specifies if the POA will consult its Active Object
Map only when looking for a servant to serve a request (USE_ACTIVE_OBJECT_
MAP_ONLY), or whether the POA should also consider using a servant man-
ager (USE_SERVANT_MANAGER) or a default servant (USE_DEFAULT_SERVANT).

Implicit activation policy: Whether servants can be activated implicitly (IM-
PLICIT_ACTIVATION versus NO_IMPLICIT_ACTIVATION). Some operations on a
servant require its activation—for example, the request to generate an object
reference. The most popular application for implicit activation is a servant’s
_this() operation, which implicitly activates a servant as a side effect of
generating an object reference. This operation would fail if implicit activa-
tion was disabled in a POA instance.

Some of these policies are of more interest than others. The implicit acti-
vation policy or the Object ID uniqueness policy can be considered sweeteners;
they have no effect on request processing but are mere safeguards to protect

7.3. The Portable Object Adapter 137

the careless developer. Implicit activation saves but a line of code that would be
necessary with the enforcement of explicit activation.

The ID assignment policy can relieve the developer of the need to generate
unique names. While this feature is also redundant, it is nonetheless useful. In
most scenarios, the Object ID is of no interest to the application, so that system-
provided Object IDs are convenient.

The other policies are more crucial and will be referred to again in later
sections.

If some policies are not set upon POA creation, they are set to their respec-
tive defaults as shown in Figure 7.1. Note that the Root POA has an implicit
activation policy that differs from the default.

7.3.3 POA Manager

One problem with the BOA was that no mechanism existed to synchronize
servants, or to control a servant’s readiness to receive requests: as soon as an
object was activated, invocations were processed and delivered, and as soon as it
was deactivated, a new server would be started by the BOA.

The POA offers “POA Managers” for this purpose. A POA Manager is a
finite-state machine associated with one or more POA instances that can enter
one of four states, with state transitions as shown in Figure 7.4.

Active: This state indicates normal processing; incoming requests are dis-
patched to their respective servants.

Holding: Incoming requests are not processed immediately but queued. When
the holding state is left, queued requests are handled according to the new
state: if the active state is entered, deferred requests are processed. If the

 . POA Manager state diagram.

138 C  Object Adapters

inactive state is entered, deferred requests are rejected, and if the discarding
state is entered, all requests in the queue are discarded.

Discarding: Requests are discarded, and the client receives a “transient” excep-
tion, indicating temporary failure. Useful, for example, in real-time envi-
ronments instead of the holding state, when the queuing of requests and
their delayed handling is not sensible.

Inactive: This state is entered prior to the destruction of associated POAs and
cannot be left. Incoming requests are rejected, indicating permanent failure.
With the POA Manager in the inactive state, a server can perform cleanup
work, such as storing objects’ persistent state.

For simplicity, it can be said that a POA is active if the POA Manager associated
with that particular POA is in the active state.

By using one POA Manager for more than one POA (for example, only one
POA Manager for the complete server), it is possible to control more than one
group of objects with a single call, thus working around possible race conditions
if each POA had to switch state individually.

7.3.4 Request Processing

When a request is received by the ORB, it must locate an appropriate object
adapter to find the responsible servant. POAs are identified by name within the
namespace of their parent POA; like in a file system, the full “path name” is
needed to locate an object’s POA—obviously, it must be possible to derive this
information from the object reference. One implementation option is that the
request is delivered to the Root POA, which then scans the first part of the path
name and then delegates the request to one of its child POAs. The request is
handed down the line until the right POA is reached.

In this respect, the user can already influence the selection process whenever
a necessary child POA is not found. The programmer can implement and regis-
ter an adapter activator that will be invoked by a parent POA in order to create
a nonexisting child. This can happen if a server has been partially deactivated
to save resources, by stopping part of its implementation. Another possibility
for the use of adapter activators is that the server has been restarted and now
reinitializes object adapters and servants on demand.

Creating child POAs cannot happen without user intervention because the
programmer usually wishes to assign a custom set of policies: if a new POA
has to be created but no adapter activator has been registered with its parent,
requests fail.

7.3. The Portable Object Adapter 139

 . A POA with its own Active Object Map.

Within the adapter activator, the user not only can create further child
POAs, but also can activate objects within, possibly by reading state informa-
tion from disk. This process is transparent to the client, which does not notice
any of this server-side activity.

Once the target POA has been found, further processing depends on the
POA’s servant retention policy and its request processing policy. The POA uses
the Object ID—which is again part of the object reference—to locate the ser-
vant.

Figure 7.5 shows the three options that a POA uses to find the responsible
servant for an incoming request. The simple case is that servants are activated
explicitly and then entered into the Active Object Map. If a POA has a servant
retention policy of “retain,” this table is consulted first. If an appropriate entry
is found, the request is handed to the registered servant.

If the servant retention policy is “nonretain,” or if the Object ID in question
is not found in the Active Object Map, the request processing policy is consid-
ered. If its value is “use default servant,” the user can provide a single default
servant that will be used regardless of the request’s Object ID. This allows a sin-
gle servant implementation to handle a group of objects with a single servant;
usually, all these objects are of the same type. This default servant can use the
POA’s context-sensitive introspection methods to query the Object ID of the
current request and behave accordingly.

Default servants provide scalability using the flyweight pattern: the server
does not grow with the number of objects. Rather, the server can produce arbi-
trary numbers of object references while the number of active servants is con-
stant.

A database server is an example for the usage of a default servant. Each table
would be represented using a different POA with the table’s same name, and the
table’s key value is used as Object ID. This way, all table rows are objects with
their own object reference. Only a single default servant is needed per table;
in an invocation, this default servant would query the request’s Object ID and
use it as table index to query the database. By using the DSI, the same default

140 C  Object Adapters

servant could even handle objects in different tables, by examining the table
structure to select its parameter’s types.

Even more flexibility, albeit of a different kind, is possible if the request
processing policy is set to “use servant manager.” If the POA’s search for a servant
in the Active Object Map is unsuccessful, it then delegates the task of locating a
servant to the user-provided servant manager. The servant manager can then use
intelligence of its own to find or activate a servant.

Like adapter activators for POAs, a servant manager can be used to activate
servants on demand after a partial shutdown or after server restart. The servant
manager receives the request’s Object ID and could, for example, use that infor-
mation to read back the object’s state from persistent storage.

Another interesting pattern that can be implemented with servant managers
are ethereal objects—objects that are able to receive requests even when no servant
is associated with them. Implementations can create object references to ethereal
objects and pass them to clients; on the server side, a servant manager is then
registered with the POA to incarnate a servant on demand.

An example for this mechanism is a file service. A “directory” object might
provide an operation to return the directory’s contents—a list of files—as a se-
quence of object references to “file” objects. It would be inefficient to activate
all file objects just for the purpose of returning their object references because
only a small part of these files are going to be actually read in the future. Instead,
the directory implementation would create ethereal object references, encoding
the file name in the Object ID, using user-assigned Object IDs. Once a file is
opened, the file object would be activated on demand by a servant manager.

Servant managers come in two different flavors with slightly different be-
havior and terminology, depending on the servant retention policy. If this pol-
icy’s value is “retain,” a servant activator is asked to incarnate a new servant,
which will, after the invocation, be entered into the Active Object Map itself;
this would be sensible in the sketched file service example, since the newly incar-
nated file object will receive more than just this one request in the future. If an
object is deactivated, either explicitly or because of server shutdown, the servant
activator’s etherealize method is called to get rid of the servant—at which point
the object’s state could be written to persistent storage.

If, on the other hand, the servant retention policy is “nonretain,” the servant
manager is a servant locator, tasked to locate a servant suitable for only a single
invocation. A servant locator supplements the default servant mechanism in
providing a pool of default servants; it is the flyweight factory according to the
flyweight pattern. It can also be used for load balancing, for example, for a
printing service, in which the print operation would be directed to the printer
with the shortest queue.

7.3. The Portable Object Adapter 141
 . Design patterns and different types of servants

Servant Default servant Servant activator Servant locator
Object state yes no yes no
Scalability no yes no yes
Ethereal objects no no yes yes
Life cycle no no yes no

Both kinds of a servant manager can also throw a special “forward excep-
tion” instead of returning a servant. This exception contains a new object ref-
erence to forward the request to—possibly to an object realized in a different
server—employing the GIOP location forwarding mechanism. Forwarding al-
lows, for example, the implementation of load balancing or redundant services:
the servant manager would check its replicated servers and forward the request
to an available one.

The flowchart in Figure 7.6 shows in detail how a POA tries to locate a
servant according to its policies. To summarize a developer’s choices, Table 7.2
shows a matrix of the different types of servants and their possible design pat-
terns:

Object state: Explicitly activated servants and servants managed by a servant
activator encapsulate their own state, whereas default servants must be state-
less or store an object’s state externally.

Scalability: For stateless objects, default servants can serve many objects with-
out the overhead of having numerous (C++) objects in memory, and servant
locators can dispatch requests to a small pool of servants.

Ethereal objects: The idea of ethereal objects that are activated and etherealized
on demand can be realized by either kind of servant manager.

Life cycle: An object’s life cycle can be monitored by a servant activator; that is,
the activator is notified by the POA upon servant activation and ethereal-
ization, and can, for example, store a persistent servant’s state in a database.

7.3.5 Persistence

The life cycle of POA-based objects depends on the POA’s life span policy, which
can be “transient” or “persistent.” The lifetime of a transient object—an object
activated in a POA with the transient life span policy—is bounded by the life-
time of its POA instance: once the POA is destroyed, either explicitly or as part
of server shutdown, all objects within that POA are destructed, and their object
references become invalid.

142 C  Object Adapters

 . Request processing within the POA.

Persistent objects can, according to the definition of the “persistent” life
span policy, outlive their server. In a server, it is possible to reactivate persistent
objects that correspond to the same object identity that was created by a prior
server instance.

With persistent objects have several advantages over transient objects. It is
possible

7.4. Design of M’s POA 143

• to shut down a server to save resources

• to update an implementation transparently by stopping the old server and
starting the new version

• to recover from a server or system crash

Unfortunately, the POA specification does not address some issues that must
be solved when servers are restarted. In a process-oriented environment, such as
UNIX or Windows, requests might fail while the process containing the server
is stopped. An external component, such as a “daemon,” is required to receive
requests while the actual server is not running. This daemon can then start
servers on demand or hold requests while a server is (re-)starting. Implementing
such a “POA daemon” is a vendor-specific issue.

7.4   ’ 

Of the multiple POA instances that can exist in a server, only the Root POA is
registered with the ORB. It is responsible for receiving requests for any POA,
inspecting the request’s target object, and then dispatching the request to child
POAs as necessary. M allows for multiple object adapters, so another possible
design would have been to register each POA instance directly with the ORB.
However, that would have posed a problem with nonexistent adapters: because
of adapter activators, a nonexisting POA instance does not mean that a request
is undeliverable. Rather, if a POA does not exist, the request must be delivered
to the parent POA, which can then invoke its adapter activator to recreate the
missing POA on demand. Only the Root POA is guaranteed to exist throughout
the server’s lifetime. By handing requests from the Root POA down along the
line of descendants, adapter activators can be invoked at each step if necessary.

As a minor optimization in configurations with deeply nested child POAs,
the Root POA keeps a map of all existing POAs. If a request targets an existing
POA instance, the request can be dispatched directly to the responsible POA.
Otherwise, the Root POA locates the most specific “ancestor” that currently
exists, which will then either re-create the missing POA instances, or fail the
request if no adapter activator is registered.

Once the target POA is found, it proceeds as shown in Figure 7.6 to find a
servant. First, if the servant retention policy is RETAIN, the Active Object Map is
consulted. If the servant retention policy is NON_RETAIN, or if the target object is

144 C  Object Adapters

not found in the Active Object Map, a servant manager is asked to incarnate or
locate a servant, if configured and registered.

The following sections present details about the implementation of the
Portable Object Adapter in M.

7.4.1 Object Key Generation

One central part of an object adapter’s functionality is the generation and inter-
pretation of object references. Object references must be created in a way so that
incoming requests can be dispatched to the proper servant.

As mentioned in Section 7.2.3, the POA cooperates with the ORB to gen-
erate object references. The ORB provides an object reference template containing
addressing information (e.g., a TCP/IP address).

The POA then constructs the object key in a way that allows

• identification of the object adapter

• identification of the POA instance

• identification of the servant

The servant can be identified within a POA using its Object ID, and the POA
instance can be identified using the POA’s “full path name,” that is, the name of
the POA and all of its ancestors, up to the Root POA.

That leaves the identification of the object adapter. In M, object adapters
need an identifier that must be globally unique. In a transient POA, this GUID
is composed of the server’s host name, the process’s PID, and a numerical
timestamp. Host name and PID are included in this GUID because the ob-
ject adapters’ location mechanism is also used to disambiguate between local
and remote objects.

In a persistent POA, a user-provided identifier, the “implementation name,”
is used as GUID. The following section deals with persistent objects in more
detail.

The server-specific object adapter identification, the POA instance-specific
“full path name,” and the object-specific Object ID are then concatenated, with
“slash” characters in between, to form the full object key, as shown in Figure 7.7.

This process results in a well-defined, printable object key. This enables
users to publish corbaloc:-style object references as defined by the Interoperable
Naming Service (INS) specification. The idea is to have Uniform Resource Iden-
tifier (URI)-style object references that can easily be exchanged by email. Using

7.4. Design of M’s POA 145

 . Dissecting a POA-generated object reference.

this notation, an object reference looks like corbaloc::hostname:portno/object
key.

To achieve even shorter object keys, a special rule of encoding the object
key is implemented. If the object adapter identification and the POA’s full path
name are identical, they are “collapsed” into a single string. If, in addition, the
Object ID is the same, it is collapsed as well, resulting in an object key with a
single component only.

Therefore, to enable using a shortest possible corbaloc: object reference, an
application should

• set the implementation name, using the -POAImplName command line op-
tion

• create a POA with the same name as the implementation name, the “persis-
tent” life span policy, and the USER_ID ID assignment policy

• activate an object within that POA using the same Object ID as the imple-
mentation name

This is done, for example, by the Naming Service implementation in M,
which sets all three strings to “NameService.” Therefore, if the Naming Service
were started on www.mico.org:2809, it could be accessed using the object refer-
ence corbaloc::www.mico.org:2809/NameService.

146 C  Object Adapters

7.4.2 Persistence

Transient objects require that object references to objects in a particular server
become invalid if that server is shut down. Object keys for transient objects must
be unique to a POA instance.

This is guaranteed by the composition of the object adapter identifier that
is used as a prefix for the object key, as shown in the previous chapter. Com-
posed of the host name, the server process’s PID, and a timestamp, this “GUID”
uniquely identifies a server. It therefore serves a dual use as adapter identifier and
transience property.

For persistent servers, however, the object adapter identifier must be chosen
so that it is reusable across server instances. The CORBA specification does not
define how to assign such an identifier in a portable manner.

M’s POA implementation provides the -POAImplName command line op-
tion to set an implementation name. Such an implementation name must be
provided whenever persistent objects are to be activated—that is, when a POA
with the PERSISTENT life span policy is created, and objects are activated with
that POA instance. This identifier is then used as the adapter identifier in the
object key. It is then the user’s responsibility for keeping the implementation
name unique.

7.4.3 POA Mediator

For transient objects, there is no distinction between the termination of a server
and the destruction of its POA instances and objects; the one implies the other.

This is not true with persistent objects. When a server process is restarted,
it may continue serving the same persistent objects as before.

There are several reasons to temporarily shut down a server—for example, to
save resources while a server is not in use, or to update a server’s implementation
with a later and hopefully less buggy implementation. However, while a server
is down, any client trying to contact the server would fail. This situation is
unacceptable in high-availability scenarios.

The POA Mediator, also known as the “M Daemon,” exists to remedy
this situation. M’s POA implementation cooperates with the POA Mediator
to allow for uninterrupted service. The M Daemon supports

• transparently starting servers on demand

• holding client requests while a server is down for maintenance

7.4. Design of M’s POA 147

• restarting servers in case of failure

• server migration

The M Daemon cooperates with M’s POA implementation to provide
these services, exploiting a GIOP feature known as “location forwarding.” The
GIOP protocol includes a special exception that may be thrown by a server.
This exception includes an object reference and instructs clients to redirect their
request to a different address.

When a server is configured to use the POA Mediator, its persistent POA
instances generate object references pointing to the POA mediator rather than
to itself.

Clients will thus send requests to the POA Mediator, also known as the
M Daemon, which then replies with a location forward exception, pointing
the client to the current server address as shown in Figure 7.8. The POA Media-
tor can also be configured to hold requests for a while—for example, in the case
of a server restart, and to start a server if it is not running. M’s imr program
is used to administer the M Daemon.

A client contacts the POA Mediator only once, and then continues to use
the new address for all requests as long as it remains valid. This way, the overhead
of sending a request twice (first to the POA Mediator, then to the “real” server)
is limited to the first request.

However, according to the semantics of location forwarding, clients remem-
ber the original address, the one pointing to the POA Mediator, as a fallback. If

 . The POA Mediator redirecting requests to the current server instance.

148 C  Object Adapters

the server instance that a client was redirected to disappears, the client will again
send requests to the POA Mediator to be redirected to the new server instance.

While the setup of location forwarding requires some M-specific magic
on the server side, it is transparent to the client program. Because it is part of the
GIOP protocol, this feature will work regardless of the ORB used on the client
side.

When a server is configured to use the POA Mediator by using the
-POARemoteIOR command line option, POA instances use the interface shown
in Figure 7.9 to register and communicate with the POA Mediator.

Upon startup, the Root POA will call the POA Mediator’s create_impl op-
eration, passing the server’s implementation name (as shown in Section 7.4.1) as
the first parameter and its object reference template, which contains the server’s
addressing information (as seen in Section 5.3.5), as the second parameter. In
return, it receives the POA Mediator’s own object reference template.

From then on, persistent POA instances in the server will use the POA
Mediator’s object reference template to compose references to active objects,
resulting in object references pointing to the POA Mediator.

The POA Mediator does not need to store any per-object state. It only keeps
a table mapping implementation names to the object reference template of the
currently running server instance. This keeps the amount of data exchanged by
the server and the POA Mediator to a minimum.

When the POA Mediator receives a request, all it has to do is to extract
the implementation name from the incoming object reference, as described in
Section 7.4.1, use the implementation name as an index to look up the cur-
rent server’s object reference template, and then compose a new object reference
using that template and the incoming request’s object key.

interface POAMediator {
string create_impl (in string svid, in string ior);
void activate_impl (in string svid);
void deactivate_impl (in string svid);

// admin interface
boolean force_activation (in ImplementationDef impl);
boolean hold (in ImplementationDef impl);
boolean stop (in ImplementationDef impl);
boolean continue (in ImplementationDef impl);
void shutdown_server ();

};

 . IDL for the POA Mediator.

7.4. Design of M’s POA 149

Note that the GIOP protocol mandates requests to be resent if a server
closes a connection without acknowledging a request (i.e., by either sending
back a reply or an exception). This solves a race condition upon shutdown, in
case a server receives a request during shutdown. Thanks to this protocol feature,
a client will then retry sending a request to the server, once it is fully shut down
(and the connection is broken). It then notices that the server is gone and sends
the request to the POA Mediator again.

One bootstrapping problem remains: while the POA Mediator can be con-
figured to start a server that is not running at the moment (using the imr util-
ity), a server must run at least once so that an object reference to the service can
be exported—for example, to the Naming Service. Possible solutions include
a manual first start with a special command line option so that the server ex-
ports an object reference and then shuts down again, or using imr to force the
activation of a server the first time around.

7.4.4 Collocation

Location transparency is one of the cornerstones of CORBA. The client is not
aware of a servant’s location; the ORB alone is responsible for reading an object
reference and contacting the respective server. Generated stub classes package
their parameters in a CORBA request, which is then transported by the ORB
and decoded by the skeleton on the server side.

This is fine for remote invocations, but suboptimal for local invocations,
when the servant happens to be in the same process as the client, be it by coin-
cidence or by design. While performance optimizations might not be necessary
for the random case, inefficient handling is annoying if a server knowingly ma-
nipulates local objects through CORBA calls.

An example is the Naming Service, which maintains a tree of “Naming
Context” objects. These must be CORBA objects, since they must be accessible
from remote. But if the root context is asked to locate a node, it needs to traverse
the tree, resulting in unsatisfactory performance if each step required a CORBA
invocation to occur. In the local case, marshalling and unmarshalling parameters
to and from a request seems overly complicated when the data could be used
directly.

Effort to circumvent the “inherent remoteness” of ORB request handling
is well spent and allows for more scalability because the user can easily mi-
grate between efficient local invocations and ORB-mediated remote invoca-
tions.

A naive collocation optimization could exploit that stubs and skeletons both
implement the same interface. If there was a common base class for that inter-

150 C  Object Adapters

face, stubs and skeletons could be used interchangeably. Clients within the same
process could just be given a pointer to the skeleton, instead of a stub object. In
the C++ language, the expense of an invocation would be no more than a virtual
method call. The ORB wouldn’t be involved at all.

While many early ORBs implemented the above behavior, it has some prob-
lems:

• The lifetimes of stubs and servants are independent of each other. A servant
can be replaced, and stubs must reflect that change. This is not possible if
“stubs” are actually pointers to the servant.

• Invocations must honor the POA’s threading policy and the state of the
POA Manager. It may be necessary to defer or to fail the request. With the
above approach, invocations would always be “delivered” immediately.

• The POA must be involved; for example, the POACurrent object must reflect
the invocation, and the _this member must return the correct value.

• Parameters of type valuetype may need to be copied to preserve their se-
mantics; so that the callee can not affect the value of a shared parameter in
the caller.

As a solution, a proxy is introduced to control access to the servant. For each
interface, the IDL compiler creates a collocation proxy (e.g., Account_stub_clp
in Figure 7.10). This class is a stub that specializes the normal stub class in the
case of a collocated servant. Whenever the client acquires an object reference (as
the result of a method invocation or ORB operation), the ORB checks if that
object reference points to an object that is served by a local servant. If yes, it
produces a collocation proxy.

The collocation proxy uses delegation instead of inheritance to invoke the
servant. Before an invocation is actually performed, the proxy has to cooperate
with the servant’s POA to find out if a direct procedure call can proceed:

1. Make sure the servant’s POA that we refer to has not been destroyed.

2. Check that the POA is in the active state.

3. Ask the POA to retrieve the servant from its Active Object Map.

4. Verify that the servant is implemented through a static skeleton and not
using the DSI.

5. Update the POACurrent settings to reflect the invocation in progress.

7.4. Design of M’s POA 151

 . Using a proxy to mediate between the stub and the servant.

Only after this checklist is complete, the proxy can delegate the invocation to
the servant by invoking the skeleton’s virtual methods. If any of the above steps
fails, the collection proxy falls back to the default stub’s behavior by calling its
parent class, where the parameters are marshalled into a CORBA request and
fed to the ORB as usual, guaranteeing correct behavior in all circumstances. An
example of the code generated by the IDL compiler is shown in Figure 7.11
(abbreviated by the removal of failure handling for presentation purposes).

152 C  Object Adapters

void
Account_stub_clp::deposit(CORBA::ULong amount)
{
// The POA returns NULL here if either object or POA is not active
PortableServer::Servant _serv = _poa->preinvoke (this);

if (_serv) {
// Object and POA are active, try narrowing to skeleton type
POA_Account * _myserv = POA_Account::_narrow (_serv);
if (_myserv) {
// Perform local invocation
_myserv->deposit(amount);
_poa->_postinvoke ();
return;

}
_poa->_postinvoke ();

}

// Object/POA Inactive or the servant is of unexpected type (DSI?)
// Fall back to the normal stub and send a request.

Account_stub::deposit(amount);
}

 . Example code for a collocation proxy.

Performance measurements for a simple operation show that method in-
vocation through the collocation proxy is about 40 times faster than an ORB-
mediated invocation. This factor would actually be greater for operations with
more complex parameters because no marshalling needs to be done and the
complexity of the above steps is constant.

C 8
 

Invocation adapters form the connection between a caller (of a method) and
an ORB similar to the way in which object adapters establish a connection be-
tween an ORB and object implementations. Invocation adapters in a microker-
nel ORB are separate services from the ORB core. Similar to object adapters,
they conceal different types of callers from the ORB, thereby making it possible
for the ORB kernel to be small and flexible.

This chapter will first introduce some of the fundamental concepts concern-
ing invocation adapters. It will then look at two special adapters—the Dynamic
Invocation Interface (DII) and the Static Invocation Interface (SII)—and how they
are implemented in M.

8.1 

Invocation adapters are components of the CORBA system that enable clients
to execute method invocations. They are used by stub objects but can also be
used directly by a user to invoke methods on objects for which no stubs exist.

To carry out a method invocation, invocation adapters require the object
reference of the target object, the method name, and the values of the input pa-
rameters. A successful method invocation produces a result value and the values
of the output parameters. If an error occurs, an exception is returned instead.

Invocation adapters can support one of several CORBA invocation seman-
tics (also see Section 3.1): Invocation

semantics

• synchronous with at-most-once semantics

153

154 C  Invocation Adapters

 . Orthogonal characteristics of dynamic and static invocation adapters

Characteristic Static Dynamic
Performance good poor
Handling easy complicated
Type information at compilation required not required

• asynchronous with at-most-once semantics

• one-way with best-effort semantics

CORBA differentiates between static and dynamic invocation adapters. StubStatic versus
dynamic invocation
adapters

objects generated by the IDL compiler use static invocation adapters. Because
users usually do not employ static invocation adapters directly but only indi-
rectly through stub objects, the CORBA specification does not cover the design
of static invocation adapters. Dynamic invocation adapters and specifically the
Dynamic Invocation Interface (DII) specified by CORBA enable methods to be
invoked for objects for which no stubs are available.

Table 8.1 presents a comparison of the characteristics of static and dynamic
invocation adapters. Static invocation adapters are easier to deal with because
they are not used directly but only through stub objects. One reason for the
difference in performance between the two adapters is the fact that the lack
of a prescribed design for static invocation adapters allows generous scope for
optimization. The IDL compiler can already start carrying out tasks during the
translation phase, whereas in the case of dynamic invocation adapters this has to
be done at runtime (also see Section 7.2.5).

At the heart of each invocation adapter is a mechanism for the representa-
tion of the value and the type of arbitrary IDL data types. Compound data types
such as structures and unions determine the complexity of such a mechanism.
Another important function of invocation adapters is type checking. This topic
is dealt with in detail in the following two subsections.

8.1.1 Representation of IDL Data Types

CORBA specifies a standard mechanism for the representation of the type andRepresentation of
types using
TypeCode

the value of arbitrary IDL data types as part of the DII. TypeCodes are used
to represent two levels of types: TypeCode constants exist for basic data types
such as long. For example, in the C++ mapping the type long is represented
by the constant _tc_long. TypeCodes containing TypeCodes of their constituent
data types and other type-determining data (such as index limits of arrays) can
be generated for compound data types. CORBA also provides a mechanism for
checking different TypeCodes for type equality.

8.1. Functionality 155

 . Insertion and extraction of data in or out of Any.

CORBA uses Any objects to represent values. In addition to a TypeCode that Representation of
values using Anyrepresents the type of an IDL data type currently contained in an Any, Any objects

contain a nonspecified internal (in-memory) representation of the values of this
particular type. Operations for the type-safe insertion and extraction of all basic
data types are provided by Any at its interface:

// IDL

interface Any {

// Insertion operations

void put_long (in long l);

void put_short (in short s);

...

// Extraction operations

boolean get_long (out long l);

boolean get_short (out short s);

...

};

In this context “type-safe” means that the insertion operations automatically
set the TypeCode contained in Any and that the extraction operations compare
the type of the value stored in the Any with the type of the variable in which the
value is to be stored. As shown in Figure 8.1, the type information is implicitly
contained in the insertion or extraction operation used.

8.1.2 Type Checking

Type checking ensures that the number, the type, and the value of the pa-
rameters of a method invocation are compatible with the signature of the
method invoked. The overhead for a type check depends heavily on the fol-
lowing:

156 C  Invocation Adapters

• Type of invocation adapter (static or dynamic)

• Typing of the implementation language (static or dynamic)

The easiest kind of type checking is the one using static invocation adapters
in statically typed programming languages such as C++. Since static invocationUsing compilers for

type checking adapters are never used directly and instead only indirectly through stub objects,
the type checking is carried out completely by the compiler or by the interpreter
of the implementation language.

In contrast, when nonstatically typed implementation languages are used,
dynamic invocation adapters and static invocation adapters have to handle the
type checking themselves. In this case use is made of an interface repository inUsing the interface

repository for type
checking

which the signatures of the methods in the form of a sequence of TypeCodes are
filed. The object reference of the target object and the method name enable the
invocation adapter to call up these TypeCodes and to compare them with the
types of the parameters supplied.

Some type violations are not detectable at all. For example, when using a
dynamic invocation adapter, wrong parameter types may be passed to a method.
A server that receives these wrong parameters has no way to detect this problem.

8.2   

The Dynamic Invocation Interface is the interface of the dynamic invocation
adapter specified by CORBA. It is used to invoke methods on objects for which
no stubs are available in the application (e.g., to implement a bridge that works
for all object types).

The main components of a DII are Request objects that represent a method
invocation, the name of the method being invoked, the object reference of the
target object, and the parameters.

When a method invocation is executed over the DII, all parameters of the
method invocation are packaged into Anys and conveyed along with the object
reference of the target object and the method name to the DII. An example of
this is the interface Account, which models a bank account and includes deposit,
withdrawal, and balance display operations:

// IDL

interface Account {

void deposit (in long amount);

void withdraw (in long amount);

8.3. Static Invocation Interface 157

long balance ();

};

The following C++ code piece shows the invocation of the method deposit

(100) using DII:

// C++

// Provide object reference for account object

CORBA::Object_var account_obj = ...;

// Generate DII request

CORBA::Request_var dii_request =

account_obj->_request ("deposit");

// Provide argument ’amount’

dii_request->add_in_arg ("amount") <<= (CORBA::Long)100;

// Invoke method

dii_request->invoke ();

The invocation of _request() on the target object of the method invocation
with the name of the method being invoked used as the parameter produces a
new Request object. This Request object represents the DII method invocation.
The input parameter amount is added to the list of parameters through the use
of add_in_arg(). The invocation returns a reference to an Any object in which
the value 100 is inserted via the overloaded operator <<=. (Note: In the C++
mapping, insertion and extraction operations to Any objects are mapped to <<=

or >>= operators.) The invocation of invoke() transfers the method invocation
to the ORB and then blocks until the method invocation has been processed.

8.3   

Although the DII is primarily provided for direct use, as shown in Figure 8.2,
it can also be used to connect stubs to the ORB, somewhat like a substitute
for a separate SII. The only disadvantage to this solution is the low level of
performance that results for the reasons explained in the preceding sections:

• Type checking (for example, when extracting a value from an Any).
Reasons for poor
performance of DII

158 C  Invocation Adapters

 . Linking of DII.

• Data must be copied many times (for example, when a value is inserted into
an Any).

• No benefit can be derived from known type information.

• Detailed specification of the DII allows no scope for optimization.

The SII allows optimization in all four points mentioned. Type checking isNo type checking
required practically not required because the stubs and skeletons generated from the IDL

compiler ensure that only correct parameter values are provided.
The main reason why data has to be copied at the DII is because it cannot beNo copying of data

assumed that the parameters provided exist for the duration of the entire method
invocation. On the other hand, due to the synchronous invocation semantics
with the SII, it can be assumed that the parameter values exist during the entire
method invocation. Therefore, a reference to the data suffices rather than an
actual copy.

The code for marshalling and demarshalling an Any must be generic becauseUsing known type
information it has to be able to deal with all conceivable types of data. However, special

marshalling and demarshalling code can be generated if the IDL compiler uses
an SII because the type information is already available at the time of transla-
tion.

8.4. Design of M’s DII 159

Because CORBA does not specify an SII (since it is used only indirectly Minimization of
dynamic storage
allocation

through stubs), the SII can deliberately be kept simple to keep the number of
dynamic storage allocations and releases to a minimum. This is a big factor in
the efficiency of an SII.

8.4   ’ 

Any objects representing arbitrary IDL data types form the core of the DII. Al-
though the interface of these objects incorporates operations for the insertion
and extraction of simple data types, corresponding operations for compound
data types such as structures and unions are not specified.

Except for this missing interface, the DII specification is so detailed that
there is little scope for flexibility in implementation. Therefore, the following
discussion focuses only on the design of interfaces for inserting and extracting
compound data types into or from Any objects.

As already described in Section 8.1.1, the operations for the insertion and
extraction of simple data types into or from Any objects are type-safe. Therefore,
programmers find it easy to use Any objects because they are not prone to errors.

For the insertion and extraction of compound data types, a sequence of in-
sertion/extraction operations must be performed for the constituent data types.
It would be desirable if such insertion/extraction of compound types could also Type-safe Any

interface for
compound data
types

be made type-safe as for simple data types. However, from a sequence of in-
sertion operations of simple data types alone, the type of the compound object
cannot be automatically decoded. The programmer must therefore first indicate
the type in the form of a TypeCode before inserting a compound data type. When
the data is inserted, Any then checks whether the inserted values conform to the
indicated type.

The CORBA Any interface was extended to include the following additional
operations (in fragments):

// IDL

interface MICOAny {

// Insertion operations

void type (in TypeCode type);

boolean struct_put_begin ();

boolean struct_put_end ();

160 C  Invocation Adapters

boolean union_put_begin ();

boolean union_put_selection (in long index);

boolean union_put_end ();

boolean any_put (in any a);

...

// Extraction operations

boolean struct_get_begin ();

boolean struct_get_end ();

boolean union_get_begin ();

boolean union_get_selection (in long index);

boolean union_get_end ();

boolean any_get (out any a);

...

};

type()is used to indicate the type before the insertion of data. Operations
that indicate the start and the end of a data structure exist for each compound
data type. Consequently, the insertion of a structure looks like the following
[extraction is similar except type() is not invoked beforehand]:

// Pseudo-code

MICOAny mico_any;

mico_any.type (<TypeCode for structure>);

mico_any.struct_put_begin ();

// insert elements of structure

...

mico_any.struct_put_end ();

Depending on the type of elements, insertion and extraction take place either
through the operations for simple data types or through a nested use of the
operations for compound data types.

Operations are also available so that a value contained in an Any can be
inserted into or extracted from another Any. These operations behave as if the

8.5. Design of M’s SII 161

data from one Any were manually being extracted from one Any and immediately
being inserted into the other one.

Despite its usefulness, the direct use of MICOAny in CORBA applications
results in a loss of portability to other CORBA products that do not provide
this interface. As part of CORBA 2.2, Dynamic Any has been introduced to Dynamic Any

overcome this limitation. Dynamic Any is not an extension to the Any interface,
but instead defines a set of IDL interfaces that are independent of it.

Along with enabling the insertion and extraction of compound data types
into or from Any objects, Dynamic Any offers extensive functionality for travers-
ing and manipulating the contained compound data types, which has a negative
effect on efficiency. Dynamic Any is therefore not a substitute for MICOAny but
an addition to it that provides the functionality of MICOAny over a standardized
but less efficient interface.

8.5   ’ 

The basic structure of the SII is similar to that of the DII: objects of the
StaticRequest type represent a method invocation. A StaticRequest has a list
of StaticAny objects that contain the values of the parameters. These StaticAny

objects—and, consequently, the representation of the parameter values—are
what actually make the SII special. We will look at this in detail below.

Basically, StaticAny contains a pointer to a parameter and not a copy. In Representation
of values using
StaticAny

the C++ implementation an untyped void pointer is used. In addition to this
pointer, StaticAny contains a reference to an object of the type StaticTypeInfo

that supplies methods for copying, releasing, marshalling, and demarshalling the
parameters pointed to by the void pointer. StaticTypeInfo

provides type-
specific operations

For basic types such as long, the appropriate StaticTypeInfo objects are
contained in the M library; for compound IDL data types, the IDL com-
piler generates the appropriate classes. An important advantage of this proce- Compiled versus

interpreted
(de)marshalling
code

dure is that the code for (de)marshalling the data types exists in a compiled form,
whereas with the DII the Any (de)marshalling methods interpret the type infor-
mation in TypeCode in order to (de)marshall the parameter contained in Any. See
Section 9.1 for a detailed description of the SII.

162 C  Invocation Adapters

8.6 

M provides two invocation adapters: the Dynamic Invocation Interface and
a Static Invocation Interface. The DII is mostly compatible with the CORBA
specification, but Any has been extended to support the insertion and extraction
of compound data types. The SII is a proprietary but more efficient invocation
adapter that is used by stubs generated by the IDL compiler.

C 9
 

The Interface Definition Language (IDL) of CORBA represents a powerful tool
for the development of distributed applications. It enables a separation of the
interface and the implementation of objects. The CORBA standard contains a
description of the syntax and the semantics of the IDL. Applications program-
mers use IDL compilers to generate type-safe access to CORBA objects from
interface specifications. This chapter is devoted to the design of M’s IDL
compiler. The proxy objects generated by IDL are based on an ORB API that is
described in Section 9.1. Section 9.2 follows with general principles relating to
compiler construction. Sections 9.3 and 9.4 offer a detailed presentation of the
design of M’s IDL compiler.

9.1  

One of the tasks of an ORB consists of preparing and processing remote oper-
ation invocations. The initiator and the receiver of such operation invocations
is an application based on CORBA. To execute an operation invocation, an ap-
plication requires an invocation adapter, which is also used for the proxy objects
generated by the IDL compiler. The invocation adapter allows the delivery of IDL compiler

creates proxy
objects

information associated with a remote operation invocation. This includes infor-
mation about the target object, the operation name, and the actual parameters.
This section focuses on the different alternatives for the design of invocation
adapters.

163

164 C  IDL Compiler

9.1.1 Dynamic versus Static Invocation Adapters

An application uses an invocation adapter to send operation invocations (also
see Section 5.3.1). The Dynamic Invocation Interface (DII) is an example of
an invocation adapter. The DII defines an API with which operations including
their parameters can be built at runtime and transferred to the ORB for further
processing. Since the interfaces, which are based on the DII, do not have to be
known at the compile time of an application, they are an example of a dynamic
invocation adapter.

The specification of object interfaces is an important step in the design
of an application. The interfaces are therefore already established at the time
of the compilation of an application. With its IDL the CORBA specification
offers a tool for the specification of such interfaces. A static invocation adapter
converts object interfaces that are already known at the time of translation of an
application.Advantages and

disadvantages of
static interface
adapters

Static invocation adapters incorporate the following benefits and disadvan-
tages:

Documented interface is part of the design of an application.

Allows type-safe handling of objects; errors are often detected before trans-
lation.

Easy to handle.

Interface can no longer be modified at runtime.

Special tools required for working with IDL specifications.

In contrast, dynamic invocation adapters incorporate the following benefits
and disadvantages:Advantages and

disadvantages of
dynamic interface
adapters Interface can be modified during runtime.

Flexible; allows applications that are not possible with static interfaces.

Not type-safe.

Error prone; not easy to handle.

9.1. Invocation Adapters 165

9.1.2 Support of Static Invocation Adapters

Proxy objects that guarantee type-safe access to object interfaces are a compo-
nent of static invocation adapters. The proxy objects, which include stubs and
skeletons, are derived from IDL specifications. Because proxy objects are linked
to an application, they must exist in the same programming language as the
application. Consequently, standard IDL language mappings are specified in
CORBA for different programming languages.

According to the CORBA standard, a compliant ORB implementation
must support an IDL language mapping for at least one programming language.
The mapping is supported by a tool that can be implemented in various ways. CORBA defines

IDL language
mapping

For example, a C++ compiler could be extended to support the IDL directly.
However, this would imply a close coupling between C++ compilers and special
ORB implementations, which is not practical in reality.

Another approach can be taken to avoid the close coupling. A special tool
translates IDL specifications into stubs and skeletons as the source code for a
higher programming language taking into account the IDL language mapping
rules. This source code must be compiled and linked with the rest of the ap-
plication. Because of its task, this tool is called an IDL compiler. A CORBA
application therefore consists of several components that exist in a specific de-
pendency relationship to one another. Components of a

CORBA
application

ORB library: The ORB library contains CORBA-specific functions that are
required by all CORBA applications (such as implementation of the IIOP
protocol).

Proxies: The proxy objects that the stubs and skeletons belong to are generated
automatically by an IDL compiler from IDL specifications.

Application: The semantics of the actual application that is contributed by the
programmer.

Figure 9.1 shows the dependencies between the three components in the
form of layering. The ORB library provides the basic functionality of a CORBA
application and is self-sufficient in terms of the other two components. The
proxies have recourse to the functionality of the ORB library. For their part
the proxies offer applications type-safe access to CORBA objects. The applica-
tion itself uses the proxies as well as the functionality of the underlying ORB
library.

Different interfaces exist between the three layers: Interfaces between
components

166 C  IDL Compiler

 . CORBA application consisting of the application itself, the generated code, and
the ORB library.

• ORB library ↔ Application: The application can access ORB-specific func-
tions. These include initialization of the ORB or general functions for the
management of object references.

• Application ↔ Proxies: The proxies generated from an IDL specification are
used by an application for type-safe access to remote objects.

• Proxies ↔ ORB library: Proxies for their part need the support of the ORB
to convert the parameters of a remote operation invocation into a byte se-
quence, for example.

Two of the three interfaces between the layers are prescribed by the CORBA
standard and therefore offer no freedom for design decisions. However, the
CORBA standard makes no statements about the interface between the prox-
ies and the ORB library. From the standpoint of its functionality, this interface
must provide support for remote operation invocations. This task corresponds
to that of the dynamic invocation adapter already discussed. So it is possible that
the proxies access the DII and the DSI. The advantage of such a procedure is
that it makes maximum use of the components of the ORB, and this is what
earlier versions of M did. However, the DII and the DSI are not runtime
efficient, which indicates a weakness in the CORBA standard. Later versions of
M therefore use the M-specific interface that is described in the following
subsection.

9.1.3 M’ Static Invocation Adapter

Figure 9.2 shows the class diagram for the static invocation adapter under M.
Functionally, the static invocation adapter is identical to the DII and the DSI.
However, this is a M-specific interface that should never be used directly
by applications to guarantee portability. Unlike the DII and the DSI, the static

9.1. Invocation Adapters 167

 . Static invocation adapter.

invocation adapter avoids the process of copying parameters as much as possible
because of its focus on increasing runtime efficiency.

The class StaticAny is the counterpart of the static invocation adapter to
the type Any defined in CORBA, which is used as a generic data container.
An instance of the class StaticAny manages a typed data instance. Access to a Classes of M’s

static interface
adapters

StaticAny is via the class StaticTypeInfo. The class StaticTypeInfo takes on
the role of a marshaller, which packs and unpacks user-defined data into and
from a StaticAny instance. The class StaticTypeInfo is abstract. A class that
can marshall the instances of this type must be derived for each user-defined
type in an IDL specification. The following code fragment shows an extract
from the declaration for the class StaticTypeInfo:

1: class StaticTypeInfo {

2: public:

3: virtual StaticValueType create () const = 0;

4: virtual void free (StaticValueType) const = 0;

5: virtual CORBA::Boolean demarshal (CORBA::DataDecoder &,

6: StaticValueType) const = 0;

7: virtual void marshal (CORBA::DataEncoder &,

8: StaticValueType) const = 0;

9: // ...

10: };

Along with other declarations, pure virtual methods for the storage manage-
ment of data (lines 3 and 4) as well as the packing and unpacking of data (lines 5
and 7) are found in the abstract class StaticTypeInfo. An instance of the type
StaticValueType represents a raw byte sequence managed by the class StaticAny
together with the type information. The IDL data marshallers DataDecoder and
DataEncoder are used to pack or unpack these byte sequences.

The class StaticRequest allows the client access to the functionality of the
static invocation adapter. An instance of this class represents an operation in-

168 C  IDL Compiler

 . Classes of static invocation adapters

Class Description
StaticAny Manages a datum and its type information
StaticTypeInfo Defines interface for marshaller
StaticRequest Encapsulates client-side information of an operation invocation
StaticServerRequest Encapsulates server-side information of an operation invocation
StaticImplementation Base class of the implementation of an interface hierarchy

vocation and manages all information associated with the operation invocation,
including the operation name and the list of actual parameters. The class Sta-

ticServerRequest reflects the same behavior on the server side. An incoming
operation invocation is delivered to the object implementation through the class
StaticImplementation at the server. The skeleton generated by the IDL com-
piler is derived from this class. An instance of the class StaticServerRequest is
passed to the class StaticImplementation for each incoming operation invoca-
tion. Table 9.1 summarizes the individual classes of static invocation adapter.

9.2  

The task of a compiler is to translate a word of the language L1 into a word of
the language L2 (see Figure 9.3). Compilers are typically used for the translation
of higher programming languages such as C++, Fortran, and Pascal to assembly
language. In the context of CORBA, the compiler translates IDL specifications
into proxy objects. The source language is IDL, and the target language is a
higher programming language—in our case, C++. The IDL compiler has to
obey the IDL language-mapping rules for C++ at the time of translation. Before
we look at IDL compilers in detail, we first want to start with a brief overview
of the fundamentals of compiler construction.

9.2.1 Formal Languages and Grammars

The concept of formal language is central to the understanding of compilers.
A formal language is based on an alphabet from which words are formed. For
example, the alphabet � = {a, b} enables the forming of words such as a, aa,
ab, and abba. The set of all words that can be created from an alphabet isFormal language

represented by �+. In addition to all words from �+, the set �∗ also contains
the empty word ε.

Based on the alphabet �, the language L is a subset of all words: L ⊆ �∗.
If � = {a, b}, then a possible language LP is the one of the palindrome, that is,

9.2. Compiler Fundamentals 169

 . Compiler concept.

words that are the same read forwards and backwards. Some valid words in this
language are LP = {a, bb, bab, abba, . . .}.

First we will look at how a language is represented by a finite descrip-
tion. This requires the helper alphabet N , which is also called a set of non-
terminal symbols. The name originates from the fact that the symbols of the Nonterminal

symbolsalphabet do not appear in the words of a language. Therefore, N ∩ � = ∅. In
the discussion below, nonterminal symbols are characterized by capital letters:
N = {Q,R,S, . . .}.

A production is the mapping of a nonterminal symbol to a word that consists Production

of a union of the alphabets � and N . For the production u → v, the symbols
u ∈ N and v ∈ (� ∪N)∗ are valid. The set of all productions is defined by P =
{u → v|u ∈ N,v ∈ (� ∪ N)∗}. For example, if � = {a, b} and N = {S,R},
then R → a, R → bS, S → aSa, and S → aSaR are possible productions.

A derivation is the transformation of a word into another one according to Derivation

a production. If w,w′ ∈ (� ∪ N)∗ are two words, the derivation is w ⇒ w′
if when the production is u → v ∈ P , so that w′ derives from w, whereby all
occurrences of u in w are replaced by v. For example, bSb ⇒ baSab with the
productions of the last paragraph because baSab is derived from bSb when the
production S → aSa is used to exchange the S in bSb with aSa. A derivation
sequence w0 ⇒ w1 ⇒ . . . ⇒ wn is abbreviated as w0

∗⇒ wn.
A grammar G is a quadruple G = (�,N,P,S) with the alphabet �, the Grammar

nonterminal symbol N , a set of productions P , and a start symbol S ∈ N.
A grammar is a finite representation of a formal language. The language
L(G) induced by the grammar G is defined as L(G) = {w ∈ �∗|S ∗⇒ w}.
This means L(G) contains all words resulting from a finite derivation se-
quence from the start symbol S of the grammar G. For example, the gram-
mar GP = (�P ,NP ,PP ,S) creates the language of the palindrome, with
L(GP) = LP .�P = {a, b},N = {S} and the set of the productions PP :

S → ε (9.1)

S → a (9.2)

S → b (9.3)

S → aSa (9.4)

S → bSb (9.5)

170 C  IDL Compiler

The word abba ∈ L(GP) derives, for example, from the following deriva-
tion string: S ⇒ aSa ⇒ abSba ⇒ abba. The first derivation uses production
9.4; the second one, production 9.5; and the third one, production 9.1 from PP .

9.2.2 Parse Trees

An analogous graphic representation exists for the derivations presented in the
last subsection. This structure is called a parse tree and is a tree in the math-Parse tree

ematical sense: its inner nodes consist of nonterminal symbols and its leaves
consist of words of the alphabet. Figure 9.4 shows the parse tree for the deriva-
tion S ⇒ aSa ⇒ abSba ⇒ abba based on the grammar GP presented in the
last section.

The use of a production is represented in the parse tree by an inner node.
The node corresponds to the left side of the production and its successor node
to the right side of the production. The children of a node therefore represent
the substitutions undertaken during a derivation. A traversing of the parse tree
in in-order traversal visits the terminal symbols (i.e., leaves) in the sequence in
which they appear from left to right in the word.

One of the tasks of a compiler is to find a suitable derivation, which is
the generation of a parse tree. Tools are available that take the description of
a grammar to generate programs that create parse trees from input words. The
CORBA standard specifies the IDL through a grammar so that when these toolsCORBA uses a

grammar to define
the IDL

are used the conversion of an IDL specification (i.e., word of the input language)
into a parse tree is for the most part automated.

9.2.3 Structure of a Compiler

The creation of a parse tree is the first step in the translation of one language
into another one. It normally makes sense to translate a language into more than

 . Parse tree of word abba.

9.2. Compiler Fundamentals 171

one target language instead of only into one. In the context of an IDL compiler,
for example, there are various target languages for which CORBA has specified
IDL language mappings. This requires breaking down the translation process
for the generation of a parse tree and the subsequent code generation into the
target language. The parse tree is used as a link that separates the two phases of
the translation.

As we illustrated in the preceding subsection, the structure of the parse tree
is oriented toward the productions of the grammar of the input language. If
this grammar contains numerous productions, as is the rule with complicated
languages, the parse tree will become fairly complex. Therefore, it is useful first
to convert the parse tree into a more compact representation. The more compact
form, also called the abstract syntax tree (AST), serves as the starting point for Abstract syntax tree

code generation.
The phases passed through by the translation process are called parsing and

code generation (see Figure 9.5). The task of a parser consists of converting a
word from the source language into an abstract syntax tree. The syntax and
the semantics are checked during this process. Only correct input words (in
our context this means correct IDL specifications) are represented as abstract
syntax trees. The components of a compiler that implement the first phase of
the translation process are referred to as the front end in the literature. Front end

The second phase of the translation process is code generation. The compo-
nents of a compiler that have this responsibility are accordingly referred to as the
back end. The back end traverses the abstract syntax tree that was constructed Back end

beforehand by the front end and produces code in the target language. The back
end implements the rules of IDL language mapping for the target language and
generates the necessary proxy objects. Figure 9.5 shows two different back ends

 . Compiler structure.

172 C  IDL Compiler

that are creating these proxy objects in both the programming languages C++
and Java.

9.3     


An abstract syntax tree is the link between the front end and the back end. In the
context of IDL compilers, there is the issue of the structure of the abstract syntax
tree for IDL specifications. The abstract syntax tree of an IDL specification must
be able to represent all information necessary for the back end, including the
IDL specification itself as well as information about file structures in which
the IDL specification is filed. For example, the latter is important in order to
establish in which file each part of the IDL specification is defined (such as
through the use of the preprocessor instruction #include).

For the purposes of object-oriented modeling, a separate class can be intro-
duced for each IDL construct (for example, typedef, struct, interface, . . .) in
order to represent the complex information contained in an IDL specification.
Each class then manages information that exists for this IDL construct. For ex-
ample, the class that represents interface definitions would contain a list of
nested objects that represent the IDL constructs defined locally in an interface.

A closer examination reveals that a similar modeling already exists in the
CORBA standard. The interface for the interface repository (IR) mirrors theIR can store an

abstract syntax tree language constructs contained in the IDL exactly. The actual task of the IR is to
store IDL specifications. Therefore, it is possible for an IR to be used as an ab-
stract syntax tree for an IDL compiler. The resulting design of the IDL compiler
uses the IR as a link between front end and back end: The front end writes an
IDL specification into the IR, and the back end extracts the information from
the IR during code generation (see left half of Figure 9.6).

This sort of design is also advantageous for the implementation of the IRAdvantages

itself. The IR can use the IDL compiler to implement persistence of the IDL
specifications contained in the IR. When the IR is started, the front end of
the IDL compiler is used to load the persistent state of the IR. During the
termination of the IR, the back end of the IDL compiler can be used to back
up the actual state (see right half of Figure 9.6). The back end needed to do
this generates code based on the IDL syntax. The persistent state then exists in
the form of a readable IDL specification. The advantage of the close coupling
between IDL compiler and IR is the reusability of the components required for
their conversion.

9.3. Abstract Syntax Tree for IDL Specifications 173

 . Structure of IDL compiler and interface repository.

Another benefit of this design is that different configurations are possible.
Because the abstract syntax tree is represented by an IR, the IDL compiler can
access a remote IR. Because the IR is a regular CORBA object, it can be reached
with normal remote operation invocations. This also applies to IRs of other
ORB vendors, so long as the implementation conforms to the CORBA stan-
dard. The IDL compiler can therefore “feed” a remote IR (using the front end)
as well as implement code generation in the back end using the information of
a remote IR.

These advantages are also offset by some disadvantages. One disadvantage Disadvantages

is the result of a peculiarity of the CORBA IDL that allows the reopening of
module specifications. The following IDL specification is used to elucidate this
point:

1: // IDL

2: module M1 {

3: typedef char A1;

4: };

5:

174 C  IDL Compiler

6: module M2 {

7: typedef M1::A1 A2;

8: };

9:

10: module M1 {

11: typedef M2::A2 A3;

12: };

The above specifications contain two modules: module M1 contains two defini-
tions and module M2 contains one definition. What is special about this is that
the definitions produce cyclical dependencies between the two modules. Mod-
ule M1 contains definitions that are based on definitions from module M2 and
vice versa. If an IR is used as an abstract syntax tree for representing an IDL
specification, modules M1 and M2 are both represented by an object within the
IR.

If during code generation the back end passes through the content of the
IR sequentially, this would produce the following sequence of IDL definitions:
M1::A1, M1::A3, M2::A2 (first all definitions from module M1 and then from mod-
ule M2). However, this sequence is not correct because the definition from M1::A3

is based on M2::A2 and therefore should occur later. The more serious problem
here is that some of the information contained in the IDL specification is lost
in the IR. This includes the sequence in which IDL specifications occur in a
specification and the mapping of IDL definitions to source files in which they
are defined. We will deal with these problems later.

Another disadvantage of using an IR as a link between the front end and
the back end of an IDL compiler is the conversion of this design during im-
plementation. The CORBA standard defines the interface of the IR through an
IDL specification. This means that the front and back ends of the IDL compiler
access the IR over a CORBA interface. A typical “chicken-and-egg” problem
occurs during the development of the IDL compiler and the IR: An implemen-
tation of the IDL compiler requires the availability of an IR and vice versa. The
reason is that, as a regular CORBA object, the IR requires proxies, but these first
have to be created by a working IDL compiler.

This problem can be solved through a bootstrap procedure: The required
stubs and skeletons for the IR are first developed manually and later replaced
by ones generated by the IDL compiler as soon as the compiler has sufficient
functionality. The result is that automatically generated code, produced during
the bootstrap procedure, is also contained in the M source code. Because the
generated code is part of the M source code, this also means that the code
generated by the IDL compiler must be translatable with all supported C++
compilers.

9.4. M’s IDL Compiler 175

In summary, the use of an IR to represent an abstract syntax tree produces
the following advantages and disadvantages: IR as an AST

container

Simple design; interfaces specified by CORBA

Reuse of components of the CORBA architecture

Support for basic persistence of the IR

Code generation from a remote IR possible

Persistence of IR not scalable or failsafe

Some information from IDL specifications not representable in the IR

Bootstrap procedure required during development of IDL compiler

9.4 ’  

The following sections examine the design of M’s IDL compiler. We start
by looking at the general class structure of an IDL compiler in Section 9.4.1. A
more detailed discussion about the structure of the front end follows in Section
9.4.2 and about the C++ back end in Section 9.4.3.

9.4.1 Class Structure

Figure 9.7 shows the complete class structure of an IDL compiler in the UML-
based notation. Brief descriptions of the individual classes in Figure 9.7 are
found in Table 9.2.

The arrangement of the classes among themselves reflects the division into
the front end and the back end of the IDL compiler linked together over an
abstract syntax tree (based on the IR). The class IR forms the separation between
the front and back ends. The classes Parser, ParseNode, and IDLParser represent
the front end, and the other classes the back end.

In Figure 9.7 the IR is only represented by one class, but in reality it is
based on a set of classes. The design of the IR will not be discussed further.
The CORBA standard already suggests a design through its abstractions for the
interface of the IR. The implementation of the IR in M relies closely on the IR separates front

and back endsinterface structure defined by the CORBA standard.

176 C  IDL Compiler

 . Design of the IDL compiler.

 . Classes of IDL compiler and their function

Class Description
CodeGen Abstract base class for all back ends
CodeGenCPP Code generation for C++
CodeGenIDL Code generation for IDL
IDLDep Computes dependencies between IDL definitions
IDLError Output of detailed error messages
IDLParam Command line parameters of IDL compiler
IDLParser Traverses parse tree and fills IR
IR Interface repository
Output Supports structured output
ParseNode Parse tree
Parser Encapsulates parser generated by YACC

In Section 9.3 we explained that the IR is not able to store all information
that exists in an IDL specification. For example, it is not possible from the IDL
definitions contained in an IR to extract the source code file from which they
originated. This could be seen as a weakness in the CORBA specification. On
the other hand, the standard does not make it mandatory for the IR to be used
for the IDL compiler. In Section 9.3 we also explained that the sequence of IDL
definitions, as they occur in a source code file, is lost in an IR. The back end has
a class IDLDep (standing for dependency) that computes the correct sequence for
the code generation. This information can be calculated by IDLDep based on the
dependencies between IDL definitions contained in the IR.

9.4. M’s IDL Compiler 177

9.4.2 Front End

The task of the front end is to input source code files that contain IDL specifi-
cations and to store their content in an IR. The CORBA standard defines the
syntax of the IDL through a grammar. As already explained in Section 9.2.2,
tools are available that automatically generate parsers from grammars. The out-
put of a parser is a parse tree, the information of which is filed in a compact
form in an IR.

M uses the parser generator YACC (Yet Another Compiler Compiler).
The class Parser in Figure 9.7 encapsulates the code generated by YACC. The MICO uses YACC

parser converts input streams with valid IDL specifications into parse trees.
A parse tree is represented by a set of instances of the class ParseNode. The
tree that is created is processed by the class IDLParser and stored in a compact
form in the IR.

The class Parser checks the syntax of an IDL specification, whereas the class
IDLParser tests the semantics of the input. This includes the reference to a user-
defined IDL type that was not defined before its use. If such an error occurs, the
class IDLError is used to give an informative error message. If the input is error
free, the first phase of the translation of an IDL specification is completed when
the IR contains the complete specification.

The following example clarifies the front-end procedure. The IDL specifi- Example

cations that appear serve as the input of the IDL compiler.

1: // IDL

2: struct Person {

3: string name, surname;

4: short age;

5: };

The IDL specification is syntactically and semantically correct and defines
a user-specific data type Person. The following extract from a CORBA specifi-
cation shows the part of the IDL grammar that provides the syntax of the above
IDL specification:

struct_type → ’struct’ IDENTIFIER ’{’ member_list ’}’
member_list → member

→ member member_list

member → type_spec declarators ’;’

type_spec → base_type_spec

178 C  IDL Compiler

→ scoped_name
. . .

base_type_spec → ’string’
→ ’short’
. . .

declarators → declarator
→ declarators ’,’ declarator

declarator → IDENTIFIER
. . .

The parser generator YACC is used to generate a parser from the grammar.
Using the above IDL specification as input, the parser generated by the YACC
creates the parse tree shown in Figure 9.8. Each node in the parse tree in Fig-
ure 9.8 corresponds to an instance of the class ParseNode. Once the parse tree
is constructed (and consequently the input recognized as syntactically correct),
the class IDLParser collects the information contained in the parser tree and
represents it as an object within the IR. This object is created with the name
create_struct() through an operation of the IR. The input parameters of cre-
ate_struct() correspond to the information contained in the parse tree.

 . Section of parse tree for the IDL type Person.

9.4. M’s IDL Compiler 179

9.4.3 Back End

The back end is responsible for code generation. Different back ends can gener- MICO supports
different back endsate code for different target languages. For example, Figure 9.5 shows this with

C++ and Java. The back end is selected on the basis of command line parameters
to the IDL compiler. The back end converts the IDL language-mapping rules
for a particular language. It derives the input from the content of the IR. This
section focuses on the back end for the language C++.

In C++ a distinction is made between two types of program elements: decla-
rations and definitions. A declaration makes the definition of a program construct C++ distinguishes

between
declarations and
definitions

known to the C++ compiler without stipulating its implementation. In contrast,
a definition indicates the implementation of a program construct. A declaration
is more abstract than a definition in the sense that it provides a specification,
whereas a definition provides an implementation.

This distinction is necessary if an application is being divided into several
translation units. The dependencies between the translation units are resolved
through the use of declarations. Dependencies arise, for example, between an
application and the proxy objects. The application requires the declarations of
the stubs and the skeletons in order to use the proxy objects. If an entire appli-
cation is linked to an executable program file, the definitions of the proxies also
have to be included.

Per convention, declarations and definitions are normally stored in differ-
ent files. All declarations end up in a header file that is typically assigned the file
name suffix .h. The definitions are found in an implementation file. Here differ-
ent C++ compilers use different suffixes for the file names. The most common
ones are .cc, .cpp, and .cxx. M’s IDL compiler generates two files for C++
language mapping from one IDL specification—one each for the declarations
and the definitions.

Figure 9.9 shows the design of the back end for the generation of C++ stubs
and skeletons. Each back end is derived from the class CodeGen, which defines

 . Design of back end for C++ code generation.

180 C  IDL Compiler

 . Classes of C++ back end and their function

Class Description
CPPTypeFolder Eliminates identical C++ types
CodeGen Abstract base class for all back ends
CodeGenCPP Code generation for C++
CodeGenCPPCommon Generates code for all declarations
CodeGenCPPSkel Generates definitions belonging to skeleton
CodeGenCPPStub Generates definitions belonging to stub
CodeGenCPPUtil General methods

the interface to a back end. The individual rules of IDL language mapping for
C++ are accommodated in different classes. Table 9.3 offers an overview of the
different classes of a C++ back end, along with their functionality.

The class CPPTypeFolder merits special mention. Different IDL types that
are all mapped to the same C++ type can occur in an IDL specification. For ex-
ample, the two IDL types string<3> and string<8> (each representing length-
bounded strings) are mapped to the C++ type char*. Because double definitions
should be avoided in generated C++ code (they would cause an error when the
generated C++ code is translated), the class CPPTypeFolder is responsible for
removing duplicates.

This section has not described the structure of the generated code. The code
generated by M’s IDL compiler is based on M’s specific static invocation
adapter and therefore is not portable (and this is not something required by the
CORBA standard). Section C.5 in Appendix C presents the internal implemen-
tation details of generated code for an IDL specification.

9.5 , , 


An IDL compiler translates an IDL specification into the proxy objects of a
specific higher programming language. A compliant CORBA implementation
must support at least one IDL language mapping. In M this requirement is
met by providing an IDL compiler. The front end reads an IDL specification,
carries out syntactical and semantic checks of the specification, and then stores
it in an interface repository. In M the IR serves as a representation of the
abstract syntax tree. The back end traverses the content of the IR and generates
stubs and skeletons in the programming language C++.

There are some advantages associated with using the IR to represent the
abstract syntax tree. An IR must exist for every compliant implementation of
the CORBA standard anyway and can therefore be reused for building an IDL

9.5. Summary, Evaluation, and Alternatives 181

compiler. The disadvantage is that some of the information needed for code
generation cannot be represented in an IR and therefore must be passed to the
back end in different ways.

Whereas the interface between the proxy objects to be used by the IDL
language mapping is defined in the CORBA specification, an ORB developer
has the freedom to select how these proxies are implemented and on which
ORB API they are based. From the standpoint of reusability, it would also be
possible to use the DII and the DSI of the ORB API. These components are
just as necessary for a compliant CORBA implementation as the IR is. This is
also how earlier versions of M were structured. Due to deficiencies in the
DII and the DSI in terms of runtime efficiency, the static invocation adapter in
M introduced an ORB API specifically for proxies.

It is not necessarily the case that an IDL compiler is the only way that the
requirement of IDL language mapping for compliant CORBA implementations
can be met. With C++, IDL compilers are effective for supporting the language
mapping. For programming languages that offer reflexive mechanisms, other
solutions are conceivable. A reflexive language allows introspection at runtime;
that is, a program based on a reflexive language is able to obtain information
about itself. Therefore, generic proxy objects could be developed as part of the
ORB library. The generic stub and skeleton would then use the reflexive charac-
teristics of the language to provide the signature of an operation at runtime, for
example. An IDL compiler is therefore not necessary in this case. A program-
ming language that enables this approach is Smalltalk.

This page intentionally left blank

C 10
  

The final chapter provides an overview of some advanced aspects of CORBA as
well as other topics unrelated to CORBA. We first discuss the CORBA Com-
ponent Model in Section 10.1. This latest addition to the CORBA specification
introduces the notion of components. In Section 10.2 we give a brief overview of
Web Services that have become popular in recent years. We provide a brief com-
parison between Web Services and CORBA. Section 10.3 gives an introduction
to a whole new class of middleware technologies—middleware for ubiquitous
computing. We provide an overview of this exciting area, which is still subject
to active research endeavors.

10.1  

CORBA 3.0 introduced the CORBA Component Model (CCM), which en-
ables developers to implement fine-grained components, and then to assemble
them into a component-based application.

This section begins with an introduction to component-based development.
It then looks into the specifics of the CORBA Component Model. A brief ex-
ample of using the CCM implementation in M is followed by an overview
of the implementation’s internals. The section then concludes with a discussion
of CCM and future trends.

10.1.1 Component-Based Development

“Component” is a widely used and abused term not only in the world of software
engineering. According to the Merriam-Webster Dictionary, a component is “a

183

184 C  CORBA and Beyond

constituent part,” and in this meaning, the term is used for almost anything
that is a part of something bigger.

The Unified Modeling Language (UML) provides a more meaningful defi-
nition:

“Component”
definition A component represents a modular part of a system that encapsulates its contents

and whose manifestation is replaceable within its environment.

This definition mentions three important properties. The word “modular” indi-
cates that a component is a building block that can potentially be used in many,
as the definition puts it, systems. The component “encapsulates” its contents,
meaning that it is a black box, defined not by its implementation but by its in-
terface. Finally, it is “replaceable,” so that components can be exchanged with a
different implementation, as long as the interface remains the same.

Thus far, however, a component would be no different than an object. But
the definition goes on:

Components have
ports A component defines its behavior in terms of provided and required interfaces. . . .

Conformance is defined by these provided and required interfaces.

This extends the component model beyond the object model. Where an object
has a single interface that consists of operations and attributes, a component’s in-
terface is characterized by offered and required ports. For example, a coffeemaker
component could provide a user interface (an offered port) and require a socket
interface (a used port), which would have to be provided by your power com-
pany.

The idea of component-based programming then is to create applications by
assembly (i.e., by instantiating a number of components) and then interconnect-
ing matching provided and required ports according to an assembly specification.
The execution of a component-based application is called deployment.

The vision is greater component reusability and to mature from application
engineering to manufacturing: after all, a car is manufactured from numerous
standard components rather than by reinventing the wheel for each new make
and model.

In a way, client/server programming is a relic from the 1960s, when termi-
nals acted as clients to monolithic, mainframe-based databases. Such an archi-
tecture can be described as egocentric: it is all about the server. Clients contact
the server, which is responsible for handling requests. Delegation—servers act-
ing as clients to other servers as part of handling requests—is possible, but has
to be modeled explicitly, and in fact, many real-life servers do not delegate any
functionality at all.

A popular program paradigm of the 1990s was the three-tier, or more gen-
erally the n-tier, architecture, where (Web) clients interacted with front-end ser-
vices (e.g., a CGI script executed by the Web server) that then delegated requests

10.1. CORBA Components 185

to their (database) back ends. This is but an extension of the client/server archi-
tecture, where the middle tiers delegate everything, and the back ends delegate
nothing. Components are

peersIn contrast, components are building blocks in a peer-to-peer architecture.
Their paradigm is to implement a self-contained task as a reusable component,
which in turn delegates tasks that are not related to its core functionality.

Component-based programming anticipates the cooperation of compo-
nents in order to achieve a common task. The feature of required ports in-
vites developers to design components with dependencies, to delegate tasks to
a specialized external component to be connected at assembly time, rather than
implementing all functionality within, which would then have to be maintained
as a monolithic piece.

For example, a coffeemaker’s core functionality is to brew coffee. It offers
an interface to brew a couple of cups, but requires connections to a wall socket
for power, to a faucet for water, and to a filter with coffee. With these standard
interfaces, it is possible to brew different kinds of coffee (by substituting the
filter), to use either tap or purified water (by substituting the faucet), and the
coffeemaker interface can be used to brew at the touch of a button or at a speci-
fied time. Keeping the pieces of functionality separate allows for any amount of
flexibility.

10.1.2 The CORBA Component Model

The CORBA Component Model allows for component-based development, us-
ing CORBA as the glue and means of communication between components.
The CCM specification can be separated into three major parts. The compo-
nent model defines components and ports using extensions to the IDL lan-
guage. The container programming model defines the implementation of com-
ponents and a component implementation’s interaction with its runtime en-
vironment, the “container.” Finally, packaging and deployment defines how to
package component-based applications (assemblies), composed of component
implementations and metadata, and their deployment (execution).

 

Components

CORBA’s component model follows the ideas outlined earlier. A CORBA com-
ponent, defined with the component keyword, may have the following features:

186 C  CORBA and Beyond

 . Features of a CORBA component.

1. Zero or one base components (inheritance)

2. Supported interfaces

3. Attributes

4. Ports
Interface and event
ports There are two classes of ports, interface and event ports. Interface ports can

be provided or required, and event ports are either event sources or event sinks.
For event source ports, the CORBA component model further distinguishes be-
tween unicast, where an event is delivered to a single event sink, and broadcast,
where an event is broadcast to any number of peers.

Figure 10.1 illustrates a possible visualization of a CORBA component with
its features.

New keywords are introduced into the IDL language for each kind of port:New IDL keywords

provides: A provided interface port, also called a facet. The component im-
plements this interface, with is declared as a regular IDL interface, having
operations and attributes.

10.1. CORBA Components 187

uses: A required interface port, also called a receptacle. This implies a depen-
dency on another component. In an assembly, a facet must be connected to
the receptacle, so that this component can access its functionality. A recep-
tacle can be simplex, to be connected to a single facet, or multiplex, which
can be connected to multiple facets simultaneously.

publishes: An event source port for broadcast.

emits: An event source port for unicast.

consumes: An event sink port.

While components in the abstract model do not have operations of their
own—their functionality is rather advertised via its facets—the CORBA com-
ponent model also allows components to support one or more interfaces. This
feature exists largely for the use case of legacy components, that is, where an
existing service shall be made available as a component. However, it is debatable
whether the code changes to port a service to a component supporting the ser-
vice’s interface are less invasive than the changes necessary to port the service to
a component that offers the service’s interface as a facet.

Note that the CORBA specification makes a distinction between what it
calls basic and extended components. Basic components may have attributes and
supported interfaces, but no ports. Basic components exist solely to provide
a concept equivalent to Enterprise Java Beans, because the original specifica-
tion tried to provide full source compatibility, to be able to run Java Beans in a
CORBA Components container. For the purposes of component-based devel-
opment, basic components are, with their lack of ports, useless. The text above
thus describes “extended” components.

Homes

Components are managed by homes. A home is a singleton that acts as a factory
for a specific type of component. When a component implementation is exe-
cuted in its container, a home is created as part of the bootstrapping process; in
C++, there is a well-defined, user-provided entry point that creates the home.
The deployment software can then interact with the home to create the desired
number of components.

The CORBA component model distinguishes keyless and keyed homes. In
a keyed home, each component instance is identified by a specific key value.
Keyed homes are used with persistent components, to associate a component

188 C  CORBA and Beyond

with a specific entry in a database. Nonpersistent components (i.e., components
that do not exist across restarts) always use keyless homes.

Homes may have a base home and attributes may support interfaces, and
can have special operations called factories or finders.

Factories and finders may have a parameter list, and their return type is,
implicitly, the managed component type. While factories create new compo-
nent instances, finders locate and return existing component instances. How-
ever, user-defined factories and finders are of questionable value in a component-
based application because generic deployment software is not able to use them.
In the metadata that is associated with component instantiation, there is no
information about which factory to use or what parameters to pass.

Equivalent IDL

At runtime, although it is not visible to component implementations, an ORB
is used to invoke operations on facets and to transport events between compo-
nents. For interoperability, the ORB is also used during setup (i.e., at deploy-
ment time) to interconnect ports. For this purpose, the CORBA component
model uses equivalent IDL.

A set of rules exists to define equivalent interfaces for components andEquivalent IDL for
noncomponent
clients

homes. A component’s equivalent interface contains all component attributes
and “equivalent operations” for each of its ports. For example, if a component
has a facet called foo, this interface will contain a provide_foo operation that
returns an object reference of the appropriate type. A bar receptacle is trans-
lated into a connect_bar operation. The equivalent interface also inherits all of
its supported interfaces, and the base component’s equivalent interface, if it is a
derived component.

At deployment time, software can use a component’s equivalent interface
to access object references for facets and event sinks, and pass them on to other
components’ receptacles and event sources.

The equivalent interfaces can also be used by component-unaware clients—
software that is not a CORBA component itself, but wants to interoperate with
components using regular remote invocations.

Component implementations need not be concerned with their equivalent
interface. At runtime, the “container” is responsible for implementing this client-
side view of a component. It is also the container that generates CORBA object
references that can be used by the deployment software or by other clients.

10.1. CORBA Components 189

  

The second concept introduced by CCM is the container programming model,
which describes component implementations and the interaction with their run-
time, the container. Containers act as the component’s object adapter. Like the
Portable Object Adapter (see Section 7.3.1), it adapts component implementa-
tions to the ORB; it mediates requests from and to a component instance.

The POA suffered from the complexity that comes with its flexibility as a
“one size fits all” object adapter. There was only one kind of POA, and imple-
mentations had to program POA instances to fit their needs. Containers provide

runtime servicesIn contrast, CORBA envisions containers as an extensible concept and an-
ticipates a set of different containers. Containers may offer various services to an
implementation, such as automated persistence or security. An implementation
can then choose the container that matches its runtime requirements.

A side effect is that the amount of repetitive code in each server is reduced.
Many POA-based servers face the same startup and shutdown tasks: create a
POA instance with the desired set of policies, activate a servant instance, load
persistent state from a database, then register the object in the Naming Service,
and so on. A component developer need not be concerned with these details,
but will just select the appropriate container type.

Component Implementations

As mentioned in the section about equivalent IDL, every container must im-
plement a component’s client-side view. This includes the generation of object
references for a component and its facets, connection management such as stor-
ing a receptacle’s peer, and the setup of appropriate event channels to facilitate
event delivery.

Operations on facets or supported interfaces must eventually be delivered Server-side
equivalent IDLto the component implementation. Again, the concept of equivalent IDL is

used to define a callback interface that the container can use for this purpose.
In the CCM specification, this server-side equivalent IDL is defined as part of
the language-mapping chapter—which, despite the name, is independent of a
programming language. Components, homes, and facets are mapped to local

interfaces, which are then to be implemented by the component developer. A
component implementation is also called an executor.

For each component type, a context interface is also defined. This context
interface is implemented by the container and provides component instances
with their state, such as a receptacle’s peer, and also an operation to push events

190 C  CORBA and Beyond

to an event source port, which the container then delivers to each recipient that
is connected to the port.

Container Types

The CORBA components specification defines four basic container types, called
service, session, process, and entity containers, representing the possible combina-
tions of being stateless versus stateful and nonpersistent versus persistent. Because
component implementations are designed to work with a particular type of con-
tainer, the same prefix can also be used for components. For example, a session
component is a component that runs in a session container.Predefined

container types

Service: A container for stateless, nonpersistent components. Because of these
properties, a container can create and destroy instances as necessary. A single
instance can be shared by all clients, or a container might create an instance
per connection.

Session: A container for stateful, nonpersistent components. Component in-
stances keep a per-client state, but that state is not kept across restarts. An
example is a shopping cart, which keeps its state only until checkout.

Process: A container for stateless, persistent components. This is not an oxy-
moron, as the “stateless” refers to a specific client. So a process compo-
nent has state that is shared between all clients and that is preserved across
restarts. Our coffeemaker component from above would be a good candi-
date: the coffee pot is shared by all users, and the amount of brewed coffee
in the pot remains the same even if you unplug and “reboot” the machine.

Entity: A container for stateful, persistent components, with a client-specific
state that needs to be preserved, such as an account component. This is
equivalent to Entity Beans in Enterprise Java Beans (albeit with a vastly
different component model, as Beans do not have ports).

CIDL and PSDL

In addition to the “language mapping” for components, CCM also defines, the
Component Implementation Definition Language (CIDL). CIDL is based on the
Persistent State Definition Language (PSDL) from the OMG Persistent State Ser-
vice and adds some CCM-specific concepts.

CIDL deals with two orthogonal ideas. First, it allows the description of
component implementation segments (programming language constructs that

10.1. CORBA Components 191

implement pieces of a component) and compositions (the set of segments that
make up a complete component implementation). This feature of CIDL allows
the automatic generation of an executor (i.e., a component implementation that
can be used by a container) that delegates operations on the component or on
facets to the desired segment.

Using the inherited PSDL vocabulary, CIDL then allows description of a
segment’s state, by identifying member variables that need to be preserved across
component restarts. A process or entity container can then use this information
to automate the storage and retrieval of component state.

  

Finally, this chapter in the CCM specification describes a format for packaging
individual components and component-based applications, and an infrastruc-
ture to deploy components or applications. Packages contain

executables and
metadata

Packages are self-contained files that include component implementations
as well as metadata. CCM uses the popular ZIP file format to combine im-
plementations and XML descriptors into one-file, distributable, and deployable
packages.

A—somewhat misnamed—software package, sometimes more appropriately
called component package, is a ZIP file containing one or more alternative im-
plementations of the same component, and a “CORBA software descriptor”
(.csd) XML file that identifies implementations, their features, and dependen-
cies. For example, a software package might contain alternative implementations
for Linux, Windows, and Java. At deployment time, the best implementation
could be chosen based on available hardware.

An assembly package contains a component-based application consisting of
one or more interconnected components. Again, it is a ZIP file and contains
a set of component implementations and their matching CORBA software de-
scriptor files. The component assembly descriptor (.cad) XML file then describes
the application (i.e., its component instances and port connections).

A deployment application reads these packages in order to deploy either
a single component or a full application. It contacts one or more component
server objects to load and execute component implementations, and then uses
each component’s client-side equivalent interface to interconnect the application
according to the assembly descriptor’s plan.

The packaging and deployment chapter also defines the remaining link that
is necessary to instantiate a component implementation. For the C++ and Java
programming languages, a special entry point is defined: a global C-style func-
tion for C++, a static method for Java. An entry point must be implemented

192 C  CORBA and Beyond

by the developer; its purpose is to create an instance of the singleton home. Its
name is derived from the home’s IDL name. So when a container loads a com-
ponent implementation (e.g., from a shared library), it looks up the entry point
and uses it to create the home.

Beyond the XML descriptors, the chapter also defines interfaces for the de-
ployment of components. The ServerActivator is a daemon that needs to run
on a host where components are to be deployed. It spawns servers implementing
the ComponentServer interface. Within a component server, multiple Container

instances can coexist, which finally support the deployment, or installation, of
home instances. A ComponentInstallation interface allows the remote installa-
tion of component implementations.

10.1.3 An Example Component

This section shows the implementation of a very basic component and how to
get started with using CORBA components using M.

 

Figure 10.2 shows the IDL file for a simple Account component. It offers a
single checking facet, which implements the CheckingAccount interface. The

interface CheckingAccount {

void deposit (in long amount);

void withdraw (in long amount);

long balance ();

};

component Account {

provides CheckingAccount checking;

};

home Bank manages Account {

};

 . IDL for an “Account” component and its home.

10.1. CORBA Components 193

Bank home manages the account component and will be used to create instances
of the component.

-  

As described in Section 10.1.2, a component’s client-side interface is defined by
equivalent IDL, that is, by applying a set of rules to the original component’s
IDL. Containers and deployment applications can use this interface to inter-
connect components. It can also be used by component-unaware clients (i.e., by
CORBA applications that are not themselves components).

The equivalent IDL is not normally generated. However, M’s IDL com-
piler can be coerced into creating an equivalent IDL file account-eq.idl from
the account.idl file using Generating an

equivalent IDL file

idl ---idl3toidl2 --codegen-idl --no-codegen-c++ \

--name account-eq account.idl

The client-side equivalent IDL for our example component is shown in Fig-
ure 10.3. The account component’s equivalent interface inherits from the com-
mon base interface Components::CCMObject, which provides generic navigation,
interconnection, and introspection features. It then contains a single operation,
provide_checking, to access the single facet that the component offers.

interface Account : ::Components::CCMObject {

CheckingAccount provide_checking();

};

interface BankExplicit : ::Components::CCMHome {

};

interface BankImplicit : ::Components::KeylessCCMHome {

Account create();

};

interface Bank : ::BankExplicit, ::BankImplicit {

};

 . Client-side equivalent IDL for the “Account” component.

194 C  CORBA and Beyond

The “Bank” home is split into three separate interfaces. The “explicit” in-
terface contains a home’s explicit operations, including custom factories and
finders. The “implicit” interface contains a single create operation, which can
be used by clients to create instances of the “Account” component. Finally, the
Bank interface inherits both the explicit and implicit interfaces. This separation
is done in order to support inheritance. A derived home can inherit the base
home’s explicit interface, but will provide its own create operation in the im-
plicit interface.

-  

Figure 10.4 shows the server-side equivalent IDL for our example, obtained with
the same IDL compiler command line as above.

local interface CCM_CheckingAccount : ::CheckingAccount {

};

local interface CCM_Account : ::Components::EnterpriseComponent {

CCM_CheckingAccount get_checking();

};

local interface CCM_Account_Context : ::Components::SessionContext {

};

local interface CCM_BankExplicit : ::Components::HomeExecutorBase {

};

local interface CCM_BankImplicit {

Components::EnterpriseComponent create();

};

local interface CCM_Bank : ::CCM_BankExplicit, ::CCM_BankImplicit {

};

 . Server-side equivalent IDL for the “Account” component.

10.1. CORBA Components 195

This file shows the CCM_Account local interface that a component executor
must implement. In this case, there is a single get_checking operation to retrieve
the—also local—implementation of the checking facet.

The equivalent IDL for the home exhibits the same separation into explicit
and implicit interfaces as for the client-side equivalent IDL. The one operation
that our home executor must implement is the create operation, returning a
new CCM_Account instance.

 

The implementation of our “Account” component and its “Bank” home is listed
in Figure 10.5. Just like one would implement a servant, the Account_impl class
derives from the CCM_Account base class, which can be seen in Figure 10.3. The
single method that needs to be implemented is the get_checking operation,
which returns the local implementation of the CheckingAccount facet.

It is easy to imagine how the implementation of a component and its facets
could be composed of multiple, interdependent classes operating on a common
data set.

The implementation of the home, in class Bank_impl, simply provides the
single create operation, as shown in Figure 10.4. This implementation just
creates a new instance of the Account_impl implementation of the “Account”
component.

Finally, an entry point function must be defined, with the same name as
the home interface and the create_ prefix. Thus, in this case, the entry point is
called create_Bank. The purpose of the entry point is to give containers a means
of constructing home instances. In the C++ language, while objects can be used
polymorphically through pointers and references, compile time knowledge is
necessary to construct an object. However, a container can use system calls to
look up functions in a shared object’s symbol table (e.g., using the dlopen sys-
tem call in POSIX) and then call this function, the entry point, to receive a
polymorphic object. This is why the entry point must match the given signa-
ture, returning a pointer to a Components::HomeExecutorBase_ptr (a common
base class for all homes) and using “C” linkage to avoid a C++ compiler’s name
mangling.



Compiling a component is straightforward: The IDL file is processed with the
IDL compiler, and the generated C++ code is compiled and linked with the
component implementation.

196 C  CORBA and Beyond

#include "account.h"

class CheckingAccount_impl : virtual public CCM_CheckingAccount {

/* not shown */

};

class Account_impl : virtual public CCM_Account {

private:

CheckingAccount_impl * m_checking;

public:

Account_impl ()

{

m_checking = new CheckingAccount_impl;

}

CCM_CheckingAccount * get_checking ()

{

return CCM_CheckingAccount::_duplicate (m_checking);

}

};

class Bank_impl : virtual public CCM_Bank {

public:

Components::EnterpriseComponent_ptr create ()

{

return new Account_impl;

}

};

extern "C" {

Components::HomeExecutorBase_ptr

create_Bank ()

{

return new Bank_impl;

}

}

 . Implementation of the “Account” component and its home.

10.1. CORBA Components 197

One added step is the generation of component skeletons, which will be vis-
ited in the implementation overview below. A separate mico-ccm tool is provided.
It acts like the IDL compiler, reading an IDL file, generating C++ code, and
adding the _ccm suffix into the file name before the extension. For an input file
account.idl, it generates both the header file account_ccm.h and the code file
account_ccm.cc.

The syntax of the mico-ccm tool is as follows: The mico-ccm code
generator

mico-ccm [<options>] idl-file

The following options are accepted:

--session: Generates code for session components. This is the default.

--service: Generates code for service components.

--standalone: Includes a main function in the generated code, so that the com-
ponent can be built into a stand-alone executable. This will also cause the
container implementation to be linked with the component.

Without the --standalone option, the component must be built as a shared
library.

Whether built as a stand-alone executable or a shared library, the compo-
nent must be linked against the micoccm, micocoss (for the Naming Service
stubs), and mico libraries.



If the component was built as a stand-alone executable, it includes its container
and can be run from the command line. The one mandatory command line
parameter is the name of the home that shall be created. In the example above,
that would be Bank. In addition, the following options are accepted: Executing a

stand-alone
component

--ior filename: Writes the home’s stringified object reference to the given file.

--ns name: Registers the home in the Naming Service, using the given name.

If the component was built as a shared library, then it needs to be loaded into a
container. The mico-ccmd

daemon starts
containers on
demand

The componentserver application can act as a host for containers and com-
ponents, implementing the ComponentServer and Container interfaces as de-

198 C  CORBA and Beyond

scribed in Section 10.1.2. However, it is more convenient to use the M

CCM daemon, mico-ccmd, which implements the ServerActivator interface,
and which spawns componentserver instances on demand:

mico-ccmd [<options>]

The following options are accepted:

--ior filename: Writes the daemon’s stringified object reference to the given
file.

--root dirname: When used to remotely install components, using the dae-
mon’s ComponentInstallation interface, places component implementa-
tions in this directory.

-v: Prints some progress messages.

Once the M CCM daemon is running, the ccmload tool can be used to
deploy a component:Loading a

component into a
container

ccmload [<options>] <homename> <filename>

The homename is the name of the home (“Bank” in this example). The filename

is the name of the shared library that contains the home’s implementation. Note
that the file name must be valid according to the M CCM daemon’s current
directory, which may be different than the directory that ccmload is run in.

The following options can be used with ccmload:

--ccmd ior: The object reference of the M CCM daemon.

--host addr: An alternate means of specifying the address of the M CCM
daemon, using the host name and, optionally, separated by a colon, the port
number. If the port number is omitted, “1234” is assumed as a default.

--ior filename: Writes the deployed home’s stringified object reference to the
given file.

--ns name: Registers the home in the Naming Service, using the given name.

-v: Prints some progress messages as the home is being deployed.

10.1. CORBA Components 199

To load the example component, the following command line could be
used, assuming that the shared library had the name account.so, the M
CCM daemon was running on the same host on port 1234, in the same working
directory:

ccmload --host localhost Bank ./account.so

This should print the home’s stringified object reference, which could now be
used by a client program to connect to the home, create “Account” component
instances, navigate to the checking facet using the get_checking operation on
the equivalent interface, and use the operations on that facet.

For simplicity, the example did not show how to remotely deploy a com-
ponent, nor did it attempt to interconnect components. Given that the effort
to run a single component seems overwhelming, it is hard to imagine how to
deploy large applications. However, applications would not be deployed in such
a piece-by-piece manner. Rather, the components in an application would be
put into a software package as described in Section 10.1.2, so that a generic de-
ployment application can, from the package’s XML description, perform all the
required steps automatically. M does not include such tools, but the M
CCM Assembly and Deployment Toolkit is freely available.

10.1.4 Implementation Overview

As seen in Section 10.1.2, a component implementation is enveloped by its
container, which adapts an executor to an ORB. This adaptation faces the same
problem as the Portable Object Adapter: while an executor’s interface is defined
in IDL, at component development time, the container needs a static interface
to communicate with. Thus, as seen above, a similar trick of using a compo-
nent skeleton is employed. This component skeleton is generated from the IDL
code that defines the component (and thus executor) interface. It implements a
private, container-specific interface to receive invocations and dispatches them
to the matching component or facet executor. This component skeleton is the
output from the mico-ccm tool.

The CORBA components implementation in M is built on top of the
Portable Object Adapter, which is used by the container to manage object refer-
ences and to dispatch invocations. MICO’s containers

build upon the
POA

Figure 10.6 illustrates the relationship between generated component skele-
ton code and a component implementation. When a component’s IDL file is
processed by the IDL compiler, it internally generates client-side and server-side
equivalent IDL. Just as for a noncomponent interface, a stub, to be used by

200 C  CORBA and Beyond

 . Relationship between generated code and implementation.

clients, and a POA skeleton are then generated for the equivalent client-side in-
terface, as well as the equivalent server-side “local” interface that the component
implementation inherits from and implements.

The component skeleton that is generated by mico-ccm doubles as a POA
servant that implements the skeleton for the client-side equivalent interface. It
is responsible for implementing this interface’s behavior—that is, to delegate
operations to the component implementation, the executor, and to manage in-
terconnection requests as defined by the equivalent operations for each compo-
nent feature (e.g., a provide_foo operation for a foo facet that clients can use to
connect to a facet).

The component skeleton also cooperates with the container to provide
container-specific behavior such as component instantiation. This way, the com-
ponent skeleton can be seen as implementing part of the container itself.

The architecture of building containers on top of the POA has both benefits
and drawbacks:Pros and cons of

MICO CCM’s design

10.1. CORBA Components 201

Because the POA provides the functionality for request unmarshalling and
dispatching, which in a POA skeleton make up most of the code, container
and component skeletons are relatively small and simple.

Container and component skeletons are also ORB independent, as ORB-
specific hooks are hidden within the POA skeleton. Components could be
ported to a different ORB by feeding the other ORB’s IDL compiler with
the component’s equivalent IDL.

Container-specific information is kept out of the IDL compiler and limited
to the separate mico-ccm code generator.

Processing requests by both the POA skeleton and the component skeleton
before delivering it to the implementation adds an additional level of in-
direction and complexity. The POA skeleton is a large chunk of code that
increases code size.

Only a fraction of the POA’s functionality is used; the rest of the POA
remains “added baggage,” again increasing the size of executables.

An alternative architecture would recognize containers for what they are:
object adapters in their own right, adapting components to the ORB. Thus
containers should interface with the ORB core to act as an object adapter by
themselves. By avoiding the overhead of the POA skeleton, generated code for
a component would be much smaller. No skeleton code would be necessary for
equivalent operations, which could be handled internally.

This architecture would require integrating the current functionality of
mico-ccm with the IDL compiler, which would generate container-specific com-
ponent skeleton code.

10.1.5 Discussion

The CORBA components specification is a melange of two almost orthogonal Component model
versus container
programming
model

concepts, the component model and the container programming model. While
the former supports component-based development, the latter is about provid-
ing components with better run-time support.

Although the combination of both ideas is more than the sum of its parts, it
is somewhat unfortunate that the CCM specification does not introduce or keep
them separate, as it makes the specification less accessible to both component
and CCM implementors. The complexity of CCM has certainly discouraged
ORB vendors from adapting components. For years after its adoption, CCM
existed in the academia and Open Source implementations only.

202 C  CORBA and Beyond

The waters that CCM treads in are further muddied by specifications
like Enterprise Java Beans (ESB)—where the CCM container model originates
from—which calls itself component-based, but whose components do not sup-
port component-based development: EJB Beans do not have any ports.

Each feature is exciting in itself. While component-based development
promises better software modularity and eases application manufacturing from
existing components, the container programming model eases the implementa-
tion of components, especially with advanced features like container-managed
persistence and transactions that are provided by the entity container.

However, in the persistence aspect, another feature mix is apparent in the
design of the CIDL language, which describes both the segmentation of a com-
ponent implementation into classes, and the component’s persistent data. In
other words, it mixes implementation details with database details. But cer-
tainly, the data that an account component maintains, such as the balance, is
independent from the specifics of the component implementation.

While CCM was grown out of Enterprise Java Beans—historically, the de-
sign of CCM started as a “vendor- and language-independent” version of EJB—
it is the component-based development that receives more attention today.

Skeptics argue that the step from object-oriented programming to compo-
nent-based development does not provide many benefits. It is undeniable that
object orientation has largely failed to deliver its promise of powerful, reusable
object-oriented libraries. The number of successful reusable libraries like Qt,
Swing, or MFC is small. Worse, these libraries tend to be full featured rather
than modular, and do not integrate well. It remains to be seen whether com-
ponents are any more successful in the area of vendor-independent, modular
development.

Yet it is undeniable that components have a “harder shell” than objects,
and their port-oriented interface anticipates cooperation rather than being en-
tirely self-contained. Developers are encouraged to require a connection to a
receptacle, using an external component, rather than implementing all behavior
monolithically.

Also, CORBA is a much softer glue than most programming languages.
In C++, it is usually impossible to interoperate with an object library that was
built with a different compiler, sometimes down to the compiler’s minor ver-
sion. But CORBA allows components to interoperate regardless of their ORB
or programming language.

The remainder of this section introduces two new component-based spec-
ifications that were recently adopted by the Object Management Group and
which supplement the CCM specification with new features and possibilities.
Lightweight CCM is a subset of the CCM specification directed at embedded

10.1. CORBA Components 203

systems, and Deployment and Configuration of Component-Based Distributed Ap-
plications improves upon CCM’s Packaging and Deployment model. The final
subsection details potential future ideas and research areas for CCM.

 

It is somewhat ironic that CCM, with all its perceived complexity judged from Using CCM in
embedded systemsits number of pages, is embraced in the embedded systems domain. Although

embedded systems used to be monolithic, designed by a single vendor, they have
become ever more heterogeneous, with one or more general purpose processors
tightly integrated with, for example, DSPs, FPGAs or other special hardware.
It is essential that applications, which are made up of separate components
running on different pieces of equipment, integrate smoothly with any device
drivers. It is not hard to imagine the benefits of component-based development
in this scenario.

The full CCM specification, however, is too complex for many of such
footprint-constrained environments.

Just like Minimum CORBA, Lightweight CCM—also called LwCCM—
defines a profile of the full CCM specification.

For the purpose of embedded systems, the concept of container-managed
transactions and persistence, which is most useful in three-tier business applica-
tions, is usually of less interest and is thus removed from the profile. Only the
Service and the Session containers are supported.

Also disabled are introspection features that are normally part of the client-
side equivalent interface, which allow a client to, for example, introspect ports
and their current connections.

Because Lightweight CCM is a direct subset, a CCM implementation is
automatically Lightweight CCM compliant.

  

Another recent addition to the canon of CCM specifications is one called De-
ployment and Configuration of Component-Based Distributed Applications, some-
times shortened to “Deployment and Configuration” or just “D+C.”

This specification aims to replace CCM’s Packaging and Deployment chap-
ter and improves upon it: Hierarchical

assemblies,
requirement versus
resource matching• CCM allows only a single level of hierarchy; it is not possible to reuse an

assembly as a component in another assembly. In D+C, an assembly imple-
ments a specific component interface (the “encompassing component”) by

204 C  CORBA and Beyond

 . An assembly implements a component interface.

itself; this component’s ports are then mapped to subcomponent ports, as
shown in Figure 10.7.

• While CCM allowed component packages to have alternative implementa-
tions, this feature did not exist on the assembly level. D+C allows alterna-
tives at any level of the hierarchy.

• CCM did not quite address distributed deployment: there was no process of
matching components to nodes. D+C allows annotating implementations
with their requirements in terms of hardware, and it adds a target model to
describe a domain’s resources.

• Available resources are tracked and may impact the deployment of other
applications.

Especially the first idea of arbitrarily hierarchical assemblies is a necessity
that was omitted in CCM. The idea of resource management and tracking is
complex—for this to work, developers will have to add this information to their
component metadata—but in the end allows for completely automatic assign-
ment of components to nodes, including decisions about which of the alterna-
tive component implementations is better matched to the hardware.

In the face of an arbitrary hierarchy, the specification also concludes that
CCM’s idea of segmentation, which allowed for a total of two functional de-
compositions (assemblies into components and components into segments) is
redundant.

The D+C specification goes into great detail of how deployment actually
takes place. The Packaging and Deployment left many details undefined, with
the result that the deployment infrastructure and tools were proprietary, and
heterogeneity was limited to the platforms supported by those infrastructure
and tools.

The infrastructure according to D+C includes, most importantly, four man-
agers:

10.1. CORBA Components 205

• The Repository Manager maintains a repository of applications that are avail-
able for deployment. New applications can be installed into the repository
by passing the URL of a component package—a ZIP file containing compo-
nent implementations and metadata in XML.

• The Target Manager maintains the set of available nodes and their resources.
As resources are used up by the deployment of software, they are subtracted
from the set.

• The Execution Manager allows the starting of applications.

• A set of Node Managers, one per node, is responsible for starting pieces
of an application on their respective system, as directed by the Execution
Manager.

All managers interact using well-defined interfaces. Adding a new kind of node
to the system can be accomplished simply by registering a new Node Manager.

The remaining piece of the puzzle is the planner. Its responsibility is to figure
out the best way of deploying an application into the local domain. The plan-
ner reads the application’s metadata from the repository, and the set of available
resources from the Target Manager, and matches up components with nodes,
based on each component’s requirements. This potentially very complex plan-
ning task ultimately results in a concrete deployment plan that details where to
deploy pieces of the application. This plan can then be executed immediately
(“online”) or stored for future use (“offline”).

 

The CORBA Component Model remains an active topic, and several new spec-
ifications are currently passing through the Object Management Group’s adop-
tion process.

One is the Streams for CCM specification, which aims to add support for
source and sink ports, allowing the asynchronous transport data streams between
components. The container will provide components with buffers to write to or
read from; containers are then allowed to find the most efficient means of trans-
ferring data between them, either using a common, CORBA-based transport or
using more highly efficient means—potentially supporting zero copy, in which
only pointers to shared memory need to be exchanged between sources and
sinks.

The QoS for CCM adds a framework for components to negotiate Quality
of Service parameters among components that share a connection.

206 C  CORBA and Beyond

Still a research topic is extensible containers, which allow services to be added
to containers using a plug-in architecture. This enables the implementation of
aspects that are orthogonal to business logic, independent of any specific com-
ponents, such as security or monitoring. Extensible containers would allow
many of the same paradigms offered by aspect-oriented programming. The IST
COMPARE (a COMPonent Approach to Real-time and Embedded systems)
is one example of such a project; for more information, see their home page at
www.ist-compare.org.

10.2  

Web Services have had a short but impressive history. In the late 1990s, Mi-
crosoft and a couple of other companies were thinking about an XML-based
RPC that could work over HTTP. The term SOAP (Simple Object Access Pro-
tocol) was coined in 1998. The IETF published the first versions of SOAP 1.0
in December 1999. With broad support from both the commercial and Open
Source community, a new version of SOAP emerged. In July 2001, the IETF
published the first working draft of SOAP 1.2.

While SOAP is certainly at the very core of Web Services, there have been
numerous new technologies that extend the scope of application-level interop-
erability. Just like SOAP, all these technologies are based on XML. Web Services
are comprised of the following key technologies:XML, SOAP,

WSDL, and
UDDI are the core
technologies of Web
Services

XML (eXtensible Markup Language) is a general markup language that can be
used in a wide variety of contexts. Virtually all Web Service technologies
make use of XML in one way or another.

SOAP (Simple Object Access Protocol) defines application-level interoperabil-
ity. Its purpose resembles that of CORBA’s GIOP/IIOP, except that the data
representation is based on XML.

WSDL (Web Service Definition Language) allows the specification of service
interfaces. Comparing it with CORBA again, it fulfills a similar function as
IDL.

UDDI (Universal Description, Discovery and Integration) serves the role of a
mediator. Service providers and service requestors use the UDDI registry to
establish links between each other.

10.2. Web Services 207

Clearly it is possible to write complete books just on Web Services. In
the following, we have limited our discussion to the core technologies XML,
WSDL, SOAP, and UDDI. In particular, we will compare Web Services with
CORBA.

10.2.1 Overview of XML

XML (eXtensible Markup Language) allows the structured representation of ar-
bitrary data. Based on a standard representation of arbitrary data, program li-
braries for parsing and generating XML files facilitate the handling of XML
data. XML files are simple text files that can be edited with any editor. XML
is called a markup language because the data is “marked up” through what are
called tags in XML. Here is a simple example of an XML specification:

<Person>

<FirstName>Mickey</FirstName>

<LastName>Mouse</LastName>

<Age>75</Age>

</Person>

Person, FirstName, LastName, and Age are tags. A start tag is surrounded by
“<” and “>” while an end tag is surrounded by “< /” and “>”. Note that the
identifiers Person, FirstName, and so on are application specific and are not part
of the XML standard. One way to look at XML is that XML itself provides Content is

surrounded by start
and end tags

the syntax of a language, and the applications-specific identifiers make up the
vocabulary. Between the start tag and the end tag is the content of the tag. In our
example Mickey is the content of the tag FirstName. The combination of start
and end tags and the content is also referred to as an element.

Tags can be the content of other tags; for example, tag Age belongs to the
content of tag Person. Tags have to be strictly nested, which results in a hi-
erarchical or tree-like representation of the data. Tags can have one or more
attributes, as illustrated by the next example:

<struct name="Person">

<member type="string" name="first_name"/>

<member type="string" name="last_name"/>

<member type="int" name="age"/>

</struct>

208 C  CORBA and Beyond

name and type are called attributes. name is an attribute of tag struct. TheTags can have one
or more attributes value of an attribute is written between the double quotes. For example, Person

is the value of attribute name. Technically, the values of the attributes belong
to the content of a tag, but there are no absolute rules whether data should be
placed as the content of a tag or as a value of an attribute of that tag. Note that
if there is no content for a tag, the tag can be surrounded by “<” and “/ >”
instead of an explicit end tag.

The previous example already provides a hint on how XML can be used in
the context of a middleware. The previous XML could be interpreted as a type
definition where Person is a structure with members first_name, last_name, and
age. Each of those members has an associated type, as is common for program-
ming languages. Note that the tags struct and member are specifically chosen for
the context of representing a programming language data structure.

If the previous XML might be an example of a type definition, the first
example presented in this section could be interpreted as an instance that con-
forms to the type definition. In this sense XML can be used to describe both the
types and instances of data to be handled by a middleware.

10.2.2 Service Descriptions through WSDL

WSDL (Web Service Definition Language) allows the specification of service
interfaces. In that respect, WSDL resembles in its purpose CORBA’s IDL. The
main difference is that IDL is a language specifically created and tailored for
the description of object interfaces, whereas WSDL builds upon XML. TheA WSDL

specification is
based on XML

technique employed by WSDL is very similar to the idea outlined in the pre-
vious subsection. WSDL introduces a specific “vocabulary” for XML tags and
attributes that allows the description of interfaces. Figure 10.8 provides a top-
level overview of a WSDL specification.

A portType is an abstract definition of an interface. It is abstract in the sense
that it describes the operational interface of a service without going into the de-
tails of the data layout of the various parameters. A portType essentially consists
of one or more operations, each consisting of several messages. By explicitly
defining messages for each operation, it is possible to do interactions other than
RPC-style operations. For example, a notification would only consist of one
message, while an RPC-style operation would consist of two messages (request
and response). The signature of a message is defined through a sequence of part
elements, each describing one formal input/output parameter. The following
XML excerpt shows the WSDL specification for our account example. Note
that the XML has been simplified for readability purposes:

10.2. Web Services 209

 . WSDL components.

<definitions name="MyAccountService">

<types/>

<message name="AccountIF_balance"/>

<message name="AccountIF_balanceResponse">

<part name="result" type="int"/>

</message>

<message name="AccountIF_deposit">

<part name="amount" type="int"/>

</message>

<message name="AccountIF_depositResponse"/>

<message name="AccountIF_withdraw">

<part name="amount" type="int"/>

</message>

<message name="AccountIF_withdrawResponse"/>

<portType name="AccountIF">

<operation name="deposit" parameterOrder="amount">

<input message="AccountIF_deposit"/>

<output message="AccountIF_depositResponse"/>

</operation>

<!-- similar definitions for withdraw and balance -->

</portType>

210 C  CORBA and Beyond

One interesting fact to note is that unlike the XML tag portType might
suggest, it does not introduce a new type. For example, it is not possible to use
AccountIF as defined above as a type of a formal parameter of an operation. Note
that in CORBA interfaces can be used as parameter types. The implication isportType cannot be

used as a type for
formal parameters

that Web Services do not support the notion of remote references that can be
passed as arguments of operations. In CORBA this is achieved through IORs,
for which there is no correspondence in Web Services. This already hints at a
major difference in the way CORBA and Web Services should be used: CORBA
is better for stateful servers; Web Services are better suited for stateless, message-
oriented services.

The abstract definition of an interface does not describe how the interface
is represented. This is the purpose of the binding tag. A binding describes how
abstract definitions of a portType are converted into a concrete representation.
This concrete representation is a combination of data formats and protocol.
The following XML excerpt specifies that SOAP encoding is to be used for the
operation deposit. As will be seen in the following section, SOAP defines how
messages look on the network.

<binding name="AccountIFBinding" type="AccountIF">

<operation name="deposit">

<input>

<body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded"/>

</input>

<output>

<body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded"/>

</output>

</operation>

<!-- similar bindings for withdraw and balance -->

<binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>

</binding>

The last important XML tag of a WSDL specification is the service defini-
tion. It simply is a collection of ports, detailing the location of the Web Service.The service tag

describes the Web
Service

The following XML excerpt specifies that the MyAccountService of type Accoun-
tIFPort with binding AccountIFBinding can be accessed at the URL mentioned
in the address tag.

<service name="MyAccountService">

<port name="AccountIFPort" binding="AccountIFBinding">

10.2. Web Services 211

<address location="http://localhost:8080/account"/>

</port>

</service>

</definitions>

In summary, a port describes the what of a Web Service, the binding de-
scribes the how, and the service describes the where. Note that CORBA’s IDL WSDL contains

address informationdoes not contain address information of CORBA objects. This information is
only contained in the IOR of an object.

While using XML to describe service interfaces has the benefit of not having
to invent a new language, the downside is that XML specifications tend to get
quite verbose. While the CORBA IDL for the Account interface only required
five lines of code, it takes much more code to describe the same in XML. Web
Services are promoting the idea that WSDL is generated from a programming
language such as Java. These automatically generated WSDL specifications often
have to be manually edited, so in most cases WSDL is not completely transpar-
ent to the applications programmer.

10.2.3 Server-Side Mapping

Services that are to be exposed as Web Services have to be implemented in a
specific programming language. Just like in CORBA, the question boils down
to how the server-side mapping is defined for Web Services. More specifically,
given a WSDL specification, what does the server-side mapping look like for
a given programming language. Recall that the CORBA specification has so-
called IDL language mappings specifically for that purpose. On the basis of these
language mappings, it is standardized how IDL is mapped to various high-level
programming languages.

The somewhat surprising fact is that Web Services have not standardized
how to map WSDL to a given programming language. The important implica-
tion is that Web Services do not support portability of applications. This means Web Services do not

support portability
of applications

that if a programmer writes a Web Service application, that application is closely
locked in with the product used.

To demonstrate the lack of portability, we provide the implementation of
the account example for two different Web Services platforms. Here is the im-
plementation based on Sun’s JDK:

import java.rmi.Remote;

import java.rmi.RemoteException;

212 C  CORBA and Beyond

public interface AccountIF extends Remote {

public void deposit (int amount) throws RemoteException;

public void withdraw (int amount) throws RemoteException;

public int balance () throws RemoteException;

}

In Sun’s version, a Web Service interface is first described by a Java interface.
This Java interface has to extend the Remote interface, which is defined as part
of the RMI (remote method invocation) package. The methods to be exposed
as a Web Service have to be declared as methods in this interface. Each method
has to be able to throw the exception RemoteException, which is also declared as
part of the RMI package.

The following code excerpt demonstrates the implementation of the ac-
count interface based on BEA’s WebLogic Server product:

public class Account implements com.bea.jws.WebService

{

static final long serialVersionUID = 1L;

/**

* @common:operation

*/

public void deposit (int amount);

{

...

The starting point of a Web Services implementation with BEA’s product is a
Java class and not an interface, unlike with Sun’s JDK. This class implements
a BEA-specific interface. Methods to be exposed through the Web Service have
to have the special comment @common:operation. Furthermore, the methods do
not necessarily need to throw an exception.

The previous two examples show that Web Services do not support porta-
bility of applications. The question arises how important portability really is.
Web Services proponents argue that interoperability is the only important as-
pect of a middleware platform and that portability is not. After all it is unlikely
that the development environment would be switched halfway through a large
project. However, it is interesting to note that early versions of CORBA also
did not support portability. At some point in CORBA’s history it, was decidedCORBA supports

portability through
the POA

that portability is important. Subsequently, the OMG introduced the POA in
version 2.2 of the CORBA specification. It remains to be seen if the Web Ser-

10.2. Web Services 213

vices community will come to the same conclusion and address portability in
the future or not.

10.2.4 Interoperability through SOAP

Web Services realize interoperability through SOAP. Interoperability defines the
“language” that different Web Service implementations use to exchange mes-
sages. As already mentioned, Web Services use XML for this job as well. The SOAP is based on

XMLcontent of the messages flowing between client and server are marked up via
XML. Special tags are introduced for the purpose of marshalling actual parame-
ters of remote operations.

In the following we present two SOAP messages: one request message and
one response message. Just like with GIOP, the request message is sent from
client to server:

<Envelope>

<Body>

<deposit>

<amount type="int">700</amount>

</deposit>

</Body>

</Envelope>

The above XML has been simplified for the purpose of this example. The re-
quest is typically transported via HTTP from client to server. The tag Envelope

frames the whole SOAP request message. It contains a body denoted by the
XML tag with the same name. The operation is encoded as the content of the
body tag. The operation name is represented by its own tag, as are the actual
parameters that accompany the invocation. Note that the actual parameters are SOAP request

PDUs contain type
information

accompanied by type information. The PDU therefore carries more informa-
tion than a corresponding GIOP request message, where it is assumed that the
server knows the order and type of parameters.

The following XML shows a SOAP response:

<Envelope>

<Body>

<depositResponse/>

</Body>

</Envelope>

214 C  CORBA and Beyond

This PDU will be sent by the server to the client in response to a request. Once
again, the whole message is framed by the Envelope tag. This time, the body
contains all result parameters that accompany the response. Note that there is
no special message ID. This means that unlike in CORBA, there can only be
one operation over a specific HTTP connection at a time; otherwise the client
would not be able to associate request and response messages.

Probably the biggest difference between SOAP and GIOP/IIOP is that the
latter is a binary protocol, whereas the former is a text-based protocol. WhileDifferences between

a text-based and
binary protocol

the proponents of text-based protocols argue that it is a nice feature to actually
see what is sent between client and server, there are also some serious drawbacks.
First of all, there should not be any need to watch the wire protocol. Debugging
happens on the application level, and there is no need to inspect the content
of PDUs (unless one believes there is a problem with the middleware itself).
Second, text-based protocols incur a high runtime overhead. They use up more
bandwidth, but more importantly the stubs and skeletons have to handle XML
messages. Having to parse and construct XML messages can only be done at
high costs compared to a binary protocol. Therefore SOAP does not seem a
good candidate for applications with high-frequency transactions.

Both CORBA and Web Services are widely used, and despite the differ-
ences between GIOP/IIOP and SOAP, it is important to build bridges be-
tween the two technologies. The OMG has published specifications that de-
scribe how to achieve interoperability between CORBA and Web Services. OneBuilding bridges

between CORBA
and Web Services

standard describes a mapping from IDL to WSDL. Given an IDL specifica-
tion, a WSDL specification can automatically be derived. M implements
this standard, and M’s IDL compiler can be invoked with the command line
option -codegen-wsdl to create the WSDL. Another Open Source project is
dedicated to building a IIOP/SOAP bridge. Details of this project can be found
at http://soap2corba.sourceforge.net/.

10.2.5 Service Lookup through UDDI

Service lookup is an important aspect of distributed systems. The purpose of a
service lookup is to provide a directory where services can be advertised. UDDI
is the Web Services solution to this problem. In general, a trading cycle involves
the following steps (see Figure 10.9):

1. A provider offers a service and wishes to advertise it for clients to use. In
order to do so, the provider registers its service with the UDDI registry. The
publication request includes information about the offered service, such as
the WSDL specification.

10.2. Web Services 215

 . UDDI service trading.

2. At a later point in time, a service requestor is looking for a specific function-
ality. It does an inquiry to the UDDI registry, specifying what it is looking
for. When there is a match, the UDDI registry responds with the informa-
tion regarding a suitable service provider.

3. Once the service requestor knows the details of the service provider, it can
bind to the provider. From this moment on, the requestor can interact with
the provider.

Service mediation has long been a topic of research, and virtually every mid-
dleware offers a solution similar to the one outlined above. In CORBA, the
combination of interface repository and the Trading Service support service me-
diation. The first version of UDDI was published in September 2000; it has
undergone several revisions since then. The specifications as well as links to
other resources are available at http://www.uddi.org.

UDDI defines an information model that describes the data maintained at
the registry. Conceptually this model contains business information about the The information

model of UDDIentity that provides the service, the type of service being offered, and details
on how to invoke the service. All the entries stored in the UDDI registry are
classified according to type. For that purpose, UDDI uses several categorization
schemes, such as the North American Industry Classification System (NAICS).
Categorization organizes the services in a hierarchy and facilitates their discov-
ery.

A UDDI-conformant registry has to understand about two dozen SOAP
messages with which clients can interact with the registry. The SOAP interface
is used for creating, updating, and querying entries in the registry. Web Services

216 C  CORBA and Beyond

make use of their own standards by using WSDL to describe the interface of a
UDDI registry.

UDDI defines the role of a UDDI operator who offers a registry for generalUDDI operator

public use. A UDDI operator has to offer a conformant interface to its registry.
Also a UDDI operator can offer extra services to its client; the UDDI specifica-
tion mandates that the core registry described by the information model is an
exact replica of other operator’s registries. Many UDDI operators also offer a
Web-based interface to their registries that facilitates service discovery at design
time.

10.2.6 CORBA or Web Services?

CORBA and Web Services are two examples of middleware technologies. Ta-
ble 10.1 summarizes the key differences presented in the previous sections. The
question arises when to use which technology. There is no simple answer to that
question, but rather it depends on many variables. Work on CORBA started a
decade before Web Services came around. Consequently CORBA features more
depth in many areas such as portability or security. The downside of this is that
CORBA is difficult to master beyond the simple “Hello World” example. No
doubt the perceived ease of use of Web Services will change as well once more
standards and specifications have been added.

 . CORBA/Web Services comparison

Criteria Web Services CORBA
General Based on XML. Supports heterogene-

ity. Many products available. Often
tight integration with development
tools.

Middleware for heterogeneous, object-
oriented applications. Many products
available.

Interface description Done with WSDL, an XML-based lan-
guage. Specifications tend to get ver-
bose and are not suitable for human
readers.

IDL. Declarative, special-purpose lan-
guage. Serves as a contract between
client and server. Human readable.

Interoperability SOAP. Text-based protocol using
XML. Not suitable for high-frequency
transactions due to marshalling
overhead.

GIOP/IIOP. A special-purpose binary
protocol.

Portability Not supported. Supported through IDL language
mappings as well as the API defined
through the ORB and POA.

Service mediation UDDI. A general purpose service
lookup allowing the publication and
inquiry of services. Many UDDI op-
erators offer Web interfaces.

Done through combination of inter-
face repository and Trading Service.

10.3. Middleware for Ubiquitous Computing 217

A general guideline on where to use which technology is to look at how
strongly coupled the components are that are to be connected via a middleware.
CORBA is particularly well suited in tightly coupled environments that require
stateful servers. Web Services, on the other hand, seem to be better suited in
loosely coupled environments that are characterized by stateless services. Web
Services also fare well in application-to-application integration. It has become
fashionable for large online services such as Amazon.com or Google.com to
make their APIs accessible through Web Services. In this case Web Services are
used as wrappers around legacy applications. Internal applications within one
company that rely on high performance and tight integration of its components
will benefit more from CORBA’s maturity.

10.3   


In this section we want to discuss some issues of middleware for future comput-
ing environments known under the term “ubiquitous computing” (ubicomp).
We will first introduce ubiquitous computing in Section 10.3.1, before dis-
cussing peculiarities and challenges of ubicomp with respect to middleware in
Section 10.3.2. In Section 10.3.3 we want to present a study of middleware for
a subdomain of ubiquitous computing known as sensor networks.

10.3.1 Ubiquitous Computing in a Nutshell

The term “ubiquitous computing” was coined by Mark Weiser in his 1991 sem-
inal article [38]. He envisioned a world of ubiquitous computers that become
invisible by being embedded into the physical environment with the goal of
supporting people unobtrusively in fulfilling their tasks.

One example for an application of ubiquitous computing would be a smart
room allocation system, where chairs are able to sense their occupancy status and
use this information to automatically derive the occupancy level of the room,
which is then displayed at the electronic door plate and by a central “room
finder” in the hallway. Networked,

embedded
computers equipped
with sensors and
actuators

This simple example already illustrates a number of technological features of
the “ubiquitous computer.” It consists of numerous, highly specialized wireless
computing devices embedded into our physical environment. These devices can
perceive and control certain parameters of their physical environment and can
communicate with each other. They use ergonomic, intuitive, and unobtrusive
ways of interacting with people.

218 C  CORBA and Beyond

Recent technological advances in six important areas enable researchers al-
ready today to construct the first prototypical ubiquitous computing systems
[16–18]: processors, storage, wireless communication, sensors and actuators,
energy supply, and the development of new materials. Moreover, researchers
believe that the exponential rate of improvement of processing power, storage
capacity, and communication bandwidth—which we observed over the last 30
years—will keep up for at least another 10–15 years. This observation is com-Moore’s law

monly known as “Moore’s law,” formulated by Intel founder Gordon Moore
in 1965. The popular version of this rule says that the performance of com-
puters doubles every 18 months. Traditionally, this “law” has resulted in ever
faster processors, with ever increasing chip size and energy consumption. Al-
ternatively, Moore’s law can also be “exploited” to construct processors with
a more moderate performance, but with ever decreasing size and energy con-
sumption. For example, it is possible today to integrate most of the function-
ality of a 80286 PC (including processor, memory, analog and digital IO) on
a single chip that consumes only a few milliwatts of energy. Similar trends ap-
ply to storage technologies and wireless communication technology. However,
Moore’s law does not apply to the capacity of batteries and other technologies
for energy storage and harvesting. Although new systems allow the extraction
of energy from the environment (e.g., from mechanical vibrations or temper-
ature differences), the amount of energy stored or harvested per device vol-
ume grows only slowly over time. Hence, the construction of energy-efficient
technologies is of utmost importance, since devices for ubiquitous comput-
ing often have to be wireless. New materials (e.g., flexible displays, film bat-
teries) will allow the construction of devices with unconventional form fac-
tors.

Overall, the general trend towards “more, smaller, cheaper, less energy” willImplications for
computer science enable the construction of future ubiquitous computing systems from a techno-

logical perspective. From a computer science perspective, new algorithms, pro-
tocols, and architectures are needed to manage and control the expected enor-
mous amount of networked computing devices and to make sense out of the
huge amount of data collected by these sensor-equipped devices. We will dis-
cuss computer science challenges with respect to middleware architectures in
Section 10.3.2.

The realization of Weiser’s vision also heavily depends on ethical and eco-Implications for
society nomical questions like, Do we want to live in a world where omnipresent com-

puting devices can easily track our daily lives? Are there value-creating applica-
tions of ubiquitous computing? Since these and other important questions are
beyond the scope of this book, we refer the interested reader to [6].

10.3. Middleware for Ubiquitous Computing 219

10.3.2 Middleware Challenges

 

The augmentation of artifacts with computing devices imposes constraints on
the embedded devices. In order to allow an unobtrusive integration into physical
objects and environments, these devices often have to be wireless and must meet
certain size constraints. Limited size and energy imply that resources like com- Limited size, cost,

energy, and
capabilities

puting power, memory size, communication bandwidth, and range are rather
limited. Consider, for example, a matchbox-sized sensing device developed at
UC Berkeley. The so-called MICA mote [4] is equipped with an 8-bit processor
with 8 MIPS, provides 8 kilobytes of RAM, 128 kilobytes of program memory,
and has a communication bandwidth of 40 kilobits per second over a range of
up to 30 meters. This device runs for weeks or months on a pair of AA batter-
ies. Note that further improvements in technology will likely be used to reduce
size and energy consumption, such that the performance of these devices will
only increase slowly as time goes by. In contrast, current PCs are equipped with
processors with hundreds of MIPS, megabytes of RAM, and a communication
bandwidth of tens or hundreds of megabits per second. Although there are ef-
forts to fit traditional middleware on resource-constrained devices, middleware
such as CORBA has been designed with a PC target platform in mind. Lightweight

middlewareThe limited resources must be shared among various applications executing
in the network and the middleware services itself. As an immediate consequence,
ubicomp middleware services must be lightweight in order to fit into the con-
strained resources of a MICA mote and similar devices. Additionally, ubicomp
middleware should provide mechanisms that help to minimize the amount of
resources that are needed to accomplish a certain application task. One particu-
larly promising approach to achieve this is to dynamically adapt the performance
of hardware, algorithms, and protocols to the varying needs of the application.
Interesting examples include adaptive fidelity algorithms that can be tuned to
trade off output fidelity for resource usage. Another example would be to ex-
ploit application knowledge to decide when to switch off the radio for energy
efficiency reasons. More concrete examples of using application knowledge ap-
pear further below.

 

A typical ubicomp application will require the collaboration of, and hence the
wireless communication among, many spatially distributed devices due to the
following reasons. First, ubicomp devices tend to be highly specialized: some

220 C  CORBA and Beyond

sense environmental parameters, others extract information from the collected
sensory data, and some interact with human users. A complete system often re-
quires some or all of these functions. Second, many applications require sensory
input from many spatially distributed devices (e.g., to determine the occupancy
level of a room). Third, the constrained resources of individual devices often
require collaboration for solving complex tasks.

Due to the limited communication range of ubicomp devices, it is unlikelyMobile ad hoc
networks that ubicomp networks would resemble mobile phone networks, where devices

communicate directly with a base station, since this would require a very dense
base station infrastructure. Instead, ubicomp devices will form ad hoc networks,
where the devices act as routers, forwarding messages for their neighbors over
multiple hops. More powerful devices might act as gateways that connect ad hoc
network patches of ubicomp devices to an existing background infrastructure.

The topology of such ad hoc networks is subject to frequent changes due to
device mobility, environmental obstructions resulting in communication failures
(e.g., a truck driving by), or hardware failures (e.g., depleted batteries, stepping
on a device). In sparse deployments, networks are likely to be partitioned, and
devices have to operate nomadically when there are no other devices within
communication range.

Ubicomp middleware has to support the robust cooperation of devices in
such a highly dynamic network environment. In contrast, traditional middle-
ware often assumes a static networking environment and considers any changes
in this environment an error that is passed on to the application. CORBA, for
example, throws an exception if a remote object goes temporarily offline; there
are no provisions for automatically reclaiming application resources allocated for
remote transactions. In the case of nomadic operation, it might be advantageous
to proactively prepare for offline phases. The concept of information hoardingInformation

hoarding [20], for example, downloads data during online phases that might be needed
later on.Adaptation to

dynamic changes In many scenarios, the application has to be able to adapt its behavior to
the changing environment. Since this will be a common case, ubicomp middle-
ware should provide adequate support mechanisms for application adaptation.
In some cases it might be possible to provide automatic adaptation mechanisms
that require no or little support by the application, as illustrated by the follow-
ing example. Traditional communication is often address centric, where com-
ponents are assigned identifiers (e.g., CORBA IORs), which are then used to
identify communication partners. With data-centric communication, distributedData-centric

communication components are identified solely based on the function or data they provide
(e.g., “some device in my vicinity that can measure temperature”). The advan-
tage of data-centric communication is, among others, that it is able to tolerate

10.3. Middleware for Ubiquitous Computing 221

devices going offline by transparently switching over to a device with equivalent
functionality. Dynamic resource

managementA further requirement on ubicomp middleware is better support for dy-
namic resource management. To understand this issue, note that many dis-
tributed services maintain considerable amounts of state information for each
connected client. If the client disappears without notice, the allocated resources
have to be reclaimed somehow. Traditional middleware such as CORBA does
not adequately support such situations, leaving the task of dynamic resource
management to the application. However, in ubicomp environments this is a
common case that should be supported by middleware. Jini [19], for example,
provides the lease concept, where resources allocated for remote peers are associ-
ated with a lease, which has to be renewed regularly. If the lease expires due to a
missing renewal, the system can automatically reclaim the associated resources.

  

Ubiquitous availability of computing resources may require a very large num- Smart Dust

ber of deployed computing devices. As an extreme case, consider the vision of
Smart Dust [37], where millions of dust-grain-sized devices would be deployed
in the environment in order to monitor various environmental phenomena. A
single device consists of sensors, a processor, wireless communication, and en-
ergy supply. The devices are small enough to stay suspended in air, for example,
to monitor weather phenomena or air quality. They could also be mixed into
paint in order to coat buildings, which would allow monitoring the effects of
seismic activity on the structural integrity of the buildings.

Supporting such large deployments of cooperating devices is a very chal-
lenging task. First, it is next to impossible to manually configure, maintain, fix,
or upgrade individual devices due to their huge number. In the extreme case
of Smart Dust, it might even be impossible to assign unique identifiers (e.g.,
similar to the unique MAC address of each Ethernet card) to individual nodes
due to the involved production overhead. That is, starting from a totally sym-
metric situation (all devices are identical initially), the collection of devices must
self-configure in order to achieve an operational state (e.g., set up a network
topology, assign tasks to devices, collaboratively merge and evaluate collected
data). Similarly, the network should be self-maintaining in order to fix node
failures without manual intervention. Hence, ubicomp middleware should pro-
vide support mechanisms for self-configuration and self-maintenance.

222 C  CORBA and Beyond

- 

By definition, ubiquitous computing devices are embedded into the physical
environment, typically capturing data about their environment using attached
sensors. Hence, there is a close integration of ubicomp systems with the real
world. This has a number of important implications. One such implication is
that physical time and location play a crucial role in ubicomp. First, it is often
important to know where and when something happened. Second, time and lo-
cation are crucial for correlating information from different sources. To decide
whether two ubicomp devices ever met, for example, they have to share a com-
mon understanding of time and location in order to tell whether they were at
the same location at the same point in time.

Establishing such a common understanding of time (i.e., time synchroniza-Time and location

tion) and location (i.e., device localization) among ubicomp devices is an im-
portant middleware service. Building on that, there is also a need for services
that manage spatio-temporal data. A location service, for example, maintains an
up-to-date view of the current locations of devices in the network. As an ex-
tension, a history service stores location and time of past events, providing the
foundation for queries like “Where did devices X and Y meet last time?”

, ,    


As a further consequence of the close integration of ubicomp systems with the
real world, the collection, processing, and storage of sensory data is a core ubi-
comp functionality. While sensors collect rather low-level data (e.g., time series
of temperature readings), applications are often interested in more high-level fea-
tures (e.g., “in a conference”: used to automatically switch off mobile phones),
which are also known as “context.” The derivation of context information oftenContext

information requires the evaluation of sensory data of various types (e.g., noise level, light
intensity, air quality) originating from multiple sources. This functionality is
provided by a context service.

In a previous section we noted the need for energy efficiency and the highIn-network data
processing energy consumption of wireless communication. As a consequence, a trivial im-

plementation of a context service—where large amounts of raw sensory data
are transmitted to a central location for processing—is often not feasible due
to the resulting high energy consumption, bandwidth limitations, and scalabil-
ity issues. Instead, sensory data should be preprocessed as close to its source as
possible in order to reduce the amount of data that has to be transmitted. In-
stead of sending all the raw data to the remote application, this in-network data

10.3. Middleware for Ubiquitous Computing 223

aggregation reduces communication and saves energy by transmitting compact
aggregates instead of bulky raw data.

Note that these techniques to some degree blur the clear separation of com-
munication and data processing typically found in traditional distributed sys-
tems and respective middleware. Ubicomp middleware with support for the
above data reduction techniques will require means to specify application knowl-
edge (about how to process data) and ways to inject this knowledge into the
nodes of the network.

   

Although we noted in a previous section that ubicomp devices typically form
infrastructureless ad hoc networks, it is quite likely that some of the devices
will be connected to a background infrastructure such as the Internet. Some
researchers believe that this will eventually lead to a global “Internet of Things”
connecting smart artifacts all over the world.

There are several reasons for such an integration with background in-
frastructures. First, such infrastructures might be used to disseminate informa-
tion (such as the room occupancy status in our introductory example) to remote
destinations. Second, a background infrastructure may provide resources (e.g.,
computing power, storage) that are not available on typical ubicomp devices.

10.3.3 Case Study: Sensor Networks

After having studied general requirements on middleware for ubiquitous com-
puting, we will take a closer look at more concrete ubicomp middleware ap-
proaches in this section. For this, we will focus on a subarea of ubicomp
known under the term “wireless sensor networks” (WSN). WSN consist of sensor
nodes—small autonomous computing devices equipped with sensors, wireless
communication capabilities, a processor, and a power supply. One prominent
example of such a sensor node is the MICA sensing device that we mentioned
in the previous section. Large and dense networks of these untethered devices
can be deployed unobtrusively in the physical environment in order to monitor
a wide variety of real-world phenomena with unprecedented quality and scale
while only marginally disturbing the observed physical processes.

In other words, wireless sensor networks provide the technological founda- Applications of
WSNtion for performing many “experiments” in their natural environment instead of

using an artificial laboratory setting, thus eliminating many fundamental lim-
itations of the latter. It is anticipated that a number of application domains
can substantially benefit from such a technological foundation. Biologists, for

224 C  CORBA and Beyond

example, want to monitor the behavior of animals in their natural habitats. En-
vironmental research needs better means for monitoring environmental pollu-
tions. Agriculture can profit from better means for observing soil quality and
other parameters that influence plant growth. Geologists need better support
for monitoring seismic activity and its influences on the structural integrity of
buildings. And of course the military is interested in monitoring activities in
inaccessible areas.

The typical usage model of a sensor network is a user specifying a high-level
sensing task (e.g., “Report rooms where average noise level exceeds a certain
threshold”). This task is split into many simple subtasks, which are distributed to
the individual nodes of the network. These subtasks collect and preprocess low-
level sensor readings. The resulting sensory data is then aggregated and processed
to form a high-level sensing result that is reported back to the user.

While sensor networks can be realized by programming individual sensor
nodes for a specific task, there is a strong need for abstractions that allow easy
tasking of the network as a whole. Middleware for sensor networks should sup-
port such programming abstractions. Without such middleware and underlying
abstractions, tasking and using a sensor network is a cumbersome and error-
prone task reserved to specialists.

Now we will examine three middleware approaches with three different un-
derlying programming abstractions. It should be emphasized that these are only
first attempts whose appropriateness still has to be proven. Also, the presented
systems are proofs of the concept, often only considering certain selected mid-
dleware aspects.

Likewise, operating system abstractions and concrete operating systems forOperating systems
for WSN sensor nodes are currently an area of active research. Hence, the functional sep-

aration and the interface between operating system and middleware is not well
understood. Due to resource constraints, it is likely that operating system func-
tionality (e.g., task and memory management) will be rather primitive compared
to traditional operating systems. First operating system prototypes confirm this
assumption [15].



A number of approaches [7,24,33] have been devised that treat the sensor net-
work as a distributed database where users can issue SQL-like queries to have
the network perform a certain sensing task. We will discuss TinyDB [24] as a
representative of this class.TinyDB

TinyDB supports a single “virtual” database table sensors, where each col-
umn corresponds to a specific type of sensor (e.g., temperature, light) or other

10.3. Middleware for Ubiquitous Computing 225

source of input data (e.g., sensor node identifier, remaining battery power).
Reading out the sensors at a node can be regarded as appending a new row
to sensors. The query language is a subset of SQL with some extensions.

Consider the following query example. Several rooms are equipped with
multiple sensor nodes each. Each sensor node is equipped with sensors to mea-
sure the acoustic volume. The table sensors contains three columns room (i.e.,
the room number the sensor is in), floor (i.e., the floor on which the room is lo-
cated), and volume. We can determine rooms on the 6th floor where the average
volume exceeds the threshold 10 with the following query:

SELECT AVG(volume), room FROM sensors

WHERE floor = 6

GROUP BY room

HAVING AVG(volume) > 10

EPOCH DURATION 30s

The query first selects rows from sensors at the 6th floor (WHERE floor = 6).
The selected rows are grouped by the room number (GROUP BY room). Then, the
average volume of each of the resulting groups is calculated (AVG(volume)). Only
groups with an average volume above 10 (HAVING AVG(volume) > 10) are kept.
For each of the remaining groups, a pair of average volume and the respective
room number (SELECT AVG(volume), room) is returned. The query is reexecuted
every 30 seconds (EPOCH DURATION 30s), resulting in a stream of query results.

TinyDB uses a decentralized approach, where each sensor node has its own
query processor that preprocesses and aggregates sensor data on its way from
the sensor node to the user. Executing a query involves the following steps:
First, a spanning tree of the network rooted at the user device is constructed
and maintained as the network topology changes, using a controlled flooding
approach. The flood messages are also used to roughly synchronize time among
the nodes of the network. Second, a query is broadcast to all the nodes in the
network by sending it along the tree from the root toward the leaves. During this
process, a time schedule is established, such that a parent and its children agree
on a time interval when the parent will listen for data from its children. At the
beginning of every epoch, the leaf nodes obtain a new table row by reading out
their local sensors. Then, they apply the select criteria to this row. If the criteria
are fulfilled, a partial state record is created that contains all the necessary data
(i.e., room number, floor number, average volume in the example). The partial
state record is then sent to the parent during the scheduled time interval. The
parent listens for any partial state records from its children during the scheduled
interval. Then, the parent proceeds like the children by reading out its sensors,
applying select criteria, and generating a partial state record if need be. Then,

226 C  CORBA and Beyond

the parent aggregates its partial state record and the records received from its
children (i.e., calculates the average volume in the example), resulting in a new
partial state record. The new partial state record is then sent to the parent’s
parent during the scheduled interval. This process iterates up to the root of the
tree. At the root, the final partial state record is evaluated to obtain the query
result. The whole procedure repeats every epoch.

 

Another class of middleware approaches is inspired by mobile code and mobile
agents. There, the sensor network is tasked by injecting a program into the
sensor network. This program can collect local sensor data, can statefully migrate
or copy itself to other nodes, and can communicate with such remote copies. We
discuss SensorWare [9] as a representative of this class.SensorWare

In SensorWare, programs are specified in Tcl [29], a dynamically typed,
procedural programming language. The functionality specific to SensorWare is
implemented as a set of additional procedures in the Tcl interpreter. The most
notable extensions are the query, send, wait, and replicate commands. query
takes a sensor name (e.g., volume) and a command as parameters. One com-
mon command is value, which is used to obtain a sensor reading. send takes a
node address and a message as parameters and sends the message to the speci-
fied sensor node. Node addresses currently consist of a unique node ID, a script
name, and additional identifiers to distinguish copies of the same script. The
replicate command takes one or more sensor node addresses as parameters
and spawns copies of the executing script on the specified remote sensor nodes.
Node addresses are either unique node identifiers or “broadcast” (i.e., all nodes
in transmission range). The replicate command first checks whether a remote
sensor node is already executing the specified script. In this case, there are op-
tions to instruct the runtime system to do nothing, to let the existing remote
script handle this additional “user,” or to create another copy of the script. In
SensorWare, the occurrence of an asynchronous activity (e.g., reception of a
message, expiry of a timer) is represented by a specific event each. The wait

command expects a set of such event names as parameters and suspends the
execution of the script until one of the specified events occurs.

The following script is a simplified version of the TinyDB query and cal-
culates the maximum volume over all rooms (i.e., over all sensor nodes in the
network):

set children [replicate]

set num_children [llength $children]

10.3. Middleware for Ubiquitous Computing 227

set num_replies 0

set maxvolume [query volume value]

while {1} {

wait anyRadioPck

if {$maxvolume < $msg_body} {

set maxvolume $msg_body }

incr num_replies

if {$num_replies = $num_children} {

send $parent $maxvolume

exit }

}

The script first replicates itself to all nodes in communication range. No copies
are created on nodes already running the script. The replicate command re-
turns a list of newly “infected” sensor nodes (children). Then, the number of
new children (num_children) is calculated, the reply counter (num_replies) is
initialized to zero, and the volume at this node is measured (maxvolume). In the
loop, the wait blocks until a radio message is received. The message body is
stored in the variable msg_body. Then, maxvolume is updated according to the
received value, and the reply counter is incremented by one. If we received a
reply from every child, then maxvolume is sent to the parent script and the script
exits. Due to the recursive replication of the script to all nodes in the network,
the user will eventually end up with a message containing the maximum volume
among all nodes of the network.



Yet another approach to sensor network middleware is based on the notion of Basic and
compound eventsevents. Here, the application specifies interest in certain state changes of the

real world (“basic events”). Upon detecting such an event, a sensor node sends
an event notification toward interested applications. The application can also
specify certain patterns of events (“compound events”), such that the application
is only notified if occurred events match this pattern. We discuss DSWare [23]
as a representative of this class.

DSWare supports the specification and automated detection of compound DSWare

events. A compound event specification contains, among others, an event iden-
tifier, a detection range specifying the geographical area of interest, a detection
duration specifying the time frame of interest, a set of sensor nodes interested
in this compound event, a time window W, a confidence function f, a mini-
mum confidence cmin, and a set of basic events E. The confidence function f

228 C  CORBA and Beyond

maps E to a scalar value. The compound event is detected and delivered to the
interested sensor nodes, if f (E) ≥ cmin and all basic events occurred within
time window W.

Consider the example of detecting an explosion event, which requires the
occurrence of a light event (i.e., a light flash), a temperature event (i.e., high
ambient temperature), and a sound event (i.e., a bang sound) within a subsecond
time window W. The confidence function is defined as

f = 0.6 · B(temp) + 0.3 · B(light) + 0.3 · B(sound)

The function B maps an event ID to 1 if the respective event has been detected
within the time window W, and to 0 otherwise. With cmin = 0.9, the above
confidence function would trigger the explosion event if the temperature event
is detected along with one or both of the light and sound events. This confi-
dence function expresses the fact that detection of the temperature event gives
us higher confidence in an actual explosion happening than the detection of the
light and sound events.

Additionally, the system includes various real-time aspects, such as deadlines
for reporting events, and event validity intervals.

10.3.4 Conclusions

We discussed various challenges for ubicomp middleware, implied by resource
limitations, network dynamics, close integration with the real world, handling
of sensory data, and integration with background infrastructures. Some of these
challenges are new problem instances in known research domains (e.g., fault
tolerance, real-time aspects, embedded systems), some challenges take existing
research issues to the extreme (e.g., scale of deployments), and some are new
problems (e.g., energy efficiency, self-configuration).

We presented and discussed first middleware approaches for sensor net-
works, a subdomain of ubiquitous computing. These systems are based on
known programming paradigms (i.e., databases, mobile agents, event services),
adopted to the new problem domain. However, it is not yet clear which pro-
gramming paradigm is best suited for programming sensor networks; it is even
unlikely that there is such a single best paradigm. Though such questions are
already hard to answer for a small subdomain of ubiquitous computing such as
sensor networks, designing universal middleware abstractions and systems for
ubicomp is an even more challenging task. Currently, a number of solutions for
specific subdomains of ubiquitous computing (e.g., sensor networks) have been
developed. At a later stage, it might be possible to join these efforts in order to
come up with encompassing ubicomp middleware.

10.4. Summary 229

Designing successful middleware always requires a large body of experience
with the development of real applications (i.e., not toy applications), which the
prospective middleware should support. The development of middleware is an
iterative process, where a middleware prototype is evaluated by reimplementing
real applications. The gained experiences are then used to develop an improved
middleware prototype, which again must be evaluated. The hope is that this
iterative procedure will eventually arrive at a fixed point. Since we are still at an
early stage of understanding ubicomp applications beyond simple toy scenarios,
elaborate ubicomp middleware will remain an active research area for the next
couple of years.

10.4 

This chapter concludes the main part of this book. We presented some advanced
CORBA technologies as well as topics that go beyond CORBA. CORBA is
still being actively evolved by the OMG, and with the current dissemination of
CORBA platforms, this will continue for a long time. In the meantime, Web
Services have gotten a strong following. As we tried to argue in this chapter, there
will never be an “either or” when it comes down to choosing the right middle-
ware technology. Rather we must think carefully about when to use CORBA or
Web Services. As is generally the case, there is no silver bullet. While CORBA
and Web Services will remain key technologies for many applications, new chal-
lenges arise with new kinds of network infrastructures. As shown in the last
section of this chapter, we must radically redefine the notion of middleware
when it comes to ubiquitous computing and sensor networks. These areas are
still subject to active research, but the prospects of new technologies, new in-
frastructures, and new paradigms are exciting.

This page intentionally left blank

 A
 

This appendix gives an overview of how to install and use M on your system,
including downloading the M source code, and compiling and installing its
libraries and tools. The details of installation may differ, depending on your
operating system.

Section A.1 describes M’s installation on a UNIX system, such as Linux
or BSD.

Section A.2 describes M’s installation on Windows.

A.1    

The following software packages are required to install M:

• An ISO C++ compiler. The GNU C Compiler gcc version 3.2 or later is
recommended.

• GNU Make version 3.7 or later.

• Optionally, OpenSSL 0.9.7 or later.

The latest stable M release can be downloaded from its home page at Downloading
MICOwww.mico.org by clicking on “Download.” A few development snapshots are

available, and for the cutting edge, the latest development branch can be ac-
cessed using Arch.

231

232   M Installation

After downloading the source code in .tar.gz format, the archive needs to
be unpacked using the following command, which creates a new subdirectory
named mico-version:

gzip -dc mico-<version>.tar.gz | tar xf -

M can be installed using the usual GNU autoconf procedure:

• configure

• make

• make install

The first step, configuration, prepares M for compilation. The configure

script checks for the availability of compilers and tools, and supports several
command line options to configure M features and build options.

The most important command line options are

--help

Gives a brief overview of all supported command line options.

--prefix=install-directory
Configures the base directory into which to install M’s executable pro-
grams, libraries, header files, and so on. Defaults to /usr/local. For a pri-
vate installation, -prefix=$HOME can be used to install M in the user’s
home directory.

--enable-csiv2

Enables support for the Common Secure Interoperability version 2 (CSIv2)
protocol for communications security. Requires OpenSSL.

--with-ssl=OpenSSL-path
This enables support for SSL. OpenSSL-path is the directory in which
OpenSSL has been installed.

--enable-ccm

Enables support for the CORBA Component Model.

--disable-threads

By default, if supported by the operating system, the ORB is built to be mul-
tithreaded and uses a thread pool for processing requests, in turn requiring

A.1. Installing Mico on UNIX 233

servants to be reentrant. With this option, M is built single-threaded
instead.

--enable-service

--disable-service
Enables or disables support for the implementations of common services.
M includes implementations of the Naming Service (naming), Event
Service (events), Property Service (property), Time Service (time), Trading
Service (trader), and the Lifecycle Service (life). By default, the Naming,
Event, Property, and Time services are built.

--disable-coss

Disables support for all of the aforementioned CORBA services. If this op-
tion is used, individual services can then be enabled selectively, using the
above options.

--enable-compiled-headers

Uses precompiled headers, if supported by the compiler.

--disable-optimize

Disables the -O option when compiling C/C++ files.

--enable-debug

This enables the -g option when compiling C/C++ files, allowing the ORB
to be debugged.

--disable-shared

By default, if supported by the operating system, M’s libraries are built as
shared libraries (usually using the “.so” extension). With this option, M’s
libraries are built as static libraries (“.a”).

There are a number of configuration options beyond the ones listed above—
for example, for using CORBA over wireless links or Bluetooth; for integrating
M with X11, Qt, Gtk or Tcl/Tk applications; or for tuning various aspects
of the ORB.

The configuration script also looks for the CC and CXX environment variables
to select the C and C++ compilers, respectively. To build M using a different
compiler than the default (e.g., using gcc on a system where an incompatible
compiler is available as cc), set CC=gcc and CXX=c++.

The configure script then needs to be run with the desired—possibly
empty—set of command-line options, for example:

234   M Installation

./configure --with-ccm

After completing configuration, M can be compiled using

make

On some systems, GNU Make is not the default, but can frequently be found
as gmake.

After compilation, M needs to be installed. Depending on the setting of
the -prefix configuration option, it may be necessary to perform installation as
the superuser, root:

make install

On some systems, special action needs to be taken after installing a shared library
to tell the dynamic linker about the new library. For instance, on Linux you have
to run ldconfig as root:

/sbin/ldconfig -v

Also, if shared libraries are installed in a nondefault location, users may need
to adjust their environment variables accordingly. For example, on Linux or
Sun Solaris, the LD_LIBRARY_PATH environment variable is searched for shared
libraries.

A.2    

The following software packages are required to install M on Windows:

• Microsoft Visual C++ 7.0 or later, also known as Visual Studio “.NET”.
Other compilers may work, but are not supported out of the box.

• A program to “unzip” ZIP archives, such as WinZip.

• Optionally, to enable multithreading, the Pthreads-win32 POSIX Threads
adaptation layer, which is freely available at http://sources.redhat.com/pthreads-
win32/, is required.

• Optionally, OpenSSL 0.9.7 or later.

A.3. Road Map 235
Downloading
M

The latest stable M release can be downloaded from its home page at
www.mico.org by clicking on “Download.” A few development snapshots are
available, and for the cutting edge, the latest development branch can be ac-
cessed using Arch.

After downloading the source code in .zip format, double-clicking on the
downloaded file should start your ZIP archive program. Extract all its contents
into a directory of your choice.

Before compiling, some aspects of M can be optionally configured by
editing the file MakeVars.win32 in the M source directory. Here, you can
configure support for multithreading, the CORBA Component Model, and for
the Common Secure Interoperability (CSIv2) protocol. Follow the directions
that are provided in the file.

Note that most text and source code files in the M distribution are in
“UNIX” format, and may not open correctly in some editors, such as Notepad.
All files can be opened fine in Visual Studio and many other source code editors.

Another prerequisite to building M, and to running M programs, is TCP/IP must be
configuredthat TCP/IP networking must be configured, even on computers that are not

connected to any network. In particular, the local host name must be recognized
as a network destination. This can be confirmed on the command line: the
command ping hostname, substituting the local computer’s name as hostname,
should work.

After completing configuration, M can be compiled. This must be done
from the command line. Start a command shell, for example, by choosing Run
from the Start menu and opening cmd. Change to the directory that contains
the M source code, and run

nmake /f Makefile.win32

This will compile all of M and place all executable files and DLL files in the
win32-bin subdirectory. In order to run M programs, this directory must be
added to your $PATH environment variable, for example, via the System properties
in Windows’ Control Panel.

A.3  

For users that would like to take a look at the M source code, this section
gives a brief overview of the subdirectories in the M directory:

admin Scripts and programs needed to build M

236   M Installation

auxdir ORB-related stuff (dispatchers for various GUI environments;
libmicoaux is built in this directory)

ccm File related to the CORBA Component Model (CCM)
coss CORBA services (libmicocoss is built in this directory)
cpp Preprocessor for idl files (cpp)
daemon Object Adapter daemon (micod)
demo Some examples
doc Documentation
idl IDL compiler (idl)
imr Implementation repository and administration tool
include C++ and IDL include files
ir Interface repository and IR server (ird)
man UNIX manual pages
orb ORB core (libmico is built here)
test Some test cases to check the ORB and IDL compiler
tools Miscellaneous tool programs, at present only the IR browser and IOR

dumper

 B
 


This appendix gives an overview of how M implements the CORBA spec-
ification, the implementation components it consists of, and how those com-
ponents are used. The focus of the appendix is on details not defined by the
CORBA specification such as command line option syntax and semantics.

The core of a CORBA implementation consists of the following logical Components of a
CORBA
implementation

components:

• The Object Request Broker (ORB) provides for object location and method
invocation.

• The Interface Repository (IR) stores runtime type information.

• One or more object adapters form the interface between object implemen-
tations and the ORB. M provides the Portable Object Adapter (POA).
The implementation repository stores information about how to activate ob-
ject implementations.

• The IDL compiler generates client stubs, server skeletons, and marshalling
code from a CORBA IDL according to the supported language mappings.

Each of these logical components has to be mapped to one or more implemen-
tation components, which are described in the next sections.

B.1 

The ORB is implemented as a library (libmico<version>.a) that is linked into MICO library
libmico<version>.aeach M application. <version> has to be substituted with the version of

M installed on the system.

237

238   M Implementation Overview

Every M application has to call the ORB initialization function
ORB_init() before using M functionality:

1: int main (int argc, char *argv[])

2: {

3: CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

4: ...

5: }

That way the ORB has access to the application’s command line arguments. Af-
ter evaluating them, the ORB removes the command line options it understands
so the application does not have to bother with them. You can also put ORB
command line arguments into a file called .micorc in your home directory. Ar-
guments given on the command line override settings from .micorc. Here is a
description of all ORB-specific command line arguments:Command line

arguments
understood by
MICO applications -ORBNoIIOPServer

Do not activate the IIOP server. The IIOP server enables other processes
to invoke methods on objects in this process using IIOP. If for some reason
you do not want other processes to be able to invoke objects in this process,
use this option. The default is to activate the IIOP server.

-ORBNoIIOPProxy

Do not activate the IIOP proxy. The IIOP proxy enables this process to
invoke methods on objects in other processes using IIOP. If you do not
want or need this, use this option. The default is to activate the IIOP proxy.

-ORBIIOPAddr <address>

Set the address the IIOP server should run on. If you do not specify this
option, the IIOP server will choose an unused address. This option can be
used more than once to make the server listen on several addresses (e.g., a
unix: and an inet: address).

-ORBIIOPBlocking

Make IIOP use sockets in blocking mode. This gains some extra perfor-
mance, but nested method invocations do not work in this mode.

-ORBId <ORB identifier>

Specify the ORB identifier; mico-local-orb is currently the only supported
ORB identifier. This option is intended for programs that need access to
different CORBA implementations in the same process. In this case, the
option -ORBId is used to select one of the CORBA implementations.

B.1. ORB 239

-ORBImplRepoIOR <impl repository IOR>

Specify a stringified object reference for the implementation repository the
ORB should use.

-ORBImplRepoAddr <impl repository address>

Specify the address of a process that runs an implementation repository. The
ORB will then try to bind to an implementation repository object using the
given address. If the bind fails or if you specified neither -ORBImplRepoAddr
nor -ORBImpRepoIOR, the ORB will run a local implementation repository.

-ORBIfaceRepoIOR <interface repository IOR>

The same as -ORBImplRepoIOR but for the interface repository.

-ORBIfaceRepoAddr <interface repository address>

The same as -ORBImplRepoAddr but for the interface repository.

-ORBNamingIOR <naming service IOR>

The same as -ORBImplRepoIOR but for the naming service.

-ORBNamingAddr <naming address>

The same as -ORBImplRepoAddr but for the naming service.

-ORBInitRef <Identifier>=<IOR>

Set the value for the initial reference by the name of identifier to the
given object reference. This mechanism can be used both for custom and
for standard initial references.

-ORBDefaultInitRef <IOR-base>

Define a location for initial references. IOR-base is an iioploc- or iiopname-
style object reference. When a previously unknown initial reference is
searched for using resolve_ initial_references(), the searched-for iden-
tifier is concatenated to the IOR-base string to produce the service’s location.

-ORBNoResolve

Do not resolve given IP addresses into host names. Use dotted decimal no-
tation instead.

-ORBDebug <level>=<file>

Instruct MICO to output debug information. <level> is one of Info (infor-
mative messages), Warning, Error, GIOP (network message exchanges), IIOP
(connection handling), Transport (raw message contents), Thread (thread-
related infos), POA (POA internals), ORB (ORB internals), Support (helper
functions), PI (interceptors), Security (security service), Exception (excep-
tion handling), All (everything). <file> specifies the output file for this

240   M Implementation Overview

debug level (defaults to cerr). This option can be specified multiple times
with different levels and files.

-ORBBindAddr <address>

Specify an address that bind(const char *repoid) should try to bind to.
This option can be used more than once to specify multiple addresses.

-ORBConfFile <rcfile>

Specify the file from which to read additional command line options (de-
faults to ∼/.micorc).

-ORBNoCodeSets

Do not add code set information to object references. Since code set con-
version is a CORBA 2.1 feature, this option may be needed to talk to ORBs
that are not CORBA 2.1 compliant. Furthermore, it may gain some extra
speed.

-ORBNativeCS <pattern>

Specify the code set the application uses for characters and strings.
<pattern> is a shell-like pattern that must match the description field of
a code set in the OSF code set registry. For example, the pattern *8859-1*

will make the ORB use the code set ISO-8859-1 (Latin 1) as the native char
code set, which is the default if you do not specify this option. The ORB
uses this information to automatically convert characters and strings when
talking to an application that uses a different code set.

-ORBNativeWCS <pattern>

Similar to -ORBNativeCS, but it specifies the code set the application uses for
wide characters and wide strings. Defaults to UTF-16, a 16-bit encoding of
Unicode.

-ORBGIOPVersion <giop-ver>

Specifies the GIOP version to use. The GIOP version will be included in
newly generated object references to tell clients which GIOP version should
be used when sending requests to the object. Currently, GIOP versions 1.0
(default), 1.1, and 1.2 are supported.

-ORBThreadPool

This option instructs the ORB to use the thread pool concurrency model.
With this model, a number of threads (the thread pool) are generated a
priori. Upon arrival of a new request, a thread from the pool is assigned to

B.1. ORB 241

this request. The thread pool concurrency model is used by default. This
option requires that M be compiled with support for multithreading
enabled.

-ORBThreadPerConnection

This option instructs the ORB to use the thread per connection concurrency
model. With this model, a single thread is assigned to each network con-
nection to serially handle all requests received from this connection. This
option requires that M be compiled with support for multithreading
enabled.

-ORBThreadPerRequest

This option instructs the ORB to use the thread per request concurrency
model. With this model, a new thread is created for every incoming request.
This option requires that M be compiled with support for multithread-
ing enabled.

-ORBConnLimit <max-conn>

This option can be used to limit the number of network connections that
can be open concurrently to the value specified. A value of 0 (the default)
specifies an unlimited number of connections. This option is useful for the
thread per connection concurrency model, where it limits the maximum
number of threads created to serve incoming connections.

-ORBRequestLimit <max-req>

This option can be used to limit the number of concurrently executed re-
quests to the value specified, resulting in a thread pool of the requested size
in case of multithreading. A value of 0 specifies an unlimited number of
requests. This option defines the number of threads allocated in the thread
pool when the thread pool concurrency model is used, hence defining the
number of requests that will be served concurrently. The default value for
this option is 4.

M features a CSIv2 level 0 compliant implementation of the CORBA
Security Service. It has been written by ObjectSecurity, Ltd., and contributed Security-related

command line
options understood
by MICO

to the MICO project. CSIv2 can be activated by the -enable-csiv2 configure
command line parameter, which configures all necessary options for compiling
M with CSIv2 support. Please note that SSL/TLS support is required for
building CSIv2. Since the CSIv2 specification does not specify any public API
for accessing the CSIv2 implementation internals, there was a need to extend
M by command line options required for CSIv2 configuration. In the fol-

242   M Implementation Overview

lowing we briefly describe all CSIv2-related command line options. See [22] for
more details.

-ORBCSIv2

Activates CSIv2 support. The M client configured with this option will
inspect the server object’s IOR, and if it contains CSIv2 related informa-
tion, the client will include SAS messages in GIOP request/reply. The M

server configured with this option will search GIOP requests for included
SAS messages and process them if present.

-ORBCSIv2Realm <realm name>

Configures a default user realm. For example, using -ORBCSIv2Realm

objectsecurity.com will set user realm to objectsecurity.com.

-ORBGSSClientUser <user>,<passwd>

Sets the client user. This name will be used for GSSUP user/password login.

-ORBGSSServerUser <user>,<passwd>

Adds a user to the server’s user base for checking user access using the
GSSUP method.

-ORBTLSDName <TLS distinguished name>

Adds a distinguished user name to the server’s user base. These names are
checked if the client (process) does not send SAS messages along with GIOP
requests but use the TLS/SSL transport layer for authentication.

-ORBClientIdentity <identity name>

Adds an identity to the client process. If the client uses an attribute layer
of the SAS protocol, then CSIv2 will assert this identity into SAS establish
context message.

-ORBUserIdentity <user name>,<identity name>

Adds a user identity into server’s identity base. If the client uses an attribute
layer of the SAS protocol and asserts its identity, this identity will be checked
against the identity base on the server process. The user name can be a user
name used for the GSSUP login or TLS distinguished user name for TLS
authentication.

-ORBTSSNoAuth

Turns the authentication layer off in TSS.

-ORBTSSAuthSupported

Turns the authentication layer on in TSS and sets it as supported.

B.2. Interface Repository 243

-ORBTSSAuthRequired

Turns the authentication layer on in TSS and sets it as required.

-ORBTSSNoAttr

Turns the attribute layer off in TSS.

-ORBTSSAttrSupported

Turns the attribute layer on in TSS and sets it as supported.

-ORBTSSAttrRequired

Turns the attribute layer on in TSS and sets it as required.

-ORBCSSNoAuth

Turns the authentication layer off in CSS.

-ORBCSSAuthSupported

Turns authentication layer on in CSS and sets it as supported.

-ORBCSSAuthRequired

Turns authentication layer on in CSS and sets it as required.

-ORBCSSNoAttr

Turns attribute layer off in CSS.

-ORBCSSAttrSupported

Turns attribute layer on in CSS and sets it as supported.

-ORBCSSAttrRequired

Turns attribute layer on in CSS and sets it as required.

B.2  

The interface repository is implemented by a separate program (ird). The idea The IR stores
runtime type
information

is to run one instance of the program and make all M applications use the
same interface repository. As we mentioned in Section B.1.1, the command line
option -ORBIfaceRepo Addr can be used to tell a M application which inter-
face repository to use. But where do you get the address of the ird program? The
solution is to tell ird an address it should bind to by using the -ORBIIOPAddr.
Here is an example of how to run ird:

ird -ORBIIOPAddr inet:<ird-host-name>:8888

244   M Implementation Overview

where <ird-host-name> should be replaced by the name of the host executing
ird. Afterward you can run M applications this way:

some_mico_application -ORBIfaceRepoAddr \

inet:<ird-host-name>:8888

To avoid typing in such long command lines, you can put the option into
the file .micorc in your home directory:

echo -ORBIfaceRepoAddr inet:<ird-host-name>:8888 \

> ~/.micorc

Now you can just type

some_mico_application

and some_mico_application will still use the ird’s interface repository.
The following command line arguments control ird:Command line

options understood
by ird

--help

Shows a list of all supported command line arguments and exits.

--db <database file>

Specifies the filename where ird should save the contents of the interface
repository when exiting. ird is terminated by pressing Ctrl-C or by sending
it the SIGTERM signal. When ird is restarted afterward, it will read the file
given by the -db option to restore the contents of the interface repository.
Notice that the contents of this database file is just plain ASCII representing
a CORBA IDL specification.

B.3   

In contrast to earlier object adapters, the POA is defined in detail by the CORBA
specification, so there is not much to tell about implementation-specific details
of M’s implementation of the POA.

The only enhancement of the POA as provided by M is better support
for persistent objects, which outlive the server process they were created in.Persistent objects

outlive the server
they were created in

How to implement persistent objects is almost completely described in the
POA specification. However, there is one little bit of magic left to do that is

B.3. Portable Object Adapter 245

specific to M. Persistent POAs (POAs that can host persistent objects) need
a key—a unique “implementation name” with which to identify their objects. Specifying the

implementation
name

This name must be given using the -POAImplName command line option; oth-
erwise, you will receive an “Invalid Policy” exception when trying to create a
persistent POA.

./server -POAImplName Bank

Now the server can be shut down and restarted and objects created in the server
will be available also after a restart. M provides an additional feature for on-
demand execution of server programs. When using this feature, a server program
will automatically be executed when a method is invoked on one of the objects
hosted by this server.

The support for automatic server activation consists of two components, a
so-called implementation repository and the M daemon. The former stores
information on which server programs are available. The latter is a program
running in the background. If a persistent POA is in contact with the M
daemon, object references to a persistent object, when exported from the server
process, will not point directly to the server but to the M daemon. Whenever
a request is received by the daemon, it checks if your server is running. If it is, the
request is simply forwarded; otherwise, a new server is started using information
from the implementation repository.

B.3.1 M Daemon

The M daemon (micod) is the part of the POA that activates object imple-
mentations when their service is requested. micod also contains the implemen-
tation repository. To make all M applications use a single implementation
repository, take similar actions as for the interface repository described in Section
B.2. That is, tell micod an address to bind to using the -ORBIIOPAddr option and
tell all M applications this address by using the option -ORBImplRepoAddr.
For example:

micod -ORBIIOPAddr inet:<micod-host-name>:9999

Now you can run all M applications like this:

some_mico_application -ORBImplRepoAddr \

inet:<micod-host-name>:9999

246   M Implementation Overview

or put the option into .micorc and run some_mico_application without argu-
ments.

micod understands the following command line arguments:Command line
options understood
by micod

--help

Shows a list of all supported command line arguments and exits.

--dont-forward

By default micod makes use of GIOP location forwarding, which results in
much better performance (almost no overhead compared to not using mi-

cod at all). Unfortunately, this requires some client-side GIOP features that
some ORBs do not support properly although prescribed in the CORBA
specification. Use this option to turn off GIOP location forwarding when
using clients implemented with such broken ORBs.

--db <database file>

Specifies the file name where micod should save the contents of the imple-
mentation repository when exiting. micod is terminated by pressing Ctrl-C

or by sending it the SIGTERM signal. When micod is restarted afterward, it
will read the file given by the -db option to restore the contents of the im-
plementation repository.

B.3.2 Implementation Repository

The implementation repository (IMR) is the place where information about an
object implementation (also known as a server) is stored. The CORBA specifi-
cation only gives you an idea of what the implementation repository is for and
does not specify the interface to it. M’s implementation of the IMR simply
contains a set of entries—one for each available server program. Each such entry
contains theInformation

maintained for
each server by IMR • name

• activation mode

• shell command

for the server. The name uniquely identifies the server and is the same as would
be used as an argument to -POAImplName. The activation mode tells the MActivation modes

daemon how and when to activate a server. Currently, only one such mode

B.3. Portable Object Adapter 247

(called poa) is supported. The shell command is executed by the M daemon
whenever the server has to be (re)started.

If you have written a server that should be activated by the M daemon
when its service is requested, you have to create an entry for that server. This
can be accomplished by using the program imr. imr can be used to list all entries
in the implementation repository, to show detailed information for one entry,
to create a new entry, or to delete an entry. The implementation repository
is selected by the options -ORBImplRepoAddr or -ORBImplRepoIOR, which you
usually put into your .micorc file.

  

Just issue the command imr list to get a listing of the names of all entries in
the implementation repository.

   

imr info <name> shows detailed information for the entry named <name>.

  

The command

imr create <name> <mode> <command>

creates a new entry with name <name>. <mode> has to be poa.
<command> is the shell command that should be used to start the server. Note

that all paths have to be absolute since micod’s current directory is probably
different from your current directory. Furthermore, make sure that the server is
located on the same machine as micod; otherwise you should use rsh.

 

imr delete <name> deletes the entry named <name>.

    

Usually, the first instance of your server must be started manually for bootstrap-
ping so that you have a chance to export object references to your persistent

248   M Implementation Overview

objects. imr activate <name> [<micod-address>] activates the implementation
named <name>. To do so, however, imr needs to know the address of the M
daemon. Usually, this is the same address as for the implementation repository,
and you do not need to specify <micod-address>. Only if the M daemon is
bound to an address different from the implementation repository address must
you specify <micod-address> as a command line option to imr.



This section demonstrates how to use the M daemon and the imr tool to im-
plement a persistent server. The descriptions in this section are based on a demo
that is shipped with the M source code in directory mico/demo/poa/account-

3. The first step consists in running the M daemon:

run micod in the background

micod --ior /tmp/micod.ior &

The command line option -ior of the M daemon tells micod to store
the IOR of micod in a file called /tmp/micod.ior. Once the M daemon is
up and running, we use the imr tool to create an entry in the implementation
repository for the bank server:

imr -ORBImplRepoIOR file:///tmp/micod.ior create \

Bank poa <path-to-executable>/bank-server

The imr tool is told via the -ORBImplRepoIOR command line option about
the IOR of micod. This implies that the imr tool can be run on any host, as
long as you have the IOR of micod. The command line argument Bank assigns
a symbolic name to the bank server, which will create an entry in the imple-
mentation repository under this name. The following argument poa specifies
the activation mode. The final argument is the absolute path to the executable
of the bank server. Note that the bank server is not running at this point in
time; we have merely created an entry in the implementation repository. The
following command will run the bank server:

imr -ORBImplRepoIOR file:///tmp/micod.ior activate Bank

Once the bank server is up and running, it will create the IOR using the
usual ORB primitives such as ORB::object_to_string(). Note, however, that
the IOR that the bank server creates actually points to micod. This means that

B.4. IDL Compiler 249

a client using that IOR actually talks to the bank server via micod. To make the
communication more efficient, micod will inform the client of the actual address
of the bank server after it is launched. This happens transparently to the client
via location forwarding as explained in Section 7.6. The bank server is free to
terminate itself at any time. Whenever the client invokes a method on the bank
server, micod will automatically relaunch it.

B.4  

M has an IDL compiler called idl, which is briefly described in this section.
The idl tool is used for translating IDL specifications to C++ as well as feeding
IDL specifications into the interface repository. The tool takes its input from MICO’s IDL

compiler translates
IDL specifications
to C++ stubs and
skeletons

either a file or an interface repository and generates code for C++ or CORBA
IDL. If the input is taken from a file, the idl tool can additionally feed the
specification into the interface repository.

The following gives a detailed description of all the options: Command line
options understood
by the IDL
compiler

--help

Gives an overview of all supported command line options.

--version

Prints the version of M.

--config

Prints some important configuration information.

-D<define>

Defines a preprocessor macro. This option is equivalent to the -D switch of
most C compilers.

-I<path>

Defines a search path for #include directives. This option is equivalent to
the -I switch of most C compilers.

--no-exceptions

Tells idl to disable exception handling in the generated code. Code for the
exception classes is still generated, but throwing exceptions will result in
an error message and abort the program. This option can only be used in
conjunction with -codegen-c++. This option is off by default.

250   M Implementation Overview

--codegen-c++

Tells idl to generate code for C++ as defined by the IDL-to-C++ language
mapping. The idl tool will generate two files, one ending in .h and one
ending in .cc with the same base names. This option is the default.

--no-codegen-c++

Turns off the code generation for C++.

--codegen-idl

Turns on the code generation for CORBA IDL. The idl tool will generate
a file that contains the IDL specification, which can again be fed into the
idl tool. The base name of the file is specified with the -name option.

--no-codegen-idl

Turns off the code generation of CORBA IDL. This option is the default.

--c++-impl

Causes the generation of some default C++ implementation classes for all in-
terfaces contained in the IDL specification. This option requires -codegen-
c++.

--c++-suffix=<suffix>

If -codegen-c++ is selected, this option determines the suffix for the C++
implementation file. The default is “cc”.

--hh-suffix=<suffix>

If -codegen-c++ is selected, this option determines the suffix for the C++
header file. The default is “h”.

--c++-skel

Generates a separate file with suffix _skel.cc that contains code needed
only by servers (i.e., the skeletons). By default, this code is emitted in the
standard C++ implementation files. This option requires -codegen-c++.

--include-prefix=<path>

If used, included files (via the #include directive) are prefixed with <path>.
This option requires -codegen-c++.

--emit-repoids

Causes emission of #pragma directives, which associate the repository ID of
each IDL construct. This option can only be used in conjunction with the
option -codegen-idl.

B.4. IDL Compiler 251

--feed-ir

The CORBA IDL that is specified as a command line option is fed into the
interface repository. This option requires the ird daemon to be running.

--feed-included-defs

Used only in conjunction with -feed-ir. If this option is used, IDL defin-
itions located in included files are fed into the interface repository as well.
The default is to feed only the definitions of the main IDL file into the IR.

--repo-id=<id>

The code generation is done from the information contained in the interface
repository instead of from a file. This option requires the ird daemon to
be running. The parameter id is a repository identifier and must denote a
CORBA module.

--name=<prefix>

Controls the prefix of the file names if a code generation is selected. This
option is mandatory if the input is taken from the interface repository. If
the input is taken from a file, the prefix is derived from the base name of
the file name.

--idl3toidl2

When processing IDL files that contain CORBA component and home de-
finitions, this option performs the “equivalent IDL translation,” generating
equivalent interfaces for components and homes according to the CCM
specification. This option must be used in conjunction with the -codegen-

idl and -no-codegen-c++ options, to generate an IDL file containing the
equivalent IDL, and the -name option to select an output file name that is
different from the input file name.

--pseudo

Generates code for “pseudo interfaces.” No stubs, skeletons, or code for
marshalling data to and from Any variables is produced. Only supported for
C++ code generation.

--any

Activates support for insertion and extraction operators of user-defined IDL
types for Any. Can only be used in conjunction with -codegen-c++. This
option implies -typecode.

--typecode

Generates code for typecodes of user-defined IDL types. Can only be used
in conjunction with -codegen-c++.

252   M Implementation Overview

--poa-ties

By default M’s IDL compiler does not generate POA ties. This option
has to be used if code for the POA ties are to be generated.

--gen-included-defs

Generates code for IDL statements that were included using the #include

directive.

--gen-full-dispatcher

Usually, the skeleton class generated for an interface contains only the dis-
patcher for the operations and attributes defined in this interface. With this
option, the dispatcher also includes operations and attributes inherited from
all base interfaces.

--codegen-wsdl

This option activates the IDL-to-WSDL mapping as defined by the
CORBA specification.

--wsi-wsdl

When translating IDL to WSDL, the IDL compiler will use the SOAP-
specific mapping by default. Use option -wsi-wsdl if WS-I conformant
WSDL is required.

--support-id

This option can only be used in conjunction with -codegen-wsdl. If se-
lected, the WSDL generated will make use of ID and IDREF. These are re-
quired for the mapping of value types, but are not supported by many Web
Services tools. By default, ID and IDREF are not used.

--windows-dll-with-export=<dll-prefix>

The IDL compiler has to create different C++ source code when the stubs
and skeletons are to be compiled as a Windows DLL (Dynamic Link Li-
brary). The necessary declarations that are required to compile the code for
a Windows DLL can be activated by defining a special symbol. For example,
if <dll-prefix> is MYDLL, then defining the symbol BUILD_MYDLL_DLL using
the -D or /D command line option of the C++ compiler will compile the
source code as a Windows DLL.

Here are some examples of how to use the idl tool:Examples

idl account.idl

Translates the IDL specification contained in account.idl according to the
C++ language mapping. This generates two files in the current directory.

B.5. Compiler and Linker Wrappers 253

idl --feed-ir account.idl

Same as above but the IDL specification is also fed into the interface repos-
itory.

idl --feed-ir -no-codegen-c++ account.idl

Same as above but the generation of C++ stubs and skeletons is omitted.

idl --repo-id=IDL:Account:1.0 -no-codegen-c++

-codegen-idl -name=out

Generates IDL code from the information contained in the interface repos-
itory. This requires the ird daemon to be running. The output is written to
a file called out.idl.

idl --no-codegen-c++ -codegen-idl

-name=p account.idl

Translates the IDL specification contained in account.idl into a semanti-
cally equivalent IDL specification in file p.idl. This could be useful if you
want to misuse the IDL compiler as a pretty printer.

B.5    

It can be quite complicated to compile and link M applications because you
have to specify system-dependent compiler flags, linker flags, and libraries. This
is why M provides you with four shell scripts: Wrappers ease

the generation of
MICO applications

mico-c++

Should be used as the C++ compiler when compiling the C++ source files
of a M application.

mico-ld

Should be used as the linker when linking together the .o files of a M

application.

mico-shc++

Should be used as the C++ compiler when compiling the C++ source files
of a M dynamically loadable module. mico-shc++ will not be available if
you specified the -disable-dynamic option during configuration.

mico-shld

Should be used as the linker when linking together the .o files of a M

254   M Implementation Overview

dynamically loadable module. mico-shld will not be available unless you
specified the -enable-dynamic option during configuration.

The scripts can be used just like the normal compiler/linker, except that for
mico-shld you do not specify a file name suffix for the output file because mico-

shld will append a system-dependent shared object suffix (.so on most systems)
to the specified output file name. These wrapper scripts pass parameters to the
respective tools they wrap. For example, you will most likely need to use the -L

parameter when using mico-ld to specify the search path for the M library.
The -L parameter has the same meaning as for the UNIX linker ld, which is
wrapped with mico-ld.

B.5.1 Examples

Let’s consider building a simple M application that consists of two files: ac-
count.idl and main.cc. Here’s how to build account:

idl account.idl

mico-c++ -I. -c account.cc -o account.o

mico-c++ -I. -c main.cc -o main.o

mico-ld account.o main.o -o account -lmico<version>

As a second example, consider building a dynamically loadable module and
a client program that loads the module. We have three source files now, ac-

count.idl, client.cc, and module.cc:

idl account.idl

mico-shc++ -I. -c account.cc -o account.o

mico-shc++ -I. -c module.cc -o module.o

mico-shld -o module module.o account.o -lmico<version>

mico-c++ -I. -c client.cc -o client.o \
mico-ld account.o client.o -o client -lmico<version>

Note the following:

• All files that go into the module must be compiled using the wrapper mico-
shc++ instead of mico-c++.

• module was specified as the output file, but mico-shld will generate
module.so (the extension depends on your system).

B.5. Compiler and Linker Wrappers 255

• account.o must be linked into both the module and the client but is com-
piled only once using mico-shc++. You would expect that account.cc had to
be compiled twice: once with mico-c++ for use in the client and once with
mico-shc++ for use in the module. The rule is that using mico-shc++ where
mico-c++ should be used does no harm, but not the other way around.

This page intentionally left blank

 C
  

In this appendix we look at certain implementation details of M. This ap-
pendix is intended for readers who want to understand the inner workings of
M. Additionally, it should provide a good starting point for system program-
mers who want to understand, extend, or modify certain parts of M.

We begin with a trace of a method invocation through M, since that
gives a good overview of the interplay of the various components of M. We
then discuss how to add new invocation adapters, new object adapters, and new
transport protocols to M. The appendix will be concluded with a section on
the structure of the program code generated by the IDL compiler.

C.1     
  

This section follows the path an operation invocation takes from the source
(client) to the destination (server), using the “Account” client introduced in
Section 3.4 that calls a deposit operation on the server. As already illustrated in
Figure 6.4, the method invocation first passes the SII, the ORB, and the GIOP
client in the client process. The GIOP client generates a message that is sent to
the server. There, it is received by the GIOP server, passes through the ORB and
the object adapter, and finally results in a method invocation on the skeleton of
the target object. The results of the method invocation return to the client on
the reverse route. The following important classes are involved in the execution
of the method invocation in the individual components:

257

258   M Implementation Details

• Static Invocation Interface (SII)

— Account_stub: The stub generated by the IDL compiler from the IDL
interface Account.

— Object: The base class of all CORBA objects, which is inherited by the
stub, in files include/mico/object.h and orb/object.cc.

— StaticRequest: Represents a method invocation in SII, files in-

clude/mico/static.h, orb/static.cc.

• ORB

— ORB: Object Request Broker, files include/mico/orb_mico.h, orb/orb.cc.

— ORBInvokeRec: Represents a method invocation in ORB, files in-

clude/mico/orb_mico.h, orb/orb.cc.

• GIOP client

— IIOPProxy: GIOP object adapter, files include/mico/iop.h, orb/iop.cc.

— IIOPProxyInvokeRec: Represents a method invocation in the GIOP in-
vocation adapter, files include/mico/iop.h, orb/iop.cc.

— GIOPCodec: Generates and decodes GIOP messages, files include/mico/
iop.h, orb/iop.cc.

— GIOPConn: Represents connection to server, files include/mico/iop.h,
orb/iop.cc.

• GIOP server

— IIOPServer: GIOP invocation adapter, files include/mico/iop.h, orb/
iop.cc.

— IIOPServerInvokeRec: Represents a method invocation in the GIOP
invocation adapter, files include/mico/iop.h, orb/iop.cc.

— GIOPCodec: Generates and decodes GIOP messages, files include/mico/
iop.h, orb/iop.cc.

C.1. Path of an Operation Invocation through an ORB 259

— GIOPConn: Represents a connection into the server, files include/mico/

iop.h, orb/iop.cc.

• Object adapter

— POA_impl: Portable Object Adapter, files include/mico/poa_impl.h,
orb/poa_impl.cc.

— StaticServerRequest: Represents a method invocation in the POA,
files include/mico/static.h, orb/static.cc.

— POA_Account: The skeleton generated by the IDL compiler from the
IDL interface Account.

The procedures that take place during an operation invocation based on
a remote method invocation are shown separately for the client and server
processes below. The indentation represents the call chain. A deeper indenta-
tion indicates that the method was called by the previously described method.

C.1.1 Client Side

Account_stub::deposit()

The initial call made by the client, invoking the deposit operation on the
stub object.

StaticRequest::StaticRequest()

StaticRequest constructor, used in the generated stub to create a Static

Request object that represents the method invocation for the object and
method name.

StaticRequest::add_*_arg()

Inserts parameter values into the StaticRequest object. Parameters to these
methods are references to StaticAny objects containing the values of the
parameters.

StaticRequest::set_result()

Gives StaticRequest a reference to a StaticAny object which is to hold the
return value of the method invocation.

260   M Implementation Details

StaticRequest::invoke()

Transfers the method invocation to the ORB, waits for completion of the
method invocation, and gets the results from the ORB

ORB::invoke_async()

Creates an ORBInvokeRec object that represents the method invocation
in the ORB; identifies the object adapter to be used and sends it to the
method invocation.

IIOPProxy::invoke()

Creates an IIOPProxyInvokeRec object that represents the method invo-
cation in the IIOPProxy; generates a message and sends it to the server.

IIOPProxy::make_conn()

Identifies (or creates if it does not yet exist) a GIOPConn object that
represents the network connection to the server.

InetAddress::make_transport()

Creates a new TCPTransport object to connect to the server.

TCPTransport::connect()

Creates a socket and connects to the server.

GIOPCodec::put_invoke_request()

Generates a network message that represents the method invocation.

GIOPCodec::put_args()

Processes the input parameters to the operation.

StaticRequest::get_in_args()

Marshals the input parameters.

StaticAny::marshal()

Marshals one input parameter.

GIOPConn::output()

Sends the network message to the server.

C.1. Path of an Operation Invocation through an ORB 261

ORB::wait()

Waits until the method invocation is completed. During this time, in-
coming network messages are received and processed.

Dispatcher::run()

Waits for incoming data on network connections.

Dispatcher::handle_fevents()

Detects incoming data on network connections and calls the relevant
connection handler.

GIOPConn::callback()

The GIOP connection’s handler for incoming data.

GIOPConn::do_read()

Reads data from network connection.

GIOPConn::input_ready()

Is called when a GIOP message is complete.

GIOPConn::input_ready_callback()

Is called to notify the IIOP proxy of an incoming message.

IIOPProxy::input_callback()

The callback to notify the IIOP proxy of an incoming mes-
sage.

IIOPProxy::handle_input()

Checks the message for its type (i.e., whether it is a reply)
and invokes the appropriate method for evaluation of the
message.

IIOPProxy::handle_invoke_reply()

Decodes the network message and forwards the results.

262   M Implementation Details

GIOPCodec::get_invoke_reply1()

Decodes the GIOP header.

GIOPCodec::get_invoke_reply2()

Processes the invocation’s result and other output pa-
rameters.

StaticRequest::set_out_args()

Marshals the result and output parameters.

StaticAny::unmarshal()

Marshals one output parameter.

IIOPProxy::exec_invoke_reply()

Sends results to the ORB.

ORB::answer_invoke()

Stores the results of a method invocation in the as-
sociated ORBInvokeRec and designates the method
invocation as completed so that ORB::wait() re-
turns to its caller.

ORB::get_invoke_reply()

Fetches results of method invocation from ORB.

C.1.2 Server Side

GIOPConn::do_read()

Reads data from network connection.

GIOPConn::input_ready()

Is called when a GIOP message is complete.

GIOPConn::input_ready_callback()

Is called to notify the IIOP server of an incoming message.

C.1. Path of an Operation Invocation through an ORB 263

IIOPServer::input_callback()

Callback routine of IIOPServer that is invoked when a new message
arrives.

IIOPServer::handle_input()

Checks the type of message and invokes the corresponding method
to evaluate the message.

IIOPServer::handle_invoke_request()

Decodes the GIOP message header and forwards parameters.

GIOPCodec::get_invoke_request()

Decodes the message, creates a GIOPRequest object (equivalent
to Request object on client side), and creates an IIOPServer-

InvokeRec object that represents method invocation on server
side.

IIOPServer::exec_invoke_request()

Passes the invocation request to the ORB.

ORB::invoke_async()

Creates an ORBInvokeRec object that represents the method in-
vocation in the ORB; establishes the object adapter to be used
and passes it the method invocation.

POA_impl::invoke()

Checks the object reference of the target object and looks for
the POA that manages the target object, and transfers the
method invocation to this POA instance.

POA_impl::local_invoke()

Executes, delays, or ignores the method invocation de-
pending on the state of the POA manager belonging to
the target POA.

POA_impl::perform_invoke()

Looks up the servant belonging to the target object,
depending on the POA policies. Usually, the servant
is found in the active object map. Generates a Static

ServerRequest object and passes it to the servant’s
method dispatcher.

264   M Implementation Details

POA_Account::invoke()

Calls the dispatch() methods of the skeleton and its
base classes, eventually finding the skeleton that imple-
ments the invocation that is being called.

POA_Account::dispatch()

Determines the method that is to be invoked, ex-
tracts the parameters from the StaticServerRequest,
calls the method implementation, and stores the re-
sults in the StaticServerRequest.

StaticServerRequest::add_*_arg()

Gives StaticServerRequest references to Static

Any objects that are to hold the parameter values.

StaticServerRequest::set_result()

Gives StaticServerRequest references to the
StaticAny object that is to hold the result value.

StaticServerRequest::read_args()

Decodes the input parameters of the method invo-
cation and fills the StaticAnys previously registered
via add_*_arg() with the decoded values.

GIOPRequest::get_in_args()

Unmarshals the input parameters.

StaticAny::demarshal()

Unmarshals one input parameter.

POA_Account::deposit()

Invocation of the target method implemented by
the user.

StaticServerRequest::write_results()

Encodes the result value and other output para-
meters by converting the values contained in the
StaticAny objects that have been previously reg-
istered via add_*_arg() and set_result() into a
byte stream.

C.1. Path of an Operation Invocation through an ORB 265

GIOPRequest::set_out_args()

Marshals the result and other output parameters.

StaticServerRequest::∼StaticServerRequest()
The StaticServerRequest destructor informs
POA that method invocation is completed.

POA_impl::answer_invoke()

The POA informs ORB that the method invo-
cation has completed.

ORB::answer_invoke()

Stores the results of a method invocation in as-
sociated ORBInvokeRec.

IIOPServer::notify()

Invokes the correct method for handling a
reply message, depending on which kind of
request has completed.

IIOPServer::handle_invoke_reply()

Retrieves the status of a method invocation
from ORB, generates reply message, and
sends it to the client.

ORB::get_invoke_reply()

Gets the invocation’s result from the
ORB.

GIOPCodec::put_invoke_reply()

Generates a GIOP reply message.

GIOPConn::output()

Sends the message to the client.

266   M Implementation Details

C.2     


In this section of the appendix we show how to integrate a new invocation
adapter into a microkernel ORB. In the following we will describe the meth-Operations

provided by the
ORB

ods the ORB supplies for this purpose. The methods are declared in the file
include/mico/orb_mico.h and implemented in orb/orb.cc in the M source
tree.

CORBA::ORBMsgId invoke_async (CORBA::Object_ptr target,

CORBA::ORBRequest *request,

CORBA::Principal_ptr principal,

CORBA::Boolean reply_expected = TRUE,

CORBA::ORBCallback *callback = 0,

CORBA::ORBMsgId = 0)

This initiates an operation invocation. The parameters given are the target ob-
ject target, the parameter in the form of request, as well as the principal
principal, which contains specific information that can be used to identify the
method invoked by the caller. The optional parameters that can be used are
the Boolean value reply_expected, which indicates whether an operation in-
vocation is one-way or two-way; the callback object callback, the method ORB

Callback::callback() of which the ORB automatically invokes when a method
invocation is completed; and the ID id that is to be supplied. The result that is
returned is an ID that explicitly identifies the operation invocation and can be used
later to wait for the completion of the operation invocation.

CORBA::Boolean wait (CORBA::ORBMsgId id,

CORBA::Long timeout = -1)

This waits until either the operation invocation specified by the id is completed or
the waiting time (in milliseconds) specified by the timeout has lapsed. The timeout
value -1 stands for infinite. In the first case, the result TRUE is returned, and in the
second, the result FALSE.

CORBA::InvokeStatus get_invoke_reply (CORBA::ORBMsgId id,

Object_out forwarded_target,

CORBA::ORBRequest *& request,

GIOP::AddressingDisposition &ad)

This gets the results from the ORB of the completed operation invocation speci-
fied by id. The result that is supplied is the value of the type InvokeStatus, which
can assume the values InvokeOk (operation completed successfully), InvokeForward
(object reference of target object has changed), InvokeSysEx (a system exception

C.2. Integration of a New Invocation Adapter 267

has occurred), InvokeUsrEx (a user exception has occurred), or InvokeAddrDisp (a
different object addressing is requested). In the case of the InvokeForward value,
forwarded_target is set to the new object reference, and the operation invocation
has to be repeated. In the case of InvokeAddrDisp, the requested addressing type is
indicated by ad, and the operation invocation has to be repeated. request is set to
the ORBRequest instance specified with invoke_async.

void cancel (CORBA::ORBMsgId id)

This terminates an operation invocation specified by id.

CORBA::InvokeStatus invoke (CORBA::Object_ptr &target,

ORBRequest *request, CORBA::Principal_ptr principal,

CORBA::Boolean reply_expected

This is a convenient combination of invoke_async(), wait(), and get_invoke_

reply(), which blocks until an operation invocation is completed.

The ORBRequest object, which contains the parameters and results of an
operation invocation, plays a central role in the development of an opera- ORBRequest

represents operation
invocation

tion invocation. This is an abstract class from which a concrete implementa-
tion must be derived. This involves the implementation of the methods ex-
plained below. The declaration of the class ORBRequest can be found in the file
mico/include/mico/orb_fwd.h in the M source tree.

const char *op_name()

Supplies the name of the invoked operation.

CORBA::Boolean get_in_args (CORBA::NVList_ptr params,

CORBA::Context_ptr &ctx)

Pads params with the list of parameters and ctx with the optional Context_ object.

CORBA::Boolean get_in_args (

ORBRequest::StaticAnyList *params,

Context_ptr &ctx)

Pads params with the list of parameters and ctx with the optional Context_ object.

CORBA::Boolean get_in_args (CORBA::DataEncoder *encoder)

Codes the input parameters and the optional Context_ object (in this sequence)
using encoder.

268   M Implementation Details

CORBA::Boolean get_out_args (CORBA::Any *res,

CORBA::NVList_ptr params, CORBA::Exception *&ex)

Pads res with the result of the method invocation and params with the output
parameters or ex with the exception in the event that one occurred.

CORBA::Boolean get_out_args (CORBA::StaticAny *res,

StaticAnyList *oparams, CORBA::Exception *&ex)

Pads res with the result of the method invocation and params with the output
parameters or ex with the exception in the event that one occurred.

CORBA::Boolean get_out_args (CORBA::DataEncoder *encoder,

CORBA::Boolean &is_except)

Codes the result and the output parameters of an operation invocation (in this se-
quence) or an exception that occurred using encoder and sets is_except to TRUE in
the event an exception occurred; otherwise it sets it to FALSE.

CORBA::Boolean set_out_args (CORBA::Any *res,

CORBA::NVList_ptr params)

Sets the result and the output parameters from this to the supplied value res or
params.

CORBA::Boolean set_out_args (CORBA::StaticAny *res,

StaticAnyList *params)

Sets the result and the output parameters from this to the supplied value res or
params.

void set_out_args (CORBA::Exception *ex)

Stores the exception ex as a result of the operation invocation in this.

CORBA::Boolean set_out_args (CORBA::DataDecoder *decoder,

CORBA::Boolean is_except)

Sets the result and the output parameters of this to the coded values in decoder.
is_except indicates whether an exception occurred.

C.3. Integration of a New Object Adapter 269

CORBA::Boolean copy_out_args (CORBA::ORBRequest *req)

Copies the output parameters from req to this.

CORBA::Boolean copy_in_args (CORBA::ORBRequest *req)

Copies the input parameters from req to this.

const char *type ()

Supplies a string that identifies the type of request object.

C.3     


In addition to having an interface for new invocation adapters, the ORB also
has one for the integration of new object adapters. This interface is described
below. In addition, each object adapter must provide an object of the type
CORBA::ObjectAdapter over which the ORB has access to the functionality of
the object adapter.

ObjectAdapter is an abstract basic class from which an object-adapter-
specific concrete implementation must be derived. It must provide implemen- Object adapters

inherit from basic
class
ObjectAdapter

tations for the methods explained below. The declaration for the class Object

Adapter can be found in the file include/mico/orb_mico.h in the M source
tree.

const char *get_oaid () const

Supplies a string that identifies the type of object adapter.

CORBA::Boolean has_object (CORBA::Object_ptr obj)

Then exactly supplies TRUE if the object adapter is responsible for executing an op-
eration invocation on the object obj.

CORBA::Boolean is_local () const

Then exactly supplies TRUE if the object adapter is local, that is, if the execution of
the operation invocation does not require any interprocess communication.

270   M Implementation Details

CORBA::Boolean invoke (CORBA::ORBMsgId id,

CORBA::Object_ptr obj, ORBRequest *req,

CORBA::Principal_ptr principal,

CORBA::Boolean response_expected = TRUE)

Initiates an operation invocation with ID id on the object obj, with parameters req
and principal. response_expected indicates whether it is a one-way or a two-way
operation invocation. The result returned is TRUE if the method invocation could
be initiated successfully. Note that this by no means signifies that the operation
invocation was completed successfully. The return message indicating whether an
operation invocation was completed and what the results were uses the method
ORB::answer_invoke().

CORBA::Boolean bind (CORBA::ORBMsgId id,

const char *repoid,

const ORB::ObjectTag &tag,

CORBA::Address *addr)

The ORB invokes this method to determine whether the object adapter is managing
an object with repository ID repoid or object ID tag under the address addr. The
address is important if the object adapter is not local, such as a GIOP proxy. The
invocation returns TRUE if the process was initiated successfully. As with invoke, the
result is conveyed to the ORB through an invocation of ORB::answer_bind().

CORBA::Boolean locate (CORBA::ORBMsgId id,

CORBA::Object_ptr obj)

The ORB invokes this method to determine whether the object reference obj has
changed in the meantime due to a migration process. Then exactly supplies TRUE as
the result if the process could be initiated successfully. As with invoke, the result is
conveyed to the ORB through the invocation of ORB::answer_locate().

CORBA::Object_ptr skeleton (CORBA::Object_ptr obj)

Invoked by the ORB to query the object adapter for the object reference obj about
the possible existence of a collocation stub. Delivers the collocation stub as a result
or a NIL if one is not available.

void cancel (CORBA::ORBMsgId id)

Terminates the operation invocation with the ID id.

void shutdown (CORBA::Boolean wait_for_completion)

C.3. Integration of a New Object Adapter 271

Initiates the termination. As soon as an object adapter has completed its termina-
tion, it invokes ORB::answer_shutdown() to notify the ORB. If wait_for_completion
TRUE occurs, this invocation cannot take place until all operation invocations cur-
rently being executed have been completed.

void answer_invoke (CORBA::ORBMsgId id,

CORBA::Object_ptr obj,

CORBA::ORBRequest *req,

CORBA::InvokeStatus status)

Invoked by a skeleton interface (SSI or DSI) when an operation invocation is com-
pleted in order to inform the object adapter of the results of the invocation. status
is the status value familiar from Section C.2.

The ORB supplies the following methods that are associated with the in-
tegration of new object adapters. The methods are declared in the file Operations

provided by the
ORB

include/mico/orb_mico.h and implemented in the file orb/orb.cc in the M
source tree.

void register_oa (CORBA::ObjectAdapter *oa)

Registers the object adapter oa at the ORB.

void unregister_oa (CORBA::ObjectAdapter *oa)

Deregisters the object adapter oa at the ORB.

void answer_invoke (CORBA::ORBMsgId id,

CORBA::InvokeStatus status,

CORBA::Object_ptr obj,

CORBA::ORBRequest *req,

GIOP::AddressingDisposition ad)

The object adapter invokes this method to notify the ORB of the completion of the
method invocation under ID id with status status and result req. If status has the
value InvokeForward, then obj contains the new object reference. If status has the
value InvokeAddrDisp, then ad contains requested addressing type.

void answer_bind (CORBA::ORBMsgId id,

CORBA::LocateStatus status,

CORBA::Object_ptr obj)

272   M Implementation Details

The object adapter invokes this method to notify the ORB that the bind process
with ID id has been completed. status is an instance of the type LocateStatus that
can assume the value LocateUnknown (object being searched does not exist), Locate-
Here (the object being searched has been found), or LocateForward (object reference
of object being searched has changed). The values LocateUnknown and LocateHere

are the only values that can occur in connection with answer_bind. In the above
case, obj contains the object reference of the found object.

void answer_locate (CORBA::ORBMsgId id,

CORBA::LocateStatus status,

CORBA::Object_ptr obj,

GIOP::AddressingDisposition ad)

This is invoked by the object adapter to notify the ORB of the completion of the
locate process with ID id. If status has the value LocateHere or LocateForward,
obj contains the current object reference of the queried object; otherwise it contains
NIL. If status has the value LocateAddrDisp, then ad contains requested addressing
type.

void answer_shutdown (CORBA::ObjectAdapter *oa)

The object adapter oa invokes this method to notify the ORB of the completion of
the termination.

C.4     


In M a new transport mechanism can generally be incorporated simply
through the implementation of an object adapter and the corresponding in-
vocation adapter on the model of the GIOP client and the GIOP server (see
Section 6.3.2). However, this is usually a complicated process. An easier way
consists of using the framework described in Chapter 6 to map the GIOP to the
transport mechanism being used. This involves implementing the classes listedNew GIOP

mapping below for transport mechanism X. These classes are described in the following
sections. The paths given below are subdirectories in the M source tree.

XAddress:
Address, files include/mico/address.h, include/mico/address_impl.h,
orb/address.cc.

XAddressParser:
Decodes addresses from a given string, and the same for files.

C.4. Integration of a New Transport Mechanism 273

XProfile:
IOR profiles, files include/mico/ior.h, include/mico/ior_impl.h,
orb/ior.cc.

XProfileDecoder:
Decodes IOR profiles from a given byte stream, and the same for files.

XTransport:
Client-side transport class, files include/mico/transport.h, include/mico/
transport_impl.h, orb/transport.cc, orb/transport/*.cc.

XTransportServer:
Server-side transport class, and the same for files.

Also see Section 6.3.2 for the inheritance relationships between these classes
and the GIOP framework.

C.4.1 XAddress

First an address type string (similar to “inet”) that has not yet been used, such
as “x”, has to be specified. This string serves as the prefix for addresses in string Specifying the

address prefixform. The prefix is followed by arbitrary address information, such as a globally
explicit number in “x:42”.

A class XAddress implementing the following methods is then derived from
CORBA::Address.

string stringify () const

Supplies the address in string form, such as “x:42”.

const char *proto () const

Supplies the type of this address, such as “x”.

CORBA::Transport *make_transport () const

Creates a Transport object that matches the type of address.

CORBA::TransportServer *make_transport_server () const

Creates a TransportServer object that matches the type of address.

274   M Implementation Details

CORBA::IORProfile *make_ior_profile (CORBA::Octet *key,

CORBA::ULong keylength,

const CORBA::MultiComponent &components,

CORBA::UShort version = 0x0100) const

Creates an IORProfile object that matches the type of address. The parameters pro-
vided are the object ID key, its length keylength, any components components that
might exist, and the GIOP version version (default value 1.0) to be used. The com-

ponents consist of a standardized representation of arbitrary information that could
be stored in a profile, which can include the name and the version of the ORB that
generated the profile.

CORBA::Boolean is_local () const

Then exactly supplies TRUE if the address refers to the same address space in which
it is used.

CORBA::Address *clone () const

Creates an exact copy of this.

CORBA::Long compare (const CORBA::Address &addr) const

Compares this with addr and supplies −1 if this < addr, 0 if this = addr, or 1 if
this > addr.

CORBA::Boolean operator== (

const CORBA::Address &addr) const

Exactly supplies TRUE if this = addr.

CORBA::Boolean operator< (

const CORBA::Address &addr) const

Exactly supplies TRUE if this < addr.

C.4.2 XAddressParser

The class XAddressParser must be derived from CORBA::AddressParser and im-
plement the following methods:

CORBA::Address *parse (const char *rest,

const char *proto) const

C.4. Integration of a New Transport Mechanism 275

Converts an address string (for example, x:42) into an Address object. proto con-
tains the address type (for example, x), and rest contains the rest (for example, 42)
of the string.

CORBA::Boolean has_proto (const char *proto) const

Supplies exactly TRUE if the address parser can parse addresses from the type proto

(for example, x).

C.4.3 XProfile

In this case too a profile ID that has not yet been used has to be defined (similar Specifying the
profile IDto TAG_INTERNET_IOP), such as

const CORBA::IORProfile::ProfileId TAG_X_IOP = 31415;

Then a class XProfile is derived from CORBA::IORProfile and implements the
following methods:

void encode (CORBA::DataEncoder &encoder) const

Codes this using encoder in a byte stream.

CORBA::Address *addr () const

Supplies the address of this profile.

ProfileId id () const

Supplies the profile ID of this profile.

ProfileId encode_id () const

Normally supplies the same result of id(). encode_id() only supplies the profile ID
of a basic transport mechanism in special cases (such as the SSL transport mecha-
nism that represents a wrapper for an existing transport mechanism like IIOP).

void objectkey (Octet *key, Long keylength)

Sets the object ID to the supplied value. key contains the new ID and keylength its
length.

276   M Implementation Details

const CORBA::Octet *objectkey (

CORBA::Long &keylength) const

Requests the object ID. The result is a reference to the object ID; keylength is set
to the length of the object ID.

CORBA::Boolean reachable ()

Return TRUE if the address contained in the profile can be reached. For example,
the address local can only be reached from a process if it was also created in this
process. On the other hand, addresses of the type inet can always be reached.

void print (ostream &outputstream) const

Supplies the address in a string form as outputstream.

CORBA::MultiComponent *components ()

Supplies the components contained in the profile.

CORBA::IORProfile *clone () const

Creates an exact copy of this.

CORBA::Long compare (

const CORBA::IORProfile &prof) const

Compares this with prof and supplies −1 if this < prof, 0 if this = prof, and 1
if this > prof.

CORBA::Boolean operator== (

const CORBA::IORProfile &prof) const

Supplies exactly TRUE if this = prof.

CORBA::Boolean operator< (

const CORBA::IORProfile &prof) const

Supplies exactly TRUE if this < prof.

C.4. Integration of a New Transport Mechanism 277

C.4.4 XProfileDecoder

The class XprofileDecoder must be derived from CORBA::ProfileDecoder and
implement the following methods:

CORBA::IORProfile *decode (CORBA::DataDecoder &decoder,

ProfileId id, CORBA::ULong length) const

Uses decoder to convert a byte stream into an IORProfile object. The parameters
supplied are the profile ID id and the length of the byte stream length.

CORBA::Boolean has_id (ProfileId id) const

Supplies exactly TRUE if the profile decoder can decode profiles of the type id.

C.4.5 XTransport

The class XTransport must be derived from CORBA::Transport and implement
the following methods:

void rselect (CORBA::Dispatcher *disp,

CORBA::TransportCallback *callback)

This method registers a read callback callback that is invoked as soon as data can
be received and read on a connection or the Transport object is destroyed. disp is
the scheduler used (described in detail in Section C.4.7). Callback objects inherit
from the following basic class and implement the method callback(). The method
callback() is invoked with this as the first parameter of the Transport object and
TransportCallback::Read (if data can be read) or TransportCallback::Remove (if
the Transport object is being destroyed) as the second parameter.

struct TransportCallback {

enum Event { Read, Write, Remove };

virtual void callback (Transport *transport,

Event event) = 0;

virtual ~TransportCallback ();

};

void wselect (CORBA::Dispatcher *disp,

CORBA::TransportCallback *callback)

278   M Implementation Details

This method registers a write callback that is invoked in a similar way as reselect()
if data can be written or the Transport object is being destroyed.

CORBA::Boolean bind (const CORBA::Address *addr)

Sets the local address of the transport end point to addr.

CORBA::Boolean connect (const CORBA::Address *addr)

Establishes a connection to a remote address.

void close ()

Terminates the connection.

void block (CORBA::Boolean doblock = TRUE)

If doblock is TRUE, then all subsequent read and write operations block until they
have been executed completely. Otherwise read and write operations are only exe-
cuted to the extent that is possible without blocking and an appropriate result code
is returned.

CORBA::Boolean isblocking ()

Exactly supplies TRUE in the event that read and write operations are blocking.

CORBA::Boolean isreadable ()

Exactly supplies True if data is available for reading, thus read would not be block-
ing.

CORBA::Long read (void *buffer, CORBA::Long bufferlen)

At a maximum reads bufferlen bytes from the area referred to by buffer. The result
supplied is the number of read bytes or −1 in the case of failure (including EOF).

CORBA::Long write (const void *buffer,

CORBA::Long bufferlen)

At a maximum writes bufferlen bytes from the area referred to by buffer. The
result supplied is the number of written bytes or −1 in the case of failure.

C.4. Integration of a New Transport Mechanism 279

const CORBA::Address *addr ()

Supplies local address.

const CORBA::Address *peer ()

Supplies the remote address of a connection or NIL if no connection exists.

CORBA::Boolean eof () const

Exactly supplies TRUE if the connection was terminated and all data was read.

CORBA::Boolean bad () const

Exactly supplies TRUE if an error occurred.

string errormsg () const

Supplies a textual description of the last error that occurred.

C.4.6 XTransportServer

The class XTransportServer must be derived from CORBA::TransportServer and
implement the following methods:

void aselect (CORBA::Dispatcher *disp,

TransportServerCallback *callback)

This method registers an accept callback that, similar to Transport::rselect(), is
invoked when a connection request arrives or the TransportServer object is de-
stroyed. Callback objects inherit from the following basic class and implement the
method callback(). The method callback() is invoked with this as the first pa-
rameter of the TransportServer object and TransportServerCallback::Accept (if a
connection request exists) or TransportServerCallback::Remove (if the Transport- Callback objects
Server object is being destroyed) as the second parameter.

struct TransportServerCallback {

enum Event { Accept, Remove };

virtual void callback (TransportServer *server,

Event event) = 0;

virtual ~TransportServerCallback ();

};

280   M Implementation Details

CORBA::Boolean bind (const CORBA::Address *addr)

Binds the local address of the transport end point to addr.

void close ()

Terminates the transport end point. No further connections can be accepted.

void block (CORBA::Boolean doblock = TRUE)

If doblock is TRUE, then all subsequent accept operations block until a connection
setup request exists. Otherwise invocations of accept() deliver a NIL if there is no
connection setup request.

CORBA::Boolean isblocking ()

Exactly delivers TRUE in the event accept operations are blocking.

CORBA::Transport *accept ()

As soon as a connection setup request exists (i.e., if a client has invoked connect()

with the address of this TransportServer object), accept() delivers a Transport

object that represents the connection to this client.

const CORBA::Address *addr ()

Supplies the local address.

CORBA::Boolean bad () const

Exactly supplies TRUE if a failure occurs.

string errormsg () const

Supplies a textual description of the last failure that occurred.

C.4.7 Dispatcher

The Transport and TransportServer classes work closely together with the
scheduler described in Section 5.3.4. Thus the scheduler is usually used to

C.4. Integration of a New Transport Mechanism 281

implement the methods Transport::rselect(), Transport::wselect(), and
TransportServer::aselect().

All scheduler implementations inherit from the abstract basic class CORBA::
Dispatcher. This class provides various methods for the registration of callbacks
that can be invoked when certain events occur. The possible events are described Scheduler events

by the following enumeration:

enum Event { Timer, Read, Write, Except, All,

Remove, Moved }

The individual values of this list signify the following:

Timer:
A timeout has run out.

Read:
Data can be read from a channel.

Write:
Data can be written on a channel.

Except:
An exception (for instance, an error) has occurred on a channel.

All:
Concerns all possible events.

Remove:
A callback was removed.

Moved:
A callback was removed from this dispatcher and entered into another one.

The declaration for the class dispatcher can be found in the file
include/mico/transport.h and various implementations can be found in the
files orb/dispatch.cc, auxdir/x11.cc, auxdir/qtmico.cc, auxdir/tclmico.cc,
auxdir/gtkmico.cc, and auxdir/fltkmico.cc in the M source tree.

Callback objects inherit from the abstract basic class CORBA::Dispatcher- Callback objects

Callback and implement the method callback(). The method callback() is
invoked by the dispatcher when an event occurs with this as the first parameter
and the event that occurred as the second parameter:

struct DispatcherCallback {

282   M Implementation Details

virtual void callback (CORBA::Dispatcher *disp,

Dispatcher::Event event) = 0;

virtual ~DispatcherCallback ();

};

All implementations of the abstract basic class CORBA::Dispatcher provideSchedulers inherit
from Dispatcher the following methods:

void rd_event (CORBA::DispatcherCallback *cb,

CORBA::Long fd)

Registers a read callback cb that is invoked when data can be read on the file handle
fd.

void wr_event (CORBA::DispatcherCallback *cb,

CORBA::Long fd)

Registers a write callback cb that is invoked when data can be written on the file
handle fd.

void ex_event (CORBA::DispatcherCallback *cb,

CORBA::Long fd)

Registers an exception callback cb that is invoked when an exception occurs on the
file handle fd.

void tm_event (CORBA::DispatcherCallback *cb,

CORBA::ULong timeout)

Registers a timer callback that is invoked when the time timeout (in milliseconds)
has elapsed.

void remove (CORBA::DispatcherCallback *cb, Event event)

Removes a callback cb previously registered for an event.

void run (CORBA::Boolean infinite = TRUE)

Waits for the occurrence of the next event and processes it. If infinite = FALSE,
it means that exactly one event is being processed. Otherwise an infinite loop is
entered.

void move (CORBA::Dispatcher *disp)

C.4. Integration of a New Transport Mechanism 283

Removes all registered callbacks from this and registers them at dispatcher disp.

CORBA::Boolean idle () const

Supplies exactly TRUE if there are no pending events for any registered callback at the
time of invocation.

C.4.8 Initialization

An instance each of XaddressParser and XprofileDecoder must first be created Registration of
AddressParser and
ProfileDecoder

and registered before a new transport mechanism can be used. The easiest way
this can be done is through the implementation of registration or deregistration
in the constructor or destructor and the creation of a global instance for both
classes. Thus:

// XAddressParser

XAddressParser::XAddressParser ()

{

CORBA::Address::register_parser (this);

}

XAddressParser::~XAddressParser ()

{

CORBA::Address::unregister_parser (this);

}

// XProfileDecoder

XProfileDecoder::XProfileDecoder ()

{

CORBA::IORProfile::register_decoder (this);

}

XProfileDecoder::~XProfileDecoder ()

{

CORBA::IORProfile::unregister_decoder (this);

}

284   M Implementation Details

In addition, the GIOP framework in the client and in the server must beRegistration with
GIOP framework notified of the existence of the new transport mechanism:

CORBA::ORB_var orb = ...;

orb->register_profile_id (TAG_X_IOP); // new Profile-ID

The new transport mechanism can be used if the server is started with the
command line option

-ORBIIOPAddr x:42

If an object reference is being exported by the server, it will contain an
Xprofile that triggers the client into using the appropriate transport mechanism
when invoking methods on this object.

C.5    
 

This section describes the structure of the program code generated by M’s
IDL compiler. The IDL language binding for C++ only stipulates the C++
interface for proxy objects that can be accessed by applications (the basis for
portability). However, the CORBA standard does not specify how these inter-
faces are to be implemented. For example, the M-specific Static Invocation
Interface (SII) is used for marshaling within M. Another possibility wouldProxies are based on

MICO-specific
static interface
adapters

be the Dynamic Invocation Interface (DII) that was actually used with earlier
versions of M.

The IDL specification used earlier in the account application and repro-
duced in Section D.2 in Appendix D serves as the basis for our discussion.
M’s IDL compiler standardly produces two files during the translation
process. We assume that the --typecode command line option of the IDL com-
piler was used during the translation. In our example the IDL specification is
contained in the file called account.idl:

idl --typecode account.idl

Two files exist after the translation by the IDL compiler: account.h contains all
C++ declarations and account.cc all the corresponding C++ definitions. Some
extracts from the contents of these files are discussed in the following.

C.5. The Structure of Generated Program Code 285

The IDL compiler produces a class for each IDL type that is responsible for
the marshalling of an instance of that type. The name of the class consists of the

Marshaller of an
IDL type

prefix _Marshaller_ followed by the name of the IDL type. The following code
fragment shows the marshaller for the IDL type Account:

1: // Code fragment from account.cc

2:

3: class _Marshaller_Account :

4: public ::CORBA::StaticTypeInfo {

5: public:

6: ~_Marshaller_Account();

7: StaticValueType create () const;

8: void assign (StaticValueType dst,

9: const StaticValueType src) const;

10: void free (StaticValueType) const;

11: void release (StaticValueType) const;

12: ::CORBA::Boolean demarshal (::CORBA::DataDecoder&,

13: StaticValueType) const;

14: void marshal (::CORBA::DataEncoder &,

15: StaticValueType) const;

16: };

17:

18: struct __tc_init_ACCOUNT {

19: __tc_init_ACCOUNT()

20: {

21: _tc_Account =

22: "010000000e00000024000000010000001000000049444c"

23: "3a4163636f756e743a312e3000080000004163636f756e"

24: "7400";

25: _marshaller_Account = new _Marshaller_Account;

26: }

27: };

28:

29: static __tc_init_ACCOUNT __init_ACCOUNT;

The marshaller is based on the SII and is derived from the class Static

TypeInfo. It defines several methods that can be used for marshalling an Account

instance. An instance of the marshaller class that can be used within the stubs
and skeleton is produced in line 25. One feature is the representation of a type
code that has to be generated for each IDL type (line 21). For the representation Representation of a

type codeof the type information for Account, the CDR representation is produced as a

286   M Implementation Details

 C. Representation of a type code for AccountType as a CDR byte sequence

Pos. Hex Description
0 01 Little Endian
1 00 00 00 Padding
4 0e 00 00 00 TCKind = tk_objref (14)
8 24 00 00 00 Overall length = 36 octets

12 01 Little Endian
13 00 00 00 Padding
16 10 00 00 00 string length = 16 octets
20 49 44 4c 3a 41 63 63 6f "IDL:Account:1.0\0"

75 6e 74 3a 31 2e 30 00

36 08 00 00 00 string length = 8 octets
40 41 63 63 6f 75 6e 74 00 "Account\0"

character string of hexadecimal values. Since the type code can also appear as
the parameter of an operation, the ORB has to be able to interpret this byte
sequence anyway. Table C.1 shows the coding of this byte sequence by bytes.

For each interface of the IDL specification, the IDL compiler generates a
number of classes for implementing the stubs and skeletons. Following are the
declarations for the C++ classes generated for the interface Account:

1: // Code fragment from account.h

2:

3: class Account;

4: typedef Account *Account_ptr;

5: typedef Account_ptr AccountRef;

6: typedef ObjVar< Account > Account_var;

7: typedef ObjOut< Account > Account_out;

8:

9: class Account :

10: virtual public CORBA::Object

11: {

12: public:

13: static Account_ptr _narrow(CORBA::Object_ptr obj);

14: virtual void deposit(CORBA::Long amount) = 0;

15: virtual void withdraw(CORBA::Long amount) = 0;

16: virtual CORBA::Long balance() = 0;

17: // ...

18: };

19:

20: class Account_stub:

21: virtual public Account

22: {

C.5. The Structure of Generated Program Code 287

23: public:

24: void deposit(CORBA::Long amount);

25: void withdraw(CORBA::Long amount);

26: CORBA::Long balance();

27: // ...

28: };

29:

30: class POA_Account :

31: virtual public PortableServer::StaticImplementation

32: {

33: public:

34: bool dispatch (CORBA::StaticServerRequest_ptr);

35: virtual void invoke (CORBA::StaticServerRequest_ptr);

36: virtual void deposit(CORBA::Long amount) = 0;

37: virtual void withdraw(CORBA::Long amount) = 0;

38: virtual CORBA::Long balance() = 0;

39: // ...

40: };

The CORBA standard specifies various helper types for each interface with
the suffixes _ptr, _var, and _out (lines 3–7). M defines several C++ tem- C++ templates for

toolsplate types for their implementation. The class Account (line 9) is derived from
CORBA::Object and contains the methods required by the CORBA standard (for
example, _narrow for the type-safe downcast in line 13). All operations that were
defined in the interface Account are defined as pure virtual methods in the C++
class Account (lines 14–16). The class from which the stub objects are instanti-
ated has the (M-specific) name Account_stub and is derived from the class
Account (line 20). All pure virtual methods are overloaded here and trigger a
remote operation invocation when they are implemented.

The skeleton class based on the POA is called POA_Account (line 30) and
is derived through an intermediate class of PortableServer::ServantBase of
the basis class of all servants (see Figure C.1). POA_Account is not derived from
CORBA::Object because a POA makes a distinction between servants and objects.
The C++ class POA_Account also defines all operations occurring in the interface
Account as pure virtual methods.

In addition, the class POA_Account uses the method invoke to define the
entry point of incoming operation invocations (line 35). Each skeleton defines
a dispatcher that forwards the operations belonging to this interface to the im- Skeleton has an

operation
dispatcher

plementation (line 34). The dispatch method successively invokes all dispatch
methods belonging to an interface’s direct parents in the interface hierarchy.
Figure C.1 shows the inheritance relationships for the C++ class mentioned. Ta-

288   M Implementation Details

 C. Generated C++ classes for the IDL interface Ac-

count

C++ class Description
Account Basic class with tools
Account_stub Stub for remote objects
Account_stub_clp Stub for collocated objects
POA_Account POA-based skeleton
POA_Account_tie<T> Template for tie objects

 C. Inheritance relationship between the classes of the generated code and the ORB
library.

ble C.2 provides an overview of all C++ classes generated by the IDL compiler
through use of the POA. Note that the POA tie template is only generated if the
IDL compiler is invoked with the command line option --poa-ties.

We will now take a detailed look at the stub object that triggers a remote
operation invocation. First the corresponding code fragment:

1: // Code fragment from account.cc

2:

3: void Account_stub::deposit(CORBA::Long _par_amount)

4: {

5: CORBA::StaticAny _sa_amount(CORBA::_stc_long, &_par_amount);

6: CORBA::StaticRequest __req(this, "deposit");

7: __req.add_in_arg(&_sa_amount);

8:

9: __req.invoke();

10:

11: // ...

12: }

C.5. The Structure of Generated Program Code 289

An instance of the class StaticAny encapsulates the actual parameters
(line 5) for the input parameter amount. For its representation as a CDR byte
sequence, a StaticAny requires the right marshaller that has to be passed as
an argument to the constructor (e.g., CORBA::_stc_long for IDL type long).
First a StaticRequest, which represents the remote operation invocation, is StaticRequest

instance
represents operation
invocation

instantiated (line 6). After the actual parameters of the operation have been
added (line 7), the operation is sent to the remote server (line 9). If the in-
vocation of this method is returned, it means that the remote operation was
carried out and the results were returned automatically through the StaticAny

instances.
Lastly, we will show the dispatch process in the skeleton on the server side:

1: // Code fragment from account.cc

2:

3: bool

4: POA_Account::dispatch (CORBA::StaticServerRequest_ptr __req)

5: {

6: if(strcmp(__req->op_name(), "deposit") == 0) {

7: CORBA::Long _par_amount;

8: CORBA::StaticAny _sa_amount(CORBA::_stc_long, &_par_amount);

9:

10: __req->add_in_arg(&_sa_amount);

11:

12: if(!__req->read_args())

13: return true;

14:

15: deposit(_par_amount);

16: __req->write_results();

17: return true;

18: }

19: // ...

20: return false;

21: }

22:

23: void

24: POA_Account::invoke (CORBA::StaticServerRequest_ptr __req)

25: {

26: if (dispatch (__req)) {

27: return;

28: }

29:

290   M Implementation Details

30: // ...

31: }

The method POA_Account::invoke is invoked during an incoming oper-
ation invocation (line 24). The operation forwards the invocation directly to
the skeleton dispatch method (line 4), which is responsible for invoking all
dispatchers of a interface’s direct parents. The StaticServerRequest instancedispatch calls up

all dispatchers of an
interface’s direct
parents

contains all information, such as operation name and actual parameters, related
to the operation invocation. Based on the operation name, the dispatcher de-
termines whether this operation invocation belongs to the interface. If the dis-
patcher is responsible, it takes all actual parameters from the invocation (lines
7–13) and then invokes the pure virtual method of the operation (line 15) that
is implemented in a class derived from POA_Account.

 D
 

Following are the complete source texts for the CORBA application presented
in Chapter 3. The line numbers correspond to the extracts shown in Chapters 2
and 3. The design for the application and the UML class diagram can be found
in Chapter 2.

D.1 -   ++

The stand alone implementation is explained in Section 2.4.2 on page page 28.

1: // File: account.cc

2:

3: #include <iostream>

4:

5:

6: using namespace std;

7:

8: // Implementation for interface Account

9: class Account_impl

10: {

11: private:

12: int _balance;

13:

14: public:

15: Account_impl ()

16: {

17: _balance = 0;

291

292   Sample Application

18: }

19:

20: void deposit (int amount)

21: {

22: cout << "Server: deposit " << amount << endl;

23: _balance += amount;

24: }

25:

26: void withdraw (int amount)

27: {

28: cout << "Server: withdraw " << amount << endl;

29: if (_balance >= amount)

30: _balance -= amount;

31: else

32: cout << "Server: withdraw failed" << endl;

33: }

34:

35: int balance ()

36: {

37: cout << "Server: balance " << _balance << endl;

38: return _balance;

39: }

40: };

41:

42: int

43: main (int argc, char *argv[])

44: {

45: int balance;

46: Account_impl* account = new Account_impl();

47: account->deposit (700);

48: balance = account->balance ();

49: cout << "Client: balance is " << balance << endl;

50: account->withdraw (50);

51: balance = account->balance ();

52: cout << "Client: balance is " << balance << endl;

53: account->withdraw (200);

54: balance = account->balance ();

55: cout << "Client: balance is " << balance << endl;

56:

57: return 0;

58: }

D.3. Implementation of the Server in C++ 293

D.2  

The IDL specification is explained in Section 3.4.1 on page 42.

59: // File: account.idl

60:

61: interface Account {

62: void deposit (in long amount);

63: void withdraw (in long amount);

64: long balance ();

65: };

D.3    
 ++

See Section 3.4.3 on page 44 for a description of the implementation of the
server.

66: // File: server.cc

67:

68: #include <iostream>

69: #include <fstream>

70: #include "account.h"

71:

72: using namespace std;

73:

74: // Implementation for interface Account

75: class Account_impl : virtual public POA_Account

76: {

77: private:

78: CORBA::Long _balance;

79:

80: public:

81: Account_impl ()

82: {

83: _balance = 0;

84: }

85:

86: void deposit (CORBA::Long amount)

294   Sample Application

87: {

88: cout << "Server: deposit " << amount << endl;

89: _balance += amount;

90: }

91:

92: void withdraw (CORBA::Long amount)

93: {

94: cout << "Server: withdraw " << amount << endl;

95: if (_balance >= amount)

96: _balance -= amount;

97: else

98: cout << "Server: withdraw failed" << endl;

99: }

100:

101: CORBA::Long balance ()

102: {

103: cout << "Server: balance " << _balance << endl;

104: return _balance;

105: }

106: };

107:

108: int

109: main (int argc, char *argv[])

110: {

111: // Initialize the ORB

112: CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

113:

114: // Obtain a reference to the RootPOA and its Manager

115: CORBA::Object_var poaobj =

116: orb->resolve_initial_references ("RootPOA");

117: PortableServer::POA_var poa =

118: PortableServer::POA::_narrow (poaobj);

119: PortableServer::POAManager_var mgr =

120: poa->the_POAManager();

121:

122: // Create an Account

123: PortableServer::Servant account_servant =

124: new Account_impl;

125:

126: // Activate the Account

127: CORBA::Object_var the_account =

D.4. Implementation of the Clientin C++ 295

128: account_servant->_this();

129:

130: // Write the object’s IOR to a file

131: CORBA::String_var ior =

132: orb->object_to_string (the_account);

133: ofstream of ("account.ior");

134: of << ior;

135: of.close ();

136:

137: // Activate the POA and start serving requests

138: cout << "Running." << endl;

139: mgr->activate ();

140: orb->run();

141:

142: // Shutdown (never reached)

143: poa->destroy (TRUE, TRUE);

144: delete account_servant;

145:

146: return 0;

147: }

D.4    
 ++

See Section 3.4.4 on page 48 for a description of the implementation of the
client.

148: // File: client.cc

149:

150: #include <iostream>

151: #include <fstream>

152: #include "account.h"

153:

154: using namespace std;

155:

156: int

157: main (int argc, char *argv[])

158: {

159: // Initialize the ORB

296   Sample Application

160: CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

161:

162: // Connect to the Account

163: ifstream f ("account.ior");

164: string ior;

165: f >> ior;

166: CORBA::Object_var obj =

167: orb->string_to_object (ior.c_str());

168: Account_var account = Account::_narrow (obj);

169:

170: // Deposit and withdraw some money

171: account->deposit (700);

172: cout << "Client: balance is "

173: << account->balance () << endl;

174: account->withdraw (50);

175: cout << "Client: balance is "

176: << account->balance () << endl;

177: account->withdraw (200);

178: cout << "Client: balance is "

179: << account->balance () << endl;

180:

181: return 0;

182: }

D.5     


See Section 3.6.1 on page 53 for a description of the implementation of the
server in Java.

183: // File: Server.java

184:

185: import org.omg.CORBA.*;

186: import org.omg.PortableServer.*;

187:

188:

189: // Implementation for interface Account

190: class AccountImpl extends AccountPOA

191: {

D.5. Implementation of the Server in Java 297

192: private int _balance;

193:

194: public AccountImpl ()

195: {

196: _balance = 0;

197: }

198: public void deposit (int amount)

199: {

200: System.out.println ("Server: deposit " + amount);

201: _balance += amount;

202: }

203: public void withdraw (int amount)

204: {

205: System.out.println ("Server: withdraw " + amount);

206: if (_balance >= amount)

207: _balance -= amount;

208: else

209: System.out.println ("Server: withdraw failed");

210: }

211: public int balance ()

212: {

213: System.out.println ("Server: balance " + _balance);

214: return _balance;

215: }

216: }

217:

218:

219: public class Server {

220:

221: public static void main (String args[])

222: {

223: try {

224: // Initialize the ORB

225: ORB orb = ORB.init (args, null);

226:

227: // Obtain a reference to the RootPOA and its Manager

228: org.omg.CORBA.Object poaobj =

229: orb.resolve_initial_references ("RootPOA");

230: POA poa = POAHelper.narrow (poaobj);

231: POAManager mgr = poa.the_POAManager();

232:

298   Sample Application

233: // Create an Account servant

234: AccountImpl account_servant = new AccountImpl ();

235:

236: // Activate the Account object

237: org.omg.CORBA.Object the_account =

238: account_servant._this();

239:

240: // Write the object’s IOR to a file

241: String ior = orb.object_to_string (the_account);

242: java.io.FileWriter file =

243: new java.io.FileWriter ("account.ior", false);

244: file.write (ior + "\n", 0, ior.length() + 1);

245: file.flush();

246: file.close();

247:

248: // Activate the POA and start serving requests

249: System.out.println ("Running.");

250: mgr.activate();

251: orb.run();

252: } catch (Exception e) {

253: System.err.println ("Exception in Server " +

254: "Startup " + e);

255: }

256: }

257: }

D.6     


See Section 3.6.2 on page 56 for a description of the implementation of the
client in Java.

258: // File: Client.java

259:

260: import java.io.*;

261: import org.omg.CORBA.*;

262:

263:

264: public class Client {

D.6. Implementation of the Client in Java 299

265:

266: public static void main (String[] args) {

267: // Initialize the ORB.

268: ORB orb = ORB.init (args, null);

269:

270: String ior = null;

271: try {

272: FileReader file = new FileReader ("account.ior");

273: BufferedReader br = new BufferedReader (file);

274: ior = br.readLine();

275: } catch (IOException e) {

276: System.out.println ("Could not open file " +

277: "’account.ior’");

278: System.exit (1);

279: }

280:

281: org.omg.CORBA.Object obj =

282: orb.string_to_object (ior);

283: Account account = AccountHelper.narrow (obj);

284:

285: account.deposit (700);

286: System.out.println ("Client: balance is " +

287: account.balance ());

288: account.withdraw (50);

289: System.out.println ("Client: balance is " +

290: account.balance ());

291: account.withdraw (200);

292: System.out.println ("Client: balance is " +

293: account.balance());

294: }

295: }

This page intentionally left blank

  

1.1 Middleware as an infrastructure for distributed systems 2

2.1 Structure of a distributed system 8
2.2 Message exchange between two processes 11
2.3 Client/server model 13
2.4 Error situations with RPC 14
2.5 Decomposition of a problem domain into a set of objects 18
2.6 Method selection using the signature of a message 19
2.7 Middleware for the support of object-based applications 22
2.8 Portability and interoperability 24
2.9 Sequence diagram for account use case 26
2.10 UML class diagram for the account example 27
2.11 Complete application in an address space 29
2.12 Distributed execution of the application 30

3.1 OMA reference architecture 34
3.2 Object framework 36
3.3 Components of a CORBA-based middleware 36
3.4 A CORBA application in context 40
3.5 The creation of a CORBA application 41
3.6 A naming graph 60
3.7 The trading triangle 61

4.1 Components of µORB 66
4.2 UML class diagram of transport layer 69
4.3 Different arrangements in the representation of a ULong 72

301

302 List of Figures

4.4 UML class diagram of data coder/decoder 75

4.5 Protocol between client and server 76

4.6 Structure of protocol data units 78

4.7 UML class diagram of PDU 80

4.8 UML diagram of proxy classes for the interface Account 82

4.9 UML diagram of class ObjectReference 86

4.10 UML diagram of class ORB 87

5.1 ORB as a cross-address object bus 93

5.2 Centralized versus distributed ORB implementation 93

5.3 Microkernel ORB 96

5.4 Nested method invocation 101

5.5 Scheduler 104

5.6 Generation of object references 107

5.7 Microkernel ORB as a selector of method invocation 109

6.1 Direct versus indirect bridges 112

6.2 Interoperability support through CORBA 114

6.3 UML diagram of interoperability framework 118

6.4 GIOP support in M 122

6.5 GIOP client 122

6.6 GIOP server 123

7.1 Life cycle of a CORBA object 128

7.2 Dispatching a method invocation 132

7.3 Portable Object Adapter 134

7.4 POA Manager state diagram 137

7.5 A POA with its own Active Object Map 139

7.6 Request processing within the POA 142

7.7 Dissecting a POA-generated object reference 145

7.8 The POA Mediator redirecting requests to the current server
instance 147

7.9 IDL for the POA Mediator 148

7.10 Using a proxy to mediate between the stub and the servant 151

7.11 Example code for a collocation proxy 152

List of Figures 303

8.1 Insertion and extraction of data in or out of Any 155
8.2 Linking of DII 158

9.1 CORBA application consisting of the application itself, the
generated code, and the ORB library 166

9.2 Static invocation adapter 167
9.3 Compiler concept 169
9.4 Parse tree of word abba 170
9.5 Compiler structure 171
9.6 Structure of IDL compiler and interface repository 173
9.7 Design of the IDL compiler 176
9.8 Section of parse tree for the IDL type Person 178
9.9 Design of back end for C++ code generation 179

10.1 Features of a CORBA component 186
10.2 A component is “enveloped” by its container 189
10.3 IDL for an “Account” component and its home 193
10.4 Client-side equivalent IDL for the “Account” component 194
10.5 Server-side equivalent IDL for the “Account” component 195
10.6 Implementation of the “Account” component and its

home 196
10.7 Relationship between generated code and implementation 200
10.8 An assembly implements a component interface 204
10.9 WSDL components 209
10.10 UDDI service trading 216

C.1 Inheritance relationship between the classes of the generated
code and the ORB library 288

This page intentionally left blank



ACE Adaptive Communications Environment

ANSA Advanced Network Systems Architecture

ANSI American National Standards Institute

BOA Basic Object Adapter

CCM CORBA Component Model

CDR Common Data Representation

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DCE Distributed Computing Environment

DCE–CIOP DCE Common Inter–ORB Protocol

DCOM Distributed Componenent Object Model

DDCF Distributed Document Component Facility

DII Dynamic Invocation Interface

DPE Distributed Processing Environment

DSI Dynamic Skeleton Interface

DSOM Distributed System Object Model

ESIOP Environment–Specific Inter–ORB Protocol

FIFO First in First out

GIOP General Inter–ORB Protocol

GNU GNU’s not UNIX

305

306 Acronyms

GNU GPL GNU General Public License

GUID Globally Unique Identifier

IDL Interface Definition Language

IIOP Internet Inter–ORB Protocol

IMR Implementation Repository

IOR Interoperable Object Reference

IP Internet Protocol

IR Interface Repository

ISO International Standards Organization

ITU International Telecommunication Union

LOA Library Object Adapter

MICO MICO Is CORBA

NCCE Native Computing and Communications Environment

OA Object Adapter

OMA Object Management Architecture

OMG Object Management Group

OODB OA Object–Oriented Database Object Adapter

ORB Object Request Broker

OSF Open Software Foundation

OSI Open Systems Interconnection

POA Portable Object Adapter

POS Persistent Object Service

RFP Request for Proposal

RIOP Realtime Inter–ORB Protocol

RMI Remote Method Invocation

RPC Remote Procedure Call

SII Static Invocation Interface

SSI Static Skeleton Interface

SSL Secure Sockets Layer

TAO The ACE ORB

TCP Transmission Control Protocol

Acronyms 307

TINA Telecommunications Information Networking

Architecture

UML Uniform Modelling Language

URL Uniform Resource Locator

WWW World Wide Web

YACC Yet Another Compiler Compiler

This page intentionally left blank



BOA (Basic Object Adapter) One instance of an object adapter (OA). Serves on
the server side as a mediator between the ORB and the object implementa-
tion. As its name implies, the BOA offers only primitive services. The BOA’s
specifications were insufficiently precise and led to a lack of portability in
view of vendors’ augmentation of the standard. In CORBA version 2.1 the
BOA was replaced by the POA.

CCM (CORBA Component Model) An extension of the CORBA object
model. Components run in a container, which provides their runtime envi-
ronment, and express their features and requirements in terms of provided
and required interfaces (ports). Applications can then be assembled from
components by connecting their ports.

CG (Conceptual Graph) A knowledge representation technique based on a bi-
partite graph consisting of concepts and relations. Conceptual graphs allow
the representation of arbitrary information in a formalized way. Conceptual
graphs are used in M for a generic user interface to the DII that allows
the invocation of user-definable operations at runtime.

CGI (Common Gateway Interface) A specification for transferring informa-
tion between a WWW server and a CGI program. A CGI program is any
program designed to accept and return data that conforms to the CGI spec-
ification. The program could be written in any programming language, in-
cluding C, Perl, Java, or Visual Basic.

CORBA (Common Object Request Broker Architecture) An architecture that
enables objects to communicate with one another regardless of what pro-
gramming language they were written in or what operating system they are

309

310 Glossary

running on. CORBA was developed by an industry consortium known as
the Object Management Group (OMG).

COSS (Common Object Services Specification) Defines context-independent
services that are often required in applications. Services are single-minded
modules that bring much of the functionality needed for a truly distributed
systems framework. Examples of such services are the naming, event, or
security service. M offers a variety of services.

DII (Dynamic Invocation Interface) Part of the ORB API on the client side.
The client can use it to construct and invoke an operation at runtime.
The DII is dynamic in the sense that the operation signature (i.e., its in-
put/output argument types) need not be known at compile time. This is
the main difference with IDL stubs, where the interface type is known at
compile time.

DSI (Dynamic Skeleton Interface) Part of the ORB API on the server side. The
DSI mirrors the DII functionality on the server side. It is used to deliver an
operation invocation to an implementation. As with the DII, the DSI is
dynamic in the sense that the operation signature need not be known at
compile time.

GIOP (General Inter-ORB Protocol) Defines message formats used for com-
munication between ORBs. GIOP is responsible for establishing commu-
nication between ORBs. GIOP is part of the interoperability framework
whereby applications running on different CORBA implementations are
interoperable. GIOP is abstract in the sense that it does not make reference
to a specific transport layer.

GNU (Gnu’s Not UNIX) A UNIX-compatible software system developed by
the Free Software Foundation (FSF). The philosophy behind GNU is to
produce software that is nonproprietary. Anyone can download, modify, and
redistribute GNU software. The only restriction is that they cannot limit
further redistribution. The GNU project was started in 1983 by Richard
Stallman at the Massachusetts Institute of Technology.

IDL (Interface Definition Language) The notation used by CORBA to de-
scribe object interfaces. This particular notation has distinguished features
as it supports subtyping, exception handling, and so on. The IDL syntax
resembles Java interface and C++ abstract classes declarations. The CORBA
standard defines language mappings, which define rules on how to map an
IDL specification to a specific programming language.

Glossary 311

IIOP (Internet Inter-ORB Protocol) The instantiation of GIOP using TCP as
a transport layer. With respect to GIOP, IIOP only adds transport-layer-
specific details.

IMR (Implementation Repository) A database that contains information on
object implementations. This information is typically used by an object
adapter during the activation of object implementations.

IOR (Interoperable Object Reference) Contains all the information necessary
for a client to connect to an object implementation. Among others, the IOR
contains a transport layer address as well as an object key of the implemen-
tation. The CORBA standard defines a stringified version of an IOR that
can be passed to clients by other means (such as email, fax, etc.).

IP (Internet Protocol) Specifies the format of packets, also called datagrams,
and the addressing scheme. Most networks combine IP with a higher-level
protocol called Transport Control Protocol (TCP), which establishes a vir-
tual connection between a destination and a source.

IR (Interface Repository) A database that maintains IDL specifications of every
object interface managed by the ORB. The IR provides an API that allows
you to query and modify the interface it manages. The IR provides for the
self-describing nature of CORBA objects.

MICO (M Is CORBA) An Open Source implementation of the CORBA
standard. The complete source code is placed under the GNU General Pub-
lic License. M pays special attention to CORBA compliance.

OA (Object Adapter) CORBA’s server side relies on OAs to perform object
activation, deactivation, and so on. CORBA allows different OAs for dif-
ferent contexts. In some situations special purpose OAs may be used to
simplify the processes involved, for example, when communicating with an
OODBMS. The POA is the only OA defined by CORBA.

OMG (Object Management Group) A consortium with a membership of more
than 850 companies. The organization’s goal is to provide a common frame-
work for developing applications using object-oriented programming tech-
niques. OMG is responsible for the CORBA specification.

ORB (Object Request Broker) The central piece of the CORBA platform.
It serves as an “object bus” connecting different objects. Its main task is
the forwarding of operation invocations from client to server objects. The
ORB transparently handles networking, name resolution, marshalling, type
checking, object activation (see OA), and such.

312 Glossary

OSS (Open Source Software) Promotes software reliability and quality by
supporting independent peer review and rapid evolution of source code.
Among the many Open Source projects are Linux, Apache, KDE, and, of
course, M.

POA (Portable Object Adapter) An instance of an object adapter. Configurable
via policies, it offers a wide range of adaptation options in support of life
state management and scalability.

RM-ODP (Reference Model for Open Distributed Processing) A joint stan-
dard of the International Organization for Standardization (ISO) and the
International Telecommunication Union, Telecommunication Standardiza-
tion Sector (ITU-T). It provides a framework for standardization efforts
in the domain of Open Distributed Processing (ODP). The reference
model describes an architecture to support distribution, interoperability,
and portability.

TCP (Transmission Control Protocol) One of the main protocols in TCP/IP
networks. Whereas the IP protocol deals only with packets, TCP enables
two hosts to establish a connection and exchange streams of data. TCP
guarantees delivery of data and also guarantees that packets will be delivered
in the same order in which they were sent.

WWW (World Wide Web) A system of Internet servers that support specially
formatted documents. The documents are formatted in a language called
HTML (HyperText Markup Language) that supports links to other docu-
ments, as well as graphics, audio, and video files. This means you can jump
from one document to another simply by clicking on hot spots. Not all
Internet servers are part of the WWW.



[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of
Computer Programs. MIT Press, 1985.

[2] The Advanced Network Systems Architecture (ANSA), 1989.
[3] S. Bapat. Object-Oriented Networks, Models for Architecture, Operations, and

Management. Prentice-Hall International, 1994.
[4] Berkeley Motes. www.xbow.com/Products/Wireless_Sensor_Networks.htm.
[5] T. Berners-Lee, L. Masinter, and M. McCahill. RFC 1738: Uniform Re-

source Locators (URL), December 1994.
[6] J. Bohn, V. Coroama, M. Langheinrich, F. Mattern, and M. Rohs. Disap-

pearing computers everywhere—living in a world of smart everyday ob-
jects. In Proceedings of New Media, Technology and Everyday Life in Europe
Conference, London, April 2003.

[7] P. Bonnet, J. E. Gehrke, and P. Seshadri. Querying the physical world.
IEEE Personal Communications, 7 (5): 10–15, 2000.

[8] G. Booch. Object Oriented Design with Applications. Benjamin Cummings
Publishing Company, 1991.

[9] A. Boulis, C. C. Han, and M. B. Srivastava. Design and implementation
of a framework for programmable and efficient sensor networks. In Pro-
ceedings MobiSys 2003, San Franscisco, May 2003.

[10] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts
and Design, 3rd edition. Addison-Wesley Publishing Company, 2000.

[11] B. S. Davie, L. L. Peterson, and D. Clark. Computer Networks: A Systems
Approach, 2nd edition. Morgan Kaufmann Publishers, 1999.

[12] M. E. Fayad and D. C. Schmidt. Object-oriented application frame-
works. Communications of the Association for Computing Machinery, Oc-
tober 1997.

313

314 Bibliography

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Publishing
Company, 1995.

[14] M. Henning and S. Vinoski. Advanced CORBA Programming with C++.
Addison-Wesley Publishing Company, 1999.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System ar-
chitecture directions for networked sensors. In Proceedings ASPLOS 2000,
Cambridge, MA, November 2000.

[16] The IEEE International Conference on Pervasive Computing and Com-
munication. www.percom.org.

[17] The International Conference on Pervasive Computing. www.
pervasive2004.org.

[18] The International Conference on Ubiquitous Computing. www.ubicomp.
org.

[19] Jini Architecture Specification. www.sun.com/jini/specs/.
[20] U. Kubach and K. Rothermel. Exploiting location information for

infostation-based hoarding. In Proceedings ACM MobiCom 2001, Rome,
July 2001.

[21] P. Landin. A correspondence between Algol 60 and Church’s lambda no-
tation: part I. Communications of the Association for Computing Machinery,
1965.

[22] U. Lang and R. Schreiner. Developing Secure Distributed Systems with
CORBA. Artech House Books, 2002.

[23] S. Li, S. H. Son, and J. A. Stankovic. Event detection services using data
service middleware in distributed sensor networks. In Proceedings of IPSN
2003, Palo Alto, CA, April 2003.

[24] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG:
A tiny aggregation service for ad-hoc sensor networks. In Proceedings OSDI
2002, Boston, December 2002.

[25] S. Maffeis. Adding group communication and fault-tolerance to CORBA.
In Proceedings of the USENIX Conference on Object-Oriented Technologies,
June 1995.

[26] S. Mullender. Distributed Systems, 2nd edition. Addison-Wesley Publishing
Company, 1993.

[27] J. Nehmer und P. Sturm. Systemsoftware: Grundlagen moderner Betriebssys-
teme. dpunkt-Verlag, 1998.

[28] Object Management Group (OMG). The Common Object Request Broker:
Architecure and Specification, Revision 3.0, March 2004.

[29] J. Ousterhout. Tcl and Tk toolkit. Addison-Wesley Publishing Company,
1994.

Bibliography 315

[30] J. Rumbaugh. Object-Oriented Modeling and Design. Prentice-Hall Inter-
national, 1991.

[31] D. C. Schmidt. ACE: An object-oriented framework for developing dis-
tributed applications. In Proceedings of the USENIX Conference on Object-
Oriented Technologies. USENIX Association, April 1994.

[32] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of the TAO
real-time object request broker. Computer Communications Journal, 1997.

[33] C. C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information net-
working architecture and applications. IEEE Personal Communications, 8
(4): 52–59, 2001.

[34] A. S. Tanenbaum. Computer Networks, 3rd edition. Prentice-Hall Interna-
tional, 1989.

[35] A. S. Tanenbaum. Operating Systems—Design and Implementation.
Prentice-Hall International, 1987.

[36] F. D. Tran and J. B. Stefani. Towards an extensible and modular ORB
framework. In CORBA: Implementation, Use and Evaluation, ECOOP,
Jyväskylä, Finland, June 1997.

[37] B. Warneke, M. Last, B. Leibowitz, and K. S. J. Pister. Smart dust: Com-
municating with a cubic-millimeter computer. IEEE Computer Magazine,
34 (1): 44–51, January 2001.

[38] M. D. Weiser. The computer for the 21st century. Scientific American, 265
(3): 94–104, September 1991.

This page intentionally left blank



A
abstract syntax tree (AST), 171–175
access safety, 20
Account, 82
Account_impl, 82
Account_skel, 82
Account_stub, 82
activation, 47
ad hoc networks, 220
Ada 95, 38
adapter activator, 138
Address, 68, 119–121
AddressParser, 119–121
alignment, type instances, 72, 73
answer_invoke, 99
API (Application Programming

Interface), 23, 24
application interfaces, 35, 36
application layer, MICO, 120, 121
Application Programming Interface

(API), 23, 24
AST (abstract syntax tree), 171–175
at-most-once, 37

B
back end, MICO’s IDL compiler,

179, 180
basic data type, 70
BECodec, 74
best-effort, 37
Big Endian, 71

binding, 60, 62, 63
black box, 2
Boolean, 71, 73
bootstrapping, 57–59, 92, 106–108

command line arguments, 58, 59
file-based, 58
object URLs, 58
overview, 57

bridge, 112
direct, 113
indirect, 113
information required by, 115

Buffer, 68, 118

C
C, 38
C++, 3, 38

applications development, 27–29,
42–50
client implementation, 48–50
IDL language mappings, 43, 44
IDL specification, 42, 43
overview, 42
server implementation, 44–48

code fragment
account application, 27–29
Account component and home,
196
class StaticTypeInfo, 167
collocation proxy, 152
connect to the account, 49

deposit and withdraw money,
48
deposit method using DII, 157
instantiation of Account, 47
interface Account, 44, 45
main mORB loop, 87, 88
object adapter, 46
ORB initialization, 48
PDU::send, 80
transport client, 69
transport server, 68, 69
withdraw method, 45

declarations, 179
definitions, 179

CDR (Common Data
Representation), 70

CDRDecoder, 121
CDREncoder, 121
Char, 71, 73
characterization, 7–9, 16, 17
CIDL (Component Implementation

Definition Language), 191
client/server, 12–14
client-side equivalent IDL, 193, 194
COBOL, 38
Codec, 74
CodeGen class, 176, 179, 180
CodeGenCPP class, 179, 180
CodeGenCPPCommon class, 179,

180
CodeGenCPPSkel class, 179, 180

317

318 Index

CodeGenCPPStub class, 179, 180
CodeGenCPPUtil class, 179, 180
CodeGenIDL class, 176
CodeNenCPP class, 176
collocation, object adapters,

149–152
command line arguments, 58, 59
Command line options

IDL compiler, 249–253
IR, 244
MICO daemon, 246
ORB

general, 238–241
security, 241–243

Common Data Representation
(CDR), 70

Common facilities, 35, 36
Common Object Request Broker

Architecture, see CORBA
communication mechanisms,

distributed systems, 10–12
compiler wrappers, 253–255
compilers, 168–172

formal languages and grammars,
168–170

overview, 168
structure of, 170–172

complex types, presentation layer, 73,
74

component, definition, 184
Component Implementation

Definition Language (CIDL),
191

compound data types, MICO’s
Dynamic Invocation Interface
(DII), 159–161

computer architectures, 22
Connection table, 122, 123
consistency, 8
constrained resources, 219, 220
constructed data type, 70
container programming model,

188–191
container types, 190, 191
Context list, 37
CORBA (Common Object Request

Broker Architecture), 3, 4,

33–64, 183–230; see also
CORBA components

application development in Java,
53–57

applications development in C++,
42–50
C++ client implementation,
48–50
C++ server implementation,
44–48
IDL language mappings for
C++, 43, 44
IDL specification, 42, 43
overview, 42

bootstrapping problem, 57–59
compiling and executing

application, 50–53
CORBA object model, 37
creation process of CORBA

application, 40–42
IDL-language mappings, 38
Interface Definition Language, 37,

38
interoperability, 39
invocation and object adapters, 39
middleware for ubiquitous

computing, 217–230
middleware challenges,
219–223
overview, 217
sensor networks, see sensor
networks
ubiquitous computing in
nutshell, 218, 219

naming service, 59–64
client side, 63, 64
name server daemon, 60, 61
overview, 59–61
server side, 61–63

Object Management Architecture,
34, 35

Object Request Broker, 38, 39
overview, 33, 35–39, 183
Web services, 206–217

CORBA vs. Web services, 216,
217
interoperability through SOAP,
213–215

overview, 206, 207
overview of XML, 207, 208
server-side mapping, 211–213
service descriptions through
WSDL, 208–211
service lookup through UDDI,
215, 216

CORBA components, 183–206
component-based development,

183–185
CORBA Component Model,

185–192
component model, 185–188
container programming model,
188–191
overview, 185
packaging and deployment,
191, 192

deployment and configuration,
204–206

example component, 192–199
client-side equivalent IDL, 193,
194
compiling, 197
component IDL, 192, 193
component implementation,
195–197
overview, 192
running, 198, 199
server-side equivalent IDL, 194,
195

future developments, 206
implementation overview,

199–202
lightweight CCM, 203, 204
overview, 183, 202, 203

CPPTypeFolder class, 179, 180

D
data copying, 117, 118
data-centric communications, 221
DataDecoder, 120, 121
DataEncoder, 120, 121
decentralization, 8
default servant, 139
demarshalling, 118
derivation, 169

Index 319

DII (Dynamic Invocation Interface),
96, 153, 156–161

Dispatcher class, 280–283
distributed applications,

infrastructures for, 1, 2
distributed systems, 7–16

characterization, 7–9
client/server model, 12–14
communication mechanisms,

10–12
failure semantics, 14–16
overview, 7
transparency, 9, 10

distribution transparency, 22
Domain interfaces, 35, 36
DSWare, 228
dynamic adapters, 164
Dynamic Any, 161
Dynamic Invocation Adaptors, 164
Dynamic Invocation Interface (DII),

96, 153, 156–161
dynamic linking, 108

E
elementary data type, 70
encapsulation, 85
Endianness, 71, 72
enum, 71, 73
Environment-Specific Inter-ORB

Protocol (ESIOP), 114
equivalent IDL, 188
ESIOP (Environment-Specific

Inter-ORB Protocol), 114
ethereal object, 140, 141
Exception list, 37
expandability, 94
eXtensible Markup Language

(XML), 207, 208

F
factory, 68
failure, 14
failure semantics, distributed

systems, 14–16
file-based bootstrapping, 58

G
garbage collection, 84

GIOP (General Inter-ORB
Protocol), 39, 77, 114–116,
121–123

GIOPCodec, 120, 121
grammar, 169

H
header, 77
heterogeneity, 8
hierarchy, 17
homes, 187
horizontal interface, 24, 25

I
identifier attribute, 60
IDL (Interface Definition Language),

37, 38, 40, 41, 188
code fragment

Account component and home,
193
Account component client-side,
194
Account component server-side,
195
Any interface, 159, 160
interface, 42
module re-opening, 173, 174
Person definition, 177
POAMediator, 148

compiler, 163–181, 249–253
abstract syntax tree for IDL
specifications, 172–175
application, 165, 166
command line options,
249–253
compiler fundamentals,
168–172
dynamic vs. static invocation
adapters, 164
invocation adapters, 163–168
MICO’s IDL compiler,
175–180
MICO’s static invocation
adapter, 166–168
ORB library, 165, 166
overview, 163
proxies, 165, 166

summary, evaluation, and
alternatives, 180, 181
support of static invocation
adapters, 165, 166

language mappings, 38, 43, 44
representation of IDL data types,

154, 155
specifications, 42, 43, 172–175

IDLDep class, 176
IDLError class, 176
IDLParam class, 176
IDLParser class, 175, 176
IIOP (Internet Inter-ORB Protocol),

39
IIOPProfile, 121
_impl, 45
implementation repository (IMR),

246–249
in keyword, 43
InetAddress, 121
InetAddressParser, 121
initial object reference, 107
Initialization class, 283, 284
inout, 43
input parameters, 19
instance of type, 20
Interface Definition Language, see

IDL
interface repository (IR)

as AST, 172–174
command line options, 244

Internet Inter-ORB Protocol (IIOP),
39

interoperability, 39, 111–124
design of MICO’s, 117–123

framework, 117–121
GIOP, 121–123
overview, 117

Inter-ORB Protocols, 113–117
of middleware, 24, 25
model, 111–113
overview, 111
through SOAP, 213–215

interoperability layer,
/f2/f2m/f0ORB, 75–81

modeling of protocol data units,
79–81

overview, 75

320 Index

protocol for remote operation
invocation, 75–77

structure of protocol data units,
77–79

Interoperable Object Reference
(IOR), 48, 115

inter-ORB protocols, 39, 113–117
environment-specific Inter-ORB

protocols, 116, 117
general Inter-ORB protocols, 115,

116
interoperable object references,

114, 115
overview, 113, 114

invocation adapters, 39, 153–162
design of MICO’s DII, 159–161
design of MICO’s SII, 161, 162
dynamic invocation interface, 156,

157
functionality, 153–156
IDL compiler, 163–168
interface, 95–98
interface operations, 98
new, integration of, 266–269
overview, 153
static invocation interface,

157–159
Invocation semantics, 37
invocation table, 95, 99, 100
IOP codec, 120
IOR (Interoperable Object

Reference), 48, 115
iordump tool, 51
IORProfile, 121
IR, see interface repository
IR class, 175, 176
is-a, 17, 20

J
Java, 3, 38

application development in,
53–57

code fragment
connect to the account, 56
instantiation of Account, 55
interface Account, 53, 54
object adapter, 54, 55
ORB initialization, 56

withdraw, 54

K
kind attribute, 60

L
lazy evaluation, 97
LECodec, 74
life cycle, 83
linker wrappers, 253–255
Little Endian, 71
loadable modules, 95
loading components into containers,

198, 199
Long, 71, 73

M
mapping objects to servants, 127,

131
marshalling, 118
messages, 12, 19, 20
methods

dispatching, 19
invocations, 92, 128, 131–133

MICO, 3, 4, 40, 65; see also MICO
implementation; POA

CCM advantages and
disadvantages, 201

daemon command line options,
246

Dynamic Invocation Interface
(DII), 159–161

FAQ, 5
IDL, 5
IDL compiler, 175–180

back end, 179, 180
class structure, 175, 176
front end, 177, 178
overview, 175

IIOP, 5
installation, 231–236

overview, 231
road map, 235, 236
on Unix, 231–234
on Windows, 234, 235

interoperability, 117–123
framework, 117–121

General Inter-ORB Protocol
(GIOP) server, 121–123
overview, 117

Object Request broker, 4, 5
ORB, design of, 94–110

bootstrapping, 106–108
dynamic extensibility, 108
invocation adapter interface,
95–98
invocation table, 99, 100
object adapter interface, 98, 99
object generation, 106
overview, 94, 95
scheduler, 100–105

release at www.mico.org, 231
sample command sequence, 50
shell scripts, 253, 254
static invocation adapter, 166–168
Static Invocation Interface (SII),

161, 162, 166–168
MICO implementation, 237–290

compiler and linker wrappers,
253–255

IDL compiler, 249–253
integration of new invocation

adapter, 266–269
integration of new object adapter,

269–272
integration of new transport

mechanism, 272–284
Dispatcher class, 280–283
Initialization class, 283, 284
overview, 272, 273
XAddress class, 273, 274
XAddressParser class, 274, 275
XProfile class, 275, 276
XProfileDecoder class, 277
XTransport class, 277–279
XTransportServer class, 279,
280

interface repository, 243, 244
Object Request Broker (ORB),

237–243
overview, 237, 257
path of operation invocation

through ORB, 257–265
client side, 259–262
overview, 257–259

Index 321

server side, 262–265
portable object adapter, 244–249

implementation repository,
246–249
MICO daemon, 245, 246
overview, 244, 245

structure of generated program
code, 284–290

mico-ccm options, 197
mico-ccmd daemon starts containers

on demand, 198
microkernel architecture, 91
middleware, 1

CORBA-based, 3
portability and interoperability,

24, 25
standardization of, 23, 24
structure of middleware platform,

22, 23
tasks, 21, 22
two views, 2
for ubiquitous computing,

217–230
challenges, 219–223
overview, 217–219
sensor networks, 223–230

model, 16, 17
Moore’s law, 218
/f2/f2m/f0ORB

interoperability layer, 75–81
modeling of protocol data units,
79–81
overview, 75
protocol for remote operation
invocation, 75–77
structure of protocol data units,
77–79

object services, 83–89
life cycle of object, 83, 84
object references, 84–86
overview, 83
services on server side, 86–89

ORB architecture, 65, 66
overview, 65
presentation layer, 70–75

modeling of presentation layer,
74, 75
overview, 70

representation of type instances,
71–74
value ranges of types, 70, 71

proxies, 81–83
transport layer, 67–70

N
naming context, 60
naming graph, 60
naming service, 59–64

client side, 63, 64
example, 61–64
name server daemon, 60, 61
overview, 59, 60
server side, 61–63

_narrow, 44
networks, 23
non-terminal symbols, 169

O
object, 18, 129
object adapters, 5, 39, 125–152

collocation, 149–152
design of MICO’s POA, 143–145
examples of, 133–143

overview, 133–135
persistence, 141–143
POA Manager, 137, 138
portable object adapter,
133–137
request processing, 138–141

functionality, 127–133
execution of method
invocations, 131–133
generation of object references,
130
mapping objects to servants,
131
object management, 128, 129
overview, 127, 128
servant management, 130

integration of new object adapter,
269–272

interface, 98, 99
overview, 125
persistence, 146
POA Mediator, 146–149
terminology, 125–127

Object class, 82
object domain, 112
object frameworks, 35
object ID, 130
object implementation, 34
object key, 52, 130, 144, 145
Object life cycle, 128
object management, 34, 35, 128,

129
Object Management Architecture

(OMA), 33
Object Management Group (OMG),

34
object model, 16–25, 34

characterization, 16, 17
middleware, 21–25
overview, 16
support, 21
terminology, 17–20

object reference template, 130
object references, 92, 127
Object Request Broker, see ORB
object semantics, 34
object services, 35, 36, 65
object services, /f2/f2m/f0ORB,

83–89
life cycle of an object, 83, 84
object references, 84–86
overview, 83
services on server side, 86–89

object URLs, 58
ObjectImp1, 82
object-to-server mappings, 131
Octet, 71, 73
OMA (Object Management

Architecture), 33
OMG (Object Management Group),

34
open standard, 24
operating system, 22
operation, 19
Operation name, 37
operational interaction, 21
operational interface, 19
ORB (Object Request Broker), 35,

38, 39, 237–243
centralized approach, 94
command line options

general, 238–241

322 Index

security, 241–243
design of, 91–110

architectures, 93, 94
functionality, 92
MICO’s ORB, 94–110
overview, 91

distributed approach, 93
expandability, 91
installation, 237–243
overview, 237
path of operation invocation

through, 257–265
client side, 259–262
overview, 257–259
server side, 262–265

summary, evaluation, and
alternatives, 108–110

Output class, 176
output parameters, 19

P
Parameter list, 37
ParseNode class, 175, 176
Parser class, 175, 176
part-of, 17
PDU (Protocol Data Unit), 25, 77
persistence, object adapters,

141–143, 146
Persistent State Definition Language

(PSDL), 191
PL/1, 38
platform, middleware, 1
POA (Portable Object Adapter), 44,

133–137, 143–145, 244–249
design goals

configurability, 134
flexibility, 134
portability, 134

implementation repository,
246–249

manager state
active, 137
discarding, 138
holding, 137, 138
inactive, 138

MICO daemon, 245, 246
overview, 244, 245

POA Manager, 137, 138

POA Mediator, 146–149
policy

ID assignment, 136
implicit activation, 136
lifespan, 135
object ID uniqueness, 135
request processing, 136
servant retention, 136
thread, 135

portability of middleware, 24, 25
Portable Object Adapter, see POA

(Portable Object Adapter)
POSIX Threads, 231
predefined container type, 190, 191
presentation layer, 65

MICO, 120
/f2m/f0ORB, 70–75

modeling of, 74, 75
overview, 70
representation of type instances,
71–74
value ranges of types, 70, 71

production, 169
programming languages, 22
Protocol Data Unit (PDU), 25, 77
protocol data units, 77–81
proxies, 65, 81–83
PSDL (Persistent State Definition

Language), 191
Python, 38

Q
Quality of Service (QoS), 91

R
reference, addressee, 19
reference architecture, 34, 35
reference type, 20
remote interaction, 21
remote operation invocation, 75–77
Remote Procedure Call (RPC), 12
Remote Service Invocation (RSI), 12
reply, 76
request, 76, 81
request processing, object adapters,

138–141
resolve, 63
resolve_initial_references, 59

Result type, 37
RPC (Remote Procedure Call), 12
RSI (Remote Service Invocation), 12

S
sample application, 25–31, 291–299

account example, 25–27
C++ implementation, 27–29
distribution of sample application,

29–31
IDL specification, 293
implementation of client

in C++, 295, 296
in Java, 298, 299

implementation of server
in C++, 293–295
in Java, 296–298

overview, 25, 291
stand alone application in C++,

291, 292
scalability, 8
scheduler, ORB design, 100–105
scheduling, 95, 103, 105
security, 8
semantics, 15, 16
sensor networks, 223–230

databases, 225, 226
events, 228–230
mobile agents, 226, 227
overview, 223–225

SensorWare, 227
sensory data, storage of, 222, 223
sequence, 71
sequence diagram, 26
servants, 47

ethereal object, 140, 141
life cycle, 141
management, 130, 140
mapping objects to, 131
object state, 141
scalability, 141

ServerRequest, 82
server-side equivalent IDL, 190, 194,

195
server-side mapping, 211–213
service lookup, through UDDI, 215,

216
service mediation, 106
service provider, 12

Index 323

service user, 12
services, 91
Short, 71, 73
signature, message, 19
SII (Static Invocation Interface), 153,

157–159, 161, 162, 165–168
Simple Object Access Protocol

(SOAP), 206, 207, 213–215
skeleton, 38, 132
Smalltalk, 38
SOAP (Simple Object Access

Protocol), 206, 207, 213–215
specification as standard, 23
static invocation adapters, 164–168
Static Invocation Interface (SII), 153,

157–159, 161, 162, 165–168
StaticAny class, 167, 168
StaticImpImplementation class, 168
StaticRequest class, 168
StaticServerRequest class, 168
StaticTypeInfo class, 167, 168
storage management, MICO’s

interoperability, 117, 118
String, 71
struct, 71
stub, 38

T
TCPTransport, 121
TCPTransportServer, 121
technological independence, 22
terminology, object model, 17–20
_this, 47
thunk object, 97
tiered architecture, 184, 185
TinyDB, 225
transparency, 9, 10
Transport, 68, 119, 121
transport layer, 65

MICO’s interoperability, 119, 120
/f2m/f0ORB, 67–70

transport mechanism, 66
integration of new, 272–284

Dispatcher class, 280–283
Initialization class, 283, 284
overview, 272, 273

XAddress class, 273, 274
XAddressParser class, 274, 275
XProfile class, 275, 276
XProfileDecoder class, 277
XTransport class, 277–279
XTransportServer class, 279,
280

TransportServer, 119, 121
type checking, 155, 156
type conformity, 20
type instances, 71–74
TypeCodes, 154, 155
typedef, 43

U
ubicomp, 217–222
ubiquitous computing, middleware

for, 217–230
challenges, 219–223

collection, processing, and
storage of sensory data, 222,
223
constrained resources, 219, 220
integration with background
infrastructures, 223
network dynamics, 220, 221
overview, 219
real-world integration, 222
scale of deployments, 221, 222

overview, 217
sensor networks, 223–230

databases, 225, 226
events, 228–230
mobile agents, 226, 227
overview, 223–225

UDDI (Universal Description
Discovery and Integration),
207, 215, 216

UDDI operator, 216
ULong, 71, 73
UML (Unified Modeling Language),

25–27
Uniform Resource Locator (URL),

58
Universal Description Discovery and

Integration (UDDI), 207, 215,
216

Unix, MICO installation on,
231–234

URL (Uniform Resource Locator),
58

UShort, 71, 73

V
vertical interface, 25
view of referenced object, 19

W
Web Service Definition Language

(WSDL), 207, 208–211
Web services, 3, 206–217

vs. CORBA, 216, 217
interoperability through SOAP,

213–215
overview, 206, 207
server-side mapping, 211–213
service descriptions through

WSDL, 208–211
service lookup through UDDI,

215, 216
XML, 207, 208

white box, 2
Windows, MICO installation on,

234, 235
WSDL (Web Service Definition

Language), 207, 208–211

X
XAddress class, 273, 274
XAddressParser class, 274, 275
XML (eXtensible Markup

Language), 207, 208
XProfile class, 275, 276
XProfileDecoder class, 277
XTransport class, 277–279
XTransportServer class, 279, 280

Y
YACC (Yet Another Compiler

Compiler), 177

This page intentionally left blank

	About the Authors
	Preface
	Contents
	Introduction
	Infrastructures for Distributed Applications
	Thematic Organization
	Target Group
	Chapter Overviews
	Ancillary Materials

	Basic Concepts
	Distributed Systems
	Characterization
	Transparency
	Communication Mechanisms
	Client/Server Model
	Failure Semantics

	Object Model
	Characterization
	Terminology

	Middleware
	Middleware Tasks
	The Structure of a Middleware Platform
	Standardization of a Middleware
	Portability and Interoperability

	Sample Application
	The Account Example
	C++ Implementation
	Distribution of the Sample Application

	Summary

	Introduction to CORBA
	Object Management Architecture
	Overview of CORBA
	CORBA Object Model
	Interface Definition Language
	IDL-Language Mappings
	Object Request Broker
	Invocation and Object Adapters
	Interoperability

	The Creation Process of a CORBA Application
	Application Development in C++
	IDL Specification
	IDL Language Mapping for C++
	C++ Server Implementation
	C++ Client Implementation

	Compiling and Executing the Application
	Compiling the Application
	Executing the Application

	Application Development in Java
	Java Server Implementation
	Java Client Implementation
	Compiling and Executing the Java Implementation

	The Bootstrapping Problem
	File-Based Bootstrapping
	Object URLs
	Command Line Arguments

	Naming Service
	Overview
	Name Server Daemon
	Example

	Summary

	µORB
	µORB Architecture
	Transport Layer
	Presentation Layer
	Value Ranges of Types
	Representation of Type Instances
	Modeling of the Presentation Layer

	Interoperability Layer
	Protocol for Remote Operation Invocation
	Structure of Protocol Data Units
	Modeling of Protocol Data Units

	Proxies
	Object Services
	Life Cycle of an Object
	Object References
	Services on the Server Side

	Summary

	ORB Design
	ORB Functionality
	ORB Architectures
	Design of Mico's ORB
	Invocation Adapter Interface
	Object Adapter Interface
	Invocation Table
	Scheduler
	Object Generation
	Bootstrapping
	Dynamic Extensibility

	Summary, Evaluation, and Alternatives

	Interoperability
	Model
	Inter-ORB Protocols
	Interoperable Object References
	General Inter-ORB Protocol
	Environment-Specific Inter-ORB Protocols

	Design of Mico's Interoperability
	Framework
	GIOP

	Summary, Evaluation, and Alternatives

	Object Adapters
	Terminology
	Functionality
	Object Management
	Servant Management
	Generation of Object References
	Mapping Objects to Servants
	Execution of Method Invocations

	The Portable Object Adapter
	Overview
	Policies
	POA Manager
	Request Processing
	Persistence

	Design of Mico's POA
	Object Key Generation
	Persistence
	POA Mediator
	Collocation

	Invocation Adapters
	Functionality
	Representation of IDL Data Types
	Type Checking

	Dynamic Invocation Interface
	Static Invocation Interface
	Design of Mico's DII
	Design of Mico's SII
	Summary

	IDL Compiler
	Invocation Adapters
	Dynamic versus Static Invocation Adapters
	Support of Static Invocation Adapters
	Mico's Static Invocation Adapter

	Compiler Fundamentals
	Formal Languages and Grammars
	Parse Trees
	Structure of a Compiler

	Abstract Syntax Tree for IDL Specifications
	Mico's IDL Compiler
	Class Structure
	Front End
	Back End

	Summary, Evaluation, and Alternatives

	CORBA and Beyond
	CORBA Components
	Component-Based Development
	The CORBA Component Model
	An Example Component
	Implementation Overview
	Discussion

	Web Services
	Overview of XML
	Service Descriptions through WSDL
	Server-Side Mapping
	Interoperability through SOAP
	Service Lookup through UDDI
	CORBA or Web Services?

	Middleware for Ubiquitous Computing
	Ubiquitous Computing in a Nutshell
	Middleware Challenges
	Case Study: Sensor Networks
	Conclusions

	Summary

	Mico Installation
	Installing Mico on UNIX
	Installing Mico on Windows
	Road Map

	Mico Implementation Overview
	ORB
	Interface Repository
	Portable Object Adapter
	Mico Daemon
	Implementation Repository

	IDL Compiler
	Compiler and Linker Wrappers
	Examples

	Mico Implementation Details
	Path of an Operation Invocation through an ORB
	Client Side
	Server Side

	Integration of a New Invocation Adapter
	Integration of a New Object Adapter
	Integration of a New Transport Mechanism
	XAddress
	XAddressParser
	XProfile
	XProfileDecoder
	XTransport
	XTransportServer
	Dispatcher
	Initialization

	The Structure of Generated Program Code

	Sample Application
	Stand-alone Application in C++
	IDL Specification
	Implementation of the Server in C++
	Implementation of the Client in C++
	Implementation of the Server in Java
	Implementation of the Client in Java

	List of Figures
	Acronyms
	Glossary
	Bibliography
	Index

