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PREFACE

New to the fifth edition

New chapters:  

Indirect Communication:  Covering group communication, publish-subscribe and 
case studies on JavaSpaces, JMS, WebSphere and Message Queues.

Distributed Objects and Components:  Covering component-based middleware and 
case studies on Enterprise JavaBeans, Fractal and CORBA.

Designing Distributed Systems:  Devoted to a major new case study on the Google 
infrastructure.

Topics added to other chapters:  Cloud computing, network virtualization, operating 
system virtualization, message passing interface, unstructured peer-to-peer, tuple 
spaces, loose coupling in relation to web services. 

Other new case studies:  Skype, Gnutella, TOTA, L2imbo, BitTorrent, End System 
Multicast.

See the table on page XV for further details of the changes.

This fifth edition of our textbook appears at a time when the Internet and the Web 
continue to grow and have an impact on every aspect of our society. For example, the
introductory chapter of the book notes their impact on application areas as diverse as 
finance and commerce, arts and entertainment and the emergence of the information 
society more generally. It also highlights the very demanding requirements of 
application domains such as web search and multiplayer online games. From a 
distributed systems perspective, these developments are placing substantial new 
demands on the underlying system infrastructure in terms of the range of applications 
and the workloads and system sizes supported by many modern systems. Important 
trends include the increasing diversity and ubiquity of networking technologies 
(including the increasing importance of wireless networks), the inherent integration of 
mobile and ubiquitous computing elements into the distributed systems infrastructure 
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(leading to radically different physical architectures), the need to support multimedia 
services and the emergence of the cloud computing paradigm, which challenges our 
perspective of distributed systems services. 

The book aims to provide an understanding of the principles on which the Internet 
and other distributed systems are based; their architecture, algorithms and design; and 
how they meet the demands of contemporary distributed applications.  We begin with a 
set of seven chapters that together cover the building blocks for a study of distributed 
systems. The first two chapters provide a conceptual overview of the subject, outlining 
the characteristics of distributed systems and the challenges that must be addressed in 
their design: scalability, heterogeneity, security and failure handling being the most 
significant. These chapters also develop abstract models for understanding process 
interaction, failure and security. They are followed by other foundational chapters 
devoted to the study of networking, interprocess communication, remote invocation, 
indirect communication and operating system support.

The next set of chapters covers the important topic of middleware, examining 
different approaches to supporting distributed applications including distributed objects 
and components, web services and alternative peer-to-peer solutions. We then cover the 
well-established topics of security, distributed file systems and distributed naming 
before moving on to important data-related aspects including distributed transactions 
and data replication. Algorithms associated with all these topics are covered as they arise 
and also in separate chapters devoted to timing, coordination and agreement.

The book culminates in chapters that address the emerging areas of mobile and 
ubiquitous computing and distributed multimedia systems before presenting a 
substantial case study focusing on the  design and implementation of the distributed 
systems infrastructure that supports Google both in terms of core search functionality 
and the increasing range of additional services offered by Google (for example, Gmail 
and Google Earth). This last chapter has an important role in illustrating how all the 
architectural concepts, algorithms and technologies introduced in the book can come 
together in a  coherent overall design for a given application domain. 

Purposes and readership

The book is intended for use in undergraduate and introductory postgraduate courses. It 
can equally be used for self-study. We take a top-down approach, addressing the issues 
to be resolved in the design of distributed systems and describing successful approaches 
in the form of abstract models, algorithms and detailed case studies of widely used 
systems. We cover the field in sufficient depth and breadth to enable readers to go on to 
study most research papers in the literature on distributed systems. 

We aim to make the subject accessible to students who have a basic knowledge of 
object-oriented programming, operating systems and elementary computer architecture. 
The book includes coverage of those aspects of computer networks relevant to 
distributed systems, including the underlying technologies for the Internet and for wide 
area, local area and wireless networks. Algorithms and interfaces are presented 
throughout the book in Java or, in a few cases, ANSI C. For brevity and clarity of 
presentation, a form of pseudo-code derived from Java/C is also used.
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Organization of the book

The diagram shows the book’s chapters under seven main topic areas. It is intended to 
provide a guide to the book’s structure and to indicate recommended navigation routes 
for instructors wishing to provide, or readers wishing to achieve, understanding of the 
various subfields of distributed system design.

16 Transactions and Concurrency Control
17 Distributed Transactions
18 Replication

11 Security
12 Distributed File Systems
13 Name Services

System services 

  1 Characterization of
 Distributed Systems

  2 System Models
  3 Networking and Internetworking
  4 Interprocess Communication
  5 Remote Invocation
  6 Indirect Communication
  7 Operating System Support

Foundations

14 Time and Global States
15 Coordination and Agreement

Distributed algorithms

Middleware

  8 Dist. Objects and Components
  9 Web Services
10 Peer-to-Peer Systems

19 Mobile and Ubiquitous Computing
20 Distributed Multimedia Systems

New challenges 

Shared data 

21 Designing Distributed Systems:
Google Case Study

Substantial case study 

References

The existence of the World Wide Web has changed the way in which a book such as this 
can be linked to source material, including research papers, technical specifications and 
standards. Many of the source documents are now available on the Web; some are 
available only there. For reasons of brevity and readability, we employ a special form of 
reference to web material that loosely resembles a URL: references such as 
[www.omg.org] and [www.rsasecurity.com I] refer to documentation that is available 
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only on the Web. They can be looked up in the reference list at the end of the book, but 
the full URLs are given only in an online version of the reference list at the book’s web 
site, www.cdk5.net/refs where they take the form of clickable links. Both versions of the 
reference list include a more detailed explanation of this scheme.

Changes relative to the fourth edition

Before embarking on the writing of this new edition, we carried out a survey of teachers 
who used the fourth edition. From the results, we identified the new material required 
and a number of changes to be made. In addition, we recognized the increasing diversity 
of distributed systems, particularly in terms of the range of architectural approaches 
available to distributed systems developers today. This required significant changes to 
the book, especially in the earlier (foundational) chapters.

Overall, this led to our writing three entirely new chapters, making substantial 
changes to a number of other chapters and making numerous insertions throughout the 
book to fold in new material. Many of the chapters have been changed to reflect new 
information that has become available about the systems described. These changes are 
summarized in the table below. To help teachers who have used the fourth edition, 
wherever possible we have preserved the structure adopted from the previous edition. 
Where material has been removed, we have placed this on our companion web site 
together with material removed from previous editions. This includes the case studies 
on ATM, interprocess communication in UNIX, CORBA (a shortened version of which 
remains in Chapter 8), the Jini distributed events specification and Grid middleware 
(featuring OGSA and the Globus toolkit), as well as the chapter on distributed shared 
memory (a brief summary of which is now included in Chapter 6).

Some of the chapters in the book, such as the new chapter on indirect 
communication (Chapter 6), cover a lot of material. Teachers may elect to cover the 
broad spectrum before choosing two or three techniques to examine in more detail (for 
example, group communication, given its foundational role, and publish-subscribe or 
message queues, given their prevalence in commercial distributed systems).

The chapter ordering has been changed to accommodate the new material and to 
reflect changes in the relative importance of certain topics. For a full understanding of 
some topics readers may find it necessary to follow a forward reference. For example, 
there is material in Chapter 9 on XML security techniques that will make better sense 
once the sections that it references in Chapter 11 Security have been absorbed.

Acknowledgements

We are very grateful to the following teachers who participated in our survey: Guohong 
Cao, Jose Fortes, Bahram Khalili, George Blank, Jinsong Ouyang, JoAnne Holliday, 
George K. Thiruvathukal, Joel Wein, Tao Xie and Xiaobo Zhou.

We would like to thank the following people who reviewed the new chapters or 
provided other substantial help: Rob Allen, Roberto Baldoni, John Bates, Tom Berson, 
Lynne Blair, Geoff Coulson, Paul Grace, Andrew Herbert, David Hutchison, Laurent 
Mathy, Rajiv Ramdhany, Richard Sharp, Jean-Bernard Stefani, Rip Sohan, Francois 



New chapters:

6 Indirect Communication Includes events and notification from 4th edition. 

8 Distributed Objects and 
Components

Includes a precised version of the CORBA case 
study from the 4th edition.

21 Designing Distributed Systems Includes a major new case study on Google

Chapters which have undergone substantial changes:

1 Characterization of DS Significant restructuring of material

New Section 1.2: Examples of distributed systems
Section 1.3.4: Cloud computing introduced

2 System Models Significant restructuring of material

New Section 2.2: Physical models
Section 2.3: Major rewrite to reflect new book 
content and associated architectural perspectives

4 Interprocess Communication Several updates

Client-server communication moved to Chapter 5
New Section 4.5: Network virtualization (includes 
case study on Skype)
New Section 4.6: Case study on MPI
Case study on IPC in UNIX removed

5 Remote Invocation Significant restructuring of material

Client-server communication moved to here
Progression introduced from client-server 
communication through RPC to RMI
Events and notification moved to Chapter 6

Chapters to which new material has been added/removed, but without structural changes:

3 Networking and Internetworking Several updates

Section 3.5: material on ATM removed

7 Operating System Support New Section 7.7: OS virtualization

9 Web Services Section 9.2: Discussion added on loose coupling

10 Peer-to-Peer Systems New Section 10.5.3: Unstructured peer-to-peer 
(including a new case study on Gnutella)

15 Coordination and Agreement Material on group communication moved to Ch. 6

18 Replication Material on group communication moved to Ch. 6 

19 Mobile and Ubiquitous Computing Section 19.3.1: New material on tuple spaces 
(TOTA and L2imbo)

20 Distributed Multimedia Systems Section 20.6: New case studies added on 
BitTorrent and End System Multicast

The remaining chapters have received only minor modifications.

PREFACE XV
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Taiani, Peter Triantafillou, Gareth Tyson and the late Sir Maurice Wilkes. We would 
also like to thank the staff at Google who provided insights into the design rationale for 
Google Infrastructure, namely: Mike Burrows, Tushar Chandra, Walfredo Cirne, Jeff 
Dean, Sanjay Ghemawat, Andrea Kirmse and John Reumann.

Our copy editor, Rachel Head also provided outstanding support.

Web site

As before, we continue to maintain a web site with a wide range of material designed to 
assist teachers and readers. This web site can be accessed via the URL:

www.cdk5.net

The web site includes:

Instructor’s Guide: We provide supporting material for teachers comprising:

• complete artwork of the book available as PowerPoint files;

• chapter-by-chapter teaching hints;

• solutions to the exercises, protected by a password available only to teachers.

Reference list: The list of references that can be found at the end of the book is replicated 
at the web site. The web version of the reference list includes active links for material 
that is available online.

Errata list: A list of known errors in the book is maintained, with corrections. The errors 
will be corrected when new impressions are printed and a separate errata list will be 
provided for each impression.  (Readers are encouraged to report any apparent errors 
they encounter to the email address below.)

Supplementary material: We maintain a set of supplementary material for each chapter. 
This consists of source code for the programs in the book and relevant reading material 
that was present in previous editions of the book but was removed for reasons of space. 
References to this supplementary material appear in the book with links such as 
www.cdk5.net/ipc (the URL for supplementary material relating to the Interprocess 
Communication chapter). Two entire chapters from the 4th edition are not present in this 
one; they can be accessed at the URLs:

CORBA Case Study www.cdk5.net/corba

Distributed Shared Memory www.cdk5.net/dsm

George Coulouris

Jean Dollimore

Tim Kindberg
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1

CHARACTERIZATION OF 

DISTRIBUTED SYSTEMS

1.1 Introduction
1.2 Examples of distributed systems
1.3 Trends in distributed systems
1.4 Focus on resource sharing
1.5 Challenges
1.6 Case study: The World Wide Web
1.7 Summary

A distributed system is one in which components located at networked computers 
communicate and coordinate their actions only by passing messages. This definition 
leads to the following especially significant characteristics of distributed systems: 
concurrency of components, lack of a global clock and independent failures of 
components.

We look at several examples of modern distributed applications, including web 
search, multiplayer online games and financial trading systems, and also examine the key 
underlying trends driving distributed systems today: the pervasive nature of modern 
networking, the emergence of mobile and ubiquitous computing, the increasing 
importance of distributed multimedia systems, and the trend towards viewing distributed 
systems as a utility. The chapter then highlights resource sharing as a main motivation for 
constructing distributed systems. Resources may be managed by servers and accessed 
by clients or they may be encapsulated as objects and accessed by other client objects.

The challenges arising from the construction of distributed systems are the 
heterogeneity of their components, openness (which allows components to be added or 
replaced), security, scalability – the ability to work well when the load or the number of 
users increases – failure handling, concurrency of components, transparency and 
providing quality of service. Finally, the Web is discussed as an example of a large-scale 
distributed system and its main features are introduced.



2 CHAPTER 1  CHARACTERIZATION OF DISTRIBUTED SYSTEMS

1.1 Introduction

Networks of computers are everywhere. The Internet is one, as are the many networks 
of which it is composed. Mobile phone networks, corporate networks, factory networks, 
campus networks, home networks, in-car networks – all of these, both separately and in 
combination, share the essential characteristics that make them relevant subjects for 
study under the heading distributed systems. In this book we aim to explain the 
characteristics of networked computers that impact system designers and implementors 
and to present the main concepts and techniques that have been developed to help in the 
tasks of designing and implementing systems that are based on them.

We define a distributed system as one in which hardware or software components 
located at networked computers communicate and coordinate their actions only by 
passing messages. This simple definition covers the entire range of systems in which 
networked computers can usefully be deployed. 

Computers that are connected by a network may be spatially separated by any 
distance. They may be on separate continents, in the same building or in the same room. 
Our definition of distributed systems has the following significant consequences:

Concurrency: In a network of computers, concurrent program execution is the norm. 
I can do my work on my computer while you do your work on yours, sharing 
resources such as web pages or files when necessary. The capacity of the system to 
handle shared resources can be increased by adding more resources (for example. 
computers) to the network. We will describe ways in which this extra capacity can be 
usefully deployed at many points in this book. The coordination of concurrently 
executing programs that share resources is also an important and recurring topic.

No global clock: When programs need to cooperate they coordinate their actions by 
exchanging messages. Close coordination often depends on a shared idea of the time 
at which the programs’ actions occur. But it turns out that there are limits to the 
accuracy with which the computers in a network can synchronize their clocks – there 
is no single global notion of the correct time. This is a direct consequence of the fact 
that the only communication is by sending messages through a network. Examples of 
these timing problems and solutions to them will be described in Chapter 14.

Independent failures: All computer systems can fail, and it is the responsibility of 
system designers to plan for the consequences of possible failures. Distributed systems 
can fail in new ways. Faults in the network result in the isolation of the computers that 
are connected to it, but that doesn’t mean that they stop running. In fact, the programs 
on them may not be able to detect whether the network has failed or has become 
unusually slow. Similarly, the failure of a computer, or the unexpected termination of 
a program somewhere in the system (a crash), is not immediately made known to the 
other components with which it communicates. Each component of the system can fail 
independently, leaving the others still running. The consequences of this characteristic 
of distributed systems will be a recurring theme throughout the book.

The prime motivation for constructing and using distributed systems stems from a desire 
to share resources. The term ‘resource’ is a rather abstract one, but it best characterizes 
the range of things that can usefully be shared in a networked computer system. It 
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extends from hardware components such as disks and printers to software-defined 
entities such as files, databases and data objects of all kinds. It includes the stream of 
video frames that emerges from a digital video camera and the audio connection that a 
mobile phone call represents.

The purpose of this chapter is to convey a clear view of the nature of distributed 
systems and the challenges that must be addressed in order to ensure that they are 
successful. Section 1.2 gives some illustrative examples of distributed systems, with 
Section 1.3 covering the key underlying trends driving recent developments. Section 1.4
focuses on the design of resource-sharing systems, while Section 1.5 describes the key 
challenges faced by the designers of distributed systems: heterogeneity, openness, 
security, scalability, failure handling, concurrency, transparency and quality of service. 
Section 1.6 presents a detailed case study of one very well known distributed system, the 
World Wide Web, illustrating how its design supports resource sharing.

1.2 Examples of distributed systems

The goal of this section is to provide motivational examples of contemporary distributed 
systems illustrating both the pervasive role of distributed systems and the great diversity 
of the associated applications.

As mentioned in the introduction, networks are everywhere and underpin many 
everyday services that we now take for granted: the Internet and the associated World 
Wide Web, web search, online gaming, email, social networks, eCommerce, etc. To 
illustrate this point further, consider Figure 1.1, which describes a selected range of key 
commercial or social application sectors highlighting some of the associated established 
or emerging uses of distributed systems technology.

As can be seen, distributed systems encompass many of the most significant 
technological developments of recent years and hence an understanding of the 
underlying technology is absolutely central to a knowledge of modern computing. The 
figure also provides an initial insight into the wide range of applications in use today, 
from relatively localized systems (as found, for example, in a car or aircraft) to global-
scale systems involving millions of nodes, from data-centric services to processor-
intensive tasks, from systems built from very small and relatively primitive sensors to 
those incorporating powerful computational elements, from embedded systems to ones 
that support a sophisticated interactive user experience, and so on.

We now look at more specific examples of distributed systems to further illustrate 
the diversity and indeed complexity of distributed systems provision today.

1.2.1 Web search

Web search has emerged as a major growth industry in the last decade, with recent 
figures indicating that the global number of searches has risen to over 10 billion per 
calendar month. The task of a web search engine is to index the entire contents of the 
World Wide Web, encompassing a wide range of information styles including web 
pages, multimedia sources and (scanned) books. This is a very complex task, as current 
estimates state that the Web consists of over 63 billion pages and one trillion unique web 



Figure 1.1 Selected application domains and associated networked applications

Finance and commerce The growth of eCommerce as exemplified by companies such as 
Amazon and eBay, and underlying payments technologies such as 
PayPal; the associated emergence of online banking and trading and 
also complex information dissemination systems for financial markets.

The information society The growth of the World Wide Web as a repository of information and 
knowledge; the development of web search engines such as Google 
and Yahoo to search this vast repository; the emergence of digital 
libraries and the large-scale digitization of legacy information sources 
such as books (for example, Google Books); the increasing 
significance of user-generated content through sites such as YouTube, 
Wikipedia and Flickr; the emergence of social networking through 
services such as Facebook and MySpace.

Creative industries and 

entertainment

The emergence of online gaming as a novel and highly interactive form 
of entertainment; the availability of music and film in the home 
through networked media centres and more widely in the Internet via 
downloadable or streaming content; the role of user-generated content 
(as mentioned above) as a new form of creativity, for example via 
services such as YouTube; the creation of new forms of art and enter-
tainment enabled by emergent (including networked) technologies.

Healthcare The growth of health informatics as a discipline with its emphasis on 
online electronic patient records and related issues of privacy; the 
increasing role of telemedicine in supporting remote diagnosis or more 
advanced services such as remote surgery (including collaborative 
working between healthcare teams); the increasing application of 
networking and embedded systems technology in assisted living, for 
example for monitoring the elderly in their own homes.

Education The emergence of e-learning through for example web-based tools 
such as virtual learning environments; associated support for distance 
learning; support for collaborative or community-based learning.

Transport and logistics The use of location technologies such as GPS in route finding systems 
and more general traffic management systems; the modern car itself as 
an example of a complex distributed system (also applies to other 
forms of transport such as aircraft); the development of web-based map 
services such as MapQuest, Google Maps and Google Earth.

Science The emergence of the Grid as a fundamental technology for eScience, 
including the use of complex networks of computers to support the 
storage, analysis and processing of (often very large quantities of) 
scientific data; the associated use of the Grid as an enabling technology 
for worldwide collaboration between groups of scientists. 

Environmental management The use of (networked) sensor technology to both monitor and manage 
the natural environment, for example to provide early warning of 
natural disasters such as earthquakes, floods or tsunamis and to co-
ordinate emergency response; the collation and analysis of global 
environmental parameters to better understand complex natural 
phenomena such as climate change.

4 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS
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addresses. Given that most search engines analyze the entire web content and then carry 
out sophisticated processing on this enormous database, this task itself represents a 
major challenge for distributed systems design.

Google, the market leader in web search technology, has put significant effort into 
the design of a sophisticated distributed system infrastructure to support search (and 
indeed other Google applications and services such as Google Earth). This represents 
one of the largest and most complex distributed systems installations in the history of 
computing and hence demands close examination. Highlights of this infrastructure 
include:

• an underlying physical infrastructure consisting of very large numbers of 
networked computers located at data centres all around the world;

• a distributed file system designed to support very large files and heavily optimized 
for the style of usage required by search and other Google applications (especially 
reading from files at high and sustained rates);

• an associated structured distributed storage system that offers fast access to very 
large datasets;

• a lock service that offers distributed system functions such as distributed locking 
and agreement;

• a programming model that supports the management of very large parallel and 
distributed computations across the underlying physical infrastructure.

Further details on Google’s distributed systems services and underlying communica-
tions support can be found in Chapter 21, a compelling case study of a modern distrib-
uted system in action.

1.2.2 Massively multiplayer online games (MMOGs)

Massively multiplayer online games offer an immersive experience whereby very large 
numbers of users interact through the Internet with a persistent virtual world. Leading 
examples of such games include Sony’s EverQuest II and EVE Online from the Finnish 
company CCP Games. Such worlds have increased significantly in sophistication and 
now include, complex playing arenas (for example EVE, Online consists of a universe 
with over 5,000 star systems) and multifarious social and economic systems. The 
number of players is also rising, with systems able to support over 50,000 simultaneous 
online players (and the total number of players perhaps ten times this figure).

The engineering of MMOGs represents a major challenge for distributed systems 
technologies, particularly because of the need for fast response times to preserve the user 
experience of the game. Other challenges include the real-time propagation of events to 
the many players and maintaining a consistent view of the shared world. This therefore 
provides an excellent example of the challenges facing modern distributed systems 
designers.

A number of solutions have been proposed for the design of massively multiplayer 
online games:

• Perhaps surprisingly, the largest online game, EVE Online, utilises a client-server

architecture where a single copy of the state of the world is maintained on a 
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centralized server and accessed by client programs running on players’ consoles 
or other devices. To support large numbers of clients, the server is a complex 
entity in its own right consisting of a cluster architecture featuring hundreds of 
computer nodes (this client-server approach is discussed in more detail in Section 
1.4 and cluster approaches are discussed in Section 1.3.4). The centralized 
architecture helps significantly in terms of the management of the virtual world 
and the single copy also eases consistency concerns. The goal is then to ensure fast 
response through optimizing network protocols and ensuring a rapid response to 
incoming events. To support this, the load is partitioned by allocating individual 
‘star systems’ to particular computers within the cluster, with highly loaded star 
systems having their own dedicated computer and others sharing a computer. 
Incoming events are directed to the right computers within the cluster by keeping 
track of movement of players between star systems.

• Other MMOGs adopt more distributed architectures where the universe is 
partitioned across a (potentially very large) number of servers that may also be 
geographically distributed. Users are then dynamically allocated a particular 
server based on current usage patterns and also the network delays to the server 
(based on geographical proximity for example). This style of architecture, which 
is adopted by EverQuest, is naturally extensible by adding new servers.

• Most commercial systems adopt one of the two models presented above, but 
researchers are also now looking at more radical architectures that are not based 
on client-server principles but rather adopt completely decentralized approaches 
based on peer-to-peer technology where every participant contributes resources 
(storage and processing) to accommodate the game. Further consideration of peer-
to-peer solutions is deferred until Chapters 2 and 10).

1.2.3 Financial trading

As a final example, we look at distributed systems support for financial trading markets. 
The financial industry has long been at the cutting edge of distributed systems 
technology with its need, in particular, for real-time access to a wide range of 
information sources (for example, current share prices and trends, economic and 
political developments). The industry employs automated monitoring and trading 
applications (see below).

Note that the emphasis in such systems is on the communication and processing 
of items of interest, known as events in distributed systems, with the need also to deliver 
events reliably and in a timely manner to potentially very large numbers of clients who 
have a stated interest in such information items. Examples of such events include a drop 
in a share price, the release of the latest unemployment figures, and so on. This requires 
a very different style of underlying architecture from the styles mentioned above (for 
example client-server), and such systems typically employ what are known as 
distributed event-based systems. We present an illustration of a typical use of such 
systems below and return to this important topic in more depth in Chapter 6.

Figure 1.2 illustrates a typical financial trading system. This shows a series of 
event feeds coming into a given financial institution. Such event feeds share the 
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following characteristics. Firstly, the sources are typically in a variety of formats, such 
as Reuters market data events and FIX events (events following the specific format of 
the Financial Information eXchange protocol), and indeed from different event 
technologies, thus illustrating the problem of heterogeneity as encountered in most 
distributed systems (see also Section 1.5.1). The figure shows the use of adapters which 
translate heterogeneous formats into a common internal format. Secondly, the trading 
system must deal with a variety of event streams, all arriving at rapid rates, and often 
requiring real-time processing to detect patterns that indicate trading opportunities. This 
used to be a manual process but competitive pressures have led to increasing automation 
in terms of what is known as Complex Event Processing (CEP), which offers a way of 
composing event occurrences together into logical, temporal or spatial patterns.

This approach is primarily used to develop customized algorithmic trading 
strategies covering both buying and selling of stocks and shares, in particular looking 
for patterns that indicate a trading opportunity and then automatically responding by 
placing and managing orders. As an example, consider the following script:

WHEN

MSFT price moves outside 2% of MSFT Moving Average

FOLLOWED-BY (

MyBasket moves up by 0.5%

AND

HPQ’s price moves up by 5%

OR

MSFT’s price moves down by 2%

)

)

ALL WITHIN

any 2 minute time period

THEN

BUY MSFT

SELL HPQ
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This script is based on the functionality provided by Apama [www.progress.com], a 
commercial product in the financial world originally developed out of research carried 
out at the University of Cambridge. The script detects a complex temporal sequence 
based on the share prices of Microsoft, HP and a basket of other share prices, resulting 
in decisions to buy or sell particular shares.

This style of technology is increasingly being used in other areas of financial 
systems including the monitoring of trading activity to manage risk (in particular, 
tracking exposure), to ensure compliance with regulations and to monitor for patterns of 
activity that might indicate fraudulent transactions. In such systems, events are typically 
intercepted and passed through what is equivalent to a compliance and risk firewall 
before being processed (see also the discussion of firewalls in Section 1.3.1 below).

1.3 Trends in distributed systems

Distributed systems are undergoing a period of significant change and this can be traced 
back to a number of influential trends:

• the emergence of pervasive networking technology;

• the emergence of ubiquitous computing coupled with the desire to support user 
mobility in distributed systems;

• the increasing demand for multimedia services;

• the view of distributed systems as a utility. 

1.3.1 Pervasive networking and the modern Internet

The modern Internet is a vast interconnected collection of computer networks of many 
different types, with the range of types increasing all the time and now including, for 
example, a wide range of wireless communication technologies such as WiFi, WiMAX, 
Bluetooth (see Chapter 3) and third-generation mobile phone networks. The net result is 
that networking has become a pervasive resource and devices can be connected (if 
desired) at any time and in any place.

Figure 1.3 illustrates a typical portion of the Internet. Programs running on the 
computers connected to it interact by passing messages, employing a common means of 
communication. The design and construction of the Internet communication 
mechanisms (the Internet protocols) is a major technical achievement, enabling a 
program running anywhere to address messages to programs anywhere else and 
abstracting over the myriad of technologies mentioned above.

The Internet is also a very large distributed system. It enables users, wherever they 
are, to make use of services such as the World Wide Web, email and file transfer. 
(Indeed, the Web is sometimes incorrectly equated with the Internet.) The set of services 
is open-ended – it can be extended by the addition of server computers and new types of 
service. The figure shows a collection of intranets – subnetworks operated by companies 
and other organizations and typically protected by firewalls. The role of a firewall is to 
protect an intranet by preventing unauthorized messages from leaving or entering. A 
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firewall is implemented by filtering incoming and outgoing messages. Filtering might 
be done by source or destination, or a firewall might allow only those messages related 
to email and web access to pass into or out of the intranet that it protects. Internet Service 
Providers (ISPs) are companies that provide broadband links and other types of 
connection to individual users and small organizations, enabling them to access services 
anywhere in the Internet as well as providing local services such as email and web 
hosting. The intranets are linked together by backbones. A backbone is a network link 
with a high transmission capacity, employing satellite connections, fibre optic cables 
and other high-bandwidth circuits.

Note that some organizations may not wish to connect their internal networks to 
the Internet at all. For example, police and other security and law enforcement agencies 
are likely to have at least some internal intranets that are isolated from the outside world 
(the most effective firewall possible – the absence of any physical connections to the 
Internet). Firewalls can also be problematic in distributed systems by impeding 
legitimate access to services when resource sharing between internal and external users 
is required. Hence, firewalls must often be complemented by more fine-grained 
mechanisms and policies, as discussed in Chapter 11.

The implementation of the Internet and the services that it supports has entailed 
the development of practical solutions to many distributed system issues (including 
most of those defined in Section 1.5). We shall highlight those solutions throughout the 
book, pointing out their scope and their limitations where appropriate.
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1.3.2 Mobile and ubiquitous computing

Technological advances in device miniaturization and wireless networking have led 
increasingly to the integration of small and portable computing devices into distributed 
systems. These devices include:

• Laptop computers.

• Handheld devices, including mobile phones, smart phones, GPS-enabled devices, 
pagers, personal digital assistants (PDAs), video cameras and digital cameras.

• Wearable devices, such as smart watches with functionality similar to a PDA.

• Devices embedded in appliances such as washing machines, hi-fi systems, cars 
and refrigerators.

The portability of many of these devices, together with their ability to connect 
conveniently to networks in different places, makes mobile computing possible. Mobile 
computing is the performance of computing tasks while the user is on the move, or 
visiting places other than their usual environment. In mobile computing, users who are 
away from their ‘home’ intranet (the intranet at work, or their residence) are still 
provided with access to resources via the devices they carry with them. They can 
continue to access the Internet; they can continue to access resources in their home 
intranet; and there is increasing provision for users to utilize resources such as printers 
or even sales points that are conveniently nearby as they move around. The latter is also 
known as location-aware or context-aware computing. Mobility introduces a number of 
challenges for distributed systems, including the need to deal with variable connectivity 
and indeed disconnection, and the need to maintain operation in the face of device 
mobility (see the discussion on mobility transparency in Section 1.5.7).

Ubiquitous computing is the harnessing of many small, cheap computational 
devices that are present in users’ physical environments, including the home, office and 
even natural settings. The term ‘ubiquitous’ is intended to suggest that small computing 
devices will eventually become so pervasive in everyday objects that they are scarcely 
noticed. That is, their computational behaviour will be transparently and intimately tied 
up with their physical function. 

The presence of computers everywhere only becomes useful when they can 
communicate with one another. For example, it may be convenient for users to control 
their washing machine or their entertainment system from their phone or a ‘universal 
remote control’ device in the home. Equally, the washing machine could notify the user 
via a smart badge or phone when the washing is done. 

Ubiquitous and mobile computing overlap, since the mobile user can in principle 
benefit from computers that are everywhere. But they are distinct, in general. Ubiquitous 
computing could benefit users while they remain in a single environment such as the 
home or a hospital. Similarly, mobile computing has advantages even if it involves only 
conventional, discrete computers and devices such as laptops and printers.

Figure 1.4 shows a user who is visiting a host organization. The figure shows the 
user’s home intranet and the host intranet at the site that the user is visiting. Both 
intranets are connected to the rest of the Internet. 

The user has access to three forms of wireless connection. Their laptop has a 
means of connecting to the host’s wireless LAN. This network provides coverage of a 
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few hundred  metres (a floor of a building, say). It connects to the rest of the host intranet 
via a gateway or access point. The user also has a mobile (cellular) telephone, which is 
connected to the Internet. The phone gives access to the Web and other Internet services, 
constrained only by what can be presented on its small display, and may also provide 
location information via built-in GPS functionality. Finally, the user carries a digital 
camera, which can communicate over a personal area wireless network (with range up 
to about 10m) with a device such as a printer.

 With a suitable system infrastructure, the user can perform some simple tasks in 
the host site using the devices they carry. While journeying to the host site, the user can 
fetch the latest stock prices from a web server using the mobile phone and can also use 
the built-in GPS and route finding software to get directions to the site location. During 
the meeting with their hosts, the user can show them a recent photograph by sending it 
from the digital camera directly to a suitably enabled (local) printer or projector in the 
meeting room (discovered using a location service). This requires only the wireless link 
between the camera and printer or projector. And they can in principle send a document 
from their laptop to the same printer, utilizing the wireless LAN and wired Ethernet links 
to the printer.

This scenario demonstrates the need to support spontaneous interoperation, 

whereby associations between devices are routinely created and destroyed – for example 
by locating and using the host’s devices, such as printers. The main challenge applying 
to such situations is to make interoperation fast and convenient (that is, spontaneous) 
even though the user is in an environment they may never have visited before. That 
means enabling the visitor’s device to communicate on the host network, and 
associating the device with suitable local services – a process called service discovery.

Mobile and ubiquitous computing represent lively areas of research, and the 
various dimensions mentioned above are discussed in depth in Chapter 19.
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1.3.3 Distributed multimedia systems

Another important trend is the requirement to support multimedia services in distributed 
systems. Multimedia support can usefully be defined as the ability to support a range of 
media types in an integrated manner. One can expect a distributed system to support the 
storage, transmission and presentation of what are often referred to as discrete media 
types, such as pictures or text messages. A distributed multimedia system should be able 
to perform the same functions for continuous media types such as audio and video; that 
is, it should be able to store and locate audio or video files, to transmit them across the 
network (possibly in real time as the streams emerge from a video camera), to support 
the presentation of the media types to the user and optionally also to share the media 
types across a group of users.

The crucial characteristic of continuous media types is that they include a 
temporal dimension, and indeed, the integrity of the media type is fundamentally 
dependent on preserving real-time relationships between elements of a media type. For 
example, in a video presentation it is necessary to preserve a given throughput in terms 
of frames per second and, for real-time streams, a given maximum delay or latency for 
the delivery of frames (this is one example of quality of service, discussed in more detail 
in Section 1.5.8).

The benefits of distributed multimedia computing are considerable in that a wide 
range of new (multimedia) services and applications can be provided on the desktop, 
including access to live or pre-recorded television broadcasts, access to film libraries 
offering video-on-demand services, access to music libraries, the provision of audio and 
video conferencing facilities and integrated telephony features including IP telephony 
or related technologies such as Skype, a peer-to-peer alternative to IP telephony (the 
distributed system infrastructure underpinning Skype is discussed in Section 4.5.2). 
Note that this technology is revolutionary in challenging manufacturers to rethink many 
consumer devices. For example, what is the core home entertainment device of the 
future – the computer, the television, or the games console?

Webcasting is an application of distributed multimedia technology. Webcasting is 
the ability to broadcast continuous media, typically audio or video, over the Internet. It 
is now commonplace for major sporting or music events to be broadcast in this way, 
often attracting large numbers of viewers (for example, the Live8 concert in 2005 
attracted around 170,000 simultaneous users at its peak).

Distributed multimedia applications such as webcasting place considerable 
demands on the underlying distributed infrastructure in terms of:

• providing support for an (extensible) range of encoding and encryption formats, 
such as the MPEG series of standards (including for example the popular MP3 
standard otherwise known as MPEG-1, Audio Layer 3) and HDTV;

• providing a range of mechanisms to ensure that the desired quality of service can 
be met;

• providing associated resource management strategies, including appropriate 
scheduling policies to support the desired quality of service;

• providing adaptation strategies to deal with the inevitable situation in open 
systems where quality of service cannot be met or sustained.

Further discussion of such mechanisms can be found in Chapter 20.
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1.3.4 Distributed computing as a utility

With the increasing maturity of distributed systems infrastructure, a number of 
companies are promoting the view of distributed resources as a commodity or utility, 
drawing the analogy between distributed resources and other utilities such as water or 
electricity. With this model, resources are provided by appropriate service suppliers and 
effectively rented rather than owned by the end user. This model applies to both physical 
resources and more logical services:

• Physical resources such as storage and processing can be made available to 
networked computers, removing the need to own such resources on their own. At 
one end of the spectrum, a user may opt for a remote storage facility for file 
storage requirements (for example, for multimedia data such as photographs, 
music or video) and/or for backups. Similarly, this approach would enable a user 
to rent one or more computational nodes, either to meet their basic computing 
needs or indeed to perform distributed computation. At the other end of the 
spectrum, users can access sophisticated data centres (networked facilities 
offering access to repositories of often large volumes of data to users or 
organizations) or indeed computational infrastructure using the sort of services 
now provided by companies such as Amazon and Google. Operating system 
virtualization is a key enabling technology for this approach, implying that users 
may actually be provided with services by a virtual rather than a physical node. 
This offers greater flexibility to the service supplier in terms of resource 
management (operating system virtualization is discussed in more detail in 
Chapter 7).

• Software services (as defined in Section 1.4) can also be made available across the 
global Internet using this approach. Indeed, many companies now offer a 
comprehensive range of services for effective rental, including services such as 
email and distributed calendars. Google, for example, bundles a range of business 
services under the banner Google Apps [www.google.com I]. This development 
is enabled by agreed standards for software services, for example as provided by 
web services (see Chapter 9). 

The term cloud computing is used to capture this vision of computing as a utility. A 
cloud is defined as a set of Internet-based application, storage and computing services 
sufficient to support most users’ needs, thus enabling them to largely or totally dispense 
with local data storage and application software (see Figure 1.5). The term also 
promotes a view of everything as a service, from physical or virtual infrastructure 
through to software, often paid for on a per-usage basis rather than purchased. Note that 
cloud computing reduces requirements on users’ devices, allowing very simple desktop 
or portable devices to access a potentially wide range of resources and services.

Clouds are generally implemented on cluster computers to provide the necessary 
scale and performance required by such services. A cluster computer is a set of 
interconnected computers that cooperate closely to provide a single, integrated high-
performance computing capability. Building on projects such as the NOW (Network of 
Workstations) Project at Berkeley [Anderson et al. 1995, now.cs.berkeley.edu] and 
Beowulf at NASA [www.beowulf.org], the trend is towards utilizing commodity 
hardware both for the computers and for the interconnecting networks. Most clusters 
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consist of commodity PCs running a standard (sometimes cut-down) version of an 
operating system such as Linux, interconnected by a local area network. Companies 
such as HP, Sun and IBM offer blade solutions. Blade servers are minimal 
computational elements containing for example processing and (main memory) storage 
capabilities. A blade system consists of a potentially large number of blade servers 
contained within a blade enclosure. Other elements such as power, cooling, persistent 
storage (disks), networking and displays, are provided either by the enclosure or through 
virtualized solutions (discussed in Chapter 7). Through this solution, individual blade 
servers can be much smaller and also cheaper to produce than commodity PCs. 

The overall goal of cluster computers is to provide a range of cloud services, 
including high-performance computing capabilities, mass storage (for example through 
data centres), and richer application services such as web search (Google, for example 
relies on a massive cluster computer architecture to implement its search engine and 
other services, as discussed in Chapter 21).

Grid computing (as discussed in Chapter 9, Section 9.7.2) can also be viewed as 
a form of cloud computing. The terms are largely synonymous and at times ill-defined, 
but Grid computing can generally be viewed as a precursor to the more general paradigm 
of cloud computing with a bias towards support for scientific applications.

Figure 1.5 Cloud computing
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1.4 Focus on resource sharing

Users are so accustomed to the benefits of resource sharing that they may easily 
overlook their significance. We routinely share hardware resources such as printers, data 
resources such as files, and resources with more specific functionality such as search 
engines. 
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Looked at from the point of view of hardware provision, we share equipment such 
as printers and disks to reduce costs. But of far greater significance to users is the sharing 
of the higher-level resources that play a part in their applications and in their everyday 
work and social activities. For example, users are concerned with sharing data in the 
form of a shared database or a set of web pages – not the disks and processors on which 
they are implemented. Similarly, users think in terms of shared resources such as a 
search engine or a currency converter, without regard for the server or servers that 
provide these.

 In practice, patterns of resource sharing vary widely in their scope and in how 
closely users work together. At one extreme, a search engine on the Web provides a 
facility to users throughout the world, users who need never come into contact with one 
another directly. At the other extreme, in computer-supported cooperative working

(CSCW), a group of users who cooperate directly share resources such as documents in 
a small, closed group. The pattern of sharing and the geographic distribution of 
particular users determines what mechanisms the system must supply to coordinate 
users’ actions.

We use the term service for a distinct part of a computer system that manages a 
collection of related resources and presents their functionality to users and applications. 
For example, we access shared files through a file service; we send documents to 
printers through a printing service; we buy goods through an electronic payment service. 
The only access we have to the service is via the set of operations that it exports. For 
example, a file service provides read, write and delete operations on files.

The fact that services restrict resource access to a well-defined set of operations is 
in part standard software engineering practice. But it also reflects the physical 
organization of distributed systems. Resources in a distributed system are physically 
encapsulated within computers and can only be accessed from other computers by 
means of communication. For effective sharing, each resource must be managed by a 
program that offers a communication interface enabling the resource to be accessed and 
updated reliably and consistently.

The term server is probably familiar to most readers. It refers to a running program 
(a process) on a networked computer that accepts requests from programs running on 
other computers to perform a service and responds appropriately. The requesting 
processes are referred to as clients, and the overall approach is known as client-server 

computing. In this approach, requests are sent in messages from clients to a server and 
replies are sent in messages from the server to the clients. When the client sends a 
request for an operation to be carried out, we say that the client invokes an operation

upon the server. A complete interaction between a client and a server, from the point 
when the client sends its request to when it receives the server’s response, is called a 
remote invocation.

The same process may be both a client and a server, since servers sometimes 
invoke operations on other servers. The terms ‘client’ and ‘server’ apply only to the roles 
played in a single request. Clients are active (making requests) and servers are passive 
(only waking up when they receive requests); servers run continuously, whereas clients 
last only as long as the applications of which they form a part.

 Note that while by default the terms ‘client’ and ‘server’ refer to processes rather 
than the computers that they execute upon, in everyday parlance those terms also refer 
to the computers themselves. Another distinction, which we shall discuss in Chapter 5, 
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is that in a distributed system written in an object-oriented language, resources may be 
encapsulated as objects and accessed by client objects, in which case we speak of a client 

object invoking a method upon a server object.
Many, but certainly not all, distributed systems can be constructed entirely in the 

form of interacting clients and servers. The World Wide Web, email and networked 
printers all fit this model. We discuss alternatives to client-server systems in Chapter 2.

An executing web browser is an example of a client. The web browser 
communicates with a web server, to request web pages from it. We consider the Web 
and its associated client-server architecture in more detail in Section 1.6.

1.5 Challenges

The examples in Section 1.2 are intended to illustrate the scope of distributed systems 
and to suggest the issues that arise in their design. In many of them, significant 
challenges were encountered and overcome. As the scope and scale of distributed 
systems and applications is extended the same and other challenges are likely to be 
encountered. In this section we describe the main challenges.

1.5.1 Heterogeneity 

The Internet enables users to access services and run applications over a heterogeneous 
collection of computers and networks. Heterogeneity (that is, variety and difference) 
applies to all of the following:

• networks;

• computer hardware;

• operating systems;

• programming languages;

• implementations by different developers.

Although the Internet consists of many different sorts of network (illustrated in Figure 
1.3), their differences are masked by the fact that all of the computers attached to them 
use the Internet protocols to communicate with one another. For example, a computer 
attached to an Ethernet has an implementation of the Internet protocols over the 
Ethernet, whereas a computer on a different sort of network will need an implementation 
of the Internet protocols for that network. Chapter 3 explains how the Internet protocols 
are implemented over a variety of different networks.

Data types such as integers may be represented in different ways on different sorts 
of hardware – for example, there are two alternatives for the byte ordering of integers. 
These differences in representation must be dealt with if messages are to be exchanged 
between programs running on different hardware. 

Although the operating systems of all computers on the Internet need to include 
an implementation of the Internet protocols, they do not necessarily all provide the same 
application programming interface to these protocols. For example, the calls for 
exchanging messages in UNIX are different from the calls in Windows.
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Different programming languages use different representations for characters and 
data structures such as arrays and records. These differences must be addressed if 
programs written in different languages are to be able to communicate with one another.

Programs written by different developers cannot communicate with one another 
unless they use common standards, for example, for network communication and the 
representation of primitive data items and data structures in messages. For this to 
happen, standards need to be agreed and adopted – as have the Internet protocols.

Middleware  •  The term middleware applies to a software layer that provides a 
programming abstraction as well as masking the heterogeneity of the underlying 
networks, hardware, operating systems and programming languages. The Common 
Object Request Broker (CORBA), which is described in Chapters 4, 5 and 8, is an 
example. Some middleware, such as Java Remote Method Invocation (RMI) (see 
Chapter 5), supports only a single programming language. Most middleware is 
implemented over the Internet protocols, which themselves mask the differences of the 
underlying networks, but all middleware deals with the differences in operating systems 
and hardware – how this is done is the main topic of Chapter 4.

In addition to solving the problems of heterogeneity, middleware provides a 
uniform computational model for use by the programmers of servers and distributed 
applications. Possible models include remote object invocation, remote event 
notification, remote SQL access and distributed transaction processing. For example, 
CORBA provides remote object invocation, which allows an object in a program 
running on one computer to invoke a method of an object in a program running on 
another computer. Its implementation hides the fact that messages are passed over a 
network in order to send the invocation request and its reply. 

Heterogeneity and mobile code  •  The term mobile code is used to refer to program code 
that can be transferred from one computer to another and run at the destination – Java 
applets are an example. Code suitable for running on one computer is not necessarily 
suitable for running on another because executable programs are normally specific both 
to the instruction set and to the host operating system. 

The virtual machine approach provides a way of making code executable on a 
variety of host computers: the compiler for a particular language generates code for a 
virtual machine instead of a particular hardware order code. For example, the Java 
compiler produces code for a Java virtual machine, which executes it by interpretation. 
The Java virtual machine needs to be implemented once for each type of computer to 
enable Java programs to run. 

Today, the most commonly used form of mobile code is the inclusion Javascript 
programs in some web pages loaded into client browsers. This extension of Web 
technology is discussed further in Section 1.6.

1.5.2 Openness

The openness of a computer system is the characteristic that determines whether the 
system can be extended and reimplemented in various ways. The openness of distributed 
systems is determined primarily by the degree to which new resource-sharing services 
can be added and be made available for use by a variety of client programs.
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Openness cannot be achieved unless the specification and documentation of the 
key software interfaces of the components of a system are made available to software 
developers. In a word, the key interfaces are published. This process is akin to the 
standardization of interfaces, but it often bypasses official standardization procedures, 
which are usually cumbersome and slow-moving. 

However, the publication of interfaces is only the starting point for adding and 
extending services in a distributed system. The challenge to designers is to tackle the 
complexity of distributed systems consisting of many components engineered by 
different people. 

The designers of the Internet protocols introduced a series of documents called 
‘Requests For Comments’, or RFCs, each of which is known by a number. The 
specifications of the Internet communication protocols were published in this series in 
the early 1980s, followed by specifications for applications that run over them, such as 
file transfer, email and telnet by the mid-1980s. This practice has continued and forms 
the basis of the technical documentation of the Internet. This series includes discussions 
as well as the specifications of protocols. Copies can be obtained from [www.ietf.org].
Thus the publication of the original Internet communication protocols has enabled a 
variety of Internet systems and applications including the Web to be built. RFCs are not 
the only means of publication. For example, the World Wide Web Consortium (W3C) 
develops and publishes standards related to the working of the Web [www.w3.org]. 

Systems that are designed to support resource sharing in this way are termed open 

distributed systems to emphasize the fact that they are extensible. They may be extended 
at the hardware level by the addition of computers to the network and at the software 
level by the introduction of new services and the reimplementation of old ones, enabling 
application programs to share resources. A further benefit that is often cited for open 
systems is their independence from individual vendors. 

 To summarize:

• Open systems are characterized by the fact that their key interfaces are published.

• Open distributed systems are based on the provision of a uniform communication 
mechanism and published interfaces for access to shared resources.

• Open distributed systems can be constructed from heterogeneous hardware and 
software, possibly from different vendors. But the conformance of each 
component to the published standard must be carefully tested and verified if the 
system is to work correctly.

1.5.3 Security

Many of the information resources that are made available and maintained in distributed 
systems have a high intrinsic value to their users. Their security is therefore of 
considerable importance. Security for information resources has three components: 
confidentiality (protection against disclosure to unauthorized individuals), integrity 
(protection against alteration or corruption), and availability (protection against 
interference with the means to access the resources).

Section 1.1 pointed out that although the Internet allows a program in one 
computer to communicate with a program in another computer irrespective of its 
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location, security risks are associated with allowing free access to all of the resources in 
an intranet. Although a firewall can be used to form a barrier around an intranet, 
restricting the traffic that can enter and leave, this does not deal with ensuring the 
appropriate use of resources by users within an intranet, or with the appropriate use of 
resources in the Internet, that are not protected by firewalls. 

In a distributed system, clients send requests to access data managed by servers, 
which involves sending information in messages over a network. For example: 

1. A doctor might request access to hospital patient data or send additions to that data.

2. In electronic commerce and banking, users send their credit card numbers across 
the Internet. 

In both examples, the challenge is to send sensitive information in a message over a 
network in a secure manner. But security is not just a matter of concealing the contents 
of messages – it also involves knowing for sure the identity of the user or other agent on 
whose behalf a message was sent. In the first example, the server needs to know that the 
user is really a doctor, and in the second example, the user needs to be sure of the identity 
of the shop or bank with which they are dealing. The second challenge here is to identify 
a remote user or other agent correctly. Both of these challenges can be met by the use of 
encryption techniques developed for this purpose. They are used widely in the Internet 
and are discussed in Chapter 11.

However, the following two security challenges have not yet been fully met: 

Denial of service attacks: Another security problem is that a user may wish to 
disrupt a service for some reason. This can be achieved by bombarding the service 
with such a large number of pointless requests that the serious users are unable to use 
it. This is called a denial of service attack. There have been several denial of service 
attacks on well-known web services. Currently such attacks are countered by 
attempting to catch and punish the perpetrators after the event, but that is not a 
general solution to the problem. Countermeasures based on improvements in the 
management of networks are under development, and these will be touched on in 
Chapter 3. 

Security of mobile code: Mobile code needs to be handled with care. Consider 
someone who receives an executable program as an electronic mail attachment: the 
possible effects of running the program are unpredictable; for example, it may seem 
to display an interesting picture but in reality it may access local resources, or perhaps 
be part of a denial of service attack. Some measures for securing mobile code are 
outlined in Chapter 11.

1.5.4 Scalability 

Distributed systems operate effectively and efficiently at many different scales, ranging 
from a small intranet to the Internet. A system is described as scalable if it will remain 
effective when there is a significant increase in the number of resources and the number 
of users. The number of computers and servers in the Internet has increased 
dramatically. Figure 1.6 shows the increasing number of computers and web servers 
during the 12-year history of the Web up to 2005 [zakon.org]. It is interesting to note the 
significant growth in both computers and web servers in this period, but also that the 



Figure 1.6 Growth of the Internet (computers and web servers)

Date Computers Web servers Percentage

1993, July 1,776,000 130 0.008

1995, July 6,642,000 23,500 0.4

1997, July 19,540,000 1,203,096 6

1999, July 56,218,000 6,598,697 12

2001, July 125,888,197 31,299,592 25

2003, July ~200,000,000 42,298,371 21

2005, July 353,284,187 67,571,581 19
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relative percentage is flattening out – a trend that is explained by the growth of fixed and 
mobile personal computing. One web server may also increasingly be hosted on 
multiple computers.

The design of scalable distributed systems presents the following challenges:

Controlling the cost of physical resources: As the demand for a resource grows, it 
should be possible to extend the system, at reasonable cost, to meet it. For example, 
the frequency with which files are accessed in an intranet is likely to grow as the 
number of users and computers increases. It must be possible to add server computers 
to avoid the performance bottleneck that would arise if a single file server had to 
handle all file access requests. In general, for a system with n users to be scalable, the 
quantity of physical resources required to support them should be at most O(n) – that 
is, proportional to n. For example, if a single file server can support 20 users, then 
two such servers should be able to support 40 users. Although that sounds an obvious 
goal, it is not necessarily easy to achieve in practice, as we show in Chapter 12.

Controlling the performance loss: Consider the management of a set of data whose 
size is proportional to the number of users or resources in the system – for example, 
the table with the correspondence between the domain names of computers and their 
Internet addresses held by the Domain Name System, which is used mainly to look 
up DNS names such as www.amazon.com. Algorithms that use hierarchic structures 
scale better than those that use linear structures. But even with hierarchic structures 
an increase in size will result in some loss in performance: the time taken to access 
hierarchically structured data is O(log n), where n is the size of the set of data. For a 
system to be scalable, the maximum performance loss should be no worse than this.

Preventing software resources running out: An example of lack of scalability is 
shown by the numbers used as Internet (IP) addresses (computer addresses in the 
Internet). In the late 1970s, it was decided to use 32 bits for this purpose, but as will 
be explained in Chapter 3, the supply of available Internet addresses is running out. 
For this reason, a new version of the protocol with 128-bit Internet addresses is being 
adopted, and this will require modifications to many software components. To be fair 
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to the early designers of the Internet, there is no correct solution to this problem. It is 
difficult to predict the demand that will be put on a system years ahead. Moreover, 
overcompensating for future growth may be worse than adapting to a change when 
we are forced to – larger Internet addresses will occupy extra space in messages and 
in computer storage. 

Avoiding performance bottlenecks: In general, algorithms should be decentralized 
to avoid having performance bottlenecks. We illustrate this point with reference to 
the predecessor of the Domain Name System, in which the name table was kept in a 
single master file that could be downloaded to any computers that needed it. That was 
fine when there were only a few hundred computers in the Internet, but it soon 
became a serious performance and administrative bottleneck. The Domain Name 
System removed this bottleneck by partitioning the name table between servers 
located throughout the Internet and administered locally – see Chapters 3 and 13. 

Some shared resources are accessed very frequently; for example, many users 
may access the same web page, causing a decline in performance. We shall see in 
Chapter 2 that caching and replication may be used to improve the performance of 
resources that are very heavily used.

Ideally, the system and application software should not need to change when the scale 
of the system increases, but this is difficult to achieve. The issue of scale is a dominant 
theme in the development of distributed systems. The techniques that have been 
successful are discussed extensively in this book. They include the use of replicated data 
(Chapter 18), the associated technique of caching (Chapters 2 and 12) and the 
deployment of multiple servers to handle commonly performed tasks, enabling several 
similar tasks to be performed concurrently.

1.5.5 Failure handling

Computer systems sometimes fail. When faults occur in hardware or software, programs 
may produce incorrect results or may stop before they have completed the intended 
computation. We shall discuss and classify a range of possible failure types that can 
occur in the processes and networks that comprise a distributed system in Chapter 2. 

Failures in a distributed system are partial – that is, some components fail while 
others continue to function. Therefore the handling of failures is particularly difficult. 
The following techniques for dealing with failures are discussed throughout the book: 

Detecting failures: Some failures can be detected. For example, checksums can be 
used to detect corrupted data in a message or a file. Chapter 2 explains that it is 
difficult or even impossible to detect some other failures, such as a remote crashed 
server in the Internet. The challenge is to manage in the presence of failures that 
cannot be detected but may be suspected. 

Masking failures: Some failures that have been detected can be hidden or made less 
severe. Two examples of hiding failures:

1. Messages can be retransmitted when they fail to arrive. 

2. File data can be written to a pair of disks so that if one is corrupted, the other may 
still be correct. 
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Just dropping a message that is corrupted is an example of making a fault less severe 
– it could be retransmitted. The reader will probably realize that the techniques 
described for hiding failures are not guaranteed to work in the worst cases; for 
example, the data on the second disk may be corrupted too, or the message may not 
get through in a reasonable time however often it is retransmitted.

Tolerating failures: Most of the services in the Internet do exhibit failures – it would 
not be practical for them to attempt to detect and hide all of the failures that might 
occur in such a large network with so many components. Their clients can be 
designed to tolerate failures, which generally involves the users tolerating them as 
well. For example, when a web browser cannot contact a web server, it does not make 
the user wait for ever while it keeps on trying – it informs the user about the problem, 
leaving them free to try again later. Services that tolerate failures are discussed in the 
paragraph on redundancy below.

Recovery from failures: Recovery involves the design of software so that the state of 
permanent data can be recovered or ‘rolled back’ after a server has crashed. In 
general, the computations performed by some programs will be incomplete when a 
fault occurs, and the permanent data that they update (files and other material stored 
in permanent storage) may not be in a consistent state. Recovery is described in 
Chapter 17.

Redundancy: Services can be made to tolerate failures by the use of redundant 
components. Consider the following examples: 

1. There should always be at least two different routes between any two routers in 
the Internet. 

2. In the Domain Name System, every name table is replicated in at least two 
different servers. 

3. A database may be replicated in several servers to ensure that the data remains 
accessible after the failure of any single server; the servers can be designed to 
detect faults in their peers; when a fault is detected in one server, clients are 
redirected to the remaining servers.

The design of effective techniques for keeping replicas of rapidly changing data up-
to-date without excessive loss of performance is a challenge. Approaches are 
discussed in Chapter 18.

Distributed systems provide a high degree of availability in the face of hardware faults. 
The availability of a system is a measure of the proportion of time that it is available for 
use. When one of the components in a distributed system fails, only the work that was 
using the failed component is affected. A user may move to another computer if the one 
that they were using fails; a server process can be started on another computer.

1.5.6 Concurrency

Both services and applications provide resources that can be shared by clients in a 
distributed system. There is therefore a possibility that several clients will attempt to 
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access a shared resource at the same time. For example, a data structure that records bids 
for an auction may be accessed very frequently when it gets close to the deadline time. 

The process that manages a shared resource could take one client request at a time. 
But that approach limits throughput. Therefore services and applications generally allow 
multiple client requests to be processed concurrently. To make this more concrete, 
suppose that each resource is encapsulated as an object and that invocations are executed 
in concurrent threads. In this case it is possible that several threads may be executing 
concurrently within an object, in which case their operations on the object may conflict 
with one another and produce inconsistent results. For example, if two concurrent bids 
at an auction are ‘Smith: $122’ and ‘Jones: $111’, and the corresponding operations are 
interleaved without any control, then they might get stored as ‘Smith: $111’ and ‘Jones: 
$122’.

 The moral of this story is that any object that represents a shared resource in a 
distributed system must be responsible for ensuring that it operates correctly in a 
concurrent environment. This applies not only to servers but also to objects in 
applications. Therefore any programmer who takes an implementation of an object that 
was not intended for use in a distributed system must do whatever is necessary to make 
it safe in a concurrent environment.

For an object to be safe in a concurrent environment, its operations must be 
synchronized in such a way that its data remains consistent. This can be achieved by 
standard techniques such as semaphores, which are used in most operating systems. This 
topic and its extension to collections of distributed shared objects are discussed in 
Chapters 7 and 17.

1.5.7 Transparency

Transparency is defined as the concealment from the user and the application 
programmer of the separation of components in a distributed system, so that the system 
is perceived as a whole rather than as a collection of independent components. The 
implications of transparency are a major influence on the design of the system software.

The ANSA Reference Manual [ANSA 1989] and the International Organization 
for Standardization’s Reference Model for Open Distributed Processing (RM-ODP) 
[ISO 1992] identify eight forms of transparency. We have paraphrased the original 
ANSA definitions, replacing their migration transparency with our own mobility 
transparency, whose scope is broader:

Access transparency enables local and remote resources to be accessed using 
identical operations.

Location transparency enables resources to be accessed without knowledge of their 
physical or network location (for example, which building or IP address).

Concurrency transparency enables several processes to operate concurrently using 
shared resources without interference between them.
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Replication transparency enables multiple instances of resources to be used to 
increase reliability and performance without knowledge of the replicas by users or 
application programmers.

Failure transparency enables the concealment of faults, allowing users and 
application programs to complete their tasks despite the failure of hardware or 
software components.

Mobility transparency allows the movement of resources and clients within a system 
without affecting the operation of users or programs.

Performance transparency allows the system to be reconfigured to improve 
performance as loads vary.

Scaling transparency allows the system and applications to expand in scale without 
change to the system structure or the application algorithms.

The two most important transparencies are access and location transparency; their 
presence or absence most strongly affects the utilization of distributed resources. They 
are sometimes referred to together as network transparency.

As an illustration of access transparency, consider a graphical user interface with 
folders, which is the same whether the files inside the folder are local or remote. Another 
example is an API for files that uses the same operations to access both local and remote 
files (see Chapter 12). As an example of a lack of access transparency, consider a 
distributed system that does not allow you to access files on a remote computer unless 
you make use of the ftp program to do so.

Web resource names or URLs are location-transparent because the part of the 
URL that identifies a web server domain name refers to a computer name in a domain, 
rather than to an Internet address. However, URLs are not mobility-transparent, because 
someone’s personal web page cannot move to their new place of work in a different 
domain – all of the links in other pages will still point to the original page.

In general, identifiers such as URLs that include the domain names of computers 
prevent replication transparency. Although the DNS allows a domain name to refer to 
several computers, it picks just one of them when it looks up a name. Since a replication 
scheme generally needs to be able to access all of the participating computers, it would 
need to access each of the DNS entries by name. 

As an illustration of the presence of network transparency, consider the use of an 
electronic mail address such as Fred.Flintstone@stoneit.com. The address consists of a 
user’s name and a domain name. Sending mail to such a user does not involve knowing 
their physical or network location. Nor does the procedure to send an email message 
depend upon the location of the recipient. Thus electronic mail within the Internet 
provides both location and access transparency (that is, network transparency). 

Failure transparency can also be illustrated in the context of electronic mail, which 
is eventually delivered, even when servers or communication links fail. The faults are 
masked by attempting to retransmit messages until they are successfully delivered, even 
if it takes several days. Middleware generally converts the failures of networks and 
processes into programming-level exceptions (see Chapter 5 for an explanation). 

To illustrate mobility transparency, consider the case of mobile phones. Suppose 
that both caller and callee are travelling by train in different parts of a country, moving 
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from one environment (cell) to another. We regard the caller’s phone as the client and 
the callee’s phone as a resource. The two phone users making the call are unaware of the 
mobility of the phones (the client and the resource) between cells.

Transparency hides and renders anonymous the resources that are not of direct 
relevance to the task in hand for users and application programmers. For example, it is 
generally desirable for similar hardware resources to be allocated interchangeably to 
perform a task – the identity of a processor used to execute a process is generally hidden 
from the user and remains anonymous. As pointed out in Section 1.3.2, this may not 
always be what is required: for example, a traveller who attaches a laptop computer to 
the local network in each office visited should make use of local services such as the 
send mail service, using different servers at each location. Even within a building, it is 
normal to arrange for a document to be printed at a particular, named printer: usually one 
that is near to the user. 

1.5.8 Quality of service

Once users are provided with the functionality that they require of a service, such as the 
file service in a distributed system, we can go on to ask about the quality of the service 
provided. The main nonfunctional properties of systems that affect the quality of the 
service experienced by clients and users are reliability, security and performance.
Adaptability to meet changing system configurations and resource availability has been 
recognized as a further important aspect of service quality. 

Reliability and security issues are critical in the design of most computer systems. 
The performance aspect of quality of service was originally defined in terms of 
responsiveness and computational throughput, but it has been redefined in terms of 
ability to meet timeliness guarantees, as discussed in the following paragraphs.

Some applications, including multimedia applications, handle time-critical data – 
streams of data that are required to be processed or transferred from one process to 
another at a fixed rate. For example, a movie service might consist of a client program 
that is retrieving a film from a video server and presenting it on the user’s screen. For a 
satisfactory result the successive frames of video need to be displayed to the user within 
some specified time limits. 

In fact, the abbreviation QoS has effectively been commandeered to refer to the 
ability of systems to meet such deadlines. Its achievement depends upon the availability 
of the necessary computing and network resources at the appropriate times. This implies 
a requirement for the system to provide guaranteed computing and communication 
resources that are sufficient to enable applications to complete each task on time (for 
example, the task of displaying a frame of video). 

The networks commonly used today have high performance – for example, BBC 
iPlayer generally performs acceptably – but when networks are heavily loaded their 
performance can deteriorate, and no guarantees are provided. QoS applies to operating 
systems as well as networks. Each critical resource must be reserved by the applications 
that require QoS, and there must be resource managers that provide guarantees. 
Reservation requests that cannot be met are rejected. These issues will be addressed 
further in Chapter 20.
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1.6 Case study: The World Wide Web

The World Wide Web [www.w3.org I, Berners-Lee 1991] is an evolving system for 
publishing and accessing resources and services across the Internet. Through commonly 
available web browsers, users retrieve and view documents of many types, listen to 
audio streams and view video streams, and interact with an unlimited set of services.

The Web began life at the European centre for nuclear research (CERN), 
Switzerland, in 1989 as a vehicle for exchanging documents between a community of 
physicists connected by the Internet [Berners-Lee 1999]. A key feature of the Web is that 
it provides a hypertext structure among the documents that it stores, reflecting the users’ 
requirement to organize their knowledge. This means that documents contain links (or 
hyperlinks) – references to other documents and resources that are also stored in the Web. 

It is fundamental to the user’s experience of the Web that when they encounter a given 
image or piece of text within a document, this will frequently be accompanied by links to 
related documents and other resources. The structure of links can be arbitrarily complex and 
the set of resources that can be added is unlimited – the ‘web’ of links is indeed world-wide. 
Bush [1945] conceived of hypertextual structures over 50 years ago; it was with the 
development of the Internet that this idea could be manifested on a world-wide scale. 

The Web is an open system: it can be extended and implemented in new ways 
without disturbing its existing functionality (see Section 1.5.2). First, its operation is 
based on communication standards and document or content standards that are freely 
published and widely implemented. For example, there are many types of browser, each 
in many cases implemented on several platforms; and there are many implementations 
of web servers. Any conformant browser can retrieve resources from any conformant 
server. So users have access to browsers on the majority of the devices that they use, 
from mobile phones to desktop computers.

Second, the Web is open with respect to the types of resource that can be published 
and shared on it. At its simplest, a resource on the Web is a web page or some other type 
of content that can be presented to the user, such as media files and documents in 
Portable Document Format. If somebody invents, say, a new image-storage format, then 
images in this format can immediately be published on the Web. Users require a means 
of viewing images in this new format, but browsers are designed to accommodate new 
content-presentation functionality in the form of ‘helper’ applications and ‘plug-ins’.

The Web has moved beyond these simple data resources to encompass services, 
such as electronic purchasing of goods. It has evolved without changing its basic 
architecture. The Web is based on three main standard technological components:

• the HyperText Markup Language (HTML), a language for specifying the contents 
and layout of pages as they are displayed by web browsers;

• Uniform Resource Locators (URLs), also known as Uniform Resource Identifiers 
(URIs), which identify documents and other resources stored as part of the Web;

• a client-server system architecture, with standard rules for interaction (the 
HyperText Transfer Protocol – HTTP) by which browsers and other clients fetch 
documents and other resources from web servers. Figure 1.7 shows some web 
servers, and browsers making requests to them. It is an important feature that users 
may locate and manage their own web servers anywhere on the Internet.
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We now discuss these components in turn, and in so doing explain the operation of 
browsers and web servers when a user fetches web pages and clicks on the links within 
them.

HTML  •  The HyperText Markup Language [www.w3.org II] is used to specify the text 
and images that make up the contents of a web page, and to specify how they are laid 
out and formatted for presentation to the user. A web page contains such structured items 
as headings, paragraphs, tables and images. HTML is also used to specify links and 
which resources are associated with them. 

Users may produce HTML by hand, using a standard text editor, but they more 
commonly use an HTML-aware ‘wysiwyg’ editor that generates HTML from a layout 
that they create graphically. A typical piece of HTML text follows:

<IMG SRC = “http://www.cdk5.net/WebExample/Images/earth.jpg”> 1

<P> 2

Welcome to Earth! Visitors may also be interested in taking a look at the 3

<A HREF = “http://www.cdk5.net/WebExample/moon.html”>Moon</A>. 4

</P> 5

This HTML text is stored in a file that a web server can access – let us say the file 
earth.html. A browser retrieves the contents of this file from a web server – in this case 
a server on a computer called www.cdk5.net. The browser reads the content returned by 
the server and renders it into formatted text and images laid out on a web page in the 
familiar fashion. Only the browser – not the server – interprets the HTML text. But the 
server does inform the browser of the type of content it is returning, to distinguish it 
from, say, a document in Portable Document Format. The server can infer the content 
type from the filename extension ‘.html’.

Note that the HTML directives, known as tags, are enclosed by angle brackets, 
such as <P>. Line 1 of the example identifies a file containing an image for 
presentation. Its URL is http://www.cdk5.net/WebExample/Images/earth.jpg. Lines 2 
and 5 are directives to begin and end a paragraph, respectively. Lines 3 and 4 contain 
text to be displayed on the web page in the standard paragraph format. 
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Line 4 specifies a link in the web page. It contains the word ‘Moon’ surrounded 
by two related HTML tags, <A HREF...> and </A>. The text between these tags is what 
appears in the link as it is presented on the web page. Most browsers are configured to 
show the text of links underlined by default, so what the user will see in that paragraph 
is:

Welcome to Earth! Visitors may also be interested in taking a look at the Moon.

The browser records the association between the link’s displayed text and the URL 
contained in the <A HREF...> tag – in this case:

 http://www.cdk5.net/WebExample/moon.html

When the user clicks on the text, the browser retrieves the resource identified by the 
corresponding URL and presents it to the user. In the example, the resource is an HTML 
file specifying a web page about the Moon.

URLs  •  The purpose of a Uniform Resource Locator [www.w3.org III] is to identify a 
resource. Indeed, the term used in web architecture documents is Uniform Resource 
Identifier (URI), but in this book the better-known term URL will be used when no 
confusion can arise. Browsers examine URLs in order to access the corresponding 
resources. Sometimes the user types a URL into the browser. More commonly, the 
browser looks up the corresponding URL when the user clicks on a link or selects one 
of their ‘bookmarks’; or when the browser fetches a resource embedded in a web page, 
such as an image. 

Every URL, in its full, absolute form, has two top-level components:

scheme : scheme-specific-identifier

The first component, the ‘scheme’, declares which type of URL this is. URLs are 
required to identify a variety of resources. For example, mailto:joe@anISP.net 

identifies a user’s email address; ftp://ftp.downloadIt.com/software/aProg.exe identifies 
a file that is to be retrieved using the File Transfer Protocol (FTP) rather than the more 
commonly used protocol HTTP. Other examples of schemes are ‘tel’ (used to specify a 
telephone number to dial, which is particularly useful when browsing on a mobile 
phone) and ‘tag’ (used to identify an arbitrary entity).

The Web is open with respect to the types of resources it can be used to access, by 
virtue of the scheme designators in URLs. If somebody invents a useful new type of 
‘widget’ resource – perhaps with its own addressing scheme for locating widgets and its 
own protocol for accessing them – then the world can start using URLs of the form 
widget:.... Of course, browsers must be given the capability to use the new ‘widget’ 
protocol, but this can be done by adding a plug-in.

HTTP URLs are the most widely used, for accessing resources using the standard 
HTTP protocol. An HTTP URL has two main jobs: to identify which web server 
maintains the resource, and to identify which of the resources at that server is required. 
Figure 1.7 shows three browsers issuing requests for resources managed by three web 
servers. The topmost browser is issuing a query to a search engine. The middle browser 
requires the default page of another web site. The bottommost browser requires a web 
page that is specified in full, including a path name relative to the server. The files for a 
given web server are maintained in one or more subtrees (directories) of the server’s file 
system, and each resource is identified by a path name relative to the server. 
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In general, HTTP URLs are of the following form:

http:// servername [:port] [/pathName] [?query] [ #fragment]

where items in square brackets are optional. A full HTTP URL always begins with the 
string ‘http://’ followed by a server name, expressed as a Domain Name System (DNS) 
name (see Section 13.2). The server’s DNS name is optionally followed by the number 
of the ‘port’ on which the server listens for requests (see Chapter 4), which is 80 by 
default. Then comes an optional path name of the server’s resource. If this is absent then 
the server’s default web page is required. Finally, the URL optionally ends in a query 
component – for example, when a user submits the entries in a form such as a search 
engine’s query page – and/or a fragment identifier, which identifies a component of the 
resource.

Consider the URLs:

http://www.cdk5.net

http://www.w3.org/standards/faq.html#conformance

http://www.google.com/search?q=obama

These can be broken down as follows:

Server DNS name Path name Query Fragment

www.cdk5.net (default) (none) (none)

www.w3.org standards/faq.html (none) intro

www.google.com search q=obama (none)

The first URL designates the default page supplied by www.cdk5.net. The next identifies
a fragment of an HTML file whose path name is standards/faq.html relative to the server 
www.w3.org. The fragment’s identifier (specified after the ‘#’ character in the URL) is 
intro, and a browser will search for that fragment identifier within the HTML text after 
it has downloaded the whole file. The third URL specifies a query to a search engine. 
The path identifies a program called ‘search’, and the string after the ‘?’ character 
encodes a query string supplied as arguments to this program. We discuss URLs that 
identify programmatic resources in more detail when we consider more advanced 
features below.

Publishing a resource: While the Web has a clearly defined model for accessing a 
resource from its URL, the exact methods for publishing resources on the Web are 
dependent upon the web server implementation. In terms of low-level mechanisms, the 
simplest method of publishing a resource on the Web is to place the corresponding file 
in a directory that the web server can access. Knowing the name of the server S and a 
path name for the file P that the server can recognize, the user then constructs the URL 
as http://S/P. The user puts this URL in a link from an existing document or distributes 
the URL to other users, for example by email. 

It is common for such concerns to be hidden from users when they generate 
content. For example, ‘bloggers’ typically use software tools, themselves implemented 
as web pages, to create organized collections of journal pages. Product pages for a 
company’s web site are typically created using a content management system, again by 
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directly interacting with the web site through administrative web pages. The database or 
file system on which the product pages are based is transparent.

Finally, Huang et al. [2000] provide a model for inserting content into the Web 
with minimal human intervention. This is particularly relevant where users need to 
extract content from a variety of devices, such as cameras, for publication in web pages. 

HTTP  •  The HyperText Transfer Protocol [www.w3.org IV] defines the ways in which 
browsers and other types of client interact with web servers. Chapter 5 will consider 
HTTP in more detail, but here we outline its main features (restricting our discussion to 
the retrieval of resources in files):

Request-reply interactions: HTTP is a ‘request-reply’ protocol. The client sends a 
request message to the server containing the URL of the required resource. The 
server looks up the path name and, if it exists, sends back the resource’s content in a 
reply message to the client. Otherwise, it sends back an error response such as the 
familiar ‘404 Not Found’. HTTP defines a small set of operations or methods that can 
be performed on a resource. The most common are GET, to retrieve data from the 
resource, and POST, to provide data to the resource.

Content types: Browsers are not necessarily capable of handling every type of 
content. When a browser makes a request, it includes a list of the types of content it 
prefers – for example, in principle it may be able to display images in ‘GIF’ format 
but not ‘JPEG’ format. The server may be able to take this into account when it 
returns content to the browser. The server includes the content type in the reply 
message so that the browser will know how to process it. The strings that denote the 
type of content are called MIME types, and they are standardized in RFC 1521 [Freed 
and Borenstein 1996]. For example, if the content is of type ‘text/html’ then a 
browser will interpret the text as HTML and display it; if the content is of type 
‘image/GIF’ then the browser will render it as an image in ‘GIF’ format; if the 
content type is ‘application/zip’ then it is data compressed in ‘zip’ format, and the 
browser will launch an external helper application to decompress it. The set of 
actions that a browser will take for a given type of content is configurable, and 
readers may care to check these settings for their own browsers.

One resource per request: Clients specify one resource per HTTP request. If a web 
page contains nine images, say, then the browser will issue a total of ten separate 
requests to obtain the entire contents of the page. Browsers typically make several 
requests concurrently, to reduce the overall delay to the user.

Simple access control: By default, any user with network connectivity to a web 
server can access any of its published resources. If users wish to restrict access to a 
resource, then they can configure the server to issue a ‘challenge’ to any client that 
requests it. The corresponding user then has to prove that they have the right to access 
the resource, for example, by typing in a password.

Dynamic pages  •  So far we have described how users can publish web pages and other 
content stored in files on the Web. However, much of the users’ experience of the Web 
is that of interacting with services rather than retrieving data. For example, when 
purchasing an item at an online store, the user often fills out a web form to provide 
personal details or to specify exactly what they wish to purchase. A web form is a web 
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page containing instructions for the user and input widgets such as text fields and check 
boxes. When the user submits the form (usually by pressing a button or the ‘return’ key), 
the browser sends an HTTP request to a web server, containing the values that the user 
has entered. 

Since the result of the request depends upon the user’s input, the server has to 
process the user’s input. Therefore the URL or its initial component designates a 
program on the server, not a file. If the user’s input is a reasonably small set of 
parameters it is often sent as the query component of the URL, using the GET 
method; alternatively, it is sent as additional data in the request using the POST 
method. For example, a request containing the following URL invokes a program 
called ‘search’ at www.google.com and specifies a query string of ‘obama’: 
http://www.google.com/search?q=obama.

That ‘search’ program produces HTML text as its output, and the user will see a 
listing of pages that contain the word ‘obama’. (The reader may care to enter a query 
into their favourite search engine and notice the URL that the browser displays when the 
result is returned.) The server returns the HTML text that the program generates just as 
though it had retrieved it from a file. In other words, the difference between static 
content fetched from a file and content that is dynamically generated is transparent to 
the browser.

A program that web servers run to generate content for their clients is referred to 
as a Common Gateway Interface (CGI) program. A CGI program may have any 
application-specific functionality, as long as it can parse the arguments that the client 
provides to it and produce content of the required type (usually HTML text). The 
program will often consult or update a database in processing the request.

Downloaded code: A CGI program runs at the server. Sometimes the designers of web 
services require some service-related code to run inside the browser, at the user’s 
computer. In particular, code written in Javascript [www.netscape.com] is often 
downloaded with a web page containing a form, in order to provide better-quality 
interaction with the user than that supported by HTML’s standard widgets. A Javascript-
enhanced page can give the user immediate feedback on invalid entries, instead of 
forcing the user to check the values at the server, which would take much longer. 

Javascript can also be used to update parts of a web page’s contents without 
fetching an entirely new version of the page and re-rendering it. These dynamic updates 
occur either due to a user action (such as clicking on a link or a radio button), or when 
the browser acquires new data from the server that supplied the web page. In the latter 
case, since the timing of the data’s arrival is unconnected with any user action at the 
browser itself, it is termed asynchronous. A technique known as AJAX (Asynchronous 
Javascript And XML) is used in such cases. AJAX is described more fully in Section 
2.3.2.

An alternative to a Javascript program is an applet: an application written in the 
Java language [Flanagan 2002], which the browser automatically downloads and runs 
when it fetches a corresponding web page. Applets may access the network and provide 
customized user interfaces. For example, ‘chat’ applications are sometimes 
implemented as applets that run on the users’ browsers, together with a server program. 
The applets send the users’ text to the server, which in turn distributes it to all the applets 
for presentation to the user. We discuss applets in more detail in Section 2.3.1. 
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Web services  •  So far we have discussed the Web largely from the point of view of a 
user operating a browser. But programs other than browsers can be clients of the Web, 
too; indeed, programmatic access to web resources is commonplace.

However, HTML is inadequate for programmatic interoperation. There is an 
increasing need to exchange many types of structured data on the Web, but HTML is 
limited in that it is not extensible to applications beyond information browsing. HTML 
has a static set of structures such as paragraphs, and they are bound up with the way that 
the data is to be presented to users. The Extensible Markup Language (XML) (see 
Section 4.3.3) has been designed as a way of representing data in standard, structured, 
application-specific forms. In principle, data expressed in XML is portable between 
applications since it is self-describing: it contains the names, types and structure of the 
data elements within it. For example, XML may be used to describe products or 
information about users, for many different services or applications. In the HTTP 
protocol, XML data can be transmitted by the POST and GET operations. In AJAX it 
can be used to provide data to Javascript programs in browsers. 

Web resources provide service-specific operations. For example, in the store at 
amazon.com, web service operations include one to order a book and another to check 
the current status of an order. As we have mentioned, HTTP provides a small set of 
operations that are applicable to any resource. These include principally the GET and 
POST methods on existing resources, and the PUT and DELETE operations, 
respectively. for creating and deleting web resources. Any operation on a resource can 
be invoked using one of the GET or POST methods, with structured content used to 
specify the operation’s parameters, results and error responses. The so-called REST 
(REpresentational State Transfer) architecture for web services [Fielding 2000] adopts 
this approach on the basis of its extensibility: every resource on the Web has a URL and 
responds to the same set of operations, although the processing of the operations can 
vary widely from resource to resource. The flip-side of that extensibility can be a lack 
of robustness in how software operates. Chapter 9 further describes REST and takes an 
in-depth look at the web services framework, which enables the designers of web 
services to describe to programmers more specifically what service-specific operations 
are available and how clients must access them.

Discussion of the Web  •  The Web’s phenomenal success rests upon the relative ease 
with which many individual and organizational sources can publish resources, the 
suitability of its hypertext structure for organizing many types of information, and the 
openness of its system architecture. The standards upon which its architecture is based 
are simple and they were widely published at an early stage. They have enabled many 
new types of resources and services to be integrated.

The Web’s success belies some design problems. First, its hypertext model is 
lacking in some respects. If a resource is deleted or moved, so-called ‘dangling’ links to 
that resource may still remain, causing frustration for users. And there is the familiar 
problem of users getting ‘lost in hyperspace’. Users often find themselves confused, 
following many disparate links, referencing pages from a disparate collection of 
sources, and of dubious reliability in some cases. 

Search engines are a highly popular alternative to following links as a means of 
finding information on the Web, but these are imperfect at producing what the user 
specifically intends. One approach to this problem, exemplified in the Resource 
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Description Framework [www.w3.org V], is to produce standard vocabularies, syntax 
and semantics for expressing metadata about the things in our world, and to encapsulate 
that metadata in corresponding web resources for programmatic access. Rather than 
searching for words that occur in web pages, programs can then, in principle, perform 
searches against the metadata to compile lists of related links based on semantic 
matching. Collectively, the web of linked metadata resources is what is meant by the 
semantic web.

As a system architecture the Web faces problems of scale. Popular web servers 
may experience many ‘hits’ per second, and as a result the response to users can be slow. 
Chapter 2 describes the use of caching in browsers and proxy servers to increase 
responsiveness, and the division of the server’s load across clusters of computers. 

1.7 Summary

Distributed systems are everywhere. The Internet enables users throughout the world to 
access its services wherever they may be located. Each organization manages an 
intranet, which provides local services and Internet services for local users and generally 
provides services to other users in the Internet. Small distributed systems can be 
constructed from mobile computers and other small computational devices that are 
attached to a wireless network.

Resource sharing is the main motivating factor for constructing distributed 
systems. Resources such as printers, files, web pages or database records are managed 
by servers of the appropriate type. For example, web servers manage web pages and 
other web resources. Resources are accessed by clients – for example, the clients of web 
servers are generally called browsers.

The construction of distributed systems produces many challenges: 

Heterogeneity: They must be constructed from a variety of different networks, 
operating systems, computer hardware and programming languages. The Internet 
communication protocols mask the difference in networks, and middleware can deal 
with the other differences.

Openness: Distributed systems should be extensible – the first step is to publish the 
interfaces of the components, but the integration of components written by different 
programmers is a real challenge.

Security:  Encryption can be used to provide adequate protection of shared resources 
and to keep sensitive information secret when it is transmitted in messages over a 
network. Denial of service attacks are still a problem.

Scalability: A distributed system is scalable if the cost of adding a user is a constant 
amount in terms of the resources that must be added. The algorithms used to access 
shared data should avoid performance bottlenecks and data should be structured 
hierarchically to get the best access times. Frequently accessed data can be replicated.

Failure handling: Any process, computer or network may fail independently of the 
others. Therefore each component needs to be aware of the possible ways in which 
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the components it depends on may fail and be designed to deal with each of those 
failures appropriately.

Concurrency: The presence of multiple users in a distributed system is a source of 
concurrent requests to its resources. Each resource must be designed to be safe in a 
concurrent environment.

Transparency:  The aim is to make certain aspects of distribution invisible to the 
application programmer so that they need only be concerned with the design of their 
particular application. For example, they need not be concerned with its location or 
the details of how its operations are accessed by other components, or whether it will 
be replicated or migrated. Even failures of networks and processes can be presented 
to application programmers in the form of exceptions – but they must be handled.

Quality of service. It is not sufficient to provide access to services in distributed 
systems. In particular, it is also important to provide guarantees regarding the 
qualities associated with such service access. Examples of such qualities include 
parameters related to performance, security and reliability.

EXERCISES

1.1 Give five types of hardware resource and five types of data or software resource that can 
usefully be shared. Give examples of their sharing as it occurs in practice in distributed 
systems. pages 2, 14

1.2 How might the clocks in two computers that are linked by a local network be 
synchronized without reference to an external time source? What factors limit the 
accuracy of the procedure you have described? How could the clocks in a large number 
of computers connected by the Internet be synchronized? Discuss the accuracy of that 
procedure. page 2

1.3 Consider the implementation strategies for massively multiplayer online games as 
discussed in Section 1.2.2. In particular, what advantages do you see in adopting a single 
server approach for representing the state of the multiplayer game? What problems can 
you identify and how might they be resolved? page 5

1.4 A user arrives at a railway station that they has never visited before, carrying a PDA that 
is capable of wireless networking. Suggest how the user could be provided with 
information about the local services and amenities at that station, without entering the 
station’s name or attributes. What technical challenges must be overcome? page 13

1.5 Compare and contrast cloud computing with more traditional client-server computing? 
What is novel about cloud computing as a concept? pages 13, 14

1.6 Use the World Wide Web as an example to illustrate the concept of resource sharing, 
client and server. What are the advantages and disadvantages of HTML, URLs and 
HTTP as core technologies for information browsing? Are any of these technologies 
suitable as a basis for client-server computing in general? pages 14, 26
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1.7 A server program written in one language (for example, C++) provides the 
implementation of a BLOB object that is intended to be accessed by clients that may be 
written in a different language (for example, Java). The client and server computers may 
have different hardware, but all of them are attached to an internet. Describe the 
problems due to each of the five aspects of heterogeneity that need to be solved to make 
it possible for a client object to invoke a method on the server object. page 16

1.8 An open distributed system allows new resource-sharing services such as the BLOB 
object in Exercise 1.7 to be added and accessed by a variety of client programs. Discuss 
in the context of this example, to what extent the needs of openness differ from those of 
heterogeneity. page 17

1.9 Suppose that the operations of the BLOB object are separated into two categories – 
public operations that are available to all users and protected operations that are 
available only to certain named users. State all of the problems involved in ensuring that 
only the named users can use a protected operation. Supposing that access to a protected 
operation provides information that should not be revealed to all users, what further 
problems arise? page 18

1.10 The INFO service manages a potentially very large set of resources, each of which can 
be accessed by users throughout the Internet by means of a key (a string name). Discuss 
an approach to the design of the names of the resources that achieves the minimum loss 
of performance as the number of resources in the service increases. Suggest how the 
INFO service can be implemented so as to avoid performance bottlenecks when the 
number of users becomes very large. page 19

1.11 List the three main software components that may fail when a client process invokes a 
method in a server object, giving an example of a failure in each case. Suggest how the 
components can be made to tolerate one another’s failures. page 21

1.12 A server process maintains a shared information object such as the BLOB object of 
Exercise 1.7. Give arguments for and against allowing the client requests to be executed 
concurrently by the server. In the case that they are executed concurrently, give an 
example of possible ‘interference’ that can occur between the operations of different 
clients. Suggest how such interference may be prevented. page 22

1.13 A service is implemented by several servers. Explain why resources might be 
transferred between them. Would it be satisfactory for clients to multicast all requests to 
the group of servers as a way of achieving mobility transparency for clients? page 23

1.14 Resources in the World Wide Web and other services are named by URLs. What do the 
initials URL denote? Give examples of three different sorts of web resources that can be 
named by URLs. page 26

1.15 Give an example of an HTTP URL. List the main components of an HTTP URL, stating 
how their boundaries are denoted  and illustrating each one from your example. To what 
extent is an HTTP URL location-transparent? page 26
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2

SYSTEM MODELS

2.1 Introduction
2.2 Physical models
2.3 Architectural models
2.4 Fundamental models
2.5 Summary

This chapter provides an explanation of three important and complementary ways in 
which the design of distributed systems can usefully be described and discussed:

Physical models consider the types of computers and devices that constitute a system 
and their interconnectivity, without details of specific technologies.

Architectural models describe a system in terms of the computational and 
communication tasks performed by its computational elements; the computational 
elements being individual computers or aggregates of them supported by appropriate 
network interconnections. Client-server and peer-to-peer are two of the most 
commonly used forms of architectural model for distributed systems. 

Fundamental models take an abstract perspective in order to describe solutions to 
individual issues faced by most distributed systems.

There is no global time in a distributed system, so the clocks on different computers do 
not necessarily give the same time as one another. All communication between processes 
is achieved by means of messages. Message communication over a computer network 
can be affected by delays, can suffer from a variety of failures and is vulnerable to security 
attacks. These issues are addressed by three models:

• The interaction model deals with performance and with the difficulty of setting time 
limits in a distributed system, for example for message delivery. 

• The failure model attempts to give a precise specification of the faults that can be 
exhibited by processes and communication channels. It defines reliable 
communication and correct processes. 

• The security model discusses the possible threats to processes and communication 
channels. It introduces the concept of a secure channel, which is secure against 
those threats.
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2.1 Introduction

Systems that are intended for use in real-world environments should be designed to 
function correctly in the widest possible range of circumstances and in the face of many 
possible difficulties and threats (for some examples, see the box at the bottom of this 
page).

Difficulties and threats for distributed systems  •  Here are some of the problems that 
the designers of distributed systems face.

Widely varying modes of use:  The component parts of systems are subject to wide 
variations in workload – for example, some web pages are accessed several million 
times a day. Some parts of a system may be disconnected, or poorly connected some 
of the time – for example, when mobile computers are included in a system. Some 
applications have special requirements for high communication bandwidth and low 
latency – for example, multimedia applications.

Wide range of system environments:  A distributed system must accommodate 
heterogeneous hardware, operating systems and networks. The networks may differ 
widely in performance – wireless networks operate at a fraction of the speed of local 
networks. Systems of widely differing scales, ranging from tens of computers to 
millions of computers, must be supported. 

Internal problems:  Non-synchronized clocks, conflicting data updates and many 
modes of hardware and software failure involving the individual system components.

External threats: Attacks on data integrity and secrecy, denial of service attacks.

 The discussion and examples of Chapter 1 suggest that distributed systems of 
different types share important underlying properties and give rise to common design 
problems. In this chapter we show how the properties and design issues of distributed 
systems can be captured and discussed through the use of descriptive models. Each type 
of model is intended to provide an abstract, simplified but consistent description of a 
relevant aspect of distributed system design:

Physical models are the most explicit way in which to describe a system; they 
capture the hardware composition of a system in terms of the computers (and other 
devices, such as mobile phones) and their interconnecting networks.

Architectural models describe a system in terms of the computational and 
communication tasks performed by its computational elements; the computational 
elements being individual computers or aggregates of them supported by appropriate 
network interconnections. 

Fundamental models take an abstract perspective in order to examine individual 
aspects of a distributed system. In this chapter we introduce fundamental models that 
examine three important aspects of distributed systems: interaction models, which 
consider the structure and sequencing of the communication between the elements of 
the system; failure models, which consider the ways in which a system may fail to 
operate correctly and; security models, which consider how the system is protected 
against attempts to interfere with its correct operation or to steal its data. 
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2.2 Physical models

A physical model is a representation of the underlying hardware elements of a 
distributed system that abstracts away from specific details of the computer and 
networking technologies employed.

Baseline physical model: A distributed system was defined in Chapter 1 as one in which 
hardware or software components located at networked computers communicate and 
coordinate their actions only by passing messages. This leads to a minimal physical 
model of a distributed system as an extensible set of computer nodes interconnected by 
a computer network for the required passing of messages.

Beyond this baseline model, we can usefully identify three generations of distributed 
systems.

Early distributed systems: Such systems emerged in the late 1970s and early 1980s in 
response to the emergence of local area networking technology, usually Ethernet (see 
Section 3.5). These systems typically consisted of between 10 and 100 nodes 
interconnected by a local area network, with limited Internet connectivity and supported 
a small range of services such as shared local printers and file servers as well as email 
and file transfer across the Internet. Individual systems were largely homogeneous and 
openness was not a primary concern. Providing quality of service was still very much in 
its infancy and was a focal point for much of the research around such early systems.

Internet-scale distributed systems: Building on this foundation, larger-scale distributed 
systems started to emerge in the 1990s in response to the dramatic growth of the Internet 
during this time (for example, the Google search engine was first launched in 1996). In 
such systems, the underlying physical infrastructure consists of a physical model as 
illustrated in Chapter 1, Figure 1.3; that is, an extensible set of nodes interconnected by 
a network of networks (the Internet). Such systems exploit the infrastructure offered by 
the Internet to become truly global. They incorporate large numbers of nodes and 
provide distributed system services for global organizations and across organizational 
boundaries. The level of heterogeneity in such systems is significant in terms of 
networks, computer architecture, operating systems, languages employed and the 
development teams involved. This has led to an increasing emphasis on open standards 
and associated middleware technologies such as CORBA and more recently, web 
services. Additional services were employed to provide end-to-end quality of service 
properties in such global systems.

Contemporary distributed systems: In the above systems, nodes were typically desktop 
computers and therefore relatively static (that is, remaining in one physical location for 
extended periods), discrete (not embedded within other physical entities) and 
autonomous (to a large extent independent of other computers in terms of their physical 
infrastructure). The key trends identified in Section 1.3 have resulted in significant 
further developments in physical models:

• The emergence of mobile computing has led to physical models where nodes such 
as laptops or smart phones may move from location to location in a distributed 
system, leading to the need for added capabilities such as service discovery and 
support for spontaneous interoperation.
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• The emergence of ubiquitous computing has led to a move from discrete nodes to 
architectures where computers are embedded in everyday objects and in the 
surrounding environment (for example, in washing machines or in smart homes 
more generally).

• The emergence of cloud computing and, in particular, cluster architectures has led 
to a move from autonomous nodes performing a given role to pools of nodes that 
together provide a given service (for example, a search service as offered by 
Google).

The end result is a physical architecture with a significant increase in the level of 
heterogeneity embracing, for example, the tiniest embedded devices utilized in 
ubiquitous computing through to complex computational elements found in Grid 
computing. These systems deploy an increasingly varied set of networking technologies 
and offer a wide variety of applications and services. Such systems potentially involve 
up to hundreds of thousands of nodes. 

Distributed systems of systems  •  A recent report discusses the emergence of ultra-
large-scale (ULS) distributed systems [www.sei.cmu.edu]. The report captures the 
complexity of modern distributed systems by referring to such (physical) architectures 
as systems of systems (mirroring the view of the Internet as a network of networks). A 
system of systems can be defined as a complex system consisting of a series of 
subsystems that are systems in their own right and that come together to perform a 
particular task or tasks. 

As an example of a system of systems, consider an environmental management 
system for flood prediction. In such a scenario, there will be sensor networks deployed 
to monitor the state of various environmental parameters relating to rivers, flood plains, 
tidal effects and so on. This can then be coupled with systems that are responsible for 
predicting the likelihood of floods, by running (often complex) simulations on, for 
example, cluster computers (as discussed in Chapter 1). Other systems may be 
established to maintain and analyze historical data or to provide early warning systems 
to key stakeholders via mobile phones.

Summary  •  The overall historical development captured in this section is summarized 
in Figure 2.1, with the table highlighting the significant challenges associated with 
contemporary distributed systems in terms of managing the levels of heterogeneity and 
providing key properties such as openness and quality of service.

2.3 Architectural models

The architecture of a system is its structure in terms of separately specified components 
and their interrelationships. The overall goal is to ensure that the structure will meet 
present and likely future demands on it. Major concerns are to make the system reliable, 
manageable, adaptable and cost-effective. The architectural design of a building has 
similar aspects – it determines not only its appearance but also its general structure and 
architectural style (gothic, neo-classical, modern) and provides a consistent frame of 
reference for the design. 



Figure 2.1 Generations of distributed systems 

Distributed systems: Early Internet-scale Contemporary

Scale Small Large Ultra-large

Heterogeneity Limited (typically 
relatively homogenous 
configurations)

Significant in terms of 
platforms, languages 
and middleware

Added dimensions 
introduced including 
radically different styles of 
architecture

Openness

Not a priority
Significant priority 
with range of standards 
introduced

Major research challenge 
with existing standards not 
yet able to embrace 
complex systems

Quality of service

In its infancy
Significant priority 
with range of services 
introduced

Major research challenge 
with existing services not 
yet able to embrace 
complex systems
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In this section we describe the main architectural models employed in distributed 
systems – the architectural styles of distributed systems. In particular, we lay the 
groundwork for a thorough understanding of approaches such as client-server models, 
peer-to-peer approaches, distributed objects, distributed components, distributed event-
based systems and the key differences between these styles.

The section adopts a three-stage approach:

• looking at the core underlying architectural elements that underpin modern 
distributed systems, highlighting the diversity of approaches that now exist;

• examining composite architectural patterns that can be used in isolation or, more 
commonly, in combination, in developing more sophisticated distributed systems 
solutions;

• and finally, considering middleware platforms that are available to support the 
various styles of programming that emerge from the above architectural styles. 

Note that there are many trade-offs associated with the choices identified in this chapter 
in terms of the architectural elements employed, the patterns adopted and (where 
appropriate) the middleware used, for example affecting the performance and 
effectiveness of the resulting system. Understanding such trade-offs is arguably the key 
skill in distributed systems design.

2.3.1 Architectural elements

To understand the fundamental building blocks of a distributed system, it is necessary 
to consider four key questions:

• What are the entities that are communicating in the distributed system?
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• How do they communicate, or, more specifically, what communication paradigm

is used?

• What (potentially changing) roles and responsibilities do they have in the overall 
architecture?

• How are they mapped on to the physical distributed infrastructure (what is their 
placement)?

Communicating entities  •  The first two questions above are absolutely central to an 
understanding of distributed systems; what is communicating and how those entities 
communicate together define a rich design space for the distributed systems developer 
to consider. It is helpful to address the first question from a system-oriented and a 
problem-oriented perspective.

From a system perspective, the answer is normally very clear in that the entities 
that communicate in a distributed system are typically processes, leading to the 
prevailing view of a distributed system as processes coupled with appropriate 
interprocess communication paradigms (as discussed, for example, in Chapter 4), with 
two caveats:

• In some primitive environments, such as sensor networks, the underlying 
operating systems may not support process abstractions (or indeed any form of 
isolation), and hence the entities that communicate in such systems are nodes.

• In most distributed system environments, processes are supplemented by threads,
so, strictly speaking, it is threads that are the endpoints of communication.

At one level, this is sufficient to model a distributed system and indeed the fundamental 
models considered in Section 2.4 adopt this view. From a programming perspective, 
however, this is not enough, and more problem-oriented abstractions have been 
proposed:

Objects: Objects have been introduced to enable and encourage the use of object-
oriented approaches in distributed systems (including both object-oriented design 
and object-oriented programming languages). In distributed object-based 
approaches, a computation consists of a number of interacting objects representing 
natural units of decomposition for the given problem domain. Objects are accessed 
via interfaces, with an associated interface definition language (or IDL) providing a 
specification of the methods defined on an object. Distributed objects have become 
a major area of study in distributed systems, and further consideration is given to this 
topic in Chapters 5 and 8.

Components: Since their introduction a number of significant problems have been 
identified with distributed objects, and the use of component technology has emerged 
as a direct response to such weaknesses. Components resemble objects in that they 
offer problem-oriented abstractions for building distributed systems and are also 
accessed through interfaces. The key difference is that components specify not only 
their (provided) interfaces but also the assumptions they make in terms of other 
components/interfaces that must be present for a component to fulfil its function –  in 
other words, making all dependencies explicit and providing a more complete 
contract for system construction. This more contractual approach encourages and 
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enables third-party development of components and also promotes a purer 
compositional approach to constructing distributed systems by removing hidden 
dependencies. Component-based middleware often provides additional support for 
key areas such as deployment and support for server-side programming [Heineman 
and Councill 2001]. Further details of component-based approaches can be found in 
Chapter 8.

Web services: Web services represent the third important paradigm for the 
development of distributed systems [Alonso et al. 2004]. Web services are closely 
related to objects and components, again taking an approach based on encapsulation 
of behaviour and access through interfaces. In contrast, however, web services are 
intrinsically integrated into the World Wide Web, using web standards to represent 
and discover services. The World Wide Web consortium (W3C) defines a web 
service as: 

... a software application identified by a URI, whose interfaces and 
bindings are capable of being defined, described and discovered as XML 
artefacts. A Web service supports direct interactions with other software 
agents using XML-based message exchanges via Internet-based 
protocols. 

In other words, web services are partially defined by the web-based technologies they 
adopt. A further important distinction stems from the style of use of the technology. 
Whereas objects and components are often used within an organization to develop 
tightly coupled applications, web services are generally viewed as complete services 
in their own right that can be combined to achieve value-added services, often 
crossing organizational boundaries and hence achieving business to business 
integration. Web services may be implemented by different providers and using 
different underlying technologies. Web services are considered further in Chapter 9.

Communication paradigms  •  We now turn our attention to how entities communicate in 
a distributed system, and consider three types of communication paradigm:

• interprocess communication;

• remote invocation;

• indirect communication.

Interprocess communication refers to the relatively low-level support for 
communication between processes in distributed systems, including message-passing 
primitives, direct access to the API offered by Internet protocols (socket programming) 
and support for multicast communication. Such services are discussed in detail in 
Chapter 4.

Remote invocation represents the most common communication paradigm in 
distributed systems, covering a range of techniques based on a two-way exchange 
between communicating entities in a distributed system and resulting in the calling of a 
remote operation, procedure or method, as defined further below (and considered fully 
in Chapter 5):

Request-reply protocols: Request-reply protocols are effectively a pattern imposed 
on an underlying message-passing service to support client-server computing. In 
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particular, such protocols typically involve a pairwise exchange of messages from 
client to server and then from server back to client, with the first message containing 
an encoding of the operation to be executed at the server and also an array of bytes 
holding associated arguments and the second message containing any results of the 
operation, again encoded as an array of bytes. This paradigm is rather primitive and 
only really used in embedded systems where performance is paramount. The 
approach is also used in the HTTP protocol described in Section 5.2. Most distributed 
systems will elect to use remote procedure calls or remote method invocation, as 
discussed below, but note that both approaches are supported by underlying request-
reply exchanges.

Remote procedure calls: The concept of a remote procedure call (RPC), initially 
attributed to Birrell and Nelson [1984], represents a major intellectual breakthrough 
in distributed computing. In RPC, procedures in processes on remote computers can 
be called as if they are procedures in the local address space. The underlying RPC 
system then hides important aspects of distribution, including the encoding and 
decoding of parameters and results, the passing of messages and the preserving of the 
required semantics for the procedure call. This approach directly and elegantly 
supports client-server computing with servers offering a set of operations through a 
service interface and clients calling these operations directly as if they were available 
locally. RPC systems therefore offer (at a minimum) access and location 
transparency.

Remote method invocation: Remote method invocation (RMI) strongly resembles 
remote procedure calls but in a world of distributed objects. With this approach, a 
calling object can invoke a method in a remote object. As with RPC, the underlying 
details are generally hidden from the user. RMI implementations may, though, go 
further by supporting object identity and the associated ability to pass object 
identifiers as parameters in remote calls. They also benefit more generally from 
tighter integration into object-oriented languages as discussed in Chapter 5.

The above set of techniques all have one thing in common: communication represents a 
two-way relationship between a sender and a receiver with senders explicitly directing
messages/invocations to the associated receivers. Receivers are also generally aware of 
the identity of senders, and in most cases both parties must exist at the same time. In 
contrast, a number of techniques have emerged whereby communication is indirect, 
through a third entity, allowing a strong degree of decoupling between senders and 
receivers. In particular:

• Senders do not need to know who they are sending to (space uncoupling).

• Senders and receivers do not need to exist at the same time (time uncoupling).

Indirect communication is discussed in more detail in Chapter 6.
Key techniques for indirect communication include:

Group communication: Group communication is concerned with the delivery of 
messages to a set of recipients and hence is a multiparty communication paradigm 
supporting one-to-many communication. Group communication relies on the 
abstraction of a group which is represented in the system by a group identifier. 
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Recipients elect to receive messages sent to a group by joining the group. Senders 
then send messages to the group via the group identifier, and hence do not need to 
know the recipients of the message. Groups typically also maintain group 
membership and include mechanisms to deal with failure of group members. 

Publish-subscribe systems: Many systems, such as the financial trading example in 
Chapter 1, can be classified as information-dissemination systems wherein a large 
number of producers (or publishers) distribute information items of interest (events) 
to a similarly large number of consumers (or subscribers). It would be complicated 
and inefficient to employ any of the core communication paradigms discussed above 
for this purpose and hence publish-subscribe systems (sometimes also called 
distributed event-based systems) have emerged to meet this important need [Muhl et

al. 2006]. Publish-subscribe systems all share the crucial feature of providing an 
intermediary service that efficiently ensures information generated by producers is 
routed to consumers who desire this information.

Message queues: Whereas publish-subscribe systems offer a one-to-many style of 
communication, message queues offer a point-to-point service whereby producer 
processes can send messages to a specified queue and consumer processes can 
receive messages from the queue or be notified of the arrival of new messages in the 
queue. Queues therefore offer an indirection between the producer and consumer 
processes.

Tuple spaces: Tuple spaces offer a further indirect communication service by 
supporting a model whereby processes can place arbitrary items of structured data, 
called tuples, in a persistent tuple space and other processes can either read or remove 
such tuples from the tuple space by specifying patterns of interest. Since the tuple 
space is persistent, readers and writers do not need to exist at the same time. This style 
of programming, otherwise known as generative communication, was introduced by 
Gelernter [1985] as a paradigm for parallel programming. A number of distributed 
implementations have also been developed, adopting either a client-server-style 
implementation or a more decentralized peer-to-peer approach. 

Distributed shared memory: Distributed shared memory (DSM) systems provide an 
abstraction for sharing data between processes that do not share physical memory. 
Programmers are nevertheless presented with a familiar abstraction of reading or 
writing (shared) data structures as if they were in their own local address spaces, thus 
presenting a high level of distribution transparency. The underlying infrastructure 
must ensure a copy is provided in a timely manner and also deal with issues relating 
to synchronization and consistency of data. An overview of distributed shared 
memory can be found in Chapter 6.

The architectural choices discussed so far are summarized in Figure 2.2.

Roles and responsibilities  •  In a distributed system processes – or indeed objects, 
components or services, including web services (but for the sake of simplicity we use 
the term process throughout this section) – interact with each other to perform a useful 
activity, for example, to support a chat session. In doing so, the processes take on given 
roles, and these roles are fundamental in establishing the overall architecture to be 



Figure 2.2 Communicating entities and communication paradigms   

Communicating entities 

(what is communicating)

Communication paradigms 

(how they communicate)

System-oriented

entities

Problem-

oriented entities

Interprocess

communication

Remote

invocation

Indirect 

communication

Nodes

Processes

Objects

Components

Web services

Message
passing

Sockets

Multicast

Request-
reply

RPC

RMI

Group 
communication

Publish-subscribe

Message queues

Tuple spaces

DSM

46 CHAPTER 2 SYSTEM MODELS

adopted. In this section, we examine two architectural styles stemming from the role of 
individual processes: client-server and peer-to-peer.

Client-server: This is the architecture that is most often cited when distributed systems 
are discussed. It is historically the most important and remains the most widely 
employed. Figure 2.3 illustrates the simple structure in which processes take on the roles 
of being clients or servers. In particular, client processes interact with individual server 
processes in potentially separate host computers in order to access the shared resources 
that they manage.

Servers may in turn be clients of other servers, as the figure indicates. For 
example, a web server is often a client of a local file server that manages the files in 
which the web pages are stored. Web servers and most other Internet services are clients 
of the DNS service, which translates Internet domain names to network addresses. 
Another web-related example concerns search engines, which enable users to look up 
summaries of information available on web pages at sites throughout the Internet. These 
summaries are made by programs called web crawlers, which run in the background at 
a search engine site using HTTP requests to access web servers throughout the Internet. 
Thus a search engine is both a server and a client: it responds to queries from browser 
clients and it runs web crawlers that act as clients of other web servers. In this example, 
the server tasks (responding to user queries) and the crawler tasks (making requests to 
other web servers) are entirely independent; there is little need to synchronize them and 
they may run concurrently. In fact, a typical search engine would normally include many 
concurrent threads of execution, some serving its clients and others running web 
crawlers. In Exercise 2.5, the reader is invited to consider the only synchronization issue 
that does arise for a concurrent search engine of the type outlined here.
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Peer-to-peer: In this architecture all of the processes involved in a task or activity play 
similar roles, interacting cooperatively as peers without any distinction between client 
and server processes or the computers on which they run. In practical terms, all 
participating processes run the same program and offer the same set of interfaces to each 
other. While the client-server model offers a direct and relatively simple approach to the 
sharing of data and other resources, it scales poorly. The centralization of service 
provision and management implied by placing a service at a single address does not 
scale well beyond the capacity of the computer that hosts the service and the bandwidth 
of its network connections.

Figure 2.3 Clients invoke individual servers
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A number of placement strategies have evolved in response to this problem (see 
the discussion of placement below), but none of them addresses the fundamental issue 
– the need to distribute shared resources much more widely in order to share the 
computing and communication loads incurred in accessing them amongst a much larger 
number of computers and network links. The key insight that led to the development of 
peer-to-peer systems is that the network and computing resources owned by the users of 
a service could also be put to use to support that service. This has the useful consequence 
that the resources available to run the service grow with the number of users.

 The hardware capacity and operating system functionality of today’s desktop 
computers exceeds that of yesterday’s servers, and the majority are equipped with 
always-on broadband network connections. The aim of the peer-to-peer architecture is 
to exploit the resources (both data and hardware) in a large number of participating 
computers for the fulfilment of a given task or activity. Peer-to-peer applications and 
systems have been successfully constructed that enable tens or hundreds of thousands of 
computers to provide access to data and other resources that they collectively store and 
manage. One of the earliest instances was the Napster application for sharing digital 
music files. Although Napster was not a pure peer-to-peer architecture (and also gained 
notoriety for reasons beyond its architecture), its demonstration of feasibility has 
resulted in the development of the architectural model in many valuable directions. A 
more recent and widely used instance is the BitTorrent file-sharing system (discussed in 
more depth in Section 20.6.2).
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Figure 2.4a illustrates the form of a peer-to-peer application. Applications are 

composed of large numbers of peer processes running on separate computers and the 

pattern of communication between them depends entirely on application requirements. 

A large number of data objects are shared, an individual computer holds only a small 

part of the application database, and the storage, processing and communication loads 

for access to objects are distributed across many computers and network links. Each 

object is replicated in several computers to further distribute the load and to provide 

resilience in the event of disconnection of individual computers (as is inevitable in the 

large, heterogeneous networks at which peer-to-peer systems are aimed). The need to 

place individual objects and retrieve them and to maintain replicas amongst many 

computers renders this architecture substantially more complex than the client-server 

architecture.

Figure 2.4a Peer-to-peer architecture Figure 2.4b A service provided by multiple servers

Peers 4 .... N

Sharable
objects

App
App

App

Peer 1
Peer 2

Peer 3

Service

Client

Client

Server

Server

Server

The development of peer-to-peer applications and middleware to support them is 

described in depth in Chapter 10.

Placement  •  The final issue to be considered is how entities such as objects or services 

map on to the underlying physical distributed infrastructure which will consist of a 

potentially large number of machines interconnected by a network of arbitrary 

complexity. Placement is crucial in terms of determining the properties of the distributed 

system, most obviously with regard to performance but also to other aspects, such as 

reliability and security.

The question of where to place a given client or server in terms of machines and 

processes within machines is a matter of careful design. Placement needs to take into 

account the patterns of communication between entities, the reliability of given 

machines and their current loading, the quality of communication between different 

machines and so on. Placement must be determined with strong application knowledge, 

and there are few universal guidelines to obtaining an optimal solution. We therefore 

focus mainly on the following placement strategies, which can significantly alter the 

characteristics of a given design (although we return to the key issue of mapping to 

physical infrastructure in Section 2.3.2, where we look at tiered architecture):
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• mapping of services to multiple servers;

• caching;

• mobile code;

• mobile agents.

Mapping of services to multiple servers: Services may be implemented as several server 

processes in separate host computers interacting as necessary to provide a service to 

client processes (Figure 2.4b). The servers may partition the set of objects on which the 

service is based and distribute those objects between themselves, or they may maintain 

replicated copies of them on several hosts. These two options are illustrated by the 

following examples.

The Web provides a common example of partitioned data in which each web 

server manages its own set of resources. A user can employ a browser to access a 

resource at any one of the servers. 

An example of a service based on replicated data is the Sun Network Information 

Service  (NIS), which is used to enable all the computers on a LAN to access the same 

user authentication data when users log in. Each NIS server has its own replica of a 

common password file containing a list of users’ login names and encrypted passwords. 

Chapter 18 discusses techniques for replication in detail.
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A more closely coupled type of multiple-server architecture is the cluster, as 

introduced in Chapter 1. A cluster is constructed from up to thousands of commodity 

processing boards, and service processing can be partitioned or replicated between 

them.

Caching: A cache is a store of recently used data objects that is closer to one client or a 

particular set of clients than the objects themselves. When a new object is received from 

a server it is added to the local cache store, replacing some existing objects if necessary. 

When an object is needed by a client process, the caching service first checks the cache 

and supplies the object from there if an up-to-date copy is available. If not, an up-to-date 

copy is fetched. Caches may be co-located with each client or they may be located in a 

proxy server that can be shared by several clients. 

Caches are used extensively in practice. Web browsers maintain a cache of 

recently visited web pages and other web resources in the client’s local file system, using 

a special HTTP request to check with the original server that cached pages are up-to-

date before displaying them. Web proxy servers (Figure 2.5) provide a shared cache of 
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web resources for the client machines at a site or across several sites. The purpose of 
proxy servers is to increase the availability and performance of the service by reducing 
the load on the wide area network and web servers. Proxy servers can take on other roles; 
for example, they may be used to access remote web servers through a firewall.

Mobile code: Chapter 1 introduced mobile code. Applets are a well-known and widely 
used example of mobile code – the user running a browser selects a link to an applet 
whose code is stored on a web server; the code is downloaded to the browser and runs 
there, as shown in Figure 2.6. An advantage of running the downloaded code locally is 
that it can give good interactive response since it does not suffer from the delays or 
variability of bandwidth associated with network communication. 

a) client request results in the downloading of applet code 

Web 

Figure 2.6 Web applets
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b) client  interacts with the applet 

Accessing services means running code that can invoke their operations. Some 
services are likely to be so standardized that we can access them with an existing and 
well-known application – the Web is the most common example of this, but even there, 
some web sites use functionality not found in standard browsers and require the 
downloading of additional code. The additional code may, for example, communicate 
with the server. Consider an application that requires that users be kept up-to-date with 
changes as they occur at an information source in the server. This cannot be achieved by 
normal interactions with the web server, which are always initiated by the client. The 
solution is to use additional software that operates in a manner often referred to as a push

model – one in which the server instead of the client initiates interactions. For example, 
a stockbroker might provide a customized service to notify customers of changes in the 
prices of shares; to use the service, each customer would have to download a special 
applet that receives updates from the broker’s server, displays them to the user and 
perhaps performs automatic buy and sell operations triggered by conditions set up by the 
customer and stored locally in the customer’s computer.

Mobile code is a potential security threat to the local resources in the destination 
computer. Therefore browsers give applets limited access to local resources, using a 
scheme discussed in Section 11.1.1.

Mobile agents: A mobile agent is a running program (including both code and data) that 
travels from one computer to another in a network carrying out a task on someone’s 
behalf, such as collecting information, and eventually returning with the results. A 
mobile agent may make many invocations to local resources at each site it visits – for 
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example, accessing individual database entries. If we compare this architecture with a 
static client making remote invocations to some resources, possibly transferring large 
amounts of data, there is a reduction in communication cost and time through the 
replacement of remote invocations with local ones.

Mobile agents might be used to install and maintain software on the computers 
within an organization or to compare the prices of products from a number of vendors 
by visiting each vendor’s site and performing a series of database operations. An early 
example of a similar idea is the so-called worm program developed at Xerox PARC 
[Shoch and Hupp 1982], which was designed to make use of idle computers in order to 
carry out intensive computations.

Mobile agents (like mobile code) are a potential security threat to the resources in 
computers that they visit. The environment receiving a mobile agent should decide 
which of the local resources it should be allowed to use, based on the identity of the user 
on whose behalf the agent is acting – their identity must be included in a secure way with 
the code and data of the mobile agent. In addition, mobile agents can themselves be 
vulnerable – they may not be able to complete their task if they are refused access to the 
information they need. The tasks performed by mobile agents can be performed by other 
means. For example, web crawlers that need to access resources at web servers 
throughout the Internet work quite successfully by making remote invocations to server 
processes. For these reasons, the applicability of mobile agents may be limited.

2.3.2 Architectural patterns

Architectural patterns build on the more primitive architectural elements discussed 
above and provide composite recurring structures that have been shown to work well in 
given circumstances. They are not themselves necessarily complete solutions but rather 
offer partial insights that, when combined with other patterns, lead the designer to a 
solution for a given problem domain.

This is a large topic, and many architectural patterns have been identified for 
distributed systems. In this section, we present several key architectural patterns in 
distributed systems, including layering and tiered architectures and the related concept 
of thin clients (including the specific mechanism of virtual network computing). We 
also examine web services as an architectural pattern and give pointers to others that 
may be applicable in distributed systems.

Layering  •  The concept of layering is a familiar one and is closely related to abstraction. 
In a layered approach, a complex system is partitioned into a number of layers, with a 
given layer making use of the services offered by the layer below. A given layer 
therefore offers a software abstraction, with higher layers being unaware of 
implementation details, or indeed of any other layers beneath them. 

In terms of distributed systems, this equates to a vertical organization of services 
into service layers. A distributed service can be provided by one or more server 
processes, interacting with each other and with client processes in order to maintain a 
consistent system-wide view of the service’s resources. For example, a network time 
service is implemented on the Internet based on the Network Time Protocol (NTP) by 
server processes running on hosts throughout the Internet that supply the current time to 
any client that requests it and adjust their version of the current time as a result of 
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interactions with each other. Given the complexity of distributed systems, it is often 
helpful to organize such services into layers. We present a common view of a layered 
architecture in Figure 2.7 and develop this view in increasing detail in Chapters 3 to 6. 

Figure 2.7 introduces the important terms platform and middleware, which we 
define as follows:

• A platform for distributed systems and applications consists of the lowest-level 
hardware and software layers. These low-level layers provide services to the 
layers above them, which are implemented independently in each computer, 
bringing the system’s programming interface up to a level that facilitates 
communication and coordination between processes.

Figure 2.7  Software and hardware service layers in distributed systems
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• Middleware was defined in Section 1.5.1 as a layer of software whose purpose is 
to mask heterogeneity and to provide a convenient programming model to 
application programmers. Middleware is represented by processes or objects in a 
set of computers that interact with each other to implement communication and 
resource-sharing support for distributed applications. It is concerned with 
providing useful building blocks for the construction of software components that 
can work with one another in a distributed system. In particular, it raises the level 
of the communication activities of application programs through the support of 
abstractions such as remote method invocation; communication between a group 
of processes; notification of events; the partitioning, placement and retrieval of 
shared data objects amongst cooperating computers; the replication of shared data 
objects; and the transmission of multimedia data in real time. We return to this 
important topic in Section 2.3.3 below. 

Tiered architecture  •  Tiered architectures are complementary to layering. Whereas 
layering deals with the vertical organization of services into layers of abstraction, tiering 
is a technique to organize functionality of a given layer and place this functionality into 
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appropriate servers and, as a secondary consideration, on to physical nodes. This 
technique is most commonly associated with the organization of applications and 
services as in Figure 2.7 above, but it also applies to all layers of a distributed systems 
architecture.

Let us first examine the concepts of two- and three-tiered architecture. To 
illustrate this, consider the functional decomposition of a given application, as follows:

• the presentation logic, which is concerned with handling user interaction and 
updating the view of the application as presented to the user;

• the application logic, which is concerned with the detailed application-specific 
processing associated with the application (also referred to as the business logic, 
although the concept is not limited only to business applications);

• the data logic, which is concerned with the persistent storage of the application, 
typically in a database management system.

Now, let us consider the implementation of such an application using client-server 
technology. The associated two-tier and three-tier solutions are presented together for 
comparison in Figure 2.8 (a) and (b), respectively.

In the two-tier solution, the three aspects mentioned above must be partitioned 
into two processes, the client and the server. This is most commonly done by splitting 
the application logic, with some residing in the client and the remainder in the server 
(although other solutions are also possible). The advantage of this scheme is low latency 
in terms of interaction, with only one exchange of messages to invoke an operation. The 
disadvantage is the splitting of application logic across a process boundary, with the 
consequent restriction on which parts of the logic can be directly invoked from which 
other part.

In the three-tier solution, there is a one-to-one mapping from logical elements to 
physical servers and hence, for example, the application logic is held in one place, which 
in turn can enhance maintainability of the software. Each tier also has a well-defined 
role; for example, the third tier is simply a database offering a (potentially standardized) 
relational service interface. The first tier can also be a simple user interface allowing 
intrinsic support for thin clients (as discussed below). The drawbacks are the added 
complexity of managing three servers and also the added network traffic and latency 
associated with each operation.

Note that this approach generalizes to n-tiered (or multi-tier) solutions where a 
given application domain is partitioned into n logical elements, each mapped to a given 
server element. As an example, Wikipedia, the web-based publicly editable 
encyclopedia, adopts a multi-tier architecture to deal with the high volume of web 
requests (up to 60,000 page requests per second).

The role of AJAX: In Section 1.6 we introduced AJAX (Asynchronous Javascript And 
XML) as an extension to the standard client-server style of interaction used in the World 
Wide Web. AJAX meets the need for fine-grained communication between a Javascript 
front-end program running in a web browser and a server-based back-end program 
holding data describing the state of the application. To recapitulate, in the standard web 
style of interaction a browser sends an HTTP request to a server for a page, image or 
other resource with a given URL. The server replies by sending an entire page that is 
either read from a file on the server or generated by a program, depending on which type 
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of resource is identified in the URL. When the resultant content is received at the client, 
the browser presents it according to the relevant display method for its MIME type 
(text/html, image/jpg, etc.). Although a web page may be composed of several items of 
content of different types, the entire page is composed and presented by the browser in 
the manner specified in its HTML page definition.

This standard style of interaction constrains the development of web applications 
in several significant ways:

• Once the browser has issued an HTTP request for a new web page, the user is 
unable to interact with the page until the new HTML content is received and 
presented by the browser. This time interval is indeterminate, because it is subject 
to network and server delays. 

• In order to update even a small part of the current page with additional data from 
the server, an entire new page must be requested and displayed. This results in a 
delayed response to the user, additional processing at both the client and the server 
and redundant network traffic.
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• The contents of a page displayed at a client cannot be updated in response to 
changes in the application data held at the server.

The introduction of Javascript, a cross-platform and cross-browser programming 
language that is downloaded and executed in the browser, constituted a first step towards 
the removal of those constraints. Javascript is a general-purpose language enabling both 
user interface and application logic to be programmed and executed in the context of a 
browser window. 

AJAX is the second innovative step that was needed to enable major interactive 
web applications to be developed and deployed. It enables Javascript front-end 
programs to request new data directly from server programs. Any data items can be 
requested and the current page updated selectively to show the new values. Indeed, the 
front end can react to the new data in any way that is useful for the application.

Many web applications allow users to access and update substantial shared 
datasets that may be subject to change in response to input from other clients or data 
feeds received by a server. They require a responsive front-end component running in 
each client browser to perform user interface actions such as menu selection, but they 
also require access to a dataset that must be held at server to enable sharing. Such 
datasets are generally too large and too dynamic to allow the use of any architecture 
based on the downloading of a copy of the entire application state to the client at the start 
of a user’s session for manipulation by the client.

AJAX is the ‘glue’ that supports the construction of such applications; it provides 
a communication mechanism enabling front-end components running in a browser to 
issue requests and receive results from back-end components running on a server. 
Clients issue requests through the Javascript XmlHttpRequest object, which manages an 
HTTP exchange (see Section 1.6) with a server process. Because XmlHttpRequest has a 
complex API that is also somewhat browser-dependent, it is usually accessed through 
one of the many Javascript libraries that are available to support the development of web 
applications. 

Figure 2.9 AJAX example: soccer score updates

 new Ajax.Request('scores.php?game=Arsenal:Liverpool’, 

{onSuccess: updateScore});

function updateScore(request) {

.....

( request contains the state of the Ajax request including the returned result. 
The result is parsed to obtain some text giving the score, which is used 
to update the relevant portion of the current page.)

.....

}

In Figure 2.9 we illustrate its use in the Prototype.js Javascript library 
[www.prototypejs.org].

The example is an excerpt from a web application that displays a page listing up-
to-date scores for soccer matches. Users may request updates of scores for individual 
games by clicking on the relevant line of the page, which executes the first line of the 
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example. The Ajax.Request object sends an HTTP request to a scores.php program 
located at the same server as the web page. The Ajax.Request object then returns control, 
allowing the browser to continue to respond to other user actions in the same window or 
other windows. When the scores.php program has obtained the latest score it returns it 
in an HTTP response. The Ajax.Request object is then reactivated; it invokes the 
updateScore function (because it is the onSuccess action), which parses the result and 
inserts the score at the relevant position in the current page. The remainder of the page 
remains unaffected and is not reloaded.

This illustrates the type of communication used between Tier 1 and Tier 2 
components. Although Ajax.Request (and the underlying XmlHttpRequest object) offers 
both synchronous and asynchronous communication, the asynchronous version is 
almost always used because the effect on the user interface of delayed server responses 
is unacceptable. 

Our simple example illustrates the use of AJAX in a two-tier application. In a 
three-tier application the server component (scores.php in our example) would send a 
request to a data manager component (typically an SQL query to a database server) for 
the required data. That request would be synchronous, since there is no reason to return 
control to the server component until the request is satisfied.

The AJAX mechanism constitutes an effective technique for the construction of 
responsive web applications in the context of the indeterminate latency of the Internet, 
and it has been very widely deployed. The Google Maps application [www.google.com 
II] is an outstanding example. Maps are displayed as an array of contiguous 256 x 256 
pixel images (called tiles). When the map is moved the visible tiles are repositioned by 
Javascript code in the browser and additional tiles needed to fill the visible area are 
requested with an AJAX call to a Google server. They are displayed as soon as they are 
received, but the browser continues to respond to user interaction while they are awaited. 

Thin clients  •  The trend in distributed computing is towards moving complexity away 
from the end-user device towards services in the Internet. This is most apparent in the 
move towards cloud computing (discussed in Chapter 1) but can also be seen in tiered 
architectures, as discussed above. This trend has given rise to interest in the concept of 
a thin client, enabling access to sophisticated networked services, provided for example 
by a cloud solution, with few assumptions or demands on the client device. More 
specifically, the term thin client refers to a software layer that supports a window-based 
user interface that is local to the user while executing application programs or, more 
generally, accessing services on a remote computer. For example, Figure 2.10

Figure 2.10 Thin clients and computer servers

Thin
Client

Application
Process

Networked device Compute server

Network

 illustrates 
a thin client accessing a compute server over the Internet. The advantage of this 
approach is that potentially simple local devices (including, for example, smart phones 



SECTION 2.3 ARCHITECTURAL MODELS 57

and other resource-constrained devices) can be significantly enhanced with a plethora of 
networked services and capabilities. The main drawback of the thin client architecture 
is in highly interactive graphical activities such as CAD and image processing, where 
the delays experienced by users are increased to unacceptable levels by the need to 
transfer image and vector information between the thin client and the application 
process, due to both network and operating system latencies. 

This concept has led to the emergence of   virtual network computing (VNC). This 
technology was first introduced by researchers at the Olivetti and Oracle Research 
Laboratory [Richardson et al. 1998]; the initial concept has now evolved into 
implementations such as RealVNC [www.realvnc.com], which is a software solution, 
and Adventiq [www.adventiq.com], which is a hardware-based solution supporting the 
transmission of keyboard, video and mouse events over IP (KVM-over-IP). Other VNC 
implementationss include Apple Remote Desktop, TightVNC and Aqua Connect.

The concept is straightforward, providing remote access to graphical user 
interfaces. In this solution, a VNC client (or viewer) interacts with a VNC server through 
a VNC protocol. The protocol operates at a primitive level in terms of graphics support, 
based on framebuffers and featuring one operation: the placement of a rectangle of pixel 
data at a given position on the screen (some solutions, such as XenApp from Citrix 
operate at a higher level in terms of window operations [www.citrix.com]). This low-
level approach ensures the protocol will work with any operating system or application. 
Although it is straightforward, the implication is that users are able to access their 
computer facilities from anywhere on a wide range of devices, representing a significant 
step forward in mobile computing.

Virtual network computing has superseded network computers, a previous 
attempt to realise thin client solutions through simple and inexpensive hardware devices 
that are completely reliant on networked services, downloading their operating system 
and any application software needed by the user from a remote file server. Since all the 
application data and code is stored by a file server, the users may migrate from one 
network computer to another. In practice, virtual network computing has proved to be a 
more flexible solution and now dominates the marketplace.

Other commonly occurring patterns  •  As mentioned above, a large number of 
architectural patterns have now been identified and documented. Here are a few key 
examples:

• The proxy pattern is a commonly recurring pattern in distributed systems designed 
particularly to support location transparency in remote procedure calls or remote 
method invocation. With this approach, a proxy is created in the local address 
space to represent the remote object. This proxy offers exactly the same interface 
as the remote object, and the programmer makes calls on this proxy object and 
hence does not need to be aware of the distributed nature of the interaction. The 
role of proxies in supporting such location transparency in RPC and RMI is 
discussed further in Chapter 5. Note that proxies can also be used to encapsulate 
other functionality, such as the placement policies of replication or caching.

• The use of brokerage in web services can usefully be viewed as an architectural 
pattern supporting interoperability in potentially complex distributed 
infrastructures. In particular, this pattern consists of the trio of service provider, 
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service requester and service broker (a service that matches services provided to 
those requested), as shown in Figure 2.11

Figure 2.11 The web service architectural pattern
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. This brokerage pattern is replicated in 
many areas of distributed systems, for example with the registry in Java RMI and 
the naming service in CORBA (as discussed in Chapters 5 and 8, respectively).

• Reflection is a pattern that is increasingly being used in distributed systems as a 
means of supporting both introspection (the dynamic discovery of properties of 
the system) and intercession (the ability to dynamically modify structure or 
behaviour). For example, the introspection capabilities of Java are used 
effectively in the implementation of RMI to provide generic dispatching (as 
discussed in Section 5.4.2). In a reflective system, standard service interfaces are 
available at the base level, but a meta-level interface is also available providing 
access to the components and their parameters involved in the realization of the 
services. A variety of techniques are generally available at the meta-level, 
including the ability to intercept incoming messages or invocations, to 
dynamically discover the interface offered by a given object and to discover and 
adapt the underlying architecture of the system. Reflection has been applied in a 
variety of areas in distributed systems, particularly within the field of reflective 
middleware, for example to support more configurable and reconfigurable 
middleware architectures [Kon et al. 2002]. 

Further examples of architectural patterns related to distributed systems can be found in 
Bushmann et al. [2007].

2.3.3 Associated middleware solutions

Middleware has already been introduced in Chapter 1 and revisited in the discussion of 
layering in Section 2.3.2 above. The task of middleware is to provide a higher-level 
programming abstraction for the development of distributed systems and, through 
layering, to abstract over heterogeneity in the underlying infrastructure to promote 
interoperability and portability. Middleware solutions are based on the architectural 
models introduced in Section 2.3.1 and also support more complex architectural 
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patterns. In this section, we briefly review the major classes of middleware that exist 
today and prepare the ground for further study of these solutions in the rest of the book.

Categories of middleware  •  Remote procedure calling packages such as Sun RPC 
(Chapter 5) and group communication systems such as ISIS (Chapters 6 and 18) were 
amongst the earliest instances of middleware. Since then a wide range of styles of 
middleware have emerged, based largely on the architectural models introduced above. 
We present a taxonomy of such middleware platforms in Figure 2.12

Figure 2.12 Categories of middleware 

Major categories: Subcategory Example systems

Distributed objects (Chapters 5, 8) Standard RM-ODP

Platform CORBA

Platform Java RMI

Distributed components (Chapter 8) Lightweight components Fractal

Lightweight components OpenCOM

Application servers SUN EJB

Application servers CORBA Component Model

Application servers JBoss

Publish-subscribe systems (Chapter 6) - CORBA Event Service

- Scribe

- JMS

Message queues (Chapter 6) - Websphere MQ

- JMS

Web services (Chapter 9) Web services Apache Axis

Grid services The Globus Toolkit 

Peer-to-peer (Chapter 10) Routing overlays Pastry

Routing overlays Tapestry

Application-specific Squirrel

Application-specific OceanStore

Application-specific Ivy

Application-specific Gnutella

, including cross-
references to other chapters that cover the various categories in more detail. It must be 
stressed that the categorizations are not exact and that modern middleware platforms 
tend to offer hybrid solutions. For example, many distributed object platforms offer 
distributed event services to complement the more traditional support for remote method 
invocation. Similarly, many component-based platforms (and indeed other categories of 
platform) also support web service interfaces and standards, for reasons of 
interoperability. It should also be stressed that this taxonomy is not intended to be 
complete in terms of the set of middleware standards and technologies available today, 
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but rather is intended to be indicative of the major classes of middleware. Other 
solutions (not shown) tend to be more specific, for example offering particular 
communication paradigms such as message passing, remote procedure calls, distributed 
shared memory, tuple spaces or group communication.

The top-level categorization of middleware in Figure 2.12 is driven by the choice 
of communicating entities and associated communication paradigms, and follows five 
of the main architectural models: distributed objects, distributed components, publish-
subscribe systems, message queues and  web services. These are supplemented by peer-
to-peer systems, a rather separate branch of middleware based on the cooperative 
approach discussed in Section 2.3.1. The subcategory of distributed components shown 
as application servers also provides direct support for three-tier architectures. In 
particular, application servers provide structure to support a separation between 
application logic and data storage, along with support for other properties such as 
security and reliability. Further detail is deferred until Chapter 8.

In addition to programming abstractions, middleware can also provide 
infrastructural distributed system services for use by application programs or other 
services. These infrastructural services are tightly bound to the distributed programming 
model that the middleware provides. For example, CORBA (Chapter 8) provides 
applications with a range of CORBA services, including support for making 
applications secure and reliable. As mentioned above and discussed further  in Chapter 
8, application servers also provide intrinsic support for such services.

Limitations of middleware  •  Many distributed applications rely entirely on the services 
provided by middleware to support their needs for communication and data sharing. For 
example, an application that is suited to the client-server model such as a database of 
names and addresses, can rely on middleware that provides only remote method 
invocation. 

Much has been achieved in simplifying the programming of distributed systems 
through the development of middleware support, but some aspects of the dependability 
of systems require support at the application level. 

Consider the transfer of large electronic mail messages from the mail host of the 
sender to that of the recipient. At first sight this a simple application of the TCP data 
transmission protocol (discussed in Chapter 3). But consider the problem of a user who 
attempts to transfer a very large file over a potentially unreliable network. TCP provides 
some error detection and correction, but it cannot recover from major network 
interruptions. Therefore the mail transfer service adds another level of fault tolerance, 
maintaining a record of progress and resuming transmission using a new TCP 
connection if the original one breaks.

A classic paper by Saltzer, Reed and Clarke [Saltzer et al. 1984] makes a similar 
and valuable point about the design of distributed systems, which they call the ‘the end-
to-end argument’. To paraphrase their statement:

Some communication-related functions can be completely and reliably 
implemented only with the knowledge and help of the application standing at the 
end points of the communication system. Therefore, providing that function as a 
feature of the communication system itself is not always sensible. (Although an 
incomplete version of the function provided by the communication system may 
sometimes be useful as a performance enhancement). 
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It can be seen that their argument runs counter to the view that all communication 
activities can be abstracted away from the programming of applications by the 
introduction of appropriate middleware layers. 

The nub of their argument is that correct behaviour in distributed programs 
depends upon checks, error-correction mechanisms and security measures at many 
levels, some of which require access to data within the application’s address space. Any 
attempt to perform the checks within the communication system alone will guarantee 
only part of the required correctness. The same work is therefore likely to be duplicated 
in application programs, wasting programming effort and, more importantly, adding 
unnecessary complexity and redundant computations.

There is not space to detail their arguments further here, but reading the cited 
paper is strongly recommended – it is replete with illuminating examples. One of the 
original authors has recently pointed out that the substantial benefits that the use of the 
argument brought to the design of the Internet are placed at risk by recent moves towards 
the specialization of network services to meet current application requirements 
[www.reed.com].

This argument poses a real dilemma for middleware designers, and indeed the 
difficulties are increasing given the wide range of applications (and associated 
environmental conditions) in contemporary distributed systems (see Chapter 1). In 
essence, the right underlying middleware behaviour is a function of the requirements of 
a given application or set of applications and the associated environmental context, such 
as the state and style of the underlying network. This perception is driving interest in 
context-aware and adaptive solutions to middleware, as discussed in Kon et al [2002]. 

2.4 Fundamental models

All the above, quite different, models of systems share some fundamental properties. In 
particular, all of them are composed of processes that communicate with one another by 
sending messages over a computer network. All of the models share the design 
requirements of achieving the performance and reliability characteristics of processes 
and networks and ensuring the security of the resources in the system. In this section, we 
present models based on the fundamental properties that allow us to be more specific 
about their characteristics and the failures and security risks they might exhibit. 

In general, such a fundamental model should contain only the essential ingredients 
that we need to consider in order to understand and reason about some aspects of a 
system’s behaviour. The purpose of such a model is:

• To make explicit all the relevant assumptions about the systems we are modelling.

• To make generalizations concerning what is possible or impossible, given those 
assumptions. The generalizations may take the form of general-purpose 
algorithms or desirable properties that are guaranteed. The guarantees are 
dependent on logical analysis and, where appropriate, mathematical proof.

There is much to be gained by knowing what our designs do, and do not, depend upon. 
It allows us to decide whether a design will work if we try to implement it in a particular 
system: we need only ask whether our assumptions hold in that system. Also, by making 
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our assumptions clear and explicit, we can hope to prove system properties using math-
ematical techniques. These properties will then hold for any system meeting our as-
sumptions. Finally, by abstracting only the essential system entities and characteristics 
away from details such as hardware, we can clarify our understanding of our systems.

The aspects of distributed systems that we wish to capture in our fundamental 
models are intended to help us to discuss and reason about:

Interaction: Computation occurs within processes; the processes interact by passing 
messages, resulting in communication (information flow) and coordination 
(synchronization and ordering of activities) between processes. In the analysis and 
design of distributed systems we are concerned especially with these interactions. 
The interaction model must reflect the facts that communication takes place with 
delays that are often of considerable duration, and that the accuracy with which 
independent processes can be coordinated is limited by these delays and by the 
difficulty of maintaining the same notion of time across all the computers in a 
distributed system.

Failure: The correct operation of a distributed system is threatened whenever a fault 
occurs in any of the computers on which it runs (including software faults) or in the 
network that connects them. Our model defines and classifies the faults. This 
provides a basis for the analysis of their potential effects and for the design of systems 
that are able to tolerate faults of each type while continuing to run correctly.

Security: The modular nature of distributed systems and their openness exposes 
them to attack by both external and internal agents. Our security model defines and 
classifies the forms that such attacks may take, providing a basis for the analysis of 
threats to a system and for the design of systems that are able to resist them. 

As aids to discussion and reasoning, the models introduced in this chapter are 
necessarily simplified, omitting much of the detail of real-world systems. Their 
relationship to real-world systems, and the solution in that context of the problems that 
the models help to bring out, is the main subject of this book. 

2.4.1 Interaction model

The discussion of system architectures in Section 2.3 indicates that fundamentally 
distributed systems are composed of many processes, interacting in complex ways. For 
example:

• Multiple server processes may cooperate with one another to provide a service; the 
examples mentioned above were the Domain Name System, which partitions and 
replicates its data at servers throughout the Internet, and Sun’s Network 
Information Service, which keeps replicated copies of password files at several 
servers in a local area network.

• A set of peer processes may cooperate with one another to achieve a common 
goal: for example, a voice conferencing system that distributes streams of audio 
data in a similar manner, but with strict real-time constraints.

Most programmers will be familiar with the concept of an algorithm – a sequence of 
steps to be taken in order to perform a desired computation. Simple programs are 
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controlled by algorithms in which the steps are strictly sequential. The behaviour of the 
program and the state of the program’s variables is determined by them. Such a program 
is executed as a single process. Distributed systems composed of multiple processes 
such as those outlined above are more complex. Their behaviour and state can be 
described by a distributed algorithm – a definition of the steps to be taken by each of the 
processes of which the system is composed, including the transmission of messages 

between them. Messages are transmitted between processes to transfer information 
between them and to coordinate their activity. 

The rate at which each process proceeds and the timing of the transmission of 
messages between them cannot in general be predicted. It is also difficult to describe all 
the states of a distributed algorithm, because it must deal with the failures of one or more 
of the processes involved or the failure of message transmissions.

Interacting processes perform all of the activity in a distributed system. Each 
process has its own state, consisting of the set of data that it can access and update, 
including the variables in its program. The state belonging to each process is completely 
private – that is, it cannot be accessed or updated by any other process. 

In this section, we discuss two significant factors affecting interacting processes 
in a distributed system: 

• Communication performance is often a limiting characteristic. 

• It is impossible to maintain a single global notion of time. 

Performance of communication channels   •  The communication channels in our model 
are realized in a variety of ways in distributed systems – for example, by an 
implementation of streams or by simple message passing over a computer network. 
Communication over a computer network has the following performance characteristics 
relating to latency, bandwidth and jitter: 

• The delay between the start of a message’s transmission from one process and the 
beginning of its receipt by another is referred to as latency. The latency includes: 

– The time taken for the first of a string of bits transmitted through a network to 
reach its destination. For example, the latency for the transmission of a 
message through a satellite link is the time for a radio signal to travel to the 
satellite and back.

– The delay in accessing the network, which increases significantly when the 
network is heavily loaded. For example, for Ethernet transmission the sending 
station waits for the network to be free of traffic. 

– The time taken by the operating system communication services at both the 
sending and the receiving processes, which varies according to the current load 
on the operating systems.

• The bandwidth of a computer network is the total amount of information that can 
be transmitted over it in a given time. When a large number of communication 
channels are using the same network, they have to share the available bandwidth. 

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is 
relevant to multimedia data. For example, if consecutive samples of audio data are 
played with differing time intervals, the sound will be badly distorted.
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Computer clocks and timing events  •   Each computer in a distributed system has its own 
internal clock, which can be used by local processes to obtain the value of the current 
time. Therefore two processes running on different computers can each associate 
timestamps with their events. However, even if the two processes read their clocks at the 
same time, their local clocks may supply different time values. This is because computer 
clocks drift from perfect time and, more importantly, their drift rates differ from one 
another. The term clock drift rate refers to the rate at which a computer clock deviates 
from a perfect reference clock. Even if the clocks on all the computers in a distributed 
system are set to the same time initially, their clocks will eventually vary quite 
significantly unless corrections are applied.

There are several approaches to correcting the times on computer clocks. For 
example, computers may use radio receivers to get time readings from the Global 
Positioning System with an accuracy of about 1 microsecond. But GPS receivers do not 
operate inside buildings, nor can the cost be justified for every computer. Instead, a 
computer that has an accurate time source such as GPS can send timing messages to 
other computers in its network. The resulting agreement between the times on the local 
clocks is, of course, affected by variable message delays. For a more detailed discussion 
of clock drift and clock synchronization, see Chapter 14.

Two variants of the interaction model   •  In a distributed system it is hard to set limits on 
the time that can be taken for process execution, message delivery or clock drift. Two 
opposing extreme positions provide a pair of simple models – the first has a strong 
assumption of time and the second makes no assumptions about time:

Synchronous distributed systems: Hadzilacos and Toueg [1994] define a 
synchronous distributed system to be one in which the following bounds are defined:

• The time to execute each step of a process has known lower and upper bounds.

• Each message transmitted over a channel is received within a known bounded 
time.

• Each process has a local clock whose drift rate from real time has a known 
bound.

It is possible to suggest likely upper and lower bounds for process execution time, 
message delay and clock drift rates in a distributed system, but it is difficult to arrive 
at realistic values and to provide guarantees of the chosen values. Unless the values 
of the bounds can be guaranteed, any design based on the chosen values will not be 
reliable. However, modelling an algorithm as a synchronous system may be useful 
for giving some idea of how it will behave in a real distributed system. In a 
synchronous system it is possible to use timeouts, for example, to detect the failure 
of a process, as shown in Section 2.4.2 below.

Synchronous distributed systems can be built. What is required is for the 
processes to perform tasks with known resource requirements for which they can be 
guaranteed sufficient processor cycles and network capacity, and for processes to be 
supplied with clocks with bounded drift rates.



Agreement in Pepperland   •  Two divisions of the Pepperland army, ‘Apple’ and 
‘Orange’, are encamped at the top of two nearby hills. Further along the valley below 
are the invading Blue Meanies. The Pepperland divisions are safe as long as they 
remain in their encampments, and they can send out messengers reliably through the 
valley to communicate. The Pepperland divisions need to agree on which of them 
will lead the charge against the Blue Meanies and when the charge will take place. 
Even in an asynchronous Pepperland, it is possible to agree on who will lead the 
charge. For example, each division can send the number of its remaining members, 
and the one with most will lead (if a tie, division Apple wins over Orange). But when 
should they charge? Unfortunately, in asynchronous Pepperland, the messengers are 
very variable in their speed. If, say, Apple sends a messenger with the message 
‘Charge!’, Orange might not receive the message for, say, three hours; or it may  take, 
say, five minutes to arrive. In a synchronous Pepperland, there is still a coordination 
problem, but the divisions know some useful constraints: every message takes at least 
min minutes and at most max minutes to arrive. If the division that will lead the 
charge sends a message ‘Charge!’, it waits for min minutes; then it charges. The other 
division waits for 1 minute after receipt of the message, then charges. Its charge is 
guaranteed to be after the leading division’s, but no more than (max – min + 1) 
minutes after it.
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Asynchronous distributed systems: Many distributed systems, such as the Internet, 
are very useful without being able to qualify as synchronous systems. Therefore we 
need an alternative model. An asynchronous distributed system is one in which there 
are no bounds on:

• Process execution speeds – for example, one process step may take only a 
picosecond and another a century; all that can be said is that each step may take 
an arbitrarily long time. 

• Message transmission delays – for example, one message from process A to 
process B may be delivered in negligible time and another may take several 
years. In other words, a message may be received after an arbitrarily long time.

• Clock drift rates – again, the drift rate of a clock is arbitrary.

The asynchronous model allows no assumptions about the time intervals involved in 
any execution. This exactly models the Internet, in which there is no intrinsic bound 
on server or network load and therefore on how long it takes, for example, to transfer 
a file using FTP. Sometimes an email message can take days to arrive. The box on 
this page illustrates the difficulty of reaching an agreement in an asynchronous 
distributed system.

But some design problems can be solved even with these assumptions. For 
example, although the Web cannot always provide a particular response within a 
reasonable time limit, browsers have been designed to allow users to do other things 
while they are waiting. Any solution that is valid for an asynchronous distributed 
system is also valid for a synchronous one.

Actual distributed systems are very often asynchronous because of the need for 
processes to share the processors and for communication channels to share the 
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network. For example, if too many processes of unknown character are sharing a 
processor, then the resulting performance of any one of them cannot be guaranteed. 
But there are many design problems that cannot be solved for an asynchronous 
system that can be solved when some aspects of time are used. The need for each 
element of a multimedia data stream to be delivered before a deadline is such a 
problem. For problems such as these, a synchronous model is required. 

Event ordering  •   In many cases, we are interested in knowing whether an event 
(sending or receiving a message) at one process occurred before, after or concurrently 
with another event at another process. The execution of a system can be described in 
terms of events and their ordering despite the lack of accurate clocks. 

For example, consider the following set of exchanges between a group of email 
users, X, Y, Z and A, on a mailing list: 

1. User X sends a message with the subject Meeting.

2. Users Y and Z reply by sending a message with the subject Re: Meeting.

In real time, X’s message is sent first, and Y reads it and replies; Z then reads both X’s 
message and Y’s reply and sends another reply, which references both X’s and Y’s 
messages. But due to the independent delays in message delivery, the messages may be 
delivered as shown in Figure 2.13

Figure 2.13 Real-time ordering of events
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If the clocks on X’s, Y’s and Z’s computers could be synchronized, then each message 
could carry the time on the local computer’s clock when it was sent. For example, 
messages m1, m2 and m3 would carry times t1, t2 and t3 where t1<t2<t3. The messages 
received will be displayed to users according to their time ordering. If the clocks are 
roughly synchronized, then these timestamps will often be in the correct order.

Since clocks cannot be synchronized perfectly across a distributed system, 
Lamport [1978] proposed a model of logical time that can be used to provide an ordering 
among the events at processes running in different computers in a distributed system. 
Logical time allows the order in which the messages are presented to be inferred without 
recourse to clocks. It is presented in detail in Chapter 14, but we suggest here how some 
aspects of logical ordering can be applied to our email ordering problem. 

Logically, we know that a message is received after it was sent. Therefore we can 
state a logical ordering for pairs of events shown in Figure 2.13, for example, 
considering only the events concerning X and Y:

X sends m1 before Y receives m1; Y sends m2 before X receives m2.

We also know that replies are sent after receiving messages, so we have the following 
logical ordering for Y:

Y receives m1 before sending m2.

Logical time takes this idea further by assigning a number to each event corresponding 
to its logical ordering, so that later events have higher numbers than earlier ones. For 
example, Figure 2.13 shows the numbers 1 to 4 on the events at X and Y.

2.4.2 Failure model

In a distributed system both processes and communication channels may fail – that is, 
they may depart from what is considered to be correct or desirable behaviour. The failure 
model defines the ways in which failure may occur in order to provide an understanding 
of the effects of failures. Hadzilacos and Toueg [1994] provide a taxonomy that 
distinguishes between the failures of processes and communication channels. These are 
presented under the headings omission failures, arbitrary failures and timing failures. 

The failure model will be used throughout the book. For example:

• In Chapter 4, we present the Java interfaces to datagram and stream 
communication, which provide different degrees of reliability.

• Chapter 5 presents the request-reply protocol, which supports RMI. Its failure 
characteristics depend on the failure characteristics of both processes and 
communication channels. The protocol can be built from either datagram or 
stream communication. The choice may be decided according to a consideration 
of simplicity of implementation, performance and reliability.

• Chapter 17 presents the two-phase commit protocol for transactions. It is designed 
to complete in the face of well-defined failures of processes and communication 
channels.

Omission failures  •  The faults classified as omission failures refer to cases when a 
process or communication channel fails to perform actions that it is supposed to do.
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Process omission failures: The chief omission failure of a process is to crash. When we 
say that a process has crashed we mean that it has halted and will not execute any further 
steps of its program ever. The design of services that can survive in the presence of faults 
can be simplified if it can be assumed that the services on which they depend crash 
cleanly – that is, their processes either function correctly or else stop. Other processes 
may be able to detect such a crash by the fact that the process repeatedly fails to respond 
to invocation messages. However, this method of crash detection relies on the use of 
timeouts – that is, a method in which one process allows a fixed period of time for 
something to occur. In an asynchronous system a timeout can indicate only that a 
process is not responding – it may have crashed or may be slow, or the messages may 
not have arrived. 

A process crash is called fail-stop if other processes can detect certainly that the 
process has crashed. Fail-stop behaviour can be produced in a synchronous system if the 
processes use timeouts to detect when other processes fail to respond and messages are 
guaranteed to be delivered. For example, if processes p and q are programmed for q to 
reply to a message from p, and if process p has received no reply from process q in a 
maximum time measured on p’s local clock, then process p may conclude that process 
q has failed. The box opposite illustrates the difficulty of detecting failures in an 
asynchronous system or of reaching agreement in the presence of failures.

Communication omission failures: Consider the communication primitives send and 
receive. A process p performs a send by inserting the message m in its outgoing message 
buffer. The communication channel transports m to q’s incoming message buffer. 
Process q performs a receive by taking m from its incoming message buffer and 
delivering it (see Figure 2.14). The outgoing and incoming message buffers are typically 
provided by the operating system.   

The communication channel produces an omission failure if it does not transport 
a message from p’s outgoing message buffer to q’s incoming message buffer. This is 
known as ‘dropping messages’ and is generally caused by lack of buffer space at the 
receiver or at an intervening gateway, or by a network transmission error, detected by a 
checksum carried with the message data. Hadzilacos and Toueg [1994] refer to the loss 
of messages between the sending process and the outgoing message buffer as send-

omission failures, to loss of messages between the incoming message buffer and the 
receiving process as receive-omission failures, and to loss of messages in between as 
channel omission failures. The omission failures are classified together with arbitrary 
failures in Figure 2.15.

Failures can be categorized according to their severity. All of the failures we have 
described so far are benign failures. Most failures in distributed systems are benign. 
Benign failures include failures of omission as well as timing failures and performance 
failures. 

Arbitrary failures  •  The term arbitrary or Byzantine failure is used to describe the worst 
possible failure semantics, in which any type of error may occur. For example, a process 
may set wrong values in its data items, or it may return a wrong value in response to an 
invocation. 

An arbitrary failure of a process is one in which it arbitrarily omits intended 
processing steps or takes unintended processing steps. Arbitrary failures in processes 



Failure detection  •   In the case of the Pepperland divisions encamped at the tops of 
hills (see page 65), suppose that the Blue Meanies are after all sufficient in strength 
to attack and defeat either division while encamped – that is, that either can fail. 
Suppose further that, while undefeated, the divisions regularly send messengers to 
report their status. In an asynchronous system, neither division can distinguish 
whether the other has been defeated or the time it is taking for the messengers to cross 
the intervening valley is just very long. In a synchronous Pepperland, a division can 
tell for sure if the other has been defeated by the absence of a regular messenger. 
However, the other division may have been defeated just after it sent the latest 
messenger.

Impossibility of reaching timely agreement in the presence of communication 

failures  •  We have been assuming that the Pepperland messengers always manage 
to cross the valley eventually; but now suppose that the Blue Meanies can capture any 
messenger and prevent them from arriving. (We shall assume it is impossible for the 
Blue Meanies to brainwash the messengers to give the wrong message – the Meanies 
are not aware of their treacherous Byzantine precursors.) Can the Apple and Orange 
divisions send messages so that they both consistently decide to charge at the 
Meanies or both decide to surrender? Unfortunately, as the Pepperland theoretician 
Ringo the Great proved, in these circumstances the divisions cannot guarantee to 
decide consistently what to do. To see this, assume to the contrary that the divisions 
run a Pepperland protocol that achieves agreement. Each proposes ‘Charge!’ or 
‘Surrender!’, and the protocol results in them both agreeing on one or the other course 
of action. Now consider the last message sent in any run of the protocol. The 
messenger that carries it could be captured by the Blue Meanies, so the end result 
must be the same whether the message arrives or not. We can dispense with it. Now 
we can apply the same argument to the final message that remains. But this argument 
applies again to that message and will continue to apply, so we shall end up with no 
messages sent at all! This shows that no protocol that guarantees agreement between 
the Pepperland divisions can exist if messengers can be captured.

Figure 2.14 Processes and channels
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cannot be detected by seeing whether the process responds to invocations, because it 
might arbitrarily omit to reply.

Communication channels can suffer from arbitrary failures; for example, message 
contents may be corrupted, nonexistent messages may be delivered or real messages 
may be delivered more than once. Arbitrary failures of communication channels are rare 
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because the communication software is able to recognize them and reject the faulty 
messages. For example, checksums are used to detect corrupted messages, and message 
sequence numbers can be used to detect nonexistent and duplicated messages.

Figure 2.15 Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may 
detect this state.

Crash Process Process halts and remains halted. Other processes may 
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer 
never arrives at the other end’s incoming message 
buffer.

Send-omission Process A process completes a send operation but the message 
is not put in its outgoing message buffer.

Receive-
omission

Process A message is put in a process’s incoming message 
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process
or
channel

Process/channel exhibits arbitrary behaviour: it may 
send/transmit arbitrary messages at arbitrary times or 
commit omissions; a process may stop or take an 
incorrect step.

Timing failures  •  Timing failures are applicable in synchronous distributed systems 
where time limits are set on process execution time, message delivery time and clock 
drift rate. Timing failures are listed in Figure 2.16. Any one of these failures may result 
in responses being unavailable to clients within a specified time interval.

In an asynchronous distributed system, an overloaded server may respond too 
slowly, but we cannot say that it has a timing failure since no guarantee has been offered. 

Real-time operating systems are designed with a view to providing timing 
guarantees, but they are more complex to design and may require redundant hardware. 
Most general-purpose operating systems such as UNIX do not have to meet real-time 
constraints.

Timing is particularly relevant to multimedia computers with audio and video 
channels. Video information can require a very large amount of data to be transferred. 
Delivering such information without timing failures can make very special demands on 
both the operating system and the communication system.

Masking failures  •  Each component in a distributed system is generally constructed 
from a collection of other components. It is possible to construct reliable services from 
components that exhibit failures. For example, multiple servers that hold replicas of data 
can continue to provide a service when one of them crashes. A knowledge of the failure 
characteristics of a component can enable a new service to be designed to mask the 
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failure of the components on which it depends. A service masks a failure either by hiding 
it altogether or by converting it into a more acceptable type of failure. For an example 
of the latter, checksums are used to mask corrupted messages, effectively converting an 
arbitrary failure into an omission failure. We shall see in Chapters 3 and 4 that omission 
failures can be hidden by using a protocol that retransmits messages that do not arrive at 
their destination. Chapter 18 presents masking by means of replication. Even process 
crashes may be masked, by replacing the process and restoring its memory from 
information stored on disk by its predecessor. 

Figure 2.16 Timing failures

Class of failure Affects Description

Clock Process Process’s local clock exceeds the bounds on 
its rate of drift from real time.

Performance Process Process exceeds the bounds on the interval 
between two steps.

Performance Channel A message’s transmission takes longer than 
the stated bound.

Reliability of one-to-one communication  •  Although a basic communication channel 
can exhibit the omission failures described above, it is possible to use it to build a 
communication service that masks some of those failures.   

The term reliable communication is defined in terms of validity and integrity as 
follows:

Validity: Any message in the outgoing message buffer is eventually delivered to the 
incoming message buffer.

Integrity: The message received is identical to one sent, and no messages are 
delivered twice.

The threats to integrity come from two independent sources:

• Any protocol that retransmits messages but does not reject a message that arrives 
twice. Protocols can attach sequence numbers to messages so as to detect those 
that are delivered twice.

• Malicious users that may inject spurious messages, replay old messages or tamper 
with messages. Security measures can be taken to maintain the integrity property 
in the face of such attacks.

2.4.3 Security model

In Chapter 1 we identified the sharing of resources as a motivating factor for distributed 
systems, and in Section 2.3 we described their architecture in terms of processes, 
potentially encapsulating higher-level abstractions such as objects, components or 
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services, and providing access to them through interactions with other processes. That 
architectural model provides the basis for our security model: 

the security of a distributed system can be achieved by securing the processes and the 
channels used for their interactions and by protecting the objects that they 
encapsulate against unauthorized access.

Protection is described in terms of objects, although the concepts apply equally well to 
resources of all types.

Protecting objects  •  Figure 2.17 shows a server that manages a collection of objects on 
behalf of some users. The users can run client programs that send invocations to the 
server to perform operations on the objects. The server carries out the operation 
specified in each invocation and sends the result to the client.

Objects are intended to be used in different ways by different users. For example, 
some objects may hold a user’s private data, such as their mailbox, and other objects 
may hold shared data such as web pages. To support this, access rights specify who is 
allowed to perform the operations of an object – for example, who is allowed to read or 
to write its state.

Thus we must include users in our model as the beneficiaries of access rights. We 
do so by associating with each invocation and each result the authority on which it is 
issued. Such an authority is called a principal. A principal may be a user or a process. 
In our illustration, the invocation comes from a user and the result from a server. 

Figure 2.17 Objects and principals
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The server is responsible for verifying the identity of the principal behind each 
invocation and checking that they have sufficient access rights to perform the requested 
operation on the particular object invoked, rejecting those that do not. The client may 
check the identity of the principal behind the server to ensure that the result comes from 
the required server.

Securing processes and their interactions  •  Processes interact by sending messages. 
The messages are exposed to attack because the network and the communication service 
that they use are open, to enable any pair of processes to interact. Servers and peer 
processes expose their interfaces, enabling invocations to be sent to them by any other 
process.

Distributed systems are often deployed and used in tasks that are likely to be 
subject to external attacks by hostile users. This is especially true for applications that 
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handle financial transactions, confidential or classified information or any other 
information whose secrecy or integrity is crucial. Integrity is threatened by security 
violations as well as communication failures. So we know that there are likely to be 
threats to the processes of which such applications are composed and to the messages 
travelling between the processes. But how can we analyze these threats in order to 
identify and defeat them? The following discussion introduces a model for the analysis 
of security threats.

The enemy  •  To model security threats, we postulate an enemy (sometimes also known 
as the adversary) that is capable of sending any message to any process and reading or 
copying any message sent between a pair of processes, as shown in Figure 2.18. Such 
attacks can be made simply by using a computer connected to a network to run a 
program that reads network messages addressed to other computers on the network, or 
a program that generates messages that make false requests to services, purporting to 
come from authorized users. The attack may come from a computer that is legitimately 
connected to the network or from one that is connected in an unauthorized manner. 

The threats from a potential enemy include threats to processes and threats to 

communication channels.

Threats to processes: A process that is designed to handle incoming requests may 
receive a message from any other process in the distributed system, and it cannot 
necessarily determine the identity of the sender. Communication protocols such as IP do 
include the address of the source computer in each message, but it is not difficult for an 
enemy to generate a message with a forged source address. This lack of reliable 
knowledge of the source of a message is a threat to the correct functioning of both 
servers and clients, as explained below:

Figure 2.18 The enemy
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Servers: Since a server can receive invocations from many different clients, it cannot 
necessarily determine the identity of the principal behind any particular invocation. 
Even if a server requires the inclusion of the principal’s identity in each invocation, 
an enemy might generate an invocation with a false identity. Without reliable 
knowledge of the sender’s identity, a server cannot tell whether to perform the 
operation or to reject it. For example, a mail server would not know whether the user 
behind an invocation that requests a mail item from a particular mailbox is allowed 
to do so or whether it was a request from an enemy.

Clients: When a client receives the result of an invocation from a server, it cannot 
necessarily tell whether the source of the result message is from the intended server 
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or from an enemy, perhaps ‘spoofing’ the mail server. Thus the client could receive 
a result that was unrelated to the original invocation, such as a false mail item (one 
that is not in the user’s mailbox). 

Threats to communication channels: An enemy can copy, alter or inject messages as they 
travel across the network and its intervening gateways. Such attacks present a threat to 
the privacy and integrity of information as it travels over the network and to the integrity 
of the system. For example, a result message containing a user’s mail item might be 
revealed to another user or it might be altered to say something quite different.

Another form of attack is the attempt to save copies of messages and to replay 
them at a later time, making it possible to reuse the same message over and over again. 
For example, someone could benefit by resending an invocation message requesting a 
transfer of a sum of money from one bank account to another.

All these threats can be defeated by the use of secure channels, which are 
described below and are based on cryptography and authentication.

Defeating security threats  •  Here we introduce the main techniques on which secure 
systems are based. Chapter 11 discusses the design and implementation of secure 
distributed systems in much more detail.

Cryptography and shared secrets: Suppose that a pair of processes (for example, a 
particular client and a particular server) share a secret; that is, they both know the secret 
but no other process in the distributed system knows it. Then if a message exchanged by 
that pair of processes includes information that proves the sender’s knowledge of the 
shared secret, the recipient knows for sure that the sender was the other process in the 
pair. Of course, care must be taken to ensure that the shared secret is not revealed to an 
enemy.

Cryptography is the science of keeping messages secure, and encryption is the 
process of scrambling a message in such a way as to hide its contents. Modern 
cryptography is based on encryption algorithms that use secret keys – large numbers that 
are difficult to guess – to transform data in a manner that can only be reversed with 
knowledge of the corresponding decryption key.

Authentication: The use of shared secrets and encryption provides the basis for the 
authentication of messages – proving the identities supplied by their senders. The basic 
authentication technique is to include in a message an encrypted portion that contains 
enough of the contents of the message to guarantee its authenticity. The authentication 
portion of a request to a file server to read part of a file, for example, might include a 
representation of the requesting principal’s identity, the identity of the file and the date 
and time of the request, all encrypted with a secret key shared between the file server 
and the requesting process. The server would decrypt this and check that it corresponds 
to the unencrypted details specified in the request.

Secure channels: Encryption and authentication are used to build secure channels as a 
service layer on top of existing communication services. A secure channel is a 
communication channel connecting a pair of processes, each of which acts on behalf of 
a principal, as shown in Figure 2.19. A secure channel has the following properties:

• Each of the processes knows reliably the identity of the principal on whose behalf 
the other process is executing. Therefore if a client and server communicate via a 
secure channel, the server knows the identity of the principal behind the 
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invocations and can check their access rights before performing an operation. This 
enables the server to protect its objects correctly and allows the client to be sure 
that it is receiving results from a bona fide server. 

• A secure channel ensures the privacy and integrity (protection against tampering) 
of the data transmitted across it.

• Each message includes a physical or logical timestamp to prevent messages from 
being replayed or reordered.

The construction of secure channels is discussed in detail in Chapter 11. Secure channels 
have become an important practical tool for securing electronic commerce and the 
protection of communication. Virtual private networks (VPNs, discussed in Chapter 3) 
and the Secure Sockets Layer (SSL) protocol (discussed in Chapter 11) are instances.

Other possible threats from an enemy  •  Section 1.5.3 introduced very briefly two 
further security threats – denial of service attacks and the deployment of mobile code. 
We reiterate these as possible opportunities for the enemy to disrupt the activities of 
processes:

Denial of service: This is a form of attack in which the enemy interferes with the 
activities of authorized users by making excessive and pointless invocations on 
services or message transmissions in a network, resulting in overloading of physical 
resources (network bandwidth, server processing capacity). Such attacks are usually 
made with the intention of delaying or preventing actions by other users. For 
example, the operation of electronic door locks in a building might be disabled by an 
attack that saturates the computer controlling the electronic locks with invalid 
requests.

Mobile code: Mobile code raises new and interesting security problems for any 
process that receives and executes program code from elsewhere, such as the email 
attachment mentioned in Section 1.5.3. Such code may easily play a Trojan horse 
role, purporting to fulfil an innocent purpose but in fact including code that accesses 
or modifies resources that are legitimately available to the host process but not to the 
originator of the code. The methods by which such attacks might be carried out are 
many and varied, and the host environment must be very carefully constructed in 
order to avoid them. Many of these issues have been addressed in Java and other 
mobile code systems, but the recent history of this topic has included the exposure of 
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some embarrassing weaknesses. This illustrates well the need for rigorous analysis in 
the design of all secure systems. 

The uses of security models  •  It might be thought that the achievement of security in 
distributed systems would be a straightforward matter involving the control of access to 
objects according to predefined access rights and the use of secure channels for 
communication. Unfortunately, this is not generally the case. The use of security 
techniques such as encryption and access control incurs substantial processing and 
management costs. The security model outlined above provides the basis for the analysis 
and design of secure systems in which these costs are kept to a minimum, but threats to 
a distributed system arise at many points, and a careful analysis of the threats that might 
arise from all possible sources in the system’s network environment, physical 
environment and human environment is needed. This analysis involves the construction 
of a threat model listing all the forms of attack to which the system is exposed and an 
evaluation of the risks and consequences of each. The effectiveness and the cost of the 
security techniques needed can then be balanced against the threats.

2.5 Summary

As illustrated in Section 2.2, distributed systems are increasingly complex in terms of 
their underlying physical characteristics; for example, in terms of the scale of systems, 
the level of heterogeneity inherent in such systems and the real demands to provide end-
to-end solutions in terms of properties such as security. This places increasing 
importance on being able to understand and reason about distributed systems in terms of 
models. This chapter followed up consideration of the underlying physical models with 
an in-depth examination of the architectural and fundamental models that underpin 
distributed systems.

This chapter has presented an approach to describing distributed systems in terms 
of an encompassing architectural model that makes sense of this design space examining 
the core issues of what is communicating and how these entities communicate, 
supplemented by consideration of the roles each element may play together with the 
appropriate placement strategies given the physical distributed infrastructure. The 
chapter also introduced the key role of architectural patterns in enabling more complex 
designs to be constructed from the underlying core elements, such as the client-server 
model highlighted above, and highlighted major styles of supportive middleware 
solutions, including solutions based on distributed objects, components, web services 
and distributed events. 

In terms of architectural models, the client-server approach is prevalent – the Web 
and other Internet services such as FTP, news and mail as well as web services and the 
DNS are based on this model, as are filing and other local services. Services such as the 
DNS that have large numbers of users and manage a great deal of information are based 
on multiple servers and use data partition and replication to enhance availability and 
fault tolerance. Caching by clients and proxy servers is widely used to enhance the 
performance of a service. However, there is now a wide variety of approaches to 
modelling distributed systems including alternative philosophies such as peer-to-peer 
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computing and support for more problem-oriented abstractions such as objects, 
components or services. 

The architectural model is complemented by fundamental models, which aid in 
reasoning about properties of the distributed system in terms of, for example, 
performance, reliability and security. In particular, we presented models of interaction, 
failure and security. They identify the common characteristics of the basic components 
from which distributed systems are constructed. The interaction model is concerned 
with the performance of processes and communication channels and the absence of a 
global clock. It identifies a synchronous system as one in which known bounds may be 
placed on process execution time, message delivery time and clock drift. It identifies an 
asynchronous system as one in which no bounds may be placed on process execution 
time, message delivery time and clock drift – which is a description of the behaviour of 
the Internet. 

The failure model classifies the failures of processes and basic communication 
channels in a distributed system. Masking is a technique by which a more reliable 
service is built from a less reliable one by masking some of the failures it exhibits. In 
particular, a reliable communication service can be built from a basic communication 
channel by masking its failures. For example, its omission failures may be masked by 
retransmitting lost messages. Integrity is a property of reliable communication – it 
requires that a message received be identical to one that was sent and that no message 
be sent twice. Validity is another property – it requires that any message put in the 
outgoing buffer be delivered eventually to the incoming message buffer.

The security model identifies the possible threats to processes and communication 
channels in an open distributed system. Some of those threats relate to integrity: 
malicious users may tamper with messages or replay them. Others threaten their privacy. 
Another security issue is the authentication of the principal (user or server) on whose 
behalf a message was sent. Secure channels use cryptographic techniques to ensure the 
integrity and privacy of messages and to authenticate pairs of communicating principals. 

EXERCISES

2.1 Provide three specific and contrasting examples of the increasing levels of heterogeneity 
experienced in contemporary distributed systems as defined in Section 2.2. page 39

2.2 What problems do you foresee in the direct coupling between communicating entities 
that is implicit in remote invocation approaches? Consequently, what advantages do you 
anticipate from a level of decoupling as offered by space and time uncoupling? Note: 
you might want to revisit this answer after reading Chapters 5 and 6. page 43

2.3 Describe and illustrate the client-server architecture of one or more major Internet 
applications (for example, the Web, email or netnews). page 46

2.4 For the applications discussed in Exercise 2.1, what placement strategies are employed 
in implementing the associated services? page 48
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2.5 A search engine is a web server that responds to client requests to search in its stored 
indexes and (concurrently) runs several web crawler tasks to build and update the 
indexes. What are the requirements for synchronization between these concurrent 
activities? page 46

2.6 The host computers used in peer-to-peer systems are often simply desktop computers in 
users’ offices or homes. What are the implications of this for the availability and security 
of any shared data objects that they hold and to what extent can any weaknesses be 
overcome through the use of replication? pages 47, 48

2.7 List the types of local resource that are vulnerable to an attack by an untrusted program 
that is downloaded from a remote site and run in a local computer. page 50

2.8 Give examples of applications where the use of mobile code is beneficial. page 50

2.9 Consider a hypothetical car hire company and sketch out a three-tier solution to the 
provision of their underlying distributed car hire service. Use this to illustrate the 
benefits and drawbacks of a three-tier solution considering issues such as performance, 
scalability, dealing with failure and also maintaining the software over time. page 52

2.10 Provide a concrete example of the dilemma offered by Saltzer’s end-to-end argument in 
the context of the provision of middleware support for distributed applications (you may 
want to focus on one aspect of providing dependable distributed systems, for example 
related to fault tolerance or security). page 60

2.11 Consider a simple server that carries out client requests without accessing other servers. 
Explain why it is generally not possible to set a limit on the time taken by such a server 
to respond to a client request. What would need to be done to make the server able to 
execute requests within a bounded time? Is this a practical option? page 62

2.12 For each of the factors that contribute to the time taken to transmit a message between 
two processes over a communication channel, state what measures would be needed to 
set a bound on its contribution to the total time. Why are these measures not provided in 
current general-purpose distributed systems? page 63

2.13 The Network Time Protocol service can be used to synchronize computer clocks. 
Explain why, even with this service, no guaranteed bound is given for the difference 
between two clocks. page 64

2.14 Consider two communication services for use in asynchronous distributed systems. In 
service A, messages may be lost, duplicated or delayed and checksums apply only to 
headers. In service B, messages may be lost, delayed or delivered too fast for the 
recipient to handle them, but those that are delivered arrive with the correct contents.

Describe the classes of failure exhibited by each service. Classify their failures 
according to their effects on the properties of validity and integrity. Can service B be 
described as a reliable communication service? page 67, page 71

2.15 Consider a pair of processes X and Y that use the communication service B from 
Exercise 2.14 to communicate with one another. Suppose that X is a client and Y a 
server and that an invocation consists of a request message from X to Y, followed by Y 
carrying out the request, followed by a reply message from Y to X. Describe the classes 
of failure that may be exhibited by an invocation. page 67
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2.16 Suppose that a basic disk read can sometimes read values that are different from those 
written. State the type of failure exhibited by a basic disk read. Suggest how this failure 
may be masked in order to produce a different benign form of failure. Now suggest how 
to mask the benign failure. page 70

2.17 Define the integrity property of reliable communication and list all the possible threats 
to integrity from users and from system components. What measures can be taken to 
ensure the integrity property in the face of each of these sources of threats.

pages 71, 74

2.18 Describe possible occurrences of each of the main types of security threat (threats to 
processes, threats to communication channels, denial of service) that might occur in the 
Internet. pages 74, 75
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3

NETWORKING AND 

INTERNETWORKING

3.1 Introduction
3.2 Types of network
3.3 Network principles
3.4 Internet protocols
3.5 Case studies: Ethernet, WiFi and Bluetooth
3.6 Summary

Distributed systems use local area networks, wide area networks and internetworks for 
communication. The performance, reliability, scalability, mobility and quality of service 
characteristics of the underlying networks impact the behaviour of distributed systems 
and hence affect their design. Changes in user requirements have resulted in the 
emergence of wireless networks and of high-performance networks with quality of service 
guarantees.

The principles on which computer networks are based include protocol layering, 
packet switching, routing and data streaming. Internetworking techniques enable 
heterogeneous networks to be integrated. The Internet is the major example; its protocols 
are almost universally used in distributed systems. The addressing and routing schemes 
used in the Internet have withstood the impact of its enormous growth. They are now 
undergoing revision to accommodate future growth and to meet new application 
requirements for mobility, security and quality of service.

The design of specific network technologies is illustrated in three case studies: 
Ethernet, IEEE 802.11 (WiFi) and Bluetooth wireless networking.
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3.1 Introduction

The networks used in distributed systems are built from a variety of transmission media,
including wire, cable, fibre and wireless channels; hardware devices, including routers, 
switches, bridges, hubs, repeaters and network interfaces; and software components,

including protocol stacks, communication handlers and drivers. The resulting 
functionality and performance available to distributed system and application programs 
is affected by all of these. We shall refer to the collection of hardware and software 
components that provide the communication facilities for a distributed system as a 
communication subsystem. The computers and other devices that use the network for 
communication purposes are referred to as hosts. The term node is used to refer to any 
computer or switching device attached to a network.

The Internet is a single communication subsystem providing communication 
between all of the hosts that are connected to it. The Internet is constructed from many 
subnets. A subnet is a unit of routing (delivering data from one part of the Internet to 
another); it is a collection of nodes that can all be reached on the same physical network. 
The Internet’s infrastructure includes an architecture and hardware and software 
components that effectively integrate diverse subnets into a single data communication 
service.

The design of a communication subsystem is strongly influenced by the 
characteristics of the operating systems used in the computers of which the distributed 
system is composed as well as the networks that interconnect them. In this chapter, we 
consider the impact of network technologies on the communication subsystem; 
operating system issues are discussed in Chapter 7.

This chapter is intended to provide an introductory overview of computer 
networking with reference to the communication requirements of distributed systems. 
Readers who are not familiar with computer networking should regard it as an 
underpinning for the remainder of the book, while those who are will find that this 
chapter offers an extended summary of those aspects of computer networking that are 
particularly relevant for distributed systems.

Computer networking was conceived soon after the invention of computers. The 
theoretical basis for packet switching was introduced in a paper by Leonard Kleinrock 
[1961]. In 1962, J.C.R. Licklider and W. Clark, who participated in the development of 
the first timesharing system at MIT in the early 1960s, published a paper discussing the 
potential for interactive computing and wide area networking that presaged the Internet 
in several respects [DEC 1990]. In 1964, Paul Baran produced an outline of a practical 
design for reliable and effective wide area networks [Baran 1964]. Further material and 
links on the history of computer networking and the Internet can be found in the 
following sources: [www.isoc.org, Comer 2007, Kurose and Ross 2007]. 

In the remainder of this section we discuss the communication requirements of 
distributed systems. We give an overview of network types in Section 3.2 and an 
introduction to networking principles in Section 3.3. Section 3.4 deals specifically with 
the Internet. The chapter concludes with detailed case studies on the Ethernet, IEEE 
802.11 (WiFi) and Bluetooth networking technologies in Section 3.5.
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3.1.1 Networking issues for distributed systems

Early computer networks were designed to meet a few, relatively simple application 
requirements. Network applications such as file transfer, remote login, electronic mail and 
newsgroups were supported. The subsequent development of distributed systems with 
support for distributed application programs accessing shared files and other resources set 
a higher standard of performance to meet the needs of interactive applications. 

More recently, following the growth and commercialization of the Internet and the 
emergence of many new modes of use, more stringent requirements for reliability, 
scalability, mobility, security and quality of service have emerged. In this section, we 
define and describe the nature of each of these requirements.

Performance  •  The network performance parameters that are of primary interest for our 
purposes are those affecting the speed with which individual messages can be 
transferred between two interconnected computers. These are the latency and the point-
to-point data transfer rate: 

Latency is the delay that occurs after a send operation is executed and before data 
starts to arrive at the destination computer. It can be measured as the time required to 
transfer an empty message. Here we are considering only network latency, which 
forms a part of the process-to-process latency defined in Section 2.4.1.

Data transfer rate is the speed at which data can be transferred between two 
computers in the network once transmission has begun, usually quoted in bits per 
second.

Following from these definitions, the time required for a network to transfer a message 
containing length bits between two computers is:

Message transmission time = latency + length ⁄ data transfer rate

The above equation is valid for messages whose length does not exceed a maximum that 
is determined by the underlying network technology. Longer messages have to be 
segmented and the transmission time is the sum of the times for the segments. 

The transfer rate of a network is determined primarily by its physical 
characteristics, whereas the latency is determined primarily by software overheads, 
routing delays and a load-dependent statistical element arising from conflicting 
demands for access to transmission channels. Many of the messages transferred between 
processes in distributed systems are small in size; latency is therefore often of equal or 
greater significance than transfer rate in determining performance. 

The total system bandwidth of a network is a measure of throughput – the total 
volume of traffic that can be transferred across the network in a given time. In many 
local area network technologies, such as Ethernet, the full transmission capacity of the 
network is used for every transmission and the system bandwidth is the same as the data 
transfer rate. But in most wide area networks messages can be transferred on several 
different channels simultaneously, and the total system bandwidth bears no direct 
relationship to the transfer rate. The performance of networks deteriorates in conditions 
of overload – when there are too many messages in the network at the same time. The 
precise effect of overload on the latency, data transfer rate and total system bandwidth 
of a network depends strongly on the network technology.
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Now consider the performance of client-server communication. The time required 
to transmit a short request message and receive a short reply between nodes on a lightly 
loaded local network (including system overheads) is about half a millisecond. This 
should be compared with the sub-microsecond time required to invoke an operation on 
an application-level object in the local memory. Thus, despite advances in network 
performance, the time required to access shared resources on a local network remains 
about a thousand times greater than that required to access resources that are resident in 
local memory. But networks often outperform hard disks; networked access to a local 
web server or file server with a large in-memory cache of frequently used files can match 
or outstrip access to files stored on a local hard disk. 

On the Internet, round-trip latencies are in the 5–500 ms range, with means of 
20–200 ms depending on distance [www.globalcrossing.net], so requests transmitted 
across the Internet are 10–100 times slower than those sent on fast local networks. The 
bulk of this time difference derives from switching delays at routers and contention for 
network circuits.

Section 7.5.1 discusses and compares the performance of local and remote 
operations in greater detail.

Scalability  •  Computer networks are an indispensable part of the infrastructure of 
modern societies. In Figure 1.6 we showed the growth in the number of host computers 
and web servers connected to the Internet over a 12-year period ending in 2005. The 
growth since then has been so rapid and diverse that it is difficult to find recent reliable 
statistics. The potential future size of the Internet is commensurate with the population 
of the planet. It is realistic to expect it to include several billion nodes and hundreds of 
millions of active hosts.

These numbers indicate the future changes in size and load that the Internet must 
handle. The network technologies on which it is based were not designed to cope with 
even the Internet’s current scale, but they have performed remarkably well. Some 
substantial changes to the addressing and routing mechanisms are in progress in order 
to handle the next phase of the Internet’s growth; these will be described in Section 3.4.
For simple client-server applications such as the Web, we would expect future traffic to 
grow at least in proportion to the number of active users. The ability of the Internet’s 
infrastructure to cope with this growth will depend upon the economics of use, in 
particular charges to users and the patterns of communication that actually occur – for 
example, their degree of locality.

Reliability  •  Our discussion of failure models in Section 2.4.2 describes the impact of 
communication errors. Many applications are able to recover from communication 
failures and hence do not require guaranteed error-free communication. The end-to-end 
argument (Section 2.3.3) further supports the view that the communication subsystem 
need not provide totally error-free communication; the detection of communication 
errors and their correction is often best performed by application-level software. The 
reliability of most physical transmission media is very high. When errors occur they 
are usually due to failures in the software at the sender or receiver (for example, 
failure by the receiving computer to accept a packet) or buffer overflow rather than 
errors in the network.
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Security  •  Chapter 11 sets out the requirements and techniques for achieving security 
in distributed systems. The first level of defence adopted by most organizations is to 
protect its networks and the computers attached to them with a firewall. A firewall 
creates a protection boundary between the organization’s intranet and the rest of the 
Internet. The purpose of the firewall is to protect the resources in all of the computers 
inside the organization from access by external users or processes and to control the use 
of resources outside the firewall by users inside the organization. 

A firewall runs on a gateway – a computer that stands at the network entry point 
to an organization’s intranet. The firewall receives and filters all of the messages 
travelling into and out of an organization. It is configured according to the 
organization’s security policy to allow certain incoming and outgoing messages to pass 
through it and to reject all others. We shall return to this topic in Section 3.4.8.

To enable distributed applications to move beyond the restrictions imposed by 
firewalls there is a need to produce a secure network environment in which a wide range 
of distributed applications can be deployed, with end-to-end authentication, privacy and 
security. This finer-grained and more flexible form of security can be achieved through 
the use of cryptographic techniques. It is usually applied at a level above the 
communication subsystem and hence is not dealt with here but in Chapter 11. 
Exceptions include the need to protect network components such as routers against 
unauthorized interference with their operation and the need for secure links to mobile 
devices and other external nodes to enable them to participate in a secure intranet – the 
virtual private network (VPN) concept, discussed in Section 3.4.8.

Mobility  •  Mobile devices such as laptop computers and Internet-capable mobile 
phones are moved frequently between locations and reconnected at convenient network 
connection points or even used while on the move. Wireless networks provide 
connectivity to such devices, but the addressing and routing schemes of the Internet 
were developed before the advent of these mobile devices and are not well adapted to 
their need for intermittent connection to many different subnets. The Internet’s 
mechanisms have been adapted and extended to support mobility, but the expected 
future growth in the use of mobile devices will demand further development. 

Quality of service  •  In Chapter 1, we defined quality of service as including the ability 
to meet deadlines when transmitting and processing streams of real-time multimedia 
data. This imposes major new requirements on computer networks. Applications that 
transmit multimedia data require guaranteed bandwidth and bounded latencies for the 
communication channels that they use. Some applications vary their demands 
dynamically and specify both a minimum acceptable quality of service and a desired 
optimum. The provision of such guarantees and their maintenance is the subject of 
Chapter 20.

Multicasting  •  Most communication in distributed systems is between pairs of 
processes, but there often is also a need for one-to-many communication. While this can 
be simulated by sends to several destinations, that is more costly than necessary and may 
not exhibit the fault-tolerance characteristics required by applications. For these reasons, 
many network technologies support the simultaneous transmission of messages to 
several recipients.
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3.2 Types of network

Here we introduce the main types of network that are used to support distributed 
systems: personal area networks, local area networks, wide area networks,
metropolitan area networks and the wireless variants of them. Internetworks such as the 
Internet are constructed from networks of all these types. Figure 3.1 shows the 
performance characteristics of the various types of network discussed below.

Figure 3.1 Network performance

Example Range Bandwidth 

(Mbps)

Latency

(ms)

Wired:

LAN Ethernet 1–2 kms 10–10,000 1–10

WAN IP routing worldwide 0.010–600 100–500

MAN ATM 2–50 kms 1–600 10

Internetwork Internet worldwide 0.5–600 100–500

Wireless:

WPAN Bluetooth (IEEE 802.15.1) 10–30m 0.5–2 5–20

WLAN WiFi (IEEE 802.11) 0.15–1.5 km 11–108 5–20

WMAN WiMAX (IEEE 802.16) 5–50 km 1.5–20 5–20

WWAN 3G phone cell: 1–-5 
km

348–14.4 100–500

Some of the names used to refer to types of networks are confusing because they 
seem to refer to the physical extent (local area, wide area), but they also identify physical 
transmission technologies and low-level protocols. These are different for local and 
wide area networks, although some network technologies, such as ATM (Asynchronous 
Transfer Mode), are suitable for both local and wide area applications and some wireless 
networks also support local and metropolitan area transmission. 

We refer to networks that are composed of many interconnected networks, 
integrated to provide a single data communication medium, as internetworks. The 
Internet is the prototypical internetwork; it is composed of millions of local, 
metropolitan and wide area networks. We describe its implementation in some detail in 
Section 3.4.

Personal area networks (PANs)  •  PANs are a subcategory of local networks in which 
the various digital devices carried by a user are connected by a low-cost, low-energy 
network. Wired PANs are not of much significance because few users wish to be 
encumbered by a network of wires on their person, but wireless personal area networks 
(WPANs) are of increasing importance due to the number of personal devices such as 
mobile phones, tablets, digital cameras, music players and so on that are now carried by 
many people. We describe the Bluetooth WPAN in Section 3.5.3.

Local area networks (LANs)  •  LANs carry messages at relatively high speeds between 
computers connected by a single communication medium, such as twisted copper wire, 
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coaxial cable or optical fibre. A segment is a section of cable that serves a department or 
a floor of a building and may have many computers attached. No routing of messages is 
required within a segment, since the medium provides direct connections between all of 
the computers connected to it. The total system bandwidth is shared between the 
computers connected to a segment. Larger local networks, such as those that serve a 
campus or an office building, are composed of many segments interconnected by 
switches or hubs (see Section 3.3.7). In local area networks, the total system bandwidth 
is high and latency is low, except when message traffic is very high.

Several local area technologies were developed in the 1970s including Ethernet, 
token rings and slotted rings. Each provides an effective and high-performance solution, 
but Ethernet emerged as the dominant technology for wired local area networks. It was 
originally produced in the early 1970s with a bandwidth of 10 Mbps (million bits per 
second) and extended to 100 Mbps, 1000 Mbps (1 gigabit per second) and 10 Gbps 
versions more recently. We describe the principles of operation of Ethernet networks in 
Section 3.5.1.

There is a very large installed base of local area networks, serving virtually all 
working environments that contain more than one or two personal computers or 
workstations. Their performance is generally adequate for the implementation of 
distributed systems and applications. Ethernet technology lacks the latency and 
bandwidth guarantees needed by many multimedia applications. ATM networks were 
developed to fill this gap, but their cost has inhibited their adoption in local area 
applications. Instead, high-speed Ethernets have been deployed in a switched mode that 
overcomes these drawbacks to a significant degree, though not as effectively as ATM.

Wide area networks (WANs)  •  WANs carry messages at lower speeds between nodes 
that are often in different organizations and may be separated by large distances. They 
may be located in different cities, countries or continents. The communication medium 
is a set of communication circuits linking a set of dedicated computers called routers.

They manage the communication network and route messages or packets to their 
destinations. In most networks, the routing operations introduce a delay at each point in 
the route, so the total latency for the transmission of a message depends on the route that 
it follows and the traffic loads in the various network segments that it traverses. In 
current networks these latencies can be as high as 0.1 to 0.5 seconds. The speed of 
electronic signals in most media is close to the speed of light, and this sets a lower bound 
on the transmission latency for long-distance networks. For example, the propagation 
delay for a signal to travel from Europe to Australia via a terrestrial link is approximately 
0.13 seconds and signals via a geostationary satellite between any two points on the 
Earth’s surface are subject to a delay of approximately 0.20 seconds.

Bandwidths available across the Internet also vary widely. Speeds of up to 600 
Mbps are commonly available, but speeds of 1–10 Mbps are more typically experienced 
for bulk transfers of data.

Metropolitan area networks (MANs)  •  This type of network is based on the high-
bandwidth copper and fibre optic cabling recently installed in some towns and cities for 
the transmission of video, voice and other data over distances of up to 50 kilometres. A 
variety of technologies have been used to implement the routing of data in MANs, 
ranging from Ethernet to ATM. 
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The DSL (Digital Subscriber Line) and cable modem connections now available 
in many countries are an example. DSL typically uses ATM switches located in 
telephone exchanges to route digital data onto twisted pairs of copper wire (using high-
frequency signalling on the existing wiring used for telephone connections) to the 
subscriber’s home or office at speeds in the range 1–10 Mbps. The use of twisted copper 
wire for DSL subscriber connections limits the range to about 5.5 km from the switch. 
Cable modem connections use analogue signalling on cable television networks to 
achieve speeds of up to 15 Mbps over coaxial cable with greater range than DSL. 

The term DSL actually represents a family of technologies, sometimes referred to 
as xDSL and including for example ADSL (or Asymmetric Digital Subscriber Line). 
Latest developments include VDSL and VDSL2 (Very High Bit Rate DSL), which are 
capable of speeds of up to 100 Mbps and designed to support a range of multimedia 
traffic including High Definition TV (HDTV). 

Wireless local area networks (WLANs)  •  WLANs are designed for use in place of wired 
LANs to provide connectivity for mobile devices, or simply to remove the need for a 
wired infrastructure to connect computers within homes and office buildings to each 
other and the Internet. They are in widespread use in several variants of the IEEE 802.11 
standard (WiFi), offering bandwidths of 10–100 Mbps over ranges up to 1.5 kilometres. 
Section 3.5.2 gives further information on their method of operation. 

Wireless metropolitan area networks (WMANs)  •  The IEEE 802.16 WiMAX standard is 
targeted at this class of network. It aims to provide an alternative to wired connections 
to home and office buildings and to supersede 802.11 WiFi networks in some 
applications.

Wireless wide area networks (WWANs)  •  Most mobile phone networks are based on 
digital wireless network technologies such as the GSM (Global System for Mobile 
communication) standard, which is used in most countries of the world. Mobile phone 
networks are designed to operate over wide areas (typically entire countries or 
continents) through the use of cellular radio connections; their data transmission 
facilities therefore offer wide area mobile connections to the Internet for portable 
devices. The cellular networks mentioned above offer relatively low data rates – 9.6 to 
33 kbps – but the  ‘third generation’ (3G) of mobile phone networks is now available, 
with data transmission rates in the range of 2–14.4 Mbps while stationary and 348 kbps 
while moving (for example in a car). The underlying technology is referred to as UMTS 
(Universal Mobile Telecommunications System). A path has also been defined to evolve 
UMTS towards 4G data rates of up to 100 Mbps. Readers interested in digging more 
deeply than we are able to here into the rapidly evolving technologies of mobile and 
wireless networks of all types are referred to Stojmenovic’s excellent handbook [2002].

Internetworks  •  An internetwork is a communication subsystem in which several 
networks are linked together to provide common data communication facilities that 
overlay the technologies and protocols of the individual component networks and the 
methods used for their interconnection.

Internetworks are needed for the development of extensible, open distributed 
systems. The openness characteristic of distributed systems implies that the networks 
used in distributed systems should be extensible to very large numbers of computers, 
whereas individual networks have restricted address spaces and some have performance 
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limitations that are incompatible with their large-scale use. In internetworks, a variety 
of local and wide area network technologies can be integrated to provide the networking 
capacity needed by each group of users. Thus internetworks bring many of the benefits 
of open systems to the provision of communication in distributed systems.

Internetworks are constructed from a variety of component networks. They are 
interconnected by dedicated switching computers called routers and general-purpose 
computers called gateways, and an integrated communication subsystem is produced by 
a software layer that supports the addressing and transmission of data to computers 
throughout the internetwork. The result can be thought of as a ‘virtual network’ 
constructed by overlaying an internetwork layer on a communication medium that 
consists of the underlying networks, routers and gateways. The Internet is the major 
instance of internetworking, and its TCP/IP protocols are an example of this integration 
layer.

Network errors  •  An additional point of comparison not mentioned in Figure 3.1 is the 
frequency and types of failure that can be expected in the different types of network. The 
reliability of the underlying data transmission media is very high in all types except 
wireless networks, where packets are frequently lost due to external interference. But 
packets may be lost in all types of network due to processing delays and buffer overflow 
at switches and at the destination node. This is by far the most common cause of packet 
loss.

Packets may also be delivered in an order different from that in which they were 
transmitted. This arises only in networks where separate packets are individually routed 
– principally wide area networks. Finally, duplicate copies of packets can be delivered. 
This is usually a consequence of an assumption by the sender that a packet has been lost; 
the packet is retransmitted, and both the original and the retransmitted copy then turn up 
at the destination.

3.3 Network principles

The basis for all computer networks is the packet-switching technique first developed in 
the 1960s. This enables data packets addressed to different destinations to share a single 
communications link, unlike the circuit-switching technology that underlies convention-
al telephony. Packets are queued in a buffer and transmitted when the link is available. 
Communication is asynchronous – messages arrive at their destination after a delay that 
varies depending upon the time that packets take to travel through the network. 

3.3.1 Packet transmission

In most applications of computer networks the requirement is for the transmission of 
logical units of information, or messages – sequences of data items of arbitrary length. 
But before a message is transmitted it is subdivided into packets. The simplest form of 
packet is a sequence of binary data (an array of bits or bytes) of restricted length, 
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together with addressing information sufficient to identify the source and destination 
computers. Packets of restricted length are used:

• so that each computer in the network can allocate sufficient buffer storage to hold 
the largest possible incoming packet;

• to avoid the undue delays that would occur in waiting for communication channels 
to become free if long messages were transmitted without subdivision. 

3.3.2 Data streaming

The transmission and display of audio and video in real time is referred to as streaming.
It requires much higher bandwidths than most other forms of communication in 
distributed systems. We have already noted in Chapter 2 that multimedia applications 
rely upon the transmission of streams of audio and video data elements at guaranteed 
high rates and with bounded latencies. 

A video stream requires a bandwidth of about 1.5 Mbps if the data is compressed, 
or 120 Mbps if uncompressed. UDP internet packets are generally used to hold the video 
frames, but because the flow is continuous as opposed to the intermittent traffic 
generated by typical client-server interactions, the packets are handled somewhat 
differently. The play time of a multimedia element such as a video frame is the time at 
which it must be displayed (for a video element) or converted to sound (for a sound 
sample). For example, in a stream of video frames with a frame rate of 24 frames per 
second, frame N has a play time that is N/24 seconds after the stream’s start time. 
Elements that arrive at their destination later than their play time are no longer useful 
and will be dropped by the receiving process.

The timely delivery of audio and video streams depends upon the availability of 
connections with adequate quality of service – bandwidth, latency and reliability must 
all be considered. Ideally, adequate quality of service should be guaranteed. In general 
the Internet does not offer that capability, and the quality of real-time video streams 
sometimes reflects that, but in proprietary intranets such as those operated by media 
companies, guarantees are sometimes achieved. What is required is the ability to 
establish a channel from the source to the destination of a multimedia stream, with a 
predefined route through the network, a reserved set of resources at each node through 
which it will travel and buffering where appropriate to smooth any irregularities in the 
flow of data through the channel. Data can then be passed through the channel from 
sender to receiver at the required rate.

ATM networks are specifically designed to provide high bandwidth and low 
latencies and to support quality of service by the reservation of network resources. IPv6, 
the new network protocol for the Internet outlined in Section 3.4.4, includes features that 
enable each of the IP packets in a real-time stream to be identified and treated separately 
from other data at the network level.

Communication subsystems that provide quality of service guarantees require 
facilities for the preallocation of network resources and the enforcement of the 
allocations. The Resource Reservation Protocol (RSVP) [Zhang et al. 1993] enables 
applications to negotiate the preallocation of bandwidth for real-time data streams. The 
Real Time Transport Protocol (RTP) [Schulzrinne et al. 1996] is an application-level 
data transfer protocol that includes details of the play time and other timing 
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requirements in each packet. The availability of effective implementations of these 
protocols in the general Internet will depend upon substantial changes to the transport 
and network layers. Chapter 20 discusses the needs of distributed multimedia 
applications in more detail.

3.3.3 Switching schemes

A network consists of a set of nodes connected together by circuits. To transmit 
information between two arbitrary nodes, a switching system is required. Here we define 
the four types of switching that are used in computer networking.

Broadcast  •  Broadcasting is a transmission technique that involves no switching. 
Everything is transmitted to every node, and it is up to potential receivers to notice 
transmissions addressed to them. Some LAN technologies, including Ethernet, are 
based on broadcasting. Wireless networking is necessarily based on broadcasting, but in 
the absence of fixed circuits the broadcasts are arranged to reach nodes grouped in cells.

Circuit switching  •  At one time telephone networks were the only telecommunication 
networks. Their operation was simple to understand: when a caller dialled a number, the 
pair of wires from her phone to the local exchange was connected by an automatic 
switch at the exchange to the pair of wires connected to the other party’s phone. For a 
long-distance call the process was similar but the connection would be switched through 
a number of intervening exchanges to its destination. This system is sometimes referred 
to as the plain old telephone system, or POTS. It is a typical circuit-switching network.

Packet switching  •  The advent of computers and digital technology brought many new 
possibilities for telecommunication. At the most basic level, it brought processing and 
storage. These made it possible to construct a different kind of communication network 
called a store-and-forward network. Instead of making and breaking connections to 
build circuits, a store-and-forward network just forwards packets from their source to 
their destination. There is a computer at each switching node (that is, wherever several 
circuits need to be interconnected). Each packet arriving at a node is first stored in 
memory at the node and then processed by a program that transmits it on an outgoing 
circuit, which transfers the packet to another node that is closer to its ultimate 
destination. 

There is nothing really new in this idea: the postal system is a store-and-forward 
network for letters, with the processing done by humans or machinery at sorting offices. 
But in a computer network packets can be stored and processed fast enough to give an 
illusion of instantaneous transmission, even though the packet has to be routed through 
many nodes. 

Frame relay  •  In reality, it takes anything from a few tens of microseconds to a few 
milliseconds to switch a packet through each network node in a store-and-forward 
network. This switching delay depends on the packet size, hardware speed and quantity 
of other traffic, but its lower bound is determined by the network bandwidth, since the 
entire packet must be received before it can be forwarded to another node. Much of the 
Internet is based on store-and-forward switching, and as we have already seen, even 
short Internet packets typically take up to 200 milliseconds to reach their destinations. 
Delays of this magnitude are too long for real-time applications such as telephony and 
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video conferencing, where delays of less than 50 milliseconds are needed to sustain 
high-quality conversation. 

The frame relay switching method brings some of the advantages of circuit 
switching to packet-switching networks. They overcome the delay problems by 
switching small packets (called frames) on the fly. The switching nodes (which are 
usually special-purpose parallel digital processors) route frames based on the 
examination of their first few bits; frames as a whole are not stored at nodes but pass 
through them as short streams of bits. ATM networks are a prime example; high-speed 
ATM networks can transmit packets across networks consisting of many nodes in a few 
tens of microseconds. 

3.3.4 Protocols

Figure 3.2 Conceptual layering of protocol software
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The term protocol is used to refer to a well-known set of rules and formats to be used 
for communication between processes in order to perform a given task. The definition 
of a protocol has two important parts to it:

• a specification of the sequence of messages that must be exchanged;

• a specification of the format of the data in the messages.

The existence of well-known protocols enables the separate software components of 
distributed systems to be developed independently and implemented in different 
programming languages on computers that may have different order codes and data 
representations.

A protocol is implemented by a pair of software modules located in the sending 
and receiving computers. For example, a transport protocol transmits messages of any 
length from a sending process to a receiving process. A process wishing to transmit a 
message to another process issues a call to a transport protocol module, passing it a 
message in the specified format. The transport software then concerns itself with the 
transmission of the message to its destination, subdividing it into packets of some 
specified size and format that can be transmitted to the destination via the network 

protocol – another, lower-level protocol. The corresponding transport protocol module 
in the receiving computer receives the packet via the network-level protocol module and 
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performs inverse transformations to regenerate the message before passing it to a 
receiving process.

Protocol layers  •  Network software is arranged in a hierarchy of layers. Each layer 
presents an interface to the layers above it that extends the properties of the underlying 
communication system. A layer is represented by a module in every computer connected 
to the network. Figure 3.2 illustrates the structure and the flow of data when a message 
is transmitted using a layered protocol. Each module appears to communicate directly 
with a module at the same level in another computer in the network, but in reality data 
is not transmitted directly between the protocol modules at each level. Instead, each 
layer of network software communicates by local procedure calls with the layers above 
and below it. 

On the sending side, each layer (except the topmost, or application layer) accepts 
items of data in a specified format from the layer above it and applies transformations 
to encapsulate the data in the format specified for that layer before passing it to the layer 
below for further processing. Figure 3.3

Figure 3.3 Encapsulation as it is applied in layered protocols

Application-layer message

Presentation header

Session header

Transport header

Network header

 illustrates this process as it applies to the top 
four layers of the OSI protocol suite (discussed in the next subsection). The figure shows 
the packet headers that hold most network-related data items, but for clarity it omits the 
trailers that are present in some types of packet; it also assumes that the application-layer 
message to be transmitted is shorter than the underlying network’s maximum packet 
size. If not, it would have to be encapsulated in several network-layer packets. On the 
receiving side, the converse transformations are applied to data items received from the 
layer below before they are passed to the layer above. The protocol type of the layer 
above is included in the header of each layer, to enable the protocol stack at the receiver 
to select the correct software components to unpack the packets.

Thus each layer provides a service to the layer above it and extends the service 
provided by the layer below it. At the bottom is a physical layer. This is implemented 
by a communication medium (copper or fibre optic cables, satellite communication 
channels or radio transmission) and by analogue signalling circuits that place signals on 
the communication medium at the sending node and sense them at the receiving node. 
At receiving nodes data items are received and passed upwards through the hierarchy of 
software modules, being transformed at each stage until they are in a form that can be 
passed to the intended recipient process.



Figure 3.4 Protocol layers in the ISO Open Systems Interconnection (OSI) protocol model
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Protocol suites  •  A complete set of protocol layers is referred to as a protocol suite or a 
protocol stack, reflecting the layered structure. Figure 3.4 shows a protocol stack that 
conforms to the seven-layer Reference Model for Open Systems Interconnection (OSI) 
adopted by the International Organization for Standardization (ISO) [ISO 1992]. The 
OSI Reference Model was adopted in order to encourage the development of protocol 
standards that would meet the requirements of open systems. 

The purpose of each level in the OSI Reference Model is summarized in Figure 
3.5. As its name implies, it is a framework for the definition of protocols and not a 
definition for a specific suite of protocols. Protocol suites that conform to the OSI model 
must include at least one specific protocol at each of the seven levels that the model 
defines.

Protocol layering brings substantial benefits in simplifying and generalizing the 
software interfaces for access to the communication services of networks, but it also 
carries significant performance costs. The transmission of an application-level message 
via a protocol stack with N layers typically involves N transfers of control to the relevant 
layer of software in the protocol suite, at least one of which is an operating system entry, 
and taking N copies of the data as a part of the encapsulation mechanism. All of these 
overheads result in data transfer rates between application processes that are much lower 
than the available network bandwidth. 

Figure 3.5 includes examples from protocols used in the Internet, but the 
implementation of the Internet does not follow the OSI model in two respects. First, the 
application, presentation and session layers are not clearly distinguished in the Internet 
protocol stack. Instead, the application and presentation layers are implemented either 
as a single middleware layer or separately within each application. Thus CORBA 
implements inter-object invocations and data representations in a middleware library 
that is included in each application process (see Chapter 8 for further details on 
CORBA). Web browsers and other applications that require secure channels employ the 
Secure Sockets Layer (Chapter 11) as a procedure library in a similar manner.

Second, the session layer is integrated with the transport layer. Internetwork 
protocol suites include an application layer, a transport layer and an internetwork layer.



Figure 3.5 OSI protocol summary

Layer Description Examples

Application Protocols at this level are designed to meet the communication requirements of 
specific applications, often defining the interface to a service. 

HTTP, FTP,
SMTP, CORBA 
IIOP

Presentation Protocols at this level transmit data in a network representation that is 
independent of the representations used in individual computers, which may 
differ. Encryption is also performed in this layer, if required.

TLS security, 
CORBA data 
representation

Session At this level reliability and adaptation measures are performed, such as 
detection of failures and automatic recovery.

SIP

Transport This is the lowest level at which messages (rather than packets) are handled. 
Messages are addressed to communication ports attached to processes. 
Protocols in this layer may be connection-oriented or connectionless.

TCP, UDP

Network Transfers data packets between computers in a specific network. In a WAN or 
an internetwork this involves the generation of a route passing through routers. 
In a single LAN no routing is required.

IP, ATM virtual 
circuits

Data link Responsible for transmission of packets between nodes that are directly 
connected by a physical link. In a WAN transmission is between pairs of routers 
or between routers and hosts. In a LAN it is between any pair of hosts.

Ethernet MAC, 
ATM cell 
transfer, PPP

Physical The circuits and hardware that drive the network. It transmits sequences of 
binary data by analogue signalling, using amplitude or frequency modulation of 
electrical signals (on cable circuits), light signals (on fibre optic circuits) or 
other electromagnetic signals (on radio and microwave circuits).

Ethernet base-
band signalling, 
ISDN
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The internetwork layer is a ‘virtual’ network layer that is responsible for transmitting 
internetwork packets to a destination computer. An internetwork packet is the unit of 
data transmitted over an internetwork.

Internetwork protocols are overlaid on underlying networks as illustrated in 
Figure 3.6. The network interface layer accepts internetwork packets and converts them 
into packets suitable for transmission by the network layers of each underlying network. 

Packet assembly  •  The task of dividing messages into packets before transmission and 
reassembling them at the receiving computer is usually performed in the transport layer. 

The network-layer protocol packets consist of a header and a data field. In most 
network technologies, the data field is variable in length, with the maximum length 
called the maximum transfer unit (MTU). If the length of a message exceeds the MTU 
of the underlying network layer, it must be fragmented into chunks of the appropriate 
size, with sequence numbers for use on reassembly, and transmitted in multiple packets. 
For example, the MTU for Ethernets is 1500 bytes – no more than that quantity of data 
can be transmitted in a single Ethernet packet.

Although the IP protocol stands in the position of a network-layer protocol in the 
Internet suite of protocols, its MTU is unusually large at 64 kbytes (8 kbytes is often 
used in practice because some nodes are unable to handle such large packets). 
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Whichever MTU value is adopted for IP packets, packets larger than the Ethernet MTU 
can arise and they must be fragmented for transmission over Ethernets.

Figure 3.6 Internetwork layers
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Ports  •  The transport layer’s task is to provide a network-independent message 
transport service between pairs of network ports. Ports are software-defined destination 
points at a host computer. They are attached to processes, enabling data transmission to 
be addressed to a specific process at a destination node. Next, we discuss the addressing 
of ports as they are implemented in the Internet and most other networks. Chapter 4 
describes their programming.

Addressing  •   The transport layer is responsible for delivering messages to destinations 
with transport addresses that are composed of the network address of a host computer 
and a port number. A network address is a numeric identifier that uniquely identifies a 
host computer and enables it to be located by nodes that are responsible for routing data 
to it. In the Internet every host computer is assigned an IP number, which identifies it 
and the subnet to which it is connected, enabling data to be routed to it from any other 
node (as described in the following sections). In Ethernets there are no routing nodes; 
each host is responsible for recognizing and picking up packets addressed to it.

Well-known Internet services such as HTTP and FTP have been allocated contact 

port numbers and these are registered with a central authority (the Internet Assigned 
Numbers Authority (IANA) [www.iana.org I]). To access a service at a given host, a 
request is sent to the relevant port at the host. Some services, such as FTP (contact port: 
21), then allocate a new port (with a private number) and send the number of the new 
port to the client. The client uses the new port for the remainder of a transaction or a 
session. Other services, such as HTTP (contact port: 80), transact all of their business 
through the contact port.

Port numbers below 1023 are defined as well-known ports whose use is restricted 
to privileged processes in most operating systems. The ports between 1024 and 49151 
are registered ports for which IANA holds service descriptions, and the remaining ports 
up to 65535 are available for private purposes. In practice, all of the ports above 1023 
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can be used for private purposes, but computers using them for private purposes cannot 
simultaneously access the corresponding registered services. 

A fixed port number allocation does not provide an adequate basis for the 
development of distributed systems which often include a multiplicity of servers 
including dynamically allocated ones. Solutions to this problem involve the dynamic 
allocation of ports to services and the provision of binding mechanisms to enable clients 
to locate services and their ports using symbolic names. Some of these are discussed 
further in Chapter 5.

Packet delivery  •  There are two approaches to the delivery of packets by the network 
layer:

Datagram packet delivery: The term ‘datagram’ refers to the similarity of this 
delivery mode to the way in which letters and telegrams are delivered. The essential 
feature of datagram networks is that the delivery of each packet is a ‘one-shot’ 
process; no setup is required, and once the packet is delivered the network retains no 
information about it. In a datagram network a sequence of packets transmitted by a 
single host to a single destination may follow different routes (if, for example, the 
network is capable of adaptation to handle failures or to mitigate the effects of 
localized congestion), and when this occurs they may arrive out of sequence. 

Every datagram packet contains the full network address of the source and 
destination hosts; the latter is an essential parameter for the routing process, which 
we describe in the next section. Datagram delivery is the concept on which packet 
networks were originally based, and it can be found in most of the computer networks 
in use today. The Internet’s network layer (IP), Ethernet and most wired and wireless 
local network technologies are based on datagram delivery.

Virtual circuit packet delivery: Some network-level services implement packet 
transmission in a manner that is analogous to a telephone network. A virtual circuit 
must be set up before packets can pass from a source host A to destination host B. 
The establishment of a virtual circuit involves the identification of a route from the 
source to the destination, possibly passing through several intermediate nodes. At 
each node along the route a table entry is made, indicating which link should be used 
for the next stage of the route.

Once a virtual circuit has been set up, it can be used to transmit any number of 
packets. Each network-layer packet contains only a virtual circuit number in place of 
the source and destination addresses. The addresses are not needed, because packets 
are routed at intermediate nodes by reference to the virtual circuit number. When a 
packet reaches its destination the source can be determined from the virtual circuit 
number. 

The analogy with telephone networks should not be taken too literally. In the 
POTS a telephone call results in the establishment of a physical circuit from the caller 
to the callee, and the voice links from which it is constructed are reserved for their 
exclusive use. In virtual circuit packet delivery the circuits are represented only by 
table entries in routing nodes, and the links along which the packets are routed are 
used only for the time taken to transmit a packet; they are free for other uses for the 
rest of the time. A single link may therefore be employed in many separate virtual 
circuits. The most important virtual circuit network technology in current use is 
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ATM; we have already mentioned (in Section 3.3.3) that it benefits from lower 
latencies for the transmission of individual packets; this is a direct result of its use of 
virtual circuits. The requirement for a setup phase does, however, result in a short 
delay before any packets can be sent to a new destination. 

The distinction between datagram and virtual circuit packet delivery in the network 
layer should not be confused with a similarly named pair of mechanisms in the transport 
layer: connectionless and connection-oriented transmission. We describe these in 
Section 3.4.6 in the context of the Internet transport protocols, UDP (connectionless) 
and TCP (connection-oriented). Here we simply note that each of these modes of 
transmission can be implemented over either type of network layer. 

3.3.5 Routing

Figure 3.7 Routing in a wide area network
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Routing is a function that is required in all networks except those LANs, such as 
Ethernets, that provide direct connections between all pairs of attached hosts. In large 
networks, adaptive routing is employed: the best route for communication between two 
points in the network is re-evaluated periodically, taking into account the current traffic 
in the network and any faults such as broken connections or routers.

The delivery of packets to their destinations in a network such as the one shown 
in Figure 3.7 is the collective responsibility of the routers located at connection points.
Unless the source and destination hosts are on the same LAN, the packet has to be 
transmitted in a series of hops, passing through router nodes. The determination of 
routes for the transmission of packets to their destinations is the responsibility of a 
routing algorithm  implemented by a program in the network layer at each node.

A routing algorithm has two parts:

1. It must make decisions that determine the route taken by each packet as it travels 
through the network. In circuit-switched network layers such as X.25 and frame-
relay networks such as ATM, the route is determined whenever a virtual circuit or 
connection is established. In packet-switched network layers such as IP it is 
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determined separately for each packet, and the algorithm must be particularly 
simple and efficient if it is not to degrade network performance.

2. It must dynamically update its knowledge of the network based on traffic 
monitoring and the detection of configuration changes or failures. This activity is 
less time-critical; slower and more computation-intensive techniques can be used.

Both of these activities are distributed throughout the network. The routing decisions are 
made on a hop-by-hop basis, using locally held information to determine the next hop 
to be taken by each incoming packet. The locally held routing information is updated 
periodically by an algorithm that distributes information about the states of the links 
(their loads and failure status).

A simple routing algorithm  •  The algorithm that we describe here is a ‘distance vector’ 
algorithm. This will provide a basis for the discussion in Section 3.4.3 of the link-state 

algorithm that has been used since 1979 as the main routing algorithm in the Internet. 
Routing in networks is an instance of the problem of path finding in graphs. Bellman’s 
shortest path algorithm, published well before computer networks were developed 
[Bellman 1957], provides the basis for the distance vector method.

Figure 3.8 Routing tables for the network in Figure 3.7 
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 Bellman’s method 
was converted into a distributed algorithm suitable for implementation in large networks 
by Ford and Fulkerson [1962], and protocols based on their work are often referred to 
as ‘Bellman–Ford’ protocols. 

Figure 3.8 shows the routing tables that would be held at each of the routers for 
the network of Figure 3.7, assuming that the network has no failed links or routers. Each 
row provides the routing information for packets addressed to a given destination. The 
link field specifies the outgoing link for packets addressed to the destination. The cost
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field is simply a calculation of the vector distance, or the number of hops to the given 
destination. For store-and-forward networks with links of similar bandwidth, this gives 
a reasonable estimate of the time for a packet to travel to the destination. The cost 
information stored in the routing tables is not used during packet-routing actions taken 
by part 1 of the routing algorithm, but it is required for the routing table construction and 
maintenance actions in part 2.

The routing tables contain a single entry for each possible destination, showing the 
next hop that a packet must take towards its destination. When a packet arrives at a 
router the destination address is extracted and looked up in the local routing table. The 
resulting entry in the routing table identifies the outgoing link that should be used to 
route the packet onwards towards its destination. 

For example, when a packet addressed to C is submitted to the router at A, the 
router examines the entry for C in its routing table. It shows that the packet should be 
routed outwards from A on the link labelled 1. The packet arrives at B and the same 
procedure is followed using the routing table at B, which shows that the onward route to 
C is via the link labelled 2. When the packet arrives at C the routing table entry shows 
‘local’ instead of a link number. This indicates that the packet should be delivered to a 
local host.

Now let us consider how the routing tables are built up and how they are 
maintained when faults occur in the network – that is, how part 2 of the routing 
algorithm described above is performed. Because each routing table specifies only a 
single hop for each route, the construction or repair of the routing information can 
proceed in a distributed fashion. A router exchanges information about the network with 
its neighbouring nodes by sending a summary of its routing table using a router 

information protocol (RIP). The RIP actions performed at a router are described 
informally as follows:

1. Periodically, and whenever the local routing table changes, send the table (in a 
summary form) to all accessible neighbours. That is, send an RIP packet 
containing a copy of the table on each non-faulty outgoing link.

2. When a table is received from a neighbouring router, if the received table shows 
a route to a new destination, or a better (lower-cost) route to an existing 
destination, update the local table with the new route. If the table was received on 
link n and it gives a different cost than the local table for a route that begins with 
link n, replace the cost in the local table with the new cost. This is done because 
the new table was received from a router that is closer to the relevant destination 
and is therefore always more authoritative for routes that pass through it.

This algorithm is more precisely described by the pseudo-code program shown in Figure 
3.9, where Tr is a table received from another router and Tl is the local table. Ford and 
Fulkerson [1962] have shown that the steps described above are sufficient to ensure that 
the routing tables will converge on the best routes to each destination whenever there is 
a change in the network. The frequency t with which routing tables are propagated, even 
when no changes have occurred, is designed to ensure that stability is maintained, for 
example, in the case that some RIP packets are lost. The value for t adopted throughout 
the Internet is 30 seconds.



Figure 3.9 Pseudo-code for RIP routing algorithm

Send: Each t seconds or when Tl changes, send Tl on each non-faulty outgoing link.

Receive: Whenever a routing table Tr is received on link n:
for all rows Rr in Tr {

if (Rr.link n) {
Rr.cost = Rr.cost + 1;
Rr.link = n;
if (Rr.destination is not in Tl) add Rr to Tl;    // add new destination to Tl

else for all rows Rl in Tl {
if (Rr.destination = Rl.destination and

(Rr.cost < Rl.cost or Rl.link = n)) Rl = Rr;

// Rr.cost < Rl.cost : remote node has better route
// Rl.link = n : remote node is more authoritative

}
}

}
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To deal with faults, each router monitors its links and acts as follows:

When a faulty link n is detected, set cost to for all entries in the local table that refer 
to the faulty link and perform the Send action.

Thus the information that the link is broken is represented by an infinite value for the 
cost to the relevant destinations. When this information is propagated to neighbouring 
nodes it will be processed according to the Receive action (note +1 = ) and then 
propagated further until a node is reached that has a working route to the relevant 
destinations, if one exists. The node that still has a working route will eventually 
propagate its table, and the working route will replace the faulty one at all nodes.

The vector-distance algorithm can be improved in various ways: costs (also 
known as the metric) can be based on the actual bandwidths of the links and the 
algorithm can be modified to increase its speed of convergence and to avoid some 
undesirable intermediate states, such as loops, that may occur before convergence is 
achieved. A routing information protocol with these enhancements was the first routing 
protocol used in the Internet, now known as RIP-1 and described in RFC 1058 [Hedrick 
1988]. But the solutions for the problems caused by slow convergence are not totally 
effective, and this leads to inefficient routing and packet loss while the network is in 
intermediate states.

Subsequent developments in routing algorithms have been in the direction of 
increasing the amount of knowledge of the network that is held at each node. The most 
important family of algorithms of this type are known as link-state algorithms. They are 
based on the distribution and updating of a database at each node that represents all, or 
a substantial portion, of the network. Each node is then responsible for computing the 
optimum routes to the destinations shown in its database. This computation can be 
performed by a variety of algorithms, some of which avoid known problems in the 
Bellman–Ford algorithm such as slow convergence and undesirable intermediate states. 
The design of routing algorithms is a substantial topic, and our discussion of it here is 
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necessarily limited. We return to it in Section 3.4.3 with a description of the operation 
of the RIP-1 algorithm, one of the first used for IP routing and still in use in many parts 
of the Internet. For extensive coverage of routing in the Internet, see Huitema [2000], 
and for further material on routing algorithms in general see Tanenbaum [2003].

3.3.6 Congestion control

The capacity of a network is limited by the performance of its communication links and 
switching nodes. When the load at any particular link or node approaches its capacity, 
queues will build up at hosts trying to send packets and at intermediate nodes holding 
packets whose onward transmission is blocked by other traffic. If the load continues at 
the same high level, the queues will continue to grow until they reach the limit of 
available buffer space. 

Once this state is reached at a node, the node has no option but to drop further 
incoming packets. As we have already noted, the occasional loss of packets at the 
network level is acceptable and can be remedied by retransmission initiated at higher 
levels. But if the rate of packet loss and retransmission reaches a substantial level, the 
effect on the throughput of the network can be devastating. It is easy to see why this is 
the case: if packets are dropped at intermediate nodes, the network resources that they 
have already consumed are wasted and the resulting retransmissions will require a 
similar quantity of resources to reach the same point in the network. As a rule of thumb, 
when the load on a network exceeds 80% of its capacity, the total throughput tends to 
drop as a result of packet losses unless usage of heavily loaded links is controlled.

Instead of allowing packets to travel through the network until they reach over-
congested nodes, where they will have to be dropped, it would be better to hold them at 
earlier nodes until the congestion is reduced. This will result in increased delays for 
packets but will not significantly degrade the total throughput of the network. 
Congestion control is the name given to techniques that are designed to achieve this.

In general, congestion control is achieved by informing nodes along a route that 
congestion has occurred and that their rate of packet transmission should therefore be 
reduced. For intermediate nodes, this will result in the buffering of incoming packets for 
a longer period. For hosts that are sources of the packets, the result may be to queue 
packets before transmission or to block the application process that is generating them 
until the network can handle them.

All datagram-based network layers, including IP and Ethernets, rely on the end-
to-end control of traffic. That is, the sending node must reduce the rate at which it 
transmits packets based only on information that it receives from the receiver. 
Congestion information may be supplied to the sending node by explicit transmission of 
special messages (called choke packets) requesting a reduction in transmission rate, by 
the implementation of a specific transmission control protocol (from which TCP derives 
its name – Section 3.4.6 explains the mechanism used in TCP) or by observing the 
occurrence of dropped packets (if the protocol is one in which each packet is 
acknowledged). 

In some virtual circuit based networks, congestion information can be received 
and acted on at each node. Although ATM uses virtual circuit delivery, it relies on 
quality of service management (see Chapter 20) to ensure that each circuit can carry the 
required traffic.
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3.3.7 Internetworking

There are many network technologies with different network-, link- and physical-layer 
protocols. Local networks are built with Ethernet technologies, while wide area 
networks are built over analogue and digital telephone networks of various types, 
satellite links and wide area ATM networks. Individual computers and local networks 
are linked to the Internet or intranets by modems and by wireless and DSL connections. 

To build an integrated network (an internetwork) we must integrate many subnets, 
each of which is based on one of these network technologies. To make this possible, the 
following are needed:

1.  a unified internetwork addressing scheme that enables packets to be addressed to 
any host connected to any subnet;

2. a protocol defining the format of internetwork packets and giving rules according 
to which they are handled;

3. interconnecting components that route packets to their destinations in terms of 
internetwork addresses, transmitting the packets using subnets with a variety of 
network technologies.

For the Internet, (1) is provided by IP addresses, (2) is the IP protocol and (3) is 
performed by  components called Internet routers. The IP protocol and IP addressing are 
described in some detail in Section 3.4. Here we describe the functions of Internet 
routers and some other components that are used to link networks together.

Figure 3.10 shows a small part of the campus intranet at a British university. Many 
of the details shown will be explained in later sections. Here we note that the portion 
shown in the figure comprises several subnets interconnected by routers. There are five 
subnets, three of which share the IP network 138.37.95 (using the classless interdomain 
routing scheme described in Section 3.4.3). The numbers in the diagram are IP 
addresses; their structure will be explained in Section 3.4.1. The routers in the diagram 
are members of multiple subnets and have an IP address for each subnet, shown against 
the connecting links.

The routers (hostnames: hammer and sickle) are, in fact, general-purpose 
computers that also fulfil other purposes. One of those purposes is to serve as firewalls; 
the role of a firewall is closely linked with the routing function, as we describe in Section 
3.4. The 138.37.95.232/29 subnet is not connected to the rest of the network at the IP 
level. Only the file server custard can access it to provide a printing service on the 
attached printers via a server process that monitors and controls the use of the printers.

All of the links in Figure 3.10 are Ethernets. The bandwidth of most of them is 100 
Mbps, but one is 1000 Mbps because it carries a large volume of traffic between a large 
number of computers used by students and custard, the file server that holds all of their 
files.

There are two Ethernet switches and several Ethernet hubs in the portion of the 
network illustrated. Both types of component are transparent to IP packets. An Ethernet 
hub is simply a means of connecting together several segments of Ethernet cable, all of 
which form a single Ethernet at the network protocol level. All of the Ethernet packets 
received by the host are relayed to all of the segments. An Ethernet switch connects 
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several Ethernets, routing the incoming packets only to the Ethernet to which the 
destination host is connected.

Routers  •  We have noted that routing is required in all networks except those such as 
Ethernets and wireless networks, in which all of the hosts are connected by a single 
transmission medium. Figure 3.7 shows such a network with five routers connected by 
six links. In an internetwork, the routers may be linked by direct connections, as is 
shown in Figure 3.7, or they may be interconnected through subnets, as shown for 
custard in Figure 3.10. In both cases, the routers are responsible for forwarding the 
internetwork packets that arrive on any connection to the correct outgoing connection, 
as explained above. They maintain routing tables for that purpose.

Bridges  •  Bridges link networks of different types. Some bridges link several networks, 
and these are referred to as bridge/routers because they also perform routing functions. 
For example, the wider campus network includes a Fibre Distributed Data Interface 
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(FDDI) backbone (not shown on Figure 3.10), and this is linked to the Ethernet subnets 
in the figure by bridge/routers.

Hubs  •  Hubs are simply a convenient means of connecting hosts and extending 
segments of Ethernet and other broadcast local network technologies. They have a 
number of sockets (typically 4–64), to each of which a host computer can be connected. 
They can also be used to overcome the distance limitations on single segments and 
provide a means of adding additional hosts. 

Switches  •  Switches perform a similar function to routers, but for local networks 
(normally Ethernets) only. That is, they interconnect several separate Ethernets, routing 
the incoming packets to the appropriate outgoing network. They perform their task at the 
level of the Ethernet network protocol. When they start up they have no knowledge of 
the wider internetwork and build up routing tables by the observation of traffic, 
supplemented by broadcast requests when they lack information. 

The advantage of switches over hubs is that they separate the incoming traffic and 
transmit it only on the relevant outgoing network, reducing congestion on the other 
networks to which they are connected.

Tunnelling   •  Bridges and routers transmit internetwork packets over a variety of 
underlying networks by translating between their network-layer protocols and an 
internetwork protocol, but there is one situation in which the underlying network 
protocol can be hidden from the layers above it without the use of an internetwork 
protocol. A pair of nodes connected to separate networks of the same type can 
communicate through another type of network by constructing a protocol ‘tunnel’. A 
protocol tunnel is a software layer that transmits packets through an alien network 
environment. 

The following analogy explains the reason for the choice of terminology and 
provides another way to think about tunnelling. A tunnel through a mountain enables a 
road to transport cars where it would otherwise be impossible. The road is continuous – 
the tunnel is transparent to the application (cars). The road is the transport mechanism, 
and the tunnel enables it to work in an alien environment. 

Figure 3.11 Tunnelling for IPv6 migration
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IPv6 encapsulated in IPv4 packets

Encapsulators
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Figure 3.11 illustrates the use of tunnelling to support the migration of the Internet 
to the IPv6 protocol. IPv6 is intended to replace the version of IP still widely in use, 
IPv4, and is incompatible with it. (Both IPv4 and IPv6 are described in Section 3.4.)
During the period of transition to IPv6 there will be ‘islands’ of IPv6 networking in the 
sea of IPv4. In our illustration A and B are such islands. At the boundaries of islands 
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IPv6 packets are encapsulated in IPv4 and transported over the intervening IPv4 
networks in that manner.

For another example, MobileIP (described in Section 3.4.5) transmits IP packets 
to mobile hosts anywhere in the Internet by constructing a tunnel to them from their 
home base. The intervening network nodes do not need to be modified to handle the 
MobileIP protocol. The IP multicast protocol is handled in a similar way, relying on a 
few routers that support IP multicast routing to determine the routes, but transmitting IP 
packets through other routers using standard IP addresses. The PPP protocol for the 
transmission of IP packets over serial links provides yet another example.

3.4 Internet protocols

We describe here the main features of the TCP/IP suite of protocols and discuss their 
advantages and limitations when used in distributed systems.

Figure 3.12 TCP/IP layers
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The Internet emerged from two decades of research and development work on 
wide area networking in the USA, commencing in the early 1970s with the ARPANET 
– the first large-scale computer network development [Leiner et al. 1997]. An important 
part of that research was the development of the TCP/IP protocol suite. TCP stands for 
Transmission Control Protocol, IP for Internet Protocol. The widespread adoption of the 
TCP/IP and Internet application protocols in national research networks, and more 
recently in commercial networks in many countries, has enabled the national networks 
to be integrated into a single internetwork that has grown extremely rapidly to its present 
size, with more than 60 million hosts. Many application services and application-level 
protocols (shown in parentheses in the following list) now exist based on TCP/IP, 
including the Web (HTTP), email (SMTP, POP), netnews (NNTP), file transfer (FTP) 
and Telnet (telnet). TCP is a transport protocol; it can be used to support applications 
directly, or additional protocols can be layered on it to provide additional features. For 
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example, HTTP is usually transported by the direct use of TCP, but when end-to-end 
security is required, the Transport Layer Security (TLS) protocol (described in Section 
11.6.3) is layered on top of TCP to produce secure channels and HTTP messages are 
transmitted via the secure channels.

The Internet protocols were originally developed primarily to support simple wide 
area applications such as file transfer and electronic mail, involving communication 
with relatively high latencies between geographically dispersed computers, but they 
turned out to be efficient enough to support the requirements of many distributed 
applications on both wide area and local networks and they are now almost universally 
used in distributed systems. The resulting standardization of communication protocols 
has brought immense benefits. 

The general illustration of internetwork protocol layers of Figure 3.6 is translated 
into the specific Internet case in Figure 3.12. There are two transport protocols – TCP 
(Transport Control Protocol) and UDP (User Datagram Protocol). TCP is a reliable 
connection-oriented protocol, and UDP is a datagram protocol that does not guarantee 
reliable transmission. The Internet Protocol is the underlying ‘network’ protocol of the 
Internet virtual network – that is, IP datagrams provide the basic transmission 
mechanism for the Internet and other TCP/IP networks. We placed the word ‘network’ 
in quotation marks in the preceding sentence because it is not the only network layer 
involved in the implementation of Internet communication. This is because the Internet 
protocols are usually layered over another network technology, such as Ethernet, which 
already provides a network layer that enables the computers attached to the same 
network to exchange datagrams.

Figure 3.13 Encapsulation as it occurs when a message is transmitted via TCP over an Ethernet
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Figure 3.13 illustrates the encapsulation of packets that 
would occur for the transmission of a message via TCP over an underlying Ethernet. The 
tags in the headers are the protocol types for the layers above, needed for the receiving 
protocol stack to correctly unpack the packets. In the TCP layer, the receiver’s port 
number serves a similar purpose, enabling the TCP software component at the receiving 
host to pass the message to a specific application-level process.

The TCP/IP specifications [Postel 1981a; 1981b] do not specify the layers below 
the Internet datagram layer – IP packets in the Internet layer are transformed into packets 
for transmission over almost any combination of underlying networks or data links.

For example, IP ran initially over the ARPANET, which consisted of hosts and an 
early version of routers (called PSEs) connected by long-distance data links. Today it is 
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used over virtually every known network technology, including ATM, local area 
networks such as Ethernets, and token ring networks. IP is implemented over serial lines 
and telephone circuits via the PPP protocol [Parker 1992], enabling it to be used for 
communication with modem connections and other serial links. 

Figure 3.14 The programmer's conceptual view of a TCP/IP Internet
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The success of TCP/IP is based on the protocols’ independence from the 
underlying transmission technology, enabling internetworks to be built up from many 
heterogeneous networks and data links. Users and application programs perceive a 
single virtual network supporting TCP and UDP and implementors of TCP and UDP see 
a single virtual IP network, hiding the diversity of the underlying transmission media. 
Figure 3.14 illustrates this view.

In the next two sections we describe the IP addressing scheme and the IP protocol. 
The Domain Name System – which converts domain names such as www.amazon.com, 

hpl.hp.com, stanford.edu and qmw.ac.uk, with which Internet users are so familiar, into 
IP addresses – is introduced in Section 3.4.7 and described more fully in Chapter 13.

The version of IP in predominant use throughout the Internet is IPv4 (since 
January 1984), and that is the version that we shall describe in the next two sections. But 
the rapid growth in the use of the Internet led to the publication of a specification of a 
new version (IPv6) to overcome the addressing limitations of IPv4 and add features to 
support some new requirements. We describe IPv6 in Section 3.4.4. Because of the vast 
amount of software that will be affected, a gradual migration to IPv6 is planned over a 
period of 10 years or more.

3.4.1 IP addressing

Perhaps the most challenging aspect of the design of the Internet protocols was the 
construction of schemes for naming and addressing hosts and for routing IP packets to 
their destinations. The scheme used for assigning host addresses to networks and the 
computers connected to them had to satisfy the following requirements: 

• It must be universal – any host must be able to send packets to any other host in 
the Internet.

• It must be efficient in its use of the address space – it is impossible to predict the 
ultimate size of the Internet and the number of network and host addresses likely 
to be required. The address space must be carefully partitioned to ensure that 
addresses will not run out. In 1978–82, when the specifications for the TCP/IP 
protocols were being developed, provision for 232 or approximately 4 billion 
addressable hosts (about the same as the population of the world at that time) was 



Figure 3.15 Internet address structure, showing field sizes in bits
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considered adequate. This judgement has proved to be short-sighted, for two 
reasons:

– The rate of growth of the Internet has far outstripped all predictions.

– The address space has been allocated and used much less efficiently than 
expected.

• The addressing scheme must lend itself to the development of a flexible and 
efficient routing scheme, but the addresses themselves cannot contain very much 
of the information needed to route a packet to its destination.

Today the overwhelming majority of Internet traffic continues to use the IP version 4 
address and packet format defined three decades ago. The scheme assigns an IP address 
to each host in the Internet – a 32-bit numeric identifier containing a network identifier, 
which uniquely identifies one of the subnetworks in the Internet, and a host identifier, 
which uniquely identifies the host’s connection to that network. It is these addresses that 
are placed in IP packets and used to route them to their destinations. 

The design adopted for the Internet address space is shown in Figure 3.15. There 
are four allocated classes of Internet address – A, B, C and D. Class D is reserved for 
Internet multicast communication, which is implemented in only some Internet routers 
and is discussed further in Section 4.4.1. Class E contains a range of unallocated 
addresses, which are reserved for future requirements.

These 32-bit Internet addresses, containing a network identifier and host 
identifier, are usually written as a sequence of four decimal numbers separated by dots. 
Each decimal number represents one of the four bytes, or octets, of the IP address. The 
permissible values for each class of network address are shown in Figure 3.16.

Three classes of address were designed to meet the requirements of different types 
of organization. The Class A addresses, with a capacity for 224 hosts on each subnet, are 
reserved for very large networks such as the US NSFNet and other national wide area 
networks. Class B addresses are allocated to organizations that operate networks likely 
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to contain more than 255 computers, and Class C addresses are allocated to all other 
network operators.

Internet addresses with host identifiers 0 and all 1s (binary) are used for special 
purposes. Addresses with the host identifier set to 0 are used to refer to ‘this host’, and 
a host identifier that is all 1s is used to address a broadcast message to all of the hosts 
connected to the network specified in the network identifier part of the address. 

Network identifiers are allocated by the Internet Assigned Numbers Authority 
(IANA) to organizations with networks connected to the Internet. Host identifiers for the 
computers on each network connected to the Internet are assigned by the managers of 
the relevant networks. 

Since host addresses include a network identifier, any computer that is connected 
to more than one network must have separate addresses on each, and whenever a 
computer is moved to a different network, its Internet address must change. These 
requirements can lead to substantial administrative overheads, for example in the case 
of portable computers.

In practice, the IP address allocation scheme has not turned out to be very 
effective. The main difficulty is that network administrators in user organizations cannot 
easily predict future growth in their need for host addresses, and they tend to 
overestimate, requesting Class B addresses when in doubt. Around 1990 it became 
evident that based on the rate of allocation at the time, IP addresses were likely to run 
out around 1996. Three steps were taken. The first was to initiate the development of a 
new IP protocol and addressing scheme, the result of which was the specification of 
IPv6.

The second step was to radically modify the way in which IP addresses were 
allocated. A new address allocation and routing scheme designed to make more 
effective use of the IP address space was introduced, called classless interdomain 
routing (CIDR). We describe CIDR in Section 3.4.3. The local network illustrated in 
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Figure 3.10 includes several Class C sized subnets in the range 138.37.88–138.37.95, 
linked by routers. The routers manage the delivery of IP packets to all of the subnets. 
They also handle traffic between the subnets and from the subnets to the rest of the 
world. The figure also illustrates the use of CIDR to subdivide a Class B address space 
to produce several Class C sized subnets.

The third step was to enable unregistered computers to access the Internet 
indirectly through routers that implement a Network Address Translation (NAT) 
scheme. We describe this scheme in Section 3.4.3.

3.4.2 The IP protocol

The IP protocol transmits datagrams from one host to another, if necessary via 
intermediate routers. The full IP packet format is rather complex, but Figure 3.17

Figure 3.17 IP packet layout
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the main components. There are several header fields, not shown in the diagram, that are 
used by the transmission and routing algorithms.

IP provides a delivery service that is described as offering unreliable or best-effort

delivery semantics, because there is no guarantee of delivery. Packets can be lost, 
duplicated, delayed or delivered out of order, but these errors arise only when the 
underlying networks fail or buffers at the destination are full. The only checksum in IP 
is a header checksum, which is inexpensive to calculate and ensures that any corruptions 
in the addressing and packet management data will be detected. There is no data 
checksum, which avoids overheads when crossing routers, leaving the higher-level 
protocols (TCP and UDP) to provide their own checksums – a practical instance of the 
end-to-end argument (Section 2.3.3).

The IP layer puts IP datagrams into network packets suitable for transmission in 
the underlying network (which might, for example, be an Ethernet). When an IP 
datagram is longer than the MTU of the underlying network, it is broken into smaller 
packets at the source and reassembled at its final destination. Packets can be further 
broken up to suit the underlying networks encountered during the journey from source 
to destination. (Each packet has a fragment identifier to enable out-of-order fragments 
to be collected.)

The IP layer must also insert a ‘physical’ network address of the message 
destination to the underlying network. It obtains this from the address resolution module 
in the Internet network interface layer, which is described in the next subsection.

Address resolution  •  The address resolution module is responsible for converting 
Internet addresses to network addresses for a specific underlying network (sometimes 
called physical addresses). For example, if the underlying network is an Ethernet, the 
address resolution module converts 32-bit Internet addresses to 48-bit Ethernet 
addresses.
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This translation is network technology dependent:

• Some hosts are connected directly to Internet packet switches; IP packets can be 
routed to them without address translation.

• Some local area networks allow network addresses to be assigned to hosts 
dynamically, and the addresses can be conveniently chosen to match the host 
identifier portion of the Internet address – translation is simply a matter of 
extracting the host identifier from the IP address.

• For Ethernets and some other local networks, the network address of each 
computer is hard-wired into its network interface hardware and bears no direct 
relation to its Internet address – translation depends upon knowledge of the 
correspondence between IP addresses and addresses for the hosts on the local 
network and is done using an address resolution protocol (ARP). 

We now outline the implementation of an ARP for Ethernets. It uses dynamic enquiries 
in order to operate correctly when computers are added to a local network but exploits 
caching to minimize enquiry messages. Consider first the case in which a host computer 
connected to an Ethernet uses IP to transmit a message to another computer on the same 
Ethernet. The IP software module on the sending computer must translate the recipient’s 
Internet address that it finds in the IP packet to an Ethernet address before the packet can 
be delivered. It invokes the ARP module on the sending computer to do so. 

The ARP module on each host maintains a cache of (IP address, Ethernet address)
pairs that it has previously obtained. If the required IP address is in the cache, then the 
query is answered immediately. If not, then ARP transmits an Ethernet broadcast packet 
(an ARP request packet) on the local Ethernet containing the desired IP address. Each 
of the computers on the local Ethernet receives the ARP request packet and checks the 
IP address in it to see whether it matches its own IP address. If it does, an ARP reply 
packet is sent to the originator of the ARP request containing the sender’s Ethernet 
address; otherwise the ARP request packet is ignored. The originating ARP module adds 
the new IP address to Ethernet address mapping to its local cache of (IP address,
Ethernet address) pairs so that it can respond to similar requests in the future without 
broadcasting an ARP request. Eventually, the ARP cache at each computer will contain 
an (IP address, Ethernet address) pair for all of the computers that IP packets are sent 
to. Thus ARP broadcasts will be needed only when a computer is newly connected to 
the local Ethernet.

IP spoofing  •  We have seen that IP packets include a source address – the IP address of 
the sending computer. This, together with a port address encapsulated in the data field 
(for UDP and TCP packets), is often used by servers to generate a return address. 
Unfortunately, it is not possible to guarantee that the source address given is in fact the 
address of the sender. A malicious sender can easily substitute an address that is 
different from its own. This loophole has been the source of several well-known attacks, 
including the distributed denial of service attacks of February 2000 [Farrow 2000] 
mentioned in Chapter 1, Section 1.5.3. The method used was to issue many ping service 
requests to a large number of computers at several sites (ping is a simple service 
designed to check the availability of a host). These malicious ping requests all contained 
the IP address of a target computer in their sender address field. The ping responses were 
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therefore all directed to the target, whose input buffers were overwhelmed, preventing 
any legitimate IP packets getting through. This attack is discussed further in Chapter 11.

3.4.3 IP routing

The IP layer routes packets from their source to their destination. Each router in the 
Internet implements IP-layer software to provide a routing algorithm. 

Backbones  •  The topological map of the Internet is partitioned conceptually into 
autonomous systems (ASs), which are subdivided into areas. The intranets of most large 
organizations such as universities and large companies are regarded as ASs, and they 
will usually include several areas. In Figure 3.10, the campus intranet is an AS and the 
portion shown is an area. Every AS in the topological map has a backbone area. The 
collection of routers that connect non-backbone areas to the backbone and the links that 
interconnect those routers are called the backbone of the network. The links in the 
backbone are usually of high bandwidth and are replicated for reliability. This hierarchic 
structure is a conceptual one that is exploited primarily for the management of resources 
and the maintenance of the components. It does not affect the routing of IP packets.

Routing protocols  •  RIP-1, the first routing algorithm used in the Internet, is a version 
of the distance-vector algorithm described in Section 3.3.5. RIP-2 (described in RFC 
1388 [Malkin 1993]) was developed from it to accommodate several additional 
requirements, including classless interdomain routing, better multicast routing and the 
need for authentication of RIP packets to prevent attacks on the routers.

As the scale of the Internet has expanded and the processing capacity of routers 
has increased, there has been a move towards the adoption of algorithms that do not 
suffer from the slow convergence and potential instability of distance-vector algorithms. 
The direction of the move is towards the link-state class of algorithms mentioned in 
Section 3.3.5 and the algorithm called open shortest path first (OSPF). This protocol is 
based on a path-finding algorithm that is due to Dijkstra [1959] and has been shown to 
converge more rapidly than the RIP algorithm.

We should note that the adoption of new routing algorithms in IP routers can 
proceed incrementally. A change in routing algorithm results in a new version of the RIP 
protocol, and a version number is carried by each RIP packet. The IP protocol does not 
change when a new RIP protocol is introduced. Any IP router will correctly forward 
incoming IP packets on a reasonable, if not optimum, route, whatever version of RIP 
they use. But for routers to cooperate in the updating of their routing tables, they must 
share a similar algorithm. For this purpose the topological areas defined above are used. 
Within each area a single routing algorithm applies, and the routers within an area 
cooperate in the maintenance of their routing tables. Routers that support only RIP-1 are 
still commonplace and they coexist with routers that support RIP-2 and OSPF, using 
backwards-compatibility features incorporated in the newer protocols.

In 1993, empirical observations [Floyd and Jacobson 1993] showed that the 30-
second frequency with which RIP routers exchange information was producing a 
periodicity in the performance of IP transmissions. The average latency for IP packet 
transmissions showed a peak at 30-second intervals. This was traced to the behaviour of 
routers performing the RIP protocol – on receipt of an RIP packet, routers would delay 
the onward transmission of any IP packets that they held until the routing table update 
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process was complete for all RIP packets received to date. This tended to cause the 
routers to perform the RIP actions in lock-step. The correction recommended was for 
routers to adopt a random value in the range of 15–45 seconds for the RIP update period.

Default routes  •  Up to now, our discussion of routing algorithms has suggested that 
every router maintains a full routing table showing the route to every destination (subnet 
or directly connected host) in the Internet. At the current scale of the Internet this is 
clearly infeasible (the number of destinations is probably already in excess of 1 million 
and still growing very rapidly). 

Two possible solutions to this problem come to mind, and both have been adopted 
in an effort to alleviate the effects of the Internet’s growth. The first solution is to adopt 
some form of topological grouping of IP addresses. Prior to 1993, nothing could be 
inferred from an IP address about its location. In 1993, as part of the move to simplify 
and economize on the allocation of IP addresses that is discussed below under CIDR, 
the decision was taken that for future allocations, the following regional locations would 
be applied:

Addresses 194.0.0.0 to 195.255.255.255 are in Europe
Addresses 198.0.0.0 to 199.255.255.255 are in North America
Addresses 200.0.0.0 to 201.255.255.255 are in Central and South America
Addresses 202.0.0.0 to 203.255.255.255 are in Asia and the Pacific

Because these geographical regions also correspond to well-defined topological regions 
in the Internet and just a few gateway routers provide access to each region, this enables 
a substantial simplification of routing tables for those address ranges. For example, a 
router outside Europe can have a single table entry for the range of addresses 194.0.0.0 
to 195.255.255.255 that sends all IP packets with destinations in that range on the same 
route to the nearest European gateway router. But note that before the date of that 
decision, IP addresses were allocated largely without regard to topology or geography. 
Many of those addresses are still in use, and the 1993 decision does nothing to reduce 
the scale of routing table entries for those addresses.

The second solution to the routing table size explosion probem is simpler and very 
effective. It is based on the observation that the accuracy of routing information can be 
relaxed for most routers as long as some key routers (those closest to the backbone links) 
have relatively complete routing tables. The relaxation takes the form of a default

destination entry in routing tables. The default entry specifies a route to be used for all 
IP packets whose destinations are not included in the routing table. To illustrate this, 
consider Figures 3.7 and 3.8 and suppose that the routing table for node C is altered to 
show:
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To Link Cost
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2
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5
5

1
0
1
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Thus node C is ignorant of nodes A and D. It will route all packets addressed to them 
via link 5 to E. What is the consequence? Packets addressed to D will reach their 
destination without loss of efficiency in routing, but packets addressed to A will make 
an extra hop, passing through E and B on the way. In general, the use of default routings 
trades routing efficiency for table size. But in some cases, especially where a router is 
on a spur, so that all outward messages must pass through a single point, there is no loss 
of efficiency. The default routing scheme is heavily used in Internet routing; no single 
router holds routes to all destinations in the Internet.

Routing on a local subnet  •  Packets addressed to hosts on the same network as the 
sender are transmitted to the destination host in a single hop, using the host identifier 
part of the address to obtain the address of the destination host on the underlying 
network. The IP layer simply uses ARP to get the network address of the destination and 
then uses the underlying network to transmit the packets.

If the IP layer in the sending computer discovers that the destination is on a 
different network, it must send the message to a local router. It uses ARP to get the 
network address of the gateway or router and then uses the underlying network to 
transmit the packet to it. Gateways and routers are connected to two or more networks 
and they have several Internet addresses, one for each network to which they are 
attached.

Classless interdomain routing (CIDR)  •  The shortage of IP addresses referred to in 
Section 3.4.1 led to the introduction in 1996 of this scheme for allocating addresses and 
managing the entries in routing tables. The main problem was a scarcity of Class B 
addresses – those for subnets with more than 255 hosts connected. Plenty of Class C 
addresses were available. The CIDR solution for this problem is to allocate a batch of 
contiguous Class C addresses to a subnet requiring more than 255 addresses. The CIDR 
scheme also makes it possible to subdivide a Class B address space for allocation to 
multiple subnets.

Batching Class C addresses sounds like a straightforward step, but unless it is 
accompanied by a change in routing table format, it has a substantial impact on the size 
of routing tables and hence the efficiency of the algorithms that manage them. The 
change adopted was to add a mask field to the routing tables. The mask is a bit pattern 
that is used to select the portion of an IP address that is compared with the routing table 
entry. This effectively enables the host/subnet address to be any portion of the IP 
address, providing more flexibility than the classes A, B and C – hence the name 
classless interdomain routing. Once again, these changes to routers are made on an 
incremental basis, so some routers perform CIDR and others use the old class-based 
algorithms. 

This works because the newly allocated ranges of Class C addresses are assigned 
modulo 256, so each range represents an integral number of Class C sized subnet 
addresses. On the other hand, some subnets also make use of CIDR to subdivide the 
range of addresses in a single network, of Class A, B or C. If a collection of subnets is 
connected to the rest of the world entirely by CIDR routers, then the ranges of IP 
addresses used within the collection can be allocated to individual subnets in chunks 
determined by a binary mask of any size. 

For example, a Class C address space can be subdivided into 32 groups of 8. 
Figure 3.10 contains an example of the use of the CIDR mechanism to split the 



116 CHAPTER 3  NETWORKING AND INTERNETWORKING

138.37.95 Class C sized subnet into several groups of eight host addresses that are 
routed differently. The separate groups are denoted by notations 138.37.95.232/29, 
138.37.95.248/29 and so on. The /29 portion of these addresses denotes an attached 32-
bit binary mask with 29 leading 1s and three trailing 0s.

Unregistered addresses and Network Address Translation (NAT)  •   Not all of the 
computers and devices that access the Internet need to be assigned globally unique IP 
addresses. Computers that are attached to a local network and access to the Internet 
through a NAT-enabled router can rely upon the router to redirect incoming UDP and 
TCP packets for them. 

Figure 3.18 A typical NAT-based home network
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Figure 3.18 illustrates a typical home network with computers 
and other network devices linked to the Internet through a NAT-enabled router. The 
network includes Internet-enabled computers that are connected to the router by a wired 
Ethernet connection as well as others that are connected through a WiFi access point. 
For completeness some Bluetooth-enabled devices are shown, but these are not 
connected to the router and hence cannot access the Internet directly. The home network 
has been allocated a single registered IP address (83.215.152.95) by its Internet service 
provider. The approach described here is suitable for any organization wishing to 
connect computers without registered IP addresses to the Internet. 

All of the Internet-enabled devices on the home network have been assigned 
unregistered IP addresses on the 192.168.1.x Class C subnet. Most of the internal 
computers and devices are allocated individual IP addresses dynamically by a Dynamic 
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Host Configuration Protocol (DHCP) service running on the router. In our illustration 
the numbers above 192.168.1.100 are used by the DHCP service and the nodes with 
lower numbers (such as PC 1) have been allocated numbers manually, for a reason 
explained later in this subsection. Although all of these addresses are completely hidden 
from the rest of the Internet by the NAT router, it is conventional to use a range of 
addresses from one of three blocks of addresses (10.z.y.x, 172.16.y.x or 192.168.y.x) 
that IANA has reserved for private internets.

NAT is described in RFC 1631 [Egevang and Francis 1994] and extended in RFC 
2663 [Srisuresh and Holdrege 1999]. NAT-enabled routers maintain an address 
translation table and exploit the source and destination port number fields in the UDP 
and TCP packets to assign each incoming reply message to the internal computer that 
sent the corresponding request message. Note that the source port given in a request 
message is always used as the destination port in the corresponding reply message.

The most commonly used variant of NAT addressing works as follows:

– When a computer on the internal network sends a UDP or TCP packet to a 
computer outside it, the router receives the packet and saves the source IP 
address and port number to an available slot in its address translation table. 

– The router replaces the source address in the packet with the router’s IP address 
and the source port with a virtual port number that indexes the table slot 
containing the sending computer’s address information. 

– The packet with the modified source address and port number is then 
forwarded towards its destination by the router. The address translation table 
now holds a mapping from virtual port numbers to real internal IP addresses 
and port numbers for all packets sent recently by computers on the internal 
network. 

– When the router receives a UDP or TCP packet from an external computer it 
uses the destination port number in the packet to access a slot in the address 
translation table. It replaces the destination address and destination port in the 
received packet with those stored in the slot and forwards the modified packet 
to the internal computer identified by the destination address.

The router will retain a port mapping and reuse it as long as it appears to be in use. A 
timer is reset each time the router accesses an entry in the table. If the entry is not 
accessed again before the timer expires, the entry is removed from the table.

The scheme described above deals satisfactorily with the commonest modes of 
communication for nonregistered computers, in which they act as clients to external 
services such as web servers. But it does not enable them to act as servers to handle 
incoming requests. To deal with that case, NAT routers can be configured manually to 
forward all of the incoming requests on a given port to one particular internal computer. 
Computers that act as servers must retain the same internal IP address and this is 
achieved by allocating their addresses manually (as was done for PC 1). This solution to 
the problem of providing external access to services is satisfactory as long as there is no 
requirement for more than one internal computer to offer a service on any given port. 

NAT was introduced as a short-term solution to the problem of IP address 
allocation for personal and home computers. Its has enabled the expansion of Internet 
use to proceed far further than was originally anticipated, but it does impose some 
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limitations, of which the last point is an example. IPv6 must be seen as the next step, 
enabling full Internet participation for all computers and portable devices.

3.4.4 IP version 6

A more permanent solution to the addressing limitations of IPv4 was also pursued, and 
this led to the development and adoption of a new version of the IP protocol with 
substantially larger addresses. The IETF noticed the potential problems arising from the 
32-bit addresses of IPv4 as early as 1990 and initiated a project to develop a new version 
of the IP protocol. IPv6 was adopted by the IETF in 1994 and a strategy for migration 
to it was recommended. 

Figure 3.19 IPv6 header layout
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Figure 3.19 shows the layout of IPv6 headers. We do not propose to cover their 
construction in detail here. Readers are referred to Tanenbaum [2003] or Stallings 
[2002] for tutorial material on IPv6 and to Huitema [1998] for a blow-by-blow account 
of the IPv6 design process and implementation plans. Here we will outline the main 
advances that IPv6 embodies:

Address space: IPv6 addresses are 128 bits (16 bytes) long. This provides for a truly 
astronomical number of addressable entities: 2128, or approximately 3 1038.
Tanenbaum calculates that this is sufficient to provide 7 1023 IP addresses per 
square metre across the entire surface of the Earth. More conservatively, Huitema 
made a calculation assuming that IP addresses are allocated as inefficiently as 
telephone numbers and came up with a figure of 1000 IP addresses per square metre 
of the Earth’s surface (land and water).

The IPv6 address space is partitioned. We cannot detail the partitioning here, 
but even the minor partitions (one of which will hold the entire range of IPv4 
addresses, mapped one-to-one) are far larger than the total IPv4 space. Many 
partitions (representing 72% of the total) are reserved for purposes as yet undefined. 
Two large partitions (each comprising 1/8 of the address space) are allocated for 
general purposes and will be assigned to normal network nodes. One of them is 
intended to be organized according to the geographic locations of the addressed 
nodes and the other according to their organizational locations. This allows two 
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alternative strategies for aggregating addresses for routing purposes – it remains to 
be seen which will prove more effective or popular.

Routing speed: The complexity of the basic IPv6 header and the processing required 
at each node are reduced. No checksum is applied to the packet content (payload), 
and no fragmentation can occur once a packet has begun its journey. The former is 
considered acceptable because errors can be detected at higher levels (TCP does 
include a content checksum), and the latter is achieved by supporting a mechanism 
for determining the smallest MTU before a packet is transmitted.

Real-time and other special services: The traffic class and flow label fields are 
concerned with this. Multimedia streams and other sequences of real-time data 
elements can be transmitted as part of an identified flow. The first 6 bits of the traffic 

class field can be used with the flow label or independently to enable specific packets 
to be handled more rapidly or with higher reliability than others. Traffic class values 
0 through 8 are for transmissions that can be slowed without disastrous effects on the 
application. Other values are reserved for packets whose delivery is time-dependent. 
Such packets must either be delivered promptly or dropped – late delivery is of no 
value. 

Flow labels enable resources to be reserved in order to meet the timing 
requirements of specific real-time data streams, such as live audio and video 
transmissions. Chapter 20 discusses these requirements and methods for the 
allocation of resources for them. Of course, the routers and transmission links in the 
Internet have limited resources, and the concept of reserving them for specific users 
and applications has not previously been considered. The use of these facilities of 
IPv6 will depend upon major enhancements to the infrastructure and the development 
of suitable methods for charging and arbitrating the allocation of resources.

Future evolution: The key to the provision for future evolution is the next header

field. If non-zero, it defines the type of an extension header that is included in the 
packet. There are currently extension header types that provide additional data for 
special services of the following types: information for routers, route definition, 
fragment handling, authentication, encryption and destination handling. Each 
extension header type has a specific size and a defined format. Further extension 
header types will be defined as new service requirements arise. An extension header, 
if present, follows the basic header and precedes the payload and includes a next

header field, enabling multiple extension headers to be employed.

Multicast and anycast: Both IPv4 and IPv6 include support for the transmission of 
IP packets to multiple hosts using a single address (one that is in the range reserved 
for the purpose). The IP routers are then responsible for routing the packet to all of 
the hosts that have subscribed to the group identified by the relevant address. Further 
details on IP multicast communication can be found in Section 4.4.1. In addition, 
IPv6 supports a new mode of transmission called anycast. This service delivers a 
packet to at least one of the hosts that subscribes to the relevant address.

Security: Up to now, Internet applications that require authenticated or private data 
transmission have relied on the use of cryptographic techniques in the application 
layer. The end-to-end argument supports the view that this is the right place for it. If 
security is implemented at the IP level, then users and application developers depend 
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upon the correctness of the code that implements it in each router along the way, and 
they must trust the routers and other intermediate nodes to handle cryptographic keys.

The advantage of implementing security at the IP level is that it can be applied 
without the need for security-aware implementations of application programs. For 
example, system managers can implement it in a firewall and apply it uniformly to 
all external communication without incurring the cost of encryption for internal 
communication. Routers may also exploit an IP-level security mechanism to secure 
the routing table update messages that they exchange between themselves.

Security in IPv6 is implemented through the authentication and encrypted

security payload extension header types. These implement features equivalent to the 
secure channel concept introduced in Section 2.4.3. The payload is encrypted and/or 
digitally signed as required. Similar security features are also available in IPv4 using 
IP tunnelling between routers or hosts that implement the IPSec specification (see 
RFC 2411 [Thayer 1998]).

Migration from IPv4  •  The consequences for the existing Internet infrastructure of a 
change in its basic protocol are profound. IP is processed in the TCP/IP protocol stack 
at every host and in the software of every router. IP addresses are handled in many 
application and utility programs. All of these require upgrading to support the new 
version of IP, but the change is made inevitable by the forthcoming exhaustion of the 
address space provided by IPv4. The IETF working group responsible for IPv6 has 
defined a migration strategy – essentially it involves the implementation of ‘islands’ of 
IPv6 routers and hosts communicating with other IPv6 islands via tunnels and gradually 
merging into larger islands. 

As we have noted, IPv6 routers and hosts should have no difficulty in handling 
mixed traffic, since the IPv4 address space is embedded in the IPv6 space. All of the 
major operating systems (Windows XP, Mac OS X, Linux and other Unix variants) 
already include implementations of UDP and TCP sockets (as described in Chapter 4) 
over IPv6, enabling applications to be migrated with a simple upgrade.

The theory of this strategy is technically sound, but implementation progress has 
been very slow, perhaps because CIDR and NAT have relieved the pressure to a greater 
extent than anticipated. This has begun to change in the mobile phone and portable 
device markets, though. All of these devices are likely to be Internet-enabled in the near 
future and they cannot easily be hidden behind NAT routers. For example, it is projected 
that more than a billion IP devices will be deployed in India and China by 2014. Only 
IPv6 can address needs such as that.

3.4.5 MobileIP

Mobile computers such as laptops and tablets are connected to the Internet at different 
locations as they migrate. In its owner’s office a laptop may be connected to a local 
Ethernet connected to the Internet through a router, it may be connected via a mobile 
phone while it is in transit by car or train, then it may be attached to an Ethernet at 
another site. The user will wish to access services such as email and the Web at any of 
these locations. 

Simple access to services does not require a mobile computer to retain a single 
address, and it may acquire a new IP address at each site; that is the purpose of the 
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Dynamic Host Configuration Protocol (DHCP), which enables a newly connected 
computer to dynamically acquire an IP address in the address range of the local subnet 
and discover the addresses of local resources such as a DNS server from a local DHCP 
server. It will also need to discover what local services (such as printing, mail delivery 
and so on) are available at each site that it visits. Discovery services are a type of naming 
service that assist with this; they are described in Chapter 19 (Section 19.2).

There may be files or other resources on the laptop to which others require access, 
or the laptop may be running a distributed application such as a share-monitoring service 
that receives notifications of specified events, such as stocks that the user holds passing 
a preset threshold. If a mobile computer is to remain accessible to clients and resource-
sharing applications when it moves between local networks and wireless networks, it 
must retain a single IP number, but IP routing is subnet-based. Subnets are at fixed 
locations, and the correct routing of packets to them depends upon their position on the 
network.

MobileIP is a solution for the latter problem. The solution is implemented 
transparently, so IP communication continues normally when a mobile host computer 
moves between subnets at different locations. It is based upon the permanent allocation 
of a normal IP address to each mobile host on a subnet in its ‘home’ domain. 

When the mobile host is connected at its home base, packets are routed to it in the 
normal way. When it is connected to the Internet elsewhere, two agent processes take 
responsibility for rerouting. The agents are a home agent (HA) and a foreign agent (FA). 
These processes run on convenient fixed computers at the home site and at the current 
location of the mobile host. 

The HA is responsible for holding up-to-date knowledge of the mobile host’s 
current location (the IP address by which it can be reached). It does this with the 
assistance of the mobile host itself. When a mobile host leaves its home site, it should 
inform the HA, and the HA notes the mobile host’s absence. During the absence it will 
behave as a proxy; in order to do so, it tells the local routers to cancel any cached records 
relating to the mobile host’s IP address. While it is acting as a proxy, the HA responds 
to ARP requests concerning the mobile host’s IP address, giving its own local network 
address as the network address of the mobile host. 

When the mobile host arrives at a new site, it informs the FA at that site. The FA 
allocates a ‘care-of address’ to it – a new, temporary IP address on the local subnet. The 
FA then contacts the HA, giving it the mobile host’s home IP address and the care-of 
address that has been allocated to it. 

Figure 3.20 illustrates the MobileIP routing mechanism. When an IP packet 
addressed to the mobile host’s home address is received at the home network, it is routed 
to the HA. The HA then encapsulates the IP packet in a MobileIP packet and sends it to 
the FA. The FA unpacks the original IP packet and delivers it to the mobile host via the 
local network to which it is currently attached. Note that the method by which the HA 
and the FA reroute the original packet to its intended recipient is an instance of the 
tunnelling technique described in Section 3.3.7.

The HA also sends the care-of address of the mobile host to the original sender. If 
the sender is MobileIP-enabled, it will note the new address and use it for subsequent 
communication with the mobile host, avoiding the overheads of rerouting via the HA. If 
it is not, then it will ignore the change of address and subsequent communication will 
continue to be rerouted via the HA.
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The MobileIP solution is effective, but hardly efficient. A solution that treats 
mobile hosts as first-class citizens would be preferable, allowing them to wander 
without giving prior notice and routing packets to them without any tunnelling or re-
routing. We should note that this apparently difficult feat is exactly what is achieved by 
the cellular phone network – mobile phones do not change their number as they move 
between cells, or even between countries. Instead, they simply notify the local cellular 
phone base station of their presence from time to time.

3.4.6 TCP and UDP

TCP and UDP provide the communication capabilities of the Internet in a form that is 
useful for application programs. Application developers might wish for other types of 
transport service, for example to provide real-time guarantees or security, but such 
services would generally require more support in the network layer than IPv4 provides. 
TCP and UDP can be viewed as a faithful reflection at the application programming 
level of the communication facilities that IPv4 has to offer. IPv6 is another story; it will 
certainly continue to support TCP and UDP, but it includes capabilities that cannot be 
conveniently accessed through TCP and UDP. It may be useful to introduce additional 
types of transport service to exploit them, once the deployment of IPv6 is sufficiently 
wide to justify their development.

Chapter 4 describes the characteristics of both TCP and UDP from the point of 
view of distributed program developers. Here we shall be quite brief, describing only the 
functionality that they add to IP.

Use of ports  •  The first characteristic to note is that, whereas IP supports 
communication between pairs of computers (identified by their IP addresses), TCP and 
UDP, as transport protocols, must provide process-to-process communication. This is 
accomplished by the use of ports. Port numbers are used for addressing messages to 
processes within a particular computer and are valid only within that computer. A port 
number is a 16-bit integer. Once an IP packet has been delivered to the destination host, 
the TCP- or UDP-layer software dispatches it to a process via a specific port at that host.

UDP features  •  UDP is almost a transport-level replica of IP. A UDP datagram is 
encapsulated inside an IP packet. It has a short header that includes the source and 
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destination port numbers (the corresponding host addresses are present in the IP header), 
a length field and a checksum. UDP offers no guarantee of delivery. We have already 
noted that IP packets may be dropped because of congestion or network error. UDP adds 
no additional reliability mechanisms except the checksum, which is optional. If the 
checksum field is non-zero, the receiving host computes a check value from the packet 
contents and compares it with the received checksum; packets for which they do not 
match are dropped. 

Thus UDP provides a means of transmitting messages of up to 64 kbytes in size 
(the maximum packet size permitted by IP) between pairs of processes (or from one 
process to several in the case of datagrams addressed to IP multicast addresses), with 
minimal additional costs or transmission delays above those due to IP transmission. It 
incurs no setup costs and it requires no administrative acknowledgement messages. But 
its use is restricted to those applications and services that do not require reliable delivery 
of single or multiple messages. 

TCP features  •  TCP provides a much more sophisticated transport service. It provides 
reliable delivery of arbitrarily long sequences of bytes via stream-based programming 
abstraction. The reliability guarantee entails the delivery to the receiving process of all 
of the data presented to the TCP software by the sending process, in the same order. TCP 
is connection-oriented. Before any data is transferred, the sending and receiving 
processes must cooperate in the establishment of a bidirectional communication 
channel. The connection is simply an end-to-end agreement to perform reliable data 
transmission; intermediate nodes such as routers have no knowledge of TCP 
connections, and the IP packets that transfer the data in a TCP transmission do not 
necessarily all follow the same route.

The TCP layer includes additional mechanisms (implemented over IP) to meet the 
reliability guarantees. These are:

Sequencing: A TCP sending process divides the stream into a sequence of data 
segments and transmits them as IP packets. A sequence number is attached to each 
TCP segment. It gives the byte number within the stream for the first byte of the 
segment. The receiver uses the sequence numbers to order the received segments 
before placing them in the input stream at the receiving process. No segment can be 
placed in the input stream until all lower-numbered segments have been received and 
placed in the stream, so segments that arrive out of order must be held in a buffer until 
their predecessors arrive.

Flow control: The sender takes care not to overwhelm the receiver or the intervening 
nodes. This is achieved by a system of segment acknowledgements. Whenever a 
receiver successfully receives a segment, it records its sequence number. From time 
to time the receiver sends an acknowledgement to the sender, giving the sequence 
number of the highest-numbered segment in its input stream together with a window 

size. If there is a reverse flow of data, acknowledgements are carried in the normal 
data segments; otherwise they travel in acknowledgement segments. The window 
size field in the acknowledgement segment specifies the quantity of data that the 
sender is permitted to send before the next acknowledgement.

When a TCP connection is used for communication with a remote interactive 
program, data may be produced in small quantities but in a very bursty manner. For 
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example, keyboard input may result in only a few characters per second, but the 
characters should be sent sufficiently quickly for the user to see the results of their 
typing. This is dealt with by setting a timeout T on local buffering – typically 0.5 
seconds. With this simple scheme, a segment is sent to the receiver whenever data 
has been waiting in the output buffer for T seconds, or the contents of the buffer reach 
the MTU limit. This buffering scheme cannot add more than T seconds to the 
interactive delay. Nagle has described another algorithm that produces less traffic 
and is more effective for some interactive applications [Nagle 1984]. Nagle’s 
algorithm is used in many TCP implementations. Most TCP implementations are 
configurable, allowing applications to change the value of T or to select one of 
several buffering algorithms.

Because of the unreliability of wireless networks and the resulting frequent loss 
of packets, these flow-control mechanisms are not particularly relevant for wireless 
communication. This is one of the reasons for the adoption of a different transport 
mechanism in the WAP family of protocols for wide area mobile communication. 
But the implementation of TCP for wireless networks is also important, and 
modifications to the TCP mechanism have been proposed for this purpose 
[Balakrishnan et al. 1995, 1996]. The idea is to implement a TCP support component 
at the wireless base station (the gateway between wired and wireless networks). The 
support component snoops on TCP segments to and from the wireless network, 
retransmitting any outbound segments that are not acknowledged rapidly by the 
mobile receiver and requesting retransmissions of inbound segments when gaps in 
the sequence numbers are noticed.

Retransmission: The sender records the sequence numbers of the segments that it 
sends. When it receives an acknowledgement it notes that the segments were 
successfully received, and it may then delete them from its outgoing buffers. If any 
segment is not acknowledged within a specified timeout, the sender retransmits it.

Buffering: The incoming buffer at the receiver is used to balance the flow between 
the sender and the receiver. If the receiving process issues receive operations more 
slowly than the sender issues send operations, the quantity of data in the buffer will 
grow. Usually it is extracted from the buffer before it becomes full, but ultimately the 
buffer may overflow, and when that happens incoming segments are simply dropped 
without recording their arrival. Their arrival is therefore not acknowledged and the 
sender is obliged to retransmit them.

Checksum: Each segment carries a checksum covering the header and the data in the 
segment. If a received segment does not match its checksum, the segment is dropped.

3.4.7 Domain names

The design and implementation of the Domain Name System (DNS) is described in 
detail in Chapter 13; we give a brief overview here to complete our discussion of the 
Internet protocols. The Internet supports a scheme for the use of symbolic names for 
hosts and networks, such as binkley.cs.mcgill.ca or essex.ac.uk. The named entities are 
organized into a naming hierarchy. The named entities are called domains and the 
symbolic names are called domain names. Domains are organized in a hierarchy that is 
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intended to reflect their organizational structure. The naming hierarchy is entirely 
independent of the physical layout of the networks that constitute the Internet. Domain 
names are convenient for human users, but they must be translated to Internet (IP) 
addresses before they can be used as communication identifiers. This is the 
responsibility of a specific service, the DNS. Application programs pass requests to the 
DNS to convert the domain names that users specify into Internet addresses.

The DNS is implemented as a server process that can be run on host computers 
anywhere in the Internet. There are at least two DNS servers in each domain, and often 
more. The servers in each domain hold a partial map of the domain name tree below their 
domain. They must hold at least the portion consisting of all of the domain and host 
names within their domain, but they often contain a larger portion of the tree. DNS 
servers handle requests for the translation of domain names outside their portion of the 
tree by issuing requests to DNS servers in the relevant domains, proceeding recursively 
from right to left, resolving the name in segments. The resulting translation is then 
cached at the server handling the original request so that future requests for the 
resolution of names referring to the same domain will be resolved without reference to 
other servers. The DNS would not be workable without the extensive use of caching, 
since the ‘root’ name servers would be consulted in almost every case, creating a service 
access bottleneck.

3.4.8 Firewalls

Almost all organizations need Internet connectivity in order to provide services to their 
customers and other external users and to enable their internal users to access 
information and services. The computers in most organizations are quite diverse, 
running a variety of operating systems and application software. The security of their 
software is even more varied; some of it may include state-of-the-art security, but much 
of it will have little or no capability to ensure that incoming communications can be 
trusted and outgoing communications are private when required. In summary, in an 
intranet with many computers and a wide range of software it is inevitable that some 
parts of the system will have weaknesses that expose it to security attacks. Forms of 
attack are detailed further in Chapter 11. 

The purpose of a firewall is to monitor and control all communication into and out 
of an intranet. A firewall is implemented by a set of processes that act as a gateway to 
an intranet (Figure 3.21a), applying a security policy determined by the organization.

The aims of a firewall security policy may include any or all of the following:

Service control: To determine which services on internal hosts are accessible for 
external access and to reject all other incoming service requests. Outgoing service 
requests and the responses to them may also be controlled. These filtering actions can 
be based on the contents of IP packets and the TCP and UDP requests that they 
contain. For example, incoming HTTP requests may be rejected unless they are 
directed to an official web server host.

Behaviour control: To prevent behaviour that infringes the organization’s policies, 
is antisocial or has no discernible legitimate purpose and is hence suspected of 
forming part of an attack. Some of these filtering actions may be applicable at the IP 
or TCP level, but others may require interpretation of messages at a higher level. For 
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example, filtering of email ‘spam’ attacks may require examination of the sender’s 
email address in message headers or even the message contents.

User control: The organization may wish to discriminate between its users, allowing 
some to access external services but inhibiting others from doing so. An example of 
user control that is perhaps more socially acceptable than some is to prevent the 
acknowledging of software except to users who are members of the system 
administration team, in order to prevent virus infection or to maintain software 
standards. This particular example would in fact be difficult to implement without 
inhibiting the use of the Web by ordinary users.

Another instance of user control is the management of dialup and other 
connections provided for offsite users. If the firewall is also the host for modem 
connections, it can authenticate the user at connection time and can require the use of 
a secure channel for all communication (to prevent eavesdropping, masquerading and 
other attacks on the external connection). That is the purpose of the virtual private 
network technology described in the next subsection.

The policy has to be expressed in terms of filtering operations that are performed by 
filtering processes operating at several different levels:
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IP packet filtering: This is a filter process examining individual IP packets. It may 
make decisions based on the destination and source addresses. It may also examine 
the service type field of IP packets and interpret the contents of the packets based on 
the type. For example, it may filter TCP packets based on the port number to which 
they are addressed, and since services are generally located at well-known ports, this 
enables packets to be filtered based on the service requested. For example, many sites 
prohibit the use of NFS servers by external clients. 

For performance reasons, IP filtering is usually performed by a process within 
the operating system kernel of a router. If multiple firewalls are used, the first may 
mark certain packets for more exhaustive examination by a later firewall, allowing 
‘clean’ packets to proceed. It is possible to filter based on sequences of IP packets, 
for example, to prevent access to an FTP server before a login has been performed.

TCP gateway: A TCP gateway process checks all TCP connection requests and 
segment transmissions. When a TCP gateway process is installed, the setting up of 
TCP connections can be controlled and TCP segments can be checked for correctness 
(some denial of service attacks use malformed TCP segments to disrupt client 
operating systems). When desired, they can be routed through an application-level 
gateway for content checking.

Application-level gateway: An application-level gateway process acts as a proxy for 
an application process. For example, a policy may be desired that allows certain 
internal users to make Telnet connections to certain external hosts. When a user runs 
a Telnet program on their local computer, it attempts to establish a TCP connection 
with a remote host. The request is intercepted by the TCP gateway. The TCP gateway 
starts a Telnet proxy process and the original TCP connection is routed to it. If the 
proxy approves the Telnet operation (i.e., if the user is authorized to use the requested 
host) it establishes another connection to the requested host and relays all of the TCP 
packets in both directions. A similar proxy process would run on behalf of each 
Telnet client, and similar proxies might be employed for FTP and other services.

A firewall is usually composed of several processes working at different protocol levels. 
It is common for firewall duties to be shared by more than one computer for performance 
and fault-tolerance reasons. In all of the configurations described below and illustrated 
in Figure 3.21, we show a public web and FTP server without protection. It holds only 
published information that requires no protection against public access, and its server 
software ensures that only authorized internal users can update it.

IP packet filtering is normally done by a router – a computer with at least two 
network addresses on separate IP networks – that runs an RIP process, an IP packet-
filtering process and as few other processes as possible. The router/filter must run only 
trusted software in a manner that enables its enforcement of filtering policies to be 
guaranteed. This involves ensuring that no Trojan horse processes can run on it and that 
the filtering and routing software have not been modified or tampered with. Figure 
3.21(a) shows a simple firewall configuration that relies only on IP filtering and employs 
a single router for that purpose. The network configuration in Figure 3.10 includes two 
router/filters acting as firewalls of this type for performance and reliability reasons. 
They both obey the same filtering policy and the second does not increase the security 
of the system.
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When TCP and application-level gateway processes are required, these usually 
run on a separate computer, which is known as a bastion. (The term originates from the 
construction of fortified castles; it is a protruding watchtower from which the castle may 
be defended or defenders may negotiate with those desiring entry.) A bastion computer 
is a host that is located inside the intranet protected by an IP router/filter and runs the 
TCP and application-level gateways (Figure 3.21b). Like the router/filter, the bastion 
must run only trusted software. In a well-secured intranet, proxies must be used for 
access to all outside services. Readers may be familiar with the use of proxies for web 
access. These are an instance of the use of firewall proxies; they are often constructed in 
a manner that integrates a web cache server (described in Chapter 2). This and other 
proxies are likely to require substantial processing and storage resources. 

Security can be enhanced by employing two router/filters in series, with the 
bastion and any public servers located on a separate subnet linking the router/filters 
(Figure 3.21c). This configuration has several security advantages:

• If the bastion policy is strict, the IP addresses of hosts in the intranet need not even 
be published to the outside world, and the addresses in the outside world need not 
be known to internal computers, since all external communication passes through 
proxy processes in the bastion, has access to both.

• If the first router/filter is penetrated or compromised, the second, which is 
invisible from outside the intranet and hence less vulnerable, remains to pick up 
and reject unacceptable IP packets.

Virtual private networks  •  Virtual private networks (VPNs) extend the firewall 
protection boundary beyond the local intranet by the use of cryptographically protected 
secure channels at the IP level. In Section 3.4.4, we outlined the IP security extensions 
available in IPv6 and IPv4 with IPSec tunnelling [Thayer 1998]. These are the basis for 
the implementation of VPNs. They may be used for individual external users or to 
implement secure connections between intranets located at different sites using public 
Internet links.

For example, a member of staff may need to connect to the organization’s intranet 
via an Internet service provider. Once connected, they should have the same capabilities 
as a user inside the firewall. This can be achieved if their local host implements IP 
security. The local host holds one or more cryptographic keys that it shares with the 
firewall, and these are used to establish a secure channel at connection time. Secure 
channel mechanisms are described in detail in Chapter 11.

3.5 Case studies: Ethernet, WiFi and Bluetooth

Up to this point we have discussed the principles involved in the construction of 
computer networks and we have described IP, the ‘virtual network layer’ of the Internet. 
To complete the chapter, we describe the principles and implementations of three actual 
networks.

In the early 1980s, the US Institute of Electrical and Electronic Engineers (IEEE) 
established a committee to specify a series of standards for local area networks (the 802 
Committee [IEEE 1990]), and its subcommittees have produced a series of 



Figure 3.22 IEEE 802 network standards 

IEEE no. Name Title Reference

802.3 Ethernet CSMA/CD Networks (Ethernet) [IEEE 1985a]
802.4 Token Bus Networks [IEEE 1985b]
802.5 Token Ring Networks [IEEE 1985c]
802.6 Metropolitan Area Networks [IEEE 1994]
802.11 WiFi Wireless Local Area Networks [IEEE 1999]
802.15.1 Bluetooth Wireless Personal Area Networks [IEEE 2002]
802.15.4 ZigBee Wireless Sensor Networks [IEEE 2003]
802.16 WiMAX Wireless Metropolitan Area Networks [IEEE 2004a]
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specifications that have become the key standards for LANs. In most cases, the 
standards are based on pre-existing industry standards that emerged from research done 
in the 1970s. The relevant subcommittees and the standards that they have been 
published to date are shown in Figure 3.22.

They differ in performance, efficiency, reliability and cost, but they all provide 
relatively high-bandwidth networking capabilities over short and medium distances. 
The IEEE 802.3 Ethernet standard has largely won the battle for the wired LAN 
marketplace, and we describe it in Section 3.5.1 as our representative wired LAN 
technology. Although Ethernet implementations are available for several bandwidths, 
the principles of operation are identical in all of them.

The IEEE 802.5 Token Ring standard was a significant competitor for much of 
the 1990s, offering advantages over Ethernet in terms of efficiency and its support for 
bandwidth guarantees, but it has now disappeared from the marketplace. Readers 
interested in a brief description of this interesting LAN technology can find one at 
www.cdk5.net/networking. The widespread use of Ethernet switches (as opposed to 
hubs) has enabled Ethernets to be configured in a manner that offers bandwidth and 
latency guarantees (as discussed further in Section 3.5.1, subsection Ethernet for real-

time and quality of service critical applications), and this is one reason for its 
displacement of token ring technology. 

The IEEE 802.4 Token Bus standard was developed for industrial applications 
with real-time requirements and is employed in that domain. The IEEE 802.6 
Metropolitan Area standard covers distances up to 50 km and is intended for use in 
networks that span towns and cities.

The IEEE 802.11 Wireless LAN standard emerged somewhat later but holds a 
major position in the marketplace with products from many vendors under the 
commercial name WiFi, and is installed in a large proportion of mobile and handheld 
computing devices. The IEEE 802.11 standard is designed to support communication at 
speeds up to 54 Mbps over distances of up to 150 m between devices equipped with 
simple wireless transmitter/receivers. We describe its principles of operation in Section 
3.5.2. Further details on IEEE 802.11 networks can be found in Crow et al. [1997] and 
Kurose and Ross [2007].

The IEEE 802.15.1 Wireless Personal Area Network standard (Bluetooth) was 
based on a technology first developed in 1999 by the Ericsson company to transport low-
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bandwidth digital voice and data between devices such as tablets, mobile phones and 
headsets and was subsequently standardized in 2002 as IEEE 802.15.1. Section 3.5.3
contains a description of Bluetooth. 

IEEE 802.15.4 (ZigBee) is another WPAN standard aimed at providing data 
communication for very low-bandwidth low-energy devices in the home such as remote 
controls, burglar alarm and heating system sensors, and ubiquitous devices such as 
active badges and tag readers. Such networks are termed wireless sensor networks and 
their applications and communication characteristics are discussed in Chapter 19. 

The IEEE 802.16 Wireless MAN standard (commercial name: WiMAX) was 
ratified in 2004 and 2005. The IEEE 802.16 standard is designed as an alternative to 
cable and DSL links for the ‘last mile’ connection to homes and offices. A variant of the 
standard is intended to supersede 802.11 WiFi networks as the main connection 
technology for laptop computers and mobile devices in outdoor and indoor public areas.

The ATM technology emerged from major research and standardization efforts in 
the telecommunications and computer industries in the late 1980s and early 1990s 
[CCITT 1990]. Its purpose is to provide a high-bandwidth wide area digital networking 
technology suitable for telephone, data and multimedia (high-quality audio and video) 
applications. Although the uptake has been slower than expected, ATM is now the 
dominant technology for very high speed wide area networking. It was also seen in some 
quarters as a replacement for Ethernet in LAN applications, but it has been less 
successful in that marketplace due to competition from 100 Mbps and 1000 Mbps 
Ethernets, which are available at much lower cost. Further details on ATM and on other 
high-speed network technologies can be found in Tanenbaum [2003] and Stallings 
[2002].

3.5.1 Ethernet 

The Ethernet was developed at the Xerox Palo Alto Research Center in 1973 [Metcalfe 
and Boggs 1976; Shoch et al. 1982, 1985] as part of the programme of research carried 
out there on personal workstations and distributed systems. The pilot Ethernet was the 
first high-speed local network, demonstrating the feasibility and usefulness of high-
speed local networks linking computers on a single site, allowing them to communicate 
at high transmission speeds with low error rates and without switching delays. The 
original prototype Ethernet ran at 3 Mbps. Ethernet systems are now available with 
bandwidths ranging from 10 Mbps to 1000 Mbps.

We shall describe the principles of operation of the 10 Mbps Ethernet specified in 
IEEE Standard 802.3 [IEEE 1985a]. This was the first widely deployed local area 
network technology. The 100 Mbps variant is now more commonly used; its principles 
of operation are identical. We conclude this section with a list of the more important 
variants of Ethernet transmission technology and bandwidth that are available. For 
comprehensive descriptions of the Ethernet in all its variations, see Spurgeon [2000].

A single Ethernet is a simple or branching bus-like connection line using a 
transmission medium consisting of one or more continuous segments of cable linked by 
hubs or repeaters. Hubs and repeaters are simple devices that link pieces of wire, 
enabling the same signals to pass through all of them. Several Ethernets can be linked at 
the Ethernet network protocol level by Ethernet switches or bridges. Switches and 
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bridges operate at the level of Ethernet frames, forwarding them to adjacent Ethernets 
when their destination is there. Linked Ethernets appear as a single network to higher 
protocol layers, such as IP (see Figure 3.10, where the IP subnets 138.37.88 and 
138.37.94 are each composed of several Ethernets linked by components marked 
Eswitch). In particular, the ARP protocol (Section 3.4.2) is able to resolve IP addresses 
to Ethernet addresses across linked sets of Ethernets; each ARP request is broadcast on 
all of the linked networks in a subnet.

The method of operation of Ethernets is defined by the phrase ‘carrier sensing, 
multiple access with collision detection’ (abbreviated: CSMA/CD) and they belong to 
the class of contention bus networks. Contention buses use a single transmission 
medium to link all of the hosts. The protocol that manages access to the medium is called 
a medium access control (MAC) protocol. Because a single link connects all hosts, the 
MAC protocol combines the functions of a data link layer protocol (responsible for the 
transmission of packets on communication links) and a network protocol (responsible 
for delivery of packets to hosts) in a single protocol layer.

Packet broadcasting  •  The method of communication in CSMA/CD networks is by 
broadcasting packets of data on the transmission medium. All stations are continuously 
‘listening' to the medium for packets that are addressed to them. Any station wishing to 
transmit a message broadcasts one or more packets (called frames in the Ethernet 
specification) on the medium. Each packet contains the address of the destination 
station, the address of the sending station and a variable-length sequence of bits 
representing the message to be transmitted. Data transmission proceeds at 10 Mbps (or 
at the higher speeds specified for 100 and 1000 Mbps Ethernets) and packets vary in 
length between 64 and 1518 bytes, so the time required to transmit a packet on a 10 
Mbps Ethernet is 50–1200 microseconds, depending on its length. The MTU is specified 
as 1518 bytes in the IEEE standard, although there is no technical reason for any 
particular fixed limit except the need to limit delays caused by contention.

The address of the destination station normally refers to a single network 
interface. Controller hardware at each station receives a copy of every packet. It 
compares the destination address in each packet with a wired-in local address, ignoring 
packets addressed to other stations and passing those with a matching address to the 
local host. The destination address may also specify a broadcast or a multicast address. 
Ordinary addresses are distinguished from broadcast and multicast addresses by their 
higher-order bit (0 and 1, respectively). An address consisting of all 1s is reserved for 
use as a broadcast address and is used when a message is to be received by all of the 
stations on the network. This is used, for example, to implement the ARP IP address 
resolution protocol. Any station that receives a packet with a broadcast address will pass 
it on to its local host. A multicast address specifies a limited form of broadcast that is 
received by a group of stations whose network interfaces have been configured to 
receive packets with that multicast address. Not all implementations of Ethernet network 
interfaces can recognize multicast addresses.

The Ethernet network protocol (providing for the transmission of Ethernet packets 
between pairs of hosts) is implemented in the Ethernet hardware interface; protocol 
software is required for the transport layer and those above it.
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Ethernet packet layout  •  The packets (or more correctly, frames) transmitted by stations 
on the Ethernet have the following layout:

bytes: 7 1 6 6 2 46 < length < 1500 4

Preamble S Destination 
address

Source
address

Length 
of data

Data for transmission Checksum

Apart from the destination and source addresses already mentioned, frames include a 
fixed 8-byte prefix, a length field, a data field and a checksum. The prefix is used for 
hardware timing purposes and consists of a preamble of 7 bytes, each containing the bit 
pattern 10101010 followed by a single-byte start frame delimiter (S in the diagram) with 
the pattern 10101011.

Despite the fact that the specification does not allow more than 1024 stations on a 
single Ethernet, addresses occupy 6 bytes, providing 248 different addresses. This 
enables every Ethernet hardware interface to be given a unique address by its 
manufacturer, ensuring that all of the stations in any interconnected set of Ethernets will 
have unique addresses. The US Institute of Electrical and Electronic Engineers (IEEE) 
acts as an allocation authority for Ethernet addresses, allocating separate ranges of 48-
bit addresses to the manufacturers of Ethernet hardware interfaces. These are referred to 
as MAC addresses, since they are used by the medium access control layer. In fact, 
MAC addresses allocated in this fashion have also been adopted as unique addresses for 
use in other network types in the IEEE 802 family, including 802.11 (WiFi) and 
802.15.1 (Bluetooth).

The data field contains all or part (if the message length exceeds 1500 bytes) of 
the message that is being transmitted. The lower bound of 46 bytes on the data field 
ensures a minimum packet length of 64 bytes, which is necessary in order to guarantee 
that collisions will be detected by all stations on the network, as explained below.

The frame check sequence is a checksum generated and inserted by the sender and 
used to validate packets by the receiver. Packets with incorrect checksums are simply 
dropped by the data link layer in the receiving station. This is another example of the 
application of the end-to-end argument: to guarantee the transmission of a message, a 
transport-layer protocol such as TCP, which acknowledges receipt of each packet and 
retransmits any unacknowledged packets, must be used. The incidence of data 
corruption in local networks is so small that the use of this method of recovery when 
guaranteed delivery is required is entirely satisfactory and it enables a less costly 
transport protocol such as UDP to be employed when there is no need for delivery 
guarantees.

Packet collisions  •  Even in the relatively short time that it takes to transmit packets 
there is a finite probability that two stations on the network will attempt to transmit 
messages simultaneously. If a station attempts to transmit a packet without checking 
whether the medium is in use by other stations, a collision may occur.

The Ethernet has three mechanisms to deal with this possibility. The first is called 
carrier sensing: the interface hardware in each station listens for the presence of a signal 
(known as the carrier by analogy with radio broadcasting) in the medium. When a 
station wishes to transmit a packet, it waits until no signal is present in the medium and 
then begins to transmit.
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Unfortunately, carrier sensing does not prevent all collisions. The possibility of 
collision remains due to the finite time  for a signal inserted at a point in the medium 
(travelling at electronic speed: approximately 2  108 metres per second) to reach all 
other points. Consider two stations A and B that are ready to transmit packets at almost 
the same time. If A begins to transmit first, B can check and find no signal in the medium 
at any time t <  after A has begun to transmit. B then begins to transmit, interfering with 
A’s transmission. Both A’s packet and B’s packet will be damaged by the interference.

The technique used to recover from such interference is called collision detection.
Whenever a station is transmitting a packet through its hardware output port, it also 
listens on its input port and the two signals are compared. If they differ, then a collision 
has occurred. When this happens the station stops transmitting and produces a jamming 

signal to ensure that all stations recognize the collision. As we have already noted, a 
minimum packet length is necessary to ensure that collisions are always detected. If two 
stations transmit approximately simultaneously from opposite ends of the network, they 
will not become aware of the collision for 2  seconds (because the first sender must be 
still transmitting when it receives the second signal). If the packets that they transmit 
take less than  to be broadcast, the collision will not be noticed, since each sending 
station would not see the other packet until after it has finished transmitting its own, 
whereas stations at intermediate points would receive both packets simultaneously, 
resulting in data corruption.

After the jamming signal, all transmitting and listening stations cancel the current 
packet. The transmitting stations then have to try to transmit their packets again. A 
further difficulty now arises. If the stations involved in the collision all attempt to 
retransmit their packets immediately after the jamming signal, another collision will 
probably occur. To avoid this, a technique known as back-off is used. Each of the 
stations involved in a collision chooses to wait a time n  before retransmitting. The value 
of n is a random integer chosen separately at each station and bounded by a constant L
defined in the network software. If a further collision occurs, the value of L is doubled 
and the process is repeated if necessary for up to 10 attempts.

Finally, the interface hardware at the receiving station computes the check 
sequence and compares it with the checksum transmitted in the packet. Using all of these 
techniques, the stations connected to the Ethernet are able to manage the use of the 
medium without any centralized control or synchronization.

Ethernet efficiency  •  The efficiency of an Ethernet is the ratio of the number of packets 
transmitted successfully as a proportion of the theoretical maximum number that could 
be transmitted without collisions. It is affected by the value of , since the interval of 2
seconds after a packet transmission starts is the ‘window of opportunity’ for collisions 
– no collision can occur later than 2  seconds after a packet starts to be transmitted. It is 
also affected by the number of stations on the network and their level of activity.

For a 1 km cable, the value of  is less than 5 microseconds and the probability of 
collisions is small enough to ensure high efficiency. The Ethernet can achieve a channel 
utilization of between 80 and 95%, although the delays due to contention become 
noticeable when 50% utilization is exceeded. Because the loading is variable, it is 
impossible to guarantee the delivery of a given message within any fixed time, since the 
network might be fully loaded when the message is ready for transmission. But the 
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probability of transferring the message with a given delay is as good as, or better than, 
that of other network technologies.

Empirical measurements of the performance of an Ethernet at Xerox PARC, 
reported by Shoch and Hupp [1980], confirm this analysis. In practice, the load on 
Ethernets used in distributed systems varies quite widely. Many networks are used 
primarily for asynchronous client-server interactions, and these operate for most of the 
time with no stations waiting to transmit. Their low level of contention results in a 
channel utilization close to 1. Networks that support bulk data access for large numbers 
of users experience more load, and those that carry multimedia streams are liable to be 
overwhelmed if more than a few streams are transmitted concurrently.

Physical implementations  •  The description above defines the MAC-layer protocol for 
all Ethernets. Widespread adoption across a large marketplace has resulted in the 
availability of very low-cost controller hardware to perform the algorithms required for 
its implementation, and this is included as a standard part of many desktop and consumer 
computers.

A wide range of physical Ethernet implementations have been based on it to offer 
a variety of performance and cost trade-offs and to exploit increased hardware 
performance. The variations result from the use of different transmission media – 
coaxial cable, twisted copper wire (similar to telephone wiring) and optical fibre – with 
differing limits on transmission range, and from the use of higher signalling speeds, 
resulting in greater system bandwidth and generally shorter transmission ranges. The 
IEEE has adopted a number of standards for physical-layer implementations, and a 
naming scheme is used to distinguish them. Names such as 10Base5 and 100BaseT are 
used. They have the following form: 

<R><B><L> Where: R = data rate in Mbps
B = medium signalling type (baseband or broadband)
L = maximum segment length in metres/100 or T 

(twisted pair cable hierarchy)

We tabulate the bandwidth and maximum range of various currently available standard 
configurations and cable types in 

Figure 3.23 Ethernet ranges and speeds  

10Base5 10BaseT 100BaseT 1000BaseT

Data rate 10 Mbps 10 Mbps 100 Mbps 1000 Mbps
Max. segment lengths:

Twisted wire (UTP) 100 m 100 m 100 m 25 m
Coaxial cable (STP) 500 m 500 m 500 m 25 m
Multi-mode fibre 2000 m 2000 m 500 m 500 m
Mono-mode fibre 25000 m 25000 m 20000 m 2000 m

Figure 3.23. Configurations ending with the T 
designation are implemented with UTP cabling – unshielded twisted wires (telephone 
wiring) – and this is organized as a hierarchy of hubs with computers as the leaves of the 
tree. In that case, the segment lengths given in our table are twice the maximum 
permissible distance from a computer to a hub.
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Ethernet for real-time and quality of service critical applications  •  It is often argued that 
the Ethernet MAC protocol is inherently unsuitable for real-time or quality of service 
critical applications because of its lack of a guaranteed delivery delay. But it should be 
noted that most Ethernet installations are now based on the use of MAC-level switches, 
as illustrated in Figure 3.10 and described in Section 3.3.7 (rather than hubs or cables 
with a tap for each connection, as was formerly the case). The use of switches 
throughout results in a separate segment for each host with no packets transmitted on it 
other than those addressed to that host. Hence if traffic to the host is from a single source, 
there is no contention for the medium – efficiency is 100% and latency is constant. The 
possibility of contention arises only at the switches, and these can be, and often are, 
designed to handle several packets concurrently. Hence a lightly loaded switched 
Ethernet installation approximates to 100% efficiency with a constant low latency, and 
they are therefore often successfully used in these critical application areas. 

A further step towards real-time support for Ethernet-style MAC protocols is 
described in [Rether; Pradhan and Chiueh 1998] and a similar scheme is implemented 
in an open-source Linux extension [RTnet]. These software approaches address the 
contention problem by implementing an application-level cooperative protocol to 
reserve timeslots for the use of the medium. This protocol depends upon the cooperation 
of all the hosts connected to a segment. 

3.5.2 IEEE 802.11 (WiFi) wireless LAN

In this section, we summarize the special characteristics of wireless networking that 
must be addressed by a wireless LAN technology and explain how IEEE 802.11 
addresses them. The IEEE 802.11 standard extends the carrier-sensing multiple access 
(CSMA) principle employed by Ethernet (IEEE 802.3) technology to suit the 
characteristics of wireless communication. The 802.11 standard is intended to support 
communication between computers located within about 150 metres of each other at 
speeds up to 54 Mbps. 

Figure 3.24 illustrates a portion of an intranet including a wireless LAN. Several 
mobile wireless devices communicate with the rest of the intranet through a base station 
that is an access point to the wired LAN. A wireless network that connects to the world 
through an access point to a conventional LAN is known as an infrastructure network.

An alternative configuration for wireless networking is known as an ad hoc 

network. Ad hoc networks do not include an access point or base station. They are built 
‘on the fly’ as a result of the mutual detection of two or more mobile devices with 
wireless interfaces in the same vicinity. An ad hoc network might occur, for example, 
when two or more laptop users in a room initiate a connection to any available station. 
They might then share files by launching a file server process on one of the machines.

At the physical level, IEEE 802.11 networks use radio frequency signals (in the 
licence-free 2.4 GHz and 5 GHz bands) or infrared signalling as the transmission 
medium. The radio version of the standard has received the most commercial attention, 
and we shall describe that. The IEEE 802.11b standard was the first variant to see 
widespread use. It operates in the 2.4 GHz band and supports data communication at up 
to 11 Mbps. It has been installed from 1999 onwards with base stations in many offices, 
homes and public places, enabling laptop computers and handheld devices to access 
local networked devices or the Internet. IEEE 802.11g is a more recent enhancement of 
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802.11b that uses the same 2.4 GHz band but a different signalling technique to achieve 
speeds up to 54 Mbps. Finally, the 802.11a variant works in the 5 GHz band and delivers 
a more certain 54 Mbps of bandwidth over a somewhat shorter range. All variants use 
various frequency-selection and frequency-hopping techniques to avoid external 
interference and mutual interference between independent wireless LANs, which we 
shall not detail here. We focus instead on the changes to the CSMA/CD mechanism that 
are needed in the MAC layer for all versions of 802.11 to enable broadcast data 
transmission to be used with radio transmission.

Figure 3.24 Wireless LAN configuration
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Like Ethernet, the 802.11 MAC protocol offers equal opportunities to all stations 
to use the transmission channel, and any station may transmit directly to any other. A 
MAC protocol controls the use of the channel by the various stations. As for the 
Ethernet, the MAC layer also performs the functions of both a data link layer and a 
network layer, delivering data packets to the hosts on a network.

Several problems arise from the use of radio waves rather than wires as the 
transmission medium. These problems stem from the fact that the carrier-sensing and 
collision-detection mechanisms employed in Ethernets are effective only when the 
strength of signals is approximately the same throughout a network. 

We recall that the purpose of carrier sensing is to determine whether the medium 
is free at all points between the sending and receiving stations, and that of collision 
detection is to determine whether the medium in the vicinity of the receiver is free from 
interference during the transmission. Because signal strength is not uniform throughout 
the space in which wireless LANs operate, carrier detection and collision detection may 
fail in the following ways:

Hidden stations: Carrier sensing may fail to detect that another station on the 
network is transmitting. This is illustrated in Figure 3.24. If tablet D is transmitting 
to the base station E, laptop A may not be able to sense D’s signal because of the radio 
obstruction shown. A might then start transmitting, causing a collision at E unless 
steps are taken to prevent this.
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Fading: Due to the inverse square law of electromagnetic wave propagation, the 
strength of radio signals diminishes rapidly with the distance from the transmitter. 
Stations within a wireless LAN may be out of range of other stations in the same 
LAN. Thus in Figure 3.24, laptop A may not be able to detect a transmission by C, 
although each of them can transmit successfully to B or E. Fading defeats both carrier 
sensing and collision detection.

Collision masking: Unfortunately, the ‘listening’ technique used in the Ethernet to 
detect collisions is not very effective in radio networks. Because of the inverse square 
law referred to above, the locally generated signal will always be much stronger than 
any signal originating elsewhere, effectively drowning out the remote transmission. 
So, laptops A and C might both transmit simultaneously to E and neither would detect 
that collision, but E would receive only a garbled transmission.

Despite its fallibility, carrier sensing is not dispensed with in IEEE 802.11 networks; 
rather, it is augmented by the addition of a slot reservation mechanism to the MAC 
protocol. The resulting scheme is called carrier sensing, multiple access with collision 

avoidance (CSMA/CA). 
When a station is ready to transmit, it senses the medium. If it detects no carrier 

signal it may assume that one of the following conditions is true:

1. The medium is available.

2. An out-of-range station is in the process of requesting a slot.

3. An out-of-range station is using a slot that it had previously reserved.

The slot-reservation protocol involves the exchange of a pair of short messages (frames) 
between the intending sender and the receiver. The first is a request to send (RTS) frame 
from the sender to the receiver. The RTS message specifies a duration for the slot 
requested. The receiver replies with a clear to send (CTS) frame, repeating the duration 
of the slot. The effect of this exchange is as follows:

• Stations within range of the sender will pick up the RTS frame and take note of 
the duration.

• Stations within range of the receiver will pick up the CTS frame and take note of 
the duration.

As a result, all of the stations within range of both the sender and the receiver will refrain 
from transmitting for the duration of the requested slot, leaving the channel free for the 
sender to transmit a data frame of the appropriate length. Finally, successful receipt of 
the data frame is acknowledged by the receiver to help deal with the problem of external 
interference with the channel. The slot-reservation feature of the MAC protocol helps to 
avoid collisions in these ways:

• The CTS frames help to avoid the hidden station and fading problems.

• The RTS and CTS frames are short, so the risk of collisions with them are low. If 
one is detected, or an RTS does not result in a CTS, a random back-off period is 
used, as in Ethernet. 
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• When the RTS and CTS frames have been correctly exchanged, there should be 
no collisions involving the subsequent data and acknowledgement frames unless 
intermittent fading prevented a third party from receiving either of them.

Security  •  The privacy and integrity of communication is an obvious concern for 
wireless networks. Any station that is within range and equipped with a 
receiver/transmitter might seek to join a network, or, failing that, it might eavesdrop on 
transmissions between other stations. The first attempt to address the security issues for 
802.11 is entitled Wired Equivalent Privacy (WEP). Unfortunately, WEP is anything but 
what its name implies. Its security design was flawed in several ways that enabled it to 
be broken fairly easily. We describe its weaknesses and summarize the Wi-Fi Protected 
Access (WPA) system that succeeded it in Section 11.6.4.

3.5.3 IEEE 802.15.1 Bluetooth wireless PAN 

Bluetooth is a wireless personal area network technology that emerged from the need to 
link mobile phones, laptop computers and other personal devices without wires. A 
special interest group (SIG) of mobile phone and computer manufacturers led by L.M. 
Ericsson developed a specification for a wireless personal area network (WPAN) for the 
transmission of digital voice streams as well as data [Haartsen et al. 1998]. Version 1.0 
of the Bluetooth standard was published in 1999, borrowing its name from a Viking 
king. We describe Version 1.1 here. It was published in 2002 resolving some problems. 
The IEEE 802.15 Working Group then adopted it as standard 802.15.1 and published a 
specification for the physical and data link layers [IEEE 2002].

Bluetooth networks differ substantially from IEEE 802.11 (WiFi), the only other 
widely adopted wireless networking standard, in ways that reflect the different 
application requirements of WPANs and the different cost and energy consumption 
targets for which they are designed. Bluetooth aims to support very small, low-cost 
devices such as ear-mounted wireless headsets receiving digital audio streams from a 
mobile phone as well as interconnections between computers, phones, tablets and other 
mobile devices. The cost target was to add only five dollars to the cost of a handheld 
device and the energy target to utilize only a small fraction of the total battery power 
used by a phone or tablet, enabling operation for several hours even with lightweight 
batteries used in wearable devices such as headsets.

The intended applications require less bandwidth and a shorter transmission range 
than typical wireless LAN applications. This is fortunate because Bluetooth operates in 
the same crowded 2.4 GHz licence-free frequency band as WiFi networks, cordless 
phones and many emergency service communication systems. Transmission is at low 
energy, hopping at a rate of 1600 times per second between 79 1 MHz sub-bands of the 
permitted frequency band to minimize the effects of interference. The output power of 
normal Bluetooth devices is 1 milliwatt, giving a coverage of only 10 metres; 100 
milliwatt devices with a range of up to 100 metres are permitted for applications such as 
home networks. Energy efficiency is further improved by the inclusion of an adaptive 

range facility, which adjusts the transmitted power to a lower level when partner devices 
are nearby (as determined by the strength of the signals initially received).

Bluetooth nodes associate dynamically in pairs with no prior knowledge required. 
The protocol for association is described below. After a successful association the 
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initiating node has the role of master and the other slave. A Piconet is a dynamically 
associated network composed of one master and up to seven active slaves. The master 
controls the use of the communication channel, allocating timeslots to each slave. A 
node that is in more than one Piconet can act as a bridge, enabling the masters to 
communicate – multiple Piconets linked in this fashion are termed a scatternet. Most 
types of device have the capacity to act as either master or slave.

All Bluetooth nodes are also equipped with a globally unique 48-bit MAC address 
(see Section 3.5.1), although it is only the master’s MAC address that is used in the 
protocol. When a slave becomes active in a Piconet, it is assigned a temporary local 
address in the range 1 to 7 to reduce the length of packet headers. In addition to the seven 
active slaves, a Piconet may contain up to 255 parked nodes in low-power mode 
awaiting an activation signal from the master. 

Association protocol  •  To conserve energy, devices remain in sleep or standby mode 
before any associations are made or when no recent communication has occurred. In 
standby mode they wake to listen for activation messages at intervals ranging from 0.64 
to 2.56 seconds. To associate with a known nearby node (parked), the initiating node 
transmits a train of 16 page packets, on 16 frequency sub-bands, which may have to be 
repeated several times. To contact any unknown node within range, the initiator must 
first broadcast a train of inquiry messages. These transmission trains can occupy up to 
about 5 seconds in the worst case, leading to a maximum association time of 7–10 
seconds.

Association is followed by an optional authentication exchange based on user-
supplied or previously received authentication tokens, to ensure that the association is 
with the intended node and not an imposter. A slave then remains synchronized to the 
master by observing regularly transmitted packets from the master, even when they are 
not addressed to the slave. A slave that is inactive can be placed in parked mode by the 
master, freeing its slot in the Piconet for use by another node. 

 The requirement to support synchronous communication channels with adequate 
quality of service for the transmission of two-way real-time audio (for example, between 
a phone and its owner’s wireless headset) as well as asynchronous communication for 
data exchange dictated a network architecture very different from the best-effort 
multiple-access design of Ethernet and WiFi networks. Synchronous communication is 
achieved by the use of a simple two-way communication protocol between a master and 
one of its slaves, termed a synchronous connection oriented (SCO) link on which master 
and slave must send alternating synchronized packets. Asynchronous communication is 
achieved by an asynchronous connection-less (ACL) link on which the master sends 
asynchronous poll packets to its slaves periodically and the slaves transmit only after 
receiving a poll. 

All variants of the Bluetooth protocol use frames that fit within the structure 
shown in Figure 3.25. Once a Piconet has been established, the access code consists of 
a fixed preamble to synchronize the sender and receiver and identify the start of a slot, 
followed by a code derived from the master’s MAC address that uniquely identifies the 
Piconet. The latter ensures that frames are correctly routed in situations where there are 
multiple overlapping Piconets. Because the medium is likely to be noisy and real-time 
communication cannot rely on retransmission, each bit in the header is transmitted in 
triplicate to provide redundancy for both the information and the checksum parts. 



Figure 3.25 Bluetooth frame structure
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The address field is just 3 bits to allow addressing to any of the seven currently 
active slaves. A zero address from the master indicates a broadcast. There are single-bit 
fields for flow control, acknowledgement and sequence numbering. The flow-control bit 
is used by a slave to indicate to the master that its buffers are full; the master should 
await a frame with a non-zero acknowledgement bit from the slave. The sequence 
number bit is inverted on each new frame sent to the same node; this enables duplicate 
(i.e., retransmitted) frames to be detected.

SCO links are used in time-critical applications such as the transmission of a two-
way voice conversation. Packets must be short to keep the latency low, and there is little 
purpose in reporting or retransmitting corrupted packets in such applications since the 
retransmitted data would arrive too late to be useful. So the SCO protocol uses a simple, 
highly redundant protocol in which 80 bits of voice data are normally transmitted in 
triplicate to produce a 240-bit payload. Any two matching 80-bit replicas are taken as 
valid. 

On the other hand, ACL links are used for data-transfer applications such as 
address book synchronization between a computer and a phone with a larger payload. 
The payload is not replicated but may contain an internal checksum that is checked at 
the application level, and in the case of failure retransmission can be requested.

Data is transmitted in packets occupying timeslots of 625 microseconds clocked 
and allocated by the master node. Each packet is transmitted on a different frequency in 
a hopping sequence defined by the master node. Because these slots are not large enough 
to allow a substantial payload, frames may be extended to occupy one, three or five slots. 
These characteristics and the underlying physical transmission method result in a 
maximum total throughput of 1 Mbps for a Piconet, accommodating up to three 
synchronous duplex channels of 64 Kpbs between a master and its slaves or a channel 
for asynchronous data transfer at rates up to 723 Kbps. These throughputs are calculated 
for the most redundant version of the SCO protocol, as described above. Other protocol 
variants are defined that trade the robustness and simplicity (and therefore low 
computational cost) of triplicated data for higher throughput.

Unlike most network standards, Bluetooth includes specifications (called profiles)
for several application-level protocols, some of which are very specific to particular 
applications. The purpose of these profiles is to increase the likelihood that devices 
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manufactured by different vendors will interwork. Thirteen application profiles are 
covered: generic access, service discovery, serial port, generic object exchange, LAN 
access, dialup networking, fax, cordless telephony, intercom, headset, object push, file 
transfer and synchronization. Others are in preparation, including ambitious attempts to 
transmit high-quality music and even video over Bluetooth.

Bluetooth occupies a special niche in the range of wireless local networks. It 
achieves its ambitious design goal of supporting synchronous real-time audio 
communication with satisfactory quality of service (see Chapter 20 for further 
discussion of quality of service issues) as well as asynchronous data transfer using very 
low cost, compact and portable hardware, low power and very limited bandwidth. 

Its principal limitation is the time taken (up to 10 seconds) for association of new 
devices. This impedes its use for certain applications, especially where devices are 
moving relative to each other, preventing its use, for example, to pay road tolls or to 
transmit promotional information to mobile phone users as they pass a store. A useful 
further reference on Bluetooth networking is the book by Bray and Sturman [2002].

Version 2.0 of the Bluetooth standard, with data throughputs up to 3 Mbps – 
sufficient to carry CD-quality audio – was released in 2004. Other improvements 
included a faster association mechanism and larger Piconet addresses. Versions 3 and 4 
of the standard were under development at the time of writing. Version 3 integrates a 
Bluetooth control protocol with a WiFi data transfer layer to achieve throughputs up to 
24 Mbps. Version 4 is under development as an ultra-low power Bluetooth technology 
for devices requiring a very long battery life.

3.6 Summary

We have focused here on the networking concepts and techniques that are needed as a 
basis for distributed systems, approaching them from the point of view of a distributed 
system designer. Packet networks and layered protocols provide the basis for 
communication in distributed systems. Local area networks are based on packet 
broadcasting on a shared medium; Ethernet is the dominant technology. Wide area 
networks are based on packet switching to route packets to their destinations through a 
connected network. Routing is a key mechanism and a variety of routing algorithms are 
used, of which the distance-vector method is the most basic but effective. Congestion 
control is needed to prevent overflow of buffers at the receiver and at intermediate 
nodes. 

Internetworks are constructed by layering a ‘virtual’ internetwork protocol over 
collections of networks linked together by routers. The Internet TCP/IP protocols enable 
computers in the Internet to communicate with one another in a uniform manner, 
irrespective of whether they are on the same local area network or in different countries. 
The Internet standards include many application-level protocols that are suitable for use 
in wide area distributed applications. IPv6 has the much larger address space needed for 
the future evolution of the Internet and provision for new application requirements such 
as quality of service and security.

Mobile users are supported by MobileIP for wide area roaming and by wireless 
LANs based on IEEE 802 standards for local connectivity.
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EXERCISES

3.1 A client sends a 200 byte request message to a service, which produces a response 
containing 5000 bytes. Estimate the total time required to complete the request in each 
of the following cases, with the performance assumptions listed below:

i) using connectionless (datagram) communication (for example, UDP);

ii) using connection-oriented communication (for example, TCP);

iii) when the server process is in the same machine as the client.

[Latency per packet (local or remote,
incurred on both send and receive): 5 ms
Connection setup time (TCP only): 5 ms
Data transfer rate: 10 Mbps
MTU: 1000 bytes
Server request processing time: 2 ms
Assume that the network is lightly loaded.]

pages 82, 122

3.2 The Internet is far too large for any router to hold routing information for all 
destinations. How does the Internet routing scheme deal with this issue? pages 98, 114

3.3 What is the task of an Ethernet switch? What tables does it maintain? pages 105, 130

3.4 Make a table similar to Figure 3.5 describing the work done by the software in each 
protocol layer when Internet applications and the TCP/IP suite are implemented over an 
Ethernet. pages 94, 122, 130

3.5 How has the end-to-end argument [Saltzer et al. 1984] been applied to the design of the 
Internet? Consider how the use of a virtual circuit network protocol in place of IP would 
impact the feasibility of the World Wide Web. pages 61, 96, 106, [www.reed.com]

3.6 Can we be sure that no two computers in the Internet have the same IP address?
page 108

3.7 Compare connectionless (UDP) and connection-oriented (TCP) communication for the 
implementation of each of the following application-level or presentation-level 
protocols:

i) virtual terminal access (for example, Telnet);

ii) file transfer (for example, FTP);

iii) user location (for example, rwho, finger);

iv) information browsing (for example, HTTP);

v) remote procedure call.
page 122

3.8 Explain how it is possible for a sequence of packets transmitted through a wide area 
network to arrive at their destination in an order that differs from that in which they were 
sent. Why can’t this happen in a local network?

pages 97, 131
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3.9 A specific problem that must be solved in remote terminal access protocols such as 
Telnet is the need to transmit exceptional events such as ‘kill signals’ from the ‘terminal’ 
to the host in advance of previousl transmitted data. Kill signals should reach their 
destination ahead of any other ongoing transmissions. Discuss the solution of this 
problem with connection-oriented and connectionless protocols. page 122

3.10 What are the disadvantages of using network-level broadcasting to locate resources:

i) in a single Ethernet?

ii) in an intranet? 

To what extent is Ethernet multicast an improvement on broadcasting? page 130

3.11 Suggest a scheme that improves on MobileIP for providing access to a web server on a 
mobile device that is sometimes connected to the Internet by the mobile phone network 
and at other times has a wired connection to the Internet at one of several locations.

page 120

3.12 Show the sequence of changes to the routing tables in Figure 3.8 that will occur 
(according to the RIP algorithm given in Figure 3.9) after the link labelled 3 in Figure 
3.7 is broken. pages 98–101

3.13 Use the diagram in Figure 3.13 as a basis for an illustration showing the segmentation 
and encapsulation of an HTTP request to a server and the resulting reply. Assume that 
the request is a short HTTP message, but the reply includes at least 2000 bytes of 
HTML.

page 93, 107

3.14 Consider the use of TCP in a Telnet remote terminal client. How should the keyboard 
input be buffered at the client? Investigate Nagle’s and Clark’s algorithms [Nagle 1984, 
Clark 1982] for flow control and compare them with the simple algorithm described on 
page 103 when TCP is used by:

a) a web server,

b) a Telnet application, 

c) a remote graphical application with continuous mouse input.
pages 102, 123

3.15 Construct a network diagram similar to Figure 3.10 for the local network at your 
institution or company. page 104

3.16 Describe how you would configure a firewall to protect the local network at your 
institution or company. What incoming and outgoing requests should it intercept?

page 125

3.17 How does a newly installed personal computer connected to an Ethernet discover the IP 
addresses of local servers? How does it translate them to Ethernet addresses? page 111

3.18 Can firewalls prevent denial of service attacks such as the one described on page 112?
What other methods are available to deal with such attacks? page 112, 125
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4

INTERPROCESS COMMUNICATION

4.1 Introduction
4.2 The API for the Internet protocols
4.3 External data representation and marshalling
4.4 Multicast communication
4.5 Network virtualization: Overlay networks
4.6 Case study: MPI
4.7 Summary

This chapter is concerned with the characteristics of protocols for communication 
between processes in a distributed system – that is, interprocess communication. 

Interprocess communication in the Internet provides both datagram and stream 
communication. The Java APIs for these are presented, together with a discussion of their 
failure models. They provide alternative building blocks for communication protocols. 
This is complemented by a study of protocols for the representation of collections of data 
objects in messages and of references to remote objects. Together, these services offer 
support for the construction of higher-level communication services, as discussed in the 
following two chapters.

The interprocess communication primitives discussed above all support point-to-
point communication, yet it is equally useful to be able to send a message from one sender 
to a group of receivers. The chapter also considers multicast communication, including 
IP multicast and the key concepts of reliability and ordering of messages in multicast 
communication.

Multicast is an important requirement for distributed applications and must be 
provided even if underlying support for IP multicast is not available. This is typically 
provided by an overlay network constructed on top of the underlying TCP/IP network. 
Overlay networks can also provide support for file sharing, enhanced reliability and 
content distribution. 

The Message Passing Interface (MPI) is a standard developed to provide an API for 
a set of message-passing operations with synchronous and asynchronous variants. 
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4.1 Introduction

This and the next two chapters are concerned with the communication aspects of 
middleware, although the principles discussed are more widely applicable. This one is 
concerned with the design of the components shown in the darker layer in Figure 4.1.
The layer above it is discussed in Chapter 5, which examines remote invocation, and 
Chapter 6, which is concerned with indirect communications paradigms.

Chapter 3 discussed the Internet transport-level protocols UDP and TCP without 
saying how middleware and application programs could use these protocols. The next 
section of this chapter introduces the characteristics of interprocess communication and 
then discusses UDP and TCP from a programmer’s point of view, presenting the Java 
interface to each of these two protocols, together with a discussion of their failure 
models

Figure 4.1  Middleware layers

Applications, services

Middleware
layers

Underlying interprocess communication primitives:

UDP and TCP
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Sockets, message passing, multicast support, overlay networks

.
The application program interface to UDP provides a message passing abstraction 

– the simplest form of interprocess communication. This enables a sending process to 
transmit a single message to a receiving process. The independent packets containing 
these messages are called datagrams. In the Java and UNIX APIs, the sender specifies 
the destination using a socket – an indirect reference to a particular port used by the 
destination process at a destination computer.

The application program interface to TCP provides the abstraction of a two-way 
stream between pairs of processes. The information communicated consists of a stream 
of data items with no message boundaries. Streams provide a building block for 
producer-consumer communication. A producer and a consumer form a pair of 
processes in which the role of the first is to produce data items and the role of the second 
is to consume them. The data items sent by the producer to the consumer are queued on 
arrival at the receiving host until the consumer is ready to receive them. The consumer 
must wait when no data items are available. The producer must wait if the storage used 
to hold the queued data items is exhausted.

Section 4.3 is concerned with how the objects and data structures used in 
application programs can be translated into a form suitable for sending messages over 
the network, taking into account the fact that different computers may use different 
representations for simple data items. It also discusses a suitable representation for 
object references in a distributed system.
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Section 4.4 discusses multicast communication: a form of interprocess 
communication in which one process in a group of processes transmits the same 
message to all members of the group. After explaining IP multicast, the section 
discusses the need for more reliable forms of multicast. 

Section 4.5 examines the increasingly important topic of overlay networks. An 
overlay network is a network that is built over another network to permit applications to 
route messages to destinations not specified by an IP address. Overlay networks can 
enhance TCP/IP networks by providing alternative, more specialized network services. 
They are important in supporting multicast communication and peer-to-peer 
communication.

Finally, Section 4.6 presents a case study of a significant message-passing service, 
MPI, developed by the high-performance computing community.

4.2 The API for the Internet protocols

In this section, we discuss the general characteristics of interprocess communication and 
then discuss the Internet protocols as an example, explaining how programmers can use 
them, either by means of UDP messages or through TCP streams. 

Section 4.2.1 revisits the message communication operations send and receive

introduced in Section 2.3.2, with a discussion of how they synchronize with one another 
and how message destinations are specified in a distributed system. Section 4.2.2
introduces sockets, which are used in the application programming interface to UDP and 
TCP. Section 4.2.3 discusses UDP and its API in Java. Section 4.2.4 discusses TCP and 
its API in Java. The APIs for Java are object oriented but are similar to the ones designed 
originally in the Berkeley BSD 4.x UNIX operating system; a case study on the latter is 
available on the web site for the book [www.cdk5.net/ipc]. Readers studying the 
programming examples in this section should consult the online Java documentation or 
Flanagan [2002] for the full specification of the classes discussed, which are in the 
package java.net.

4.2.1 The characteristics of interprocess communication 

Message passing between a pair of processes can be supported by two message 
communication operations, send and receive, defined in terms of destinations and 
messages. To communicate, one process sends a message (a sequence of bytes) to a 
destination and another process at the destination receives the message. This activity 
involves the communication of data from the sending process to the receiving process 
and may involve the synchronization of the two processes. Section 4.2.3 gives 
definitions for the send and receive operations in the Java API for the Internet protocols, 
with a further case study of message passing (MPI) offered in Section 4.6.

Synchronous and asynchronous communication  •  A queue is associated with each 
message destination. Sending processes cause messages to be added to remote queues and 
receiving processes remove messages from local queues. Communication between the 
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sending and receiving processes may be either synchronous or asynchronous. In the 
synchronous form of communication, the sending and receiving processes synchronize at 
every message. In this case, both send and receive are blocking operations. Whenever a 
send is issued the sending process (or thread) is blocked until the corresponding receive is 
issued. Whenever a receive is issued by a process (or thread), it blocks until a message 
arrives. 

In the asynchronous form of communication, the use of the send operation is non-

blocking in that the sending process is allowed to proceed as soon as the message has 
been copied to a local buffer, and the transmission of the message proceeds in parallel 
with the sending process. The receive operation can have blocking and non-blocking 
variants. In the non-blocking variant, the receiving process proceeds with its program 
after issuing a receive operation, which provides a buffer to be filled in the background, 
but it must separately receive notification that its buffer has been filled, by polling or 
interrupt. 

In a system environment such as Java, which supports multiple threads in a single 
process, the blocking receive has no disadvantages, for it can be issued by one thread 
while other threads in the process remain active, and the simplicity of synchronizing the 
receiving threads with the incoming message is a substantial advantage. Non-blocking 
communication appears to be more efficient, but it involves extra complexity in the 
receiving process associated with the need to acquire the incoming message out of its 
flow of control. For these reasons, today’s systems do not generally provide the non-
blocking form of receive.

Message destinations  •  Chapter 3 explains that in the Internet protocols, messages are 
sent to (Internet address, local port) pairs. A local port is a message destination within 
a computer, specified as an integer. A port has exactly one receiver (multicast ports are 
an exception, see Section 4.5.1) but can have many senders. Processes may use multiple 
ports to receive messages. Any process that knows the number of a port can send a 
message to it. Servers generally publicize their port numbers for use by clients.

If the client uses a fixed Internet address to refer to a service, then that service must 
always run on the same computer for its address to remain valid. This can be avoided by 
using the following approach to providing location transparency:

• Client programs refer to services by name and use a name server or binder (see 
Section 5.4.2) to translate their names into server locations at runtime. This allows 
services to be relocated but not to migrate – that is, to be moved while the system 
is running.

Reliability  •  Chapter 2 defines reliable communication in terms of validity and 
integrity. As far as the validity property is concerned, a point-to-point message service 
can be described as reliable if messages are guaranteed to be delivered despite a 
‘reasonable’ number of packets being dropped or lost. In contrast, a point-to-point 
message service can be described as unreliable if messages are not guaranteed to be 
delivered in the face of even a single packet dropped or lost. For integrity, messages 
must arrive uncorrupted and without duplication.

Ordering  •  Some applications require that messages be delivered in sender order – that 
is, the order in which they were transmitted by the sender. The delivery of messages out 
of sender order is regarded as a failure by such applications. 
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4.2.2 Sockets

Both forms of communication (UDP and TCP) use the socket abstraction, which 
provides an endpoint for communication between processes. Sockets originate from 
BSD UNIX but are also present in most other versions of UNIX, including Linux as well 
as Windows and the Macintosh OS. Interprocess communication consists of 
transmitting a message between a socket in one process and a socket in another process, 
as illustrated in 

Figure 4.2 Sockets and ports
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Figure 4.2. For a process to receive messages, its socket must be bound 
to a local port and one of the Internet addresses of the computer on which it runs. 
Messages sent to a particular Internet address and port number can be received only by 
a process whose socket is associated with that Internet address and port number. 
Processes may use the same socket for sending and receiving messages. Each computer 
has a large number (216) of possible port numbers for use by local processes for 
receiving messages. Any process may make use of multiple ports to receive messages, 
but a process cannot share ports with other processes on the same computer. (Processes 
using IP multicast are an exception in that they do share ports – see Section 4.4.1.)
However, any number of processes may send messages to the same port. Each socket is 
associated with a particular protocol – either UDP or TCP. 

Java API for Internet addresses  •  As the IP packets underlying UDP and TCP are sent 
to Internet addresses, Java provides a class, InetAddress, that represents Internet 
addresses. Users of this class refer to computers by Domain Name System (DNS) 
hostnames (see Section 3.4.7). For example, instances of InetAddress that contain 
Internet addresses can be created by calling a static method of InetAddress, giving a 
DNS hostname as the argument. The method uses the DNS to get the corresponding 
Internet address. For example, to get an object representing the Internet address of the 
host whose DNS name is bruno.dcs.qmul.ac.uk, use:

InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk");

This method can throw an UnknownHostException. Note that the user of the class does 
not need to state the explicit value of an Internet address. In fact, the class encapsulates 
the details of the representation of Internet addresses. Thus the interface for this class is 
not dependent on the number of bytes needed to represent Internet addresses – 4 bytes 
in IPv4 and 16 bytes in IPv6. 
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4.2.3 UDP datagram communication

A datagram sent by UDP is transmitted from a sending process to a receiving process 
without acknowledgement or retries. If a failure occurs, the message may not arrive. A 
datagram is transmitted between processes when one process sends it and another 
receives it. To send or receive messages a process must first create a socket bound to an 
Internet address of the local host and a local port. A server will bind its socket to a server 

port – one that it makes known to clients so that they can send messages to it. A client 
binds its socket to any free local port. The receive method returns the Internet address 
and port of the sender, in addition to the message, allowing the recipient to send a reply.

The following are some issues relating to datagram communication:
Message size: The receiving process needs to specify an array of bytes of a particular 
size in which to receive a message. If the message is too big for the array, it is 
truncated on arrival. The underlying IP protocol allows packet lengths of up to 216

bytes, which includes the headers as well as the message. However, most 
environments impose a size restriction of 8 kilobytes. Any application requiring 
messages larger than the maximum must fragment them into chunks of that size. 
Generally, an application, for example DNS, will decide on a size that is not 
excessively large but is adequate for its intended use. 
Blocking: Sockets normally provide non-blocking sends and blocking receives for 
datagram communication (a non-blocking receive is an option in some 
implementations). The send operation returns when it has handed the message to the 
underlying UDP and IP protocols, which are responsible for transmitting it to its 
destination. On arrival, the message is placed in a queue for the socket that is bound 
to the destination port. The message can be collected from the queue by an 
outstanding or future invocation of receive on that socket. Messages are discarded at 
the destination if no process already has a socket bound to the destination port. 

The method receive blocks until a datagram is received, unless a timeout has 
been set on the socket. If the process that invokes the receive method has other work 
to do while waiting for the message, it should arrange to use a separate thread. 
Threads are discussed in Chapter 7. For example, when a server receives a message 
from a client, the message may specify work to do, in which case the server will use 
separate threads to do the work and to wait for messages from other clients.

Timeouts: The receive that blocks forever is suitable for use by a server that is waiting 
to receive requests from its clients. But in some programs, it is not appropriate that a 
process that has invoked a receive operation should wait indefinitely in situations 
where the sending process may have crashed or the expected message may have been 
lost. To allow for such requirements, timeouts can be set on sockets. Choosing an 
appropriate timeout interval is difficult, but it should be fairly large in comparison 
with the time required to transmit a message. 

Receive from any: The receive method does not specify an origin for messages. 
Instead, an invocation of receive gets a message addressed to its socket from any 
origin. The receive method returns the Internet address and local port of the sender, 
allowing the recipient to check where the message came from. It is possible to 
connect a datagram socket to a particular remote port and Internet address, in which 
case the socket is only able to send messages to and receive messages from that 
address.
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Failure model for UDP datagrams  •  Chapter 2 presents a failure model for 
communication channels and defines reliable communication in terms of two properties: 
integrity and validity. The integrity property requires that messages should not be 
corrupted or duplicated. The use of a checksum ensures that there is a negligible 
probability that any message received is corrupted. UDP datagrams suffer from the 
following failures:

Omission failures: Messages may be dropped occasionally, either because of a 
checksum error or because no buffer space is available at the source or destination. 
To simplify the discussion, we regard send-omission and receive-omission failures 
(see Figure 2.15) as omission failures in the communication channel. 

Ordering: Messages can sometimes be delivered out of sender order.

Applications using UDP datagrams are left to provide their own checks to achieve the 
quality of reliable communication they require. A reliable delivery service may be 
constructed from one that suffers from omission failures by the use of 
acknowledgements. Section 5.2 discusses how reliable request-reply protocols for 
client-server communication may be built over UDP. 

Use of UDP  •  For some applications, it is acceptable to use a service that is liable to 
occasional omission failures. For example, the Domain Name System, which looks up 
DNS names in the Internet, is implemented over UDP. Voice over IP (VOIP) also runs 
over UDP. UDP datagrams are sometimes an attractive choice because they do not 
suffer from the overheads associated with guaranteed message delivery. There are three 
main sources of overhead: 

• the need to store state information at the source and destination;

• the transmission of extra messages; 

• latency for the sender. 

The reasons for these overheads are discussed in Section 4.2.4.

Java API for UDP datagrams  •   The Java API provides datagram communication by 
means of two classes: DatagramPacket and DatagramSocket.

DatagramPacket: This class provides a constructor that makes an instance out of an 
array of bytes comprising a message, the length of the message and the Internet 
address and local port number of the destination socket, as follows:

Datagram packet

array of bytes containing message length of message Internet address port number

An instance of DatagramPacket may be transmitted between processes when one 
process sends it and another receives it. 

This class provides another constructor for use when receiving a message. Its 
arguments specify an array of bytes in which to receive the message and the length 
of the array. A received message is put in the DatagramPacket together with its 
length and the Internet address and port of the sending socket. The message can be 
retrieved from the DatagramPacket by means of the method getData. The methods 
getPort and getAddress access the port and Internet address.



Figure 4.3 UDP client sends a message to the server and gets a reply

import java.net.*;

import java.io.*;

public class UDPClient{

    public static void main(String args[]){ 

// args give message contents and server hostname

DatagramSocket aSocket = null;

try {

aSocket = new DatagramSocket();    

byte [] m = args[0].getBytes();

InetAddress aHost = InetAddress.getByName(args[1]);

int serverPort = 6789;                                                 

DatagramPacket request =

 new DatagramPacket(m,  m.length(), aHost, serverPort);

aSocket.send(request);                        

byte[] buffer = new byte[1000];

DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

aSocket.receive(reply);

System.out.println("Reply: " + new String(reply.getData()));

  } catch (SocketException e){System.out.println("Socket: " + e.getMessage());

  } catch (IOException e){System.out.println("IO: " + e.getMessage());

  } finally { if(aSocket != null) aSocket.close();}   

    }

}
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DatagramSocket: This class supports sockets for sending and receiving UDP 
datagrams. It provides a constructor that takes a port number as its argument, for use 
by processes that need to use a particular port. It also provides a no-argument 
constructor that allows the system to choose a free local port. These constructors can 
throw a SocketException if the chosen port is already in use or if a reserved port (a 
number below 1024) is specified when running over UNIX.

The class DatagramSocket provides methods that include the following:

send and receive: These methods are for transmitting datagrams between a pair 
of sockets. The argument of send is an instance of DatagramPacket containing 
a message and its destination. The argument of receive is an empty 
DatagramPacket in which to put the message, its length and its origin. The 
methods send and receive can throw IOExceptions.

setSoTimeout: This method allows a timeout to be set. With a timeout set, the receive

method will block for the time specified and then throw an InterruptedIOException.

connect: This method is used for connecting to a particular remote port and 
Internet address, in which case the socket is only able to send messages to and 
receive messages from that address.



Figure 4.4 UDP server repeatedly receives a request and sends it back to the client

import java.net.*;

import java.io.*;

public class UDPServer{

    public static void main(String args[]){ 

DatagramSocket aSocket = null;

try{

aSocket = new DatagramSocket(6789);

byte[] buffer = new byte[1000];

 while(true){

     DatagramPacket request = new DatagramPacket(buffer, buffer.length);

    aSocket.receive(request);     

    DatagramPacket reply = new DatagramPacket(request.getData(), 

    request.getLength(), request.getAddress(), request.getPort());

    aSocket.send(reply);

}

} catch (SocketException e){System.out.println("Socket: " + e.getMessage());

} catch (IOException e) {System.out.println("IO: " + e.getMessage());

} finally {if (aSocket != null) aSocket.close();}

    }

}
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Figure 4.3 shows the program for a client that creates a socket, sends a message to a 
server at port 6789 and then waits to receive a reply. The arguments of the main method 
supply a message and the DNS hostname of the server. The message is converted to an 
array of bytes, and the DNS hostname is converted to an Internet address. Figure 4.4
shows the program for the corresponding server, which creates a socket bound to its 
server port (6789) and then repeatedly waits to receive a request message from a client, 
to which it replies by sending back the same message. 

4.2.4 TCP stream communication

The API to the TCP protocol, which originates from BSD 4.x UNIX, provides the 
abstraction of a stream of bytes to which data may be written and from which data may 
be read. The following characteristics of the network are hidden by the stream 
abstraction:

Message sizes: The application can choose how much data it writes to a stream or 
reads from it. It may deal in very small or very large sets of data. The underlying 
implementation of a TCP stream decides how much data to collect before 
transmitting it as one or more IP packets. On arrival, the data is handed to the 
application as requested. Applications can, if necessary, force data to be sent 
immediately.

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example 
of a simple scheme (which is not used in TCP), the sending end keeps a record of each 
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IP packet sent and the receiving end acknowledges all the arrivals. If the sender does 
not receive an acknowledgement within a timeout, it retransmits the message. The 
more sophisticated sliding window scheme [Comer 2006] cuts down on the number 
of acknowledgement messages required.

Flow control: The TCP protocol attempts to match the speeds of the processes that 
read from and write to a stream. If the writer is too fast for the reader, then it is 
blocked until the reader has consumed sufficient data. 

Message duplication and ordering: Message identifiers are associated with each IP 
packet, which enables the recipient to detect and reject duplicates, or to reorder 
messages that do not arrive in sender order.

Message destinations: A pair of communicating processes establish a connection 
before they can communicate over a stream. Once a connection is established, the 
processes simply read from and write to the stream without needing to use Internet 
addresses and ports. Establishing a connection involves a connect request from client 
to server followed by an accept request from server to client before any 
communication can take place. This could be a considerable overhead for a single 
client-server request and reply.

The API for stream communication assumes that when a pair of processes are 
establishing a connection, one of them plays the client role and the other plays the server 
role, but thereafter they could be peers. The client role involves creating a stream socket 
bound to any port and then making a connect request asking for a connection to a server 
at its server port. The server role involves creating a listening socket bound to a server 
port and waiting for clients to request connections. The listening socket maintains a 
queue of incoming connection requests. In the socket model, when the server accepts a 
connection, a new stream socket is created for the server to communicate with a client, 
meanwhile retaining its socket at the server port for listening for connect requests from 
other clients.

The pair of sockets in the client and server are connected by a pair of streams, one 
in each direction. Thus each socket has an input stream and an output stream. One of the 
pair of processes can send information to the other by writing to its output stream, and 
the other process obtains the information by reading from its input stream. 

 When an application closes a socket, this indicates that it will not write any more 
data to its output stream. Any data in the output buffer is sent to the other end of the 
stream and put in the queue at the destination socket, with an indication that the stream 
is broken. The process at the destination can read the data in the queue, but any further 
reads after the queue is empty will result in an indication of end of stream. When a 
process exits or fails, all of its sockets are eventually closed and any process attempting 
to communicate with it will discover that its connection has been broken. 

The following are some outstanding issues related to stream communication:

Matching of data items: Two communicating processes need to agree as to the 
contents of the data transmitted over a stream. For example, if one process writes an 
int followed by a double to a stream, then the reader at the other end must read an int

followed by a double. When a pair of processes do not cooperate correctly in their 
use of a stream, the reading process may experience errors when interpreting the data 
or may block due to insufficient data in the stream.
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Blocking: The data written to a stream is kept in a queue at the destination socket. 
When a process attempts to read data from an input channel, it will get data from the 
queue or it will block until data becomes available. The process that writes data to a 
stream may be blocked by the TCP flow-control mechanism if the socket at the other 
end is queuing as much data as the protocol allows. 

Threads: When a server accepts a connection, it generally creates a new thread in 
which to communicate with the new client. The advantage of using a separate thread 
for each client is that the server can block when waiting for input without delaying 
other clients. In an environment in which threads are not provided, an alternative is 
to test whether input is available from a stream before attempting to read it; for 
example, in a UNIX environment the select system call may be used for this purpose. 

Failure model  •  To satisfy the integrity property of reliable communication, TCP 
streams use checksums to detect and reject corrupt packets and sequence numbers to 
detect and reject duplicate packets. For the sake of the validity property, TCP streams 
use timeouts and retransmissions to deal with lost packets. Therefore, messages are 
guaranteed to be delivered even when some of the underlying packets are lost. 

But if the packet loss over a connection passes some limit or the network 
connecting a pair of communicating processes is severed or becomes severely 
congested, the TCP software responsible for sending messages will receive no 
acknowledgements and after a time will declare the connection to be broken. Thus TCP 
does not provide reliable communication, because it does not guarantee to deliver 
messages in the face of all possible difficulties.

 When a connection is broken, a process using it will be notified if it attempts to 
read or write. This has the following effects:

• The processes using the connection cannot distinguish between network failure 
and failure of the process at the other end of the connection.

• The communicating processes cannot tell whether the messages they have sent 
recently have been received or not.

Use of TCP  •  Many frequently used services run over TCP connections, with reserved 
port numbers. These include the following:

HTTP: The Hypertext Transfer Protocol is used for communication between web 
browsers and web servers; it is discussed in Section 5.2.

FTP: The File Transfer Protocol allows directories on a remote computer to be 
browsed and files to be transferred from one computer to another over a connection.

Telnet:  Telnet provides access by means of a terminal session to a remote computer.

SMTP: The Simple Mail Transfer Protocol is used to send mail between computers. 

Java API for TCP streams   •  The Java interface to TCP streams is provided in the classes 
ServerSocket and Socket:

ServerSocket: This class is intended for use by a server to create a socket at a server 
port for listening for connect requests from clients. Its accept method gets a connect

request from the queue or, if the queue is empty, blocks until one arrives. The result 
of executing accept is an instance of Socket – a socket to use for communicating with 
the client.
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Socket: This class is for use by a pair of processes with a connection. The client uses 
a constructor to create a socket, specifying the DNS hostname and port of a server. 
This constructor not only creates a socket associated with a local port but also 
connects it to the specified remote computer and port number. It can throw an 
UnknownHostException if the hostname is wrong or an IOException if an IO error 
occurs.

The Socket class provides the methods getInputStream and getOutputStream

for accessing the two streams associated with a socket. The return types of these 
methods are InputStream and OutputStream, respectively – abstract classes that 
define methods for reading and writing bytes. The return values can be used as the 
arguments of constructors for suitable input and output streams. Our example uses 
DataInputStream and DataOutputStream, which allow binary representations of 
primitive data types to be read and written in a machine-independent manner. 

Figure 4.5

Figure 4.5  TCP client makes connection to server, sends request and receives reply

import java.net.*;

import java.io.*;

public class TCPClient {

public static void main (String args[]) {

    // arguments supply message and hostname of destination

    Socket s = null;

    try{

int serverPort = 7896;

s = new Socket(args[1], serverPort);    

DataInputStream in = new DataInputStream( s.getInputStream());

DataOutputStream out =

new DataOutputStream( s.getOutputStream());

out.writeUTF(args[0]);        // UTF is a string encoding; see Sec 4.3

String data = in.readUTF();      

System.out.println("Received: "+ data) ;      

    }catch (UnknownHostException e){

System.out.println("Sock:"+e.getMessage()); 

    } catch (EOFException e){System.out.println("EOF:"+e.getMessage());

    } catch (IOException e){System.out.println("IO:"+e.getMessage());

    } finally {if(s!=null) try {s.close();}catch (IOException e){/*close failed*/}}

}

}

 shows a client program in which the arguments of the main method supply a 
message and the DNS hostname of the server. The client creates a socket bound to the 
hostname and server port 7896. It makes a DataInputStream and a DataOutputStream

from the socket’s input and output streams, then writes the message to its output stream 
and waits to read a reply from its input stream. The server program in Figure 4.6 opens 
a server socket on its server port (7896) and listens for connect requests. When one 
arrives, it makes a new thread in which to communicate with the client. The new thread 



Figure 4.6 TCP server makes a connection for each client and then echoes the client’s request

import java.net.*;

import java.io.*;

public class TCPServer {

public static void main (String args[]) {

    try{

int serverPort = 7896; 

ServerSocket listenSocket = new ServerSocket(serverPort);

while(true) {

    Socket clientSocket = listenSocket.accept();

    Connection c = new Connection(clientSocket);

}

    } catch(IOException e) {System.out.println("Listen :"+e.getMessage());}

}

    }

class Connection extends Thread {

DataInputStream in;

DataOutputStream out;

Socket clientSocket;

public Connection (Socket aClientSocket) {

    try {

clientSocket = aClientSocket;

in = new DataInputStream( clientSocket.getInputStream());

out =new DataOutputStream( clientSocket.getOutputStream());

this.start();

    } catch(IOException e) {System.out.println("Connection:"+e.getMessage());}

}

public void run(){

    try {                  // an echo server

String data = in.readUTF(); 

out.writeUTF(data);

    } catch(EOFException e) {System.out.println("EOF:"+e.getMessage());

    } catch(IOException e) {System.out.println("IO:"+e.getMessage());

    } finally { try {clientSocket.close();}catch (IOException e){/*close failed*/}}

}

}
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creates a DataInputStream and a DataOutputStream from its socket’s input and output 
streams and then waits to read a message and write the same one back.

As our message consists of a string, the client and server processes use the method 
writeUTF of DataOutputStream to write it to the output stream and the method 
readUTF of DataInputStream to read it from the input stream. UTF-8 is an encoding that 
represents strings in a particular format, which is described in Section 4.3.
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When a process has closed its socket, it will no longer be able to use its input and 
output streams. The process to which it has sent data can read the data in its queue, but 
any further reads after the queue is empty will result in an EOFException. Attempts to 
use a closed socket or to write to a broken stream result in an IOException.

4.3 External data representation and marshalling

The information stored in running programs is represented as data structures – for 
example, by sets of interconnected objects – whereas the information in messages 
consists of sequences of bytes. Irrespective of the form of communication used, the data 
structures must be flattened (converted to a sequence of bytes) before transmission and 
rebuilt on arrival. The individual primitive data items transmitted in messages can be 
data values of many different types, and not all computers store primitive values such as 
integers in the same order. The representation of floating-point numbers also differs 
between architectures. There are two variants for the ordering of integers: the so-called 
big-endian order, in which the most significant byte comes first; and little-endian order, 
in which it comes last. Another issue is the set of codes used to represent characters: for 
example, the majority of applications on systems such as UNIX use ASCII character 
coding, taking one byte per character, whereas the Unicode standard allows for the 
representation of texts in many different languages and takes two bytes per character. 

One of the following methods can be used to enable any two computers to 
exchange binary data values:

• The values are converted to an agreed external format before transmission and 
converted to the local form on receipt; if the two computers are known to be the 
same type, the conversion to external format can be omitted.

• The values are transmitted in the sender’s format, together with an indication of 
the format used, and the recipient converts the values if necessary. 

Note, however, that bytes themselves are never altered during transmission. To support 
RMI or RPC, any data type that can be passed as an argument or returned as a result must 
be able to be flattened and the individual primitive data values represented in an agreed 
format. An agreed standard for the representation of data structures and primitive values 
is called an external data representation.

Marshalling is the process of taking a collection of data items and assembling 
them into a form suitable for transmission in a message. Unmarshalling is the process 
of disassembling them on arrival to produce an equivalent collection of data items at the 
destination. Thus marshalling consists of the translation of structured data items and 
primitive values into an external data representation. Similarly, unmarshalling consists 
of the generation of primitive values from their external data representation and the 
rebuilding of the data structures. 

Three alternative approaches to external data representation and marshalling are 
discussed (with a fourth considered in Chapter 21, when we examine Google’s approach 
to representing structured data):
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• CORBA’s common data representation, which is concerned with an external 
representation for the structured and primitive types that can be passed as the 
arguments and results of remote method invocations in CORBA. It can be used by 
a variety of programming languages (see Chapter 8). 

• Java’s object serialization, which is concerned with the flattening and external 
data representation of any single object or tree of objects that may need to be 
transmitted in a message or stored on a disk. It is for use only by Java.

• XML (Extensible Markup Language), which defines a textual fomat for 
representing structured data. It was originally intended for documents containing 
textual self-describing structured data – for example documents accessible on the 
Web – but it is now also used to represent the data sent in messages exchanged by 
clients and servers in web services (see Chapter 9).

In the first two cases, the marshalling and unmarshalling activities are intended to be 
carried out by a middleware layer without any involvement on the part of the application 
programmer. Even in the case of XML, which is textual and therefore more accessible 
to hand-encoding, software for marshalling and unmarshalling is available for all 
commonly used platforms and programming environments. Because marshalling 
requires the consideration of all the finest details of the representation of the primitive 
components of composite objects, the process is likely to be error-prone if carried out 
by hand. Compactness is another issue that can be addressed in the design of 
automatically generated marshalling procedures.

In the first two approaches, the primitive data types are marshalled into a binary 
form. In the third approach (XML), the primitive data types are represented textually. 
The textual representation of a data value will generally be longer than the equivalent 
binary representation. The HTTP protocol, which is described in Chapter 5, is another 
example of the textual approach.

Another issue with regard to the design of marshalling methods is whether the 
marshalled data should include information concerning the type of its contents. For 
example, CORBA’s representation includes just the values of the objects transmitted, 
and nothing about their types. On the other hand, both Java serialization and XML do 
include type information, but in different ways. Java puts all of the required type 
information into the serialized form, but XML documents may refer to externally 
defined sets of names (with types) called namespaces.

Although we are interested in the use of an external data representation for the 
arguments and results of RMIs and RPCs, it does have a more general use for 
representing data structures, objects or structured documents in a form suitable for 
transmission in messages or storing in files.

Two other techniques for external data representation are worthy of mention. 
Google uses an approach called protocol buffers to capture representations of both 
stored and transmitted data, which we examine in Section 20.4.1. There is also 
considerable interest in JSON (JavaScript Object Notation) as an approach to external 
data representation [www.json.org]. Protocol buffers and JSON represent a step towards 
more lightweight approaches to data representation (when compared, for example, to 
XML).
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4.3.1 CORBA’s Common Data Representation (CDR)

CORBA CDR is the external data representation defined with CORBA 2.0 [OMG 
2004a]. CDR can represent all of the data types that can be used as arguments and return 
values in remote invocations in CORBA. These consist of 15 primitive types, which 
include short (16-bit), long (32-bit), unsigned short, unsigned long, float (32-bit), 
double (64-bit), char, boolean (TRUE, FALSE), octet (8-bit), and any (which can 
represent any basic or constructed type); together with a range of composite types, 
which are described in Figure 4.7. Each argument or result in a remote invocation is 
represented by a sequence of bytes in the invocation or result message

Figure 4.7 CORBA CDR for constructed types

Type Representation

sequence length (unsigned long) followed by elements in order

string length (unsigned long) followed by characters in order (can also  
have wide characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of the components

enumerated unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

.

Primitive types: CDR defines a representation for both big-endian and little-endian 
orderings. Values are transmitted in the sender’s ordering, which is specified in each 
message. The recipient translates if it requires a different ordering. For example, a 
16-bit short occupies two bytes in the message, and for big-endian ordering, the most 
significant bits occupy the first byte and the least significant bits occupy the second 
byte. Each primitive value is placed at an index in the sequence of bytes according to 
its size. Suppose that the sequence of bytes is indexed from zero upwards. Then a 
primitive value of size n bytes (where n = 1, 2, 4 or 8) is appended to the sequence at 
an index that is a multiple of n in the stream of bytes. Floating-point values follow 
the IEEE standard, in which the sign, exponent and fractional part are in bytes 0–n

for big-endian ordering and the other way round for little-endian. Characters are 
represented by a code set agreed between client and server. 

Constructed types: The primitive values that comprise each constructed type are 
added to a sequence of bytes in a particular order, as shown in Figure 4.7.

Figure 4.8 shows a message in CORBA CDR that contains the three fields of a struct

whose respective types are string, string and unsigned long. The figure shows the 
sequence of bytes with four bytes in each row. The representation of each string consists 
of an unsigned long representing its length followed by the characters in the string. For 
simplicity, we assume that each character occupies just one byte. Variable-length data 
is padded with zeros so that it has a standard form, enabling marshalled data or its 
checksum to be compared. Note that each unsigned long, which occupies four bytes, 
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starts at an index that is a multiple of four. The figure does not distinguish between the 
big- and little-endian orderings. Although the example in Figure 4.8 is simple, CORBA 
CDR can represent any data structure that can be composed from the primitive and 
constructed types, but without using pointers. 

Another example of an external data representation is the Sun XDR standard, 
which is specified in RFC 1832 [Srinivasan 1995b] and described in www.cdk5.net/ipc.
It was developed by Sun for use in the messages exchanged between clients and servers 
in Sun NFS (see Chapter 13). 

The type of a data item is not given with the data representation in the message in 
either the CORBA CDR or the Sun XDR standard. This is because it is assumed that the 
sender and recipient have common knowledge of the order and types of the data items 
in a message. In particular, for RMI or RPC, each method invocation passes arguments 
of particular types, and the result is a value of a particular type.

Figure 4.8 CORBA CDR message

index in 

sequence of bytes

notes 

on representation

0–3  5 length of string

4–7 "Smit" ‘Smith’

8–11 "h___"

12–15  6 length of string

16–19 "Lond" ‘London’

20–23 "on__"

24–27  1984 unsigned long

4 bytes

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1984}

Marshalling in CORBA  •  Marshalling operations can be generated automatically from 
the specification of the types of data items to be transmitted in a message. The types of 
the data structures and the types of the basic data items are described in CORBA IDL 
(see Section 8.3.1), which provides a notation for describing the types of the arguments 
and results of RMI methods. For example, we might use CORBA IDL to describe the 
data structure in the message in Figure 4.8 as follows:

struct Person{

string name;

string place;

unsigned long year;

};

The CORBA interface compiler (see Chapter 5) generates appropriate marshalling and 
unmarshalling operations for the arguments and results of remote methods from the 
definitions of the types of their parameters and results.
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4.3.2 Java object serialization

In Java RMI, both objects and primitive data values may be passed as arguments and 
results of method invocations. An object is an instance of a Java class. For example, the 
Java class equivalent to the Person struct defined in CORBA IDL might be:

public class Person implements Serializable {

private String name; 

private String place;

private int year;

 public Person(String aName, String aPlace, int aYear) {

name = aName;

place = aPlace;

year = aYear;

    }

// followed by methods for accessing the instance variables 

}

The above class states that it implements the Serializable interface, which has no 
methods. Stating that a class implements the Serializable interface (which is provided in 
the java.io package) has the effect of allowing its instances to be serialized. 

In Java, the term serialization refers to the activity of flattening an object or a 
connected set of objects into a serial form that is suitable for storing on disk or 
transmitting in a message, for example, as an argument or the result of an RMI. 
Deserialization consists of restoring the state of an object or a set of objects from their 
serialized form. It is assumed that the process that does the deserialization has no prior 
knowledge of the types of the objects in the serialized form. Therefore some information 
about the class of each object is included in the serialized form. This information enables 
the recipient to load the appropriate class when an object is deserialized. 

The information about a class consists of the name of the class and a version 
number. The version number is intended to change when major changes are made to the 
class. It can be set by the programmer or calculated automatically as a hash of the name 
of the class and its instance variables, methods and interfaces. The process that 
deserializes an object can check that it has the correct version of the class. 

Java objects can contain references to other objects. When an object is serialized, 
all the objects that it references are serialized together with it to ensure that when the 
object is reconstructed, all of its references can be fulfilled at the destination. References 
are serialized as handles. In this case, the handle is a reference to an object within the 
serialized form – for example, the next number in a sequence of positive integers. The 
serialization procedure must ensure that there is a 1–1 correspondence between object 
references and handles. It must also ensure that each object is written once only – on the 
second or subsequent occurrence of an object, the handle is written instead of the object. 

To serialize an object, its class information is written out, followed by the types 
and names of its instance variables. If the instance variables belong to new classes, then 
their class information must also be written out, followed by the types and names of their 
instance variables. This recursive procedure continues until the class information and 
types and names of the instance variables of all of the necessary classes have been 
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written out. Each class is given a handle, and no class is written more than once to the 
stream of bytes (the handles being written instead where necessary).

The contents of the instance variables that are primitive types, such as integers, 
chars, booleans, bytes and longs, are written in a portable binary format using methods 
of the ObjectOutputStream class. Strings and characters are written by its writeUTF

method using the  Universal Transfer Format (UTF-8), which enables ASCII characters 
to be represented unchanged (in one byte), whereas Unicode characters are represented 
by multiple bytes. Strings are preceded by the number of bytes they occupy in the 
stream.

As an example, consider the serialization of the following object:

 Person p = new Person("Smith", "London", 1984);

Figure 4.9 Indication of Java serialized form

Serialized values Explanation

Person  8-byte version number h0 class name, version number 

3  int year java.lang.String
name 

java.lang.String
place

number, type and name of 

instance variables 

1984 5 Smith 6 London h1 values of instance variables

The true serialized form contains additional type markers; h0 and h1 are handles.

The serialized form is illustrated in Figure 4.9, which omits the values of the handles and 
of the type markers that indicate the objects, classes, strings and other objects in the full 
serialized form. The first instance variable (1984) is an integer that has a fixed length; 
the second and third instance variables are strings and are preceded by their lengths. 

To make use of Java serialization, for example to serialize the Person object, 
create an instance of the class ObjectOutputStream and invoke its writeObject method, 
passing the Person object as its argument. To deserialize an object from a stream of data, 
open an ObjectInputStream on the stream and use its readObject method to reconstruct 
the original object. The use of this pair of classes is similar to the use of 
DataOutputStream and DataInputStream, illustrated in Figures 4.5 and 4.6.

Serialization and deserialization of the arguments and results of remote 
invocations are generally carried out automatically by the middleware, without any 
participation by the application programmer. If necessary, programmers with special 
requirements may write their own version of the methods that read and write objects. To 
find out how to do this and to get further information about serialization in Java, read 
the tutorial on object serialization [java.sun.com II]. Another way in which a 
programmer may modify the effects of serialization is by declaring variables that should 
not be serialized as transient. Examples of things that should not be serialized are 
references to local resources such as files and sockets. 

The use of reflection  •  The Java language supports reflection – the ability to enquire 
about the properties of a class, such as the names and types of its instance variables and 
methods. It also enables classes to be created from their names, and a constructor with 
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given argument types to be created for a given class. Reflection makes it possible to do 
serialization and deserialization in a completely generic manner. This means that there 
is no need to generate special marshalling functions for each type of object, as described 
above for CORBA. To find out more about reflection, see Flanagan [2002].

Java object serialization uses reflection to find out the class name of the object to 
be serialized and the names, types and values of its instance variables. That is all that is 
needed for the serialized form. 

For deserialization, the class name in the serialized form is used to create a class. 
This is then used to create a new constructor with argument types corresponding to those 
specified in the serialized form. Finally, the new constructor is used to create a new 
object with instance variables whose values are read from the serialized form.

4.3.3 Extensible Markup Language (XML)

XML is a markup language that was defined by the World Wide Web Consortium 
(W3C) for general use on the Web. In general, the term markup language refers to a 
textual encoding that represents both a text and details as to its structure or its 
appearance. Both XML and HTML were derived from SGML (Standardized 
Generalized Markup Language) [ISO 8879], a very complex markup language. HTML 
(see Section 1.6) was designed for defining the appearance of web pages. XML was 
designed for writing structured documents for the Web. 

XML data items are tagged with ‘markup’ strings. The tags are used to describe 
the logical structure of the data and to associate attribute-value pairs with logical 
structures. That is, in XML, the tags relate to the structure of the text that they enclose, 
in contrast to HTML, in which the tags specify how a browser could display the text. For 
a specification of XML, see the pages on XML provided by W3C [www.w3.org VI].

XML is used to enable clients to communicate with web services and for defining 
the interfaces and other properties of web services. However, XML is also used in many 
other ways, including in archiving and retrieval systems – although an XML archive 
may be larger than a binary one, it has the advantage of being readable on any computer. 
Other examples of uses of XML include for the specification of user interfaces and the 
encoding of configuration files in operating systems. 

XML is extensible in the sense that users can define their own tags, in contrast to 
HTML, which uses a fixed set of tags. However, if an XML document is intended to be 
used by more than one application, then the names of the tags must be agreed between 
them. For example, clients usually use SOAP messages to communicate with web 
services. SOAP (see Section 9.2.1) is an XML format whose tags are published for use 
by web services and their clients.

Some external data representations (such as CORBA CDR) do not need to be self-
describing, because it is assumed that the client and server exchanging a message have 
prior knowledge of the order and the types of the information it contains. However, 
XML was intended to be used by multiple applications for different purposes. The 
provision of tags, together with the use of namespaces to define the meaning of the tags, 
has made this possible. In addition, the use of tags enables applications to select just 
those parts of a document it needs to process: it will not be affected by the addition of 
information relevant to other applications.
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XML documents, being textual, can be read by humans. In practice, most XML 
documents are generated and read by XML processing software, but the ability to read 
XML can be useful when things go wrong. In addition, the use of text makes XML 
independent of any particular platform. The use of a textual rather than a binary 
representation, together with the use of tags, makes the messages large, so they require 
longer processing and transmission times, as well as more space to store. A comparison 
of the efficiency of messages using the SOAP XML format and CORBA CDR is given 
in Section 9.2.4. However, files and messages can be compressed – HTTP version 1.1 
allows data to be compressed, which saves bandwidth during transmission.

XML elements and attributes  •  Figure 4.10 shows the XML definition of the Person

structure that was used to illustrate marshalling in CORBA CDR and Java. 

Figure 4.10  XML definition of the Person structure

<person id="123456789">

<name>Smith</name>

<place>London</place>

<year>1984</year>

<!-- a comment -->

</person >

It shows that 
XML consists of tags and character data. The character data, for example Smith or 1984,
is the actual data. As in HTML, the structure of an XML document is defined by pairs 
of tags enclosed in angle brackets. In Figure 4.10, <name> and <place> are both tags. 
As in HTML, layout can generally be used to improve readability. Comments in XML 
are denoted in the same way as those in HTML.

Elements: An element in XML consists of a portion of character data surrounded by 
matching start and end tags. For example, one of the elements in Figure 4.10 consists of 
the data Smith contained within the <name> ... </name> tag pair. Note that the element 
with the <name> tag is enclosed in the element with the <person id="123456789"> ... 
</person > tag pair. The ability of an element to enclose another element allows 
hierarchic data to be represented – a very important aspect of XML. An empty tag has 
no content and is terminated with /> instead of >. For example, the empty tag 
<european/> could be included within the <person> ...</person> tag. 

Attributes: A start tag may optionally include pairs of associated attribute names and 
values such as id="123456789", as shown above. The syntax is the same as for HTML, 
in which an attribute name is followed by an equal sign and an attribute value in quotes. 
Multiple attribute values are separated by spaces. 

It is a matter of choice as to which items are represented as elements and which 
ones as attributes. An element is generally a container for data, whereas an attribute is 
used for labelling that data. In our example, 123456789 might be an identifier used by 
the application, whereas name, place and year might be displayed. Also, if data contains 
substructures or several lines, it must be defined as an element. Attributes are for simple 
values.
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Names: The names of tags and attributes in XML generally start with a letter, but can 
also start with an underline or a colon. The names continue with letters, digits, hyphens, 
underscores, colons or full stops. Letters are case-sensitive. Names that start with xml

are reserved. 

Binary data: All of the information in XML elements must be expressed as character 
data. But the question is: how do we represent encrypted elements or secure hashes – 
both of which, as we shall see in Section 9.5 are used in XML security? The answer is 
that they can be represented in base64 notation [Freed and Borenstein 1996], which uses 
only the alphanumeric characters together with +, / and =,  which has a special meaning. 

Parsing and well-formed documents  •  An XML document must be well formed – that 
is, it must conform to rules about its structure. A basic rule is that every start tag has a 
matching end tag. Another basic rule is that all tags are correctly nested – for example, 
<x>..<y>..</y>..</x> is correct, whereas <x>..<y>..</x>..</y> is not. Finally, every 
XML document must have a single root element that encloses all the other elements. 
These rules make it very simple to implement parsers for XML documents. When a 
parser reads an XML document that is not well formed, it will report a fatal error.

CDATA: XML parsers normally parse the contents of elements because they may contain 
further nested structures. If text needs to contain an angle bracket or a quote, it may be 
represented in a special way: for example, &lt represents the opening angle bracket. 
However, if a section should not be parsed – for example, because it contains special 
characters – it can be denoted as CDATA. For example, if a place name is to include an 
apostrophe, then it could be specified in either of the two following ways:

<place> King&apos Cross </place >

<place> <![CDATA [King's Cross]]></place >

XML prolog: Every XML document must have a prolog as its first line. The prolog must 
at least specify the version of XML in use (which is currently 1.0). For example:

<?XML version = "1.0" encoding = "UTF-8" standalone = "yes"?>

The prolog may specify the encoding (UTF-8 is the default and was explained in Section 
4.3.2). The term encoding refers to the set of codes used to represent characters – ASCII 
being the best-known example. Note that in the XML prolog, ASCII is specified as us-

ascii. Other possible encodings include ISO-8859-1 (or Latin-1) – an 8-bit encoding 
whose first 128 values are ASCII, with the rest being used to represent the characters in 
Western European languages – and various other 8-bit encodings for representing other 
alphabets, for example, Greek or Cyrillic.

An additional attribute may be used to state whether the document stands alone or 
is dependent on external definitions. 

XML namespaces   •  Traditionally, namespaces provide a means for scoping names. An 
XML namespace is a set of names for a collection of element types and attributes that is 
referenced by a URL. Any other XML document can use an XML namespace by 
referring to its URL. 

Any element that makes use of an XML namespace can specify that namespace as 
an attribute called xmlns, whose value is a URL referring to the file containing the 
namespace definitions. For example:

    xmlns:pers = "http://www.cdk5.net/person"



Figure 4.11  Illustration of the use of a namespace in the Person structure

<person pers:id="123456789" xmlns:pers = "http://www.cdk5.net/person">

<pers:name> Smith </pers:name>

<pers:place> London </pers:place >

<pers:year> 1984 </pers:year>

</person>
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The name after xmlns, in this case pers can be used as a prefix to refer to the elements 
in a particular namespace, as shown in Figure 4.11. The pers prefix is bound to 
http://www.cdk4.net/person for the person element. A namespace applies within the 
context of the enclosing pair of start and end tags unless overridden by an enclosed 
namespace declaration. An XML document may be defined in terms of several different 
namespaces, each of which is referenced by a unique prefix.

The namespace convention allows an application to make use of multiple sets of 
external definitions in different namespaces without the risk of name clashes.

Figure 4.12 An XML schema for the Person structure

<xsd:schema  xmlns:xsd = URL of XML schema definitions >
<xsd:element name= "person" type ="personType" />

<xsd:complexType name="personType">

<xsd:sequence>

<xsd:element name = "name"  type="xs:string"/> 

<xsd:element name = "place"  type="xs:string"/> 

<xsd:element name = "year"  type="xs:positiveInteger"/> 

</xsd:sequence>

<xsd:attribute name= "id"   type = "xs:positiveInteger"/>

</xsd:complexType>

</xsd:schema>

XML schemas  •  An XML schema [www.w3.org VIII] defines the elements and 
attributes that can appear in a document, how the elements are nested and the order and 
number of elements, and whether an element is empty or can include text. For each 
element, it defines the type and default value. Figure 4.12 gives an example of a schema 
that defines the data types and structure of the XML definition of the person structure in 
Figure 4.10.

The intention is that a single schema definition may be shared by many different 
documents. An XML document that is defined to conform to a particular schema may 
also be validated by means of that schema. For example, the sender of a SOAP message 
may use an XML schema to encode it, and the recipient will use the same XML schema 
to validate and decode it.
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Document type definitions: Document type definitions (DTDs) [www.w3.org VI] were 
provided as a part of the XML 1.0 specification for defining the structure of XML 
documents and are still widely used for that purpose. The syntax of DTDs is different 
from the rest of XML and it is quite limited in what it can specify; for example, it cannot 
describe data types and its definitions are global, preventing element names from being 
duplicated. DTDs are not used for defining web services, although they may still be used 
to define documents that are transmitted by web services. 

APIs for accessing XML  •  XML parsers and generators are available for most 
commonly used programming languages. For example, there is Java software for 
writing out Java objects as XML (marshalling) and for creating Java objects from such 
structures (unmarshalling). Similar software is available in Python for Python data types 
and objects.

4.3.4  Remote object references

This section applies only to languages such as Java and CORBA that support the 
distributed object model. It is not relevant to XML. 

When a client invokes a method in a remote object, an invocation message is sent 
to the server process that hosts the remote object. This message needs to specify which 
particular object is to have its method invoked. A remote object reference is an identifier 
for a remote object that is valid throughout a distributed system. A remote object 
reference is passed in the invocation message to specify which object is to be invoked. 
Chapter 5 explains that remote object references are also passed as arguments and 
returned as results of remote method invocations, that each remote object has a single 
remote object reference and that remote object references can be compared to see 
whether they refer to the same remote object. Here, we discuss the external 
representation of remote object references. 

 Remote object references must be generated in a manner that ensures uniqueness 
over space and time. In general, there may be many processes hosting remote objects, 
so remote object references must be unique among all of the processes in the various 
computers in a distributed system. Even after the remote object associated with a given 
remote object reference is deleted, it is important that the remote object reference is not 
reused, because its potential invokers may retain obsolete remote object references. Any 
attempt to invoke a deleted object should produce an error rather than allow access to a 
different object.

There are several ways to ensure that a remote object reference is unique. One way 
is to construct a remote object reference by concatenating the Internet address of its host 
computer and the port number of the process that created it with the time of its creation 
and a local object number. The local object number is incremented each time an object 
is created in that process. 

The port number and time together produce a unique process identifier on that 
computer. With this approach, remote object references might be represented with a 
format such as that shown in Figure 4.13. In the simplest implementations of RMI, 
remote objects live only in the process that created them and survive only as long as that 
process continues to run. In such cases, the remote object reference can be used as the 
address of the remote object. In other words, invocation messages are sent to the Internet 
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address in the remote reference and to the process on that computer using the given port 
number. 

Figure 4.13 Representation of a remote object reference

32 bits 32 bits 32 bits 32 bits

Internet address  port number time object number interface of 
remote object

To allow remote objects to be relocated into a different process on a different 
computer, the remote object reference should not be used as the address of the remote 
object. Section 8.3.3 discusses a form of remote object reference that allows objects to 
be activated in different servers throughout its lifetime. 

The peer-to-peer overlay systems described in Chapter 10 use a form of remote 
object reference that is completely independent of location. Messages are routed to 
resources by means of a distributed routing algorithm. 

The last field of the remote object reference shown in Figure 4.13 contains some 
information about the interface of the remote object, for example, the interface name. 
This information is relevant to any process that receives a remote object reference as an 
argument or as the result of a remote invocation, because it needs to know about the 
methods offered by the remote object. This point is explained again in Section 5.4.2.

4.4 Multicast communication

The pairwise exchange of messages is not the best model for communication from one 
process to a group of other processes, which may be necessary, for example, when a 
service is implemented as a number of different processes in different computers, 
perhaps to provide fault tolerance or to enhance availability. A multicast operation is 
more appropriate – this is an operation that sends a single message from one process to 
each of the members of a group of processes, usually in such a way that the membership 
of the group is transparent to the sender. There is a range of possibilities in the desired 
behaviour of a multicast. The simplest multicast protocol provides no guarantees about 
message delivery or ordering. 

Multicast messages provide a useful infrastructure for constructing distributed 
systems with the following characteristics:

1. Fault tolerance based on replicated services: A replicated service consists of a 
group of servers. Client requests are multicast to all the members of the group, 
each of which performs an identical operation. Even when some of the members 
fail, clients can still be served. 

2. Discovering services in spontaneous networking: Section 1.3.2 defines service 
discovery in the context of spontaneous networking. Multicast messages can be 
used by servers and clients to locate available discovery services in order to 
register their interfaces or to look up the interfaces of other services in the 
distributed system. 
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3. Better performance through replicated data: Data are replicated to increase the 
performance of a service – in some cases replicas of the data are placed in users’ 
computers. Each time the data changes, the new value is multicast to the processes 
managing the replicas. 

4. Propagation of event notifications: Multicast to a group may be used to notify 
processes when something happens. For example, in Facebook, when someone 
changes their status, all their friends receive notifications. Similarly, publish-
subscribe protocols may make use of group multicast to disseminate events to 
subscribers (see Chapter 6).

In this section introduce IP multicast and then review the needs of the above uses of 
group communication to see which of them can be satisfied by IP multicast. For those 
that cannot, we propose some further properties for group communication protocols in 
addition to those provided by IP multicast.

4.4.1 IP multicast – An implementation of multicast communication

This section discusses IP multicast and presents Java’s API to it via the MulticastSocket

class.

IP multicast  •  IP multicast is built on top of the Internet Protocol (IP). Note that IP 
packets are addressed to computers – ports belong to the TCP and UDP levels. IP 
multicast allows the sender to transmit a single IP packet to a set of computers that form 
a multicast group. The sender is unaware of the identities of the individual recipients and 
of the size of the group. A multicast group is specified by a Class D Internet address (see 
Figure 3.15) – that is, an address whose first 4 bits are 1110 in IPv4.

Being a member of a multicast group allows a computer to receive IP packets sent 
to the group. The membership of multicast groups is dynamic, allowing computers to 
join or leave at any time and to join an arbitrary number of groups. It is possible to send 
datagrams to a multicast group without being a member.

At the application programming level, IP multicast is available only via UDP. An 
application program performs multicasts by sending UDP datagrams with multicast 
addresses and ordinary port numbers. It can join a multicast group by making its socket 
join the group, enabling it to receive messages to the group. At the IP level, a computer 
belongs to a multicast group when one or more of its processes has sockets that belong 
to that group. When a multicast message arrives at a computer, copies are forwarded to 
all of the local sockets that have joined the specified multicast address and are bound to 
the specified port number. The following details are specific to IPv4:

Multicast routers: IP packets can be multicast both on a local network and on the 
wider Internet. Local multicasts use the multicast capability of the local network, for 
example, of an Ethernet. Internet multicasts make use of multicast routers, which 
forward single datagrams to routers on other networks, where they are again 
multicast to local members. To limit the distance of propagation of a multicast 
datagram, the sender can specify the number of routers it is allowed to pass – called 
the time to live, or TTL for short. To understand how routers know which other 
routers have members of a multicast group, see Comer [2007].
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Multicast address allocation: As discussed in Chapter 3, Class D addresses (that is, 
addresses in the range 224.0.0.0 to 239.255.255.255) are reserved for multicast traffic 
and managed globally by the Internet Assigned Numbers Authority (IANA). The 
management of this address space is reviewed annually, with current practice 
documented in RPC 3171 [Albanna et al. 2001]. This document defines a partitioning 
of this address space into a number of blocks, including:

• Local Network Control Block (224.0.0.0 to 224.0.0.225), for multicast traffic 
within a given local network. 

• Internet Control Block (224.0.1.0 to 224.0.1.225). 

• Ad Hoc Control Block (224.0.2.0 to 224.0.255.0), for traffic that does not fit 
any other block. 

• Administratively Scoped Block (239.0.0.0 to 239.255.255.255), which is used 
to implement a scoping mechanism for multicast traffic (to constrain 
propagation).

Multicast addresses may be permanent or temporary. Permanent groups exist even 
when there are no members – their addresses are assigned by IANA and span the 
various blocks mentioned above. For example, 224.0.1.1 in the Internet block is 
reserved for the Network Time Protocol (NTP), as discussed in Chapter 14, and the 
range 224.0.6.000 to 224.0.6.127 in the ad hoc block is reserved for the ISIS project 
(see Chapters 6 and 18). Addresses are reserved for a variety of purposes, from 
specific Internet protocols to given organizations that make heavy use of multicast 
traffic, including multimedia broadcasters and financial institutions. A full list of 
reserved addresses can be seen on the IANA web site [www.iana.org II].

The remainder of the multicast addresses are available for use by temporary 
groups, which must be created before use and cease to exist when all the members 
have left. When a temporary group is created, it requires a free multicast address to 
avoid accidental participation in an existing group. The IP multicast protocol does not 
directly address this issue. If used locally, relatively simple solutions are possible – 
for example setting the TTL to a small value, making collisions with other groups 
unlikely. However, programs using IP multicast throughout the Internet require a 
more sophisticated solution to this problem. RFC 2908 [Thaler et al. 2000] describes 
a multicast address allocation architecture (MALLOC) for Internet-wide 
applications, that allocates unique addresses for a given period of time and in a given 
scope. As such, the proposal is intrinsically bound with the scoping mechanisms 
mentioned above. A client-server solution is adopted whereby clients request a 
multicast address from a multicast address allocation server (MAAS), which must 
then communicate across domains to ensure allocations are unique for the given 
lifetime and scope.

Failure model for multicast datagrams  •  Datagrams multicast over IP multicast have the 
same failure characteristics as UDP datagrams – that is, they suffer from omission 
failures. The effect on a multicast is that messages are not guaranteed to be delivered to 
any particular group member in the face of even a single omission failure. That is, some 
but not all of the members of the group may receive it. This can be called unreliable

multicast, because it does not guarantee that a message will be delivered to any member 
of a group. Reliable multicast is discussed in Chapter 15.
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Java API to IP multicast  •  The Java API provides a datagram interface to IP multicast 
through the class MulticastSocket, which is a subclass of DatagramSocket with the 
additional capability of being able to join multicast groups. The class MulticastSocket

provides two alternative constructors, allowing sockets to be created to use either a 
specified local port (6789, in Figure 4.14

Figure 4.14 Multicast peer joins a group and sends and receives datagrams

import java.net.*;

import java.io.*;

public class MulticastPeer{

public static void main(String args[]){ 

    // args give message contents & destination multicast group (e.g. "228.5.6.7")

    MulticastSocket s =null;

    try {

InetAddress group = InetAddress.getByName(args[1]);

s = new MulticastSocket(6789);

s.joinGroup(group);

byte [] m = args[0].getBytes();

DatagramPacket messageOut = 

new DatagramPacket(m, m.length, group, 6789);

s.send(messageOut);

byte[] buffer = new byte[1000];

 for(int i=0; i< 3; i++) {    // get messages from others in group

 DatagramPacket messageIn = 

new DatagramPacket(buffer, buffer.length);

 s.receive(messageIn);

 System.out.println("Received:" + new String(messageIn.getData()));

}

s.leaveGroup(group);

    } catch (SocketException e){System.out.println("Socket: " + e.getMessage());

    } catch (IOException e){System.out.println("IO: " + e.getMessage());

    } finally { if(s != null) s.close();}

  }

}

) or any free local port. A process can join a 
multicast group with a given multicast address by invoking the joinGroup method of its 
multicast socket. Effectively, the socket joins a multicast group at a given port and it will 
receive datagrams sent by processes on other computers to that group at that port. A 
process can leave a specified group by invoking the leaveGroup method of its multicast 
socket.

In the example in Figure 4.14, the arguments to the main method specify a 
message to be multicast and the multicast address of a group (for example, "228.5.6.7"). 

After joining that multicast group, the process makes an instance of DatagramPacket

containing the message and sends it through its multicast socket to the multicast group 
address at port 6789. After that, it attempts to receive three multicast messages from its 
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peers via its socket, which also belongs to the group on the same port. When several 
instances of this program are run simultaneously on different computers, all of them join 
the same group, and each of them should receive its own message and the messages from 
those that joined after it. 

The Java API allows the TTL to be set for a multicast socket by means of the 
setTimeToLive method. The default is 1, allowing the multicast to propagate only on the 
local network. 

An application implemented over IP multicast may use more than one port. For 
example, the MultiTalk [mbone] application, which allows groups of users to hold text-
based conversations, has one port for sending and receiving data and another for 
exchanging control data.

4.4.2 Reliability and ordering of multicast

The previous section stated the failure model for IP multicast, which suffers from 
omission failures. A datagram sent from one multicast router to another may be lost, thus 
preventing all recipients beyond that router from receiving the message. Also, when a 
multicast on a local area network uses the multicasting capabilities of the network to 
allow a single datagram to arrive at multiple recipients, any one of those recipients may 
drop the message because its buffer is full. 

Another factor is that any process may fail. If a multicast router fails, the group 
members beyond that router will not receive the multicast message, although local 
members may do so.

Ordering is another issue. IP packets sent over an internetwork do not necessarily 
arrive in the order in which they were sent, with the possible effect that some group 
members receive datagrams from a single sender in a different order from other group 
members. In addition, messages sent by two different processes will not necessarily 
arrive in the same order at all the members of the group. 

Some examples of the effects of reliability and ordering  •  We now consider the effect of 
the failure semantics of IP multicast on the four examples of the use of replication in the 
introduction to Section 4.4.

1. Fault tolerance based on replicated services: Consider a replicated service that 
consists of the members of a group of servers that start in the same initial state and 
always perform the same operations in the same order, so as to remain consistent 
with one another. This application of multicast requires that either all of the 
replicas or none of them should receive each request to perform an operation – if 
one of them misses a request, it will become inconsistent with the others. In most 
cases, this service would require that all members receive request messages in the 
same order as one another. 

3. Discovering services in spontaneous networking: One way for a process to 
discover services in spontaneous networking is to multicast requests at periodic 
intervals, and for the available services to listen for those multicasts and respond. 
An occasional lost request is not an issue when discovering services. In fact, Jini 
uses IP multicast in its protocol for discovering services. This is described in 
Section 19.2.1.
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3. Better performance through replicated data: Consider the case where the 
replicated data itself, rather than operations on the data, are distributed by means 
of multicast messages. The effect of lost messages and inconsistent ordering 
would depend on the method of replication and the importance of all replicas 
being totally up-to-date.

4. Propagation of event notifications: The particular application determines the 
qualities required of multicast. For example, the Jini lookup services use IP 
multicast to announce their existence (see Section 19.2.1). 

These examples suggest that some applications require a multicast protocol that is more 
reliable than IP multicast. In particular, there is a need for reliable multicast, in which 
any message transmitted is either received by all members of a group or by none of them. 
The examples also suggest that some applications have strong requirements for 
ordering, the strictest of which is called totally ordered multicast, in which all of the 
messages transmitted to a group reach all of the members in the same order. 

Chapter 15 will define and show how to implement reliable multicast and various 
useful ordering guarantees, including totally ordered multicast.

4.5 Network virtualization: Overlay networks

The strength of the Internet communication protocols is that they provide, through their 
API (Section 4.2), a very effective set of building blocks for the construction of 
distributed software. However, a growing range of different classes of application 
(including, for example, peer-to-peer file sharing and Skype) coexist in the Internet. It 
would be impractical to attempt to alter the Internet protocols to suit each of the many 
applications running over them – what might enhance one of them could be detrimental 
to another. In addition, the IP transport service is implemented over a large and ever- 
increasing number of network technologies. These two factors have led to the interest in 
network virtualization.

Network virtualization [Petersen et al. 2005] is concerned with the construction of 
many different virtual networks over an existing network such as the Internet. Each 
virtual network can be designed to support a particular distributed application. For 
example, one virtual network might support multimedia streaming, as in BBC iPlayer, 
BoxeeTV [boxee.tv] or Hulu [hulu.com], and coexist with another that supports a 
multiplayer online game, both running over the same underlying network. This suggests 
an answer to the dilemma raised by Salzer’s end-to-end argument (see Section 2.3.3): an 
application-specific virtual network can be built above an existing network and 
optimized for that particular application, without changing the characteristics of the 
underlying network. 

Chapter 3 showed that computer networks have addressing schemes, protocols 
and routing algorithms; similarly, each virtual network has its own particular addressing 
scheme, protocols and routing algorithms, but redefined to meet the needs of particular 
application classes. 
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4.5.1 Overlay networks

An overlay network is a virtual network consisting of nodes and virtual links, which sits 
on top of an underlying network (such as an IP network) and offers something that is not 
otherwise provided:

• a service that is tailored towards the needs of a class of application or a particular 
higher-level service – for example, multimedia content distribution;

• more efficient operation in a given networked environment – for example routing 
in an ad hoc network;

• an additional feature – for example, multicast or secure communication.

This leads to a wide variety of types of overlay as captured by Figure 4.15. Overlay 
networks have the following advantages: 

• They enable new network services to be defined without requiring changes to the 
underlying network, a crucial point given the level of standardization in this area 
and the difficulties of amending underlying router functionality. 

• They encourage experimentation with network services and the customization of 
services to particular classes of application. 

• Multiple overlays can be defined and can coexist, with the end result being a more 
open and extensible network architecture. 

The disadvantages are that overlays introduce an extra level of indirection (and hence 
may incur a performance penalty) and they add to the complexity of network services 
when compared, for example, to the relatively simple architecture of TCP/IP networks.

Overlays can be related to the familiar concept of layers (as introduced in Chapters 
2 and 3). Overlays are layers, but layers that exist outside the standard architecture (such 
as the TCP/IP stack) and exploit the resultant degrees of freedom. In particular, overlay 
developers are free to redefine the core elements of a network as mentioned above, 
including the mode of addressing, the protocols employed and the approach to routing, 
often introducing radically different approaches more tailored towards particular 
application classes of operating environments. For example, distributed hash tables 
introduce a style of addressing based on a keyspace and also build a topology in such a 
way that a node in the topology either owns the key or has a link to a node that is closer 
to the owner (a style of routing known as key-based routing). The topology is most 
commonly in the form of a ring.

We exemplify the successful use of an overlay network by discussing Skype. 
Further examples of overlays will be given throughout the book. For example, Chapter 
10 presents details of the protocols and structures adopted by peer-to-peer file sharing, 
along with further information on distributed hash tables. Chapter 19 considers both 
wireless ad hoc networks and disruption-tolerant networks in the context of mobile and 
ubiquitous computing and Chapter 20 examines overlay support for multimedia 
streaming.



Figure 4.15 Types of overlay 

Motivation Type Description

Tailored for 

application needs

Distributed hash tables One of the most prominent classes of overlay 
network, offering a service that manages a 
mapping from keys to values across a potentially 
large number of nodes in a completely 
decentralized manner (similar to a standard hash 
table but in a networked environment).

Peer-to-peer file 
sharing

Overlay structures that focus on constructing 
tailored addressing and routing mechanisms to 
support the cooperative discovery and use (for 
example, download) of files.

Content distribution 
networks

Overlays that subsume a range of replication, 
caching and placement strategies to provide 
improved performance in terms of content 
delivery to web users; used for web acceleration 
and to offer the required real-time performance 
for video streaming [www.kontiki.com]. 

Tailored for 

network style

Wireless ad hoc 
networks

Network overlays that provide customized 
routing protocols for wireless ad hoc networks, 
including proactive schemes that effectively 
construct a routing topology on top of the 
underlying nodes and reactive schemes that 
establish routes on demand typically supported 
by flooding.

Disruption-tolerant 
networks

Overlays designed to operate in hostile 
environments that suffer significant node or link 
failure and potentially high delays.

Offering additional 

features

Multicast One of the earliest uses of overlay networks in 
the Internet, providing access to multicast serv-
ices where multicast routers are not available; 
builds on the work by Van Jacobsen, Deering 
and Casner with their implementation of the 
MBone (or Multicast Backbone) [mbone].

Resilience Overlay networks that seek an order of 
magnitude improvement in robustness and 
availability of Internet paths 
[nms.csail.mit.edu].

Security Overlay networks that offer enhanced security 
over the underling IP network, including virtual 
private networks, for example, as discussed in 
Section 3.4.8.
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Figure 4.16 Skype overlay architecture
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4.5.2 Skype: An example of an overlay network

Skype is a peer-to-peer application offering Voice over IP (VoIP). It also includes 
instant messaging, video conferencing and interfaces to the standard telephony service 
through SkypeIn and SkypeOut. The software was developed by Kazaa in 2003 and 
hence shares many of the characteristics of the Kazaa peer-to-peer file-sharing 
application [Leibowitz et al. 2003]. It is widely deployed, with an estimated 370 million 
users as of the start of 2009.

Skype is an excellent case study of the use of overlay networks in real-world (and 
large-scale) systems, indicating how advanced functionality can be provided in an 
application-specific manner and without modification of the core architecture of the 
Internet. Skype is a virtual network in that it establishes connections between people 
(Skype subscribers who are currently active). No IP address or port is required to 
establish a call. The architecture of the virtual network supporting Skype is not widely 
publicized but researchers have studied Skype through a variety of methods, including 
traffic analysis, and its principles are now in the public domain. Much of the detail of 
the description that follows is taken from the paper by Baset and Schulzrinne [2006], 
which contains a detailed study of the behaviour of Skype.
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Skype architecture  •  Skype is based on a peer-to-peer infrastructure consisting of 
ordinary users’ machines (referred to as hosts) and super nodes – super nodes are 
ordinary Skype hosts that happen to have sufficient capabilities to carry out their 
enhanced role. Super nodes are selected on demand based a range of criteria including 
bandwidth available, reachability (the machine must have a global IP address and not be 
hidden behind a NAT-enabled router, for example) and availability (based on the length 
of time that Skype has been running continuously on that node). This overall structure 
is captured in Figure 4.16.

User connection   •  Skype users are authenticated via a well-known login server. They 
then make contact with a selected super node. To achieve this, each client maintains a 
cache of super node identities (that is, IP address and port number pairs). At first login 
this cache is filled with the addresses of around seven super nodes, and over time the 
client builds and maintains a much larger set (perhaps several hundred). 

Search for users  •  The main goal of super nodes is to perform the efficient search of the 
global index of users, which is distributed across the super nodes. The search is 
orchestrated by the client’s chosen super node and involves an expanding search of other 
super nodes until the specified user is found. On average, eight super nodes are 
contacted. A user search typically takes between three and four seconds to complete for 
hosts that have a global IP address (and slightly longer, five to six seconds, if behind a 
NAT-enabled router). From experiments, it appears that intermediary nodes involved in 
the search cache the results to improve performance.

Voice connection  •  Once the required user is discovered, Skype establishes a voice 
connection between the two parties using TCP for signalling call requests and 
terminations and either UDP or TCP for the streaming audio. UDP is preferred but TCP, 
along with the use of an intermediary node, is used in certain circumstances to 
circumvent firewalls (see Baset and Schulzrinne [2006] for details). The software used 
for encoding and decoding audio plays a key part in providing the excellent call quality 
normally attained using Skype, and the associated algorithms are carefully tailored to 
operate in Internet environments at 32 kbps and above.

4.6 Case study: MPI

Message passing was introduced in Section 4.2.1, which outlines the basic principles of 
exchanging messages between two processes using send and receive operations. The 
synchronous variant of message passing is realised by blocking send and receive calls, 
whereas the asynchronous variant requires a non-blocking form of send. The end result 
is a paradigm for distributed programming that is lightweight, efficient and in many 
ways minimal.

This style of distributed programming is attractive in classes of system where 
performance is paramount, most notably in high-performance computing. In this 
section, we present a case study of the Message Passing Interface standard, developed 
by the high performance computing community. MPI was first introduced in 1994 by 
the MPI Forum [www.mpi-forum.org] as a reaction against the wide variety of 
proprietary approaches that were in use for message passing in this field. The standard 
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has also been strongly influential in Grid computing (discussed in Chapter 9), for 
example through the development of GridMPI [www.gridmpi.org]. The goal of the MPI 
Forum was to retain the inherent simplicity, practicality and efficiency of the message- 
passing approach but enhance this with portability through presenting a standardized 
interface independent of the operating system or programming language-specific socket 
interface. MPI was also designed to be flexible, and the result is a comprehensive 
specification of message passing in all its variants (with over 115 operations). 
Applications use the MPI interface via a message-passing library available for a variety 
of operating systems and programming languages, including C++ and Fortran. 

The underlying architectural model for MPI is relatively simple and captured in 
Figure 4.17

Figure 4.17  An overview of point-to-point communication in MPI

Message

Process p Process q

MPI library buffer

send m receive

. This is similar to the model introduced in Section 4.2.1, but with the added 
dimension of explicitly having MPI library buffers in both the sender and the receiver, 
managed by the MPI library and used to hold data in transit. Note that this figure shows 
one pathway from the sender to the receiver via the receiver’s MPI library buffer (other 
options, for example using the sender’s MPI library buffer, will become apparent 
below).

To provide a flavour of this complexity, let us examine a number of the variants 
of send summarized in Figure 4.18. This is a refinement of the view of message passing 
as presented in Section 4.2.1, offering more choice and control and effectively 
separating the semantics of synchronous/asynchronous and blocking/non-blocking 
message passing.

We start by examining the four blocking operations presented in the associated 
column of Figure 4.18. The key to understanding this set of operations is to appreciate 
that blocking is interpreted as ‘blocked until it is safe to return’, in the sense that 
application data has been copied into the MPI system and hence is in transit or delivered 
and therefore the application buffer can be reused (for example, for the next send

operation). This then enables various interpretations of ‘being safe to return’. The 
MPI_Send operation is a generic operation that simply requires that this level of safety 
is provided (in practice, this is often implemented using MPI_Ssend). MPI_Ssend is 
exactly the same as synchronous (and blocking) message passing as introduced in 
Section 4.2.1, with safety interpreted as delivered, whereas MPI_Bsend has weaker 



Figure 4.18 Selected send operations in MPI 

Send operations Blocking Non-blocking

Generic MPI_Send:  the sender blocks until 
it is safe to return – that is, until the 
message is in transit or delivered 
and the sender’s application buffer 
can therefore be reused.

MPI_Isend:  the  call returns 
immediately and the programmer is 
given a communication request 
handle, which can then be used to 
check the progress of the call via 
MPI_Wait or MPI_Test.

Synchronous MPI_Ssend: the sender and receiver 
synchronize and the call only 
returns when the message has been 
delivered at the receiving end.

MPI_Issend: as with MPI_Isend,
but with MPI_Wait and MPI_Test

indicating whether the message has 
been delivered at the receive end.

Buffered MPI_Bsend: the sender explicitly 
allocates an MPI buffer library 
(using a separate 
MPI_Buffer_attach call) and the 
call returns when the data is 
successfully copied into this buffer.

MPI_Ibsend: as with MPI_Isend

but with MPI_Wait and MPI_Test

indicating whether the message has 
been copied into the sender’s MPI 
buffer and hence is in transit.

Ready MPI_Rsend: the call returns when 
the sender’s application buffer can 
be reused (as with MPI_Send), but 
the programmer is also indicating to 
the library that the receiver is ready 
to receive the message, resulting in 
potential optimization of the 
underlying implementation.

MPI_Irsend: the effect is as with 
MPI_Isend, but as with 
MPI_Rsend, the programmer is 
indicating to the underlying 
implementation that the receiver is 
guaranteed to be ready to receive 
(resulting in the same 
optimizations),
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semantics in that the message is considered safe when it has been has been copied into 
the preallocated MPI library buffer and is still in transit. MPI_Rsend is a rather curious 
operation in which the programmer specifies that they know that the receiver is ready to 
receive the message. If this is known, the underlying implementation can be optimized 
in that there is no need to check if there is a buffer available to receive the message, 
avoiding a handshake. This is clearly a rather dangerous operation that will fail if the 
assumption about being ready is invalid. From the figure, it is possible to observe the 
elegant symmetry for non-blocking send operations, this time defined over the 
semantics of the associated MPI_Wait and MPI_Test operations (note also the consistent 
naming convention across all the operations).

The standard also supports both blocking and non-blocking receive (MPI_recv

and MPI_Irecv, respectively), and the variants of send and receive can be paired in any 
combination, offering the programmer rich control over the semantics of message 
passing. In addition, the standard defines rich patterns of multiway communication 
(referred to as collective communication) including, for example, scatter (one to many) 
and gather (many to one) operations.
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4.7 Summary

The first section of this chapter showed that the Internet transmission protocols provide 
two alternative building blocks from which application protocols may be constructed. 
There is an interesting trade-off between the two protocols: UDP provides a simple 
message-passing facility that suffers from omission failures but carries no built-in 
performance penalties, on the other hand, in good conditions TCP guarantees message 
delivery, but at the expense of additional messages and higher latency and storage costs.

The second section showed three alternative styles of marshalling. CORBA and 
its predecessors choose to marshal data for use by recipients that have prior knowledge 
of the types of its components. In contrast, when Java serializes data, it includes full 
information about the types of its contents, allowing the recipient to reconstruct it purely 
from the content. XML, like Java, includes full type information. Another big difference 
is that CORBA requires a specification of the types of data items to be marshalled (in 
IDL) in order to generate the marshalling and unmarshalling methods, whereas Java 
uses reflection in order to serialize objects and deserialize their serial form. But a variety 
of different means are used for generating XML, depending on the context. For example, 
many programming languages, including Java, provide processors for translating 
between XML and language-level objects. 

Multicast messages are used in communication between the members of a group 
of processes. IP multicast provides a multicast service for both local area networks and 
the Internet. This form of multicast has the same failure semantics as UDP datagrams, 
but in spite of suffering from omission failures it is a useful tool for many applications 
of multicast. Some other applications have stronger requirements – in particular, that 
multicast delivery should be atomic; that is, it should have all-or-nothing delivery. 
Further requirements on multicast are related to the ordering of messages, the strongest 
of which requires that all members of a group receive all of the messages in the same 
order.

Multicast can also be supported by overlay networks in cases where, for example, 
IP multicast is not supported. More generally, overlay networks offer a service of 
virtualization of the network architecture, allowing specialist network services to be 
created on top of underlying networking infrastructure, (for example, UDP or TCP). 
Overlay networks partially address the problems associated with Saltzer’s end-to-end 
argument by allowing the generation of more application-specific network abstractions.

The chapter concluded with a case study of the MPI specification, developed by 
the high-performance computing community and featuring flexible support for message 
passing together with additional support for multiway message passing.
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EXERCISES

4.1 Is it conceivably useful for a port to have several receivers? page 148

4.2 A server creates a port that it uses to receive requests from clients. Discuss the design 
issues concerning the relationship between the name of this port and the names used by 
clients. page 148

4.3 The programs in Figure 4.3 and Figure 4.4 are available at www.cdk5.net/ipc. Use them 
to make a test kit to determine the conditions in which datagrams are sometimes dropped. 
Hint: the client program should be able to vary the number of messages sent and their size; 
the server should detect when a message from a particular client is missed. page 150

4.4 Use the program in Figure 4.3 to make a client program that repeatedly reads a line of 
input from the user, sends it to the server in a UDP datagram message, then receives a 
message from the server. The client sets a timeout on its socket so that it can inform the 
user when the server does not reply. Test this client program with the server program in 
Figure 4.4. page 150

4.5 The programs in Figure 4.5 and Figure 4.6 are available at www.cdk5.net/ipc. Modify 
them so that the client repeatedly takes a line of user’s input and writes it to the stream 
and the server reads repeatedly from the stream, printing out the result of each read. 
Make a comparison between sending data in UDP datagram messages and over a stream.

 page 153

4.6 Use the programs developed in Exercise 4.5 to test the effect on the sender when the 
receiver crashes, and vice-versa. page 153

4.7 Sun XDR marshals data by converting it into a standard big-endian form before 
transmission. Discuss the advantages and disadvantages of this method when compared 
with CORBA CDR. page 160

4.8 Sun XDR aligns each primitive value on a 4-byte boundary, whereas CORBA CDR 
aligns a primitive value of size n on an n-byte boundary. Discuss the trade-offs in 
choosing the sizes occupied by primitive values. page 160

4.9 Why is there no explicit data typing in CORBA CDR? page 160

4.10 Write an algorithm in pseudo-code to describe the serialization procedure described in 
Section 4.3.2. The algorithm should show when handles are defined or substituted for 
classes and instances. Describe the serialized form that your algorithm would produce 
when serializing an instance of the following class, Couple:

class Couple implements Serializable{

private Person one;

private Person two;

public Couple(Person a, Person b) {

one = a;

two = b;

}

}    page 162
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4.11 Write an algorithm in pseudo-code to describe deserialization of the serialized form 
produced by the algorithm defined in Exercise 4.10. Hint: use reflection to create a class 
from its name, to create a constructor from its parameter types and to create a new 
instance of an object from the constructor and the argument values. page 162

4.12 Why can’t binary data be represented directly in XML, for example, by representing it 
as Unicode byte values? XML elements can carry strings represented as base64. Discuss 
the advantages or disadvantages of using this method to represent binary data.

page 164

4.13 Define a class whose instances represent remote object references. It should contain 
information similar to that shown in Figure 4.13 and should provide access methods 
needed by higher-level protocols (see request-reply in Chapter 5, for example). Explain 
how each of the access methods will be used by that protocol. Give a justification for the 
type chosen for the instance variable containing information about the interface of the 
remote object. page 168

4.14 IP multicast provides a service that suffers from omission failures. Make a test kit, 
possibly based on the program in Figure 4.14, to discover the conditions under which a 
multicast message is sometimes dropped by one of the members of the multicast group. 
The test kit should be designed to allow for multiple sending processes. page 170

4.15 Outline the design of a scheme that uses message retransmissions with IP multicast to 
overcome the problem of dropped messages. Your scheme should take the following 
points into account:

i) There may be multiple senders. 

ii) Generally only a small proportion of messages are dropped.

iii) Recipients may not necessarily send a message within any particular time limit. 

Assume that messages that are not dropped arrive in sender order. page 173

4.16 Your solution to Exercise 4.15 should have overcome the problem of dropped messages 
in IP multicast. In what sense does your solution differ from the definition of reliable 
multicast? page 173

4.17 Devise a scenario in which multicasts sent by different clients are delivered to two group 
members in different orders. Assume that some form of message retransmission is in 
use, but that messages that are not dropped arrive in sender order. Suggest how 
recipients might remedy this situation. page 173

4.18 Revisit the Internet architecture as introduced in Chapter 3 (see Figures 3.12 and 3.14). 
What impact does the introduction of overlay networks have on this architecture, and in 
particular on the programmer’s conceptual view of the Internet? page 175

4.19 What are the main arguments for adopting a super node approach in Skype? page 177

4.20 As discussed in Section 4.6, MPI offers a number of variants of send including the 
MPI_Rsend operation, which assumes the receiver is ready to receive at the time of 
sending. What optimizations in implementation are possible if this assumption is correct 
and what are the repercussions of this assumption being false? page 180
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5

REMOTE INVOCATION

5.1 Introduction
5.2 Request-reply protocols
5.3 Remote procedure call
5.4 Remote method invocation
5.5 Case study: Java RMI
5.6 Summary

This chapter steps through the remote invocation paradigms introduced in Chapter 2 
(indirect communication techniques are addressed in Chapter 6). The chapter starts by 
examining the most primitive service, request-reply communication, which represents 
relatively minor enhancements to the underlying interprocess communication primitives 
discussed in Chapter 4. The chapter then continues by examining the two most prominent 
remote invocation techniques for communication in distributed systems:

• The remote procedure call (RPC) approach extends the common programming 
abstraction of the procedure call to distributed environments, allowing a calling 
process to call a procedure in a remote node as if it is local.

• Remote method invocation (RMI) is similar to RPC but for distributed objects, with 
added benefits in terms of using object-oriented programming concepts in 
distributed systems and also extending the concept of an object reference to the 
global distributed environments, and allowing the use of object references as 
parameters in remote invocations.

The chapter also features Java RMI as a case study of the remote method invocation 
approach (further insight can also be gained in Chapter 8, where we look at CORBA).
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5.1 Introduction

This chapter is concerned with how processes (or entities at a higher level of abstraction 
such as objects or services) communicate in a distributed system, examining, in 
particular, the remote invocation paradigms defined in Chapter 2:

• Request-reply protocols represent a pattern on top of message passing and support 
the two-way exchange of messages as encountered in client-server computing. In 
particular, such protocols provide relatively low-level support for requesting the 
execution of a remote operation, and also provide direct support for RPC and 
RMI, discussed below.

• The earliest and perhaps the best-known example of a more programmer-friendly 
model was the extension of the conventional procedure call model to distributed 
systems (the remote procedure call, or RPC, model), which allows client 
programs to call procedures transparently in server programs running in separate 
processes and generally in different computers from the client. 

• In the 1990s, the object-based programming model was extended to allow objects 
in different processes to communicate with one another by means of remote 

method invocation (RMI). RMI is an extension of local method invocation that 
allows an object living in one process to invoke the methods of an object living in 
another process. 

Note that we use the term ‘RMI’ to refer to remote method invocation in a generic way 
– this should not be confused with particular examples of remote method invocation 
such as Java RMI. 

Returning to the diagram first introduced in Chapter 4 (and reproduced in Figure 
5.1

Figure 5.1  Middleware layers

Applications, services

Middleware
layers

Underlying interprocess communication primitives:

UDP and TCP

This
chapter Remote invocation, indirect communication

Sockets, message passing, multicast support, overlay networks

(and Chapter 6)

), this chapter, together with Chapter 6, continues our study of  middleware concepts 
by focusing on the layer above interprocess communication. In particular, Sections 5.2
through 5.4 focus on the styles of communication listed above, with Section 5.5
providing a more complex case study, Java RMI.
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5.2 Request-reply protocols

This form of communication is designed to support the roles and message exchanges in 
typical client-server interactions. In the normal case, request-reply communication is 
synchronous because the client process blocks until the reply arrives from the server. It 
can also be reliable because the reply from the server is effectively an acknowledgement 
to the client. Asynchronous request-reply communication is an alternative that may be 
useful in situations where clients can afford to retrieve replies later – see Section 7.5.2.

The client-server exchanges are described in the following paragraphs in terms of 
the send and receive operations in the Java API for UDP datagrams, although many 
current implementations use TCP streams. A protocol built over datagrams avoids 
unnecessary overheads associated with the TCP stream protocol. In particular:

• Acknowledgements are redundant, since requests are followed by replies.

• Establishing a connection involves two extra pairs of messages in addition to the 
pair required for a request and a reply.

• Flow control is redundant for the majority of invocations, which pass only small 
arguments and results.

The request-reply protocol  •  The protocol we describe here is based on a trio of 
communication primitives, doOperation, getRequest and sendReply, as shown in Figure 
5.2

Figure 5.2 Request-reply communication
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. This request-reply protocol matches requests to replies. It may be designed to 
provide certain delivery guarantees. If UDP datagrams are used, the delivery guarantees 
must be provided by the request-reply protocol, which may use the server reply message 
as an acknowledgement of the client request message. Figure 5.3 outlines the three 
communication primitives.

The doOperation method is used by clients to invoke remote operations. Its 
arguments specify the remote server and which operation to invoke, together with 
additional information (arguments) required by the operation. Its result is a byte array 
containing the reply. It is assumed that the client calling doOperation marshals the 
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arguments into an array of bytes and unmarshals the results from the array of bytes that 
is returned. The first argument of doOperation is an instance of the class RemoteRef,
which represents references for remote servers. This class provides methods for getting 
the Internet address and port of the associated server. The doOperation method sends a 
request message to the server whose Internet address and port are specified in the remote 
reference given as an argument. After sending the request message, doOperation 

invokes receive to get a reply message, from which it extracts the result and returns it to 
the caller. The caller of doOperation is blocked until the server performs the requested 
operation and transmits a reply message to the client process. 

getRequest is used by a server process to acquire service requests, as shown in 
Figure 5.3

Figure 5.3  Operations of the request-reply protocol

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)

Sends a request message to the remote server and returns the reply. 
The arguments specify the remote server, the operation to be invoked and the 
arguments of that operation.

public byte[] getRequest ();

Acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); 

Sends the reply message reply to the client at its Internet address and port.

. When the server has invoked the specified operation, it then uses sendReply

to send the reply message to the client. When the reply message is received by the client 
the original doOperation is unblocked and execution of the client program continues. 

The information to be transmitted in a request message or a reply message is 
shown in Figure 5.4

Figure 5.4 Request-reply message structure

messageType int   (0=Request, 1= Reply)

requestId int

remoteReference RemoteRef

operationId int or Operation

arguments // array of bytes

. The first field indicates whether the message is a Request or a Reply

message. The second field, requestId, contains a message identifier. A doOperation in 
the client generates a requestId for each request message, and the server copies these IDs 
into the corresponding reply messages. This enables doOperation to check that a reply 
message is the result of the current request, not a delayed earlier call. The third field is 
a remote reference. The fourth field is an identifier for the operation to be invoked. For 
example, the operations in an interface might be numbered 1, 2, 3, ... , if the client and 
server use a common language that supports reflection,  a representation of the operation 
itself may be put in this field.
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Message identifiers  •  Any scheme that involves the management of messages to 
provide additional properties such as reliable message delivery or request-reply 
communication requires that each message have a unique message identifier by which 
it may be referenced. A message identifier consists of two parts: 

1. a requestId, which is taken from an increasing sequence of integers by the sending 
process;  

2. an identifier for the sender process, for example, its port and Internet address. 

The first part makes the identifier unique to the sender, and the second part makes it 
unique in the distributed system. (The second part can be obtained independently – for 
example, if UDP is in use, from the message received.)

 When the value of the requestId reaches the maximum value for an unsigned 
integer (for example, 232 – 1) it is reset to zero. The only restriction here is that the 
lifetime of a message identifier should be much less than the time taken to exhaust the 
values in the sequence of integers.

Failure model of the request-reply protocol  •  If the three primitives doOperation,
getRequest and sendReply are implemented over UDP datagrams, then they suffer from 
the same communication failures. That is:

• They suffer from omission failures.

• Messages are not guaranteed to be delivered in sender order.

In addition, the protocol can suffer from the failure of processes (see Section 2.4.2). We 
assume that processes have crash failures. That is, when they halt, they remain halted – 
they do not produce Byzantine behaviour. 

To allow for occasions when a server has failed or a request or reply message is 
dropped, doOperation uses a timeout when it is waiting to get the server’s reply 
message. The action taken when a timeout occurs depends upon the delivery guarantees 
being offered.

Timeouts  •  There are various options as to what doOperation can do after a timeout. 
The simplest option is to return immediately from doOperation with an indication to the 
client that the doOperation has failed. This is not the usual approach – the timeout may 
have been due to the request or reply message getting lost and in the latter case, the 
operation will have been performed. To compensate for the possibility of lost messages, 
doOperation sends the request message repeatedly until either it gets a reply or it is 
reasonably sure that the delay is due to lack of response from the server rather than to 
lost messages. Eventually, when doOperation returns, it will indicate to the client by an 
exception that no result was received.

Discarding duplicate request messages  •  In cases when the request message is 
retransmitted, the server may receive it more than once. For example, the server may 
receive the first request message but take longer than the client’s timeout to execute the 
command and return the reply. This can lead to the server executing an operation more 
than once for the same request. To avoid this, the protocol is designed to recognize 
successive messages (from the same client) with the same request identifier and to filter 
out duplicates. If the server has not yet sent the reply, it need take no special action – it 
will transmit the reply when it has finished executing the operation.
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Lost reply messages  •  If the server has already sent the reply when it receives a 
duplicate request it will need to execute the operation again to obtain the result, unless 
it has stored the result of the original execution. Some servers can execute their 
operations more than once and obtain the same results each time. An idempotent

operation is an operation that can be performed repeatedly with the same effect as if it 
had been performed exactly once. For example, an operation to add an element to a set 
is an idempotent operation because it will always have the same effect on the set each 
time it is performed, whereas an operation to append an item to a sequence is not an 
idempotent operation because it extends the sequence each time it is performed. A server 
whose operations are all idempotent need not take special measures to avoid executing 
its operations more than once.

History  •  For servers that require retransmission of replies without re-execution of 
operations, a history may be used. The term ‘history’ is used to refer to a structure that 
contains a record of (reply) messages that have been transmitted. An entry in a history 
contains a request identifier, a message and an identifier of the client to which it was 
sent. Its purpose is to allow the server to retransmit reply messages when client 
processes request them. A problem associated with the use of a history is its memory 
cost. A history will become very large unless the server can tell when the messages will 
no longer be needed for retransmission. 

As clients can make only one request at a time, the server can interpret each 
request as an acknowledgement of its previous reply. Therefore the history need contain 
only the last reply message sent to each client. However, the volume of reply messages 
in a server’s history may still be a problem when it has a large number of clients. This 
is compounded by the fact that, when a client process terminates, it does not 
acknowledge the last reply it has received – messages in the history are therefore 
normally discarded after a limited period of time. 

Styles of exchange protocols  •  Three protocols, that produce differing behaviours in the 
presence of communication failures are used for implementing various types of request 
behaviour. They were originally identified by Spector [1982]:

• the request (R) protocol; 

• the request-reply (RR) protocol;

• the request-reply-acknowledge reply (RRA) protocol.

The messages passed in these protocols are summarized in Figure 5.5. In the R protocol, 
a single Request message is sent by the client to the server. The R protocol may be used 
when there is no value to be returned from the remote operation and the client requires 
no confirmation that the operation has been executed. The client may proceed 
immediately after the request message is sent as there is no need to wait for a reply 
message. This protocol is implemented over UDP datagrams and therefore suffers from 
the same communication failures. 

The RR protocol is useful for most client-server exchanges because it is based on 
the request-reply protocol. Special acknowledgement messages are not required, 
because a server’s reply message is regarded as an acknowledgement of the client’s 
request message. Similarly, a subsequent call from a client may be regarded as an 
acknowledgement of a server’s reply message. As we have seen, communication 
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failures due to UDP datagrams being lost may be masked by the retransmission of 
requests with duplicate filtering and the saving of replies in a history for retransmission. 

The RRA protocol is based on the exchange of three messages: request-reply-
acknowledge reply. The Acknowledge reply message contains the requestId from the 
reply message being acknowledged. This will enable the server to discard entries from 
its history. The arrival of a requestId in an acknowledgement message will be 
interpreted as acknowledging the receipt of all reply messages with lower requestIds, so 
the loss of an acknowledgement message is harmless. Although the exchange involves 
an additional message, it need not block the client, as the acknowledgement may be 
transmitted after the reply has been given to the client. However it does use processing 
and network resources. Exercise 5.10 suggests an optimization to the RRA protocol. 

Use of TCP streams to implement the request-reply protocol   •  Section 4.2.3 mentioned 
that it is often difficult to decide on an appropriate size for the buffer in which to receive 
datagrams. In the request-reply protocol, this applies to the buffers used by the server to 
receive request messages and by the client to receive replies. The limited length of 
datagrams (usually 8 kilobytes) may not be regarded as adequate for use in transparent 
RMI or RPC systems, since the arguments or results of procedures may be of any size.

The desire to avoid implementing multipacket protocols is one of the reasons for 
choosing to implement request-reply protocols over TCP streams, allowing arguments 
and results of any size to be transmitted. In particular, Java object serialization is a 
stream protocol that allows arguments and results to be sent over streams between the 
client and server, making it possible for collections of objects of any size to be 
transmitted reliably. If the TCP protocol is used, it ensures that request and reply 
messages are delivered reliably, so there is no need for the request-reply protocol to deal 
with retransmission of messages and filtering of duplicates or with histories. In addition 
the flow-control mechanism allows large arguments and results to be passed without 
taking special measures to avoid overwhelming the recipient. Thus the TCP protocol is 
chosen for request-reply protocols because it can simplify their implementation. If 
successive requests and replies between the same client-server pair are sent over the 
same stream, the connection overhead need not apply to every remote invocation. Also, 
the overhead due to TCP acknowledgement messages is reduced when a reply message 
follows soon after a request message. 

Howeever, if the application does not require all of the facilities offered by TCP, 
a more efficient, specially tailored protocol can be implemented over UDP. For 
example, Sun NFS does not require support for messages of unlimited size, since it 
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transmits fixed-size file blocks between client and server. In addition to that, its 
operations are designed to be idempotent, so it does not matter if operations are executed 
more than once in order to retransmit lost reply messages, making it unnecessary to 
maintain a history. 

HTTP: An example of a request-reply protocol  •  Chapter 1 introduced the HyperText 
Transfer Protocol (HTTP) used by web browser clients to make requests to web servers 
and to receive replies from them. To recap, web servers manage resources implemented 
in different ways: 

• as data – for example the text of an HTML page, an image or the class of an applet; 

• as a program – for example, servlets [java.sun.com III], or PHP or Python 
programs that run on the web server.

Client requests specify a URL that includes the DNS hostname of a web server and an 
optional port number on the web server as well as the identifier of a resource on that 
server. 

HTTP is a protocol that specifies the messages involved in a request-reply 
exchange, the methods, arguments and results, and the rules for representing 
(marshalling) them in the messages. It supports a fixed set of methods (GET, PUT,
POST, etc) that are applicable to all of the server’s resources. It is unlike the previously 
described protocols, where each service has its own set of operations. In addition to 
invoking methods on web resources, the protocol allows for content negotiation and 
password-style authentication: 

Content negotiation: Clients’ requests can include information as to what data 
representations they can accept (for example, language or media type), enabling the 
server to choose the representation that is the most appropriate for the user. 

Authentication: Credentials and challenges are used to support password-style 
authentication. On the first attempt to access a password-protected area, the server 
reply contains a challenge applicable to the resource. Chapter 11 explains challenges. 
When a client receives a challenge, it gets the user to type a name and password and 
submits the associated credentials with subsequent requests. 

HTTP is implemented over TCP. In the original version of the protocol, each client-
server interaction consisted of the following steps:

• The client requests and the server accepts a connection at the default server port 
or at a port specified in the URL.

• The client sends a request message to the server.

• The server sends a reply message to the client.

• The connection is closed.

However, establishing and closing a connection for every request-reply exchange is 
expensive, overloading the server and causing too many messages to be sent over the 
network. Bearing in mind that browsers generally make multiple requests to the same 
server – for example, to get the images in a page just supplied – a later version of the 
protocol (HTTP 1.1, see RFC 2616 [Fielding et al. 1999]) uses persistent connections – 
connections that remain open over a series of request-reply exchanges between client 
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and server. A persistent connection can be closed by the client or server at any time by 
sending an indication to the other participant. Servers will close a persistent connection 
when it has been idle for a period of time. It is possible that a client may receive a 
message from the server saying that the connection is closed while it is in the middle of 
sending another request or requests. In such cases, the browser will resend the requests 
without user involvement, provided that the operations involved are idempotent. For 
example, the method GET described below is idempotent. Where non-idempotent 
operations are involved, the browser should consult the user as to what to do next.

Requests and replies are marshalled into messages as ASCII text strings, but 
resources can be represented as byte sequences and may be compressed. The use of text 
in the external data representation has simplified the use of HTTP for application 
programmers who work directly with the protocol. In this context, a textual 
representation does not add much to the length of the messages.

Data resources are supplied as MIME-like structures in arguments and results. 
Multipurpose Internet Mail Extensions (MIME), specified in RFC 2045 [Freed and 
Borenstein 1996], is a standard for sending multipart data containing, for example, text, 
images and sound in email messages. Data is prefixed with its MIME type so that the 
recipient will know how to handle it. A MIME type specifies a type and a subtype, for 
example, text/plain, text/html, image/gif or image/jpeg. Clients can also specify the 
MIME types that they are willing to accept.

HTTP methods  •  Each client request specifies the name of a method to be applied to a 
resource at the server and the URL of that resource. The reply reports on the status of 
the request. Requests and replies may also contain resource data, the contents of a form 
or the output of a program resource run on the web server. The methods include the 
following: 

Figure 5.6 HTTP Request message

method URL or pathname HTTP version headers message body

GET http://www.dcs.qmul.ac.uk/index.html HTTP/ 1.1

GET: Requests the resource whose URL is given as its argument. If the URL refers 
to data, then the web server replies by returning the data identified by that URL. If 
the URL refers to a program, then the web server runs the program and returns its 
output to the client. Arguments may be added to the URL; for example, GET can be 
used to send the contents of a form to a program as an argument. The GET operation 
can be made conditional on the date a resource was last modified. GET can also be 
configured to obtain parts of the data. 

With GET, all the information for the request is provided in the URL (see, for 
example, the query string in Section 1.6).

HEAD: This request is identical to GET, but it does not return any data. However, it 
does return all the information about the data, such as the time of last modification, 
its type or its size.
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POST:  Specifies the URL of a resource (for example a program) that can deal with 
the data supplied in the body of the request. The processing carried out on the data 
depends on the function of the program specified in the URL. This method is used 
when the action may change data on the server. It is designed to deal with:

• providing a block of data to a data-handling process such as a servlet – for 
example, submitting a web form to buy something from a web site;

• posting a message to a mailing list or updating details of members of the list;

• extending a database with an append operation.

PUT: Requests that the data supplied in the request is stored with the given URL as 
its identifier, either as a modification of an existing resource or as a new resource.

DELETE: The server deletes the resource identified by the given URL. Servers may 
not always allow this operation, in which case the reply indicates failure.

OPTIONS: The server supplies the client with a list of methods it allows to be 
applied to the given URL (for example GET, HEAD, PUT) and its special 
requirements.

TRACE: The server sends back the request message. Used for diagnostic purposes.

The operations PUT and DELETE are idempotent, but POST is not necessarily so 
because it can change the state of a resource. The others are safe operations in that they 
do not change anything.  

The requests described above may be intercepted by a proxy server (see Section 2.3.1). 
The responses to GET and HEAD may be cached by proxy servers. 

Message contents  •  The Request message specifies the name of a method, the URL of 
a resource, the protocol version, some headers and an optional message body. Figure 5.6
shows the contents of an HTTP Request message whose method is GET. When the URL 
specifies a data resource, the GET method does not have a message body. 

Requests to proxies need the absolute URL, as shown in Figure 5.6. Requests to 
origin servers (the origin server is where the resource resides) specify a pathname and 
give the DNS name of the origin server in a Host header field. For example, 

GET /index.html   HTTP/1.1

Host: www.dcs.qmul.ac.uk

In general, the header fields contain request modifiers and client information, such as 
conditions on the latest date of modification of the resource or acceptable content types 
(for example, HTML text, audio or JPEG images). An authorization field can be used to 
provide the client’s credentials in the form of a certificate specifying their rights to 
access a resource. 

A Reply message specifies the protocol version, a status code and ‘reason’, some 
headers and an optional message body, as shown in Figure 5.7. The status code and 
reason provide a report on the server’s success or otherwise in carrying out the request: 
the former is a three-digit integer for interpretation by a program, and the latter is a 
textual phrase that can be understood by a person. The header fields are used to pass 
additional information about the server or access to the resource. For example, if the 
request requires authentication, the status of the response indicates this and a header 
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HTTP version status code reason headers message body

HTTP/1.1 200 OK  resource data
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field contains a challenge. Some status returns have quite complex effects. In particular, 
a 303 status response tells the browser to look under a different URL, which is supplied 
in a header field in the reply. It is intended for use in a response from a program activated 
by a POST request when the program needs to redirect the browser to a selected 
resource.

The message body in request or reply messages contains the data associated with 
the URL specified in the request. The message body has its own headers specifying 
information about the data, such as its length, its MIME type, its character set, its content 
encoding and the last date it was modified. The MIME type field specifies the type of 
the data, for example image/jpeg or text/plain. The content encoding field specifies the 
compression algorithm to be used  

5.3 Remote procedure call

As mentioned in Chapter 2, the concept of a remote procedure call (RPC) represents a 
major intellectual breakthrough in distributed computing, with the goal of making the 
programming of distributed systems look similar, if not identical, to conventional 
programming – that is, achieving a high level of distribution transparency. This 
unification is achieved in a very simple manner, by extending the abstraction of a 
procedure call to distributed environments. In particular, in RPC, procedures on remote 
machines can be called as if they are procedures in the local address space. The 
underlying RPC system then hides important aspects of distribution, including the 
encoding and decoding of parameters and results, the passing of messages and the 
preserving of the required semantics for the procedure call. This concept was first 
introduced by Birrell and Nelson [1984] and paved the way for many of the 
developments in distributed systems programming used today.

5.3.1 Design issues for RPC

Before looking at the implementation of RPC systems, we look at three issues that are 
important in understanding this concept:

• the style of programming promoted by RPC – programming with interfaces;

• the call semantics associated with RPC;

• the key issue of transparency and how it relates to remote procedure calls.

Programming with interfaces   •  Most modern programming languages provide a means 
of organizing a program as a set of modules that can communicate with one another. 
Communication between modules can be by means of procedure calls between modules 
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or by direct access to the variables in another module. In order to control the possible 
interactions between modules, an explicit interface is defined for each module. The 
interface of a module specifies the procedures and the variables that can be accessed 
from other modules. Modules are implemented so as to hide all the information about 
them except that which is available through its interface. So long as its interface remains 
the same, the implementation may be changed without affecting the users of the module.

Interfaces in distributed systems: In a distributed program, the modules can run in 
separate processes. In the client-server model, in particular, each server provides a set 
of procedures that are available for use by clients. For example, a file server would 
provide procedures for reading and writing files. The term service interface is used to 
refer to the specification of the procedures offered by a server, defining the types of the 
arguments of each of the procedures.

There are a number of benefits to programming with interfaces in distributed 
systems, stemming from the important separation between interface and 
implementation:

• As with any form of modular programming, programmers are  concerned only 
with the abstraction offered by the service interface and need not be aware of 
implementation details.

• Extrapolating to (potentially heterogeneous) distributed systems, programmers 
also do not need to know the programming language or underlying platform used 
to implement the service (an important step towards managing heterogeneity in 
distributed systems).

• This approach provides natural support for software evolution in that 
implementations can change as long as long as the interface (the external view) 
remains the same. More correctly, the interface can also change as long as it 
remains compatible with the original.

The definition of service interfaces is influenced by the distributed nature of the 
underlying infrastructure:

• It is not possible for a client module running in one process to access the variables 
in a module in another process. Therefore the service interface cannot specify 
direct access to variables. Note that CORBA IDL interfaces can specify attributes, 
which seems to break this rule. However, the attributes are not accessed directly 
but by means of some getter and setter procedures added automatically to the 
interface.

• The parameter-passing mechanisms used in local procedure calls – for example, 
call by value and call by reference,  are not suitable when the caller and procedure 
are in different processes. In particular, call by reference is not supported. Rather, 
the specification of a procedure in the interface of a module in a distributed 
program describes the parameters as input or output, or sometimes both. Input

parameters are passed to the remote server by sending the values of the arguments 
in the request message and then supplying them as arguments to the operation to 
be executed in the server. Output parameters are returned in the reply message and 
are used as the result of the call or to replace the values of the corresponding 
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variables in the calling environment. When a parameter is used for both input and 
output, the value must be transmitted in both the request and reply messages.

• Another difference between local and remote modules is that addresses in one 
process are not valid in another remote one. Therefore, addresses cannot be passed 
as arguments or returned as results of calls to remote modules.

These constraints have a significant impact on the specification of interface definition 
languages, as discussed below.

Interface definition languages: An RPC mechanism can be integrated with a particular 
programming language if it includes an adequate notation for defining interfaces, 
allowing input and output parameters to be mapped onto the language’s normal use of 
parameters. This approach is useful when all the parts of a distributed application can be 
written in the same language. It is also convenient because it allows the programmer to 
use a single language, for example, Java, for local and remote invocation. 

However, many existing useful services are written in C++ and other languages. 
It would be beneficial to allow programs written in a variety of languages, including 
Java, to access them remotely. Interface definition languages (IDLs) are designed to 
allow procedures implemented in different languages to invoke one another. An IDL 
provides a notation for defining interfaces in which each of the parameters of an 
operation may be described as for input or output in addition to having its type specified. 

Figure 5.8 CORBA IDL example

// In file Person.idl

struct Person {

string name; 

string place;

long year;

};

interface PersonList {

readonly attribute string listname;

void addPerson(in Person p) ;

void getPerson(in string name, out Person p);

long number();

};

Figure 5.8 shows a simple example of CORBA IDL. The Person structure is the 
same as the one used to illustrate marshalling in Section 4.3.1. The interface named 
PersonList specifies the methods available for RMI in a remote object that implements 
that interface. For example, the method addPerson specifies its argument as in, meaning 
that it is an input argument, and the method getPerson that retrieves an instance of 
Person by name specifies its second argument as out, meaning that it is an output

argument. 
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The concept of an IDL was initially developed for RPC systems but applies 
equally to RMI and also web services. Our case studies include:

• Sun XDR as an example of an IDL for RPC (in Section 5.3.3);

• CORBA IDL as an example of an IDL for RMI (in Chapter 8 and also included 
above); 

• the Web Services Description Language (WSDL), which is designed for an 
Internet-wide RPC supporting web services (see Section 9.3);

• and protocol buffers used at Google for storing and interchanging many kinds of 
structured information (see Section 21.4.1).

RPC call semantics  •  Request-reply protocols were discussed in Section 5.2, where we 
showed that doOperation can be implemented in different ways to provide different 
delivery guarantees. The main choices are: 

Retry request message: Controls whether to retransmit the request message until 
either a reply is received or the server is assumed to have failed.

Duplicate filtering: Controls when retransmissions are used and whether to filter out 
duplicate requests at the server.

Retransmission of results: Controls whether to keep a history of result messages to 
enable lost results to be retransmitted without re-executing the operations at the 
server.

Combinations of these choices lead to a variety of possible semantics for the reliability 
of remote invocations as seen by the invoker. Figure 5.9

Figure 5.9 Call semantics 
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 shows the choices of interest, 
with corresponding names for the semantics that they produce. Note that for local 
procedure calls, the semantics are exactly once, meaning that every procedure is 
executed exactly once (except in the case of process failure). The choices of RPC 
invocation semantics are defined as follows.
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Maybe semantics: With maybe semantics, the remote procedure call may be executed 
once or not at all. Maybe semantics arises when no fault-tolerance measures are applied 
and can suffer from the following types of failure:

• omission failures if the request or result message is lost;

• crash failures when the server containing the remote operation fails.

If the result message has not been received after a timeout and there are no retries, it is 
uncertain whether the procedure has been executed. If the request message was lost, then 
the procedure will not have been executed. On the other hand, the procedure may have 
been executed and the result message lost. A crash failure may occur either before or 
after the procedure is executed. Moreover, in an asynchronous system, the result of 
executing the procedure may arrive after the timeout. Maybe semantics is useful only for 
applications in which occasional failed calls are acceptable.

At-least-once semantics: With at-least-once semantics, the invoker receives either a 
result, in which case the invoker knows that the procedure was executed at least once, 
or an exception informing it that no result was received. At-least-once semantics can be 
achieved by the retransmission of request messages, which masks the omission failures 
of the request or result message. At-least-once semantics can suffer from the following 
types of failure:

• crash failures when the server containing the remote procedure fails;

• arbitrary failures –  in cases when the request message is retransmitted, the remote 
server may receive it and execute the procedure more than once, possibly causing 
wrong values to be stored or returned. 

Section 5.2 defines an idempotent operation as one that can be performed repeatedly 
with the same effect as if it had been performed exactly once. Non-idempotent 
operations can have the wrong effect if they are performed more than once. For example, 
an operation to increase a bank balance by $10 should be performed only once; if it were 
to be repeated, the balance would grow and grow! If the operations in a server can be 
designed so that all of the procedures in their service interfaces are idempotent 
operations, then at-least-once call semantics may be acceptable. 

At-most-once semantics: With at-most-once semantics, the caller receives either a 
result, in which case the caller knows that the procedure was executed exactly once, or 
an exception informing it that no result was received, in which case the procedure will 
have been executed either once or not at all. At-most-once semantics can be achieved by 
using all of the fault-tolerance measures outlined in Figure 5.9. As in the previous case, 
the use of retries masks any omission failures of the request or result messages. This set 
of fault tolerance measures prevents arbitrary failures by ensuring that for each RPC a 
procedure is never executed more than once. Sun RPC (discussed in Section 5.3.3)
provides at-least-once call semantics. 

Transparency  •  The originators of RPC, Birrell and Nelson [1984], aimed to make 
remote procedure calls as much like local procedure calls as possible, with no distinction 
in syntax between a local and a remote procedure call. All the necessary calls to 
marshalling and message-passing procedures were hidden from the programmer making 
the call. Although request messages are retransmitted after a timeout, this is transparent 
to the caller to make the semantics of remote procedure calls like that of local procedure 
calls.
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More precisely, returning to the terminology of Chapter 1, RPC strives to offer at 
least location and access transparency, hiding the physical location of the (potentially 
remote) procedure and also accessing local and remote procedures in the same way. 
Middleware can also offer additional levels of transparency to RPC.

However, remote procedure calls are more vulnerable to failure than local ones, 
since they involve a network, another computer and another process. Whichever of the 
above semantics is chosen, there is always the chance that no result will be received, and 
in the case of failure, it is impossible to distinguish between failure of the network and 
of the remote server process. This requires that clients making remote calls are able to 
recover from such situations. 

The latency of a remote procedure call is several orders of magnitude greater than 
that of a local one. This suggests that programs that make use of remote calls need to be 
able to take this factor into account, perhaps by minimizing remote interactions. The 
designers of Argus [Liskov and Scheifler 1982] suggested that a caller should be able to 
abort a remote procedure call that is taking too long in such a way that it has no effect 
on the server. To allow this, the server would need to be able to restore things to how 
they were before the procedure was called. These issues are discussed in Chapter 16. 

Remote procedure calls also require a different style of parameter passing, as 
discussed above. In particular, RPC does not offer call by reference.

Waldo et al. [1994] say that the difference between local and remote operations 
should be expressed at the service interface, to allow participants to react in a consistent 
way to possible partial failures. Other systems went further than this by arguing that the 
syntax of a remote call should be different from that of a local call: in the case of Argus, 
the language was extended to make remote operations explicit to the programmer.

The choice as to whether RPC should be transparent is also available to the 
designers of IDLs. For example, in some IDLs, a remote invocation may throw an 
exception when the client is unable to communicate with a remote procedure. This 
requires that the client program handle such exceptions, allowing it to deal with such 
failures. An IDL can also provide a facility for specifying the call semantics of a 
procedure. This can help the designer of the service – for example, if at-least-once call 
semantics is chosen to avoid the overheads of at-most-once, the operations must be 
designed to be idempotent.

The current consensus is that remote calls should be made transparent in the sense 
that the syntax of a remote call is the same as that of a local invocation, but that the 
difference between local and remote calls should be expressed in their interfaces.

5.3.2 Implementation of RPC

The software components required to implement RPC are shown in Figure 5.10. The 
client that accesses a service includes one stub procedure for each procedure in the 
service interface. The stub procedure behaves like a local procedure to the client, but 
instead of executing the call, it marshals the procedure identifier and the arguments into 
a request message, which it sends via its communication module to the server. When the 
reply message arrives, it unmarshals the results. The server process contains a dispatcher 
together with one server stub procedure and one service procedure for each procedure 
in the service interface. The dispatcher selects one of the server stub procedures 
according to the procedure identifier in the request message. The server stub procedure 
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then unmarshals the arguments in the request message, calls the corresponding service 
procedure and marshals the return values for the reply message. The service procedures 
implement the procedures in the service interface. The client and server stub procedures 
and the dispatcher can be generated automatically by an interface compiler from the 
interface definition of the service.

RPC is generally implemented over a request-reply protocol like the ones 
discussed in Section 5.2. The contents of request and reply messages are the same as 
those illustrated for request-reply protocols in Figure 5.4. RPC may be implemented to 
have one of the choices of invocation semantics discussed in Section 5.3.1 – at-least-

once or at-most-once is generally chosen. To achieve this, the communication module 
will implement the desired design choices in terms of retransmission of requests, dealing 
with duplicates and retransmission of results, as shown in Figure 5.9.

5.3.3 Case study: Sun RPC

RFC 1831 [Srinivasan 1995a] describes Sun RPC, which was designed for client-server 
communication in the Sun Network File System (NFS). Sun RPC is sometimes called 
ONC (Open Network Computing) RPC. It is supplied as a part of the various Sun and 
other UNIX operating systems and is also available with NFS installations. 
Implementors have the choice of using remote procedure calls over either UDP or TCP. 
When Sun RPC is used with UDP, request and reply messages are restricted in length – 
theoretically to 64 kilobytes, but more often in practice to 8 or 9 kilobytes. It uses at-

least-once call semantics. Broadcast RPC is an option.
The Sun RPC system provides an interface language called XDR and an interface 

compiler called rpcgen, which is intended for use with the C programming language.

Interface definition language  •  The Sun XDR language, which was originally designed 
for specifying external data representations, was extended to become an interface 
definition language. It may be used to define a service interface for Sun RPC by 
specifying a set of procedure definitions together with supporting type definitions. The 
notation is rather primitive in comparison with that used by CORBA IDL or Java. In 
particular:



Figure 5.11 Files interface in Sun XDR

const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data {

int length;

char buffer[MAX];

};

struct writeargs {

FileIdentifier f;

FilePointer position;

Data data;

};

struct readargs {

FileIdentifier f;

FilePointer position;

Length length;

};

program FILEREADWRITE {

 version VERSION {

void WRITE(writeargs)=1; 1

Data READ(readargs)=2; 2

}=2;

} = 9999;
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• Most languages allow interface names to be specified, but Sun RPC does not – 
instead of this, a program number and a version number are supplied. The program 
numbers can be obtained from a central authority to allow every program to have 
its own unique number. The version number is intended to be changed when a 
procedure signature changes. Both program and version number are passed in the 
request message, so the client and server can check that they are using the same 
version.

• A procedure definition specifies a procedure signature and a procedure number. 
The procedure number is used as a procedure identifier in request messages.

• Only a single input parameter is allowed. Therefore, procedures requiring 
multiple parameters must include them as components of a single structure. 

• The output parameters of a procedure are returned via a single result. 

• The procedure signature consists of the result type, the name of the procedure and 
the type of the input parameter. The type of both the result and the input parameter 
may specify either a single value or a structure containing several values. 
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For example, see the XDR definition in Figure 5.11 of an interface with a pair of 
procedures for writing and reading files. The program number is 9999 and the version 
number is 2. The READ procedure (line 2) takes as its input parameter a structure with 
three components specifying a file identifier, a position in the file and the number of 
bytes required. Its result is a structure containing the number of bytes returned and the 
file data. The WRITE procedure (line 1) has no result. The WRITE and READ procedures 
are given numbers 1 and 2. The number 0 is reserved for a null procedure, which is 
generated automatically and is intended to be used to test whether a server is available. 

 This interface definition language provides a notation for defining constants, 
typedefs, structures, enumerated types, unions and programs. Typedefs, structures and 
enumerated types use the C language syntax. The interface compiler rpcgen can be used 
to generate the following from an interface definition:

• client stub procedures;

• server main procedure, dispatcher and server stub procedures;

• XDR marshalling and unmarshalling procedures for use by the dispatcher and 
client and server stub procedures.

Binding  •   Sun RPC runs a local binding service called the port mapper at a well-known 
port number on each computer. Each instance of a port mapper records the program 
number, version number and port number in use by each service running locally. When 
a server starts up it registers its program number, version number and port number with 
the local port mapper. When a client starts up, it finds out the server’s port by making a 
remote request to the port mapper at the server’s host, specifying the program number 
and version number.

When a service has multiple instances running on different computers, the 
instances may use different port numbers for receiving client requests. If a client needs 
to multicast a request to all the instances of a service that are using different port 
numbers, it cannot use a direct IP multicast message for this purpose. The solution is that 
clients make multicast remote procedure calls by multicasting them to all the port 
mappers, specifying the program and version number. Each port mapper forwards all 
such calls to the appropriate local service program, if there is one.

Authentication. Sun RPC request and reply messages provide additional fields enabling 
authentication information to be passed between client and server. The request message 
contains the credentials of the user running the client program. For example, in the 
UNIX style of authentication the credentials include the uid and gid of the user. Access 
control mechanisms can be built on top of the authentication information which is made 
available to the server procedures via a second argument. The server program is 
responsible for enforcing access control by deciding whether to execute each procedure 
call according to the authentication information. For example, if the server is an NFS file 
server, it can check whether the user has sufficient rights to carry out a requested file 
operation.  Several different authentication protocols can be supported. These include:

• none;

• UNIX style, as described above; 

• a style in which a shared key is established for signing the RPC messages; 

• Kerberos (see Chapter 11). 

A field in the RPC header indicates which style is being used. 
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A more generic approach to security is described in RFC 2203 [Eisler et al. 1997]. 
It provides for the secrecy and integrity of RPC messages as well as authentication. It 
allows the client and server to negotiate a security context in which either no security is 
applied, or in the case that security is required, message integrity or message privacy or 
both may be applied. 

Client and server programs  •  Further material on Sun RPC is available at 
www.cdk5.net/rmi. It includes example client and server programs corresponding to the 
interface defined in Figure 5.11.

5.4 Remote method invocation

Remote method invocation (RMI) is closely related to RPC but extended into the world 
of distributed objects. In RMI, a calling object can invoke a method in a potentially 
remote object. As with RPC, the underlying details are generally hidden from the user. 
The commonalities between RMI and RPC are as follows:

• They both support programming with interfaces, with the resultant benefits that 
stem from this approach (see Section 5.3.1).

• They are both typically constructed on top of request-reply protocols and can offer 
a range of call semantics such as at-least-once and at-most-once.

• They both offer a similar level of transparency – that is, local and remote calls 
employ the same syntax but remote interfaces typically expose the distributed 
nature of the underlying call, for example by supporting remote exceptions.

The following differences lead to added expressiveness when it comes to the 
programming of complex distributed applications and services. 

• The programmer is able to use the full expressive power of object-oriented 
programming in the development of distributed systems software, including the 
use of objects, classes and inheritance, and can also employ related object-
oriented design methodologies and associated tools.

• Building on the concept of object identity in object-oriented systems, all objects 
in an RMI-based system have unique object references (whether they are local or 
remote), such object references can also be passed as parameters, thus offering 
significantly richer parameter-passing semantics than in RPC. 

The issue of parameter passing is particularly important in distributed systems. RMI 
allows the programmer to pass parameters not only by value, as input or output 
parameters, but also by object reference. Passing references is particularly attractive if 
the underlying parameter is large or complex. The remote end, on receiving an object 
reference, can then access this object using remote method invocation, instead of having 
to transmit the object value across the network.

The rest of this section examines the concept of remote method invocation in more 
detail, looking initially at the key issues surrounding distributed object models before 
looking at implementation issues surrounding RMI, including distributed garbage 
collection.
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5.4.1 Design issues for RMI

As mentioned above, RMI shares the same design issues as RPC in terms of 
programming with interfaces, call semantics and level of transparency. The reader is 
encouraged to refer back to Section 5.3.1 for discussion of these items.

The key added design issue relates to the object model and, in particular, 
achieving the transition from objects to distributed objects. We first describe the 
conventional, single-image object model and then describe the distributed object model.

The object model  •  An object-oriented program, for example in Java or C++, consists 
of a collection of interacting objects, each of which consists of a set of data and a set of 
methods. An object communicates with other objects by invoking their methods, 
generally passing arguments and receiving results. Objects can encapsulate their data 
and the code of their methods. Some languages, for example Java and C++, allow 
programmers to define objects whose instance variables can be accessed directly. But 
for use in a distributed object system, an object’s data should be accessible only via its 
methods. 

Object references: Objects can be accessed via object references. For example, in Java, a 
variable that appears to hold an object actually holds a reference to that object. To 
invoke a method in an object, the object reference and method name are given, together 
with any necessary arguments. The object whose method is invoked is sometimes called 
the target and sometimes the receiver. Object references are first-class values, meaning 
that they may, for example, be assigned to variables, passed as arguments and returned 
as results of methods. 

Interfaces: An interface provides a definition of the signatures of a set of methods (that 
is, the types of their arguments, return values and exceptions) without specifying their 
implementation. An object will provide a particular interface if its class contains code 
that implements the methods of that interface. In Java, a class may implement several 
interfaces, and the methods of an interface may be implemented by any class. An 
interface also defines types that can be used to declare the type of variables or of the 
parameters and return values of methods. Note that interfaces do not have constructors.

Actions : Action in an object-oriented program is initiated by an object invoking a 
method in another object. An invocation can include additional information (arguments) 
needed to carry out the method. The receiver executes the appropriate method and then 
returns control to the invoking object, sometimes supplying a result. An invocation of a 
method can have three effects:

1. The state of the receiver may be changed.

2. A new object may be instantiated, for example, by using a constructor in Java or 
C++.

3. Further invocations on methods in other objects may take place. 

As an invocation can lead to further invocations of methods in other objects, an action 
is a chain of related method invocations, each of which eventually returns. 

Exceptions: Programs can encounter many sorts of errors and unexpected conditions of 
varying seriousness. During the execution of a method, many different problems may be 
discovered: for example, inconsistent values in the object’s variables, or failures in 
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attempts to read or write to files or network sockets. When programmers need to insert 
tests in their code to deal with all possible unusual or erroneous cases, this detracts from 
the clarity of the normal case. Exceptions provide a clean way to deal with error 
conditions without complicating the code. In addition, each method heading explicitly 
lists as exceptions the error conditions it might encounter, allowing users of the method 
to deal with them. A block of code may be defined to throw an exception whenever 
particular unexpected conditions or errors arise. This means that control passes to 
another block of code that catches the exception. Control does not return to the place 
where the exception was thrown. 

Garbage collection: It is necessary to provide a means of freeing the space occupied by 
objects when they are no longer needed. A language such as Java, that can detect 
automatically when an object is no longer accessible recovers the space and makes it 
available for allocation to other objects. This process is called garbage collection. When 
a language (for example, C++) does not support garbage collection, the programmer has 
to cope with the freeing of space allocated to objects. This can be a major source of 
errors.

Distributed objects  •  The state of an object consists of the values of its instance 
variables. In the object-based paradigm the state of a program is partitioned into separate 
parts, each of which is associated with an object. Since object-based programs are 
logically partitioned, the physical distribution of objects into different processes or 
computers in a distributed system is a natural extension (the issue of placement is 
discussed in Section 2.3.1). 

Distributed object systems may adopt the client-server architecture. In this case, 
objects are managed by servers and their clients invoke their methods using remote 
method invocation. In RMI, the client’s request to invoke a method of an object is sent 
in a message to the server managing the object. The invocation is carried out by 
executing a method of the object at the server and the result is returned to the client in 
another message. To allow for chains of related invocations, objects in servers are 
allowed to become clients of objects in other servers. 

Distributed objects can assume other architectural models. For example, objects 
can be replicated in order to obtain the usual benefits of fault tolerance and enhanced 
performance, and objects can be migrated with a view to enhancing their performance 
and availability.

Having client and server objects in different processes enforces encapsulation.
That is, the state of an object can be accessed only by the methods of the object, which 
means that it is not possible for unauthorized methods to act on the state. For example, 
the possibility of concurrent RMIs from objects in different computers implies that an 
object may be accessed concurrently. Therefore the possibility of conflicting accesses 
arises. However, the fact that the data of an object is accessed only by its own methods 
allows objects to provide methods for protecting themselves against incorrect accesses. 
For example, they may use synchronization primitives such as condition variables to 
protect access to their instance variables.

Another advantage of treating the shared state of a distributed program as a 
collection of objects is that an object may be accessed via RMI, or it may be copied into 
a local cache and accessed directly, provided that the class implementation is available 
locally.
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The fact that objects are accessed only via their methods gives rise to another 
advantage of heterogeneous systems, that different data formats may be used at different 
sites – these formats will be unnoticed by clients that use RMI to access the methods of 
the objects. 

The distributed object model  •  This section discusses extensions to the object model to 
make it applicable to distributed objects. Each process contains a collection of objects, 
some of which can receive both local and remote invocations, whereas the other objects 
can receive only local invocations, as shown in Figure 5.12

Figure 5.12  Remote and local method invocations
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between objects in different processes, whether in the same computer or not, are known 
as remote method invocations. Method invocations between objects in the same process 
are local method invocations. 

We refer to objects that can receive remote invocations as remote objects. In 
Figure 5.12, the objects B and F are remote objects. All objects can receive local 
invocations, although they can receive them only from other objects that hold references 
to them. For example, object C must have a reference to object E so that it can invoke 
one of its methods. The following two fundamental concepts are at the heart of the 
distributed object model: 

Remote object references:  Other objects can invoke the methods of a remote object 
if they have access to its remote object reference. For example, a remote object 
reference for B in Figure 5.12 must be available to A. 

Remote interfaces: Every remote object has a remote interface that specifies which 
of its methods can be invoked remotely. For example, the objects B and F in Figure 
5.12 must have remote interfaces. 

We look at remote object references, remote interfaces and other aspects of the 
distributed object model next. 

Remote object references: The notion of object reference is extended to allow any object 
that can receive an RMI to have a remote object reference. A remote object reference is 
an identifier that can be used throughout a distributed system to refer to a particular 
unique remote object. Its representation, which is generally different from that of a local 
object reference is discussed in  Section 4.3.4. Remote object references are analogous 
to local ones in that: 

1. The remote object to receive a remote method invocation is specified by the 
invoker as a remote object reference.

2. Remote object references may be passed as arguments and results of remote 
method invocations.
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Remote interfaces: The class of a remote object implements the methods of its remote 
interface, for example as public instance methods in Java. Objects in other processes can 
invoke only the methods that belong to its remote interface, as shown in Figure 5.13

Figure 5.13 A remote object and its remote interface
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Local objects can invoke the methods in the remote interface as well as other methods
implemented by a remote object. Note that remote interfaces, like all interfaces, do not 
have constructors.

The CORBA system provides an interface definition language (IDL), which is 
used for defining remote interfaces. See Figure 5.8 for an example of a remote interface 
defined in CORBA IDL. The classes of remote objects and the client programs may be 
implemented in any language  for which an IDL compiler is available, such as C++, Java 
or Python. CORBA clients need not use the same language as the remote object in order 
to invoke its methods remotely. 

In Java RMI, remote interfaces are defined in the same way as any other Java 
interface. They acquire their ability to be remote interfaces by extending an interface 
named Remote. Both CORBA IDL (Chapter 8) and Java support multiple inheritance of 
interfaces. That is, an interface is allowed to extend one or more other interfaces.

Actions in a distributed object system   •  As in the non-distributed case, an action is 
initiated by a method invocation, which may result in further invocations on methods in 
other objects. But in the distributed case, the objects involved in a chain of related 
invocations may be located in different processes or different computers. When an 
invocation crosses the boundary of a process or computer, RMI is used, and the remote 
reference of the object must be available to the invoker. In Figure 5.12, object A needs 
to hold a remote object reference to object B. Remote object references may be obtained 
as the results of remote method invocations. For example, object A in Figure 5.12 might 
obtain a remote reference to object F from object B.

When an action leads to the instantiation of a new object, that object will normally 
live within the process where instantiation is requested – for example, where the 
constructor was used. If the newly instantiated object has a remote interface, it will be a 
remote object with a remote object reference. 

Distributed applications may provide remote objects with methods for 
instantiating objects that can be accessed by RMI, thus effectively providing the effect 
of remote instantiation of objects. For example, if the object L in Figure 5.14 contains a 
method for creating remote objects, then the remote invocations from C and K could 
lead to the instantiation of the objects M and N, respectively. 



Figure 5.14  Instantiation of remote objects
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Garbage collection in a distributed-object system: If a language, for example Java, 
supports garbage collection, then any associated RMI system should allow garbage 
collection of remote objects. Distributed garbage collection is generally achieved by 
cooperation between the existing local garbage collector and an added module that 
carries out a form of distributed garbage collection, usually based on reference counting. 
Section 5.4.3 describes such a scheme in detail. If garbage collection is not available, 
then remote objects that are no longer required should be deleted. 

Exceptions: Any remote invocation may fail for reasons related to the invoked object 
being in a different process or computer from the invoker. For example, the process 
containing the remote object may have crashed or may be too busy to reply, or the 
invocation or result message may be lost. Therefore, remote method invocation should 
be able to raise exceptions such as timeouts that are due to distribution as well as those 
raised during the execution of the method invoked. Examples of the latter are an attempt 
to read beyond the end of a file, or to access a file without the correct permissions.

CORBA IDL provides a notation for specifying application-level exceptions, and 
the underlying system generates standard exceptions when errors due to distribution 
occur. CORBA client programs need to be able to handle exceptions. For example, a 
C++ client program will use the exception mechanisms in C++.

5.4.2 Implementation of RMI

Several separate objects and modules are involved in achieving a remote method 
invocation. These are shown in Figure 5.15, in which an application-level object A 
invokes a method in a remote application-level object B for which it holds a remote 
object reference. This section discusses the roles of each of the components shown in 
that figure, dealing first with the communication and remote reference modules and then 
with the RMI software that runs over them. 

We then explore the following related topics: the generation of proxies, the 
binding of names to their remote object references, the activation and passivation of 
objects and the location of objects from their remote object references.

Communication module  •   The two cooperating communication modules carry out the 
request-reply protocol, which transmits request and reply messages between the client 
and server. The contents of request and reply messages are shown in Figure 5.4. The 
communication module uses only the first three items, which specify the message type, 
its requestId and the remote reference of the object to be invoked. The operationId and 



Figure 5.15 The role of proxy and skeleton in remote method invocation
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all the marshalling and unmarshalling are the concern of the RMI software, discussed 
below. The communication modules are together responsible for providing a specified 
invocation semantics, for example at-most-once.

The communication module in the server selects the dispatcher for the class of the 
object to be invoked, passing on its local reference, which it gets from the remote 
reference module in return for the remote object identifier in the request message. The 
role of dispatcher is discussed in the forthcoming section on RMI software. 

Remote reference module  •   A remote reference module is responsible for translating 
between local and remote object references and for creating remote object references. 
To support its responsibilities, the remote reference module in each process has a remote 

object table that records the correspondence between local object references in that 
process and remote object references (which are system-wide). The table includes:

• An entry for all the remote objects held by the process. For example, in Figure 
5.15 the remote object B will be recorded in the table at the server. 

• An entry for each local proxy. For example, in Figure 5.15 the proxy for B will be 
recorded in the table at the client.

The role of a proxy is discussed in the subsection on RMI software. The actions of the 
remote reference module are as follows: 

• When a remote object is to be passed as an argument or a result for the first time, 
the remote reference module is asked to create a remote object reference, which it 
adds to its table. 

• When a remote object reference arrives in a request or reply message, the remote 
reference module is asked for the corresponding local object reference, which may 
refer either to a proxy or to a remote object. In the case that the remote object 
reference is not in the table, the RMI software creates a new proxy and asks the 
remote reference module to add it to the table.

This module is called by components of the RMI software when they are marshalling 
and unmarshalling remote object references. For example, when a request message 
arrives, the table is used to find out which local object is to be invoked. 
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Servants   •  A servant is an instance of a class that provides the body of a remote object. 
It is the servant that eventually handles the remote requests passed on by the 
corresponding skeleton. Servants live within a server process. They are created when 
remote objects are instantiated and remain in use until they are no longer needed, finally 
being garbage collected or deleted.

The RMI software  •  This consists of a layer of software between the application-level 
objects and the communication and remote reference modules. The roles of the 
middleware objects shown in Figure 5.15 are as follows: 

Proxy: The role of a proxy is to make remote method invocation transparent to 
clients by behaving like a local object to the invoker; but instead of executing an 
invocation, it forwards it in a message to a remote object. It hides the details of the 
remote object reference, the marshalling of arguments, unmarshalling of results and 
sending and receiving of messages from the client. There is one proxy for each 
remote object for which a process holds a remote object reference. The class of a 
proxy implements the methods in the remote interface of the remote object it 
represents, which ensures that remote method invocations are suitable for the type of 
the remote object. However, the proxy implements them quite differently. Each 
method of the proxy marshals a reference to the target object, its own operationId and 
its arguments into a request message and sends it to the target. It then awaits the reply

message, unmarshals it and returns the results to the invoker. 

Dispatcher:  A server has one dispatcher and one skeleton for each class 
representing a remote object. In our example, the server has a dispatcher and a 
skeleton for the class of remote object B. The dispatcher receives request messages 
from the communication module. It uses the operationId to select the appropriate 
method in the skeleton, passing on the request message. The dispatcher and the proxy 
use the same allocation of operationIds to the methods of the remote interface. 

Skeleton: The class of a remote object has a skeleton, which implements the methods 
in the remote interface. They are implemented quite differently from the methods in 
the servant that incarnates a remote object. A skeleton method unmarshals the 
arguments in the request message and invokes the corresponding method in the 
servant. It waits for the invocation to complete and then marshals the result, together 
with any exceptions, in a reply message to the sending proxy’s method.

Remote object references are marshalled in the form shown in Figure 4.13, which 
includes information about the remote interface of the remote object – for example, the 
name of the remote interface or the class of the remote object. This information enables 
the proxy class to be determined so that a new proxy may be created when it is needed. 
For example, the proxy class name may be generated by appending _proxy to the name 
of the remote interface.

Generation of the classes for proxies, dispatchers and skeletons   •  The classes for the 
proxy, dispatcher and skeleton used in RMI are generated automatically by an interface 
compiler. For example, in the Orbix implementation of CORBA, interfaces of remote 
objects are defined in CORBA IDL, and the interface compiler can be used to generate 
the classes for proxies, dispatchers and skeletons in C++ or in Java [www.iona.com].
For Java RMI, the set of methods offered by a remote object is defined as a Java interface 
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that is implemented within the class of the remote object. The Java RMI compiler 
generates the proxy, dispatcher and skeleton classes from the class of the remote object. 

Dynamic invocation: An alternative to proxies  •  The proxy just described is static, in the 
sense that its class is generated from an interface definition and then compiled into the 
client code. Sometimes this is not practical, though. Suppose that a client program 
receives a remote reference to an object whose remote interface was not available at 
compile time. In this case it needs another way to invoke the remote object. Dynamic 

invocation gives the client access to a generic representation of a remote invocation like 
the doOperation method used in Exercise 5.18, which is available as part of the 
infrastructure for RMI (see Section 5.4.1). The client will supply the remote object 
reference, the name of the method and the arguments to doOperation and then wait to 
receive the results. 

Note that although the remote object reference includes information about the 
interface of the remote object, such as its name, this is not enough – the names of the 
methods and the types of the arguments are required for making a dynamic invocation. 
CORBA provides this information via a component called the Interface Repository, 
which is described in Chapter 8. 

The dynamic invocation interface is not as convenient to use as a proxy, but it is 
useful in applications where some of the interfaces of the remote objects cannot be 
predicted at design time. An example of such an application is the shared whiteboard 
that we use to illustrate Java RMI (Section 5.5), CORBA (Chapter 8) and web services 
(Section 9.2.3). To summarize: the shared whiteboard application displays many 
different types of shapes, such as circles, rectangles and lines, but it should also be able 
to display new shapes that were not predicted when the client was compiled. A client 
that uses dynamic invocation is able to address this challenge. We shall see in Section 
5.5 that the dynamic downloading of classes to clients is an alternative to dynamic 
invocation. This is available in Java RMI – a single-language system. 

Dynamic skeletons: It is clear, from the above example, that it can also arise that a server 
will need to host remote objects whose interfaces were not known at compile time. For 
example, a client may supply a new type of shape to the shared whiteboard server for it 
to store. A server with dynamic skeletons would be able to deal with this situation. We 
defer describing dynamic skeletons until the chapter on CORBA (Chapter 8). However, 
as we shall see in Section 5.5, Java RMI addresses this problem by using a generic 
dispatcher and the dynamic downloading of classes to the server. 

Server and client programs  •  The server program contains the classes for the 
dispatchers and skeletons, together with the implementations of the classes of all of the 
servants that it supports. In addition, the server program contains an initialization

section (for example, in a main method in Java or C++). The initialization section is 
responsible for creating and initializing at least one of the servants to be hosted by the 
server. Additional servants may be created in response to requests from clients. The 
initialization section may also register some of its servants with a binder (see below). 
Generally it will register just one servant, which can be used to access the rest. 

The client program will contain the classes of the proxies for all of the remote 
objects that it will invoke. It can use a binder to look up remote object references.
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Factory methods: We noted earlier that remote object interfaces cannot include 
constructors. This means that servants cannot be created by remote invocation on 
constructors. Servants are created either in the initialization section or in methods in a 
remote interface designed for that purpose. The term factory method is sometimes used 
to refer to a method that creates servants, and a factory object is an object with factory 
methods. Any remote object that needs to be able to create new remote objects on 
demand for clients must provide methods in its remote interface for this purpose. Such 
methods are called factory methods, although they are really just normal methods. 

The binder  •   Client programs generally require a means of obtaining a remote object 
reference for at least one of the remote objects held by a server. For example, in Figure 
5.12, object A would require a remote object reference for object B. A binder in a 
distributed system is a separate service that maintains a table containing mappings from 
textual names to remote object references. It is used by servers to register their remote 
objects by name and by clients to look them up. Chapter 8 contains a discussion of the 
CORBA Naming Service. The Java binder, RMIregistry, is discussed briefly in the case 
study on Java RMI in Section 5.5.

Server threads   •  Whenever an object executes a remote invocation, that execution may 
lead to further invocations of methods in other remote objects, which may take some 
time to return. To avoid the execution of one remote invocation delaying the execution 
of another, servers generally allocate a separate thread for the execution of each remote 
invocation. When this is the case, the designer of the implementation of a remote object 
must allow for the effects on its state of concurrent executions.

Activation of remote objects   •  Some applications require that information survive for 
long periods of time. However, it is not practical for the objects representing such 
information to be kept in running processes for unlimited periods, particularly since they 
are not necessarily in use all of the time. To avoid the potential waste of resources that 
would result from to running all of the servers that manage remote objects all of the time, 
the servers can be started whenever they are needed by clients, as is done for the standard 
set of TCP services such as FTP, which are started on demand by a service called Inetd.
Processes that start server processes to host remote objects are called activators, for the 
following reasons.

 A remote object is described as active when it is available for invocation within 
a running process, whereas it is called passive if is not currently active but can be made 
active. A passive object consists of two parts: 

1. the implementation of its methods;  

2. its state in the marshalled form. 

Activation consists of creating an active object from the corresponding passive object by 
creating a new instance of its class and initializing its instance variables from the stored 
state. Passive objects can be activated on demand, for example when they need to be 
invoked by other objects. 

An activator is responsible for:

• registering passive objects that are available for activation, which involves 
recording the names of servers against the URLs or file names of the 
corresponding passive objects;
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• starting named server processes and activating remote objects in them; 

• keeping track of the locations of the servers for remote objects that it has already 
activated.

Java RMI provides the ability to make some remote objects activatable [java.sun.com 
IX]. When an activatable object is invoked, if that object is not currently active, the 
object is made active from its marshalled state and then passed the invocation. It uses 
one activator on each server computer. 

The CORBA case study in Chapter 8 describes the implementation repository – a 
weak form of activator that starts services containing objects in an initial state. 

Persistent object stores  •  An object that is guaranteed to live between activations of 
processes is called a persistent object. Persistent objects are generally managed by 
persistent object stores, which store their state in a marshalled form on disk. Examples 
include the CORBA persistent state service (see Chapter 8), Java Data Objects 
[java.sun.com VIII] and Persistent Java [Jordan 1996; java.sun.com IV].

In general, a persistent object store will manage very large numbers of persistent 
objects, which are stored on disk or in a database until they are needed. They will be 
activated when their methods are invoked by other objects. Activation is generally 
designed to be transparent – that is, the invoker should not be able to tell whether an 
object is already in main memory or has to be activated before its method is invoked. 
Persistent objects that are no longer needed in main memory can be passivated. In most 
cases, objects are saved in the persistent object store whenever they reach a consistent 
state, for the sake of fault tolerance. The persistent object store needs a strategy for 
deciding when to passivate objects. For example, it may do so in response to a request 
in the program that activated the objects, either at the end of a transaction or when the 
program exits. Persistent object stores generally attempt to optimize passivation by 
saving only those objects that have been modified since the last time they were saved. 

Persistent object stores generally allow collections of related persistent objects to 
have human-readable names such as pathnames or URLs. In practice, each human-
readable name is associated with the root of a connected set of persistent objects. 

There are two approaches to deciding whether an object is persistent or not:

• The persistent object store maintains some persistent roots, and any object that is 
reachable from a persistent root is defined to be persistent. This approach is used 
by Persistent Java, Java Data Objects and PerDiS [Ferreira et al. 2000]. They 
make use of a garbage collector to dispose of objects that are no longer reachable 
from the persistent roots.

• The persistent object store provides some classes on which persistence is based – 
persistent objects belong to their subclasses. For example, in Arjuna [Parrington 
et al. 1995], persistent objects are based on C++ classes that provide transactions 
and recovery. Unwanted objects must be deleted explicitly.

Some persistent object stores, such as PerDiS and Khazana [Carter et al. 1998], allow 
objects to be activated in multiple caches local to users, instead of in servers. In this case, 
a cache consistency protocol is required. Further details on consistency models can be 
found on the companion web site, in the chapter from the fourth edition on distributed 
shared memory [www.cdk5.net/dsm].
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Object location  •  Section 4.3.4 describes a form of remote object reference that contains 
the Internet address and port number of the process that created the remote object as a 
way of guaranteeing uniqueness. This form of remote object reference can also be used 
as an address for a remote object, so long as that object remains in the same process for 
the rest of its life. But some remote objects will exist in a series of different processes, 
possibly on different computers, throughout their lifetime. In this case, a remote object 
reference cannot act as an address. Clients making invocations require both a remote 
object reference and an address to which to send invocations. 

A location service helps clients to locate remote objects from their remote object 
references. It uses a database that maps remote object references to their probable 
current locations – the locations are probable because an object may have migrated again 
since it was last heard of. For example, the Clouds system [Dasgupta et al. 1991] and 
the Emerald system [Jul et al. 1988] used a cache/broadcast scheme in which a member 
of a location service on each computer holds a small cache of remote object reference-
to-location mappings. If a remote object reference is in the cache, that address is tried 
for the invocation and will fail if the object has moved. To locate an object that has 
moved or whose location is not in the cache, the system broadcasts a request. This 
scheme may be enhanced by the use of forward location pointers, which contain hints as 
to the new location of an object. Another example is the resolution service required for 
resolving the URN of a resource into its current URL, mentioned in Section 9.1.

5.4.3 Distributed garbage collection

The aim of a distributed garbage collector is to ensure that if a local or remote reference 
to an object is still held anywhere in a set of distributed objects, the object itself will 
continue to exist, but as soon as no object any longer holds a reference to it, the object 
will be collected and the memory it uses recovered. 

We describe the Java distributed garbage collection algorithm, which is similar to 
the one described by Birrell et al. [1995]. It is based on reference counting. Whenever a 
remote object reference enters a process, a proxy will be created and will stay there for 
as long as it is needed. The process where the object lives (its server) should be informed 
of the new proxy at the client. Then later when there is no longer a proxy at the client, 
the server should be informed. The distributed garbage collector works in cooperation 
with the local garbage collectors as follows:

• Each server process maintains a set of the names of the processes that hold remote 
object references for each of its remote objects; for example, B.holders is the set 
of client processes (virtual machines) that have proxies for object B. (In Figure 
5.15, this set will include the client process illustrated.) This set can be held in an 
additional column in the remote object table.

• When a client C first receives a remote reference to a particular remote object, B,
it makes an addRef(B) invocation to the server of that remote object and then 
creates a proxy; the server adds C to B.holders. 
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• When a client C’s garbage collector notices that a proxy for remote object B is no 
longer reachable, it makes a removeRef(B) invocation to the corresponding server 
and then deletes the proxy; the server removes C from B.holders. 

• When B.holders is empty, the server’s local garbage collector will reclaim the 
space occupied by B unless there are any local holders.

This algorithm is intended to be carried out by means of pairwise request-reply 
communication with at-most-once invocation semantics between the remote reference 
modules in processes – it does not require any global synchronization. Note also that the 
extra invocations made on behalf of the garbage collection algorithm do not affect every 
normal RMI; they occur only when proxies are created and deleted. 

There is a possibility that one client may make a removeRef(B) invocation at about 
the same time as another client makes an addRef(B) invocation. If the removeRef arrives
first and B.holders is empty, the remote object B could be deleted before the addRef 

arrives. To avoid this situation, if the set B.holders is empty at the time when a remote 
object reference is transmitted, a temporary entry is added until the addRef arrives.

 The Java distributed garbage collection algorithm tolerates communication 
failures by using the following approach. The addRef and removeRef operations are 
idempotent. In the case that an addRef(B) call returns an exception (meaning that the 
method was either executed once or not at all), the client will not create a proxy but will 
make a removeRef(B) call. The effect of removeRef is correct whether or not the addRef

succeeded. The case where removeRef fails is dealt with by leases.
The Java distributed garbage collection algorithm can tolerate the failure of client 

processes. To achieve this, servers lease their objects to clients for a limited period of 
time. The lease period starts when the client makes an addRef invocation to the server. 
It ends either when the time has expired or when the client makes a removeRef

invocation to the server. The information stored by the server concerning each lease 
contains the identifier of the client’s virtual machine and the period of the lease. Clients 
are responsible for requesting the server to renew their leases before they expire.

Leases in Jini  •  The Jini distributed system includes a specification for leases [Arnold 
et al. 1999] that can be used in a variety of situations when one object offers a resource 
to another object – for example, when remote objects offer references to other objects. 
Objects that offer such resources are at risk of having to maintain the resources when the 
users are no longer interested or their programs have exited. To avoid complicated 
protocols to discover whether the resource users are still interested, the resources are 
offered for a limited period of time. The granting of the use of a resource for a period of 
time is called a lease. The object offering the resource will maintain it until the time in 
the lease expires. The resource users are responsible for requesting their renewal when 
they expire. 

The period of a lease may be negotiated between the grantor and the recipient in 
Jini, although this does not happen with the leases used in Java RMI. In Jini, an object 
representing a lease implements the Lease interface. It contains information about the 
period of the lease and methods enabling the lease to be renewed or cancelled. The 
grantor returns an instance of a Lease when it supplies a resource to another object.
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5.5 Case study: Java RMI

Java RMI extends the Java object model to provide support for distributed objects in the 
Java language. In particular, it allows objects to invoke methods on remote objects using 
the same syntax as for local invocations. In addition, type checking applies equally to 
remote invocations as to local ones. However, an object making a remote invocation is 
aware that its target is remote because it must handle RemoteExceptions; and the 
implementor of a remote object is aware that it is remote because it must implement the 
Remote interface. Although the distributed object model is integrated into Java in a 
natural way, the semantics of parameter passing differ because the invoker and target are 
remote from one another. 

The programming of distributed applications in Java RMI should be relatively 
simple because it is a single-language system – remote interfaces are defined in the Java 
language. If a multiple-language system such as CORBA is used, the programmer needs 
to learn an IDL and to understand how it maps onto the implementation language. 
However, even in a single-language system, the programmer of a remote object must 
consider its behaviour in a concurrent environment.

In the remainder of this introduction, we give an example of a remote interface, 
then discuss the parameter-passing semantics with reference to the example. Finally, we 
discuss the downloading of classes and the binder. The second section of this case study 
discusses how to build client and server programs for the example interface. The third 
section is concerned with the design and implementation of Java RMI. For full details 
of Java RMI, see the tutorial on remote invocation [java.sun.com I].

In this case study, the CORBA case study in Chapter 8 and the discussion of web 
services in Chapter 9, we use a shared whiteboard as an example. This is a distributed 
program that allows a group of users to share a common view of a drawing surface 
containing graphical objects, such as rectangles, lines and circles, each of which has 
been drawn by one of the users. The server maintains the current state of a drawing by 
providing an operation for clients to inform it about the latest shape one of their users 
has drawn and keeping a record of all the shapes it has received. The server also provides 
operations allowing clients to retrieve the latest shapes drawn by other users by polling 
the server. The server has a version number (an integer) that it increments each time a 
new shape arrives and attaches to the new shape. The server provides operations 
allowing clients to enquire about its version number and the version number of each 
shape, so that they may avoid fetching shapes that they already have.

Remote interfaces in Java RMI  •  Remote interfaces are defined by extending an 
interface called Remote provided in the java.rmi package. The methods must throw 
RemoteException, but application-specific exceptions may also be thrown. Figure 5.16
shows an example of two remote interfaces called Shape and ShapeList. In this example, 
GraphicalObject is a class that holds the state of a graphical object – for example, its 
type, its position, enclosing rectangle, line colour and fill colour – and provides 
operations for accessing and updating its state. GraphicalObject must implement the 
Serializable interface. Consider the interface Shape first: the getVersion method returns 
an integer, whereas the getAllState method returns an instance of the class 
GraphicalObject. Now consider the interface ShapeList: its newShape method passes an 
instance of GraphicalObject as its argument but returns an object with a remote 



Figure 5.16 Java Remote interfaces Shape and ShapeList

import java.rmi.*;

import java.util.Vector;

public interface Shape extends Remote {

int getVersion() throws RemoteException;

GraphicalObject getAllState() throws RemoteException; 1

}

public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2

Vector allShapes() throws RemoteException;

int getVersion() throws RemoteException;

}
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interface (that is, a remote object) as its result. An important point to note is that both 
ordinary objects and remote objects can appear as arguments and results in a remote 
interface. The latter are always denoted by the name of their remote interface. In the next 
subsection, we discuss how ordinary objects and remote objects are passed as arguments 
and results.

Parameter and result passing  •  In Java RMI, the parameters of a method are assumed 
to be input parameters and the result of a method is a single output parameter. Section 
4.3.2 describes Java serialization, which is used for marshalling arguments and results 
in Java RMI. Any object that is serializable – that is, that implements the Serializable

interface – can be passed as an argument or result in Java RMI. All primitive types and 
remote objects are serializable. Classes for arguments and result values are downloaded 
to the recipient by the RMI system where necessary.

Passing remote objects:  When the type of a parameter or result value is defined as 
a remote interface, the corresponding argument or result is always passed as a remote 
object reference. For example, in Figure 5.16, line 2, the return value of the method 
newShape is defined as Shape – a remote interface. When a remote object reference 
is received, it can be used to make RMI calls on the remote object to which it refers.

Passing non-remote objects:  All serializable non-remote objects are copied and 
passed by value. For example, in Figure 5.16 (lines 2 and 1) the argument of 
newShape and the return value of getAllState are both of type GraphicalObject,
which is serializable and is passed by value. When an object is passed by value, a new 
object is created in the receiver’s process. The methods of this new object can be 
invoked locally, possibly causing its state to differ from the state of the original object 
in the sender’s process. 

Thus, in our example, the client uses the method newShape to pass an instance of 
GraphicalObject to the server; the server makes a remote object of type Shape

containing the state of the GraphicalObject and returns a remote object reference to it. 
The arguments and return values in a remote invocation are serialized to a stream using 
the method described in Section 4.3.2, with the following modifications:
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1. Whenever an object that implements the Remote interface is serialized, it is 
replaced by its remote object reference, which contains the name of its (the remote 
object’s) class. 

2. When any object is serialized, its class information is annotated with the location 
of the class (as a URL), enabling the class to be downloaded by the receiver. 

Downloading of classes  •  Java is designed to allow classes to be downloaded from one 
virtual machine to another. This is particularly relevant to distributed objects that 
communicate by means of remote invocation. We have seen that non-remote objects are 
passed by value and remote objects are passed by reference as arguments and results of 
RMIs. If the recipient does not already possess the class of an object passed by value, its 
code is downloaded automatically. Similarly, if the recipient of a remote object 
reference does not already possess the class for a proxy, its code is downloaded 
automatically. This has two advantages: 

1. There is no need for every user to keep the same set of classes in their working 
environment. 

2. Both client and server programs can make transparent use of instances of new 
classes whenever they are added. 

As an example, consider the whiteboard program and suppose that its initial 
implementation of GraphicalObject does not allow for text. A client with a textual 
object can implement a subclass of GraphicalObject that deals with text and pass an 
instance to the server as an argument of the newShape method. After that, other clients 
may retrieve the instance using the getAllState method. The code of the new class will 
be downloaded automatically from the first client to the server and then to other clients 
as needed. 

Figure 5.17 The Naming class of Java RMIregistry

void rebind (String name, Remote obj) 

This method is used by a server to register the identifier of a remote object by name, 
as shown in Figure 5.18, line 3. 

void bind (String name, Remote obj) 

This method can alternatively be used by a server to register a remote object by name, 
but if the name is already bound to a remote object reference an exception is thrown.

void unbind (String name, Remote obj) 

This method removes a binding.

Remote lookup(String name) 

This method is used by clients to look up a remote object by name, as shown in Figure 
5.20, line 1. A remote object reference is returned.

String [] list()

This method returns an array of Strings containing the names bound in the registry.
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RMIregistry  •  The RMIregistry is the binder for Java RMI. An instance of RMIregistry 
should normally run on every server computer that hosts remote objects. It maintains a 
table mapping textual, URL-style names to references to remote objects hosted on that 
computer. It is accessed by methods of the Naming class, whose methods take as an 
argument a URL-formatted string of the form: 

//computerName:port/objectName

where computerName and port refer to the location of the RMIregistry. If they are 
omitted, the local computer and default port are assumed. Its interface offers the 
methods shown in Figure 5.17, in which the exceptions are not listed – all of the methods 
can throw a RemoteException.

Used in this way, clients must direct their lookup enquiries to particular hosts. 
Alternatively, it is possible to set up a system-wide binding service. To achieve this, it 
is necessary to run an instance of the RMIregistry in the networked environment and 
then use the class LocateRegistry, which is in java.rmi.registry, to discover this registry. 
More specifically, this class contains a getRegistry method that returns an object of type 
Registry representing the remote binding service:

public static Registry getRegistry() throws RemoteException

Following this, it is then necessary to issue a call of rebind on this returned Registry

object to establish a connection with the remote RMIregistry.

5.5.1 Building client and server programs

Figure 5.18 Java class ShapeListServer with main method

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

public class ShapeListServer{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

try{

ShapeList aShapeList = new ShapeListServant(); 1

ShapeList stub = 2

(ShapeList) UnicastRemoteObject.exportObject(aShapeList,0);3

Naming.rebind("//bruno.ShapeList", stub ); 4

System.out.println("ShapeList server ready");

}catch(Exception e) {

System.out.println("ShapeList server main " + e.getMessage());}

}

}

This section outlines the steps necessary to produce client and server programs that use 
the Remote interfaces Shape and ShapeList shown in Figure 5.16. The server program is 
a simplified version of a whiteboard server that implements the two interfaces Shape and 
ShapeList. We describe a simple polling client program and then introduce the callback 
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technique that can be used to avoid the need to poll the server. Complete versions of the 
classes illustrated in this section are available at www.cdk5.net/rmi.

Server program  •  The server is a whiteboard server: it represents each shape as a remote 
object instantiated by a servant that implements the Shape interface and holds the state 
of a graphical object as well as its version number; it represents its collection of shapes 
by using another servant that implements the ShapeList interface and holds a collection 
of shapes in a Vector.

The server program consists of a main method and a servant class to implement 
each of its remote interfaces. The main method of the server class is shown in Figure 
5.18, with the key steps contained in the lines marked 1 to 4:

• In line 1, the server creates an instance of ShapeListServant.

• Lines 2 and 3 use the method exportObject (defined on UnicastRemoteObject) to 
make this object available to the RMI runtime, thereby making it available to 
receive incoming invocations. The second parameter of exportObject specifies the 
TCP port to be used for incoming invocations. It is normal practice to set this to 
zero, implying that an anonymous port will be used (one that is generated by the 
RMI runtime). Using UnicastRemoteObject ensures that the resultant object lives 
only as long as the process in which it is created (an alternative is to make this an 
Activatable object that is, one that lives beyond the server instance).

• Finally, line 4 binds the remote object to a name in the RMIregistry. Note that the 
value bound to the name is a remote object reference, and its type is the type of its 
remote interface – ShapeList.

Figure 5.19 Java class ShapeListServant implements interface ShapeList

import java.util.Vector;

public class ShapeListServant implements ShapeList {

 private Vector theList;                 // contains the list of Shapes

private int version;

public ShapeListServant(){...}

public Shape newShape(GraphicalObject g)  { 1

version++;

Shape s = new ShapeServant( g, version); 2

theList.addElement(s);                

return s;

}

public  Vector allShapes(){...}

public int getVersion()  { ... }

}

The two servant classes are ShapeListServant, which implements the ShapeList

interface, and ShapeServant, which implements the Shape interface. Figure 5.19 gives 
an outline of the class ShapeListServant.
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The implementation of the methods of the remote interface in a servant class is 
completely straightforward because it can be done without any concern for the details of 
communication. Consider the method newShape in Figure 5.19 (line 1), which could be 
called a factory method because it allows the client to request the creation of a servant. 
It uses the constructor of ShapeServant, which creates a new servant containing the 
GraphicalObject and version number passed as arguments. The type of the return value 
of newShape is Shape – the interface implemented by the new servant. Before returning, 
the method newShape adds the new shape to its vector that contains the list of shapes 
(line 2). 

The main method of a server needs to create a security manager to enable Java 
security to apply the protection appropriate for an RMI server. A default security 
manager called RMISecurityManager is provided. It protects the local resources to 
ensure that the classes that are loaded from remote sites cannot have any effect on 
resources such as files, but it differs from the standard Java security manager in allowing 
the program to provide its own class loader and to use reflection. If an RMI server sets 
no security manager, proxies and classes can only be loaded from the local classpath, in 
order to protect the program from code that is downloaded as a result of remote method 
invocations.

Client program   •  

Figure 5.20 Java client of ShapeList

import java.rmi.*;

import java.rmi.server.*;

import java.util.Vector;

public class ShapeListClient{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

ShapeList aShapeList = null;

try{

aShapeList  = (ShapeList) Naming.lookup("//bruno.ShapeList"); 1

Vector sList = aShapeList.allShapes(); 2

} catch(RemoteException e) {System.out.println(e.getMessage());

}catch(Exception e) {System.out.println("Client: " + e.getMessage());}

}

}

A simplified client for the ShapeList server is illustrated in Figure 
5.20. Any client program needs to get started by using a binder to look up a remote 
object reference. Our client sets a security manager and then looks up a remote object 
reference for the remote object using the lookup operation of the RMIregistry (line 1). 
Having obtained an initial remote object reference, the client continues by sending RMIs 
to that remote object or to others discovered during its execution according to the needs 
of its application. In our example, the client invokes the method allShapes in the remote 
object (line 2) and receives a vector of remote object references to all of the shapes 
currently stored in the server. If the client was implementing a whiteboard display, it 
would use the server’s getAllState method in the Shape interface to retrieve each of the 
graphical objects in the vector and display them in a window. Each time the user finishes 
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drawing a graphical object, it will invoke the method newShape in the server, passing 
the new graphical object as its argument. The client will keep a record of the latest 
version number at the server, and from time to time it will invoke getVersion at the 
server to find out whether any new shapes have been added by other users. If so, it will 
retrieve and display them.

Callbacks  •  The general idea behind callbacks is that instead of clients polling the 
server to find out whether some event has occurred, the server should inform its clients 
whenever that event occurs. The term callback is used to refer to a server’s action of 
notifying clients about an event. Callbacks can be implemented in RMI as follows:

• The client creates a remote object that implements an interface that contains a 
method for the server to call. We refer to this as a callback object.

• The server provides an operation allowing interested clients to inform it of the 
remote object references of their callback objects. It records these in a list.

• Whenever an event of interest occurs, the server calls the interested clients. For 
example, the whiteboard server would call its clients whenever a graphical object 
is added.

The use of callbacks avoids the need for a client to poll the objects of interest in the 
server and its attendant disadvantages: 

• The performance of the server may be degraded by the constant polling.

• Clients cannot notify users of updates in a timely manner. 

However, callbacks have problems of their own. First, the server needs to have up-to-
date lists of the clients’ callback objects, but clients may not always inform the server 
before they exit, leaving the server with incorrect lists. The leasing technique discussed 
in Section 5.4.3 can be used to overcome this problem. The second problem associated 
with callbacks is that the server needs to make a series of synchronous RMIs to the 
callback objects in the list. See Chapter 6 for some ideas about solving the second 
problem.

We illustrate the use of callbacks in the context of the whiteboard application. The 
WhiteboardCallback interface could be defined as follows:

public interface WhiteboardCallback implements Remote {

void callback(int version) throws RemoteException;

};

This interface is implemented as a remote object by the client, enabling the server to 
send the client a version number whenever a new object is added. But before the server 
can do this, the client needs to inform the server about its callback object. To make this 
possible, the ShapeList interface requires additional methods such as register and 
deregister, defined as follows:

int register(WhiteboardCallback callback) throws RemoteException;

void deregister(int callbackId) throws RemoteException;

After the client has obtained a reference to the remote object with the ShapeList interface 
(for example, in Figure 5.20, line 1) and created an instance of its callback object, it uses 
the register method of ShapeList to inform the server that it is interested in receiving 
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callbacks. The register method returns an integer (the callbackId) referring to the 
registration. When the client is finished it should call deregister to inform the server it 
no longer requires callbacks. The server is responsible for keeping a list of interested 
clients and notifying all of them each time its version number increases. 

5.5.2 Design and implementation of Java RMI

The original Java RMI system used all of the components shown in Figure 5.15. But in 
Java 1.2, the reflection facilities were used to make a generic dispatcher and to avoid the 
need for skeletons. Prior to J2SE 5.0, the client proxies were generated by a compiler 
called rmic from the compiled server classes (not from the definitions of the remote 
interfaces). However, this step is no longer necessary with recent versions of J2SE, 
which contain support for the dynamic generation of stub classes at runtime.

Use of reflection  •  Reflection is used to pass information in request messages about the 
method to be invoked. This is achieved with the help of the class Method in the reflection 
package. Each instance of Method represents the characteristics of a particular method, 
including its class and the types of its arguments, return value and exceptions. The most 
interesting feature of this class is that an instance of Method can be invoked on an object 
of a suitable class by means of its invoke method. The invoke method requires two 
arguments: the first specifies the object to receive the invocation and the second is an 
array of Object containing the arguments. The result is returned as type Object.

To return to the use of the Method class in RMI: the proxy has to marshal 
information about a method and its arguments into the request message. For the method 
it marshals an object of class Method. It puts the arguments into an array of Objects and 
then marshals that array. The dispatcher unmarshals the Method object and its 
arguments in the array of Objects from the request message. As usual, the remote object 
reference of the target will have been unmarshalled and the corresponding local object 
reference obtained from the remote reference module. The dispatcher then calls the 
Method object’s invoke method, supplying the target and the array of argument values. 
When the method has been executed, the dispatcher marshals the result or any 
exceptions into the reply message. 

Figure 5.21 Classes supporting Java RMI

RemoteServer

UnicastRemoteObject

<servant class>

Activatable

RemoteObject

Thus the dispatcher is generic – that is, the same 
dispatcher can be used for all classes of remote object, and no skeletons are required.

Java classes supporting RMI  •  Figure 5.21 shows the inheritance structure of the classes 
supporting Java RMI servers. The only class that the programmer need be aware of is 
UnicastRemoteObject, which every simple servant class needs to extend. The class 
UnicastRemoteObject extends an abstract class called RemoteServer, which provides 
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abstract versions of the methods required by remote servers. UnicastRemoteObject was 
the first example of RemoteServer to be provided. Another called Activatable is 
available for providing activatable objects. Further alternatives might provide for 
replicated objects. The class RemoteServer is a subclass of RemoteObject that has an 
instance variable holding the remote object reference and provides the following 
methods:

equals This method compares remote object references.

toString: This method gives the contents of the remote object reference as a String.

readObject, writeObject: These methods deserialize/serialize remote objects.

In addition, the instanceOf operator can be used to test remote objects.

5.6 Summary

This chapter has discussed three paradigms for distributed programming –  request-reply 
protocols, remote procedure calls and remote method invocation. All of these paradigms 
provide mechanisms for distributed independent entities (processes, objects, 
components or services) to communicate directly with one another.

Request-reply protocols provide lightweight and minimal support for client-server 
computing. Such protocols are often used in environments where overheads of 
communication must be minimized – for example, in embedded systems. Their more 
common role is to support either RPC or RMI, as discussed below.

The remote procedure call approach was a significant breakthrough in distributed 
systems, providing higher-level support for programmers by extending the concept of a 
procedure call to operate in a networked environment. This provides important levels of 
transparency in distributed systems. However, due to their different failure and 
performance characteristics and to the possibility of concurrent access to servers, it is 
not necessarily a good idea to make remote procedure calls appear to be exactly the same 
as local calls. Remote procedure calls provide a range of invocation semantics, from 
maybe invocations through to at-most-once semantics.

The distributed object model is an extension of the local object model used in 
object-based programming languages. Encapsulated objects form useful components in 
a distributed system, since encapsulation makes them entirely responsible for managing 
their own state, and local invocation of methods can be extended to remote invocation. 
Each object in a distributed system has a remote object reference (a globally unique 
identifier) and a remote interface that specifies which of its operations can be invoked 
remotely. 

Middleware implementations of RMI provide components (including proxies, 
skeletons and dispatchers) that hide the details of marshalling, message passing and 
locating remote objects from client and server programmers. These components can be 
generated by an interface compiler. Java RMI extends local invocation to remote 
invocation using the same syntax, but remote interfaces must be specified by extending 
an interface called Remote and making each method throw a RemoteException. This 
ensures that programmers know when they make remote invocations or implement 
remote objects, enabling them to handle errors or to design objects suitable for 
concurrent access. 
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EXERCISES

5.1 Define a class whose instances represent request and reply messages as illustrated in 
Figure 5.4. The class should provide a pair of constructors, one for request messages and 
the other for reply messages, showing how the request identifier is assigned. It should 
also provide a method to marshal itself into an array of bytes and to unmarshal an array 
of bytes into an instance. page 188

5.2 Program each of the three operations of the request-reply protocol in Figure 5.3, using 
UDP communication, but without adding any fault-tolerance measures. You should use 
the classes you defined in the previous chapter for remote object references (Exercise 
4.13) and above for request and reply messages (Exercise 5.1). page 187

5.3 Give an outline of the server implementation, showing how the operations getRequest

and sendReply are used by a server that creates a new thread to execute each client 
request. Indicate how the server will copy the requestId from the request message into 
the reply message and how it will obtain the client IP address and port. page 187

5.4 Define a new version of the doOperation method that sets a timeout on waiting for the 
reply message. After a timeout, it retransmits the request message n times. If there is still 
no reply, it informs the caller. page 188

5.5 Describe a scenario in which a client could receive a reply from an earlier call.
page 187

5.6 Describe the ways in which the request-reply protocol masks the heterogeneity of 
operating systems and of computer networks. page 187

5.7 Discuss whether the following operations are idempotent:

i) pressing a lift (elevator) request button;

ii) writing data to a file;

iii) appending data to a file.

Is it a necessary condition for idempotence that the operation should not be associated 
with any state? page 190

5.8 Explain the design choices that are relevant to minimizing the amount of reply data held 
at a server. Compare the storage requirements when the RR and RRA protocols are used.

page 191

5.9 Assume the RRA protocol is in use. How long should servers retain unacknowledged 
reply data? Should servers repeatedly send the reply in an attempt to receive an 
acknowledgement? page 191

5.10 Why might the number of messages exchanged in a protocol be more significant to 
performance than the total amount of data sent? Design a variant of the RRA protocol 
in which the acknowledgement is piggy-backed on – that is, transmitted in the same 
message as – the next request where appropriate, and otherwise sent as a separate 
message. (Hint: use an extra timer in the client.) page 191
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5.11 An Election interface provides two remote methods:

vote: This method has two parameters through which the client supplies the name 
of a candidate (a string) and the ‘voter’s number’ (an integer used to ensure each 
user votes once only). The voter’s numbers are allocated sparsely from the range 
of integers to make them hard to guess.

result: This method has two parameters through which the server supplies the 
client with the name of a candidate and the number of votes for that candidate.

Which of the parameters of these two procedures are input and which are output

parameters?  page 195

5.12 Discuss the invocation semantics that can be achieved when the request-reply protocol 
is implemented over a TCP/IP connection, which guarantees that data is delivered in the 
order sent, without loss or duplication. Take into account all of the conditions causing a 
connection to be broken. Section 4.2.4 and page 198

5.13 Define the interface to the Election service in CORBA IDL and Java RMI. Note that 
CORBA IDL provides the type long for 32-bit integers. Compare the methods in the two 
languages for specifying input and output arguments. Figure 5.8, Figure 5.16

5.14 The Election service must ensure that a vote is recorded whenever any user thinks they 
have cast a vote.

Discuss the effect of maybe call semantics on the Election service. 

Would at-least-once call semantics be acceptable for the Election service or would you 
recommend at-most-once call semantics? page 199

5.15 A request-reply protocol is implemented over a communication service with omission 
failures to provide at-least-once invocation semantics. In the first case the implementor 
assumes an asynchronous distributed system. In the second case the implementor 
assumes that the maximum time for the communication and the execution of a remote 
method is T. In what way does the latter assumption simplify the implementation?

page 198

5.16 Outline an implementation for the Election service that ensures that its records remain 
consistent when it is accessed concurrently by multiple clients.  page 199

5.17 Assume the Election service is implemented in RMI and must ensure that all votes are 
safely stored even when the server process crashes. Explain how this can be achieved 
with reference to the implementation outline in your answer to Exercise 5.16.

pages 213–214

5.18 Show how to use Java reflection to construct the client proxy class for the Election

interface. Give the details of the implementation of one of the methods in this class, 
which should call the method doOperation with the following signature:

byte[] doOperation (RemoteObjectRef o, Method m, byte[] arguments);

Hint: an instance variable of the proxy class should hold a remote object reference (see 
Exercise 4.13). Figure 5.3, page 224
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5.19 Show how to generate a client proxy class using a language such as C++ that does not 
support reflection, for example from the CORBA interface definition given in your 
answer to Exercise 5.13. Give the details of the implementation of one of the methods 
in this class, which should call the method doOperation defined in Figure 5.3.

page 211

5.20 Explain how to use Java reflection to construct a generic dispatcher. Give Java code for 
a dispatcher whose signature is:

public void dispatch(Object target, Method aMethod, byte[] args) 

The arguments supply the target object, the method to be invoked and the arguments for 
that method in an array of bytes. page 224

5.21 Exercise 5.18 required the client to convert Object arguments into an array of bytes 
before invoking doOperation and Exercise 5.20 required the dispatcher to convert an 
array of bytes into an array of Objects before invoking the method. Discuss the 
implementation of a new version of doOperation with the following signature:

Object[] doOperation (RemoteObjectRef o, Method m, Object[] arguments);

which uses the ObjectOutputStream and ObjectInputStream classes to stream the 
request and reply messages between client and server over a TCP connection. How 
would these changes affect the design of the dispatcher? Section 4.3.2 and page 224

5.22 A client makes remote method invocations to a server. The client takes 5 milliseconds 
to compute the arguments for each request, and the server takes 10 milliseconds to 
process each request. The local operating system processing time for each send or 
receive operation is 0.5 milliseconds, and the network time to transmit each request or 
reply message is 3 milliseconds. Marshalling or unmarshalling takes 0.5 milliseconds 
per message. 

Calculate the time taken by the client to generate and return from two requests: 

(i) if it is single-threaded; 

(ii) if it has two threads that can make requests concurrently on a single 
processor. 

You can ignore context-switching times. Is there a need for asynchronous invocation if 
the client and server processes are threaded? page 213

5.23 Design a remote object table that can support distributed garbage collection as well as 
translating between local and remote object references. Give an example involving 
several remote objects and proxies at various sites to illustrate the use of the table. Show 
the changes in the table when an invocation causes a new proxy to be created. Then show 
the changes in the table when one of the proxies becomes unreachable. page 215

5.24 A simpler version of the distributed garbage collection algorithm described in Section 
5.4.3 just invokes addRef at the site where a remote object lives whenever a proxy is 
created and removeRef whenever a proxy is deleted. Outline all the possible effects of 
communication and process failures on the algorithm. Suggest how to overcome each of 
these effects, but without using leases. page 215
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6

INDIRECT COMMUNICATION

6.1 Introduction
6.2 Group communication
6.3 Publish-subscribe systems
6.4 Message queues
6.5 Shared memory approaches
6.6 Summary

This chapter completes our tour of communication paradigms by examining indirect 
communication; it builds on our studies of interprocess communication and remote 
invocation in Chapters 4 and 5, respectively. The essence of indirect communication is to 
communicate through an intermediary and hence have no direct coupling between the 
sender and the one or more receivers. The important concepts of space and time 
uncoupling are also introduced.

The chapter examines a range of indirect communication techniques:

• group communication, in which communication is via a group abstraction with the 
sender unaware of the identity of the recipients;

• publish-subscribe systems, a family of approaches that all share the common 
characteristic of disseminating events to multiple recipients through an 
intermediary;

• message queue systems, wherein messages are directed to the familiar abstraction 
of a queue with receivers extracting messages from such queues;

• shared memory–based approaches, including distributed shared memory and tuple 
space approaches, which present an abstraction of a global shared memory to 
programmers.

Case studies are used throughout the chapter to illustrate the main concepts introduced.
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6.1 Introduction

This chapter concludes our examination of communication paradigms by examining 
indirect communication, building on the studies of interprocess communication and 
remote invocation in Chapters 4 and 5, respectively. Indirection is a fundamental 
concept in computer science, and its ubiquity and importance are captured nicely by the 
following quote, which emerged from the Titan Project at the University of Cambridge 
and is attributable to Roger Needham, Maurice Wilkes and David Wheeler:

All problems in computer science can be solved by another level of indirection.

In terms of distributed systems, the concept of indirection is increasingly applied to 
communication paradigms.

Indirect communication is defined as communication between entities in a 
distributed system through an intermediary with no direct coupling between the sender 
and the receiver(s). The precise nature of the intermediary varies from approach to 
approach, as will be seen in the rest of this chapter. In addition, the precise nature of 
coupling varies significantly between systems, and again this will be brought out in the 
text that follows. Note the optional plural associated with the receiver; this signifies that 
many indirect communication paradigms explicitly support one-to-many communication.

The techniques considered in Chapters 4 and 5 are all based on a direct coupling 
between a sender and a receiver, and this leads to a certain amount of rigidity in the 
system in terms of dealing with change. To illustrate this, consider a simple client-server 
interaction. Because of the direct coupling, it is more difficult to replace a server with 
an alternative one offering equivalent functionality. Similarly, if the server fails, this 
directly affects the client, which must explicitly deal with the failure. In contrast, 
indirect communication avoids this direct coupling and hence inherits interesting 
properties. The literature refers to two key properties stemming from the use of an 
intermediary:

Space uncoupling, in which the sender does not know or need to know the identity 
of the receiver(s), and vice versa. Because of this space uncoupling, the system 
developer has many degrees of freedom in dealing with change: participants (senders 
or receivers) can be replaced, updated, replicated or migrated.

Time uncoupling, in which the sender and receiver(s) can have independent 
lifetimes. In other words, the sender and receiver(s) do not need to exist at the same 
time to communicate. This has important benefits, for example, in more volatile 
environments where senders and receivers may come and go.

For these reasons, indirect communication is often used in distributed systems where 
change is anticipated – for example, in mobile environments where users may rapidly 
connect to and disconnect from the global network – and must be managed to provide 
more dependable services. Indirect communication is also heavily used for event 
dissemination in distributed systems where the receivers may be unknown and liable to 
change – for example, in managing event feeds in financial systems, as featured in 
Chapter 1. Indirect communication is also exploited in key parts of the Google 
infrastructure, as discussed in the major case study in Chapter 21.
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The discussion above charts the advantages associated with indirect 
communication. The main disadvantage is that there will inevitably be a performance 
overhead introduced by the added level of indirection. Indeed, the quote above on 
indirection is often paired by the following quote, attributable to Jim Gray:

There is no performance problem that cannot be solved by eliminating a 
level of indirection.

In addition, systems developed using indirect communication can be more difficult to 
manage precisely because of the lack of any direct (space or time) coupling.

A closer look at space and time uncoupling  •  It may be assumed that indirection implies 
both space and time uncoupling, but this is not always the case. The precise relationship 
is summarized in Figure 6.1

Figure 6.1 Space and time coupling in distributed systems 

Time-coupled Time-uncoupled

Space coupling

Properties: Communication directed 
towards a given receiver or receivers; 
receiver(s) must exist at that moment in 
time
Examples: Message passing, remote 
invocation (see Chapters 4 and 5)

Properties: Communication directed 
towards a given receiver or receivers; 
sender(s) and receiver(s) can have 
independent lifetimes
Examples: See Exercise 6.3

Space uncoupling

Properties: Sender does not need to 
know the identity of the receiver(s); 
receiver(s) must exist at that moment in 
time
Examples: IP multicast (see Chapter 4)

Properties: Sender does not need to know 
the identity of the receiver(s); sender(s) 
and receiver(s) can have independent 
lifetimes
Examples: Most indirect communication 
paradigms covered in this chapter

.
From this table, it is clear that most of the techniques considered in this book are 

either coupled in both time and space or indeed uncoupled in both dimensions. The top-
left box represents the communication paradigms featured in Chapters 4 and 5 where 
communication is direct with no space or time uncoupling. For example, message 
passing is both directed towards a particular entity and requires the receiver to be present 
at the time of the message send (but see Exercise 6.2 for an added dimension introduced 
by DNS name resolution). The range of remote invocation paradigms are also coupled 
in both space and time. The bottom-right box represents the main indirect 
communication paradigms that exhibit both properties. A small number of 
communication paradigms sit outside these two areas:

• IP multicast, as featured in Chapter 4, is space-uncoupled but time-coupled. It is 
space-uncoupled because messages are directed towards the multicast group, not 
any particular receiver. It is time-coupled, though, as all receivers must exist at the 
time of the message send to receive the multicast. Some implementations of group 
communication and indeed publish-subscribe systems, also fall into this category 
(see Section 6.6). This example illustrates the importance of persistency in the 
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communication channel to achieve time uncoupling – that is, the communication 
paradigm must store messages so that they can be delivered when the receiver(s) 
is ready to receive. IP multicast does not support this level of persistency.

• The case in which communication is space-coupled but time-uncoupled is more 
subtle. Space coupling implies that the sender knows the identity of a specific 
receiver or receivers, but time uncoupling implies that the receiver or receivers 
need not exist at the time of sending. Exercises 6.3 and 6.4 invite the reader to 
consider whether such a paradigm exists or could be constructed.

Returning to our definition, we treat all paradigms that involve an intermediary as 
indirect and recognize that the precise level of coupling will vary from system to system. 
We revisit the properties of different indirect communication paradigms in Section 6.6,
once we have had a chance to study the precise characteristics of each approach.

The relationship with asynchronous communication  •  Note that, to fully understand this 
area, it is important to distinguish between asynchronous communication (as defined in 
Chapter 4) and time uncoupling. In asynchronous communication, a sender sends a 
message and then continues (without blocking), and hence there is no need to meet in 
time with the receiver to communicate. Time uncoupling adds the extra dimension that 
the sender and receiver(s) can have independent existences; for example, the receiver 
may not exist at the time communication is initiated. Eugster et al. also recognize the 
important distinction between asynchronous communication (synchronization 
uncoupling) and time uncoupling [2003].

Many of the techniques examined in this chapter are time-uncoupled and 
asynchronous, but a few, such as the MessageDispatcher and RpcDispatcher operations 
in JGroups, discussed in Section 6.2.3, offer a synchronous service over indirect 
communication.

The rest of the chapter examines specific examples of indirect communication 
starting with group communication in Section 6.2. Section 6.3 then examines the 
fundamentals of publish-subscribe systems, with Section 6.4 examining the contrasting 
approach offered by message queues. Following this, Section 6.5 considers approaches 
based on shared memory abstractions, specifically distributed shared memory and tuple 
space–based approaches.

6.2 Group communication

Group communication provides our first example of an indirect communication 
paradigm. Group communication offers a service whereby a message is sent to a group 
and then this message is delivered to all members of the group. In this action, the sender 
is not aware of the identities of the receivers. Group communication represents an 
abstraction over multicast communication and may be implemented over IP multicast or 
an equivalent overlay network, adding significant extra value in terms of managing 
group membership, detecting failures and providing reliability and ordering guarantees. 
With the added guarantees, group communication is to IP multicast what TCP is to the 
point-to-point service in IP.
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Group communication is an important building block for distributed systems, and 
particularly reliable distributed systems, with key areas of application including:

• the reliable dissemination of information to potentially large numbers of clients, 
including in the financial industry, where institutions require accurate and up-to-
date access to a wide variety of information sources;

• support for collaborative applications, where again events must be disseminated 
to multiple users to preserve a common user view – for example, in multiuser 
games, as discussed in Chapter 1;

• support for a range of fault-tolerance strategies, including the consistent update of 
replicated data (as discussed in detail in Chapter 18) or the implementation of 
highly available (replicated) servers;

• support for system monitoring and management, including for example load 
balancing strategies.

We look at group communication in more detail below, examining the programming 
model offered and the associated implementation issues. We examine the JGroups 
toolkit as a case study of a group communication service.

6.2.1 The programming model

In group communication, the central concept is that of a group with associated group 

membership, whereby processes may join or leave the group. Processes can then send a 
message to this group and have it propagated to all members of the group with certain 
guarantees in terms of reliability and ordering. Thus, group communication implements 
multicast communication, in which a message is sent to all the members of the group by 
a single operation. Communication to all processes in the system, as opposed to a 
subgroup of them, is known as broadcast, whereas communication to a single process 
is known as unicast.

The essential feature of group communication is that a process issues only one 
multicast operation to send a message to each of a group of processes (in Java this 
operation is aGroup.send(aMessage)) instead of issuing multiple send operations to 
individual processes. 

The use of a single multicast operation instead of multiple send operations 
amounts to much more than a convenience for the programmer: it enables the 
implementation to be efficient in its utilization of bandwidth. It can take steps to send 
the message no more than once over any communication link, by sending it over a 
distribution tree; and it can use network hardware support for multicast where this is 
available. The implementation can also minimize the total time taken to deliver the 
message to all destinations, as compared with transmitting it separately and serially. 

To see these advantages, compare the bandwidth utilization and the total 
transmission time taken when sending the same message from a computer in London to 
two computers on the same Ethernet in Palo Alto, (a) by two separate UDP sends, and (b) 
by a single IP multicast operation. In the former case, two copies of the message are sent 
independently, and the second is delayed by the first. In the latter case, a set of multicast-
aware routers forward a single copy of the message from London to a router on the 
destination LAN in California. That router then uses hardware multicast (provided by the 
Ethernet) to deliver the message to both destinations at once, instead of sending it twice.



234 CHAPTER 6  INDIRECT COMMUNICATION

The use of a single multicast operation is also important in terms of delivery 
guarantees. If a process issues multiple independent send operations to individual 
processes, then there is no way for the implementation to provide guarantees that affect 
the group of processes as a whole. If the sender fails halfway through sending, then some 
members of the group may receive the message while others do not. In addition, the 
relative ordering of two messages delivered to any two group members is undefined. 
Group communication, however, has the potential to offer a range of guarantees in terms 
of reliability and ordering, as discussed in Section 6.2.2 below.

Group communication has been the subject of many research projects, including 
the V-system [Cheriton and Zwaenepoel 1985], Chorus [Rozier et al. 1988], Amoeba 
[Kaashoek et al. 1989; Kaashoek and Tanenbaum 1991], Trans/Total [Melliar-Smith et

al. 1990], Delta-4 [Powell 1991], Isis [Birman 1993], Horus [van Renesse et al. 1996], 
Totem [Moser et al. 1996] and Transis [Dolev and Malki 1996] – and we shall cite other 
notable work in the course of this chapter and indeed throughout the book (particularly 
in Chapters 15 and 18).

Process groups and object groups  •  Most work on group services focuses on the 
concept of process groups, that is, groups where the communicating entities are 
processes. Such services are relatively low-level in that:

• Messages are delivered to processes and no further support for dispatching is 
provided.

• Messages are typically unstructured byte arrays with no support for marshalling 
of complex data types (as provided, for example, in RPC or RMI – see Chapter 5).

The level of service provided by process groups is therefore similar to that of sockets, 
as discussed in Chapter 4. In contrast, object groups provide a higher-level approach to 
group computing. An object group is a collection of objects (normally instances of the 
same class) that process the same set of invocations concurrently, with each returning 
responses. Client objects need not be aware of the replication. They invoke operations 
on a single, local object, which acts as a proxy for the group. The proxy uses a group 
communication system to send the invocations to the members of the object group. 
Object parameters and results are marshalled as in RMI and the associated calls are 
dispatched automatically to the right destination objects/methods.

Electra [Maffeis 1995] is a CORBA-compliant system that supports object 
groups. An Electra group can be interfaced to any CORBA-compliant application. 
Electra was originally built on top of the Horus group communication system, which it 
uses to manage the membership of the group and to multicast invocations. In 
‘transparent mode’, the local proxy returns the first available response to a client object. 
In ‘non-transparent mode’, the client object can access all the responses returned by the 
group members. Electra uses an extension of the standard CORBA Object Request 
Broker interface, with functions for creating and destroying object groups and managing 
their membership. Eternal [Moser et al. 1998] and the Object Group Service [Guerraoui 
et al. 1998] also provide CORBA-compliant support for object groups.

Despite the promise of object groups, however, process groups still dominate in 
terms of usage. For example, the popular JGroups toolkit, discussed in Section 6.2.3, is 
a classical process group approach.
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Other key distinctions  •  A wide range of group communication services has been 
developed, and they vary in the assumptions they make:

Closed and open groups: A

Figure 6.2 Open and closed groups

Closed group Open group

group is said to be closed if only members of the group 
may multicast to it (Figure 6.2). A process in a closed group delivers to itself any 
message that it multicasts to the group. A group is open if processes outside the group 
may send to it. (The categories ‘open’ and ‘closed’ also apply with analogous 
meanings to mailing lists.) Closed groups of processes are useful, for example, for 
cooperating servers to send messages to one another that only they should receive. 
Open groups are useful, for example, for delivering events to groups of interested 
processes.

Overlapping and non-overlapping groups: In overlapping groups, entities (process-
es or objects) may be members of multiple groups, and non-overlapping groups im-
ply that membership does not overlap (that is, any process belongs to at most one 
group). Note that in real-life systems, it is realistic to expect that group membership 
will overlap.

Synchronous and asynchronous systems: There is a requirement to consider group 
communication in both environments.

Such distinctions can have a significant impact on the underlying multicast algorithms. 
For example, some algorithms assume that groups are closed. The same effect as 
openness can be achieved with a closed group by picking a member of the group and 
sending it a message (one-to-one) for it to multicast to its group. Rodrigues et al. [1998] 
discuss multicast to open groups. Issues related to open and closed groups arise in 
Chapter 15, when algorithms for reliability and ordering are considered. That chapter 
also considers the impact of overlapping groups and whether the system is synchronous 
or asynchronous on such protocols. 
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6.2.2 Implementation issues

We now turn to implementation issues for group communication services, discussing the 
properties of the underlying multicast service in terms of reliability and ordering and 
also the key role of group membership management in dynamic environments, where 
processes can join and leave or fail at any time. 

Reliability and ordering in multicast   •  In group communication, all members of a group 
must receive copies of the messages sent to the group, generally with delivery 
guarantees. The guarantees include agreement on the set of messages that every process 
in the group should receive and on the delivery ordering across the group members.

Group communication systems are extremely sophisticated. Even IP multicast, 
which provides minimal delivery guarantees, requires a major engineering effort.

So far, we have discussed reliability and ordering in rather general terms. We now 
look in more detail at what such properties mean.

Reliability in one-to-one communication was defined in Section 2.4.2 in terms of 
two properties: integrity (the message received is the same as the one sent, and no 
messages are delivered twice) and validity (any outgoing message is eventually 
delivered). The interpretation for reliable multicast builds on these properties, with 
integrity defined the same way in terms of delivering the message correctly at most once, 
and validity guaranteeing that a message sent will eventually be delivered. To extend the 
semantics to cover delivery to multiple receivers, a third property is added – that of 
agreement, stating that if the message is delivered to one process, then it is delivered to 
all processes in the group.

As well as reliability guarantees, group communication demands extra guarantees 
in terms of the relative ordering of messages delivered to multiple destinations. Ordering 
is not guaranteed by underlying interprocess communication primitives. For example, if 
multicast is implemented by a series of one-to-one messages, they may be subject to 
arbitrary delays. Similar problems may occur if using IP multicast. To counter this, 
group communication services offer ordered multicast, with the option of one or more 
of the following properties (with hybrid solutions also possible):

FIFO ordering: First-in-first-out (FIFO) ordering (also referred to as source 
ordering) is concerned with preserving the order from the perspective of a sender 
process, in that if a process sends one message before another, it will be delivered in 
this order at all processes in the group. 

Causal ordering: Causal ordering takes into account causal relationships between 
messages, in that if a message happens before another message in the distributed 
system this so-called causal relationship will be preserved in the delivery of the 
associated messages at all processes (see Chapter 14 for a detailed discussion of the 
meaning of ‘happens before’).

Total ordering: In total ordering, if a message is delivered before another message 
at one process, then the same order will be preserved at all processes.

Reliability and ordering are examples of coordination and agreement in distributed 
systems, and hence further consideration of this is deferred to Chapter 15, which focuses 
exclusively on this topic. In particular, Chapter 15 provides more complete definitions 
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of integrity, validity, agreement and the various ordering properties and also examines 
in detail algorithms to realize reliable and ordered multicast.

Group membership management   •  The key elements of group communication 
management are summarized in Figure 6.3, which shows an open group

Figure 6.3 The role of group membership management
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illustrates the important role of group membership management in maintaining an 
accurate view of the current membership, given that entities may join, leave or indeed 
fail. In more detail, a group membership service has four main tasks:

Providing an interface for group membership changes: The membership service 
provides operations to create and destroy process groups and to add or withdraw a 
process to or from a group. In most systems, a single process may belong to several 
groups at the same time (overlapping groups, as defined above). This is true of IP 
multicast, for example.

Failure detection: The service monitors the group members not only in case they 
should crash, but also in case they should become unreachable because of a 
communication failure. The detector marks processes as Suspected or Unsuspected.
The service uses the failure detector to reach a decision about the group’s 
membership: it excludes a process from membership if it is suspected to have failed 
or to have become unreachable.

Notifying members of group membership changes: The service notifies the group’s 
members when a process is added, or when a process is excluded (through failure or 
when the process is deliberately withdrawn from the group).

Performing group address expansion: When a process multicasts a message, it 
supplies the group identifier rather than a list of processes in the group. The 
membership management service expands the identifier into the current group 
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membership for delivery. The service can coordinate multicast delivery with 
membership changes by controlling address expansion. That is, it can decide 
consistently where to deliver any given message, even though the membership may 
be changing during delivery.

Note that IP multicast is a weak case of a group membership service, with some but not 
all of these properties. It does allow processes to join or leave groups dynamically and 
it performs address expansion, so that senders need only provide a single IP multicast 
address as the destination for a multicast message. But IP multicast does not itself 
provide group members with information about current membership, and multicast 
delivery is not coordinated with membership changes. Achieving these properties is 
complex and requires what is known as view-synchronous group communication.
Further consideration of this important issue is deferred to Chapter 18, which discusses 
the maintenance of group views and how to realize view-synchronous group 
communication in the context of supporting replication in distributed systems.

In general, the need to maintain group membership has a significant impact on the 
utility of group-based approaches. In particular, group communication is most effective 
in small-scale and static systems and does not operate as well in larger-scale 
environments or environments with a high degree of volatility. This can be traced to the 
need for a form of synchrony assumption. Ganesh et al [2003] present a more 
probabilistic approach to group membership designed to operate in more large-scale and 
dynamic environments, using an underlying gossip protocol (see Section 10.5.3). 
Researchers have also developed group membership protocols specifically for ad hoc 
networks and mobile environments [Prakash and Baldoni 1998; Roman et al. 2001; Liu 
et al. 2005]. 

6.2.3 Case study: the JGroups toolkit

JGroups is a toolkit for reliable group communication written in Java. The toolkit is a 
part of the lineage of group communication tools that have emerged from Cornell 
University, building on the fundamental concepts developed in ISIS [Birman 1993], 
Horus [van Renesse et al. 1996] and Ensemble [van Renesse et al. 1998]. The toolkit is 
now maintained and developed by the JGroups open source community 
[www.jgroups.org], which is part of the JBoss middleware community, as discussed in 
Chapter 8 [www.jboss.org].

JGroups supports process groups in which processes are able to join or leave a 
group, send a message to all members of the group or indeed to a single member, and 
receive messages from the group. The toolkit supports a variety of reliability and 
ordering guarantees, which are discussed in more detail below, and also offers a group 
membership service.

The architecture of JGroups is shown in Figure 6.4, which shows the main 
components of the JGroups implementation:

• Channels represent the most primitive interface for application developers, 
offering the core functions of joining, leaving, sending and receiving.

• Building blocks offer higher-level abstractions, building on the underlying service 
offered by channels.



Figure 6.4 The architecture of JGroups
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• The protocol stack provides the underlying communication protocol, constructed 
as a stack of composable protocol layers.   

We look at each in turn below.

Channels  •  A process interacts with a group through a channel object, which acts as a 
handle onto a group. When created, it is disconnected, but a subsequent connect

operation binds that handle to a particular named group; if the named group does not 
exist, it is implicitly created at the time of the first connect. To leave the group, the 
process executes the corresponding disconnect operation. A close operation is also 
provided to render the channel unusable. Note that a channel can only be connected to 
one group at a time; if a process wants to connect to two or more groups, it must create 
multiple channels. When connected, a process can send or receive via a channel. 
Messages are sent by reliable multicast, with the precise semantics defined by the 
protocol stack deployed (as discussed further below).

A range of other operations are defined on channels, most notably to return 
management information associated with the channel. For example, getView returns the 
current view defined in terms of the current member list, while getState returns the 
historical application state associated with the group (this can be used, for example, by 
a new group member to catch up with previous events).

Note that the term channel should not be confused with channel-based publish-

subscribe, as introduced in Section 6.3.1. A channel in JGroups is synonymous with an 
instance of a group as defined in Section 6.2.1.
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We illustrate the use of channels further by a simple example, a service whereby 
an intelligent fire alarm can send a “Fire!” multicast message to any registered receivers. 
The code for the fire alarm is as shown in Figure 6.5

Figure 6.5 Java class FireAlarmJG

import org.jgroups.JChannel;

public class FireAlarmJG {

public void raise() {

try {

JChannel channel = new JChannel();

channel.connect("AlarmChannel");

Message msg = new Message(null, null, "Fire!");

channel.send(msg);

}

catch(Exception e) {

}

}

}

.
When an alarm is raised, the first step is to create a new instance of JChannel (the 

class representing channels in JGroups) and then connect to a group called 
AlarmChannel. If this is the first connect, then the group will be created at this stage 
(unlikely in this example, or the alarm is not going to be very effective). The constructor 
for a message takes three parameters: the destination, the source and the payload. In this 
case, the destination is null, which specifies that the message is to be sent to all members 
(if an address is specified, it is sent to that address only). The source is also null; this 
need not be provided in JGroups as it will be included automatically. The payload is an 
unstructured byte array that is delivered to all members of the group through the send

method. The code to create a new instance of the FireAlarmJG class and then raise an 
alarm would be:

FireAlarmJG alarm = new FireAlarmJG();

alarm.raise();

The corresponding code for the receiver end has a similar structure and is shown in 
Figure 6.6. In this case, however, after connecting a receive method is called. This 
method takes one parameter, a timeout. If it is set to zero, as in this case, the receive 
message will block until a message is received. Note that in JGroups incoming messages 
are buffered and receive returns the top element in the buffer. If no messages are present, 
then receive blocks awaiting the next message. Strictly speaking, receive can return a 
range of object types – for example, notification of a change in membership or of a 
suspected failure of a group member (hence the cast to Message above).

A given receiver must include the following code to await an alarm:

FireAlarmConsumerJG alarmCall = new FireAlarmConsumerJG();

String msg = alarmCall.await();

System.out.println("Alarm received: " + msg);



Figure 6.6 Java class FireAlarmConsumerJG

import org.jgroups.JChannel;

public class FireAlarmConsumerJG {

public String await() {

try {

JChannel channel = new JChannel();

channel.connect("AlarmChannel");

Message msg = (Message) channel.receive(0);

return (String) msg.GetObject();

}

catch(Exception e) {

return null;

}

}

}

SECTION 6.2 GROUP COMMUNICATION 241

Building blocks  •  Building blocks are higher-level abstractions on top of the channel 
class discussed above. Channels are similar in level to sockets. Building blocks are 
analogous to the more advanced communication paradigms discussed in Chapter 5, 
offering support for commonly occurring patterns of communication (but in this case 
targeted at multicast communication). Examples of building blocks in JGroups are:

• MessageDispatcher is the most intuitive of the building blocks offered in 
JGroups. In group communication, it is often useful for a sender to send a message 
to a group and then wait for some or all of the replies. MessageDispatcher

supports this by providing a castMessage method that sends a message to a group 
and blocks until a specified number of replies are received (for example, until a 
specified number n, a majority, or all messages are received). 

• RpcDispatcher takes a specific method (together with optional parameters and 
results) and then invokes this method on all objects associated with a group. As 
with MessageDispatcher, the caller can block awaiting some or all of the replies.

• NotificationBus is an implementation of a distributed event bus, in which an event 
is any serializable Java object. This class is often used to implement consistency 
in replicated caches.

The protocol stack  •  JGroups follows the architectures offered by Horus and Ensemble 
by constructing protocol stacks out of protocol layers (initially referred to as micro-
protocols in the literature [van Renesse et al. 1996, 1998]). In this approach, a protocol 
is a bidirectional stack of protocol layers with each layer implementing the following 
two methods:

public Object up (Event evt);

public Object down (Event evt);

Protocol processing therefore happens by passing events up and down the stack. In 
JGroups, events may be incoming or outgoing messages or management events, for 
example related to view changes. Each layer can carry out arbitrary processing on the 
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message, including modifying its contents, adding a header or indeed dropping or re-
ordering the message.

To illustrate the concept further, let us examine the protocol stack shown in Figure 
6.4. This shows a protocol that consists of five layers:

• The layer referred to as UDP is the most common transport layer in JGroups. Note 
that, despite the name, this is not entirely equivalent to the UDP protocol; rather, 
the layer utilizes IP multicast for sending to all members in a group and UDP 
datagrams specifically for point-to-point communication. This layer therefore 
assumes that IP multicast is available. If it is not, the layer can be configured to 
send a series of unicast messages to members, relying on another layer for 
membership discovery (in particular, a layer known as PING). For larger-scale 
systems operating over wide area networks, a TCP layer may be preferred (using 
the TCP protocol to send unicast messages and again relying on PING for 
membership discovery).

• FRAG implements message packetization and is configurable in terms of the 
maximum message size (8,192 bytes by default).

• MERGE is a protocol that deals with unexpected network partitioning and the 
subsequent merging of subgroups after the partition. A series of alternative merge 
layers are actually available, ranging from the simple to ones that deal with, for 
example, state transfer.

• GMS implements a group membership protocol to maintain consistent views of 
membership across the group (see Chapter 18 for further details of algorithms for 
group membership management).

• CAUSAL implements causal ordering, introduced in Section 6.2.2 (and discussed 
further in Chapter 15). 

A wide range of other protocol layers are available, including protocols for FIFO and 
total ordering, for membership discovery and failure detection, for encryption of 
messages and for implementing flow-control strategies (see the JGroups web site for 
details [www.jgroups.org]). Note that because all layers implement the same interface, 
they can be combined in any order, although many of the resultant protocol stacks would 
not make sense. All members of a group must share the same protocol stack.

6.3 Publish-subscribe systems

We now turn our attention to the area of publish-subscribe systems [Baldoni and 
Virgillito 2005], sometimes also referred to as distributed event-based systems [Muhl et

al. 2006]. These are the most widely used of all the indirect communication techniques 
discussed in this chapter. Chapter 1 has already highlighted that many classes of system 
are fundamentally concerned with the communication and processing of events (for 
example financial trading systems). More specifically, whereas many systems naturally 
map onto a request-reply or a remote invocation pattern of interaction as discussed in 
Chapter 5, many do not and are more naturally modelled by the more decoupled and 
reactive style of programming offered by events.
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A publish-subscribe system is a system where publishers publish structured 
events to an event service and subscribers express interest in particular events through 
subscriptions which can be arbitrary patterns over the structured events. For example, a 
subscriber could express an interest in all events related to this textbook, such as the 
availability of a new edition or updates to the related web site. The task of the publish-
subscribe system is to match subscriptions against published events and ensure the 
correct delivery of event notifications. A given event will be delivered to potentially 
many subscribers, and hence publish-subscribe is fundamentally a one-to-many 
communications paradigm. 

Applications of publish-subscribe systems  •  Publish-subscribe systems are used in a 
wide variety of application domains, particularly those related to the large-scale 
dissemination of events. Examples include:

• financial information systems;

• other areas with live feeds of real-time data (including RSS feeds); 

• support for cooperative working, where a number of participants need to be 
informed of events of shared interest;

• support for ubiquitous computing, including the management of events emanating 
from the ubiquitous infrastructure (for example, location events); 

• a broad set of monitoring applications, including network monitoring in the 
Internet. 

Publish-subscribe is also a key component of Google’s infrastructure, including for 
example the dissemination of events related to advertisements, such as ‘ad clicks’, to 
interested parties (see Chapter 21).

To illustrate the concept further, we consider a simple dealing room system as an 
example of the broader class of financial information systems.

Dealing room system: Consider a simple dealing room system whose task is to allow 
dealers using computers to see the latest information about the market prices of the 
stocks they deal in. The market price for a single named stock is represented by an 
associated object. The information arrives in the dealing room from several different 
external sources in the form of updates to some or all of the objects representing the 
stocks and is collected by processes we call information providers. Dealers are typically 
interested only in their own specialist stocks. A dealing room system could be 
implemented by processes with two different tasks:

• An information provider process continuously receives new trading information 
from a single external source. Each of the updates is regarded as an event. The 
information provider publishes such events to the publish-subscribe system for 
delivery to all of the dealers who have expressed an interest in the corresponding 
stock. There will be a separate information provider process for each external 
source.

• A dealer process creates a subscription representing each named stock that the 
user asks to have displayed. Each subscription expresses an interest in events 
related to a given stock at the relevant information provider. It then receives all the 
information sent to it in notifications and displays it to the user. The 
communication of notifications is illustrated in Figure 6.7.
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Characteristics of publish-subscribe systems  •  Publish-subscribe systems have two 
main characteristics:

Heterogeneity: When event notifications are used as a means of communication, 
components in a distributed system that were not designed to interoperate can be 
made to work together. All that is required is that event-generating objects publish 
the types of events they offer, and that other objects subscribe to patterns of events 
and provide an interface for receiving and dealing with the resultant notifications. For 
example, Bates et al. [1996] describe how publish-subscribe systems can be used to 
connect heterogeneous components in the Internet. They describe a system in which 
applications can be made aware of users’ locations and activities, such as using 
computers, printers or electronically tagged books. They envisage its future use in the 
context of a home network supporting commands such as: ‘if the children come 
home, turn on the central heating’.

Asynchronicity: Notifications are sent asynchronously by event-generating 
publishers to all the subscribers that have expressed an interest in them to prevent 
publishers needing to synchronize with subscribers – publishers and subscribers need 
to be decoupled. Mushroom [Kindberg et al. 1996] is an object-based publish-
subscribe system designed to support collaborative work, in which the user interface 
displays objects representing users and information objects such as documents and 
notepads within shared workspaces called network places. The state of each place is 
replicated at the computers of users currently in that place. Events are used to 
describe changes to objects and to a user’s focus of interest. For example, an event 
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could specify that a particular user has entered or left a place or has performed a 
particular action on an object. Each replica of any object to which particular types of 
events are relevant expresses an interest in them through a subscription and receives 
notifications when they occur. But subscribers to events are decoupled from objects 
experiencing events, because different users are active at different times.

In addition, a variety of different delivery guarantees can be provided for notifications 
– the one that is chosen should depend on the application requirements. For example, if 
IP multicast is used to send notifications to a group of receivers, the failure model will 
relate to the one described for IP multicast in Section 4.4.1 and will not guarantee that 
any particular recipient will receive a particular notification message. This is adequate 
for some applications – for example, to deliver the latest state of a player in an Internet 
game – because the next update is likely to get through.

However, other applications have stronger requirements. Consider the dealing 
room application: to be fair to the dealers interested in a particular stock, we require that 
all the dealers for the same stock receive the same information. This implies that a 
reliable multicast protocol should be used. 

In the Mushroom system mentioned above, notifications about changes in object 
state are delivered reliably to a server, whose responsibility it is to maintain up-to-date 
copies of objects. However, notifications may also be sent to object replicas in users’ 
computers by means of unreliable multicast; in the case that the latter lose notifications, 
they can retrieve an object’s state from the server. When the application requires it, 
notifications may be ordered and sent reliably to object replicas.

Some applications have real-time requirements.These include events in a nuclear 
power station or a hospital patient monitor. It is possible to design multicast protocols 
that provide real-time guarantees as well as reliability and ordering in a system that 
satisfies the properties of a synchronous distributed system.

We discuss publish-subscribe systems in more detail in the following sections, 
considering the programming model they offer before examining some of the key 
implementation challenges, particularly related to large-scale dissemination of events in 
the Internet.

6.3.1 The programming model

The programming model in publish-subscribe systems is based on a small set of 
operations, captured in Figure 6.8. Publishers disseminate an event e through a 
publish(e) operation and subscribers express an interest in a set of events through 
subscriptions. In particular, they achieve this through a subscribe(f) operation where f
refers to a filter – that is, a pattern defined over the set of all possible events. The 
expressiveness of filters (and hence of subscriptions) is determined by the subscription 
model; which we discuss in more detail below. Subscribers can later revoke this interest 
through a corresponding unsubscribe(f) operation. When events arrive at a subscriber, 
the events are delivered using a notify(e) operation.

Some systems complement the above set of operations by introducing the concept 
of advertisements. With advertisements, publishers have the option of declaring the 
nature of future events through an advertise(f) operation. The advertisements are defined 
in terms of the types of events of interest (these happen to take the same form as filters). 



Figure 6.8 The publish-subscribe paradigm
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In other words, subscribers declare their interests in terms of subscriptions and 
publishers optionally declare the styles of events they will generate through 
advertisements. Advertisements can be revoked through a call of unadvertise(f).

As mentioned above, the expressiveness of publish-subscribe systems is 
determined by the subscription (filter) model, with a number of schemes defined and 
considered here in increasing order of sophistication:

Channel-based: In this approach, publishers publish events to named channels and 
subscribers then subscribe to one of these named channels to receive all events sent 
to that channel. This is a rather primitive scheme and the only one that defines a 
physical channel; all other schemes employ some form of filtering over the content 
of events as we shall see below. Although simple, this scheme has been used 
successfully in the CORBA Event Service (see Chapter 8).

Topic-based (also referred to as subject-based): In this approach, we make the 
assumption that each notification is expressed in terms of a number of fields, with one 
field denoting the topic. Subscriptions are then defined in terms of the topic of 
interest. This approach is equivalent to channel-based approaches, with the 
difference that topics are implicitly defined in the case of channels but explicitly 
declared as one of the fields in topic-based approaches. The expressiveness of topic-
based approaches can also be enhanced by introducing hierarchical organization of 
topics. For example, let us consider a publish-subscribe system for this book. 
Subscriptions could be defined in terms of indirect_communication or 
indirect_communication/publish-subscribe. Subscribers expressing interest in the 
former will receive all events related to this chapter, whereas with the latter 
subscribers can instead express an interest in the more specific topic of publish-
subscribe.
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Content-based: Content-based approaches are a generalization of topic-based 
approaches allowing the expression of subscriptions over a range of fields in an event 
notification. More specifically, a content-based filter is a query defined in terms of 
compositions of constraints over the values of event attributes. For example, a 
subscriber could express interest in events that relate to the topic of publish-subscribe 
systems, where the system in question is the ‘CORBA Event Service’ and where the 
author is ‘Tim Kindberg’ or ‘Gordon Blair’. The sophistication of the associated 
query languages varies from system to system, but in general this approach is 
significantly more expressive than channel- or topic-based approaches, but with 
significant new implementation challenges (discussed below).

Type-based: These approaches are intrinsically linked with object-based approaches 
where objects have a specified type. In type-based approaches, subscriptions are 
defined in terms of types of events and matching is defined in terms of types or 
subtypes of the given filter. This approach can express a range of filters, from coarse-
grained filtering based on overall type names to more fine-grained queries defining 
attributes and methods of a given object. Such fine-grained filters are similar in 
expressiveness to content-based approaches. The advantages of type-based 
approaches are that they can be integrated elegantly into programming languages and 
they can check the type correctness of subscriptions, eliminating some kinds of 
subscription errors.

As well as these classical categories, a number of commercial systems are based on 
subscribing directly to objects of interest. Such systems are similar to type-based 
approaches in that they are intrinsically linked to object-based approaches, although 
they differ by focusing on changes of state of the objects of interest rather than 
predicates associated with the types of objects. They allow one object to react to a 
change occurring in another object. Notifications of events are asynchronous and 
determined by their receivers. In particular, in interactive applications, the actions that 
the user performs on objects – for example, by manipulating a button with the mouse or 
entering text in a text box via the keyboard – are seen as events that cause changes in the 
objects that maintain the state of the application. The objects that are responsible for 
displaying a view of the current state are notified whenever the state changes.

Rosenblum and Wolf [1997] describe a general architecture for this style of 
publish-subscribe system. The main component in their architecture is an event service 
that maintains a database of event notifications and of interests of subscribers. The event 
service is notified of events that occur at objects of intetest. Subscribers inform the event 
service about the types of events they are interested in. When an event occurs at an 
object of interest a message containing the notification is sent directly to the subscribers 
of that type of event.

The Jini distributed event specification described by Arnold et al. [1999] is one 
leading example of this approach, and a case study on Jini, together with further 
background information on this style of approach, can be found on the companion web 
site for the book [www.cdk5.net/rmi]. Note, however, that Jini is a relatively primitive 
example of a distributed event-based system that allows direct connectivity between 
producers and consumers of events (hence compromising time and space uncoupling). 

A number of more experimental approaches are also being investigated. For 
example, some researchers are considering the added expressiveness of context [Frey 
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and Roman 2007, Meier and Cahill 2010]. Context and context-awareness are major 
concepts in mobile and ubiquitous computing. Context is defined in Chapter 19 as an 
aspect of the physical circumstances of relevance to the system behaviour. One intuitive 
example of context is location, and such systems have the potential for users to subscribe 
to events associated with a given location – for example, any emergency messages 
associated with the building where a user is located. Cilia et al. [2004] have also 
introduced concept-based subscription models whereby filters are expressed in terms of 
the semantics as well as the syntax of events. More specifically, data items have an 
associated semantic context that captures the meaning of those items, allowing for 
interpretation and possible translation into different data formats, thus addressing 
heterogeneity.

For some classes of application, such as the financial trading system described in 
Chapter 1, it is not enough for subscriptions to express queries over individual events. 
Rather, there is a need for more complex systems that can recognize complex event 
patterns. For example, Chapter 1 introduced the example of buying and selling shares 
based on observing temporal sequences of events related to share prices, demonstrating 
the need for complex event processing (or composite event detection, as it is sometimes 
called). Complex event processing allows the specification of patterns of events as they 
occur in the distributed environment – for example, ‘inform me if water levels rise by at 
least 20% in the River Eden in at least three places and simulation models are also 
reporting a risk of flooding’. A further example of an event pattern arose in Chapter 1, 
concerned with detecting share price movements over a given time period. In general, 
patterns can be logical, temporal or spatial. For further information on complex event 
processing, refer to Muhl et al. [2006].

6.3.2 Implementation issues

From the description above, the task of a publish-subscribe system is clear: to ensure that 
events are delivered efficiently to all subscribers that have filters defined that match the 
event. Added to this, there may be additional requirements in terms of security, 
scalability, failure handling, concurrency and quality of service. This makes the 
implementation of publish-subscribe systems rather complex, and this has been an area 
of intense investigation in the research community. We consider key implementation 
issues below, examining centralized versus distributed implementations before moving 
on to consider the overall system architecture required to implement publish-subscribe 
systems (particularly distributed implementations of content-based approaches). We 
conclude the section by summarizing the design space of publish-subscribe systems, 
with associated pointers to the literature.

Centralized versus distributed implementations  •  A number of architectures for the 
implementation of publish-subscribe systems have been identified. The simplest 
approach is to centralize the implementation in a single node with a server on that node 
acting as an event broker. Publishers then publish events (and optionally send 
advertisements) to this broker, and subscribers send subscriptions to the broker and 
receive notifications in return. Interaction with the broker is then through a series of 
point-to-point messages; this can be implemented using message passing or remote 
invocation.
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This approach is straightforward to implement, but the design lacks resilience and 
scalability, since the centralized broker represents a single point for potential system 
failure and a performance bottleneck. Consequently, distributed implementations of 
publish-subscribe systems are also available. In such schemes, the centralized broker is 
replaced by a network of brokers that cooperate to offer the desired functionality as 
illustrated in Figure 6.9

Figure 6.9 A network of brokers
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. Such approaches have the potential to survive node failure and 
have been shown to be able to operate well in Internet-scale deployments.

Taking this a step further, it is possible to have a fully peer-to-peer

implementation of a publish-subscribe system. This is a very popular implementation 
strategy for recent systems. In this approach, there is no distinction between publishers, 
subscribers and brokers; all nodes act as brokers, cooperatively implementing the 
required event routing functionality (as discussed further below).

Overall systems architecture  •  As mentioned above, the implementation of centralized 
schemes is relatively straightforward, with the central service maintaining a repository 
of subscriptions and matching event notifications with this set of subscriptions. 
Similarly, the implementations of channel-based or topic-based schemes are relatively 
straightforward. For example, a distributed implementation can be achieved by mapping 
channels or topics onto associated groups (as defined in Section 6.2) and then using the 
underlying multicast communication facilities to deliver events to interested parties 
(using reliable and ordered variants, as appropriate). The distributed implementation of 
content-based (or by extrapolation, type-based) approaches is more complex and 
deserving of further consideration. The range of architectural choices for such 
approaches is captured in Figure 6.10 (adapted from Baldoni and Virgillito [2005]).

In the bottom layer, publish-subscribe systems make use of a range of interprocess 
communication services, such as TCP/IP, IP multicast (where available) or more 
specialized services, as offered for example by wireless networks. The heart of the 
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architecture is provided by the event routing layer supported by a network overlay 
infrastructure. Event routing performs the task of ensuring that event notifications are 
routed as efficiently as possible to appropriate subscribers, whereas the overlay 
infrastructure supports this by setting up appropriate networks of brokers or peer-to-peer 
structures. For content-based approaches, this problem is referred to as content-based 

routing (CBR), with the goal being to exploit content information to efficiently route 
events to their required destination. The top layer implements matching – that is, 
ensuring that events match a given subscription. While this can be implemented as a 
discrete layer, often matching is pushed down into the event routing mechanisms, as will 
become apparent shortly.

Within this overall architecture, there is a wide variety of implementation 
approaches. We step through a select set of implementations to illustrate the general 
principles behind content-based routing:

Flooding: The simplest approach is based on flooding, that is, sending an event 
notification to all nodes in the network and then carrying out the appropriate 
matching at the subsciber end. As an alternative, flooding can be used to send 
subscriptions back to all possible publishers, with the matching carried out at the 
publishing end and matched events sent directly to the relevant subscribers using 
point-to-point communication. Flooding can be implemented using an underlying 
broadcast or multicast facility. Alternatively, brokers can be arranged in an acyclic 
graph in which each forwards incoming event notifications to all its neighbours 
(effectively providing a multicast overlay, as discussed in Section 4.5.1). This 
approach has the benefit of simplicity but can result in a lot of unnecessary network 



Figure 6.11 Filtering-based routing

upon receive publish(event e) from node x 1

matchlist := match(e, subscriptions) 2

send notify(e) to matchlist; 3

fwdlist := match(e, routing); 4

send publish(e) to fwdlist - x; 5

upon receive subscribe(subscription s) from node x 6

if x is client then 7

add x to subscriptions; 8

else add(x, s) to routing; 9

send subscribe(s) to neighbours - x; 10
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traffic. Hence, the alternative schemes described below try to optimize the number of 
messages exchanged through consideration of content.

Filtering: One principle that underpins many approaches is to apply filtering in the 
network of brokers. This is referred to as filtering-based routing. Brokers forward 
notifications through the network only where there is a path to a valid subscriber. 
This is achieved by propagating subscription information through the network 
towards potential publishers and then storing associated state at each broker. More 
specifically, each node must maintain a neighbours list containing a list of all 
connected neighbours in the network of brokers, a subscription list containing a list 
of all directly connected subscribers serviced by this node, and a routing table. 
Crucially, this routing table maintains a list of neighbours and valid subscriptions for 
that pathway. 

This approach also requires an implementation of matching on each node in the 
network of brokers: in particular, a match function takes a given event notification 
and a list of nodes together with associated subscriptions and returns a set of nodes 
where the notification matches the subscription. The specific algorithm for this 
filtering approach is captured in Figure 6.11 (taken from Baldoni and Virgillito 
[2005]). When a broker receives a publish request from a given node, it must pass 
this notification to all connected nodes where there is a corresponding matching 
subscription and also decide where to propagate this event through the network of 
brokers. Lines 2 and 3 achieve the first goal by matching the event against the 
subscription list and then forwarding the event to all the nodes with matching 
subscriptions (the matchlist). Lines 4 and 5 then use the match function again, this 
time matching the event against the routing table and forwarding only to the paths 
that lead to a subscription (the fwdlist). Brokers must also deal with incoming 
subscription events. If the subscription event is from an immediately connected 
subscriber, then this subscription must be entered in the subscriptions table (lines 7 
and 8). Otherwise, the broker is an intermediary node; this node now knows that a 
pathway exists towards this subscription and hence an appropriate entry is added to 
the routing table (line 9). In both cases, this subscription event is then passed to all 
neighbours apart from the originating node (line 10). 
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Advertisements: The pure filtering-based approach described above can generate a 
lot of traffic due to propagation of subscriptions, with subscriptions essentially using 
a flooding approach back towards all possible publishers. In systems with 
advertisements this burden can be reduced by propagating the advertisements 
towards subscribers in a similar (actually, symmetrical) way to the propagation of 
subscriptions. There are interesting trade-offs between the two approaches, and some 
systems adopt both approaches in tandem [Carzaniga et al. 2001].

Figure 6.12 Rendezvous-based routing

upon receive publish(event e) from node x at node i

rvlist := EN(e);

if i in rvlist then begin

matchlist <- match(e, subscriptions);

send notify(e) to matchlist;

end

send publish(e) to rvlist - i;

upon receive subscribe(subscription s) from node x at node i

rvlist := SN(s);

if i in rvlist then

add s to subscriptions;

else

send subscribe(s) to rvlist - i;

Rendezvous: Another approach to control the propagation of subscriptions (and to 
achieve a natural load balancing) is the rendezvous approach. To understand this 
approach, it is necessary to view the set of all possible events as an event space and 
to partition responsibility for this event space between the set of brokers in the 
network. In particular, this approach defines rendezvous nodes, which are broker 
nodes responsible for a given subset of the event space. To achieve this, a given 
rendezvous-based routing algorithm must define two functions. First, SN(s) takes a 
given subscription, s, and returns one or more rendezvous nodes that take 
responsibility for that subscription. Each such rendezvous node maintains a 
subscription list as in the filtering approach above, and forwards all matching events 
to the set of subscribing nodes. Second, when an event e is published, the function 
EN(e) also returns one or more rendezvous nodes, this time responsible for matching 
e against subscriptions in the system. Note that both SN(s) and EN(e) return more 
than one node if reliability is a concern. Note also that this approach only works if 
the intersection of EN(e) and SN(s) is non-empty for a given e that matches s (known 
as the mapping intersection rule, as defined by Baldoni and Virgillito [2005]). The 
corresponding code for rendezvous-based routing is shown in Figure 6.12 (again
taken from Baldoni and Virgillito [2005]). This time, we leave the interpretation of 
the algorithm as an exercise for the reader (see Exercise 6.11).

One interesting interpretation of rendezvous-based routing is to map the event 
space onto a distributed hash table (DHT). Distributed hash tables were introduced 
briefly in Section 4.5.1 and are examined in more detail in Chapter 10. A distributed 
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hash table is a style of network overlay that distributes a hash table over a set of nodes 
in a peer-to-peer network. The key observation for rendezvous-based routing is that the 
hash function can be used to map both events and subscriptions onto a corresponding 
rendezvous node for the management of such subscriptions.

Figure 6.13 Example publish-subscribe systems 

System (and further reading) Subscription 

model

Distribution

model

Event routing

CORBA Event Service (Chapter 8) Channel-based Centralized -

TIB Rendezvouz [Oki et al. 1993] Topic-based Distributed Ffiltering

Scribe [Castro et al. 2002b] Topic-based Peer-to-peer 
(DHT)

Rendezvous

TERA [Baldoni et al. 2007] Topic-based Peer-to-peer Informed gossip

Siena [Carzaniga et al. 2001] Content-based Distributed Filtering

Gryphon [www.research.ibm.com] Content-based Distributed Filtering

Hermes [Pietzuch and Bacon 2002] Topic- and 
content-based

Distributed Rendezvous and 
filtering

MEDYM [Cao and Singh 2005] Content-based Distributed Flooding

Meghdoot [Gupta et al. 2004] Content-based Peer-to-peer Rendezvous

Structure-less CBR [Baldoni et al. 2005] Content-based Peer-to-peer Informed gossip

It is possible to employ other peer-to-peer middleware approaches to underpin 
event routing in publish-subscribe systems. Indeed, this is a very active area of research 
with many novel and interesting proposals emerging, particularly for very large-scale 
systems [Carzaniga et al. 2001]. One specific approach is to adopt gossiping as a means 
of supporting event routing. Gossip-based approaches are a popular mechanism for 
achieving multicast (including reliable multicast), as discussed in Section 18.4.1. They 
operate by nodes in the network periodically and probabilistically exchanging events (or 
data) with neighbouring nodes. Through this approach, it is possible to propagate events 
effectively through the network without the structure imposed by other approaches. A 
pure gossip approach is effectively an alternative strategy for implementing flooding, as 
described above. However, it is possible to take into account local information and, in 
particular, content to achieve what is referred to as informed gossip. Such approaches 
can be particularly attractive in highly dynamic environments where network or node 
churn can be high [Baldoni et al. 2005].

6.3.3 Examples of publish-subscribe systems

We conclude this section by listing some major examples of publish-subscribe systems, 
providing references for further reading (see Figure 6.13). This figure also captures the 
design space for publish-subscribe systems, illustrating how different designs can result 
from decisions on subscription and distribution models and, especially, the underlying 
event routing strategy. Note that event routing is not required for centralized schemes, 
hence the blank entry in the table.
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6.4 Message queues

Message queues (or more accurately, distributed message queues) are a further 
important category of indirect communication systems. Whereas groups and publish-
subscribe provide a one-to-many style of communication, message queues provide a 
point-to-point service using the concept of a message queue as an indirection, thus 
achieving the desired properties of space and time uncoupling. They are point-to-point 
in that the sender places the message into a queue, and it is then removed by a single 
process. Message queues are also referred to as Message-Oriented Middleware. This is 
a major class of commercial middleware with key implementations including IBM’s 
WebSphere MQ, Microsoft’s MSMQ and Oracle’s Streams Advanced Queuing (AQ). 
The main use of such products is to achieve Enterprise Application Integration (EAI) – 
that is, integration between applications within a given enterprise – a goal that is 
achieved by the inherent loose coupling of message queues. They are also extensively 
used as the basis for commercial transaction processing systems because of their 
intrinsic support for transactions, discussed further in Section 6.4.1.

We examine message queues in more detail below, considering the programming 
model offered by message queueing systems before addressing implementation issues. 
The section then concludes by presenting the Java Messaging Service (JMS) as an 
example of a middleware specification supporting message queues (and also publish-
subscribe).

6.4.1 The programming model

The programming model offered by message queues is very simple. It offers an 
approach to communication in distributed systems through queues. In particular, 
producer processes can send messages to a specific queue and other (consumer) 
processes can then receive messages from this queue. Three styles of receive are 
generally supported:

• a blocking receive, which will block until an appropriate message is available;

• a non-blocking receive (a polling operation), which will check the status of the 
queue and return a message if available, or a not available indication otherwise;

• a notify operation, which will issue an event notification when a message is 
available in the associated queue.

This overall approach is captured pictorially in Figure 6.14.
A number of processes can send messages to the same queue, and likewise a 

number of receivers can remove messages from a queue. The queuing policy is normally 
first-in-first-out (FIFO), but most message queue implementations also support the 
concept of priority, with higher-priority messages delivered first. Consumer processes 
can also select messages from the queue based on properties of a message. In more 
detail, a message consists of a destination (that is, a unique identifier designating the 
destination queue), metadata associated with the message, including fields such as the 
priority of the message and the delivery mode, and also the body of the message. The 
body is normally opaque and untouched by the message queue system. The associated 



Figure 6.14 The message queue paradigm
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content is serialized using any of the standard approaches described in Section 4.3; that 
is, marshalled data types, object serialization or XML structured messages. Message 
sizes are configurable and can be very large – for example, on the order of a 100 Mbytes 
Given the fact that message bodies are opaque, message selection is normally expressed 
through predicates defined over the metadata.

Oracle’s AQ introduces an interesting twist on this basic idea to achieve better 
integration with (relational) databases; in Oracle AQ, messages are rows in a database 
table, and queues are database tables that can be queried using the full power of a 
database query language.

One crucial property of message queue systems is that messages are persistent – 
that is, message queues will store the messages indefinitely (until they are consumed) 
and will also commit the messages to disk to enable reliable delivery. In particular, 
following the definition of reliable communication in Section 2.4.2, any message sent is 
eventually received (validity) and the message received is identical to the one sent, and 
no messages are delivered twice (integrity). Message queue systems therefore guarantee 
that messages will be delivered (and delivered once) but cannot say anything about the 
timing of the delivery.

Message passing systems can also support additional functionality:

• Most commercially available systems provide support for the sending or receiving 
of a message to be contained within a transaction. The goal is to ensure that all the 
steps in the transaction are completed, or the transaction has no effect at all (the 
‘all or nothing’ property). This relies on interfacing with an external transaction 
service, provided by the middleware environment. Detailed consideration of 
transactions is deferred until Chapter 16.

• A number of systems also support message transformation, whereby an arbitrary 
transformation can be performed on an arriving message. The most common 
application of this concept is to transform messages between formats to deal with 
heterogeneity in underlying data representations. This could be as simple as 
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transforming from one byte order to another (big-endian to little-endian) or more 
complex, involving for example a transformation from one external data 
representation to another (such as SOAP to IIOP). Some systems also allow 
programmers to develop their own application-specific transformation in response 
to triggers from the underlying message queuing system. Message transformation 
is an important tool in dealing with heterogeneity generally and achieving 
Enterprise Application Integration in particular (as discussed above). Note that the 
term message broker is often used to denote a service responsible for message 
transformation.

• Some message queue implementations also provide support for security. For 
example, WebSphere MQ provides support for the confidential transmission of 
data using the Secure Sockets Layer (SSL) together with support for 
authentication and access control. See Chapter 11.

As a final word on the programming abstraction offered by message queues, it is helpful 
to compare the style of programming with other communication paradigms. Message 
queues are similar in many ways to the message-passing systems considered in Chapter 
4. The difference is that whereas message-passing systems have implicit queues 
associated with senders and receivers (for example, the message buffers in MPI), 
message queuing systems have explicit queues that are third-party entities, separate 
from the sender and the receiver. It is this key difference that makes message queues an 
indirect communication paradigm with the crucial properties of space and time 
uncoupling. 

6.4.2 Implementation issues

The key implementation issue for message queuing systems is the choice between 
centralized and distributed implementations of the concept. Some implementations are 
centralized, with one or more message queues managed by a queue manager located at 
a given node. The advantage of this scheme is simplicity, but such managers can become 
rather heavyweight components and have the potential to become a bottleneck or a 
single point of failure. As a result, more distributed implementations have been 
proposed. To illustrate distributed architectures, we briefly consider the approach 
adopted in WebSphere MQ as representative of the state-of-the-art in this area.

Case study: WebSphere MQ  •  WebSphere MQ is middleware developed by IBM based 
on the concept of message queues, offering an indirection between senders and receivers 
of messages [www.redbooks.ibm.com]. Queues in WebSphere MQ are managed by 
queue managers which host and manage queues and allow applications to access queues 
through the Message Queue Interface (MQI). The MQI is a relatively simple interface 
allowing applications to carry out operations such as connecting to or disconnecting 
from a queue (MQCONN and MQDISC) or sending/receiving messages to/from a queue 
(MQPUT and MQGET). Multiple queue managers can reside on a single physical server.

Client applications accessing a queue manager may reside on the same physical 
server. More generally, though, they will be on different machines and must then 
communicate with the queue manager through what is known as a client channel. Client 
channels adopt the rather familiar concept of a proxy, as introduced in Chapters 2 and 5, 
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whereby MQI commands are issued on the proxy and then sent transparently to the 
queue manager for execution using RPC. An example of such a configuration is shown 
in Figure 6.15

Figure 6.15 A simple networked topology in WebSphere MQ
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. In this configuration, a client application is sending messages to a remote 
queue manager and multiple services (on the same machine as the server) are then 
consuming the incoming messages.

This is a very simple use of WebSphere MQ, and in practice it is more common 
for queue managers to be linked together into a federated structure, mirroring the 
approach often adopted in publish-subscribe systems (with networks of brokers). To 
achieve this, MQ introduces the concept of a message channel as a unidirectional 
connection between two queue managers that is used to forward messages 
asynchronously from one queue to another. Note the terminology here: a message 
channel is a connection between two queue managers, whereas a client channel is a 
connection between a client application and a queue manager. A message channel is 
managed by a message channel agent (MCA) at each end. The two agents are 
responsible for establishing and maintaining the channel, including an initial negotiation 
to agree on the properties of the channel (including security properties). Routing tables 
are also included in each queue manager, and together with channels this allows 
arbitrary topologies to be created.

This ability to create customized topologies is crucial to WebSphere MQ, 
allowing users to determine the right topology for their application domain, for example 
to deliver certain requirements in terms of scalability and performance. Tools are 
provided for systems administrators to create suitable topologies and to hide the 
complexities of establishing message channels and routing strategies.

A wide range of topologies can be created, including trees, meshes or a bus-based 
configuration. To illustrate the concept of topologies further, we present one example 
topology often used in WebSphere MQ deployments, the hub-and-spoke topology.
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The hub-and-spoke approach: In the hub-and-spoke topology, one queue manager is 
designated as the hub. The hub hosts a range of services. Client applications do not 
connect directly to this hub but rather connect through queue managers designated as 
spokes. Spokes relay messages to the message queue of the hub for processing by the 
various services. Spokes are placed strategically around the network to support different 
clients. The hub is placed somewhere appropriate in the network, on a node with 
sufficient resources to deal with the volume of traffic. Most applications and services are 
located on the hub, although it is also possible to have some more local services on 
spokes.

This topology is heavily used with WebSphere MQ, particularly in large-scale 
deployments covering significant geographical areas (and possibly crossing 
organizational boundaries). The key to the approach is to be able to connect to a local 
spoke over a high-bandwidth connection, for example over a local area network (spokes 
may even be placed in the same physical machine as client applications to minimize 
latency).

Recall that communication between a client application and a queue manager uses 
RPC, whereas internal communication between queue managers is asynchronous (non-
blocking). This means that the client application is only blocked until the message is 
deposited in the local queue manager (the local spoke); subsequent delivery, potentially 
over wide area networks, is asynchronous but guaranteed to be reliable by the 
WebSphere MQ middleware.

 Clearly, the drawback of this architecture is that the hub can be a potential 
bottleneck and a single point of failure. WebSphere MQ also supports other facilities to 
overcome these problems, including queue manager clusters, which allow multiple 
instances of the same service to be supported by multiple queue managers with implicit 
load balancing across the different instantiations [www.redbooks.ibm.com]. 

6.4.3 Case study: The Java Messaging Service (JMS)

The Java Messaging Service (JMS) [java.sun.com XI] is a specification of a 
standardized way for distributed Java programs to communicate indirectly. Most 
notably, as will be explained, the specification unifies the publish-subscribe and 
message queue paradigms at least superficially by supporting topics and queues as 
alternative destinations of messages. A wide variety of implementations of the common 
specification are now available, including Joram from OW2, Java Messaging from 
JBoss, Sun’s Open MQ, Apache ActiveMQ and OpenJMS. Other platforms, including 
WebSphere MQ, also provide a JMS interface on to their underlying infrastructure.

JMS distinguishes between the following key roles:

• A JMS client is a Java program or component that produces or consumes 
messages, a JMS producer is a program that creates and produces messages and a 
JMS consumer is a program that receives and consumes messages.

• A JMS provider is any of the multiple systems that implement the JMS 
specification.

• A JMS message is an object that is used to communicate information between 
JMS clients (from producers to consumers).
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• A JMS destination is an object supporting indirect communication in JMS. It is 
either a JMS topic or a JMS queue.

Programming with JMS  •  The programming model offered by the JMS API is captured 
in Figure 6.16

Figure 6.16 The programming model offered by JMS
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. To interact with a JMS provider, it is first necessary to create a 
connection between a client program and the provider. This is created through a 
connection factory (a service responsible for creating connections with the required 
properties). The resultant connection is a logical channel between the client and 
provider; the underlying implementation may, for example, map onto a TCP/IP socket 
if implemented over the Internet. Note that two types of connection can be established, 
a TopicConnection or a QueueConnection, thus enforcing a clear separation between the 
two modes of operation within given connections.

Connections can be used to create one or more sessions – a session is a series of 
operations involving the creation, production and consumption of messages related to a 
logical task. The resultant session object also supports operations to create transactions,
supporting all-or-nothing execution of a series of operations, as discussed in Section 
6.4.1. There is a clear distinction between topic sessions and queue sessions in that a 
TopicConnection can support one or more topic sessions and a QueueConnection can 
support one or more queue sessions, but it is not possible to mix session styles in a 
connection. Thus, the two styles of operation are integrated in a rather superficial way.

The session object is central to the operation of JMS, supporting methods for the 
creation of messages, message producers and message consumers:

• In JMS, a message consists of three parts: a header, a set of properties and the 
body of the message. The header contains all the information needed to identify 
and route the message, including the destination (a reference to either a topic or a 



Figure 6.17 Java class FireAlarmJMS

import javax.jms.*;

import javax.naming.*;

public class FireAlarmJMS {

public void raise() {

try { 1

Context ctx = new InitialContext(); 2

TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4

Topic topic = (Topic)ctx.lookup("Alarms"); 5

TopicConnection topicConn = 6

topicConnectionFactory.createTopicConnection(); 7

TopicSession topicSess = topicConn.createTopicSession(false, 8

Session.AUTO_ACKNOWLEDGE); 9

TopicPublisher topicPub = topicSess.createPublisher(topic); 10

TextMessage msg = topicSess.createTextMessage(); 11

msg.setText("Fire!"); 12

topicPub.publish(message); 13

} catch (Exception e) { 14

} 15

}
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queue), the priority of the message, the expiration date, a message ID and a 
timestamp. Most of these fields are created by the underlying system, but some 
can be filled in specifically through the associated constructor methods. Properties 
are all user-defined and can be used to associate other application-specific
metadata elements with a message. For example, if implementing a context-aware 
system (as discussed in Chapter 19), the properties can be used to express 
additional context associated with the message, including a location field. As in 
the general description of message queue systems, this body is opaque and 
untouched by the system. In JMS, the body can be any one of a text message, a 
byte stream, a serialized Java object, a stream of primitive Java values or a more 
structured set of name/value pairs.

• A message producer is an object used to publish messages under a particular topic 
or to send messages to a queue. 

• A message consumer is an object used to subscribe to messages concerned with a 
given topic or to receive messages from a queue. The consumer is more 
complicated than the producer, for two reasons. First, it is possible to associate 
filters with message consumers by specifying what is known as a message selector

– a predicate defined over the values in the header and properties parts of a 
message (not the body). A subset of the database query language SQL is used to 
specify properties. This could be used, for example, to filter messages from a 
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given location in the context-aware example above. Second, there are two modes 
provided for receiving messages: the program either can block using a receive

operation or it can establish a message listener object which must provide an 
onMessage method that is invoked whenever a suitable message is identified.

Figure 6.18 Java class FireAlarmConsumerJMS

import javax.jms.*;

import javax.naming.*;

public class FireAlarmConsumerJMS {

public String await() {

try { 1

Context ctx = new InitialContext(); 2

TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4

Topic topic = (Topic)ctx.lookup("Alarms"); 5

TopicConnection topicConn = 6

topicConnectionFactory.createTopicConnection(); 7

TopicSession topicSess = topicConn.createTopicSession(false, 8

Session.AUTO_ACKNOWLEDGE); 9

TopicSubscriber topicSub = topicSess.createSubscriber(topic); 10

topicSub.start(); 11

TextMessage msg = (TextMessage) topicSub.receive(); 12

return msg.getText(); 13

} catch (Exception e) { 14

return null; 15

} 16

}

A simple example  •  To illustrate the use of JMS, we return to our example of Section 
6.2.3, the fire alarm service, and show how this would be implemented in JMS. We 
choose the topic-based publish-subscribe service as this is intrinsically a one-to-many 
application, with the alarm producing alarm messages targeted towards many consumer 
applications.

The code for the fire alarm object is shown in Figure 6.17. It is more complicated 
than the equivalent JGroups example mainly because of the need to create a connection, 
session, publisher and message, as shown in lines 6–11. This is relatively 
straightforward apart from the parameters of createTopicSession, which are whether the 
session should be transactional (false in this case) and the mode of acknowledging 
messages (AUTO_ACKNOWLEDGE in this example, which means a session 
automatically acknowledges the receipt of a message). There is additional complexity 
associated with finding the connection factory and topic in the distributed environment 
(the complexity of connecting to a named channel in JGroups is all hidden in the connect

method). This is achieved using JNDI (the Java Naming and Directory Interface) in lines 
2 to 5. This is included for completeness and it is assumed that readers can appreciate 
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the purpose of these lines of code without further explanation. Lines 12 and 13 contain 
the crucial code to create a new message and then publish it to the appropriate topic. The 
code to create a new instance of the FireAlarmJMS class and then raise an alarm is:

FireAlarmJMS alarm = new FireAlarmJMS();

alarm.raise();

The corresponding code for the receiver end is very similar and is shown in Figure 6.18.
Lines 2–9 are identical and create the required connection and session, respectively. 
This time, though, an object of type TopicSubscriber is created next (line 10), and the 
start method in line 11 starts this subscription, enabling messages to be received. The 
blocking receive in line 12 then awaits an incoming message and line 13 returns the 
textual contents of this message as a string. This class is used as follows by a consumer:

FireAlarmConsumerJMS alarmCall = new FireAlarmConsumerJMS();

String msg = alarmCall.await();

System.out.println("Alarm received: "+msg);

Overall this case study has illustrated how both publish-subscribe and message queues 
can be supported by a single middleware solution (in this case JMS), offering the 
programmer the choice of one-to-many or point-to-point variants of indirect 
communication, respectively.

6.5 Shared memory approaches

In this section, we examine indirect communication paradigms that offer an abstraction 
of shared memory. We look briefly at distributed shared memory techniques that were 
developed principally for parallel computing before moving on to tuple space 
communication, an approach that allows programmers to read and write tuples from a 
shared tuple space. Whereas distributed shared memory operates at the level of reading 
and writing bytes, tuple spaces offer a higher-level perspective in the form of semi-
structured data. In addition, whereas distributed shared memory is accessed by address, 
tuple spaces are associative, offering a form of content-addressable memory [Gelernter 
1985].

Chapter 18 of the fourth edition of this book provided in-depth coverage of 
distributed shared memory, including consistency models and several case studies. This 
chapter can be found on the companion web site for the book [www.cdk5.net/dsm].

6.5.1 Distributed shared memory

Distributed shared memory (DSM) is an abstraction used for sharing data between 
computers that do not share physical memory. Processes access DSM by reads and 
updates to what appears to be ordinary memory within their address space. However, an 
underlying runtime system ensures transparently that processes executing at different 
computers observe the updates made by one another. It is as though the processes access 
a single shared memory, but in fact the physical memory is distributed (see Figure 6.19).



Figure 6.19 The distributed shared memory abstraction
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The main point of DSM is that it spares the programmer the concerns of message 
passing when writing applications that might otherwise have to use it. DSM is primarily 
a tool for parallel applications or for any distributed application or group of applications 
in which individual shared data items can be accessed directly. DSM is in general less 
appropriate in client-server systems, where clients normally view server-held resources 
as abstract data and access them by request (for reasons of modularity and protection). 

Message passing cannot be avoided altogether in a distributed system: in the 
absence of physically shared memory, the DSM runtime support has to send updates in 
messages between computers. DSM systems manage replicated data: each computer has 
a local copy of recently accessed data items stored in DSM, for speed of access. The 
problems of implementing DSM are related to the replication issues to be discussed in 
Chapter 18, as well as to those of caching shared files, discussed in Chapter 12.

One of the first notable examples of a DSM implementation was the Apollo 
Domain file system [Leach et al. 1983], in which processes hosted by different 
workstations share files by mapping them simultaneously into their address spaces. This 
example shows that distributed shared memory can be persistent. That is, it may outlast 
the execution of any process or group of processes that accesses it and be shared by 
different groups of processes over time. 

The significance of DSM first grew alongside the development of shared-memory 
multiprocessors (discussed further in Section 7.3). Much research has gone into 
investigating algorithms suitable for parallel computation on these multiprocessors. At 
the hardware architectural level, developments include both caching strategies and fast 
processor-memory interconnections, aimed at maximizing the number of processors 
that can be sustained while achieving fast memory access latency and throughput 
[Dubois et al. 1988]. Where processes are connected to memory modules over a 
common bus, the practical limit is on the order of 10 processors before performance 
degrades drastically due to bus contention. Processors sharing memory are commonly 
constructed in groups of four, sharing a memory module over a bus on a single circuit 
board. Multiprocessors with up to 64 processors in total are constructed from such 
boards in a Non-Uniform Memory Access (NUMA) architecture. This is a hierarchical 
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architecture in which the four-processor boards are connected using a high-performance 
switch or higher-level bus. In a NUMA architecture, processors see a single address 
space containing all the memory of all the boards. But the access latency for on-board 
memory is less than that for a memory module on a different board – hence the name of 
this architecture.

In distributed-memory multiprocessors and clusters of off-the-shelf computing 
components (again, see Section 7.3), the processors do not share memory but are 
connected by a very high speed network. These systems, like general-purpose 
distributed systems, can scale to much greater numbers of processors than a shared-
memory multiprocessor’s 64 or so. A central question that has been pursued by the DSM 
and multiprocessor research communities is whether the investment in knowledge of 
shared memory algorithms and the associated software can be directly transferred to a 
more scalable distributed memory architecture. 

Message passing versus DSM  •  As a communication mechanism, DSM is comparable 
with message passing rather than with request-reply-based communication, since its 
application to parallel processing, in particular, entails the use of asynchronous 
communication. The DSM and message-passing approaches to programming can be 
contrasted as follows:

Service offered: Under the message-passing model, variables have to be marshalled 
from one process, transmitted and unmarshalled into other variables at the receiving 
process. By contrast, with shared memory the processes involved share variables 
directly, so no marshalling is necessary – even of pointers to shared variables – and 
thus no separate communication operations are necessary. Most implementations 
allow variables stored in DSM to be named and accessed similarly to ordinary 
unshared variables. In favour of message passing, on the other hand, is that it allows 
processes to communicate while being protected from one another by having private 
address spaces, whereas processes sharing DSM can, for example, cause one another 
to fail by erroneously altering data. Furthermore, when message passing is used 
between heterogeneous computers, marshalling takes care of differences in data 
representation; but how can memory be shared between computers with, for example, 
different integer representations?

Synchronization between processes is achieved in the message model through 
message passing primitives themselves, using techniques such as the lock server 
implementation discussed in Chapter 16. In the case of DSM, synchronization is via 
normal constructs for shared-memory programming such as locks and semaphores 
(although these require different implementations in the distributed memory 
environment). Chapter 7 briefly discusses such synchronization objects in the context 
of programming with threads.

Finally, since DSM can be made persistent, processes communicating via DSM 
may execute with non-overlapping lifetimes. A process can leave data in an agreed 
memory location for the other to examine when it runs. By contrast, processes 
communicating via message passing must execute at the same time.

Efficiency: Experiments show that certain parallel programs developed for DSM can 
be made to perform about as well as functionally equivalent programs written for 
message-passing platforms on the same hardware [Carter et al. 1991] – at least in the 
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case of relatively small numbers of computers (10 or so). However, this result cannot 
be generalized. The performance of a program based on DSM depends upon many 
factors, as we shall discuss below – particularly the pattern of data sharing (such as 
whether an item is updated by several processes). 

There is a difference in the visibility of costs associated with the two types of 
programming. In message passing, all remote data accesses are explicit and therefore 
the programmer is always aware of whether a particular operation is in-process or 
involves the expense of communication. Using DSM, however, any particular read 
or update may or may not involve communication by the underlying runtime support. 
Whether it does or not depends upon such factors as whether the data have been 
accessed before and the sharing pattern between processes at different computers.

There is no definitive answer as to whether DSM is preferable to message passing for 
any particular application. DSM remains a tool whose ultimate status depends upon the 
efficiency with which it can be implemented.

6.5.2 Tuple space communication

Tuple spaces were first introduced by David Gelernter from Yale University as a novel 
form of distributed computing based on what he refers to as generative communication

[Gelernter 1985]. In this approach, processes communicate indirectly by placing tuples 
in a tuple space, from which other processes can read or remove them. Tuples do not 
have an address but are accessed by pattern matching on content (content-addressable 
memory, as discussed  by Gelernter [1985]). The resultant Linda programming model 
has been highly influential and has led to significant developments in distributed 
programming including systems such as Agora [Bisiani and Forin 1988] and, more 
significantly, JavaSpaces from Sun (discussed below) and IBM’s TSpaces. Tuple space 
communication has also been influential in the field of ubiquitous computing, for 
reasons that are explored in depth in Chapter 19.

This section provides an examination of the tuple space paradigm as it applies to 
distributed computing. We start by examining the programming model offered by tuple 
spaces before briefly considering the associated implementation issues. The section then 
concludes by examining the JavaSpaces specification as a case study, illustrating how 
tuple spaces have evolved to embrace the object-oriented world.

The programming model  •  In the tuple space programming model, processes 
communicate through a tuple space – a shared collection of tuples. Tuples in turn consist 
of a sequence of one or more typed data fields such as <"fred", 1958>, <"sid", 1964>

and <4, 9.8, "Yes">. Any combination of types of tuples may exist in the same tuple 
space. Processes share data by accessing the same tuple space: they place tuples in tuple 
space using the write operation and read or extract them from tuple space using the read

or take operation. The write operation adds a tuple without affecting existing tuples in 
the space. The read operation returns the value of one tuple without affecting the 
contents of the tuple space. The take operation also returns a tuple, but in this case it also 
removes the tuple from the tuple space.

When reading or removing a tuple from tuple space, a process provides a tuple 
specification and the tuple space returns any tuple that matches that specification – as 
mentioned above, this is a type of associative addressing. To enable processes to 



<"Capital", "Scotland", "Edinburgh">

<"Capital", "Wales", "Cardiff">

<"Capital", "England", "London">

<"Capital", "N. Ireland", "Belfast">

<"Population", "Scotland", 5168000>

<"Population", "UK", 61000000>

take(<String, "Scotland", Integer>)

write(<"Population", "Wales", 2900000>)

read(<"Population", String, Integer>)

take(<String, "Scotland", String>)

Figure 6.20 The tuple space abstraction
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synchronize their activities, the read and take operations both block until there is a 
matching tuple in the tuple space. A tuple specification includes the number of fields and 
the required values or types of the fields. For example, take(<String, integer>) could 
extract either <"fred", 1958> or <"sid", 1964>; take(<String, 1958>) would extract only
<"fred", 1958> of those two. 

In the tuple space paradigm, no direct access to tuples in tuple space is allowed 
and processes have to replace tuples in the tuple space instead of modifying them. Thus, 
tuples are immutable. Suppose, for example, that a set of processes maintains a shared 
counter in tuple space. The current count (say, 64) is in the tuple <"counter", 64>. A 
process must execute code of the following form in order to increment the counter in a 
tuple space myTS:

<s, count> := myTS.take(<"counter", integer>);
myTS.write(<"counter", count+1>);

A further illustration of the tuple space paradigm is given in Figure 6.20. This tuple 
space contains a range of tuples representing geographical information about countries 
in the United Kingdom, including populations and capital cities. The take operation 
take(<String, "Scotland", String>) will match <"Capital", "Scotland", "Edinburgh">,
whereas take(<String, "Scotland", Integer>) will match <"Population", "Scotland", 

5168000>. The write operation write(<"Population", "Wales, 2900000>) will insert a 
new tuple in the tuple space with information on the population of Wales. Finally, 
read(<"Population", String, Integer) can match the equivalent tuples for the 
populations of the UK, Scotland or indeed Wales, if this operation is executed after the 
corresponding write operation. One will be selected nondeterministically by the tuple 
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space implementation and, with this being a read operation, the tuple will remain in the 
tuple space.

Note that write, read and take are known as out, rd and in in Linda; we use the 
more descriptive former names throughout this book. This terminology is also used in 
JavaSpaces, discussed in a case study below.

Properties associated with tuple spaces: Gelernter [1985] presents some interesting 
properties associated with tuple space communication, highlighting in particular both 
space and time uncoupling as discussed in Section 6.1:

Space uncoupling: A tuple placed in tuple space may originate from any number of 
sender processes and may be delivered to any one of a number of potential recipients. 
This property is also referred to as distributed naming in Linda. 

Time uncoupling: A tuple placed in tuple space will remain in that tuple space until 
removed (potentially indefinitely), and hence the sender and receiver do not need to 
overlap in time. 

Together, these features provide an approach that is fully distributed in space and time 
and also provide for a form of distributed sharing of shared variables via the tuple space.

Gelernter [1985] also explores a range of other properties associated with the 
rather flexible style of naming employed in Linda (referred to as free naming). The 
interested reader is directed to Gelernter’s paper for more information on this topic.

Variations on a theme: Since the introduction of Linda, refinements have been proposed 
to the original model:

• The original Linda model proposed a single, global tuple space. This is not 
optimal in large systems, as it leads to the danger of unintended aliasing of tuples: 
as the number of tuples in a tuple space increases, there is an increasing chance of 
a read or take matching a tuple by accident. This is particularly likely when 
matching on types, such as with take(<String, integer>), as mentioned above. 
Given this, a number of systems have proposed multiple tuple spaces, including 
the ability to dynamically create tuple spaces, introducing a degree of scoping into 
the system (see, for example, the JavaSpaces case study below).

• Linda was anticipated to be implemented as a centralized entity but later systems 
have experimented with distributed implementations of tuple spaces (including 
strategies to provide more fault tolerance). Given the importance of this topic to 
this book, we focus on this in the implementation issues subsection below. 

• Researchers have also experimented with modifying or extending the operations 
provided in tuple spaces and adapting the underlying semantics. One rather 
interesting proposal is to unify the concepts of tuples and tuple spaces by 
modelling everything as (unordered) sets – that is, tuple spaces are sets of tuples 
and tuples are sets of values, which may now also include tuples. This variant is 
known as Bauhaus Linda [Carriero et al. 1995].

• Perhaps most interestingly, recent implementations of tuple spaces have moved 
from tuples of typed data items to data objects (with attributes), turning the tuple 
space into an object space. This proposal is adopted, for example, in the influential 
system JavaSpaces, discussed in more detail below.
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Implementation issues  •  Many of the implementations of tuple spaces adopt a 
centralized solution where the tuple space resource is managed by a single server. This 
has advantages in terms of simplicity, but such solutions are clearly not fault tolerant and 
also will not scale. Because of this, distributed solutions have been proposed.

Replication: Several systems have proposed the use of replication to overcome the 
problems identified above [Bakken and Schlichting 1995, Bessani et al. 2008, Xu and 
Liskov 1989].

The proposals from Bakken and Schlichting [1995] and Bessani et al. [2008] 
adopt a similar approach to replication, referred to as the state machine approach  and 
discussed further in Chapter 18. This approach assumes that a tuple space behaves like 
a state machine, maintaining state and changing this state in response to events received 
from other replicas or from the environment. To ensure consistency the replicas (i)  must 
start in the same state (an empty tuple space), (ii) must execute events in the same order 
and (iii) must react deterministically to each event. The key second property can be 
guaranteed by adopting a totally ordered multicast algorithm, as discussed in Section 
6.2.2.

Xu and Liskov [1989] adopt a different approach, which optimizes the replication 
strategy by using the semantics of the particular tuple space operations. In this proposal, 
updates are carried out in the context of the current view (the agreed set of replicas) and 
tuples are also partitioned into distinct tuple sets based on their associated logical names 
(designated as the first field in the tuple). The system consists of a set of workers 
carrying out computations on the tuple space, and a set of tuple space replicas. A given 
physical node can contain any number of workers, replicas or indeed both; a given 
worker therefore may or may not have a local replica. Nodes are connected by a 
communications network that may lose, duplicate or delay messages and can deliver 
messages out of order. Network partitions can also occur. 

A write operation is implemented by sending a multicast message over the 
unreliable communications channel to all members of the view. On receipt, members 
place this tuple into their replica and acknowledge receipt. The write request is repeated 
until all acknowledgements are received. For the correct operation of the protocol, 
replicas must detect and acknowledge duplicate requests, but not carry out the 
associated write operations.

The read operation consists of sending a multicast message to all replicas. Each 
replica seeks a match and returns this match to the requesting site. The first tuple 
returned is delivered as the result of the read. This may come from a local node, but 
given that many workers will not have a local replica, this is not guaranteed.

The take operation is more complex because of the need to agree on the tuple to 
be selected and to remove this agreed tuple from all copies. The algorithm proceeds in 
two phases. In phase 1, the tuple specification is sent to all replicas, and the replica 
attempts to acquired the lock on the associated tuple set to serialize take requests on the 
replicas (write and read operations are unaffected by the lock); if the lock cannot be 
acquired, the take request is refused. Each replica that succeeds in obtaining the lock 
responds with the set of matching tuples. This step is repeated until all replicas have 
accepted the request and responded. The initiating process can then select one tuple from 
the intersection of all the replies and return this as the result of the take request. If it is 
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not possible to obtain a majority of locks, the replicas are asked to release their locks and 
phase 1 repeats.

Figure 6.21 Replication and the tuple space operations [Xu and Liskov 1989] 

write 1. The requesting site multicasts the write request to all members of the view;

2. On receiving this request, members insert the tuple into their replica and acknowledge this action;

3. Step 1 is repeated until all acknowledgements are received.

read 1. The requesting site multicasts the read request to all members of the view;

2. On receiving this request, a member returns a matching tuple to the requestor;

3. The requestor returns the first matching tuple received as the result of the operation (ignoring others);

4. Step 1 is repeated until at least one response is received.

take Phase 1: Selecting the tuple to be removed

1. The requesting site multicasts the take request to all members of the view;

2. On receiving this request, each replica acquires a lock on the associated tuple set and, if the lock 
cannot be acquired, the take request is rejected;

3. All accepting members reply with the set of all matching tuples;

4. Step 1 is repeated until all sites have accepted the request and  responded with their set of tuples and 
the intersection is non-null;

5. A particular tuple is selected as the result of the operation (selected randomly from the intersection 
of all the replies);

6. If only a minority accept the request, this minority are asked to release their locks and phase 1 repeats.

Phase 2: Removing the selected tuple

1. The requesting site multicasts a remove request to all members of the view citing the tuple to be 
removed;

2. On receiving this request, members remove the tuple from their replica, send an acknowledgement 
and release the lock;

3. Step 1 is repeated until all acknowledgements are received.

In phase 2, this tuple must be removed from all replicas. This is achieved by 
repeated multicasts to the replicas in the view until all have acknowledged deletion. As 
with write requests, it is necessary for replicas to detect repeat requests in phase 2 and 
to simply send another acknowledgement without carrying out another deletion 
(otherwise multiple tuples could erroneously be deleted at this stage).

The steps involved for each operation are summarized in Figure 6.21. Note that a 
separate algorithm is required to manage view changes if node failures occur or the 
network partitions (see Xu and Liskov [1989] for details).

This algorithm is designed to minimize delay given the semantics of the three 
tuple space operations:

read operations only block until the first replica responds to the request.

take operations block until the end of phase 1, when the tuple to be deleted has been 
agreed.

write operations can return immediately.
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This, though, introduces unacceptable levels of concurrency. For example, a read

operation may access a tuple that should have been deleted in the second phase of a take

operation. Therefore additional levels of concurrency control are required. In particular, 
Xu and Liskov [1989] introduce the following additional constraints:

• The operations of each worker must be executed at each replica in the same order 
as they were issued by the worker;.

• A write operation must not be executed at any replica until all previous take

operations issued by the same worker have completed at all replicas in the 
worker's view.

A further example of using replication is provided in Chapter 19, where we present the 
L2imbo approach, which uses replication to provide high availability in mobile 
environments [Davies et al. 1998]. 

Other approaches: A range of other approaches have been employed in the 
implementation of the tuple space abstraction, including partitioning of the tuple space 
over a number of nodes and mapping onto peer-to-peer overlays: 

• The Linda Kernel developed at the University of York [Rowstron and Wood 
1996] adopts an approach in which tuples are partitioned across a range of 
available tuple space servers (TSSs), as illustrated in Figure 6.22

Figure 6.22 Partitioning in the York Linda Kernel
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. There is no 
replication of tuples; that is, there is only one copy of each tuple. The motivation 
is to increase performance of the tuple space, especially for highly parallel 
computation.When a tuple is placed in tuple space, a hashing algorithm is used to 
select one of the tuple space servers to be used. The implementation of read or 
take is slightly more complex, as a tuple specification is provided that may specify 
types or values of the associated fields. The hashing algorithm uses this 
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specification to generate a set of possible servers that may contain matching 
tuples, and a linear search must then be employed until a matching tuple is 
discovered. Note that because there is only a single copy of a given tuple, the 
implementation of take is greatly simplified. 

• Some implementations of tuple spaces have adopted peer-to-peer approaches in 
which all nodes cooperate to provide the tuple space service. This approach is 
particularly attractive given the intrinsic availability and scalability of peer-to-peer 
solutions. Examples of peer-to-peer implementations include PeerSpaces [Busi et

al. 2003], which is developed using the JXTA peer-to-peer middleware 
[jxta.dev.java.net], LIME and TOTA (the latter two systems feature in Chapter 19). 

Case study: JavaSpaces  •  JavaSpaces

Figure 6.23 The JavaSpaces API 

Operation Effect

Lease write(Entry e, Transaction txn, long lease) Places an entry into a particular 
JavaSpace

Entry read(Entry tmpl, Transaction txn, long timeout) Returns a copy of an entry matching 
a specified template

Entry readIfExists(Entry tmpl, Transaction txn, long timeout) As above, but not blocking

Entry take(Entry tmpl, Transaction txn, long timeout) Retrieves (and removes) an entry 
matching a specified template

Entry takeIfExists(Entry tmpl, Transaction txn, long timeout) As above, but not blocking

EventRegistration notify(Entry tmpl, Transaction txn, 

RemoteEventListener listen, long lease, 

MarshalledObject handback)

Notifies a process if a tuple matching 
a specified template is written to a 
JavaSpace

 is a tool for tuple space communication 
developed by Sun [java.sun.com X, [java.sun.com VI]. More specifically, Sun provides 
the specification of a JavaSpaces service, and third-party developers are then free to 
offer implementations of JavaSpaces (significant implementations include GigaSpaces 
[www.gigaspaces.com] and Blitz [www.dancres.org]). The tool is strongly dependent 
on Jini (Sun’s discovery service, discussed further in Section 19.2.1), as will become 
apparent below. The Jini Technology Starter Kit also includes an implementation of 
JavaSpaces, referred to as Outrigger.

The goals of the JavaSpaces technology are:

• to offer a platform that simplifies the design of distributed applications and 
services;

• to be simple and minimal in terms of the number and size of associated classes and 
to have a small footprint to allow the code to run on resource-limited devices (such 
as smart phones);

• to enable replicated implementations of the specification (although in practice 
most implementations are centralized).
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Programming with JavaSpaces: JavaSpaces allows the programmer to create any number 
of instances of a space, where a space is a shared, persistent repository of objects (thus 
offering an object space in the terminology introduced above). More specifically, an 
item in a JavaSpace is referred to as an entry: a group of objects contained in a class that 
implements net.jini.core.entry.Entry. Note that with entries containing objects (rather 
than tuples), it is possible to associate arbitrary behaviour with entries, thus significantly 
increasing the expressive power of the approach.

The operations defined on JavaSpaces are summarized in Figure 6.23 (showing 
the full signatures of each of the operations) and can be described as follows:

• A process can place an entry into a JavaSpace instance with the write method. As 
with Jini, an entry can have an associated lease (see Section 5.4.3), which is the 
time for which access is granted to the associated objects. This can be forever 
(Lease.FOREVER) or can be a numerical value specified in milliseconds. After 
this period, the entry is destroyed. The write operation can also be used in the 
context of a transaction, as discussed below (a value of null indicates that this is 
not a transactional operation). The write operation returns a Lease value 
representing the lease granted by the JavaSpace (which may be less than the time 
requested).

•

Figure 6.24 Java class AlarmTupleJS

import net.jini.core.entry.*;

public class AlarmTupleJS implements Entry {

public String alarmType;

public AlarmTupleJS() {

}

public AlarmTupleJS(String alarmType) {

this.alarmType = alarmType;

}

}

A process can access an entry in a JavaSpace with either the read or take

operation; read returns a copy of a matching entry and take removes a matching 
entry from the JavaSpace (as in the general programming model presented above). 
The matching requirements are specified by a template, which is of type entry.
Particular fields in the template may be set to specific values and others can be left 
unspecified. A match is then defined as an entry that is of the same class as the 
template (or a valid subclass) and where there is an exact match for the set of 
specified values. As with write, read and take can be carried out in the context of 
a specified transaction (discussed below). The two operations are also blocking; 
the final parameter specifies a timeout representing the maximum length of time 
that a particular process or thread will block, for example to deal with the failure 
of a process supplying a given entry. The readIfExists and takeIfExists operations 
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are equivalent to read and take, respectively, but these operations will return a 
matching entry if one exists; otherwise, they will return null.

• The notify operation uses Jini distributed event notification, mentioned in Section 
6.3 to register an interest in a given event – in this case, the arrival of entries 
matching a given template. This registration is governed by a lease, that is, the 
length of time the registration should persist in the JavaSpace. Notification is via 
a specified RemoteEventListener interface. Once again, this operation can be 
carried out in the context of a specified transaction.

As mentioned throughout the discussion above, operations in JavaSpaces can take place 
in the context of a transaction, ensuring that either all or none of the operations will be 
executed. Transactions are distributed entities and can span multiple JavaSpaces and 
multiple participating processes. Discussion of the general concept of transactions is 
deferred until Chapter 16.

A simple example: We conclude this examination of JavaSpaces by presenting an 
example, the intelligent fire alarm example first introduced in Section 6.2.3 and revisited 
in Section 6.4.3. In this example, there is a need to disseminate an emergency message 
to all recipients when a fire event is detected.

We start by defining an entry object of type AlarmTupleJS, as shown in Figure 
6.24. This is relatively straightforward and shows the creation of a new entry with one 
field, the alarmType. The associated fire alarm code is shown in Figure 6.25

Figure 6.25 Java class FireAlarmJS

import net.jini.space.JavaSpace;

public class FireAlarmJS {

public void raise() {

try {

JavaSpace space = SpaceAccessor.findSpace("AlarmSpace");

AlarmTupleJS tuple = new AlarmTupleJS("Fire!");

space.write(tuple, null, 60*60*1000);

catch (Exception e) {

}

}

}

. The first 
step in raising an alarm is to gain access to an appropriate instance of a JavaSpace (called 
"AlarmSpace"), which we assume is already created. Most implementations of 
JavaSpaces provide utility functions for this and, for simplicity, this is what we show in 
this code, using a utility class SpaceAccessor and method findSpace as provided in 
GigaSpaces (for convenience, a copy of this class is provided on the companion web site 
for the book [www.cdk5.net]). An entry is then created as an instance of the previously 
defined AlarmTupleJS. This entry has only one field, a string called alarmType, and this 
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is set to "Fire!"”. Finally, this entry is placed into the JavaSpace using the write method, 
where it will remain for one hour. This code can then be called using the following:

FireAlarmJS alarm = new FireAlarmJS();

alarm.raise();

The corresponding code for the consumer end is shown in Figure 6.26

Figure 6.26 Java class FireAlarmReceiverJS

import net.jini.space.JavaSpace;

public class FireAlarmConsumerJS {

public String await() {

try {

JavaSpace space = SpaceAccessor.findSpace();

AlarmTupleJS template = new AlarmTupleJS("Fire!");

AlarmTupleJS recvd = (AlarmTupleJS) space.read(template, null, 

Long.MAX_VALUE);

return recvd.alarmType;

}

catch (Exception e) {

return null;

}

}

}

. Access to the 
appropriate JavaSpace is obtained in the same manner. Following this, a template is 
created, the single field is set to "Fire!", and an associated read method  is invoked. Note 
that by setting the field to "Fire!", we ensure that only entries with this type and this 
value will be returned (leaving the field blank would make any entry of type 
AlarmTupleJS a valid match). This is called as follows in a consumer:

FireAlarmConsumerJS alarmCall = new FireAlarmConsumerJS();

String msg = alarmCall.await();

System.out.println("Alarm received: " + msg);

This simple example illustrates how easy it is to write multiparty applications using 
JavaSpaces that are both time- and space-uncoupled.

6.6 Summary

This chapter has examined indirect communication in detail, complementing the study 
of remote invocation paradigms in the previous chapter. We defined indirect 
communication in terms of communication through an intermediary, with a resultant 
uncoupling between producers and consumers of messages. This leads to interesting 
properties, particularly in terms of dealing with change and establishing fault-tolerant 
strategies.
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We have considered five styles of indirect communication in this chapter:

• group communication;

• publish-subscribe systems;

• message queues;

• distributed shared memory;

• tuple spaces.

The discussion has emphasized their commonalities in terms of all supporting indirect 
communication through forms of intermediary including groups, channels or topics, 
queues, shared memory or tuple spaces. Content-based publish-subscribe systems 
communicate through the publish-subscribe system as a whole, with subscriptions 
effectively defining logical channels managed by content-based routing.

As well as focusing on the commonalities, it is instructive to consider the key 
differences between the various approaches. We start by reconsidering the level of space 
and time uncoupling, picking up on the discussion in Section 6.1. All the techniques 
considered in this chapter exhibit space uncoupling in that messages are directed to an 
intermediary and not to any specific recipient or recipients. The position with respect to 
time uncoupling is more subtle and dependent on the level of persistency in the 
paradigm. Message queues, distributed shared memory and tuple spaces all exhibit time 
uncoupling. The other paradigms may, depending on the implementation. For example, 
in group communication, it is possible in some implementations for a receiver to join a 
group at an arbitrary point in time and to be brought up-to-date with respect to previous 
message exchanges (this is an optional feature in JGroups, for example, selected by 
constructing an appropriate protocol stack). Many publish-subscribe systems do not 
support persistency of events and hence are not time-uncoupled, but there are 
exceptions. JMS, for example, does support persistent events, in keeping with its 
integration of publish-subscribe and message queues.

The next observation is that the initial three techniques (groups, publish-subscribe 
and message queues) offer a programming model that emphasizes communication

(through messages or events), whereas distributed shared memory and tuple spaces offer 
a more state-based abstraction. This is a fundamental difference and one that has 
significant repercussions in terms of scalability; in general terms, the communication-
based abstractions have the potential to scale to very large scale systems with 
appropriate routing infrastructure (although this is not the case for group communication 
because of the need to maintain group membership, as discussed in Section 6.2.2). In 
contrast, the two state-based approaches have limitations with respect to scaling. This 
stems from the need to maintain consistent views of the shared state, for example 
between multiple readers and writers of shared memory. The situation with tuple spaces 
is a bit more subtle given the immutable nature of tuples. The key problem rests with 
implementing the destructive read operation, take, in a large-scale system; it is an 
interesting observation that without this operation, tuple spaces look very much like 
publish-subscribe systems (and hence are potentially highly scalable).

Most of the above systems also offer one-to-many styles of communication, that 
is, multicast in terms of the communication-based services and global access to shared 
values in the state-based abstractions. The exceptions are message queuing, which is 
fundamentally point-to-point (and hence often offered in combination with publish-
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subscribe systems in commercial middleware), tuple spaces, which can be either one-to-
many or point-to-point depending on whether receiving processes use the read or take

operations, respectively.
There are also differences in intent in the various systems. Group communication 

is mainly designed to support reliable distributed systems, and hence the emphasis is on 
providing algorithmic support for reliability and ordering of message delivery. 
Interestingly, the algorithms to ensure reliability and ordering (especially the latter) can 
have a significant negative effect on scalability for similar reasons to maintaining 
consistent views of shared state. Publish-subscribe systems have largely been targeted 
at information dissemination (for example, in financial systems) and for Enterprise 
Application Integration. Finally, the shared memory approaches have generally been 
applied in parallel and distributed processing, including in the Grid community 
(although tuple spaces have been used effectively across a variety of application 
domains). Both publish-subscribe systems and tuple space communication have found 
favour in mobile and ubiquitous computing due to their support for volatile 
environments (as discussed in Chapter 19).

One other key issue associated with the five schemes is that both content-based 
publish-subscribe and tuple spaces offer a form of associative addressing based on 
content, allowing pattern matching between subscriptions and events or templates 
against tuples, respectively. The other approaches do not.

This discussion is summarized in Figure 6.27.
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We have not considered issues related to quality of service in this analysis. Many 
message queue systems do offer intrinsic support for reliability in the form of 
transactions. More generally, however, quality of service remains a key challenge for 
indirect communication paradigms. Indeed, space and time uncoupling by their very 
nature make it difficult to reason about end-to-end properties of the system, such as real-
time behaviour or security, and hence this is an important area for further research.

EXERCISES

6.1 Construct an argument as to why indirect communication may be appropriate in volatile 
environments. To what extent can this be traced to time uncoupling, space uncoupling 
or indeed a combination of both? page 230

6.2 Section 6.1 states that message passing is both time- and space-coupled – that is,
messages are both directed towards a particular entity and require the receiver to be 
present at the time of the message send. Consider the case, though, where messages are 
directed towards a name rather than an address and this name is resolved using DNS. 
Does such a system exhibit the same level of indirection? page 231, Section 13.2.3

6.3 Section 6.1 refers to systems that are space-coupled but time- uncoupled – that is, 
messages are directed towards a given receiver (or receivers), but that receiver can have 
a lifetime independent from the sender’s. Can you construct a communication paradigm 
with these properties? For example, does email fall into this category? page 231

6.4 As a second example, consider the communication paradigm referred to as queued RPC, 
as introduced in Rover [Joseph et al. 1997]. Rover is a toolkit to support distributed 
systems programming in mobile environments where participants in communication 
may become disconnected for periods of time. The system offers the RPC paradigm and 
hence calls are directed towards a given server (clearly space-coupled). The calls, 
though, are routed through an intermediary, a queue at the sending side, and are 
maintained in the queue until the receiver is available. To what extent is this time-
uncoupled? Hint: consider the almost philosophical question of whether a recipient that 
is temporarily unavailable exists at that point in time. page 231, Chapter 19

6.5 If a communication paradigm is asynchronous, is it also time-uncoupled? Explain your 
answer with examples as appropriate. page 232

6.6 In the context of a group communication service, provide example message exchanges 
that illustrate the difference between causal and total ordering. page 236

6.7 Consider the FireAlarm example as written using JGroups (Section 6.2.3). Suppose this 
was generalized to support a variety of alarm types, such as fire, flood, intrusion and so 
on. What are the requirements of this application in terms of reliability and ordering?

page 230, page 240
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6.8 Suggest a design for a notification mailbox service that is intended to store notifications 
on behalf of multiple subscribers, allowing subscribers to specify when they require 
notifications to be delivered. Explain how subscribers that are not always active can 
make use of the service you describe. How will the service deal with subscribers that 
crash while they have delivery turned on? page 245

6.9 In publish-subscribe systems, explain how channel-based approaches can trivially be 
implemented using a group communication service? Why is this a less optimal strategy 
for implementing a content-based approach? page 245

6.10 Using the filtering-based routing algorithm in Figure 6.11 as a starting point, develop an 
alternative algorithm that illustrates how the use of advertisements can result in 
significant optimization in terms of message traffic generated. page 251

6.11 Construct a step-by-step guide explaining the operation of the alternative rendezvous-
based routing algorithm shown in Figure 6.12. page 252

6.12 Building on your answer to Exercise 6.11, discuss two possible implementations of 
EN(e) and SN(s). Why must the intersection of EN(e) and SN(s) be non-null for a given 
e that matches s (the intersection rule)? Does this apply in your possible 
implementations? page 252

6.13 Explain how the loose coupling inherent in message queues can aid with Enterprise 
Application Integration. As in Exercise 6.1, consider to what extent this can be traced to 
time uncoupling, space uncoupling or a combination of both. page 254

6.14 Consider the version of the FireAlarm program written in JMS (Section 6.4.3). How 
would you extend the consumer to receive alarms only from a given location?

page 261

6.15 Explain in which respects DSM is suitable or unsuitable for client-server systems.
page 262

6.16 Discuss whether message passing or DSM is preferable for fault-tolerant applications. 
page 262

6.17 Assuming a DSM system is implemented in middleware without any hardware support 
and in a platform-neutral manner, how would you deal with the problem of differing data 
representations on heterogeneous computers? Does your solution extend to pointers?

page 262

6.18 How would you implement the equivalent of a remote procedure call using a tuple 
space? What are the advantages and disadvantages of implementing a remote procedure 
call–style interaction in this way? page 265

6.19 How would you implement a semaphore using a tuple space? page 265

6.20 Implement a replicated tuple space using the algorithm of Xu and Liskov [1989]. 
Explain how this algorithm uses the semantics of tuple space operations to optimize the 
replication strategy. page 269
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7

OPERATING SYSTEM SUPPORT

7.1 Introduction
7.2 The operating system layer
7.3 Protection
7.4 Processes and threads
7.5 Communication and invocation
7.6 Operating system architecture
7.7 Virtualization at the operating system level
7.8 Summary

This chapter describes how middleware is supported by the operating system facilities at 
the nodes of a distributed system. The operating system facilitates the encapsulation and 
protection of resources inside servers and it supports the mechanisms required to access 
these resources, including communication and scheduling. 

An important theme of the chapter is the role of the system kernel. The chapter aims 
to give the reader an understanding of the advantages and disadvantages of splitting 
functionality between protection domains – in particular, of splitting functionality between 
kernel- and user-level code. The trade-offs between kernel-level facilities and user-level 
facilities are discussed, including the tension between efficiency and robustness. 

The chapter examines the design and implementation of multi-threaded processing 
and communication facilities. It goes on to explore the main kernel architectures that have 
been devised and looks at the important role that virtualization is playing in operating 
system architecture.
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7.1 Introduction

Chapter 2 introduced the chief software layers in a distributed system. We have learned 
that an important aspect of distributed systems is resource sharing. Client applications 
invoke operations on resources that are often on another node or at least in another 
process. Applications (in the form of clients) and services (in the form of resource 
managers) use the middleware layer for their interactions. Middleware enables remote 
communication between objects or processes at the nodes of a distributed system. 
Chapter 5 explained the main types of remote invocation found in middleware, such as 
Java RMI and CORBA, with Chapter 6 exploring alternative indirect styles of 
communication. In this chapter we shall focus on support for such remote 
communication, without real-time guarantees. (Chapter 20 examines support for 
multimedia communication, which is real-time and stream-oriented.) 

Below the middleware layer is the operating system (OS) layer, which is the 
subject of this chapter. Here we examine the relationship between the two, and in 
particular how well the requirements of middleware can be met by the operating system. 
Those requirements include efficient and robust access to physical resources, and the 
flexibility to implement a variety of resource-management policies. 

The task of any operating system is to provide problem-oriented abstractions of 
the underlying physical resources – the processors, memory, networks, and storage 
media. An operating system such as UNIX (and its variants, such as Linux and Mac OS 
X) or Windows (and its variants, such as XP, Vista and Windows 7) provides the 
programmer with, for example, files rather than disk blocks, and with sockets rather than 
raw network access. It takes over the physical resources on a single node and manages 
them to present these resource abstractions through the system-call interface.

Before we begin our detailed coverage of the operating system’s middleware 
support role, it is useful to gain some historical perspective by examining two operating 
system concepts that have come about during the development of distributed systems: 
network operating systems and distributed operating systems. Definitions vary, but the 
concepts behind them are something like the following. 

Both UNIX and Windows are examples of network operating systems. They have 
a networking capability built into them and so can be used to access remote resources. 
Access is network-transparent for some – not all – types of resource. For example, 
through a distributed file system such as NFS, users have network-transparent access to 
files. That is, many of the files that users access are stored remotely, on a server, and this 
is largely transparent to their applications. 

But the defining characteristic is that the nodes running a network operating 
system retain autonomy in managing their own processing resources. In other words, 
there are multiple system images, one per node. With a network operating system, a user 
can remotely log into another computer, using ssh, for example, and run processes there. 
However, while the operating system manages the processes running at its own node, it 
does not manage processes across the nodes. 

By contrast, one could envisage an operating system in which users are never 
concerned with where their programs run, or the location of any resources. There is a 
single system image. The operating system has control over all the nodes in the system, 
and it transparently locates new processes at whatever node suits its scheduling policies. 
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For example, it could create a new process at the least-loaded node in the system, to 
prevent individual nodes becoming unfairly overloaded.

An operating system that produces a single system image like this for all the 
resources in a distributed system is called a distributed operating system [Tanenbaum 
and van Renesse 1985].

Middleware and network operating systems  •  In fact, there are no distributed operating 
systems in general use, only network operating systems such as UNIX, Mac OS and 
Windows. This is likely to remain the case, for two main reasons. The first is that users 
have much invested in their application software, which often meets their current 
problem-solving needs; they will not adopt a new operating system that will not run their 
applications, whatever efficiency advantages it offers. Attempts have been made to 
emulate UNIX and other operating system kernels on top of new kernels, but the 
emulations’ performance has not been satisfactory. Anyway, keeping emulations of all 
the major operating systems up-to-date as they evolve would be a huge undertaking.

The second reason against the adoption of distributed operating systems is that 
users tend to prefer to have a degree of autonomy for their machines, even in a closely 
knit organization. This is particularly so because of performance [Douglis and 
Ousterhout 1991]. For example, Jones needs good interactive responsiveness while she 
writes her documents and would resent it if Smith’s programs were slowing her down. 

The combination of middleware and network operating systems provides an 
acceptable balance between the requirement for autonomy on the one hand and network-
transparent resource access on the other. The network operating system enables users to 
run their favourite word processors and other standalone applications. Middleware 
enables them to take advantage of services that become available in their distributed 
system.

The next section explains the function of the operating system layer. Section 7.3
examines low-level mechanisms for resource protection, which we need to understand 
in order to appreciate the relationship between processes and threads, and the role of the 
kernel itself. Section 7.4 goes on to examine the process, address space and thread 
abstractions. Here the main topics are concurrency, local resource management and 
protection, and scheduling. Section 7.5 then covers communication as part of invocation 
mechanisms. Section 7.6 discusses the different types of operating system architecture, 
including the so-called monolithic and microkernel designs. The reader can find case 
studies of the Mach kernel and the Amoeba, Chorus and Clouds operating systems at 
www.cdk5.net/oss. The chapter concludes by examining the role that virtualization is 
playing in the design of operating systems, featuring a case study of the Xen approach 
to virtualization (Section 7.7).

7.2 The operating system layer

Users will only be satisfied if their middleware–OS combination has good performance. 
Middleware runs on a variety of OS–hardware combinations (platforms) at the nodes of 
a distributed system. The OS running at a node – a kernel and associated user-level 
services such as communication libraries – provides its own flavour of abstractions of 
local hardware resources for processing, storage and communication. Middleware 
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utilizes a combination of these local resources to implement its mechanisms for remote 
invocations between objects or processes at the nodes.

Applications, services

Computer & 

Figure 7.1 System layers

Platform

Middleware

OS: kernel,
libraries & 
servers 

network hardware

OS1

Computer & 
network hardware

Node 1 Node 2

Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

Figure 7.1 shows how the operating system layer at each of two nodes supports a 
common middleware layer in providing a distributed infrastructure for applications and 
services.

Our goal in this chapter is to examine the impact of particular OS mechanisms on 
middleware’s ability to deliver distributed resource sharing to users. Kernels and the 
client and server processes that execute upon them are the chief architectural 
components that concern us. Kernels and server processes are the components that 
manage resources and present clients with an interface to the resources. As such, we 
require at least the following of them:

Encapsulation: They should provide a useful service interface to their resources – 
that is, a set of operations that meet their clients’ needs. Details such as management 
of memory and devices used to implement resources should be hidden from clients.

Protection: Resources require protection from illegitimate accesses – for example, 
files are protected from being read by users without read permissions, and device 
registers are protected from application processes. 

Concurrent processing: Clients may share resources and access them concurrently. 
Resource managers are responsible for achieving concurrency transparency.

Clients access resources by making, for example, remote method invocations to a server 
object, or system calls to a kernel. We call a means of accessing an encapsulated 
resource an invocation mechanism, however it is implemented. A combination of 
libraries, kernels and servers may be called upon to perform the following invocation-
related tasks:

Communication: Operation parameters and results have to be passed to and from 
resource managers, over a network or within a computer.

Scheduling: When an operation is invoked, its processing must be scheduled within 
the kernel or server.
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Figure 7.2

Figure 7.2 Core OS functionality
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 shows the core OS functionality that we shall be concerned with: process and 
thread management, memory management and communication between processes on 
the same computer (horizontal divisions in the figure denote dependencies). The kernel 
supplies much of this functionality – all of it in the case of some operating systems.

Shared-memory multiprocessors  •  Shared-memory multiprocessor computers are 
equipped with several processors that share one or more modules of memory (RAM). 
The processors may also have their own private memory. Multiprocessor computers 
can be constructed in a variety of forms [Stone 1993]. The simplest and least 
expensive multiprocessors are constructed by incorporating a circuit board holding a 
few (2–8) processors in a personal computer.

In the common symmetric processing architecture, each processor executes the 
same kernel and the kernels play largely equivalent roles in managing the hardware 
resources. The kernels share key data structures, such as the queue of runnable 
threads, but some of their working data is private. Each processor can execute a 
thread simultaneously, accessing data in the shared memory, which may be private 
(hardware-protected) or shared with other threads. 

Multiprocessors can be used for many high-performance computing tasks. In 
distributed systems, they are particularly useful for the implementation of high-
performance servers because the server can run a single program with several threads 
that handle several requests from clients simultaneously – for example, providing 
access to a shared database (see Section 7.4)

OS software is designed to be portable between computer architectures where 
possible. This means that the majority of it is coded in a high-level language such as C, 
C++ or Modula-3, and that its facilities are layered so that machine-dependent 
components are reduced to a minimal bottom layer. Some kernels can execute on 
shared-memory multiprocessors, which are described in the box below.
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The core OS components and their responsibilities are:

Process manager: Creation of and operations upon processes. A process is a unit of 
resource management, including an address space and one or more threads.

Thread manager: Thread creation, synchronization and scheduling. Threads are 
schedulable activities attached to processes and are fully described in Section 7.4.

Communication manager: Communication between threads attached to different 
processes on the same computer. Some kernels also support communication between 
threads in remote processes. Other kernels have no notion of other computers built 
into them, and an additional service is required for external communication. Section 
7.5 discusses the communication design.

Memory manager: Management of physical and virtual memory. Section 7.4 and 
Section 7.5 describe the utilization of memory management techniques for efficient 
data copying and sharing.

Supervisor: Dispatching of interrupts, system call traps and other exceptions; control 
of memory management unit and hardware caches; processor and floating-point unit 
register manipulations. This is known as the Hardware Abstraction Layer in 
Windows. The reader is referred to Bacon [2002] and Tanenbaum [2007] for a fuller 
description of the computer-dependent aspects of the kernel.

7.3 Protection

We said above that resources require protection from illegitimate accesses. However, 
threats to a system’s integrity do not come only from maliciously contrived code. 
Benign code that contains a bug or that has unanticipated behaviour may cause part of 
the rest of the system to behave incorrectly.

To understand what we mean by an ‘illegitimate access’ to a resource, consider a 
file. Let us suppose, for the sake of explanation, that open files have only two operations, 
read and write. Protecting the file consists of two sub-problems. The first is to ensure 
that each of the file’s two operations can be performed only by clients with the right to 
perform it. For example, Smith, who owns the file, has read and write rights to it. Jones 
may only perform the read operation. An illegitimate access here would be if Jones 
somehow managed to perform a write operation on the file. A complete solution to this 
resource-protection sub-problem in a distributed system requires cryptographic 
techniques, and we defer it to Chapter 11.

The other type of illegitimate access, which we address here, is where a 
misbehaving client sidesteps the operations that a resource exports. In our example, this 
would be if Smith or Jones somehow managed to execute an operation that was neither 
read nor write. Suppose, for example, that Smith managed to access the file pointer 
variable directly. She could then construct a setFilePointerRandomly operation, that sets 
the file pointer to a random number. Of course, this is a meaningless operation that 
would upset normal use of the file.
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We can protect resources from illegitimate invocations such as 
setFilePointerRandomly. One way is to use a type-safe programming language, such as 
Sing#, an extension of C# used in the Singularity project [Hunt et al. 2007], or Modula-
3. In type-safe languages, no module may access a target module unless it has a 
reference to it – it cannot make up a pointer to it, as would be possible in C or C++ – and 
it may only use its reference to the target module to perform the invocations (method 
calls or procedure calls) that the programmer of the target made available to it. It may 
not, in other words, arbitrarily change the target’s variables. By contrast, in C++ the 
programmer may cast a pointer however she likes, and thus perform non-type-safe 
invocations.

We can also employ hardware support to protect modules from one another at the 
level of individual invocations, regardless of the language in which they are written. To 
operate this scheme on a general-purpose computer, we require a kernel.

Kernels and protection  •  The kernel is a program that is distinguished by the facts that 
it remains loaded from system initialization and its code is executed with complete 
access privileges for the physical resources on its host computer. In particular, it can 
control the memory management unit and set the processor registers so that no other 
code may access the machine’s physical resources except in acceptable ways.

Most processors have a hardware mode register whose setting determines whether 
privileged instructions can be executed, such as those used to determine which 
protection tables are currently employed by the memory management unit. A kernel 
process executes with the processor in supervisor (privileged) mode; the kernel arranges 
that other processes execute in user (unprivileged) mode. 

The kernel also sets up address spaces to protect itself and other processes from 
the accesses of an aberrant process, and to provide processes with their required virtual 
memory layout. An address space is a collection of ranges of virtual memory locations, 
in each of which a specified combination of memory access rights applies, such as read-
only or read-write. A process cannot access memory outside its address space. The terms 
user process or user-level process are normally used to describe one that executes in 
user mode and has a user-level address space (that is, one with restricted memory access 
rights compared with the kernel’s address space). 

When a process executes application code, it executes in a distinct user-level 
address space for that application; when the same process executes kernel code, it 
executes in the kernel’s address space. The process can safely transfer from a user-level 
address space to the kernel’s address space via an exception such as an interrupt or a 
system call trap – the invocation mechanism for resources managed by the kernel. A 
system call trap is implemented by a machine-level TRAP instruction, which puts the 
processor into supervisor mode and switches to the kernel address space. When the 
TRAP instruction is executed, as with any type of exception, the hardware forces the 
processor to execute a kernel-supplied handler function, in order that no process may 
gain illicit control of the hardware.

Programs pay a price for protection. Switching between address spaces may take 
many processor cycles, and a system call trap is a more expensive operation than a 
simple procedure or method call. We shall see in Section 7.5.1 how these penalties factor 
into invocation costs.
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7.4 Processes and threads

The traditional operating system notion of a process that executes a single activity was 
found in the 1980s to be unequal to the requirements of distributed systems – and also 
to those of more sophisticated single-computer applications that require internal 
concurrency. The problem, as we shall show, is that the traditional process makes 
sharing between related activities awkward and expensive.

The solution reached was to enhance the notion of a process so that it could be 
associated with multiple activities. Nowadays, a process consists of an execution 
environment together with one or more threads. A thread is the operating system 
abstraction of an activity (the term derives from the phrase ‘thread of execution’). An 
execution environment is the unit of resource management: a collection of local kernel-
managed resources to which its threads have access. An execution environment 
primarily consists of:

• an address space;

• thread synchronization and communication resources such as semaphores and 
communication interfaces (for example, sockets);

• higher-level resources such as open files and windows.

Execution environments are normally expensive to create and manage, but several 
threads can share them – that is, they can share all resources accessible within them. In 
other words, an execution environment represents the protection domain in which its 
threads execute. 

Threads can be created and destroyed dynamically, as needed. The central aim of 
having multiple threads of execution is to maximize the degree of concurrent execution 
between operations, thus enabling the overlap of computation with input and output, and 
enabling concurrent processing on multiprocessors. This can be particularly helpful 
within servers, where concurrent processing of clients’ requests can reduce the tendency 
for servers to become bottlenecks. For example, one thread can process a client’s request 
while a second thread servicing another request waits for a disk access to complete.

An analogy for threads and processes  •  The following memorable, if slightly unsa-
voury, way to think of the concepts of threads and execution environments was pub-
lished on the comp.os.mach USENET group and is by Chris Lloyd. An execution 
environment consists of a stoppered jar and the air and food within it. Initially, there 
is one fly – a thread – in the jar. This fly can produce other flies and kill them, as can 
its progeny. Any fly can consume any resource (air or food) in the jar. Flies can be 
programmed to queue up in an orderly manner to consume resources. If they lack this 
discipline, they might bump into one another within the jar – that is, collide and pro-
duce unpredictable results when attempting to consume the same resources in an un-
constrained manner. Flies can communicate with (send messages to) flies in other 
jars, but none may escape from the jar, and no fly from outside may enter it. In this 
view, originally a UNIX process was a single jar with a single sterile fly within it.

An execution environment provides protection from threads outside it, so that the 
data and other resources contained in it are by default inaccessible to threads residing in 
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other execution environments. But certain kernels allow the controlled sharing of 
resources such as physical memory between execution environments residing at the 
same computer.

As many older operating systems allow only one thread per process, we shall 
sometimes use the term multi-threaded process for emphasis. Confusingly, in some 
programming models and operating system designs the term ‘process’ means what we 
have called a thread. The reader may encounter in the literature the terms heavyweight 

process, where an execution environment is taken to be included, and lightweight 

process, where it is not. See the box on the preceding page for an analogy describing 
threads and execution environments.

Figure 7.3 Address space

Stack

Text

Heap

Auxiliary
regions

0

2N

7.4.1 Address spaces

An address space, introduced in the previous section, is a unit of management of a 
process’s virtual memory. It is large (typically up to 232 bytes, and sometimes up to 264

bytes) and consists of one or more regions, separated by inaccessible areas of virtual 
memory. A region (Figure 7.3) is an area of contiguous virtual memory that is accessible 
by the threads of the owning process. Regions do not overlap. Note that we distinguish 
between the regions and their contents. Each region is specified by the following 
properties:

• its extent (lowest virtual address and size);

• read/write/execute permissions for the process’s threads;

• whether it can be grown upwards or downwards.
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Note that this model is page-oriented rather than segment-oriented. Regions, unlike 
segments, would eventually overlap if they were extended in size. Gaps are left between 
regions to allow for growth. This representation of an address space as a sparse set of 
disjoint regions is a generalization of the UNIX address space, which has three regions: 
a fixed, unmodifiable text region containing program code; a heap, part of which is 
initialized by values stored in the program’s binary file, and which is extensible towards 
higher virtual addresses; and a stack, which is extensible towards lower virtual 
addresses.

The provision of an indefinite number of regions is motivated by several factors. 
One of these is the need to support a separate stack for each thread. Allocating a separate 
stack region to each thread makes it possible to detect attempts to exceed the stack limits 
and to control each stack’s growth. Unallocated virtual memory lies beyond each stack 
region, and attempts to access this will cause an exception (a page fault). The alternative 
is to allocate stacks for threads on the heap, but then it is difficult to detect when a thread 
has exceeded its stack limit.

Another motivation is to enable files in general – not just the text and data sections 
of binary files – to be mapped into the address space. A mapped file is one that is 
accessed as an array of bytes in memory. The virtual memory system ensures that 
accesses made in memory are reflected in the underlying file storage. Section 
CDK3-18.6 (in www.cdk5.net/oss/mach) describes how the Mach kernel extends the 
abstraction of virtual memory so that regions can correspond to arbitrary ‘memory 
objects’ and not just to files.

The need to share memory between processes, or between processes and the 
kernel, is another factor leading to extra regions in the address space. A shared memory 

region (or shared region for short) is one that is backed by the same physical memory 
as one or more regions belonging to other address spaces. Processes therefore access 
identical memory contents in the regions that are shared, while their non-shared regions 
remain protected. The uses of shared regions include the following:

Libraries: Library code can be very large and would waste considerable memory if it 
was loaded separately into every process that used it. Instead, a single copy of the 
library code can be shared by being mapped as a region in the address spaces of 
processes that require it. 

Kernel: Often the kernel code and data are mapped into every address space at the 
same location. When a process makes a system call or an exception occurs, there is 
no need to switch to a new set of address mappings.

Data sharing and communication: Two processes, or a process and the kernel, might 
need to share data in order to cooperate on some task. It can be considerably more 
efficient for the data to be shared by being mapped as regions in both address spaces 
than by being passed in messages between them. The use of region sharing for 
communication is described in Section 7.5.
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7.4.2 Creation of a new process

The creation of a new process has traditionally been an indivisible operation provided 
by the operating system. For example, the UNIX fork system call creates a process with 
an execution environment copied from the caller (except for the return value from fork).
The UNIX exec system call transforms the calling process into one executing the code 
of a named program. 

For a distributed system, the design of the process-creation mechanism has to take 
into account the utilization of multiple computers; consequently, the process-support 
infrastructure is divided into separate system services.

The creation of a new process can be separated into two independent aspects: 

• the choice of a target host, for example, the host may be chosen from among the 
nodes in a cluster of computers acting as a compute server, as introduced in 
Chapter 1;

• the creation of an execution environment (and an initial thread within it).

Choice of process host  •  The choice of the node at which the new process will reside – 
the process allocation decision – is a matter of policy. In general, process allocation 
policies range from always running new processes at their originator’s workstation to 
sharing the processing load between a set of computers. Eager et al. [1986] distinguish 
two policy categories for load sharing.

The transfer policy determines whether to situate a new process locally or 
remotely. This may depend, for example, on whether the local node is lightly or heavily 
loaded.

The location policy determines which node should host a new process selected for 
transfer. This decision may depend on the relative loads of nodes, on their machine 
architectures or on any specialized resources they may possess. The V system [Cheriton 
1984] and Sprite [Douglis and Ousterhout 1991] both provide commands for users to 
execute a program at a currently idle workstation (there are often many of these at any 
given time) chosen by the operating system. In the Amoeba system [Tanenbaum et al.

1990], the run server chooses a host for each process from a shared pool of processors. 
In all cases, the choice of target host is transparent to the programmer and the user. 
Those programming for explicit parallelism or fault tolerance, however, may require a 
means of specifying process location.

Process location policies may be static or adaptive. The former operate without 
regard to the current state of the system, although they are designed according to the 
system’s expected long-term characteristics. They are based on a mathematical analysis 
aimed at optimizing a parameter such as the overall process throughput. They may be 
deterministic (‘node A should always transfer processes to node B’) or probabilistic 
(‘node A should transfer processes to any of nodes B–E at random’). Adaptive policies, 
on the other hand, apply heuristics to make their allocation decisions, based on 
unpredictable runtime factors such as a measure of the load on each node. 

Load-sharing systems may be centralized, hierarchical or decentralized. In the 
first case there is one load manager component, and in the second there are several, 
organized in a tree structure. Load managers collect information about the nodes and use 
it to allocate new processes to nodes. In hierarchical systems, managers make process 
allocation decisions as far down the tree as possible, but managers may transfer 
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processes to one another, via a common ancestor, under certain load conditions. In a 
decentralized load-sharing system, nodes exchange information with one another 
directly to make allocation decisions. The Spawn system [Waldspurger et al. 1992], for 
example, considers nodes to be ‘buyers’ and ‘sellers’ of computational resources and 
arranges them in a (decentralized) ‘market economy’.

In sender-initiated load-sharing algorithms, the node that requires a new process 
to be created is responsible for initiating the transfer decision. It typically initiates a 
transfer when its own load crosses a threshold. By contrast, in receiver-initiated

algorithms, a node whose load is below a given threshold advertises its existence to other 
nodes so that relatively loaded nodes can transfer work to it.

Migratory load-sharing systems can shift load at any time, not just when a new 
process is created. They use a mechanism called process migration: the transfer of an 
executing process from one node to another. Milojicic et al. [1999] provide a collection 
of papers on process migration and other types of mobility. While several process 
migration mechanisms have been constructed, they have not been widely deployed. This 
is largely because of their expense and the tremendous difficulty of extracting the state 
of a process that lies within the kernel, in order to move it to another node.

Eager et al. [1986] studied three approaches to load sharing and concluded that 
simplicity is an important property of any load-sharing scheme. This is because 
relatively high overheads – for example, state-collection overheads – can outweigh the 
advantages of more complex schemes.

Creation of a new execution environment  •  Once the host computer has been selected, a 
new process requires an execution environment consisting of an address space with 
initialized contents (and perhaps other resources, such as default open files).

There are two approaches to defining and initializing the address space of a newly 
created process. The first approach is used where the address space is of a statically 
defined format. For example, it could contain just a program text region, heap region and 
stack region. In this case, the address space regions are created from a list specifying 
their extent. Address space regions are initialized from an executable file or filled with 
zeros as appropriate. 

Alternatively, the address space can be defined with respect to an existing 
execution environment. In the case of UNIX fork semantics, for example, the newly 
created child process physically shares the parent’s text region and has heap and stack 
regions that are copies of the parent’s in extent (as well as in initial contents). This 
scheme has been generalized so that each region of the parent process may be inherited 
by (or omitted from) the child process. An inherited region may either be shared with or 
logically copied from the parent’s region. When parent and child share a region, the page 
frames (units of physical memory corresponding to virtual memory pages) belonging to 
the parent’s region are mapped simultaneously into the corresponding child region. 

Mach [Accetta et al. 1986] and Chorus [Rozier et al. 1988, 1990], for example, 
apply an optimization called copy-on-write when an inherited region is copied from the 
parent. The region is copied, but no physical copying takes place by default. The page 
frames that make up the inherited region are shared between the two address spaces. A 
page in the region is only physically copied when one or another process attempts to 
modify it.
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Copy-on-write is a general technique – for example, it is also used in copying 
large messages – so we take some time to explain its operation here. Let us follow 
through an example of regions RA and RB, whose memory is shared copy-on-write 
between two processes, A and B (Figure 7.4

Figure 7.4 Copy-on-write
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). For the sake of definiteness, let us assume 
that process A set region RA to be copy-inherited by its child, process B, and that the 
region RB was thus created in process B.

We assume, for the sake of simplicity, that the pages belonging to region A are 
resident in memory. Initially, all page frames associated with the regions are shared 
between the two processes’ page tables. The pages are initially write-protected at the 
hardware level, even though they may belong to regions that are logically writable. If a 
thread in either process attempts to modify the data, a hardware exception called a page 

fault is taken. Let us say that process B attempted the write. The page fault handler 
allocates a new frame for process B and copies the original frame’s data into it byte for 
byte. The old frame number is replaced by the new frame number in one process’s page 
table – it does not matter which – and the old frame number is left in the other page table. 
The two corresponding pages in processes A and B are then each made writable once 
more at the hardware level. After all of this has taken place, process B’s modifying 
instruction is allowed to proceed.
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7.4.3 Threads

The next key aspect of a process to consider in more detail is its threads. This section 
examines the advantages of enabling client and server processes to possess more than 
one thread. It then discusses programming with threads, using Java threads as a case 
study, and ends with alternative designs for implementing threads.

Consider the server shown in Figure 7.5

Figure 7.5 Client and server with threads
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 (we shall turn to the client shortly). The 
server has a pool of one or more threads, each of which repeatedly removes a request 
from a queue of received requests and processes it. We shall not concern ourselves for 
the moment with how the requests are received and queued up for the threads. Also, for 
the sake of simplicity, we assume that each thread applies the same procedure to process 
the requests. Let us assume that each request takes, on average, 2 milliseconds of 
processing plus 8 milliseconds of I/O (input/output) delay when the server reads from a 
disk (there is no caching). Let us further assume for the moment that the server executes 
at a single-processor computer.

Consider the maximum server throughput, measured in client requests handled per 
second, for different numbers of threads. If a single thread has to perform all processing, 
then the turnaround time for handling any request is on average 2 + 8 = 10 milliseconds, 
so this server can handle 100 client requests per second. Any new request messages that 
arrive while the server is handling a request are queued at the server port.

Now consider what happens if the server pool contains two threads. We assume 
that threads are independently schedulable – that is, one thread can be scheduled when 
another becomes blocked for I/O. Then thread number two can process a second request 
while thread number one is blocked, and vice versa. This increases the server 
throughput. Unfortunately, in our example, the threads may become blocked behind the 
single disk drive. If all disk requests are serialized and take 8 milliseconds each, then the 
maximum throughput is 1000/8 = 125 requests per second.

Suppose, now, that disk block caching is introduced. The server keeps the data that 
it reads in buffers in its address space; a server thread that is asked to retrieve data first 
examines the shared cache and avoids accessing the disk if it finds the data there. If a 
75% hit rate is achieved, the mean I/O time per request reduces to (0.75 0 + 0.25 8) = 
2 milliseconds, and the maximum theoretical throughput increases to 500 requests per 
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second. But if the average processor time for a request has been increased to 2.5 
milliseconds per request as a result of caching (it takes time to search for cached data on 
every operation), then this figure cannot be reached. The server, limited by the 
processor, can now handle at most 1000/2.5 = 400 requests per second.

The throughput can be increased by using a shared-memory multiprocessor to 
ease the processor bottleneck. A multi-threaded process maps naturally onto a shared-
memory multiprocessor. The shared execution environment can be implemented in 
shared memory, and the multiple threads can be scheduled to run on the multiple 
processors. Consider now the case in which our example server executes at a 
multiprocessor with two processors. Given that threads can be independently scheduled 
to the different processors, then up to two threads can process requests in parallel. The 
reader should check that two threads can process 444 requests per second and three or 
more threads, bounded by the I/O time, can process 500 requests per second.

Architectures for multi-threaded servers  •  We have described how multi-threading 
enables servers to maximize their throughput, measured as the number of requests 
processed per second. To describe the various ways of mapping requests to threads 
within a server we summarize the account by Schmidt [1998], who describes the 
threading architectures of various implementations of the CORBA Object Request 
Broker (ORB). ORBs process requests that arrive over a set of connected sockets. Their 
threading architectures are relevant to many types of server, regardless of whether 
CORBA is used. 

Figure 7.5 shows one of the possible threading architectures, the worker pool 

architecture. In its simplest form, the server creates a fixed pool of ‘worker’ threads to 
process the requests when it starts up. The module marked ‘receipt and queuing’ in 
Figure 7.5 is typically implemented by an ‘I/O’ thread, which receives requests from a 
collection of sockets or ports and places them on a shared request queue for retrieval by 
the workers. 

There is sometimes a requirement to treat the requests with varying priorities. For 
example, a corporate web server could prioritize request processing according to the 
class of customer from which the request derives [Bhatti and Friedrich 1999]. We may 
handle varying request priorities by introducing multiple queues into the worker pool 
architecture, so that the worker threads scan the queues in the order of decreasing 
priority. A disadvantage of this architecture is its inflexibility: as we saw with our 
worked-out example, the number of worker threads in the pool may be too few to deal 
adequately with the current rate of request arrival. Another disadvantage is the high level 
of switching between the I/O and worker threads as they manipulate the shared queue.

In the thread-per-request architecture (Figure 7.6a) the I/O thread spawns a new 
worker thread for each request, and that worker destroys itself when it has processed the 
request against its designated remote object. This architecture has the advantage that the 
threads do not contend for a shared queue, and throughput is potentially maximized 
because the I/O thread can create as many workers as there are outstanding requests. Its 
disadvantage is the overhead of the thread creation and destruction operations.

The thread-per-connection architecture (Figure 7.6b) associates a thread with 
each connection. The server creates a new worker thread when a client makes a 
connection and destroys the thread when the client closes the connection. In between, 
the client may make many requests over the connection, targeted at one or more remote 
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objects. The thread-per-object architecture (Figure 7.6c) associates a thread with each 
remote object. An I/O thread receives requests and queues them for the workers, but this 
time there is a per-object queue. 

In each of these last two architectures the server benefits from lower thread-
management overheads compared with the thread-per-request architecture. Their 
disadvantage is that clients may be delayed while a worker thread has several 
outstanding requests but another thread has no work to perform. 

Schmidt [1998] describes variations on these architectures as well as hybrids of 
them, and discusses their advantages and disadvantages in more detail. Section 7.5
describes a different threading model in the context of invocations within a single 
machine, in which client threads enter the server’s address space.

Threads within clients  •  

Figure 7.6 Alternative server threading architectures (see also Figure 7.5)
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Threads can be useful for clients as well as servers. Figure 7.5
also shows a client process with two threads. The first thread generates results to be 
passed to a server by remote method invocation, but does not require a reply. Remote 
method invocations typically block the caller, even when there is strictly no need to wait. 
This client process can incorporate a second thread, which performs the remote method 
invocations and blocks while the first thread is able to continue computing further 
results. The first thread places its results in buffers, which are emptied by the second 
thread. It is only blocked when all the buffers are full.

The case for multi-threaded clients is also evident in the example of web browsers. 
Users experience substantial delays while pages are fetched; it is essential, therefore, for 
browsers to handle multiple concurrent requests for web pages.

Threads versus multiple processes  •  We can see from the above examples the utility of 
threads, which allow computation to be overlapped with I/O and, in the case of a 
multiprocessor, with other computation. The reader may have noted, however, that the 
same overlap could be achieved through the use of multiple single-threaded processes. 
Why, then, should the multi-threaded process model be preferred? The answer is 
twofold: threads are cheaper to create and manage than processes, and resource sharing 
can be achieved more efficiently between threads than between processes because 
threads share an execution environment.

Figure 7.7 shows some of the main state components that must be maintained for 
execution environments and threads, respectively. An execution environment has an 
address space, communication interfaces such as sockets, higher-level resources such as 
open files and thread synchronization objects such as semaphores; it also lists the 
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threads associated with it. A thread has a scheduling priority, an execution state (such as 
BLOCKED or RUNNABLE), saved processor register values when the thread is 
BLOCKED, and state concerning the thread’s software interrupt handling. A software

interrupt is an event that causes a thread to be interrupted (similar to the case of a 
hardware interrupt). If the thread has assigned a handler procedure, control is transferred 
to it. UNIX signals are examples of software interrupts.

The figure shows that an execution environment and the threads belonging to it 
are both associated with pages belonging to the address space held in main memory, and 
data and instructions held in hardware caches.

We can summarize a comparison of processes and threads as follows:

• Creating a new thread within an existing process is cheaper than creating a 
process.

• More importantly, switching to a different thread within the same process is 
cheaper than switching between threads belonging to different processes.

• Threads within a process may share data and other resources conveniently and 
efficiently compared with separate processes.

• But, by the same token, threads within a process are not protected from one 
another. 

Consider the cost of creating a new thread in an existing execution environment. The 
main tasks are to allocate a region for its stack and to provide initial values for the 
processor registers and the thread’s execution state (it may initially be SUSPENDED or 
RUNNABLE) and priority. Since the execution environment exists, only an identifier for 
this has to be placed in the thread’s descriptor record (which contains data necessary to 
manage the thread’s execution).

The overheads associated with creating a process are in general considerably 
greater than those of creating a new thread. A new execution environment must first be 
created, including address space tables. Anderson et al. [1991] quote a figure of about 
11 milliseconds to create a new UNIX process, and about 1 millisecond to create a 
thread on the same CVAX processor architecture running the Topaz kernel; in each case 
the time measured includes the new entity simply calling a null procedure and then 
exiting. These figures are given as a rough guide only.
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When the new entity performs some useful work rather than calling a null 
procedure, there are also long-term costs, which are liable to be greater for a new process 
than for a new thread within an existing process. In a kernel supporting virtual memory, 
the new process will incur page faults as data and instructions are referenced for the first 
time; hardware caches will initially contain no data values for the new process, and it 
must acquire cache entries as it executes. In the case of thread creation, these long-term
overheads may also occur, but they are liable to be smaller. When the thread accesses 
code and data that have recently been accessed by other threads within the process, it 
automatically takes advantage of any hardware or main memory caching that has taken 
place.

The second performance advantage of threads concerns switching between 
threads – that is, running one thread instead of another at a given processor. This cost is 
the most important, because it may be incurred many times in the lifetime of a thread. 
Switching between threads sharing the same execution environment is considerably 
cheaper than switching between threads belonging to different processes. The overheads 
associated with thread switching are related to scheduling (choosing the next thread to 
run) and context switching. 

A processor context comprises the values of the processor registers such as the 
program counter, and the current hardware protection domain: the address space and the 
processor protection mode (supervisor or user). A context switch is the transition 
between contexts that takes place when switching between threads, or when a single 
thread makes a system call or takes another type of exception. It involves the following:

• the saving of the processor’s original register state, and the loading of the new 
state;

• in some cases, a transfer to a new protection domain – this is known as a domain 

transition.

The aliasing problem   •  Memory management units usually include a hardware 
cache to speed up the translation between virtual and physical addresses, called a 
translation lookaside buffer (TLB). TLBs, and also virtually addressed data and 
instruction caches, suffer in general from the so-called aliasing problem. The same 
virtual address can be valid in two different address spaces, but in general it is 
supposed to refer to different physical data in the two spaces. Unless their entries are 
tagged with a context identifier, TLBs and virtually addressed caches are unaware of 
this and so might contain incorrect data. Therefore the TLB and cache contents have 
to be flushed on a switch to a different address space. Physically addressed caches do 
not suffer from the aliasing problem but using virtual addresses for cache lookups is 
a common practice, largely because it allows the lookups to be overlapped with 
address translation.

Switching between threads sharing the same execution environment entirely at user 
level involves no domain transition and is relatively cheap. Switching to the kernel, or 
to another thread belonging to the same execution environment via the kernel, involves 
a domain transition. The cost is therefore greater but it is still relatively low if the kernel 
is mapped into the process’s address space. When switching between threads belonging 
to different execution environments, however, there are greater overheads. The box 
below explains the expensive implications of hardware caching for these domain 
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transitions. Longer-term costs of having to acquire hardware cache entries and main 
memory pages are more liable to apply when such a domain transition occurs. Figures 
quoted by Anderson et al. [1991] are 1.8 milliseconds for the Topaz kernel to switch 
between UNIX processes and 0.4 milliseconds to switch between threads belonging to 
the same execution environment. Even lower costs (0.04 milliseconds) are achieved if 
threads are switched at user level. These figures are given as a rough guide only; they 
do not measure the longer-term caching costs.

In the example above of the client process with two threads, the first thread 
generates data and passes it to the second thread, which makes a remote method 
invocation or remote procedure call. Since the threads share an address space, there is 
no need to use message passing to pass the data. Both threads may access the data via a 
common variable. Herein lies both the advantage and the danger of using multi-threaded 
processes. The convenience and efficiency of access to shared data is an advantage. This 
is particularly so for servers, as the example of caching file data given above showed. 
However, threads that share an address space and that are not written in a type-safe 
language are not protected from one another. An errant thread can arbitrarily alter data 
used by another thread, causing a fault. If protection is required, then either a type-safe 
language should be used or it may be preferable to use multiple processes instead of 
multiple threads.

Threads programming  •  Threads programming is concurrent programming, as 
traditionally studied in, for example, the field of operating systems. This section refers 
to the following concurrent programming concepts, which are explained fully by Bacon 
[2002]: race conditions, critical sections (Bacon calls these critical regions), monitors,
condition variables and semaphores.

Much threads programming is done in a conventional language, such as C, that has 
been augmented with a threads library. The C Threads package developed for the Mach 
operating system is an example of this. More recently, the POSIX Threads standard 
IEEE 1003.1c-1995, known as pthreads, has been widely adopted. Boykin et al. [1993] 
describe both C Threads and pthreads in the context of Mach.

Some languages provide direct support for threads, including Ada95 [Burns and 
Wellings 1998], Modula-3 [Harbison 1992] and Java [Oaks and Wong 1999]. We give 
an overview of Java threads here. 

Like any threads implementation, Java provides methods for creating threads, 
destroying them and synchronizing them. The Java Thread class includes the 
constructor and management methods listed in Figure 7.8. The Thread and Object

synchronization methods are in Figure 7.9.

Thread lifetimes  •   A new thread is created on the same Java virtual machine (JVM) as 
its creator, in the SUSPENDED state. After it is made RUNNABLE with the start()

method, it executes the run() method of an object designated in its constructor. The JVM 
and the threads on top of it all execute in a process on top of the underlying operating 
system. Threads can be assigned a priority, so that a Java implementation that supports 
priorities will run a particular thread in preference to any thread with lower priority. A 
thread ends its life when it returns from the run() method or when its destroy() method 
is called. 

Programs can manage threads in groups. Every thread belongs to one group, 
which it is assigned at the time of its creation. Thread groups are useful when several 



Figure 7.8 Java thread constructor and management methods

 Thread(ThreadGroup group, Runnable target, String name) 

Creates a new thread in the SUSPENDED state, which will belong to group and be 
identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()

Sets and returns the thread’s priority.

run()

A thread executes the run() method of its target object, if it has one, and otherwise its 
own run() method (Thread implements Runnable).

start()

Changes the state of the thread from SUSPENDED to RUNNABLE.

sleep(long millisecs)

Causes the thread to enter the SUSPENDED state for the specified time.

yield()

Causes the thread to enter the READY state and invokes the scheduler.

destroy()

Destroys the thread.
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applications coexist on the same JVM. One example of their use is security: by default, 
a thread in one group cannot perform management operations on a thread in another 
group. For example, an application thread cannot mischievously interrupt a system 
windowing (AWT) thread. 

Thread groups also facilitate control of the relative priorities of threads (on Java 
implementations that support priorities). This is useful for browsers running applets and 
for web servers running programs called servlets [Hunter and Crawford 1998], which 
create dynamic web pages. An unprivileged thread within an applet or servlet can only 
create a new thread that belongs to its own group, or to a descendant group created 
within it (the exact restrictions depend upon the SecurityManager in place). Browsers 
and servers can assign threads belonging to different applets or servlets to different 
groups and set the maximum priority of each group as a whole (including descendant 
groups). There is no way for an applet or servlet thread to override the group priorities 
set by the manager threads, since they cannot be overridden by calls to setPriority().

Thread synchronization  •  Programming a multi-threaded process requires great care. 
The main difficult issues are the sharing of objects and the techniques used for thread 
coordination and cooperation. Each thread’s local variables in methods are private to it 
– threads have private stacks. However, threads are not given private copies of static 
(class) variables or object instance variables. 

Consider, for example, the shared queues that we described earlier in this section, 
which I/O threads and worker threads use to transfer requests in some server threading 
architectures. Race conditions can in principle arise when threads manipulate data 
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structures such as queues concurrently. The queued requests can be lost or duplicated 
unless the threads’ pointer manipulations are carefully coordinated. 

Java provides the synchronized keyword for programmers to designate the well- 
known monitor construct for thread coordination. Programmers designate either entire 
methods or arbitrary blocks of code as belonging to a monitor associated with an 
individual object. The monitor’s guarantee is that at most one thread can execute within 
it at any time. We could serialize the actions of the I/O and worker threads in our 
example by designating addTo() and removeFrom() methods in the Queue class as 
synchronized methods. All accesses to variables within those methods would then be 
carried out in mutual exclusion with respect to invocations of these methods.

Java allows threads to be blocked and woken up via arbitrary objects that act as 
condition variables. A thread that needs to block awaiting a certain condition calls an 
object’s wait() method. All objects implement this method, since it belongs to Java’s 
root Object class. Another thread calls notify() to unblock at most one thread or 
notifyAll() to unblock all threads waiting on that object. Both notification methods also 
belong to the Object class. 

As an example, when a worker thread discovers that there are no requests to 
process, it calls wait() on the instance of Queue. When the I/O thread subsequently adds 
a request to the queue, it calls the queue’s notify() method to wake up a worker.

The Java synchronization methods are given in Figure 7.9

Figure 7.9 Java thread synchronization calls

thread.join(long millisecs)

Blocks the calling thread for up to the specified time or until thread has terminated.

thread.interrupt()

Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)

Blocks the calling thread until a call made to notify() or notifyAll() on object wakes 
the thread, the thread is interrupted or the specified time has elapsed.

object.notify(), object.notifyAll()

Wakes, respectively, one or all of any threads that have called wait() on object.

. In addition to the 
synchronization primitives that we have mentioned, the join() method blocks the caller 
until the target thread’s termination. The interrupt() method is useful for prematurely 
waking a waiting thread. All the standard synchronization primitives, such as 
semaphores, can be implemented in Java. But care is required, since Java’s monitor 
guarantees apply only to an object’s synchronized code; a class may have a mixture of 
synchronized and non-synchronized methods. Note also that the monitor implemented 
by a Java object has only one implicit condition variable, whereas in general a monitor 
may have several condition variables.

Thread scheduling  •  An important distinction is between preemptive and non-
preemptive scheduling of threads. In preemptive scheduling, a thread may be suspended 
at any point to make way for another thread, even when the preempted thread would 
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otherwise continue running. In non-preemptive scheduling (sometimes called coroutine

scheduling), a thread runs until it makes a call to the threading system (for example, a 
system call), when the system may deschedule it and schedule another thread to run. 

The advantage of non-preemptive scheduling is that any section of code that does 
not contain a call to the threading system is automatically a critical section. Race 
conditions are thus conveniently avoided. On the other hand, non-preemptively 
scheduled threads cannot take advantage of a multiprocessor, since they run exclusively. 
Care must be taken over long-running sections of code that do not contain calls to the 
threading system. The programmer may need to insert special yield() calls, whose sole 
function is to enable other threads to be scheduled and make progress. Non-
preemptively scheduled threads are also unsuited to real-time applications, in which 
events are associated with absolute times by which they must be processed. 

 Java does not, by default, support real-time processing, although real-time 
implementations exist [www.rtj.org]. For example, multimedia applications that process 
data such as voice and video have real-time requirements for both communication and 
processing (e.g., filtering and compression) [Govindan and Anderson 1991]. Chapter 20 
will examine real-time thread-scheduling requirements. Process control is another 
example of a real-time domain. In general, each real-time domain has its own thread-
scheduling requirements. It is therefore sometimes desirable for applications to 
implement their own scheduling policies. To consider this, we turn now to the 
implementation of threads.

Threads implementation  •  Many kernels provide native support for multi-threaded 
processes, including Windows, Linux, Solaris, Mach and Mac OS X. These kernels 
provide thread-creation and -management system calls, and they schedule individual 
threads. Some other kernels have only a single-threaded process abstraction. Multi-
threaded processes must then be implemented in a library of procedures linked to 
application programs. In such cases, the kernel has no knowledge of these user-level 
threads and therefore cannot schedule them independently. A threads runtime library 
organizes the scheduling of threads. A thread would block the process, and therefore all 
threads within it, if it made a blocking system call, so the asynchronous (non-blocking) 
I/O facilities of the underlying kernel are exploited. Similarly, the implementation can 
utilize the kernel-provided timers and software interrupt facilities to timeslice between 
threads.

When no kernel support for multi-threaded processes is provided, a user-level 
threads implementation suffers from the following problems:

• The threads within a process cannot take advantage of a multiprocessor.

• A thread that takes a page fault blocks the entire process and all threads within it.

• Threads within different processes cannot be scheduled according to a single 
scheme of relative prioritization. 

User-level threads implementations, on the other hand, have significant advantages over 
kernel-level implementations:

• Certain thread operations are significantly less costly. For example, switching 
between threads belonging to the same process does not necessarily involve a 
system call, which entails a relatively expensive trap to the kernel.
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• Given that the thread-scheduling module is implemented outside the kernel, it can 
be customized or changed to suit particular application requirements. Variations 
in scheduling requirements occur largely because of application-specific 
considerations such as the real-time nature of multimedia processing.

• Many more user-level threads can be supported than could reasonably be provided 
by default by a kernel.

It is possible to combine the advantages of user-level and kernel-level threads 
implementations. One approach, applied, for example, to the Mach kernel [Black 1990], 
is to enable user-level code to provide scheduling hints to the kernel’s thread scheduler. 
Another, adopted in the Solaris 2 operating system, is a form of hierarchical scheduling. 
Each process creates one or more kernel-level threads, known in Solaris as ‘lightweight 
processes’. User-level threads are also supported. A user-level scheduler assigns each 
user-level thread to a kernel-level thread. This scheme can take advantage of 
multiprocessors, and also benefits because some thread-creation and thread-switching 
operations take place at user level. The scheme’s disadvantage is that it still lacks 
flexibility: if a thread blocks in the kernel, then all user-level threads assigned to it are 
also prevented from running, regardless of whether they are eligible to run. 

Several research projects have developed hierarchical scheduling further in order 
to provide greater efficiency and flexibility. These include work on so-called scheduler 
activations [Anderson et al. 1991], the multimedia work of Govindan and Anderson 
[1991], the Psyche multiprocessor operating system [Marsh et al. 1991], the Nemesis 
kernel [Leslie et al. 1996] and the SPIN kernel [Bershad et al. 1995]. The insight driving 
these designs is that what a user-level scheduler requires from the kernel is not just a set 
of kernel-supported threads onto which it can map user-level threads. The user-level 
scheduler also requires the kernel to notify it of the events that are relevant to its 
scheduling decisions. We describe the scheduler activations design in order to make this 
clear.

The FastThreads package of Anderson et al. [1991] is an implementation of a 
hierarchic, event-based scheduling system. They consider the main system components 
to be a kernel running on a computer with one or more processors, and a set of 
application programs running on it. Each application process contains a user-level 
scheduler, which manages the threads inside the process. The kernel is responsible for 
allocating virtual processors to processes. The number of virtual processors assigned to 
a process depends on such factors as the applications’ requirements, their relative 
priorities and the total demand on the processors. Figure 7.10(a) shows an example of a 
three-processor machine, on which the kernel allocates one virtual processor to process 
A, running a relatively low-priority job, and two virtual processors to process B. They 
are virtual processors because the kernel can allocate different physical processors to 
each process as time goes by, while keeping its guarantee of how many processors it has 
allocated.

The number of virtual processors assigned to a process can also vary. Processes 
can give back a virtual processor that they no longer need; they can also request extra 
virtual processors. For example, if process A has requested an extra virtual processor and 
B terminates, then the kernel can assign one to A.
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Figure 7.10(b) shows that a process notifies the kernel when either of two types of
event occurs: when a virtual processor is ‘idle’ and no longer needed, or when an extra 
virtual processor is required. 

Figure 7.10(b) also shows that the kernel notifies the process when any of four 
types of event occurs. A scheduler activation (SA) is a call from the kernel to a process, 
which notifies the process’s scheduler of an event. Entering a body of code from a lower 
layer (the kernel) in this way is sometimes called an upcall. The kernel creates an SA by 
loading a physical processor’s registers with a context that causes it to commence 
execution of code in the process, at a procedure address designated by the user-level 
scheduler. An SA is thus also a unit of allocation of a timeslice on a virtual processor. 
The user-level scheduler has the task of assigning its READY threads to the set of SAs 
currently executing within it. The number of those SAs is at most the number of virtual 
processors that the kernel has assigned to the process.

The four types of event that the kernel notifies the user-level scheduler (which we 
shall refer to simply as ‘the scheduler’) of are as follows:

Virtual processor allocated: The kernel has assigned a new virtual processor to the 
process, and this is the first timeslice upon it; the scheduler can load the SA with the 
context of a READY thread, which can thus recommence execution.

SA blocked: An SA has blocked in the kernel, and the kernel is using a fresh SA to 
notify the scheduler; the scheduler sets the state of the corresponding thread to 
BLOCKED and can allocate a READY thread to the notifying SA.

SA unblocked: An SA that was blocked in the kernel has become unblocked and is 
ready to execute at user level again; the scheduler can now return the corresponding 
thread to the READY list. In order to create the notifying SA, the kernel either 
allocates a new virtual processor to the process or preempts another SA in the same 
process. In the latter case, it also communicates the preemption event to the 
scheduler, which can reevaluate its allocation of threads to SAs.
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SA preempted: The kernel has taken away the specified SA from the process 
(although it may do this to allocate a processor to a fresh SA in the same process); 
the scheduler places the preempted thread in the READY list and reevaluates the 
thread allocation.

This hierarchical scheduling scheme is flexible because the process’s user-level 
scheduler can allocate threads to SAs in accordance with whatever policies can be built 
on top of the low-level events. The kernel always behaves the same way. It has no 
influence on the user-level scheduler’s behaviour, but it assists the scheduler through its 
event notifications and by providing the register state of blocked and preempted threads. 
The scheme is potentially efficient because no user-level thread need stay in the READY

state if there is a virtual processor on which to run it.

7.5 Communication and invocation

Here we concentrate on communication as part of the implementation of what we have 
called an invocation – a construct, such as a remote method invocation, remote 
procedure call or event notification, whose purpose is to bring about an operation on a 
resource in a different address space.

We cover operating system design issues and concepts by asking the following 
questions about the OS: 

• What communication primitives does it supply? 

• Which protocols does it support and how open is the communication implemen-
tation?

• What steps are taken to make communication as efficient as possible?

• What support is provided for high-latency and disconnected operation?

We focus on the first two questions here then turn to the final two in Sections 7.5.1 and 
7.5.2, respectively.

Communication primitives  •  Some kernels designed for distributed systems have 
provided communication primitives tailored to the types of invocation that Chapter 5 
described. Amoeba [Tanenbaum et al. 1990], for example, provides doOperation,
getRequest and sendReply as primitives. Amoeba, the V system and Chorus provide 
group communication primitives. Placing relatively high-level communication 
functionality in the kernel has the advantage of efficiency. If, for example, middleware 
provides RMI over UNIX’s connected (TCP) sockets, then a client must make two 
communication system calls (socket write and read) for each remote invocation. Over 
Amoeba, it would require only a single call to doOperation. The savings in system call 
overhead are liable to be even greater with group communication.

In practice, middleware, and not the kernel, provides most high-level 
communication facilities found in systems today, including RPC/RMI, event 
notification and group communication. Developing such complex software as user-level 
code is much simpler than developing it for the kernel. Developers typically implement 
middleware over sockets giving access to Internet standard protocols – often connected 
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sockets using TCP but sometimes unconnected UDP sockets. The principal reasons for 
using sockets are portability and interoperability: middleware is required to operate over 
as many widely used operating systems as possible, and all common operating systems, 
such as UNIX and the Windows family, provide similar socket APIs giving access to 
TCP and UDP protocols.

Despite the widespread use of TCP and UDP sockets provided by common 
kernels, research continues to be carried out into lower-cost communication primitives 
in experimental kernels. We examine performance issues further in Section 7.5.1.
Protocols and openness  •  One of the main requirements of the operating system is to 
provide standard protocols that enable interworking between middleware 
implementations on different platforms. Several research kernels developed in the 1980s 
incorporated their own network protocols tuned to RPC interactions – notably Amoeba 
RPC [van Renesse et al. 1989], VMTP [Cheriton 1986] and Sprite RPC [Ousterhout et

al. 1988]. However, these protocols were not widely used beyond their native research 
environments. By contrast, the designers of the Mach 3.0 and Chorus kernels (as well as 
L4 [Härtig et al. 1997]) decided to leave the choice of networking protocols entirely 
open. These kernels provide message passing between local processes only, and leave 
network protocol processing to a server that runs on top of the kernel.

Given the everyday requirement for access to the Internet, compatibility at the 
level of TCP and UDP is required of operating systems for all but the smallest of 
networked devices. And the operating system is still required to enable middleware to 
take advantage of novel low-level protocols. For example, users want to benefit from 
wireless technologies such as infrared and radio frequency (RF) transmission, 
preferably without having to upgrade their applications. This requires that 
corresponding protocols, such as IrDA for infrared networking and Bluetooth or IEEE 
802.11 for RF networking, can be integrated.

Protocols are normally arranged in a stack of layers (see Chapter 3). Many 
operating systems allow new layers to be integrated statically, by including a layer such 
as IrDA as a permanently installed protocol ‘driver’. By contrast, dynamic protocol 

composition is a technique whereby a protocol stack can be composed on the fly to meet 
the requirements of a particular application, and to utilize whichever physical layers are 
available given the platform’s current connectivity. For example, a web browser running 
on a notebook computer should be able to take advantage of a wide area wireless link 
while the user is on the road, and then a faster Ethernet or IEEE 802.11 connection when 
the user is back in the office. 

Another example of dynamic protocol composition is use of a customized request-
reply protocol over a wireless networking layer, to reduce round-trip latencies. Standard 
TCP implementations have been found to work poorly over wireless networking media 
[Balakrishnan et al. 1996], which tend to exhibit higher rates of packet loss than wired 
media. In principle, a request-response protocol such as HTTP could be engineered to 
work more efficiently between wirelessly connected nodes by using the wireless 
transport layer directly, rather than using an intermediate TCP layer.

Support for protocol composition appeared in the design of the UNIX Streams 
facility [Ritchie 1984], in Horus [van Renesse et al. 1995] and in the x-kernel 
[Hutchinson and Peterson 1991]. A more recent example is the construction of a 
configurable transport protocol CTP on top of the Cactus system for dynamic protocol 
composition [Bridges et al. 2007]. 
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7.5.1 Invocation performance

Invocation performance is a critical factor in distributed system design. The more 
designers separate functionality between address spaces, the more remote invocations 
are required. Clients and servers may make many millions of invocation-related 
operations in their lifetimes, so small fractions of milliseconds count in invocation costs. 
Network technologies continue to improve, but invocation times have not decreased in 
proportion with increases in network bandwidth. This section will explain how software 
overheads often predominate over network overheads in invocation times – at least, for 
the case of a LAN or intranet. This is in contrast to a remote invocation over the Internet 
– for example, fetching a web resource. On the Internet, network latencies are highly 
variable and relatively high on average; throughput may be relatively low, and server 
load often predominates over per-request processing costs. For an example of latencies, 
Bridges et al. [2007] report minimal UDP message round-trips taking average times of 
about 400 milliseconds over the Internet between two computers connected across US 
geographical regions, as opposed to about 0.1 milliseconds when identical computers 
were connected over a single Ethernet.

RPC and RMI implementations have been the subject of study because of the 
widespread acceptance of these mechanisms for general-purpose client-server 
processing. Much of the research has been carried out into invocations over the network, 
and particularly into how invocation mechanisms can take advantage of high-
performance networks [Hutchinson et al. 1989, van Renesse et al. 1989, Schroeder and 
Burrows 1990, Johnson and Zwaenepoel 1993, von Eicken et al. 1995, Gokhale and 
Schmidt 1996]. There is also, as we shall show, an important special case of RPCs 
between processes hosted at the same computer [Bershad et al. 1990, 1991]. 

Invocation costs  •  Calling a conventional procedure or invoking a conventional 
method, making a system call, sending a message, remote procedure calling and remote 
method invocation are all examples of invocation mechanisms. Each mechanism causes 
code to be executed outside the scope of the calling procedure or object. Each involves, 
in general, the communication of arguments to this code and the return of data values to 
the caller. Invocation mechanisms can be either synchronous, as for example in the case 
of conventional and remote procedure calls, or asynchronous.

The important performance-related distinctions between invocation mechanisms, 
apart from whether or not they are synchronous, are whether they involve a domain 
transition (that is, whether they cross an address space), whether they involve 
communication across a network and whether they involve thread scheduling and 
switching. Figure 7.11 shows the particular cases of a system call, a remote invocation 
between processes hosted at the same computer, and a remote invocation between 
processes at different nodes in the distributed system. 

Invocation over the network  •  A null RPC (and similarly, a null RMI) is defined as an 
RPC without parameters that executes a null procedure and returns no values. Its 
execution involves an exchange of messages carrying some system data but no user data. 
The time taken by a null RPC between user processes connected by a LAN is on the 
order of a tenth of a millisecond (see, for example, measurements by Bridges et al.

[2007] of round-trip UDP times using two 2.2GHz Pentium 3 Xeon PCs across a 100 
megabits/second Ethernet). By comparison, a null conventional procedure call takes a 
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small fraction of a microsecond. Approximately 100 bytes in total are passed across the 
network for a null RPC. With a raw bandwidth of 100 megabits/second, the total 
network transfer time for this amount of data is about 0.01 milliseconds. Clearly, much 
of the observed delay – the total RPC call time experienced by a client – has to be 
accounted for by the actions of the operating system kernel and user-level RPC runtime 
code.

Null invocation (RPC, RMI) costs are important because they measure a fixed 
overhead, the latency. Invocation costs increase with the sizes of arguments and results, 
but in many cases the latency is significant compared with the remainder of the delay.

Consider an RPC that fetches a specified amount of data from a server. It has one 
integer request argument, specifying how much data to return. It has two reply 
arguments, an integer specifying success or failure (the client might have given an 
invalid size) and, when the call is successful, an array of bytes from the server. 
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Figure 7.12

Figure 7.12 RPC delay against parameter size
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 shows, schematically, client delay against requested data size. The 
delay is roughly proportional to the size until the size reaches a threshold at about 
network packet size. Beyond that threshold, at least one extra packet has to be sent, to 
carry the extra data. Depending on the protocol, a further packet might be used to 
acknowledge this extra packet. Jumps in the graph occur each time the number of 
packets increases. 

Delay is not the only figure of interest for an RPC implementation: RPC 
throughput (or bandwidth) is also of concern when data has to be transferred in bulk. 
This is the rate of data transfer between computers in a single RPC. If we examine Figure 
7.12, we can see that the throughput is relatively low for small amounts of data, when 
the fixed processing overheads predominate. As the amount of data is increased, the 
throughput rises as those overheads become less significant. 

Recall that the steps in an RPC are as follows (RMI involves similar steps):

• A client stub marshals the call arguments into a message, sends the request 
message and receives and unmarshals the reply. 

• At the server, a worker thread receives the incoming request, or an I/O thread 
receives the request and passes it to a worker thread; in either case, the worker 
calls the appropriate server stub.

• The server stub unmarshals the request message, calls the designated procedure, 
and marshals and sends the reply.

The following are the main components accounting for remote invocation delay, besides 
network transmission times:

Marshalling: Marshalling and unmarshalling, which involve copying and converting 
data, create a significant overhead as the amount of data grows. 
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Data copying: Potentially, even after marshalling, message data is copied several 
times in the course of an RPC:

1. across the user–kernel boundary, between the client or server address space and 
kernel buffers; 

2. across each protocol layer (for example, RPC/UDP/IP/Ethernet); 

3. between the network interface and kernel buffers. 

Transfers between the network interface and main memory are usually handled by 
direct memory access (DMA). The processor handles the other copies.

Packet initialization: This involves initializing protocol headers and trailers, 
including checksums. The cost is therefore proportional, in part, to the amount of data 
sent.

Thread scheduling and context switching: These may occur as follows:

1. Several system calls (that is, context switches) are made during an RPC, as 
stubs invoke the kernel’s communication operations.

2. One or more server threads is scheduled.

3. If the operating system employs a separate network manager process, then each 
Send involves a context switch to one of its threads.

Waiting for acknowledgements: The choice of RPC protocol may influence delay, 
particularly when large amounts of data are sent.

Careful design of the operating system can help reduce some of these costs. The case 
study of the Firefly RPC design available at www.cdk5.net/oss shows some of these in 
detail, as well as techniques that are applicable within the middleware implementation.

We have already shown how appropriate operating system support for threads can 
help reduce multi-threading overheads. The operating system can also have an impact 
in reducing memory-copying overheads through memory-sharing facilities. 

Memory sharing  •  Shared regions (introduced in Section 7.4) may be used for rapid 
communication between a user process and the kernel, or between user processes. Data 
is communicated by writing to and reading from the shared region. Data is thus passed 
efficiently, without being copied to and from the kernel’s address space. But system 
calls and software interrupts may be required for synchronization, such as when the user 
process has written data that should be transmitted, or when the kernel has written data 
for the user process to consume. Of course, a shared region is only justified if it is used 
sufficiently to offset the initial cost of setting it up. 

Even with shared regions, the kernel still has to copy data from the buffers to the 
network interface. The U-Net architecture [von Eicken et al. 1995] even allows user-
level code to have direct access to the network interface itself, so that user-level code 
can transfer the data to the network without any copying. 

Choice of protocol  •  The delay that a client experiences during request-reply interac-
tions over TCP is not necessarily worse than for UDP and in fact is sometimes better, 
particularly for large messages. However, care is required when implementing request-
reply interactions on top of a protocol such as TCP, which was not specifically designed 
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for this purpose. In particular, TCP’s buffering behaviour can hinder good performance, 
and its connection overheads put it at a disadvantage compared with UDP, unless 
enough requests are made over a single connection to render the overhead per request 
negligible.

The connection overheads of TCP are particularly evident in web invocations. 
HTTP 1.0, now relatively little-used, makes a separate TCP connection for every 
invocation. Client browsers are delayed while the connection is made. Furthermore, 
TCP’s slow-start algorithm has the effect of delaying the transfer of HTTP data 
unnecessarily in many cases. The slow-start algorithm operates pessimistically in the 
face of possible network congestion by allowing only a small window of data to be sent 
at first, before an acknowledgement is received. Nielsen et al. [1997] discuss how HTTP 
1.1, now widely used instead of HTTP 1.0, makes use of so-called persistent 

connections, which last over the course of several invocations. The initial connection 
costs are thus amortized, as long as several invocations are made to the same web server. 
This is likely, as users often fetch several pages from the same site, each containing 
several images.

Nielsen et al. also found that overriding the operating system’s default buffering 
behaviour could have a significant impact on the invocation delay. It is often beneficial 
to collect several small messages and then send them together, rather than sending them 
in separate packets, because of the per-packet latency that we described above. For this 
reason, the OS does not necessarily dispatch data over the network immediately after the 
corresponding socket write() call. The default OS behaviour is to wait until its buffer is 
full or to use a timeout as the criterion for dispatching the data over the network, in the 
hope that more data will arrive. 

Nielsen et al. found that in the case of HTTP 1.1 the default operating system 
buffering behaviour could cause significant unnecessary delays because of the timeouts. 
To remove these delays, they altered the kernel’s TCP settings and forced network 
dispatch on HTTP request boundaries. This is a good example of how an operating 
system can help or hinder middleware because of the policies it implements. 

Invocation within a computer  •  Bershad et al. [1990] report a study that showed that, in 
the installation examined, most cross-address-space invocation took place within a 
computer and not, as might be expected in a client-server installation, between 
computers. The trend towards placing service functionality inside user-level servers 
means that more and more invocations will be to a local process. This is especially so as 
caching is pursued aggressively if the data needed by a client is liable to be held in a local 
server. The cost of an RPC within a computer is growing in importance as a system 
performance parameter. These considerations suggest that this local case should be 
optimized.

Figure 7.11 suggests that a cross-address-space invocation is implemented within 
a computer exactly as it is between computers, except that the underlying message 
passing happens to be local. Indeed, this has often been the model implemented. Bershad 
et al. developed a more efficient invocation mechanism for the case of two processes on 
the same machine called lightweight RPC (LRPC). The LRPC design is based on 
optimizations concerning data copying and thread scheduling. 

First, they noted that it would be more efficient to use shared memory regions for 
client-server communication, with a different (private) region between the server and 
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each of its local clients. Such a region contains one or more A (for argument) stacks (see 
Figure 7.13

Figure 7.13 A lightweight remote procedure call
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). Instead of RPC parameters being copied between the kernel and user 
address spaces involved, the client and server are able to pass arguments and return 
values directly via an A stack. The same stack is used by the client and server stubs. In 
LRPC, arguments are copied once: when they are marshalled onto the A stack. In an 
equivalent RPC, they are copied four times: from the client stub’s stack onto a message; 
from the message to a kernel buffer, from the kernel buffer to a server message, and from 
the message to the server stub’s stack. There may be several A stacks in a shared region, 
because several threads in the same client may call the server at the same time.

Bershad et al. also considered the cost of thread scheduling. Compare the model 
of system call and remote procedure calls in Figure 7.11. When a system call occurs, 
most kernels do not schedule a new thread to handle the call but instead perform a 
context switch on the calling thread so that it handles the system call. In an RPC, a 
remote procedure may exist in a different computer from the client thread, so a different 
thread must be scheduled to execute it. In the local case, however, it may be more 
efficient for the client thread – which would otherwise be BLOCKED – to call the 
invoked procedure in the server’s address space.

A server must be programmed differently in this case to the way we have 
described servers before. Instead of setting up one or more threads, which then listen on 
ports for invocation requests, the server exports a set of procedures that it is prepared to 
have called. Threads in local processes may enter the server’s execution environment as 
long as they start by calling one of the server’s exported procedures. A client needing to 
invoke a server’s operations must first bind to the server interface (not shown in the 
figure). It does this via the kernel, which notifies the server; when the server has 
responded to the kernel with a list of allowed procedure addresses, the kernel replies to 
the client with a capability for invoking the server’s operations. 

An invocation is shown in Figure 7.13. A client thread enters the server’s 
execution environment by first trapping to the kernel and presenting it with a capability. 
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The kernel checks this and only allows a context switch to a valid server procedure; if it 
is valid, the kernel switches the thread’s context to call the procedure in the server’s 
execution environment. When the procedure in the server returns, the thread returns to 
the kernel, which switches the thread back to the client execution environment. Note that 
clients and servers employ stub procedures to hide the details just described from 
application writers.

Discussion of LRPC  • There is little doubt that LRPC is more efficient than RPC for the 
local case, as long as enough invocations take place to offset the memory management 
costs. Bershad et al. [1990] record LRPC delays a factor of three smaller than those of 
RPCs executed locally. 

Location transparency is not sacrificed in Bershad’s implementation. A client stub 
examines a bit set at bind time that records whether the server is local or remote, and 
proceeds to use LRPC or RPC, respectively. The application is unaware of which is 
used. However, migration transparency might be hard to achieve when a resource is 
transferred from a local server to a remote server or vice versa, because of the need to 
change invocation mechanisms.

In later work, Bershad et al. [1991] describe several performance improvements, 
which are addressed particularly to multiprocessor operation. The improvements largely 
concern avoiding traps to the kernel and scheduling processors in such a way as to avoid 
unnecessary domain transitions. For example, if a processor is idling in the server’s 
memory management context at the time a client thread attempts to invoke a server 
procedure, then the thread should be transferred to that processor. This avoids a domain 
transition; at the same time, the client’s processor may be reused by another thread in 
the client. These enhancements involve an implementation of two-level (user and 
kernel) thread scheduling, as described in Section 7.4.

7.5.2 Asynchronous operation

We have discussed how the operating system can help the middleware layer to provide 
efficient remote invocation mechanisms. But in the Internet environment the effects of 
relatively high latencies, low throughput and high server loads may outweigh any 
benefits that the OS can provide. We can add to this the phenomena of network 
disconnection and reconnection, which can be regarded as causing extremely high-
latency communication. Users’ mobile computers are not connected to the network all 
the time. Even if they have wide area wireless access (for example, using cellular 
communication), they may be peremptorily disconnected when, for example, their train 
enters a tunnel.

A common technique to defeat high latencies is asynchronous operation, which 
arises in two programming models: concurrent invocations and asynchronous 
invocations. These models are largely in the domain of middleware rather than operating 
system kernel design, but it is useful to consider them here, while we are examining the 
topic of invocation performance.

Making invocations concurrently  •  In the first model, the middleware provides only 
blocking invocations, but the application spawns multiple threads to perform blocking 
invocations concurrently. 
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A good example of such an application is a web browser. A web page typically 
contains several images and may contain many. The browser does not need to obtain the 
images in a particular sequence, so it makes several concurrent requests at a time. That 
way, the time taken to complete all the image requests is typically lower than the delay 
that would result from making the requests serially. Not only is the total communication 
delay less, in general, but the browser can overlap computation such as image rendering 
with communication. 

Figure 7.14 Times for serialized and concurrent invocations 
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Figure 7.14 shows the potential benefits of interleaving invocations (such as 
HTTP requests) between a client and a single server on a single-processor machine. In 
the serialized case, the client marshals the arguments, calls the Send operation and then 
waits until the reply from the server arrives – whereupon it Receives, unmarshals and 
then processes the results. After this it can make the second invocation.

In the concurrent case, the first client thread marshals the arguments and calls the
Send operation. The second thread then immediately makes the second invocation. Each 
thread waits to receive its results. The total time taken is liable to be lower than in the 
serialized case, as the figure shows. Similar benefits apply if the client threads make 



SECTION 7.5 COMMUNICATION AND INVOCATION 313

concurrent requests to several servers, and if the client executes on a multiprocessor 
even greater throughput is potentially possible, since the two threads’ processing can 
also be overlapped. 

Returning to the particular case of HTTP, the study by Nielsen et al. [1997] that 
we referred to above also measured the effects of concurrently interleaved HTTP 1.1 
invocations (which they call pipelining) over persistent connections. They found that 
pipelining reduced network traffic and could lead to performance benefits for clients, as 
long as the operating system provides a suitable interface for flushing buffers, to 
override the default TCP behaviour.

Asynchronous invocations  •  An asynchronous invocation is one that is performed 
asynchronously with respect to the caller. That is, it is made with a non-blocking call, 
which returns as soon as the invocation request message has been created and is ready 
for dispatch. 

Sometimes the client does not require any response (except perhaps an indication 
of failure if the target host could not be reached). For example, CORBA oneway

invocations have maybe semantics. Otherwise, the client uses a separate call to collect 
the results of the invocation. For example, the Mercury communication system [Liskov 
and Shrira 1988] supports asynchronous invocations. An asynchronous operation 
returns an object called a promise. Eventually, when the invocation succeeds or is 
deemed to have failed, the Mercury system places the status and any return values in the 
promise. The caller uses the claim operation to obtain the results from the promise. The 
claim operation blocks until the promise is ready, whereupon it returns the results or 
exceptions from the call. The ready operation is available for testing a promise without 
blocking – it returns true or false according to whether the promise is ready or blocked.

Persistent asynchronous invocations  •  Traditional asynchronous invocation mecha-
nisms such as Mercury invocations and CORBA oneway invocations are implemented 
upon TCP streams and fail if a stream breaks – that is, if the network link is down or the 
target host crashes. 

But a more developed form of the asynchronous invocation model, which we shall 
call persistent asynchronous invocation, is becoming increasingly relevant because of 
disconnected operation. This model is similar to Mercury in terms of the programming 
operations it provides, but the difference is in its failure semantics. A conventional 
invocation mechanism (synchronous or asynchronous) is designed to fail after a given 
number of timeouts have occurred, but these short-term timeouts are often not 
appropriate where disconnections or very high latencies occur. 

A system for persistent asynchronous invocation tries indefinitely to perform the 
invocation, until it is known to have succeeded or failed, or until the application cancels 
the invocation. An example is Queued RPC (QRPC) in the Rover toolkit for mobile 
information access [Joseph et al. 1997].

As its name suggests, QRPC queues outgoing invocation requests in a stable log 
while there is no network connection and schedules their dispatch over the network to 
servers when there is a connection. Similarly, it queues invocation results from servers 
in what we can consider to be the client’s invocation ‘mailbox’ until the client re-
connects and collects them. Requests and results may be compressed when they are 
queued, before their transmission over a low-bandwidth network. 
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QRPC can take advantage of different communication links for sending an 
invocation request and receiving the reply. For example, a request could be dispatched 
over a cellular data link while the user is on the road, and then the response delivered 
over an Ethernet link when the user connects her device to the corporate intranet. In 
principle, the invocation system can even store the invocation results near to the user’s 
next expected point of connection.

The client’s network scheduler operates according to various criteria and does not 
necessarily dispatch invocations in FIFO order. Applications can assign priorities to 
individual invocations. When a connection becomes available, QRPC evaluates its 
bandwidth and the expense of using it. It dispatches high-priority invocation requests 
first, and may not dispatch all of them if the link is slow and expensive (such as a wide 
area wireless connection), assuming that a faster, cheaper link such as an Ethernet will 
become available eventually. Similarly, QRPC takes priority into account when fetching 
invocation results from the mailbox over a low-bandwidth link.

Programming with an asynchronous invocation system (persistent or otherwise) 
raises the issue of how users can continue using the applications on their client device 
while the results of invocations are still not known. For example, the user may wonder 
whether they have succeeded in updating a paragraph in a shared document, or if 
someone else has made a conflicting update, such as deleting the paragraph. Chapter 18 
examines this issue.

7.6 Operating system architecture

In this section, we examine the architecture of a kernel suitable for a distributed system. 
We adopt a first-principles approach of starting with the requirement of openness and 
examining the major kernel architectures that have been proposed, with this in mind. 

An open distributed system should make it possible to:

• run only that system software at each computer that is necessary for it to carry out 
its particular role in the system architecture – system software requirements can 
vary between, for example, mobile phones and server computers, and loading 
redundant modules wastes memory resources;

• allow the software (and the computer) implementing any particular service to be 
changed independently of other facilities;

• allow for alternatives of the same service to be provided, when this is required to 
suit different users or applications;

• introduce new services without harming the integrity of existing ones.

The separation of fixed resource management mechanisms from resource management 
policies, which vary from application to application and service to service, has been a 
guiding principle in operating system design for a long time [Wulf et al. 1974]. For 
example, we said that an ideal scheduling system would provide mechanisms that enable 
a multimedia application such as video conferencing to meet its real-time demands 
while coexisting with a non-real-time application such as web browsing.
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Ideally, the kernel would provide only the most basic mechanisms upon which the 
general resource management tasks at a node are carried out. Server modules would be 
dynamically loaded as required, to implement the required resource management 
policies for the currently running applications.

Monolithic kernels and microkernels  •  There are two key examples of kernel design: the 
so-called monolithic and microkernel approaches. These designs differ primarily in the 
decision as to what functionality belongs in the kernel and what is to be left to server 
processes that can be dynamically loaded to run on top of it. Although microkernels have 
not been deployed widely, it is instructive to understand their advantages and 
disadvantages compared with the typical kernels found today.

Figure 7.15 Monolithic kernel and microkernel
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The UNIX operating system kernel has been called monolithic (see definition in 
the box below

Monolithic  •  The Chambers 20th Century Dictionary gives the following definition 
of monolith and monolithic. monolith, n. a pillar, or column, of a single stone: 
anything resembling a monolith in uniformity, massiveness or intractability. – adj.
monolithic pertaining to or resembling a monolith: of a state, an organization, etc., 
massive, and undifferentiated throughout: intractable for this reason.

). This term is meant to suggest that it is massive – it performs all basic 
operating system functions and takes up in the order of megabytes of code and data – 
and that it is undifferentiated, i.e. it is coded in a non-modular way. The result is that to 
a large extent it is intractable: altering any individual software component to adapt it to 
changing requirements is difficult. Another example of a monolithic kernel is that of the 
Sprite network operating system [Ousterhout et al. 1988]. A monolithic kernel can 
contain some server processes that execute within its address space, including file 
servers and some networking. The code that these processes execute is part of the 
standard kernel configuration (see Figure 7.15).

By contrast, in the case of a microkernel design the kernel provides only the most 
basic abstractions, principally address spaces, threads and local interprocess 
communication; all other system services are provided by servers that are dynamically 
loaded at precisely those computers in the distributed system that require them (Figure 
7.15). Clients access these system services using the kernel’s message-based invocation
mechanisms.
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We said above that users are liable to reject operating systems that do not run their 
applications. But in addition to extensibility, microkernel designers have another goal: 
the binary emulation of standard operating systems such as UNIX [Armand et al. 1989, 
Golub et al. 1990, Härtig et al. 1997].

The place of the microkernel – in its most general form – in the overall distributed 
system design is shown in Figure 7.16

Figure 7.16 The role of the microkernel
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. The microkernel appears as a layer between the 
hardware layer and a layer consisting of major system components called subsystems. If 
performance is the main goal, rather than portability, then middleware may use the 
facilities of the microkernel directly. Otherwise, it uses a language runtime support 
subsystem, or a higher-level operating system interface provided by an operating system 
emulation subsystem. Each of these, in turn, is implemented by a combination of library 
procedures linked into applications and a set of servers running on top of the 
microkernel.

There can be more than one system call interface – more than one ‘operating 
system’ – presented to the programmer on the same underlying platform. An example is 
the implementation of UNIX and OS/2 on top of the Mach distributed operating system 
kernel. Note that operating system emulation is different from machine virtualization 

(see Section 7.7).

Comparison  •  The chief advantages of a microkernel-based operating system are its 
extensibility and its ability to enforce modularity behind memory protection boundaries. 
In addition, a relatively small kernel is more likely to be free of bugs than one that is 
larger and more complex.

The advantage of a monolithic design is the relative efficiency with which 
operations can be invoked. System calls may be more expensive than conventional 
procedures, but even using the techniques we examined in the previous section, an 
invocation to a separate user-level address space on the same node is more costly still.

The lack of structure in monolithic designs can be avoided by the use of software 
engineering techniques such as layering, used in MULTICS [Organick 1972], or object-
oriented design, used for example in Choices [Campbell et al. 1993]. Windows employs 
a combination of both [Custer 1998]. But Windows remains ‘massive’, and the majority 
of its functionality is not designed to be routinely replaceable. Even a modularized large 
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kernel can be hard to maintain, and it provides limited support for an open distributed 
system. As long as modules are executed within the same address space, using a 
language such as C or C++ that compiles to efficient code but permits arbitrary data 
accesses, it is possible for strict modularity to be broken by programmers seeking 
efficient implementations, and for a bug in one module to corrupt the data in another.

Some hybrid approaches  •  Two of the original microkernels, Mach [Acetta et al. 1986] 
and Chorus [Rozier et al. 1990], began their developmental life running servers only as 
user processes. In this configuration, modularity is hardware-enforced through address 
spaces. Where servers require direct access to hardware, special system calls can be 
provided for these privileged processes, which map device registers and buffers into 
their address spaces. The kernel turns interrupts into messages, which enables user-level 
servers to handle interrupts.

Because of performance problems, the Chorus and Mach microkernel designs 
eventually changed to allow servers to be loaded dynamically either into the kernel 
address space or into a user-level address space. In each case, clients interact with 
servers using the same interprocess communication calls. A developer can thus debug a 
server at user level and then, when the development is deemed complete, allow the 
server to run inside the kernel’s address space in order to optimize system performance. 
But such a server then threatens the integrity of the system, should it turn out still to 
contain bugs.

The SPIN operating system design [Bershad et al. 1995] finesses the problem of 
trading off efficiency for protection by employing language facilities for protection. The 
kernel and all dynamically loaded modules grafted onto the kernel execute within a 
single address space. But all are written in a type-safe language (Modula-3), so they can 
be mutually protected. Protection domains within the kernel address space are 
established using protected name spaces. No module grafted onto the kernel may access 
a resource unless it has been handed a reference for it, and Modula-3 enforces the rule 
that a reference can only be used to perform operations allowed by the programmer.

In an attempt to minimize the dependencies between system modules, the SPIN 
designers chose an event-based model as a mechanism for interaction between modules 
grafted into the kernel’s address space (see Section 6.3 for a discussion of event-based 
programming). The system defines a set of core events, such as network packet arrival, 
timer interrupts, page fault occurrences and thread state changes. System components 
operate by registering themselves as handlers for the events that affect them. For 
example, a scheduler would register itself to handle events similar to those we studied 
in the scheduler activations system in Section 7.4.

Operating systems such as Nemesis [Leslie et al. 1996] exploit the fact that, even 
at the hardware level, an address space is not necessarily also a single protection domain. 
The kernel coexists in a single address space with all dynamically loaded system 
modules and all applications. When it loads an application, the kernel places the 
application’s code and data in regions chosen from those that are available at runtime. 
The advent of processors with 64-bit addressing has made single-address-space 
operating systems particularly attractive, since they support very large address spaces 
that can accommodate many applications. 

The kernel of a single-address-space operating system sets the protection 
attributes on individual regions within the address space to restrict access by user-level 
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code. User-level code still runs with the processor in a particular protection context 
(determined by settings in the processor and memory management unit), which gives it 
full access to its own regions and only selectively shared access to others. The saving of 
a single address space, compared with using multiple address spaces, is that the kernel 
need never flush any caches when it implements a domain transition.

Some later kernel designs, such as L4 [Härtig et al. 1997] and the Exokernel 
[Kaashoek et al. 1997], take the approach that what we have described as ‘microkernels’ 
still contain too much policy as opposed to mechanism. L4 is a ‘second-generation’ 
microkernel design that forces dynamically loaded system modules to execute in user-
level address spaces, but optimizes interprocess communication to offset the costs of 
doing so. It offloads much of the kernel’s complexity by delegating the management of 
address spaces to user-level servers. The Exokernel takes a quite different approach, 
employing user-level libraries instead of user-level servers to supply functional 
extensions. It provides protected allocation of extremely low-level resources such as 
disk blocks, and it expects all other resource management functionality – even a file 
system – to be linked into applications as libraries.

In the words of one microkernel designer [Liedtke 1996], ‘the microkernel story 
is full of good ideas and blind alleys’. As we shall see in the next section, the need to 
support multiple subsystems and also enforce protection between these subsystems is 
now met by the concept of virtualization which has replaced microkernel approaches as 
the key innovation in operating system design.

7.7 Virtualization at the operating system level

Virtualization is an important concept in distributed systems. We have already seen one 
application of virtualization in the context of networking, in the form of overlay 
networks (see Section 4.5) offering support for particular classes of distributed 
application. Virtualization is also applied in the context of operating systems; indeed, it 
is in this context that virtualization has had the most impact. In this section, we examine 
what it means to apply virtualization at the operating system level (system 
virtualization) and also present a case study of Xen, a leading example of system-level 
virtualization.

7.7.1 System virtualization

The goal of system virtualization is to provide multiple virtual machines (virtual 
hardware images) over the underlying physical machine architecture, with each virtual 
machine running a separate operating system instance. The concept stems from the 
observation that modern computer architectures have the necessary performance to 
support potentially large numbers of virtual machines and multiplex resources between 
them. Multiple instances of the same operating system can run on the virtual machines 
or a range of different operating systems can be supported. The virtualization system 
allocates the physical processor(s) and other resources of a physical machine between 
all virtual machines that it supports.
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Historically, processes were used to share the processor and other resources 
between multiple tasks running on behalf of one or several users. System virtualization 
has emerged more recently and is now commonly used for this purpose. It offers benefits 
for security and clean separation of tasks and in allocating and charging each user for 
their use of resources more precisely than can be achieved with processes running in a 
single system.

To fully understand the motivation for virtualization at the operating system level, 
it is useful to consider different use cases of the technology: 

• On server machines, an organization assigns each service it offers to a virtual 
machine and then optimally allocates the virtual machines to physical servers. 
Unlike processes, virtual machines can be migrated quite simply to other physical 
machines, adding flexibility in managing the server infrastructure. This approach 
has the potential to reduce investment in server computers and to reduce energy 
consumption, a key issue for large server farms.

• Virtualization is very relevant to the provision of cloud computing. As described 
in Chapter 1, cloud computing adopts a model where storage, computation and 
higher-level objects built over them are offered as a service. The services offered 
range from low-level aspects such as physical infrastructure (referred to as 
infrastructure as a service), through software platforms such as the Google App 
Engine, featured in Chapter 21, (platform as a service), to arbitrary application-
level services (software as a service). Indeed, the first is enabled directly by 
virtualization, allowing users of the cloud to be provided with one or more virtual 
machines for their own use.

• The developers of virtualization solutions are also motivated by the need for 
distributed applications to create and destroy virtual machines readily and with 
little overhead. This is required in applications that may need to demand resources 
dynamically, such as multiplayer online games or distributed multimedia 
applications, as featured in Chapter 1 [Whitaker et al. 2002]. Support for such 
applications can be enhanced by adopting appropriate resource allocation policies 
to meet quality of service requirements of virtual machines.

• A quite different case arises in providing convenient access to several different 
operating system environments on a single desktop computer. Virtualization can 
be used to provide multiple operating system types on one physical architecture. 
For example, on a Macintosh OS X computer, the Parallels Desktop virtual 
machine monitor enables a Windows or a Linux system to be installed and to 
coexist with OS X, sharing the underlying physical resources.

System virtualization is implemented by a thin layer of software on top of the underlying 
physical machine architecture; this layer is referred to as a virtual machine monitor or 
hypervisor. This virtual machine monitor provides an interface based closely on the 
underlying physical architecture. More precisely, in full virtualization the virtual 
machine monitor offers an identical interface to the underlying physical architecture. 
This has the advantage that existing operating systems can run transparently and 
unmodified on the virtual machine monitor. Experience has shown, however, that full 
virtualization can be hard to realize with satisfactory performance on many computer 
architectures, including the x86 family of processors, and that performance may be 
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improved by allowing a modified interface to be provided (with the drawback that 
operating systems then need to be ported to this modified interface). This technique is 
known as paravirtualization and is considered in more detail in the case study below.

Note that virtualization is quite distinct from the microkernel approach as 
discussed in Section 7.6. Although microkernels support the co-existence of multiple 
operating systems, this is achieved by emulating the operating system on top of the re-
usable building blocks offered by the microkernel. In contrast, in operating system 
virtualization, an operating system is run directly (or with minor modifications) on the 
virtualized hardware. The key advantage of virtualization and the principal reason for its 
predominance over microkernels is that applications can run in virtualized environments 
without being rewritten or recompiled.

Virtualization began with the IBM 370 architecture, whose VM operating system 
can present several complete virtual machines to different programs running at the same 
computer. The technique can therefore be traced back to the 1970s. More recently, there 
has been an explosion in interest in virtualization, with a number of research projects and 
commercial systems providing virtualization solutions for commodity PCs, servers and 
cloud infrastructure. Examples of leading virtualization solutions include Xen [Barham 
et al. 2003a], Denali [Whitaker et al. 2002], VMWare, Parallels and Microsoft Virtual 
Server. We present a case study of the Xen approach below.

7.7.2 Case study: The Xen approach to system virtualization

Xen is a leading example of system virtualization, initially developed as part of the 
Xenoserver project at the Computer Laboratory, Cambridge University and now 
maintained by an open source community [www.xen.org]. An associated company, 
XenSource, was acquired by Citrix Systems in 2007 and Citrix now offers enterprise 
solutions based on Xen technology, including XenoServer and associated management 
and automation tools. The description of Xen provided below is based on the paper by 
Barham et al. [2003a] and associated XenoServer internal reports [Barham et al. 2003b, 
Fraser et al. 2003], together with an excellent and comprehensive book about the 
internals of the Xen hypervisor [Chisnall 2007].

The overall goal of the XenoServer project [Fraser et al. 2003] is to provide a 
public infrastructure for wide area distributed computing. As such, this is an early 
example of cloud computing focussing on infrastructure as a service. In the XenoServer 
vision, the world is populated by XenoServers that are capable of executing code on 
behalf of customers who are then billed for the resources they use.

The two main outputs of the project are the Xen virtual machine monitor and the 
XenoServer Open Platform discussed in more detail below.

The Xen virtual machine monitor  •  Xen is a virtual machine monitor that was designed 
initially to support the implementation of XenoServers but has since evolved into a 
standalone solution to system virtualization. The goal of Xen is to enable multiple 
operating system instances to run in complete isolation on conventional hardware with 
minimal performance overhead introduced by the associated virtualization. Xen is 
designed to scale to very large numbers of operating system instances (up to several 
hundred virtual machines on a single machine) and deal with heterogeneity, seeking to 
support most major operating systems, including Windows, Linux, Solaris and NetBSD. 
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Xen also runs on a variety of hardware platforms including 32- and 64-bit x86 
architectures and also PowerPC and IA64 CPUs.

The architecture of Xen: The overall architecture of Xen is captured in Figure 7.17

Figure 7.17 The architecture of Xen
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. The 
Xen virtual machine monitor (known as the hypervisor) is central to this architecture, 
supporting the virtualization of the underlying physical resources, specifically the CPU 
and its instruction set, the scheduling of the CPU resource and the physical memory. The 
overall goal of the hypervisor is to provide virtual machines with a virtualization of the 
hardware, providing the appearance that each virtual machine has its own (virtualized) 
physical machine and multiplexing the virtual resources onto the underlying physical 
resources. In achieving this, it must also ensure strong protection between the different 
virtual machines it supports.

The hypervisor follows the design of Exokernel (introduced in Section 7.6) by 
implementing a minimal set of mechanisms for resource management and isolation and 
leaving higher level policy to other parts of the systems architecture – in particular the 
domains, as discussed below. The hypervisor also has no knowledge of devices or their 
management but rather just provides a conduit for interacting with devices (as again 
discussed below). This minimal design is important for two key reasons:

• Xen is primarily concerned with isolation, including isolation of faults, and yet a 
fault in the hypervisor can crash the whole system. It is therefore important that 
the hypervisor is minimal, thoroughly tested and bug-free.

• The hypervisor represents an inevitable overhead relative to executing on the bare 
hardware, and it is important for the performance of the system that this is as 
lightweight as possible (as we shall see below, paravirtualization also helps to 
minimize this overhead through bypassing the hypervisor wherever possible).
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The role of the hypervisor is to support a potentially large number of virtual machine 
instances (called domains in Xen) all running guest operating systems. The guest 
operating systems run in a set of domains referred to collectively as domainU, or the 
unprivileged domain, referring to their lack of privilege in terms of accessing physical 
(as opposed to virtual) resources. In other words, all access to resources is carefully 
controlled by Xen. Xen also supports a special domain, referred to as domain0, that has 
privileged access to hardware resources and acts as a control plane for the Xen 
architecture providing a clean separation between mechanism and policy in the system 
(we will see examples of the usage of domain0 below). Domain0 is configured to run a 
Xen port of Linux (XenoLinux), whereas other domains can run any guest operating 
system. Note that the Xen architecture allows selected privileges to be granted to 
domainU, specifically the ability to access hardware devices directly or to create new 
domains. In practice, though, the most common configuration is for domain0 to retain 
these privileges.

To continue our study of Xen, we consider the implementation of the core 
functions of the hypervisor – namely, the virtualization of the underlying hardware 
(including the use of paravirtualization), scheduling and virtual memory management – 
before showing how Xen supports the management of devices, We conclude by 
considering what it takes to port a given operating system to Xen.

Virtualization of the underlying CPU: The primary role of the hypervisor is to provide each 
domain with a virtualization of the underlying CPU, that is provide the appearance that 
each domain has its own (virtual) CPU and associated instruction set. The complexity 
of this step depends entirely on the architecture of the given CPU. In this section, we 
focus particularly on virtualization as it applies to the x86 architecture, the dominant 
processor family in use today.

Popek and Goldberg [1974], in a classic paper on virtualization requirements, 
focus on all instructions that can change the state of the machine in a way that can impact 
on other processes (sensitive instructions), further subdividing such instructions into:

• control-sensitive instructions that attempt to change the configuration of resources 
in the system, for example changing virtual memory mappings;

• behaviour-sensitive instructions that read privileged state and through this reveal 
physical rather than virtual resources, thus breaking the virtualization.

They then state that a condition for being virtualizable is that all sensitive instructions 
(control- and behaviour-sensitive) must be intercepted by the hypervisor (or equivalent 
kernel mechanism). More specifically, this is achieved by trapping into the hypervisor, 
supported by the concept of privileged instructions in a machine architecture – that is, 
instructions that either execute in privileged mode or generate a trap (which can then 
take them into privileged mode). This leads to the following precise statement of the 
Popek and Goldberg condition:

Condition for virtualization : A processor architecture lends itself to virtualization if 
all sensitive instructions are privileged instructions.

Unfortunately, in the x86 family of processors, this is not the case: it is possible to 
identify 17 instructions that are sensitive but not privileged. For example, the LAR (load 
access rights) and LSL (load segment limit) instructions fall into this category. They 
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need to be trapped by the hypervisor to ensure correct virtualization, but there is no 
mechanism to do this as they are not privileged.

One solution is to provide a layer of emulation for all instructions in the instruction 
set. It is then possible to manage sensitive instructions within this layer. This is what is 
done in full virtualization and this approach has the advantage that guest operating 
systems can run unchanged in this virtualized environment. However, this approach can 
be expensive, adding cost to every affected instruction call. Paravirtualization, in 
contrast, takes the view that many instructions can run directly on the bare hardware 
without emulation and that privileged instructions should be trapped and dealt with by 
the hypervisor. This then leaves the sensitive instructions that are not privileged; a 
paravirtualization solution recognizes that such instructions can lead to potential 
problems but leaves this to be dealt with in the guest operating system. In other words, 
the guest operating system must be rewritten to tolerate or deal with any side effects of 
these instructions. One approach, for example, is to rewrite sections of the code to avoid 
the usage of problematic instructions. This paravirtualization approach greatly improves 
the performance of virtualization, but at the expense of requiring a port of the guest 
operating system to the virtualized environment.

To understand the implementation of paravirtualization further, it is helpful to 
look at levels (or rings) of privilege in modern processors. For example, the x86 family 
supports four levels of privilege with ring 0 being the most privileged, ring 1 being the 
next most privileged and so on, with ring 3 being the least privileged. In a traditional 
operating system environment, the kernel will run in ring 0 and applications in ring 3 
with rings 1 and 2 unused. Traps take the flow of control from the application to the 
kernel and allow privileged activities to take place. In Xen, the hypervisor runs in ring 
0 and this is the only ring that can execute privileged instructions. The guest operating 
systems then run in ring 1, with applications running in ring 3. Privileged instructions 
are rewritten as hypercalls that trap into the hypervisor allowing the hypervisor to 
control execution of these potentially sensitive operations. All other sensitive 
instructions must be managed by the guest operating system, as discussed above.

This distinction between kernel-based operating systems and Xen is summarized 
in Figure 7.18.

Hypercalls are asynchronous and hence represent notifications that the 
corresponding instructions should be executed (there is no blocking in the guest 
operating system awaiting a result). Communication between the hypervisor and the 
guest operating system is also asynchronous and is supported by a simple event

mechanism offered by the Xen hypervisor. This is used, for example, to deal with device 
interrupts. The hypervisor maps such hardware interrupts to software events targeted 
towards the right guest operating system. The Xen hypervisor is therefore completely 
event-driven.

Scheduling: We saw in Section 7.4 that many operating system environments support 
two levels of scheduling – that is, the scheduling of processes and the subsequent 
scheduling of user-level threads within processes. Xen goes one step further, 
introducing an extra level of scheduling concerned with the execution of particular guest 
operating systems. It achieves this by introducing the concept of a virtual CPU (VCPU), 
with each VCPU supporting a guest system. Scheduling therefore involves the following 
steps:
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• The hypervisor schedules VCPUs on to the underlying physical CPU(s), thereby 
providing each guest with a portion of the underlying physical processing time.

• Guest operating systems schedule kernel-level threads on to their allocated 
VCPU(s).

• Where applicable, threads libraries in user space schedule user-level threads onto 
the available kernel-level threads.

The key requirement in Xen is that the design of the underlying hypervisor scheduler is 
predictable, as higher-level schedulers will make assumptions about the behaviour of 
this scheduler and it is crucial that these assumptions are met.

Xen supports two schedulers, Simple EDF and the Credit Scheduler:

Xen’s Simple Earliest Deadline First (SEDF) Scheduler: This scheduler operates 
by selecting the VCPU that has the closest deadline, with deadlines calculated 
according to two parameters, n (the slice) and m (the period). For example, a domain 
can request 10 ms (n) every 100 ms (m). The deadline is defined as the latest time this 
domain can be run to meet its deadline. Returning to our example, at the start point 
of the system, this VCPU can be scheduled as late as 90 ms into the 100 ms period 
and still meet its deadline. The scheduler operates by picking the earliest of the 
current deadlines, looking across the set of runnable VCPUs.

Xen’s Credit Scheduler: For this scheduler, each domain (VCPU) is specified in 
terms of two properties, the weight and the cap. The weight determines the share of 
the CPU that should be given to that VCPU. For example, if one VCPU has a weight 
of 64 and another a weight of 32, the first VCPU should get double the share of the 
second. Legal weights range from 1 to 65535, with the default being 256. This 
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behaviour is modified by the cap, which expresses the total percentage of the CPU 
that should be given to the corresponding VCPU, expressed as a percentage. This can 
be left as uncapped. The scheduler transforms the weight associated with a VCPU 
into credits, and as the VCPU runs, it consumes credits. The VCPU is deemed under

if it has credits left; otherwise it is deemed over. For each CPU, the scheduler 
maintains a queue  of runnable VCPUs, with all the under VCPUs first, followed by 
the over VCPUs. When a VCPU is unscheduled, it is placed in this queue at the end 
of the appropriate category (depending upon whether it is now under or over credit). 
The scheduler then picks the first element in the queue to run next. As a form of load 
balancing, if a given CPU has no under VCPUs, it will search the queues of other 
CPUs for a possible candidate to schedule.

These replace previous Xen schedulers, including a simple round robin scheduler, one 
based on borrowed virtual time (designed to provide a proportional share of the 
underlying CPU based on setting different domain weights), and Atropos (designed to 
support soft real-time scheduling). Further details of these schedulers can be found in 
Chisnall [2007].

It is also possible to add new schedulers to the Xen hypervisor, but this is 
something that should be done with caution and after extensive testing because of the 
requirements of the hypervisor as discussed above. Chisnall [2007] provides a step-by-
step guide on how to implement such a simple scheduler in Xen.

Interaction between guest operating systems and the underlying scheduler is via a 
number of scheduler-specific hypercalls, including operations to voluntary yield the 
CPU (but remain runnable), to block a particular domain until an event has occurred or 
to shutdown the domain for a specified reason.

Virtual memory management: Virtual memory management is the most complicated 
aspect of virtualization partly because of the complexity of underlying hardware 
solutions to memory management and partly because of the need to inject extra levels 
of protection to provide isolation between different domains. We provide below some 
general principles of memory management in Xen. The reader is encouraged to study 
the detailed description of virtual memory management in Xen provided by Chisnall 
[2007].

The overall approach to virtualization of memory management in Xen is captured 
in Figure 7.19. As with scheduling, Xen adopts a three-level architecture with the 
hypervisor managing physical memory, the kernel of the guest operating system 
providing pseudo-physical memory and applications within that operating system 
provided with virtual memory, as would be expected of any underlying operating 
system. The concept of pseudo-physical memory is crucial to understanding this 
architecture and is described further below.

The key design decision in the virtual memory management architecture is to keep 
the functionality of the hypervisor to a minimum. The hypervisor effectively has just 
two roles – the allocation and subsequent management of physical memory in the form 
of pages:

• In terms of memory allocation, the hypervisor retains a small portion of physical 
memory for its own needs and then allocates pages to domains on demand. For 
example, when a new domain is created, it is given a set of pages according to its 
declared needs. In practice, this set of pages will be fragmented across the physical 
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address space, and this may be in conflict with the expectations of the guest 
operating system (which may expect a contiguous address space). The role of the 
pseudo-physical memory is to provide this abstraction by offering a contiguous 
pseudo-physical address space and then maintaining a mapping from this address 
space to the real physical addresses. Crucially, this mapping must be managed by 
the guest operating system and not in the hypervisor, to maintain the lightweight 
nature of the hypervisor (more specifically, the composition of the two functions 
shown in Figure 7.19 is carried out in the guest). This approach allows the guest 
operating system to interpret the mapping in its own context (for example, for 
some guest operating systems where contiguous addresses are not expected, this 
mapping can be eliminated) and also makes it easier to migrate a domain to a 
different address space, for example in server consolidation. The same mechanism 
is also used to support suspension and resumption of guest operating systems. On 
suspension, the state of the domain is serialized to disk, and on resumption, this 
state is restored but in a different physical location. This is supported by the extra 
level of indirection in the memory management architecture.

• In terms of managing the physical memory, the hypervisor exports a small set of 
hypercalls to manipulate the underlying page tables. As an illustration, the 
hypercall pt_update(list of requests) is used by a guest operating system to request 
a batch of incremental updates to a page table. This allows the hypervisor to 
validate all the requests and carry out only those updates that are deemed safe, for 
example to enforce isolation.

The overall result is a flexible approach to virtual memory management that allows 
guest operating systems to optimize their implementation for different processor 
families.
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Device management: The Xen approach to device management relies on the concept of 
split device drivers, as shown in Figure 7.20

Figure 7.20 Split device drivers
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. As can be seen from this figure, access to 
the physical device is controlled exclusively by domain0, which also hosts a real device 
driver for this device. As domain0 runs XenoLinux, this will be an available Linux 
device driver. It is important to stress that while some device drivers have good support 
for multiplexing, others do not, and hence it is important for Xen to provide an 
abstraction whereby each guest operating system can have the appearance of its own 
virtual device. This is achieved by the split driver structure involving a back-end device 
driver running in domain0 and a front-end driver running in the guest operating system. 
The two then communicate to provide the necessary device access for the guest 
operating system. The respective roles of the back-end and front-end parts of the driver 
are as follows:

• The back end has two critical roles to play in the architecture. Firstly, it must 
manage multiplexing (in particular access from multiple guest operating systems), 
especially where support is not provided in the underlying Linux driver. Secondly, 
it provides a generic interface that both captures the essential functions of the 
device and is neutral to the different guest operating systems that will use it. This 
is made easier because operating systems already provide a number of 
abstractions that effectively provide the necessary multiplexing in a neutral way, 
for example reading and writing blocks to persistent storage. Higher-level 
interfaces (for example, sockets) would be inappropriate as they would be too 
biased towards given operating system abstractions.
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• The front end, in contrast, is very simple and acts as a proxy for the device in the 
guest operating system environment, accepting commands and then 
communicating with the back end as described below.

Communication between the front end and back end of the split device structure is 
facilitated by the creation of a memory page shared between the two components. The 
region of shared memory is established using a grant table mechanism supported by the 
hypervisor. A grant table is an array of structures (grant entries) that supports operations 
to provide permissions to grant foreign access to a memory reservation or to access other 
memory reservations via grant references. Access can be granted to read or write the 
shared memory region. This mechanism provides a lightweight and high-performance 
means for different domains to communicate in Xen.

The normal mechanism to communicate is to use a data structure known as an I/O 

ring in this shared memory region, which supports two-way asynchronous 
communication between the two parts of the split device driver. The structure of an I/O 
ring is shown in Figure 7.21

Figure 7.21 I/O rings
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. Domains communicate through requests and responses. In 
particular, a domain writes its request clockwise, starting at the request start indicator 
(assuming there is enough room) and moving on the pointer accordingly. The other end 
can then read the data from its end, again moving the associated pointer. The same 
procedure then occurs for responses. For devices that continually transfer large amounts 
of data, the corresponding endpoints will poll this data structure. For less frequent 
transfers, I/O rings can be supplemented by the use of the Xen event mechanism to 
notify the recipient that data is ready for consumption. The mechanism for device 
discovery is via a shared information space called XenStore, accessible by all domains. 
XenStore is itself implemented as a device using the split device architecture, which 
device drivers use to advertise their services. The information provided includes the 
grant reference for the I/O rings associated with the device and also (where appropriate) 
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any event channels associated with the device. The range of communication facilities 
used by device drivers (I/O rings, events and XenStore) are collectively referred to as 
XenBus.

A given Xen installation can provide different configurations of device drivers. It 
is expected, though, that most Xen implementations will provide two generic drivers:

• The first one is the block device driver, offering a common abstraction onto block 
devices (most commonly storage devices). The interface to this is very simple, 
supporting three operations: to read or write a block and also to implement a write 

barrier ensuring that all outstanding writes are completed.

• The second one is the Xen Virtual Interface Network Driver, which offers a 
common interface to interact with network devices. This uses two I/O rings for 
transmitting and receiving data to/from the network. Strictly speaking, the rings 
are used for control flow and separate shared memory areas are used for the 
associated data (which helps in terms of minimizing copies and reusing memory 
regions).

Note that most of this architecture is implemented above the hypervisor, in domain0 and 
the other guest operating systems. The role of the hypervisor is simply to facilitate inter-
domain communication, for example through the grant table mechanism, and the rest is 
built on top of this minimal base. This helps considerably in terms of keeping the 
hypervisor small and efficient.

Porting a guest operating system: From the descriptions above, it is now possible to see 
what is required in terms of porting an operating system to the Xen environment. This 
involves several key stages:

• replacing all privileged instructions used by the operating system with the relevant 
hypercalls;

• taking all other sensitive instructions and reimplementing them in a way that 
preserves the desired semantics of the associated operations;

• porting the virtual memory subsystem;

• developing split-level device drivers for the required set of devices, reusing the 
device driver functionality already provided in domain0 together with the generic 
device driver interfaces where appropriate.

This list covers the major tasks, but there are also some other, more specific tasks that 
need to be carried out. For example, Xen offers its own time architecture, recognizing 
the difference between real time and time passing as viewed by individual guest 
operating systems.

In more detail, the hypervisor provides support for various time abstractions – 
specifically, an underlying cycle counter time based on the clock of the underlying 
processor and used to extrapolate other time references; domain virtual time, which 
progresses at the same rate as cycle counter time but only when a particular domain is 
scheduled; system time, which accurately reflects the passing of real time in the system; 
and wall clock time, providing the actual time of day. It is assumed that operating system 
instances running in domains will provide real time and virtual time abstractions on top 
of these values, requiring further porting effort. Interestingly, both system time and wall 
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clock time are corrected automatically for clock drift, exploiting a single instance of an 
NTP client (described in Chapter 14) running in domain0. This is just one example of 
the optimizations that are enabled by the shared domain0.

The XenoServer Open Platform  •  As mentioned above, Xen was initially developed as 
part of the XenoServer project, which investigated software infrastructure for wide area 
distributed computing. We now describe the overall architecture of the associated 
XenoServer Open Platform [Hand et al. 2003]. In this architecture, which is shown in 
Figure 7.22

Figure 7.22 The XenoServer Open Platform Architecture
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, clients register with an entity known as XenoCorp in order to use the 
system. The developers of the XenoServer Open Architecture anticipate a number of 
competing instances of XenoCorps existing in a given system offering different 
payment regimes and levels of quality of service (for example, varying support for 
privacy). More formally, the role of a given XenoCorp is to offer authentication, 
auditing, charging and payment services and to maintain a contractual relationship with 
both clients and organizations offering XenoServers. This is supported by a process of 
registration whereby identity is established, and the creation of purchase orders that 
represent the commitment by the (authenticated) client to fund a given session.

In the overall architecture, XenoServers compete against each other to offer 
services. The role of the XenoServer Information Service is then to allow XenoServers 
to advertise their services and for clients to locate appropriate XenoServers based on 
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their specified requirements. Advertisements are specified using XML and include 
clauses covering functionality, resource availability and pricing.

The Information Service is relatively primitive, offering basic search mechanisms 
over the set of advertisements. To complement this, the platform architecture also offers 
a resource discovery (RD) system supporting more complex queries, such as:

• Find a XenoServer with a low-latency link to the client that meets certain resource 
requirements for a given price, o.r

• Find a cluster of XenoServers that are inter-connected by low-latency links, 
support secure communication and meet certain resource requirements.

The main innovation in the XenoServer project is in how it couples the above 
architecture with virtualization – each XenoServer runs the Xen virtual machine 
monitor, allowing clients to bid for virtual rather than physical resources and allowing 
the system to manage the set of resources more effectively because of this virtualization. 
This is a direct illustration of the complementary nature of cloud computing and 
virtualization, as discussed above.

7.8 Summary

This chapter has described how the operating system supports the middleware layer in 
providing invocations upon shared resources. The operating system provides a 
collection of mechanisms upon which varying resource management policies can be 
implemented, to meet local requirements and to take advantage of technological 
improvements. It allows servers to encapsulate and protect resources, while allowing 
clients to share them concurrently. It also provides the mechanisms necessary for clients 
to invoke operations upon resources.

A process consists of an execution environment and threads: an execution 
environment consists of an address space, communication interfaces and other local 
resources such as semaphores; a thread is an activity abstraction that executes within an 
execution environment. Address spaces need to be large and sparse in order to support 
sharing and mapped access to objects such as files. New address spaces may be created 
with their regions inherited from parent processes. An important technique for copying 
regions is copy-on-write.

Processes can have multiple threads, which share the execution environment. 
Multi-threaded processes allow us to achieve relatively cheap concurrency and to take 
advantage of multiprocessors for parallelism. They are useful for both clients and 
servers. Recent threads implementations allow for two-tier scheduling: the kernel 
provides access to multiple processors, while user-level code handles the details of 
scheduling policy.

The operating system provides basic message-passing primitives and mechanisms 
for communication via shared memory. Most kernels include network communication 
as a basic facility; others provide only local communication and leave network 
communication to servers, which may implement a range of communication protocols. 
This is a trade-off of performance against flexibility.
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We discussed remote invocations and accounted for the difference between 
overheads due directly to network hardware and overheads that are due to the execution 
of operating system code. We found the proportion of the total time due to software to 
be relatively large for a null invocation but to decrease as a proportion of the total as the 
size of the invocation arguments grows. The chief overheads involved in an invocation 
that are candidates for optimization are marshalling, data copying, packet initialization, 
thread scheduling and context switching, as well as the flow control protocol used. 
Invocation between address spaces within a computer is an important special case, and 
we described the thread-management and parameter-passing techniques used in 
lightweight RPC.

There are two main approaches to kernel architecture: monolithic kernels and 
microkernels. The main difference between them lies in where the line is drawn between 
resource management by the kernel and resource management performed by 
dynamically loaded (and usually user-level) servers. A microkernel must support at least 
a notion of process and interprocess communication. It supports operating system 
emulation subsystems as well as language support and other subsystems, such as those 
for real-time processing. Virtualization offers an attractive alternative to this style by 
providing emulation of the hardware and then allowing multiple virtual machines (and 
hence multiple operating systems) to coexist on the same machine.

EXERCISES

7.1 Discuss the tasks of encapsulation, concurrent processing, protection, name resolution, 
communication of parameters and results, and scheduling in the context of the UNIX file 
service (or that of another kernel that is familiar to you). page 282

7.2 Why are some system interfaces implemented by dedicated system calls (to the kernel), 
and others on top of message-based system calls? page 282

7.3 Smith decides that every thread in his processes ought to have its own protected stack – 
all other regions in a process would be fully shared. Does this make sense? page 286

7.4 Should signal (software interrupt) handlers belong to a process or to a thread?
page 286

7.5 Discuss the issue of naming applied to shared memory regions. page 288

7.6 Suggest a scheme for balancing the load on a set of computers. You should discuss:

i) what user or system requirements are met by such a scheme;

ii) to what categories of applications it is suited;

iii) how to measure load and with what accuracy; 

iv) how to monitor load and choose the location for a new process. Assume that 
processes may not be migrated.

How would your design be affected if processes could be migrated between computers? 
Would you expect process migration to have a significant cost? page 289
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7.7 Explain the advantage of copy-on-write region copying for UNIX, where a call to fork

is typically followed by a call to exec. What should happen if a region that has been 
copied using copy-on-write is itself copied? page 291

7.8 A file server uses caching and achieves a hit rate of 80%. File operations in the server 
cost 5 ms of CPU time when the server finds the requested block in the cache, and an 
additional 15 ms of disk I/O time otherwise. Explaining any assumptions you make, 
estimate the server’s throughput capacity (average requests/sec) if it is:

i) single-threaded;

ii) two-threaded, running on a single processor;

iii) two-threaded, running on a two-processor computer. page 292

7.9 Compare the worker pool multi-threading architecture with the thread-per-request 
architecture. page 293

7.10 What thread operations are the most significant in cost? page 295

7.11 A spin lock (see Bacon [2002]) is a boolean variable accessed via an atomic test-and-set

instruction, which is used to obtain mutual exclusion. Would you use a spin lock to 
obtain mutual exclusion between threads on a single-processor computer? page 298

7.12 Explain what the kernel must provide for a user-level implementation of threads, such 
as Java on UNIX. page 300

7.13 Do page faults present a problem for user-level threads implementations? page 300

7.14 Explain the factors that motivate the hybrid scheduling approach of the ‘scheduler 
activations’ design (instead of pure user-level or kernel-level scheduling). page 301

7.15 Why should a threads package be interested in the events of a thread’s becoming 
blocked or unblocked? Why should it be interested in the event of a virtual processor’s 
impending preemption? (Hint: other virtual processors may continue to be allocated.)

page 302

7.16 Network transmission time accounts for 20% of a null RPC and 80% of an RPC that 
transmits 1024 user bytes (less than the size of a network packet). By what percentage 
will the times for these two operations improve if the network is upgraded from 10 
megabits/second to 100 megabits/second? page 305

7.17 A ‘null’ RMI that takes no parameters, calls an empty procedure and returns no values 
delays the caller for 2.0 milliseconds. Explain what contributes to this time.

In the same RMI system, each 1K of user data adds an extra 1.5 milliseconds. A client 
wishes to fetch 32K of data from a file server. Should it use one 32K RMI or 32 1K 
RMIs? page 305

7.18 Which factors identified in the cost of a remote invocation also feature in message 
passing? page 307

7.19 Explain how a shared region could be used for a process to read data written by the 
kernel. Include in your explanation what would be necessary for synchronization.

page 308
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7.20 i) Can a server invoked by lightweight procedure calls control the degree of 
concurrency within it?

ii) Explain why and how a client is prevented from calling arbitrary code within a 
server under lightweight RPC.

iii) Does LRPC expose clients and servers to greater risks of mutual interference than 
conventional RPC (given the sharing of memory)? page 309

7.21 A client makes RMIs to a server. The client takes 5 ms to compute the arguments for 
each request, and the server takes 10 ms to process each request. The local OS 
processing time for each send or receive operation is 0.5 ms, and the network time to 
transmit each request or reply message is 3 ms. Marshalling or unmarshalling takes 0.5 
ms per message.

Estimate the time taken by the client to generate and return from two requests (i) if it is 
single-threaded, and (ii) if it has two threads that can make requests concurrently on a 
single processor. Is there a need for asynchronous RMI if processes are multi-threaded?
page 311

7.22 Explain what a security policy is and what the corresponding mechanisms are in the case 
of a multiuser operating system such as UNIX. page 314

7.23 Explain the program linkage requirements that must be met if a server is to be 
dynamically loaded into the kernel’s address space, and how these differ from the case 
of executing a server at the user level. page 315

7.24 How could an interrupt be communicated to a user-level server? page 317

7.25 On a certain computer we estimate that, regardless of the OS it runs, thread scheduling 
costs about 50 s, a null procedure call 1 ms, a context switch to the kernel 20 s and a 
domain transition 40 s. For each of Mach and SPIN, estimate the cost to a client of 
calling a dynamically loaded null procedure. page 317

7.26 What is the distinction between the virtualization approach advocated by Xen and the 
style of microkernel advocated by the Exokernel project? In your answer, highlight two 
things they have in common and two distinguishing characteristics between the 
approaches. pages 317, 320

7.27 Sketch out in pseudo-code how you would add a simple round robin scheduler to the 
Xen hypervisor using the framework discussed in Section 7.7.2. page 323

7.28 From your understanding of the Xen approach to virtualization, discuss specific features 
of Xen that can support the XenoServer architecture, thus illustrating the synergy 
between virtualization and cloud computing. pages 320, 330
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8

DISTRIBUTED

OBJECTS AND COMPONENTS

8.1 Introduction
8.2 Distributed objects
8.3 Case study: CORBA
8.4 From objects to components
8.5 Case studies: Enterprise JavaBeans and Fractal
8.6 Summary

A complete middleware solution must present a higher-level programming abstraction as 
well as abstracting over the underlying complexities involved in distributed systems. This 
chapter examines two of the most important programming abstractions, namely 
distributed objects and components, and also examines associated middleware platforms 
including CORBA, Enterprise JavaBeans and Fractal.

CORBA is a middleware design that allows application programs to communicate 
with one another irrespective of their programming languages, their hardware and 
software platforms, the networks they communicate over and their implementors. 
Applications are built from CORBA objects, which implement interfaces defined in 
CORBA’s interface definition language, IDL. Like Java RMI, CORBA supports transparent 
invocation of methods on remote objects. The middleware component that supports RMI 
is called the object request broker, or ORB. 

Component-based middleware has emerged as a natural evolution of distributed 
objects, providing support for managing dependencies between components, hiding low-
level details associated with the middleware, managing the complexities of establishing 
distributed applications with appropriate non-functional properties such as security, and 
supporting appropriate deployment strategies. Key technologies in this area include 
Enterprise JavaBeans and Fractal.
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8.1 Introduction

The previous chapters introduced fundamental underlying building blocks for 
distributed systems in terms of communication and operating system support. This 
chapter turns to complete middleware solutions, presenting distributed objects and 
components as two of the most important styles of middleware in use today. This 
discussion is followed in Chapters 9 and 10 with consideration of alternative approaches 
based on web services and peer-to-peer solutions.

As discussed in Chapter 2, the task of middleware is to provide a higher-level 
programming abstraction for the development of distributed systems and, through 
layering, to abstract over heterogeneity in the underlying infrastructure to promote 
interoperability and portability. 

Distributed object middleware  •  The key characteristic of distributed objects is that they 
allow you to adopt an object-oriented programming model for the development of 
distributed systems and, through this, hide the underlying complexity of distributed 
programming. In this approach, communicating entities are represented by objects. 
Objects communicate mainly using remote method invocation, but also possibly using 
an alternative communication paradigm (such as distributed events). This relatively 
simple approach has a number of important benefits, including the following:

• The encapsulation inherent in object-based solutions is well suited to distributed 
programming.

• The related property of data abstraction provides a clean separation between the 
specification of an object and its implementation, allowing programmers to deal 
solely in terms of interfaces and not be concerned with implementation details 
such as the programming language and operating system used.

• This approach also lends itself to more dynamic and extensible solutions, for 
example by enabling the introduction of new objects or the replacement of one 
object with another (compatible) object.

A range of middleware solutions based on distributed objects are available, including 
Java RMI and CORBA. We summarize the key features of distributed objects in Section 
8.2 and provide a detailed case study of CORBA in Section 8.3.

Component-based middleware  •  Component-based solutions have been developed to 
overcome a number of limitations that have been observed for application developers 
working with distributed object middleware:

Implicit dependencies: Object interfaces do not describe what the implementation of 
an object depends on, making object-based systems difficult to develop (especially 
for third-party developers) and subsequently manage.

Programming complexity: Programming distributed object middleware leads to a 
need to master many low-level details associated with middleware implementations.

Lack of separation of distribution concerns: Application developers are obliged to 
consider details of concerns such as security, failure handling and concurrency, 
which are largely similar from one application to another.
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No support for deployment: Object-based middleware provides little or no support 
for the deployment of (potentially complex) configurations of objects.

Component-based solutions can best be understood as a natural evolution of object-
based approaches, building on the strong heritage of this earlier work. Section 8.4
discusses this rationale in more detail and introduces the key features of a component-
based approach. Section 8.5 then presents two contrasting case studies of component-
based solutions, Enterprise JavaBeans and Fractal, with the former offering a 
comprehensive solution that abstracts over many of the key issues in developing 
distributed applications and the latter representing a more lightweight solution often 
used to construct more complex middleware technologies. 

8.2 Distributed objects

Middleware based on distributed objects is designed to provide a programming model 
based on object-oriented principles and therefore to bring the benefits of the object-
oriented approach to distributed programming.

Emmerich [2000] sees such distributed objects as a natural evolution from three 
strands of activity: 

• In distributed systems, earlier middleware was based on the client-server model 
and there was a desire for more sophisticated programming abstractions.

• In programming languages, earlier work in object-oriented languages such as 
Simula-67 and Smalltalk led to the emergence of more mainstream and heavily 
used programming languages such as Java and C++ (languages used extensively 
in distributed systems).

• In software engineering, significant progress was made in the development of 
object-oriented design methods, leading to the emergence of the Unified 
Modelling Language (UML) as an industrial-standard notation for specifying 
(potentially distributed) object-oriented software systems.

In other words, through adopting an object-oriented approach, distributed systems 
developers are not only provided with richer programming abstractions (using familiar 
programming languages such as C++ and Java) but are also able to use object-oriented 
design principles, tools and techniques (including UML) in the development of 
distributed systems software. This represents a major step forward in an area where, 
previously, such design techniques were not available. It is interesting to note that the 
OMG, the organization that developed CORBA (see Section 8.3), also manages the 
standardization of UML.

Distributed object middleware offers a programming abstraction based on object-
oriented principles. Leading examples of distributed object middleware include Java 
RMI (discussed in Section 5.5) and CORBA (examined in depth in Section 8.3 below). 
While Java RMI and CORBA share a lot in common, there is one important difference: 
the use of Java RMI is restricted to Java-based development, whereas CORBA is a 
multi-language solution allowing objects written in a variety of languages to 
interoperate. (Bindings exist for C++, Java, Python and several others.)



338 CHAPTER 8  DISTRIBUTED OBJECTS AND COMPONENTS

It must be stressed that programming with distributed objects is both different 
from and significantly more complex than standard object-oriented programming, as 
summarized below.

The differences: Key differences between objects and distributed objects have already 
been covered in Section 5.4.1, in the context of RMI. For convenience, this discussion 
is repeated here in summary form (see Figure 8.1

Figure 8.1 Distributed objects

Objects Distributed objects Description of distributed object

Object references Remote object references Globally unique reference for a 
distributed object; may be passed as a 
parameter.

Interfaces Remote interfaces Provides an abstract specification of the 
methods that can be invoked on the 
remote object; specified using an 
interface definition language (IDL).

Actions Distributed actions Initiated by a method invocation, 
potentially resulting in invocation 
chains; remote invocations use RMI.

Exceptions Distributed exceptions Additional exceptions generated from 
the distributed nature of the system, 
including message loss or process 
failure.

Garbage collection Distributed garbage collection Extended scheme to ensure that an 
object will continue to exist if at least 
one object reference or remote object 
reference exists for that object, 
otherwise, it should be removed. 
Requires a distributed garbage 
collection algorithm.

). Other differences will emerge when 
we look in detail at CORBA in Section 8.3. These include:

• Class is a fundamental concept in object-oriented languages but does not feature 
so prominently in distributed object middleware. As noted in the CORBA case 
study, it is difficult to agree upon a common interpretation of class in a 
heterogeneous environment where multiple languages coexist. In the object-
oriented world more generally, class has several interpretations, including the 
description of the behaviour associated with a group of objects (the template used 
to create an object from the class), the place to go to instantiate an object with a 
given behaviour (the associated factory) or even the group of objects that adhere 
to that behaviour. While the term ‘class’ is avoided, more specific terms such as 
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‘factory’ and ‘template’ are readily used (a factory being an object that will 
instantiate a new object from a given template).

• The style of inheritance is significantly different from that offered in most object-
oriented languages. In particular, distributed object middleware offers interface

inheritance, which is a relationship between interfaces whereby the new interface 
inherits the method signatures of the original interface and can add extra ones. In 
contrast, object-oriented languages such as Smalltalk offer implementation 

inheritance as a relationship between implementations, whereby the new class (in 
this case) inherits the implementation (and hence behaviour) of the original class 
and can add extra behaviour. Implementation inheritance is much more difficult 
to implement, particularly in distributed systems, due to the need to resolve the 
correct executable behaviour at runtime. Consider, for example, the level of 
heterogeneity that may exist in a distributed system, together with the need to 
implement highly scalable solutions.

Wegner, in his seminal paper on object-oriented languages [Wegner 1987], defines 
object orientation as objects + class + inheritance. In distributed systems, clearly the 
interpretation is somewhat different, with both class and inheritance avoided or adapted. 
What remains is a strong focus on encapsulation and data abstraction, together with the 
powerful links to design methodologies as emphasized above.

The added complexities: Because of the added complexities involved, the associated 
distributed object middleware must provide additional functionality, as summarized 
below:

Inter-object communication: A distributed object middleware framework must offer 
one or more mechanisms for objects to communicate in the distributed environment. 
This is normally provided by remote method invocation, although distributed object 
middleware often supplements this with other communications paradigms (for 
example, indirect approaches such as distributed events). CORBA provides an event 
service and an associated notification service, both implemented as services on top 
of the core middleware (see Section 8.3.4).

Lifecycle management: Lifecycle management is concerned with the creation, 
migration and deletion of objects, with each step having to deal with the distributed 
nature of the underlying environment.

Activation and deactivation: In non-distributed implementations, it can often be 
assumed that objects are active all the time while the process that contains them runs. 
In distributed systems, however, this cannot be assumed as the numbers of objects 
may be very large, and hence it would be wasteful of resources to have all objects 
available at any time. In addition, nodes hosting objects may be unavailable for 
periods of time. Activation is the process of making an object active in the distributed 
environment by providing the necessary resources for it to process incoming 
invocations – effectively, locating the object in virtual memory and giving it the 
necessary threads to execute. Deactivation is then the opposite process, rendering an 
object temporarily unable to process invocations.

Persistence: Objects typically have state, and it is important to maintain this state 
across possible cycles of activation and deactivation and indeed system failures. 
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Distributed object middleware must therefore offer persistency management for 
stateful objects.

Additional services: A comprehensive distributed object middleware framework 
must also provide support for the range of distributed system services considered in 
this book, including naming, security and transaction services.

8.3 Case study: CORBA

The Object Management Group (OMG) was formed in 1989 with a view to encouraging 
the adoption of distributed object systems in order to gain the benefits of object-oriented 
programming for software development and to make use of distributed systems, which 
were becoming widespread. To achieve its aims, the OMG advocated the use of open 
systems based on standard object-oriented interfaces. These systems would be built 
from heterogeneous hardware, computer networks, operating systems and programming 
languages.

An important motivation was to allow distributed objects to be implemented in 
any programming language and to be able to communicate with one another. The OMG 
therefore designed an interface language that was independent of any specific 
implementation language. 

They introduced a metaphor, the object request broker (ORB), whose role is to 
help a client to invoke a method on an object (following the RMI style, as introduced in 
Chapter 5). This role involves locating the object, activating the object if necessary and 
then communicating the client’s request to the object, which carries it out and replies.

This section presents a case study of OMG’s Common Object Request Broker 
Architecture (CORBA), building on this object request broker concept. The presentation 
focuses on the CORBA 2 specification (the main innovation in its successor, CORBA 
3, is the introduction of a component model, as discussed in Section 8.4).

 The main components of CORBA’s language-independent RMI framework are 
the following:

• an interface definition language known as IDL, which is described in some detail 
in Section 8.3.1;

• an architecture, which is discussed in Section 8.3.2;

• an external data representation, called CDR, which is described in Section 4.3.1 – 
it also defines specific formats for the messages in a request-reply protocol and 
messages for enquiring about the location of an object, for cancelling requests and 
for reporting errors;

• a standard form for remote object references, which is described in Section 8.3.3.

The CORBA architecture also allows for CORBA services – a set of generic services 
that are useful for distributed applications. These are briefly introduced in Section 8.3.4
(a more complete version of this case study, including detailed consideration of CORBA 
services, can be found on the companion web site [www.cdk5.net]).
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Section 8.3.5 also contains an example of developing a client and server using 
CORBA.

For an interesting collection of articles on CORBA, see the CACM special issue 
[Seetharamanan 1998]. 

8.3.1 CORBA RMI

Programming in a multi-language RMI system such as CORBA RMI requires more of 
the programmer than programming in a single-language RMI system such as Java RMI. 
The following new concepts need to be learned:

• the object model offered by CORBA;

• the interface definition language;

• its mapping onto the implementation language.

Other aspects of CORBA programming are similar to those discussed in Chapter 5. In 
particular, the programmer defines remote interfaces for the remote objects and then 
uses an interface compiler to produce the corresponding proxies and skeletons. But in 
CORBA, proxies are generated in the client language and skeletons in the server 
language. 

CORBA's object model  •  The CORBA object model is similar to the one described in 
Section 5.4.1, but clients are not necessarily objects – a client can be any program that 
sends request messages to remote objects and receives replies. The term CORBA object

is used to refer to remote objects. Thus, a CORBA object implements an IDL interface, 
has a remote object reference and is able to respond to invocations of methods in its IDL 
interface. A CORBA object can be implemented by a language that is not object-
oriented – for example, without the concept of class. Since implementation languages 
will have different notions of class, or even none at all, the class concept does not exist 
in CORBA (see also the discussion in Section 8.2). Therefore classes cannot be defined 
in CORBA IDL, which means that instances of classes cannot be passed as arguments. 
However, data structures of various types and of arbitrary complexity can be passed as 
arguments.

CORBA IDL  •  A CORBA IDL interface specifies a name and a set of methods that 
clients can request. As an initial example, Figure 8.2 shows two interfaces named Shape

(line 3) and ShapeList (line 5), which are IDL versions of the interfaces defined in Figure 
5.16. These are preceded by definitions of two structs, which are used as parameter types 
in defining the methods. Note in particular that GraphicalObject is defined as struct,
whereas it was a class in the Java RMI example. A component whose type is struct has 
a set of fields containing values of various types, like the instance variables of an object, 
but it has no methods.

In more detail, the CORBA IDL provides facilities for defining modules, 
interfaces, types, attributes and method signatures. We can see examples of all of the 
above, apart from modules, in Figures 5.8 and 8.2. CORBA IDL has the same lexical 
rules as C++ but has additional keywords to support distribution, for example, interface,
any, attribute, in, out, inout, readonly and raises. It also allows standard C++ 
preprocessing facilities. See, for example, the typedef for All in Figure 8.3.



Figure 8.2 IDL interfaces Shape and ShapeList

struct Rectangle{ 1

long width; 

long height;

long x;

long y;

};

struct GraphicalObject { 2

string type; 

Rectangle enclosing; 

boolean isFilled;

};

interface Shape { 3

long getVersion();

GraphicalObject getAllState();     // returns state of the GraphicalObject

};

typedef sequence <Shape, 100> All; 4

interface ShapeList { 5

exception FullException{ }; 6

Shape newShape(in GraphicalObject g) raises (FullException); 7

All allShapes();                   // returns sequence of remote object references 8

long getVersion();

};
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The grammar of IDL is a subset of ANSI C++ with additional constructs to 
support method signatures. We give here only a brief overview of IDL. A useful 
overview and many examples are given in Baker [1997] and Henning and Vinoski 
[1999]. The full specification is available on the OMG web site [OMG 2002a]. 

IDL modules: The module construct allows interfaces and other IDL type definitions to 
be grouped in logical units. A module defines a naming scope, which prevents names 
defined within a module from clashing with names defined outside it. For example, the 
definitions of the interfaces Shape and ShapeList could belong to a module called 
Whiteboard, as shown in Figure 8.3.

IDL interfaces: As we have seen, an IDL interface describes the methods that are 
available in CORBA objects that implement that interface. Clients of a CORBA object 
may be developed just from the knowledge of its IDL interface. From a study of our 
examples, readers will see that an interface defines a set of operations and attributes and 
generally depends on a set of types defined with it. For example, the PersonList interface 
in Figure 5.2 defines an attribute and three methods and depends on the type Person.

IDL methods: The general form of a method signature is:

[oneway] <return_type> <method_name> (parameter1,..., parameterL)

[raises (except1,..., exceptN)] [context (name1,..., nameM)];



Figure 8.3 IDL module Whiteboard

module Whiteboard {

struct Rectangle{

...};

struct GraphicalObject {

...};

interface Shape {

...};

typedef sequence <Shape, 100> All;

interface ShapeList {

...};

};
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where the expressions in square brackets are optional. For an example of a method 
signature that contains only the required parts, consider:

void getPerson(in string name, out Person p);

The parameters are labelled as in, out or inout, where the value of an in parameter is 
passed from the client to the invoked CORBA object and the value of an out parameter 
is passed back from the invoked CORBA object to the client. Parameters labelled as 
inout are seldom used, but they indicate that the parameter value may be passed in both 
directions. The return type may be specified as void if no value is to be returned. Figure 
5.8 illustrates a simple example of the use of those keywords. In Figure 8.2, line 7, the 
parameter of newShape is an in parameter to indicate that the argument should be passed 
from client to server in the request message. The return value provides an additional out

parameter – it can be indicated as void if there is no out parameter.
The parameters may be any one of the primitive types, such as long or boolean, or 

one of the constructed types, such as struct or array (more information on IDL primitive 
and constructed types can be found below). Our example shows the definitions of two 
structs in lines 1 and 2. Sequences and arrays are defined in typedefs, as shown in line 
4, which shows a sequence of elements of type Shape of length 100. The semantics of 
parameter passing are as follows:

Passing CORBA objects: Any parameter whose type is specified by the name of an 
IDL interface, such as the return value Shape in line 7, is a reference to a CORBA 
object and the value of a remote object reference is passed. 

Passing CORBA primitive and constructed types: Arguments of primitive and 
constructed types are copied and passed by value. On arrival, a new value is created 
in the recipient’s process. For example, the struct GraphicalObject passed as an 
argument (in line 7) produces a new copy of this struct at the server. 

These two forms of parameter passing are combined in the method allShapes (in line 8), 
whose return type is an array of type Shape – that is, an array of remote object 
references. The return value is a copy of the array in which each of the elements is a 
remote object reference. 



344 CHAPTER 8  DISTRIBUTED OBJECTS AND COMPONENTS

Invocation semantics: Remote invocation in CORBA has at-most-once call semantics as 
the default. However, IDL may specify that the invocation of a particular method has 
maybe semantics by using the oneway keyword. The client does not block on oneway 

requests, which can be used only for methods that do not return results. For an example 
of a oneway request, see the example on callbacks at the end of Section 8.3.5.

Exceptions in CORBA IDL: CORBA IDL allows exceptions to be defined in interfaces and 
thrown by their methods. The optional raises expression indicates user-defined 
exceptions that can be raised to terminate an execution of the method. Consider the 
following example from Figure 8.2:

exception FullException{ };

Shape newShape(in GraphicalObject g) raises (FullException);

The method newShape specifies with the raises expression that it may raise an exception 
called FullException, which is defined within the ShapeList interface. In our example, 
the exception contains no variables. However, exceptions may be defined to contain 
variables, for example:

exception FullException {GraphicalObject g};

When an exception that contains variables is raised, the server may use the variables to 
return information to the client about the context of the exception.

CORBA can also produce system exceptions relating to problems with servers 
(such as their being too busy or unable to activate objects), problems with 
communication and client-side problems. Client programs should handle user-defined 
and system exceptions. The optional context expression is used to supply mappings from 
string names to string values. See Baker [1997] for an explanation of context.

IDL types:  IDL supports 15 primitive types, which include short (16-bit), long (32-bit), 
unsigned short, unsigned long, float (32-bit), double (64-bit), char, boolean (TRUE, 
FALSE), octet (8-bit) and any (which can represent any primitive or constructed type). 
Constants of most of the primitive types and constant strings may be declared using the 
const keyword. IDL provides a special type called Object, whose values are remote 
object references. If a parameter or result is of type Object, then the corresponding 
argument may refer to any CORBA object. 

IDL’s constructed types, all of which are passed by value in arguments and results, 
are described in Figure 8.4. All arrays or sequences used as arguments must be defined 
in typedefs. None of the primitive or constructed data types can contain references. 

CORBA also supports passing non-CORBA objects by value [OMG 2002c]. 
These non-CORBA objects are object-like in the sense that they possess both attributes 
and methods. However, they are purely local objects in that their operations cannot be 
invoked remotely. The pass-by-value facility provides the ability to pass a copy of a non-
CORBA object between client and server.

This is achieved by the addition to IDL of a type called valuetype for representing 
non-CORBA objects. A valuetype is a struct with additional method signatures (like 
those of an interface), and valuetype arguments and results are passed by value. That is, 
the state is passed to the remote site and used to produce a new object at the destination. 

The methods of this new object may be invoked locally, causing its state to 
diverge from the state of the original object. Passing the implementation of the methods 



Figure 8.4 IDL constructed types

Type Examples Use

sequence typedef sequence <Shape, 100> All;

typedef sequence <Shape> All;

Bounded and unbounded sequences 
of Shapes

Defines a type for a variable-length 
sequence of elements of a specified  IDL 
type.  An upper bound on the length may 
be specified.

string string name;

typedef string<8> SmallString;

Unbounded and bounded sequences 
of characters

Defines a sequence of characters, 
terminated by the null character. An 
upper bound on the length may be 
specified.

array typedef octet uniqueId[12];

typedef GraphicalObject GO[10][8];

Defines a type for a multi-dimensional 
fixed-length sequence of elements of a 
specified IDL type.

record struct GraphicalObject {

  string type; 

  Rectangle enclosing; 

  boolean isFilled;

};

Defines a type for a record containing a 
group of related entities. 

enumerated enum Rand 

   (Exp, Number, Name);

The enumerated type in IDL maps a type 
name onto a small set of integer values.

union union Exp switch (Rand) {

  case Exp: string vote;

  case Number: long n;

  case Name: string s;

};

The IDL discriminated union allows one 
of a given set of types to be passed as an 
argument. The header is parameterized 
by an enum, which  specifies which 
member is in use. 
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is not so straightforward, since the client and server may use different languages. 
However, if the client and server are both implemented in Java, the code can be 
downloaded. For a common implementation in C++, the necessary code would need to 
be present at both client and server.

This facility is useful when it is beneficial to place a copy of an object in the client 
process to enable it to receive local invocations. However, it does not get us any nearer 
to passing CORBA objects by value.

Attributes: IDL interfaces can have attributes as well as methods. Attributes are like 
public class fields in Java. Attributes may be defined as readonly where appropriate. The 
attributes are private to CORBA objects, but for each attribute declared, a pair of 
accessor methods is generated automatically by the IDL compiler: one to retrieve the 
value of the attribute and the other to set it. For readonly attributes, only the getter 
method is provided. For example, the PersonList interface defined in Figure 5.2 includes 
the following definition of an attribute:

readonly attribute string listname;
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Inheritance: IDL interfaces may be extended through interface inheritance, as defined in 
Section 8.2 above. For example, if interface B extends interface A, this means that it may 
add new types, constants, exceptions, methods and attributes to those of A. An extended 
interface can redefine types, constants and exceptions but is not allowed to redefine 
methods. A value of an extended type is valid as the value of a parameter or result of the 
parent type. For example, the type B is valid as the value of a parameter or result of the 
type A. In addition, an IDL interface may extend more than one interface. For example, 
interface Z here extends both B and C:

interface A { };

interface B: A{ };

interface C {};

interface Z : B, C {}; 

This means that Z has all of the components of both B and C (apart from those it 
redefines), as well as those it defines as extensions.

When an interface such as Z extends more than one interface, there is a possibility 
that it may inherit a type, constant or exception with the same name from two different 
interfaces. For example, suppose that both B and C define a type called Q; the use of Q
in the Z interface will be ambiguous unless a scoped name such as B::Q or C::Q is given. 
IDL does not permit an interface to inherit methods or attributes with common names 
from two different interfaces. 

All IDL interfaces inherit from the type Object, which implies that all IDL 
interfaces are compatible with the type Object – which includes remote object 
references. This makes it possible to define IDL operations that can takes as an argument 
or return as a result a remote object reference of any type. The bind and resolve

operations in the Naming service are examples. 

IDL type identifiers:  As we will see in section 8.3.2, type identifiers are generated by the 
IDL compiler for each type in an IDL interface. For example, the IDL type for the 
interface Shape (Figure 8.3) might be:

IDL:Whiteboard/Shape:1.0

This example shows that an IDL type name has three parts – the IDL prefix, a type name 
and a version number. Since interface identifiers are used as keys for accessing interface 
definitions in the interface repository (described in Section 8.3.2), programmers must 
ensure that they provide a unique mapping to the interfaces themselves. Programmers 
may use the IDL prefix pragma to prefix an additional string to the type name in order 
to distinguish their own types from those of others. 

IDL pragma directives: These allow additional, non-IDL properties to be specified for 
components in an IDL interface (see Henning and Vinoski [1999]). These properties 
include, for example, specifying that an interface will be used only locally, or supplying 
the value of an interface repository ID. Each pragma is introduced by #pragma and 
specifies its type, for example:

#pragma version Whiteboard 2.3

CORBA language mappings  •  The mapping from the types in IDL to types in a given 
programming language is quite straightforward. For example, in Java the primitive types 
in IDL are mapped to the corresponding primitive types in that language. Structs, enums
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and unions are mapped to Java classes; sequences and arrays in IDL are mapped to 
arrays in Java. An IDL exception is mapped to a Java class that provides instance 
variables for the fields of the exception and constructors. The mappings in C++ are 
similarly straightforward.

However, some difficulties arise with mapping the parameter-passing semantics 
of IDL onto those of Java. In particular, IDL allows methods to return several separate 
values via output parameters, whereas Java can have only a single result. The Holder

classes are provided to overcome this difference, but this requires the programmer to 
make use of them, which is not altogether straightforward. For example, the method 
getPerson in Figure 5.2 is defined in IDL as follows:

void getPerson(in string name, out Person p);

In Java, the equivalent method would be defined as:

void getPerson(String name, PersonHolder p);

and the client would have to provide an instance of PersonHolder as the argument of its 
invocation. The holder class has an instance variable that holds the value of the argument 
for the client to access by RMI when the invocation returns. It also has methods to 
transmit the argument between server and client.

Although C++ implementations of CORBA can handle out and inout parameters 
quite naturally, C++ programmers suffer from a different set of problems with 
parameters, related to storage management. These difficulties arise when object 
references and variable-length entities such as strings or sequences are passed as 
arguments. 

For example, in Orbix [Baker 1997] the ORB keeps reference counts to remote 
objects and proxies and releases them when they are no longer needed. It provides 
programmers with methods for releasing or duplicating them. Whenever a server 
method has finished executing, the out arguments and results are released and the 
programmer must duplicate them if they will still be needed. For example, a C++ servant 
implementing the ShapeList interface will need to duplicate the references returned by 
the method allShapes. Object references passed to clients must be released when they 
are no longer needed. Similar rules apply to variable-length parameters.

In general, programmers using IDL not only have to learn the IDL notation itself 
but also have an understanding of how its parameters are mapped onto the parameters 
of the implementation language.

Asynchronous RMI  •  CORBA supports a form of asynchronous RMI that allows clients 
to make non-blocking invocation requests on CORBA objects [OMG 2004e]. It is 
intended to be implemented in the client. Therefore a server is generally unaware of 
whether it is invoked synchronously or asynchronously. (One exception is the 
Transaction Service, which does need to be aware of the difference.)

Asynchronous RMI adds two new variants to the invocation semantics of RMIs:

• callback, in which a client uses an extra parameter to pass a reference to a callback 
with each invocation so that the server can call back with the results; 

• polling, in which the server returns a valuetype object that can be used to poll or 
wait for the reply.
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The architecture of asynchronous RMI allows an intermediate agent to be deployed to 
make sure that the request is carried out and, if necessary, to store the reply. Thus it is 
appropriate for use in environments where clients may become temporarily 
disconnected – such as, for example, a client using a laptop on a train.

8.3.2 The architecture of CORBA

The CORBA architecture is designed to support the role of an object request broker that 
enables clients to invoke methods in remote objects, where both clients and servers can 
be implemented in a variety of programming languages. The main components of the 
CORBA architecture are illustrated in Figure 8.5.

Figure 8.5 The main components of the CORBA architecture
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This figure should be compared with Figure 5.15, in which case it will be noted 
that the CORBA architecture contains three additional components: the object adapter, 
the implementation repository and the interface repository. 

CORBA provides for both static and dynamic invocations. Static invocations are 
used when the remote interface of the CORBA object is known at compile time, 
enabling client stubs and server skeletons to be used. If the remote interface is not known 
at compile time, dynamic invocation must be used. Most programmers prefer to use 
static invocation because it provides a more natural programming model.

We now discuss the components of the architecture, leaving those concerned with 
dynamic invocation until last.

ORB core   •  The role of the ORB core includes all the functionality of the 
communication module of Figure 5.15. In addition, an ORB core provides an interface 
that includes the following:

• operations enabling it to be started and stopped; 

• operations to convert between remote object references and strings; 

• operations to provide argument lists for requests using dynamic invocation. 

Object adapter  •   The role of an object adapter is to bridge the gap between CORBA 
objects with IDL interfaces and the programming language interfaces of the 
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corresponding servant classes. This role also includes that of the remote reference and 
dispatcher modules in Figure 5.15. An object adapter has the following tasks:

• It creates remote object references for CORBA objects (see Section 8.3.3).

• It dispatches each RMI via a skeleton to the appropriate servant.

• It activates and deactivates servants.

An object adapter gives each CORBA object a unique object name, which forms part of 
its remote object reference. The same name is used each time an object is activated. The 
object name may be specified by the application program or generated by the object 
adapter. Each CORBA object is registered with its object adapter, which keeps a remote 
object table that maps the names of CORBA objects to their servants. 

Each object adapter also has its own name, which forms part of the remote object 
references of all of the CORBA objects it manages. This name may either be specified 
by the application program or generated automatically. 

Portable object adapter  •  The CORBA standard for object adapters is called the 
Portable Object Adapter (POA). It is called portable because it allows applications and 
servants to be run on ORBs produced by different developers [Vinoski 1998]. This is 
achieved by means of the standardization of the skeleton classes and of the interactions 
between the POA and the servants. 

The POA supports CORBA objects with two different sorts of lifetimes: 

• those whose lifetimes are restricted to that of the process in which their servants 
are instantiated; 

• those whose lifetimes can span the instantiations of servants in multiple processes. 

The former have transient object references and the latter have persistent object 
references (see Section 8.3.3). 

The POA allows CORBA objects to be instantiated transparently; and in addition 
it separates the creation of CORBA objects from the creation of th, servants that 
implement those objects. Server applications such as databases with large numbers of 
CORBA objects can create servants on demand, only when the objects are accessed. In 
this case, they may use database keys for the object names, or they may use a single 
servant to support all of these objects.

In addition, it is possible to specify policies to the POA, for example, as to whether 
it should provide a separate thread for each invocation, whether the object references 
should be persistent or transient and whether there should be a separate servant for each 
CORBA object. The default is that a single servant can represent all of the CORBA 
objects for its POA. 

Note that implementations of CORBA provide interfaces to the functionality of 
the POA and the ORB core through pseudo-objects, given this name because they 
cannot be used like regular CORBA objects; for example, they cannot be passed as 
arguments in RMIs. They do, though, have IDL interfaces and are implemented as 
libraries. The POA pseudo-object includes, for example, one method for activating a 
POAmanager and another method, servant_to_reference, for registering a CORBA 
object; the ORB pseudo-object includes the method init, which must be called to 
initialize the ORB, the method resolve_initial_references, which is used to find services 
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such as the Naming service and the root POA, and other methods that enable 
conversions between remote object references and strings.

Skeletons  •  Skeleton classes are generated in the language of the server by an IDL 
compiler. As described in Section 5.4.2, remote method invocations are dispatched via 
the appropriate skeleton to a particular servant, and the skeleton unmarshals the 
arguments in request messages and marshals exceptions and results in reply messages.

Client stubs/proxies  •  These are in the client language. The class of a proxy (for object-
oriented languages) or a set of stub procedures (for procedural languages) is generated 
from an IDL interface by an IDL compiler for the client language. As before, the client 
stubs/proxies marshal the arguments in invocation requests and unmarshal exceptions 
and results in replies. 

Implementation repository  •   An implementation repository is responsible for activating 
registered servers on demand and for locating servers that are currently running. The 
object adapter name is used to refer to servers when registering and activating them. 

An implementation repository stores a mapping from the names of object adapters 
to the pathnames of files containing object implementations. Object implementations 
and object adapter names are generally registered with the implementation repository 
when server programs are installed. When object implementations are activated in 
servers, the hostname and port number of the server are added to the mapping:

Implementation repository entry:

object adapter name pathname of object 
implementation

hostname and port number 
of server

Not all CORBA objects need to be activated on demand. Some objects, for example 
callback objects created by clients, run once and cease to exist when they are no longer 
needed. They do not use the implementation repository.

An implementation repository generally allows extra information to be stored 
about each server, such as access control information as to who is allowed to activate it 
or to invoke its operations. It is possible to replicate information in implementation 
repositories in order to provide availability or fault tolerance.

Interface repository   •  The role of the interface repository is to provide information 
about registered IDL interfaces to clients and servers that require it. For an interface of 
a given type it can supply the names of the methods and, for each method, the names and 
types of the arguments and exceptions. Thus, the interface repository adds a facility for 
reflection to CORBA. Suppose that a client program receives a remote reference to a 
new CORBA object. If the client has no proxy for it, it can ask the interface repository 
about the methods of the object and the types of parameter each of them requires.

When an IDL compiler processes an interface, it assigns a type identifier to each 
IDL type it encounters. For each interface registered with it, the interface repository 
provides a mapping between the type identifier of that interface and the interface itself. 
Thus, the type identifier of an interface is sometimes called the repository ID because it 
may be used as a key to IDL interfaces registered in the interface repository.
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Every CORBA remote object reference includes a slot that contains the type 
identifier of its interface, enabling clients that hold it to enquire its type of the interface 
repository. Those applications that use static (ordinary) invocation with client proxies 
and IDL skeletons do not require an interface repository. Not all ORBs provide an 
interface repository. 

Dynamic invocation interface   •  As suggested in Section 5.5, in some applications it 
may be necessary to construct a client program without knowing all the proxy classes it 
will need in the future. For example, an object browser might need to display 
information about all the CORBA objects available in the various servers in a distributed 
system. It is not feasible for such a program to include proxies for all of these objects, 
particularly as new objects may be added to the system as time passes. CORBA does not 
allow classes for proxies to be downloaded at runtime, as in Java RMI. The dynamic 
invocation interface is CORBA’s alternative.

The dynamic invocation interface allows clients to make dynamic invocations on 
remote CORBA objects. It is used when it is not practical to employ proxies. The client 
can obtain from the interface repository the necessary information about the methods 
available for a given CORBA object. The client may use this information to construct 
an invocation with suitable arguments and send it to the server.

Dynamic skeletons   •  Again, as explained in Section 5.5, it may be necessary to add to 
a server a CORBA object whose interface was unknown when the server was compiled. 
If a server uses dynamic skeletons, then it can accept invocations on the interface of a 
CORBA object for which it has no skeleton. When a dynamic skeleton receives an 
invocation, it inspects the contents of the request to discover its target object, the method 
to be invoked and the arguments. It then invokes the target.

Legacy code  •  The term legacy code refers to existing code that was not designed with 
distributed objects in mind. A piece of legacy code may be made into a CORBA object 
by defining an IDL interface for it and providing an implementation of an appropriate 
object adapter and the necessary skeletons.

8.3.3 CORBA remote object references

CORBA specifies a format for remote object references that is suitable for use whether 
or not the remote object is to be activated by an implementation repository. References 
using this format are called interoperable object references (IORs). The following 
figure is based on Henning [1998], which contains a more detailed account of IORs:

IOR format

IDL interface type ID Protocol and address details Object key

interface repository 
identifier or type

IIOP host domain 
name 

 port number adapter name  object name

Stepping through the various fields:

• The first field of an IOR specifies the type identifier of the IDL interface of the 
CORBA object. Note that if the ORB has an interface repository, this type name 
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is also the interface repository identifier of the IDL interface, which allows the 
IDL definition for the interface to be retrieved at runtime.

• The second field specifies the transport protocol and the details required by that 
particular transport protocol to identify the server. In particular, the Internet Inter-
ORB protocol (IIOP) uses TCP, in which the server address consists of a host 
domain name and a port number [OMG 2004a].

• The third field is used by the ORB to identify a CORBA object. It consists of the 
name of an object adapter in the server and the object name of a CORBA object 
specified by the object adapter.

Transient IORs for CORBA objects last only as long as the process that hosts those 
objects, whereas persistent IORs last between activations of the CORBA objects. A 
transient IOR contains the address details of the server hosting the CORBA object, 
whereas a persistent IOR contains the address details of the implementation repository 
with which it is registered. In both cases, the client ORB sends the request message to 
the server whose address details are given in the IOR. Here is how the IOR is used to 
locate the servant representing the CORBA object in the two cases:

Transient IORs: The server ORB core receives the request message containing the 
object adapter name and object name of the target. It uses the object adapter name to 
locate the object adapter, which uses the object name to locate the servant. 

Persistent IORs: An implementation repository receives the request. It extracts the 
object adapter name from the IOR in the request. Provided that the object adapter 
name is in its table, it attempts if necessary to activate the CORBA object at the host 
address specified in its table. Once the CORBA object has been activated, the 
implementation repository returns its address details to the client ORB, which uses 
them as the destination for RMI request messages, which include the object adapter 
name and the object name. These enable the server ORB core to locate the object 
adapter, which uses the object name to locate the servant, as before.

The second field of an IOR may be repeated so as to specify the host domain name and 
port number of more than one destination, to allow for an object or an implementation 
repository to be replicated at several different locations.

The reply message in the request-reply protocol includes header information that 
enables the above procedure for persistent IORs to be carried out. In particular, it 
includes a status entry that can indicate whether the request should be forwarded to a 
different server, in which case the body of the reply includes an IOR that contains the 
address of the server of the newly activated object.

8.3.4 CORBA services

CORBA includes specifications for services that may be required by distributed objects. 
In particular, the Naming service is an essential addition to any ORB, as we will see in 
our programming example in Section 8.3.5. An index to documentation on all of the 
services can be found at OMG’s web site [www.omg.org]. Many of the CORBA 
services are described in Orfali et al. [1996, 1997]. A summary of key CORBA Services 
is included in Figure 8.6. Further details of such services can be found on the companion 
web site [www.cdk5.net/corba].



Figure 8.6 CORBA Services 

CORBA Service Role Further details

Naming service Supports naming in CORBA, in particular mapping names to 
remote object references within a given naming context (see 
Chapter 9).

[OMG 2004b]

Trading service Whereas the Naming service allows objects to be located by 
name, the Trading service allows them to be located by 
attribute; that is, it is a directory service. The underlying 
database manages a mapping of service types and associated 
attributes onto remote object references.

[OMG 2000a,
Henning and 
Vinoski 1999]

Event service Allows objects of interest to communicate notifications to 
subscribers using ordinary CORBA remote method 
invocations (see Chapter 6 for more on event services 
generally).

[Farley 1998, 
OMG 2004c]

Notification 

service

Extends the event service with added capabilities including 
the ability to define filters expressing events of interest and 
also to define the reliability and ordering properties of the 
underlying event channel.

[OMG 2004d]

Security service Supports a range of security mechanisms including 
authentication, access control, secure communication, 
auditing and nonrepudiation (see Chapter 11).

[Blakely 1999, 
Baker 1997, 
OMG 2002b]

Transaction 

service

Supports the creation of both flat and nested transactions (as 
defined in Chapters 16 and 17).

[OMG 2003]

Concurrency 

control service

Uses locks to apply concurrency control to the access of 
CORBA objects (may be used via the transaction service or as 
an independent service).

[OMG 2000b]

Persistent state 

service

Offers a persistent object store for CORBA, used to save and 
restore the state of CORBA objects (implementations are 
retrieved from the implementation repository).

[OMG 2002d]

Lifecycle service Defines conventions for creating, deleting, copying and 
moving CORBA objects; for example, how to use factories to 
create objects.

[OMG 2002e]
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8.3.5 CORBA client and server example

This section outlines the steps necessary to produce client and server programs that use 
the IDL Shape and ShapeList interfaces shown in Figure 8.2. This is followed by a 
discussion of callbacks in CORBA. We use Java as the client and server languages, but 
the approach is similar for other languages. The interface compiler idlj can be applied to 
the CORBA interfaces to generate the following items:

• The equivalent Java interfaces – two per IDL interface. The name of the first Java 
interface ends in Operations – this interface just defines the operations in the IDL 
interface. The second Java interface has the same name as the IDL interface and 
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implements the operations in the first interface as well as those in an interface 
suitable for a CORBA object. For example, the IDL interface ShapeList results in 
the two Java interfaces ShapeListOperations and ShapeList, as shown in Figure 
8.7

Figure 8.7 Java interfaces generated by idlj from CORBA interface ShapeList

public interface ShapeListOperations {

    Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException;

    Shape[] allShapes();

    int getVersion();

}

public interface ShapeList extends ShapeListOperations, org.omg.CORBA.Object,

org.omg.CORBA.portable.IDLEntity { } 

.

• The server skeletons for each idl interface. The names of skeleton classes end in 
POA – for example, ShapeListPOA. 

• The proxy classes or client stubs, one for each IDL interface. The names of these 
classes end in Stub – for example, _ShapeListStub.

• A Java class to correspond to each of the structs defined with the IDL interfaces. 
In our example, classes Rectangle and GraphicalObject are generated. Each of 
these classes contains a declaration of one instance variable for each field in the 
corresponding struct and a pair of constructors, but no other methods.

• Classes called helpers and holders, one for each of the types defined in the IDL 
interface. A helper class contains the narrow method, which is used to cast down 
from a given object reference to the class to which it belongs, which is lower down 
the class hierarchy. For example, the narrow method in ShapeHelper casts down to 
class Shape. The holder classes deal with out and inout arguments, which cannot be 
mapped directly onto Java. See Exercise 8.9 for an example of the use of holders.

Server program  •  The server program should contain implementations of one or more 
IDL interfaces. For a server written in an object-oriented language such as Java or C++, 
these interfaces are implemented as servant classes. CORBA objects are instances of 
servant classes. 

When a server creates an instance of a servant class, it must register it with the 
POA, which makes the instance into a CORBA object and gives it a remote object 
reference. Unless this is done, the CORBA object will not be able to receive remote 
invocations. Readers who studied Chapter 5 carefully may realize that registering the 
object with the POA causes it to be recorded in the CORBA equivalent of the remote 
object table.

In our example, the server contains implementations of the interfaces Shape and 
ShapeList in the form of two servant classes, together with a server class that contains 
an initialization section (see Section 5.4.2) in its main method:

The servant classes: Each servant class extends the corresponding skeleton class and 
implements the methods of an IDL interface using the method signatures defined in 



Figure 8.8 ShapeListServant class of the Java server program for CORBA interface ShapeList

import org.omg.CORBA.*;              

import org.omg.PortableServer.POA;

class ShapeListServant extends ShapeListPOA {

private POA theRootpoa;       

private Shape theList[];

private int version;                 

 private static int n=0;

public ShapeListServant(POA rootpoa){

theRootpoa = rootpoa;        

// initialize the other instance variables

}

public Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException { 1

version++;                        

Shape s = null;

       ShapeServant shapeRef = new ShapeServant( g, version);

  try {

org.omg.CORBA.Object ref = theRootpoa.servant_to_reference(shapeRef); 2

s = ShapeHelper.narrow(ref);

} catch (Exception e) {}

 if(n >=100) throw new ShapeListPackage.FullException();

theList[n++] = s;

return s;        

}
public  Shape[] allShapes(){ ... }

public int getVersion() { ... }

}
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the equivalent Java interface. The servant class that implements the ShapeList

interface is named ShapeListServant, although any other name could have been 
chosen. Its outline is shown in Figure 8.8. Consider the method newShape in line 1, 
which is a factory method because it creates Shape objects. To make a Shape object 
a CORBA object, it is registered with the POA by means of its servant_to_reference

method, as shown in line 2, which makes use of the reference to the root POA that 
was passed on via the constructor when the servant was created. Complete versions 
of the IDL interface and the client and server classes in this example are available at 
www.cdk5.net/corba.

The server: The main method in the server class ShapeListServer is shown in Figure 
8.9. It first creates and initializes the ORB (line 1), then gets a reference to the root 
POA and activates the POAManager (lines 2 & 3). Then it creates an instance of 
ShapeListServant, which is just a Java object (line 4), and in doing this passes on a 
reference to the root POA. It then makes it into a CORBA object by registering it with
the POA (line 5). After this, it registers the server with the Naming service. It then 
waits for incoming client requests (line 10).



Figure 8.9 Java class ShapeListServer

import org.omg.CosNaming.*;     

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;      

import org.omg.PortableServer.*;

public class ShapeListServer {

public static void main(String args[]) {

    try{

ORB orb = ORB.init(args, null);             1

POA rootpoa =  POAHelper.narrow(orb.resolve_initial_references("RootPOA")); 2

rootpoa.the_POAManager().activate(); 3

ShapeListServant SLSRef = new ShapeListServant(rootpoa);    4

org.omg.CORBA.Object ref = rootpoa.servant_to_reference(SLSRef); 5

ShapeList SLRef = ShapeListHelper.narrow(ref); 

org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");             

 NamingContext ncRef = NamingContextHelper.narrow(objRef); 6

NameComponent nc = new NameComponent("ShapeList", ""); 7

NameComponent path[] = {nc}; 8

ncRef.rebind(path, SLRef);                                            9

orb.run(); 10

    } catch (Exception e) { ... }

}
}
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A server using the Naming service first gets a root naming context using the 
NamingContextHelper (line 6). The naming context defines the scope within which 
a set of names apply (each of the names within a context must be unique). The server 
then makes a NameComponent (line 7), with the NameComponent being an object 
representing a name in CORBA. This has two parts, a name and a kind; the kind field 
is purely descriptive (the field is used by applications and is not interpreted by the 
Naming service). Names can be compound and represented by a path to the object in 
the naming graph. In this example, compound naming is not used; rather, the path 
consists of a single name as defined in line 8. Finally, the server uses the rebind

method of the Naming service (line 9), which registers the name and remote object 
reference pair in the appropriate context. Clients carry out the same steps but use the 
resolve method as shown in Figure 8.10, line 2.

The client program  •  An example client program is shown in Figure 8.10. It creates and 
initializes an ORB (line 1), then contacts the Naming service to get a reference to the 
remote ShapeList object by using its resolve method (line 2). After that it invokes its 
allShapes method (line 3) to obtain a sequence of remote object references to all the 
Shapes currently held at the server. It then invokes the getAllState method (line 4), 
giving as its argument the first remote object reference in the sequence returned; the 
result is supplied as an instance of the GraphicalObject class. 



Figure 8.10 Java client program for CORBA interfaces Shape and ShapeList

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

public class ShapeListClient{

public static void main(String args[]) {

try{

ORB orb = ORB.init(args, null); 1

org.omg.CORBA.Object objRef = 

orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objRef);

NameComponent nc = new NameComponent("ShapeList", "");

NameComponent path [] = { nc };

ShapeList shapeListRef = 

ShapeListHelper.narrow(ncRef.resolve(path)); 2

Shape[] sList = shapeListRef.allShapes(); 3

GraphicalObject g = sList[0].getAllState(); 4

} catch(org.omg.CORBA.SystemException e) {...} 5

}

}
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The getAllState method seems to contradict our earlier statement that objects 
cannot be passed by value in CORBA, because both client and server deal in instances 
of the class GraphicalObject. However, there is no contradiction: the CORBA object 
returns a struct, and clients using a different language might see it differently. For 
example, in the C++ language the client would see it as a struct. Even in Java, the 
generated class GraphicalObject is more like a struct because it has no methods.

Client programs should always catch CORBA SystemExceptions, which report on 
errors due to distribution (see line 5). Client programs should also catch the exceptions 
defined in the IDL interface, such as the FullException thrown by the newShape method. 

This example illustrates the use of the narrow operation: the resolve operation of 
the Naming service returns a value of type Object, and this type is narrowed to suit the 
particular type required – (ShapeList).

Callbacks  •  Callbacks can be implemented in CORBA in a manner similar to the one 
described for Java RMI in Section 5.5.1. For example, the WhiteboardCallback

interface may be defined as follows:

interface WhiteboardCallback {

 oneway void callback(in int version);

};

This interface is implemented as a CORBA object by the client, enabling the server to 
send the client a version number whenever new objects are added. But before the server 
can do this, the client needs to inform the server of the remote object reference of its 
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object. To make this possible, the ShapeList interface requires additional methods such 
as register and deregister, as follows: 

int register(in WhiteboardCallback callback);

void deregister(in int callbackId);

After a client has obtained a reference to the ShapeList object and created an instance of 
WhiteboardCallback, it uses the register method of ShapeList to inform the server that 
it is interested in receiving callbacks. The ShapeList object in the server is responsible 
for keeping a list of interested clients and notifying all of them each time its version 
number increases when a new object is added. The callback method is declared as 
oneway so that the server may use asynchronous calls to avoid delay as it notifies each 
client.

8.4 From objects to components

Distributed object middleware has been heavily deployed in a wide range of 
applications, including the areas featured in Chapter 1: finance and commerce, 
healthcare, education, transport and logistics and so on. The techniques incorporated in 
CORBA and related platforms have proved to be successful in tackling many of the key 
issues associated with distributed programming, especially related to resolving 
heterogeneity and enabling portability and interoperability of distributed systems 
software. The range of services that accompany such platforms also encourage the 
development of software that is secure and reliable.

However, a number of shortcomings have been identified. This has led to the 
emergence of what we shall define to be component-based approaches, as a natural 
evolution from distributed object computing. This section charts this transition, 
discussing the requirements that led to component-based approaches and provides a 
definition of components before examining in more depth the styles of component-
based approaches adopted in distributed systems. This is followed by Section 8.5 which 
presents two contrasting case studies of component technologies, Enterprise JavaBeans 
and Fractal.

Issues with object-oriented middleware  •  As mentioned above, component-based 
approaches emerged to tackle the problems identified with distributed object computing. 
The problems were listed in Section 8.1 and are discussed in more detail below.

Implicit dependencies: A distributed object offers a contract to the outside world in terms 
of the interface (or interfaces) it offers to the distributed environment. The contract 
represents a binding agreement between the provider of the object and users of that 
object in terms of its expected behaviour. It is often assumed that such interfaces provide 
a complete contract for the deploying and use of this object. However, this is not the 
case. The problem arises from the fact that the internal (encapsulated) behaviour of an 
object is hidden. For example, an object may communicate with another object or 
associated distributed system service through a remote method invocation or other 
communication paradigm. If we look back at the CORBA server and client programs 
shown in Figure 8.9 and Figure 8.10, respectively, we see that the server issues a 
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callback to the client, but this is not apparent from the interface defined on the server. 
Also, while both the client and the server communicate with the name service, again this 
is not visible from the external view of that object (as offered by the interfaces).

More generally, a given object can make arbitrary calls to other application-level 
objects or to distributed system services offering naming, persistence, concurrency 
control, transactions, security and so on, and this is not captured in the external view of 
the configuration. Implicit dependencies in the distributed configuration make it 
difficult to ensure the safe composition of a configuration, to replace one object with 
another, and for third-party developers to implement one particular element in a 
distributed configuration.

Requirement: From this, there is a clear requirement to specify not only the 
interfaces offered by an object but also the dependencies that object has on other 
objects in the distributed configuration.

Interaction with the middleware: Despite the goals of transparency, it is clear that in using 
distributed object middleware the programmer is exposed to many relatively low-level 
details associated with the middleware architecture. Again, the client-server example 
shown in Figures 8.9 and 8.10 provides an illustration of this. Despite this being a rather 
simple application, there are many CORBA-related calls that are absolutely essential to 
the operation of the application. These include calls associated with naming (as 
mentioned above), with the POA and to the ORB core. In more complex examples, this 
could include arbitrarily sophisticated code in terms of the creation and management of 
object references, management of object lifecycles, activation and passivation policies, 
management of persistent state and policies for mappings to underlying platform 
resources such as threads. All of this can very quickly become a distraction from the 
main purpose of the code, which is to create a particular application. This is all too 
evident from the example  cited above, where the actual code related to the whiteboard 
application is minimal and interleaved with code related to distributed systems concerns.

Requirement: There is a clear need to simplify the programming of distributed 
applications, to present a clean separation of concerns between code related to 
operation in a middleware framework and code associated with the application, and 
to allow the programmer to focus exclusively on the latter.

Lack of separation of distribution concerns: Programmers using distributed object 
middleware also have to deal explicitly with non-functional concerns related to issues 
such as security, transactions, coordination and replication. In technologies such as 
CORBA and RMI, this is achieved by inserting appropriate calls to the associated 
distributed system services within the objects. This has two repercussions:

• Programmers must have an intimate knowledge of the full details of all the 
associated distributed system services.

• The implementation for a given object will contain application code alongside 
calls to distributed system services and to the underlying middleware interfaces 
(as mentioned above). The resultant tangling of concerns further increases the 
complexity of distributed systems programming.
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Requirement: The separation of concerns alluded to above should extend also to 
dealing with the full range of distributed system services, and the complexities of 
dealing with such services should be hidden wherever possible from the programmer.

No support for deployment: While technologies such as CORBA and Java RMI make it 
possible to develop arbitrary distributed configurations of objects, there is no support for 
the deployment of such configurations. Rather, objects must be deployed manually on 
individual machines. This can become a tiresome and error-prone process, particularly 
with large-scale deployments consisting of many objects spread over a physical 
architecture with a large number of (potentially heterogeneous) nodes. In addition to 
physically placing the objects, objects must also be activated and appropriate bindings 
created to other objects. Because of the lack of support for deployment, developers 
inevitably resort to ad hoc strategies for deployment, which are then not portable to other 
environments.

Requirement: Middleware platforms should provide intrinsic support for 
deployment so that distributed software can be installed and deployed in the same 
way as software for a single machine, with the complexities of deployment hidden 
from the user. 

These four requirements have led to the emergence of component-based approaches to 
distributed systems development, alongside the emergence of component-based 

middleware, including the style of middleware referred to as application servers.
Note that although component-based approaches have only gained importance in 

recent years, their roots can be traced back to earlier projects addressing reconfiguration 
in distributed systems (such as the Conic Project at Imperial College London [Magee 
and Sloman 1989]).

Essence of components  •  For the purposes of this discussion, we adopt the definition of 
components provided by Szyperski in his book on component software [Szyperski 
2002]:

Components: A software component is a unit of composition with contractually 
specified interfaces and explicit context dependencies only.

In this classic definition, the word ‘only’ refers to the fact that any context dependencies 
must be explicit – that is, there are no implicit dependencies present.

Software components are like distributed objects in that they are encapsulated 
units of composition, but a given component specifies both its interfaces provided to the 
outside world and its dependencies on other components in the distributed environment. 
The dependencies are also represented as interfaces. More specifically, a component is 
specified in terms of a contract, which includes:

• a set of provided interfaces – that is, interfaces that the component offers as 
services to other components;

• a set of required interfaces – that is, the dependencies that this component has in 
terms of other components that must be present and connected to this component 
for it to function correctly.

In a given component configuration, every required interface must be bound to a 
provided interface of another component. This is also referred to as a software
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architecture consisting of components, interfaces and connections between interfaces. 
We can see an example of such a configuration in Figure 8.11.

Figure 8.11 An example software architecture

Block module

File service

Directory service

Flat file service

Device module

Required interface

Provided interface

 This example shows the 
architecture of a simple file system providing an interface to other users and in turn 
requiring connection to a directory service component and a flat file service component. 
The figure also shows additional connections to block and device modules, capturing the 
overall architecture of this particular file system. (We will investigate the actual 
architectures of distributed file systems in Chapter 12.)

Interfaces may be of different styles. In particular, many component-based 
approaches offer two styles of interface:

• interfaces supporting remote method invocation, as in CORBA and Java RMI;

• interfaces supporting distributed events (as discussed in Chapter 6).

We will see examples of both styles of interface when we look at Enterprise JavaBeans 
in Section 8.5.1.

Programming in component-based systems is concerned with the development of 
components and their composition. The goal is to support a style of software 
development that parallels hardware development in using off-the-shelf components 
and composing them together to develop more sophisticated services: a move from 
software development to software assembly. This approach therefore supports third-
party development of software components and also makes it easier to adapt system 
configurations at runtime, by replacing one component with another that is a precise 
match in terms of provided and required interfaces.

Note that advocates of component-based approaches place significant emphasis 
on this use of composition and see this as the cleanest approach to constructing complex 
software systems. In particular, they advocate composition over inheritance, viewing 
inheritance as creating additional forms of implicit dependency (this time between 
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classes). This can lead to issues such as the fragile base class problem, where changes 
to a base class may have unforeseen repercussions for other objects further down the 
inheritance hierarchy [Szyperski 2002].

So far, we have addressed the first requirement highlighted above (in terms of 
making all dependencies explicit), but not the next three, which refer to simplifying the 
development and deployment of distributed applications. This further level of support 
will become apparent when we examine how component-based approaches have 
evolved in the distributed systems community.

Components and distributed systems  •  

Figure 8.12 The structure of a container

Lifecycle interface

External (provided)

interfaces

Components

Calls to external
distributed system

services

Interception

Incoming invocations

A range of component-based middleware 
technologies have emerged, including Enterprise JavaBeans (discussed in Section 8.5.1
below) and the CORBA Component Model (CCM) [Wang et al. 2001], an evolution of 
CORBA from an object-based to a component-based platform. Component-based 
middleware builds on the philosophy captured above but also adds significant support 
for distributed systems development and deployment, as discussed below.

Containers: The concept of containers is absolutely central to component-based 
middleware. Containers support a common pattern often encountered in distributed 
applications, which consists of:

• a front-end (perhaps web-based) client; 

• a container holding one or more components that implement the application or 
business logic;

• system services that manage the associated data in persistent storage. 

(This is analogous to the three-tier model described in Section 2.3.2.) 
The tasks of the container are to provide a managed server-side hosting 

environment for components and to provide the necessary separation of concerns 
alluded to above, where components deal with application concerns and the container 
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deals with distributed systems and middleware issues, ensuring that non-functional 
properties are achieved. The overall structure of a container is shown in Figure 8.12.
This shows a number of components encapsulated within a container;  the container 
does not provide direct access to the components but rather intercepts incoming 
invocations and then takes appropriate actions to ensure the desired properties of the 
distributed application are maintained. If we take the case of CORBA, for example, this 
would include:

• managing the interaction with the underlying ORB core and POA functionality 
and hiding this entirely from application developers;

• managing calls to appropriate distributed system services, including security and 
transaction services, to provide the required non-functional properties of the 
application, again transparently to the programmer.

Taken together, this can significantly simplify the development of distributed 
applications, allowing the component developer to focus exclusively on application-
level concerns. For example, with a container approach, all the POA-related calls 
featured in Figures 8.8 and 8.9 would be made by the container and not by the 
component. Similarly, through the interception mechanism, the container can issue a 
potentially complex sequence of calls to appropriate distributed system services to 
implement the required non-functional properties. As an illustration of the latter point, 
consider the implementation of a simple management policy to deal with concurrent 
access to a component. This can be implemented in a manner that is transparent to the 
component by intercepting the incoming invocation at the external interface, acquiring 
a lock associated with the underlying component and then proceeding with the call on 
the underlying operation on the component itself, ensuring the lock is released when the 
invocation is completed (we will talk more about locks in Section 16.4, but for now a 
general understanding will suffice).

Middleware that supports the container pattern and the separation of concerns 
implied by this pattern is known as an application server. This style of distributed 
programming is in widespread use in industry today. A wide range of application servers 
are now available; a summary of the key approaches is presented in Figure 8.13

Figure 8.13 Application servers 

Technology Developed by Further details

WebSphere Application Server IBM [www.ibm.com]

Enterprise JavaBeans SUN [java.sun.com XII]

Spring Framework SpringSource 
(a division of VMware)

[www.springsource.org]

JBoss JBoss Community [www.jboss.org]

CORBA Component Model OMG [Wang et al. 2001]

JOnAS OW2 Consortium [jonas.ow2.org]

GlassFish SUN [glassfish.dev.java.net]

. Section 
8.5.1 examines the Enterprise JavaBeans specification as an example of an application 
server.



364 CHAPTER 8  DISTRIBUTED OBJECTS AND COMPONENTS

Support for deployment: Component-based middleware provides support for the 
deployment of component configurations; releases of software are packaged as software 
architectures (components and their interconnections) together with deployment 

descriptors that fully describe how the configurations should be deployed in a 
distributed environment.

Note that components are deployed into containers, and deployment descriptors 
are interpreted by containers to establish the required policies for the underlying 
middleware and distributed system services. A given container therefore includes a 
number of components that require the same configuration in terms of distributed 
system support.

Deployment descriptors are typically written in XML and include sufficient 
information to ensure that:

• components are correctly connected using appropriate protocols and associated 
middleware support;

• the underlying middleware and platform are configured to provide the right level 
of support to the component configuration (for example, in CORBA, this would 
include configuring the POA);

• the associated distributed system services are set up to provide the right level of 
security, transaction support and so on.

Tools are also provided to interpret the deployment descriptors and ensure the correct 
deployment in a given physical architecture. 

8.5 Case studies: Enterprise JavaBeans and Fractal

The advantage of application servers is that they provide comprehensive support for one 
style of distributed programming – the three-tier approach as explained above – and 
most of the complexities associated with distributed programming are hidden from the 
user. The disadvantages are that the approach is both prescriptive and heavyweight: 
prescriptive in the sense that the approach mandates that particular style of systems 
architecture and heavyweight in that application servers are large and complex software 
systems that inevitably carry an overhead in terms of performance and resource 
requirements. The approach works best on high-end server machines.

To counter this, a more stripped-down and minimal style of component 
programming is also adopted in distributed systems. We refer to this style as lightweight 

component models to distinguish them from the much more heavyweight application 
server architectures. In this section, we present two case studies of component 
technologies: Enterprise JavaBeans, a leading example of the application server 
approach, and Fractal, an example of a lightweight component architecture.

8.5.1 Enterprise JavaBeans

Enterprise JavaBeans (EJB) [java.sun.com XII] is a specification of a server-side, 
managed component architecture and a major element of the Java Platform, Enterprise 
Edition (Java EE), a set of specifications for client-server programming. Other 
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specifications include Java RMI and JMS, as featured elsewhere in this book (in 
Chapters 5 and 6, respectively).

EJB is defined as a server-side component model because it supports the 
development of the classic style of application, where potentially large numbers of 
clients interact with a number of services realized through components or configuration 
of components. The components, which are known as beans in EJB, are intended to 
capture the application (or business) logic, as defined in Chapter 2, with EJB also 
supporting the separation between this application logic and its persistent storage in a 
back-end database. In other words, EJB provides direct support for the three-tier 
architecture introduced in Section 2.3.2.

EJB is managed in the sense that the container pattern introduced above (in 
Section 8.4) is used to provide support for key distributed systems services including 
transactions, security and lifecycle support. Typically, the container injects appropriate 
calls to the associated services to provide the required properties, and the use of a 
transaction manager or security services is completely hidden from the developer of the 
associated beans (container-managed). It is also possible for the bean developer to take 
more control over these operations (bean-managed).

The goal of EJB is to maintain a strong separation of concerns between the various 
roles involved in developing distributed applications. The EJB specification identifies 
the following key roles:

• the bean provider, who develops the application logic of the component(s);

• the application assembler, who assembles beans into application configurations;

• the deployer, who takes a given application assembly and ensures it can be 
correctly deployed in a given operational environment;

• the service provider, who is a specialist in fundamental distributed system 
services such as transaction management and establishes the desired level of 
support in these areas;

• the persistence provider, who is a specialist in mapping persistent data to 
underlying databases and in managing these relationships at runtime;

• the container provider, who builds on the above two roles and is responsible for 
correctly configuring containers with the required level of distributed systems 
support in terms of non-functional properties related to, for example, transactions 
and security as well as the desired support for persistence;

• the system administrator, who is responsible for monitoring a deployment at 
runtime and making any adjustments to ensure its correct operation.

Note that EJB is a heavyweight component architecture in the sense introduced above. 
There is significant software complexity, particularly associated with the management 
of containers. As such, the approach is prescriptive and intended for certain classes of 
application only. As mentioned above, EJB is particularly suited to applications that 
follow the three-tier architecture based on a back-end database accessed via a service 
interface offered by the middle tier (the application logic). For example, this style of 
architecture is common in many eCommerce applications where the database maintains 
information on stock items, prices and availability, while the middle tier offers 
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interfaces to browse the stock and purchase selected items. These are typically large and 
complex systems that require support in terms of distributed system services, and hence 
the overhead associated with container management is fully justified. We will use the 
example of an eShop throughout this section as motivation and to illustrate the use of 
EJB in this setting. Other classes of application will not follow this pattern, and hence 
EJB is an inappropriate technology for such applications. Examples include peer-to-peer 
structures that simply do not follow this tiered model and more lightweight applications 
running on embedded devices where the overhead of EJB cannot be justified.

 In this section, we focus on the features of EJB 3.0 [java.sun.com XII], released 
in 2006. A very large number of implementations of EJB 3.0 are available both 
commercially and from open source consortia. Leading examples include Spring, JBoss, 
JOnAS and GlassFish.

The EJB component model  •  A bean in EJB is a component offering one or more 
business interfaces to potential clients of that component, where interfaces can be either 
remote, requiring the use of appropriate communication middleware (such as RMI or 
JMS), or local, in which case more direct, and hence efficient, bindings are possible. 
Relating back to the terminology introduced in Section 8.4, a business interface is 
equivalent to a provided interface (we will see how EJB supports required interfaces 
below, in the subsection on dependency injection). A given bean is represented by the 
set of remote and local business interfaces together with an associated bean class that 
implements the interfaces. Two main styles of bean are supported in the EJB 3.0 
specification:

Session beans: A session bean is a component implementing a particular task within 
the application logic of a service, for example to make a purchase in our eShop

application. A session bean persists for the duration of a service and maintains a 
running conversation with the client for the duration of the session. Session beans can 
be either stateful, maintaining associated conversational state (such as the current 
status of the eCommerce transaction), or stateless, in which case no state is 
maintained. Stateful session beans imply a conversation with a single client and 
maintain the state of that conversation. In contrast, stateless beans can have many 
concurrent conversations with different clients. The state associated with stateful 
beans may or may not be persistent, as we discuss below.

Message-driven beans: Clients interact with session beans using local or remote 
invocation. We have seen throughout this book that other communication paradigms 
are also important for distributed systems development, including indirect 
communication paradigms. The concept of a message-driven bean was introduced in 
EJB 2.0 to support indirect communication and, in particular, the possibility to 
interact with components using either message queues or topics, building directly on 
the functionality offered by JMS (remember that both queues and topics are first-
class entities in JMS representing alternative intermediaries for messages – see 
Section 6.4.3). In a message-drive bean, a business interface will be realized as a 
listener-style interface reflecting the event-driven nature of the associated bean.

POJOs and annotations  •  The task of programming in EJB has been simplified 
significantly through the use of Enterprise JavaBeanPOJOs (plain old Java objects) 
together with Java Enterprise JavaBean annotations. A bean (that is the implementation 
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of the bean’s business interfaces) is a plain old Java object: it consists of the application 
logic written simply in Java with no other code relating to it being a bean. Annotations 
are then used to ensure the correct behaviour in the EJB context. In other words, a bean 
is a POJO supplemented by annotations.

Annotations were introduced in Java 1.5 as a mechanism for associating metadata 
with packages, classes, methods, parameters and variables. This metadata can then be 
used by frameworks to ensure the right behaviour or interpretation is associated with 
that part of the program. As an example, annotations are used to introduce a bean of a 
particular style. For example, the following are examples of annotated bean definitions 
(representing the main styles of bean in EJB 3.0):

@Stateful public class eShop implements Orders {...}

@Stateless public class CalculatorBean implements Calculator {...}

@MessageDriven public class SharePrice implements MessageListener {...} 

Annotations are also used to indicate whether business interfaces are remote (@Remote)
or local (@Local). The following example introduces the Orders interface as a remote 
interface and the Calculator interface from the CalculatorBean as a local interface only:

@Remote public interface Orders {...}

@Local public interface Calculator {...}

As will become apparent, annotations are used throughout EJB, providing a 
specification of how a program should be interpreted in an EJB context.

In the description that follows we will develop the eShop example as an 
illustration of the extensive use of annotations in programming bean objects (in this cas, 
a session bean).

Enterprise JavaBean containers in EJB  •  EJB adopts a container-based approach as 
described in Section 8.4. Beans are deployed to containers, and the containers provide 
implicit distributed system management using interception. In this way, the container 
provides the necessary policies in areas including transaction management, security, 
persistence and lifecycle management allowing the bean developer to focus exclusively 
on the application logic. Containers must therefore be configured with the necessary 
level of support. In the current version, EJB is preconfigured with common default 
policies and the developer need only take action if these defaults are insufficient 
(referred to as configuration by exception in the specification [java.sun.com XII]).

A significant number of annotations are defined to control the various aspects 
mentioned above. We illustrate their use by focusing on Enterprise JavaBean transaction 
management and encourage the reader to also look at the EJB 3.0 specifications for 
further examples. Transactions will be introduced in Chapters 16 and 17. In outline, 
though, their role is to ensure that all objects (or, in this context, components) managed 
by a single server (or multiple servers in the case of distributed transactions) remain in 
a consistent state in spite of concurrent access from multiple clients and in the event of 
server failure. They achieve this by enabling a sequence of operations to be executed 
atomically, in that the sequence of operations either completes successfully in a manner 
that is free from interference from other concurrent access, or in the presence of a failure 
(such as, a server crash), has no effect at all  Returning to our eShop example, a 
transaction mechanism will ensure, for example, that two concurrent purchases do not 
result in a single item being sold twice and that a server crash does not allow the system 
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to get into an inconsistent state where an item has been paid for but not assigned to the 
purchaser.

The mechanisms to achieve transactions are relatively complex, hence the two 
chapters devoted to this area later in the book. Nevertheless, the overall concept is 
relatively straightforward, and an intuitive understanding will suffice to understand how 
EJB manages transactions. The key thing to bear in mind is that transactions refer to 
sequences of operations, and that the sequences must be clearly identified for the 
transaction management service to do its job. Transactions in EJB apply equally to any 
style of bean, including both session beans and message-driven beans.

The first thing to declare is whether transactions associated with an enterprise 
bean should be bean-managed or container-managed. This is achieved by associating the 
following annotations with the associated class, respectively:

@TransactionManagement (BEAN)

@TransactionManagement (CONTAINER)

Bean-managed transactions are the most straightforward to understand. In this case, the 
bean developer is responsible for explicitly identifying the sequence of operations to be 
included within the transaction. This is achieved by explicitly including two methods 
from the Java interface javax.transaction.UserTransaction – the User.Transaction.begin

and UserTransaction.commit methods –  within the code of the bean. These can be used 
at either the client or the server end of an interaction. The following code fragment 
illustrates the use of this bean-managed approach in the eShop example:

@Stateful

@TransactionManagement (BEAN)

public class eShop implements Orders {

@Resource javax.transaction.UserTransaction ut;

public void MakeOrder (...) {

ut.begin ();

...

ut.commit ();

}

}

To a certain extent, however, this is against the spirit of the container approach as it 
requires the inclusion of transaction-related code within the bean. The alternative, 
container-managed transaction, obviates the need for this explicit code by allowing the 
container to determine when to start and finish a transaction. This is achieved through 
the association of a given demarcation policy with the bean execution. Again, this is 
achieved declaratively by associating an appropriate annotation with a given method 
within the bean class. For example, consider the following code fragment: 

@Stateful public class eShop implements Orders {

...

@TransactionAttribute (REQUIRED)

public void MakeOrder (...) {

...

}

}
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This shows the association of the REQUIRED policy with the MakeOrder method. This 
policy sates that the associated method must be carried out within a transaction. To 
understand this policy, it is necessary to realize that a transaction may be initiated by the 
caller or may be the responsibility of the bean itself. The REQUIRED policy starts a new 
transaction if necessary – that is, if the caller does not provide a transaction context 
indicating the work is already being carried out within a transaction. This and other 
policies are summarized in Figure 8.14

Figure 8.14 Transaction attributes in EJB.

Attribute Policy

REQUIRED If the client has an associated transaction running, execute 
within this transaction; otherwise, start a new transaction.

REQUIRES_NEW Always start a new transaction for this invocation.

SUPPORTS If the client has an associated transaction, execute the 
method within the context of this transaction; if not, the call 
proceeds without any transaction support. 

NOT_SUPPORTED If the client calls the method from within a transaction, then 
this transaction is suspended before calling the method and 
resumed afterwards – that is, the invoked method is excluded 
from the transaction.

MANDATORY The associated method must be called from within a client 
transaction; if not, an exception is thrown.

NEVER The associated methods must not be called from within a 
client  transaction; if this is attempted, an exception is 
thrown.

.
Note that, by default, transactions are container-managed in EJB.

Dependency injection: The example above also illustrates a further important role of 
containers: Enterprise JavaBean dependency injection. Dependency injection is a 
common pattern in programming whereby a third party, in this case a container, is 
responsible for managing and resolving the relationships between a component and its 
dependencies (the required interfaces, in the terminology of Section 8.4). In particular, 
in EJB 3.0, a component refers to a dependency using an annotation and the container is 
responsible for resolving this annotation and ensuring that, at runtime, the associated 
attribute refers to the right object. This is typically implemented by the container using 
reflection.

For example, in the code fragment above, the @Resource annotation indicates a 
dependency of this component on an object implementing the UserTransaction

interface. This simply must exist for the configuration to make sense. Dependency 
injection both flags this dependency and ensures that, when the correct component 
configuration is deployed, the associated attribute ut refers to the right external resource.
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Enterprise JavaBean Interception  •  The Enterprise JavaBeans specification enables the 
programmer to intercept two types of operation on beans in order to alter their default 
behaviour:

• method calls associated with a business interface;

• lifecycle events.

We look at each in turn below.

Interception of methods: This mechanism is used where it is necessary to associate a 
particular action or set of actions with an incoming call on a business interface. This 
applies equally to incoming invocations on a session bean or incoming events on a 
message-driven bean. As we have already seen, interception is used widely in the EJB 
architecture to provide implicit management. This allows the application developer to 
extend the use of interception to more domain-specific concerns not provided by the 
container.

Consider the running example of the eShop. Suppose there is a need within the 
eShop to implement logging of all operations carried out in the system, for example for 
auditing purposes. Interception allows the programmer to introduce such a service 
without changing the application logic contained in the bean. As a second example, the 
interception mechanism could be used to prevent certain customers from making 
purchases in the eShop (for example, if they have defaulted on previous payments).

There are several ways of associating interceptors with a given bean, including 
associating an interception class with a given bean class or individual method (using the 
annotation @Interceptors), or associating an interception method with a given class 
(using the annotation @AroundInvoke). For the sake of simplicity, we focus on the latter 
mechanism and return to our example of an eShop:

@Stateful

public class eShop implements Orders {

public void MakeOrder (...) {

...

}

@AroundInvoke

public Object log(InvocationContext ctx) throws Exception {

System.out.println ("The following method was invoked: " +

ctx.getMethod().getName());

return invocationContext.proceed();

}

}

The annotation @AroundInvoke introduces an interceptor on the eShop bean class. The 
interceptor method must have the following syntax:

Object <methodName>(javax.ejb.InvocationContext)

This method is then called whenever any of the business methods are called on eShop.
The associated parameter adds significantly to the capabilities of interceptors by 
providing both metadata associated with the invocation being intercepted (for example, 
references to the bean, the method invoked and the actual parameters associated with the 
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invocation) and also limited capabilities to intercede – that is, to change the parameters 
before the method is executed. The last line of the method, the call to proceed, returns 
control back to the intercepted method (or to the next interceptor in the chain if more 
than one interceptor is defined).

The main methods associated with the invocation context are summarized in 
Figure 8.15

Figure 8.15 Invocation contexts in EJB

Signature Use

public Object getTarget() Returns the bean instance associated with the 
incoming invocation or event

public Method getMethod() Returns the method being invoked

public Object[] getParameters() Returns the set of parameters associated with the 
intercepted business method

public void setParameters(

Object[] params)

Allows the parameter set to be altered by the 
interceptor, assuming type correctness is 
maintained 

public Object proceed() throws 

Exception

Execution proceeds to next interceptor in the chain 
(if any) or the method that has been intercepted

.

Interception of lifecycle events: A similar mechanism can be used to intercept and react to 
lifecycle events associated with a component. In particular, the EJB specification allows 
a bean developer to associate interceptors with the creation and deletion of components 
using the following annotations, respectively:

@PostConstruct

@PreDestroy

The annotations are associated with given methods in the bean class, with the effect that 
these methods will be called when the associated lifecycle events happen. For example, 
in the code fragment below from the eShop, TidyUp will be called just before the 
component is destroyed:

@Stateful

public class eShop implements Orders {

...

public void MakeOrder (...) { ...}

...

@PreDestroy void TidyUp() { ... }}

}

This annotation is generally used to release any resources currently in use by the eShop

class, for example, open files or sockets associated with the eShop implementation. 
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Similarly, TidyUp could be used to ensure key data associated with the eShop is written 
to the back-end database.

If the bean is stateful, it is also possible to capture activation and passivation 
events using @PostActivate and @PrePassivate. Again, this allows key actions to be 
taken in association with these lifecycle events – for example, ensuring conversational 
state associated with a session is stored in the database before the bean is passivated.

Annotations are used throughout EJB 3.0 to provide a consistent and simple 
programming model whereby component developers construct application logic in 
POJOs and then decorate this, where appropriate, with additional meta-level annotations 
that are interpreted by the container framework.

8.5.2 Fractal

As mentioned above, Fractal is a lightweight component model that brings the benefits 
of component-based programming to the development of distributed systems [Bruneton 
et al. 2006, fractal.ow2.org I]. Fractal provides support for programming with 

interfaces, with the associated benefits in terms of the separation of interface and 
implementation (benefits also provided by distributed objects). Fractal goes further, 
though, and supports the explicit representation of the software architecture of the 
system, avoiding the problem of implicit dependencies discussed in Section 8.4. The 
approach is deliberately minimal, with no support for additional component-related 
functionality such as deployment, the full container pattern or the enriched 
programming model offered by application servers. Fractal is used to construct more 
complex software systems (including middleware systems as discussed below) using the 
component model as the basic building block, resulting in software that has a clear 
component-based architecture and that is configurable and also reconfigurable at 
runtime to match the current operational environment and requirements.

Fractal defines a programming model and, as such, is programming 
language–agnostic. Implementations of this model are available in several different 
languages, including:

• Julia and AOKell (Java-based, with the latter also offering support for aspect-
oriented programming);

• Cecilia and Think (C-based);

• FracNet (.NET-based);

• FracTalk (Smalltalk-based);

• Julio (Python-based).

Julia and Cecilia are treated as the reference implementations of Fractal.
Fractal is supported by the OW2 consortium [www.ow2.org], an open source 

software community for distributed systems middleware that encourages and promotes 
the component-based philosophy for the construction of such software. To date, Fractal 
has been used in the construction of a wide range of middleware platforms including 
Think (a configurable operating system kernel), DREAM (a middleware platform 
supporting various forms of indirect communication), Jasmine (a tool supporting the 
monitoring and management of SOA platforms), GOTM (offering flexible transaction 
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management) and Proactive (a middleware platform for Grid computing). Fractal is also 
the basis of the Grid Component Model (GCM), which has been influential in the 
development of associated ETSI standards [Baude et al. 2009]. Further details of all 
these projects can be found on the OW2 web site [www.ow2.org].

Note that a some other lightweight component models have been developed 
specifically for distributed systems. We feature two – OpenCOM and OSGI – in the box 
on the next page.

The core component model  •  A component in Fractal offers one or more interfaces, 
with two types of interfaces available:

• server interfaces, which support incoming operational invocations (equivalent to 
provided interfaces in the terminology of Section 8.4);

• client interfaces, which support outgoing invocations (equivalent to required 
interfaces).

An interface is an implementation of an interface type, which defines the operations that 
are supported by that interface.

Bindings in Fractal: To enable composition, Fractal supports bindings between 
interfaces. Two styles of binding are supported by the model:

Primitive bindings: The simplest style of binding is a primitive binding, which is a 
direct mapping between one client interface and one server interface within the same 
address space, assuming the types are compatible. Primitive bindings can be 
implemented efficiently in a given language environment, for example through direct 
object references.

Composite bindings: Fractal also supports composite bindings, which are arbitrarily 
complex software architectures (that is consisting of components and bindings) 
implementing communication between a number of interfaces potentially on 
different machines. For example, if you were implementing a CORBA connection in 
Fractal, the binding would be composed of components representing the core 
architectural elements in CORBA, including proxies, the ORB core, object adapters, 
skeletons and servants (mirroring the architecture in Figure 8.5).

Composite bindings are themselves components in Fractal, and this is important 
for two reasons: 

• A system developed using Fractal is fully configurable in terms of the components 
and their interconnections. For example, a configuration can be established 
wherein components interact using a composite binding implementing any of the 
communication paradigms discussed in Chapters 5 and 6 (remote invocation or 
indirect, point-to-point or multiparty, and so on). If a given communication 
paradigm is not already provided, it can be developed in Fractal and then made 
available to future developers as a component.

• Once established, any aspect of the software architecture can be reconfigured at 
runtime, including composite bindings. It is very useful to be able to adapt 
communication structures at runtime, for example to introduce added levels of 
security or to alter the implementation to be more scalable as a system grows in 
size.



OpenCOM   •  OpenCOM [Coulson et al. 2008] is a lightweight component model 
with very similar goals to Fractal. OpenCOM is a minimal and open component 
model that is designed to be domain– and operating environment–independent; that 
is, the component technology is sufficiently flexible to be applied in any context 
including demanding areas such as resource-limited wireless sensor networks. 
OpenCOM is also designed to offer negligible overhead in terms of performance and 
memory requirements, allowing it to be used in situations where performance is 
critical – for example, in router implementations.

The overall architecture of OpenCOM consists of a minimal runtime kernel 
supporting basic component operations including loading and unloading a 
component, and binding components together. This is then enhanced with optional 
reflective and platform extensions, which support the dynamic loading of reflective 
capabilities and also different models underpinning key platform operations, 
including the semantics of loading and binding. The extensions are therefore 
conceptually similar to controllers in Fractal.

OpenCOM has been used in the development of a variety of experimental 
middleware platforms, including ReMMoC [Grace et al. 2003], which offers service 
discovery in highly heterogeneous ubiquitous computing environments (see Chapter 
19), and GridKIT [Grace et al. 2008], an experimental, highly configurable and 
reconfigurable middleware framework for Grid computing, which also features an 
open overlays framework for the construction of arbitrary network virtualizations 
including structured and unstructured peer-to-peer overlays.

OSGi   •  OSGi [www.osgi.org] is a specification of a Java-based middleware 
platform managed by the open standards organization, the OSGi Alliance. A number 
of implementations of this specification exist, including Equinox, Knopflerfish, Felix 
and Concierge. The platform supports the deployment and subsequent lifecycle 
management and adaptation of modular software systems organized as 
communicating bundles (similar to components). Bundles communicate through one 
or more service interfaces with services published in a service registry, thus 
supporting dynamic binding. As the unit of lifecycle management, a given bundle can 
be installed, started, activated, stopped and uninstalled. Bundles can also be 
dynamically deployed at runtime, and existing bundles updated. OSGi was originally 
developed for the programming of service gateways (hence the original name of 
Open Service Gateway i) but is now used in a wide variety of application domains, 
including in the programming of mobile phones, as middleware for Grid computing 
and also as the plug-in architecture in the Eclipse Integrated Development 
Environment (IDE), a popular multi-language framework for software development.

OSGi targets the deployment and management of centralized configurations of 
software, for example residing on a single device or on a server. A distributed 
implementation of OSGI, R-OSGi, has also been developed [Rellermeyer et al.
2007]. This allows software architectures to be distributed at service boundaries 
across arbitrary networked configurations. R-OSGi uses the proxy pattern, first 
introduced in Chapter 2, to obtain transparent distribution at such boundaries.
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We look in more detail at support for reconfiguration in the subsection on membranes 
and controllers below.

Hierarchical composition: The component model is hierarchical in that a component 
consists of a series of subcomponents and associated bindings, where the 
subcomponents may themselves be composite. For example, the ORB core in the above 
example could be further decomposed, given its inherent complexity. Composition is 
supported by a Fractal Architectural Description Language (ADL), which we introduce 
by a simple example showing the creation of a component containing two 
subcomponents that interact in a client-server manner:

<definition name="cs.ClientServer">

<interface name="r" role="server"

signature="java.lang.Runnable" />

<component name="caller" definition="hw.CallerImpl" />

<component name="callee" definition="hw.CalleeImpl" />

<binding client="this.r" server="caller.r" />

<binding client="caller.s" server="callee.s" />

</definition>

Fractal ADL is based on XML. This example shows a component cs.ClientServer with 
two subcomponents, caller and callee; bindings are created between the client interface, 
this.r (that is, the r interface defined on the containing component cs.ClientServer), and 
the associated caller.r interface (the r interface defined on the caller component), and 
between the client interface caller.s and the corresponding server interface callee.s. The 
associated configuration is illustrated in Figure 8.16.

Figure 8.16 An example component configuration in Fractal

Caller Callee

r

r

s s

cs.ClientServer

Fractal also supports sharing, whereby a given component may be shared across 
multiple software architectures. The developers of Fractal argue that this is necessary to 
faithfully represent system architectures including access to underlying resources that 
are fundamentally shared, such as a TCP connection. As a further example, it would be 
possible for the callee (the server component) to be shared across multiple 
configurations.

Membranes and controllers  •  In implementation, a component consists of a membrane,
which defines control capabilities associated with the component through a set of 
controllers, and also the associated content – the subcomponents (and bindings) that 
make up its architecture. Interfaces can be internal to the membrane and hence only 
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visible to components within the content part, or external and hence visible to any other 
components. This structure is illustrated in Figure 8.17.

Figure 8.17 The structure of a Fractal component

Control interfaces

Membrane

Client interface
Server interfaces

Content

Controllers

The membrane concept is crucial to the Fractal approach; a membrane provides a 
configurable control regime for the encapsulated set of components (the content). In 
other words, the set of controllers defines the control capabilities and associated 
semantics for these components. By changing the set of controllers, wealso change the 
capabilities.

Controllers can be used for various purposes:

• One of the key uses of controllers is to implement lifecycle management,
including operations associated with activation and passivation such as suspend,
resume and checkpoint. For example, Fractal supports a LifeCycleController

supporting three methods, startFc, stopFc and getFcState, which implements 
these three functions, respectively. This is crucial in cases where reconfigurations 
of the underlying software architecture are being carried out at runtime. Consider 
the simple example of the client-server configuration above and suppose the 
server is to be replaced dynamically by an enhanced server (perhaps one 
supporting multi-threading for improved throughput). In this case, to avoid 
inconsistencies, it is helpful to suspend the configuration, replace the callee

component with the new one, and then resume the configuration.

• Controllers also offer reflection capabilities (see Chapter 2). In particular, 
introspection capabilities are provided through two interfaces, Component and 
ContentController, which support introspection (dynamic discovery) of the 
interfaces associated with a component and step through the architecture of a 
composite component structure respectively. The full interfaces for the two 
controllers are shown in Figure 8.18. Introspection is again important to support 
dynamic reconfiguration. Returning to our client-server example, it is possible, 
through the above interfaces, to discover the precise architecture of the underlying 
component configuration (in this case, a simple configuration consisting of two 
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components) and also to ensure that a replacement callee component supports 
precisely the same interface as the old one.

• Controllers can be introduced to offer interception capabilities mirroring the 
capability offered in EJB and reported in Section 8.5.1 above. Interception is a 
powerful mechanism with many uses. In the EJB section, the example is provided 
of using interception to implement logging. For example, interception could be 
used in the client-server example to log all calls issued by the caller component in 
a manner that would be completely transparent to both the caller and callee. A 
further use of interception is to implement an access control policy only allowing 
an invocation to proceed if a given principal has rights to access a given resource 
(see Section 11.2.4).

Having studied the relative roles of membranes and controllers, it is now possible to 
relate membranes to containers, as introduced in Section 8.4 and in the EJB case study 
above. Membranes, like containers, provide a place for the deployment of components; 
both techniques also support implicit distributed systems management, containers by 
making implicit calls to distributed systems services and membranes through their 
constituent controllers. Membranes, though, are significantly more flexible:

Figure 8.18 Component and ContentController Interfaces in Fractal

public interface Component { 

Object[] getFcInterfaces (); 

Object getFcInterface (String itfName); 

Type getFcType (); 

}

public interface ContentController { 

Object[] getFcInternalInterfaces (); 

Object getFcInterfaceInterface(String itfName); 

Component[] getFcSubComponents (); 

void addFcSubComponent (Component c); 

void removeFcSubComponent(Component c);

}

• In terms of reflection, support can range from black-box components where 
internal structure is hidden, through approaches where limited introspection 
capabilities are offered (dynamically discovering interfaces), to advanced 
reflection features supporting full introspection and providing inherent support for 
subsequent adaptation of internal structures.

• In terms of supporting non-functional concerns, at one extreme, membranes can 
provide no more than a simple encapsulation of components (if, for example, 
minimal controllers are deployed); at the other extreme, they can support fully 
fledged distributed systems management of components, including support for 
transactions and security as in application servers, but in a completely 
configurable and reconfigurable manner.
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Because of this inherent flexibility, Fractal is referred to as a open component model.
A worked example of a complete Fractal implementation can be found in the 

online tutorial [fractal.ow2.org II]. This example shows how Fractal can be used to 
implement a configurable, minimal HTTP server called Comanche.

8.6 Summary

This chapter has examined the design of complete middleware solutions based around 
distributed objects and components. As will now be apparent, they represent a natural 
evolution in thinking about such programming abstractions. Distributed objects are 
important in terms of bringing the benefits of encapsulation and data abstraction to 
distributed systems, and as well as associated tools and techniques from the field of 
object-oriented design. Distributed objects therefore represent a significant step forward 
from previous approaches based directly on the client-server model. In applying the 
distributed object approach, however, a number of significant limitations have emerged 
and these have been presented and analyzed in this chapter. In summary, it is often too 
complex in practice to use middleware solutions such as CORBA for sophisticated 
distributed applications and services, particularly when dealing with advanced 
properties of such systems such as, for example, dependability (fault tolerance and 
security).

Component technologies overcome these limitations, through their intrinsic 
separation of concerns between application logic and distributed systems management. 
The explicit identification of dependencies also helps in terms of supporting third party 
composition of distributed systems. This chapter examined the EJB 3.0 specification 
which has made further steps forward in terms of simplifying distributed systems 
development through an approach that emphasizes the use of plain old Java objects with 
the complexities managed declaratively through the use of Java annotations. As we saw, 
more lightweight technologies such as Fractal and OpenCOM have also been introduced 
to bring the benefits of component-based programming to the development of 
middleware platforms themselves, with little added overhead in terms of performance.

Component technologies are important for the development of distributed 
applications, but like any technology, they have their strengths and weaknesses. For 
example, the component approach is quite prescriptive and best suited to applications 
that naturally resemble three-tier architectures. To offer a broader perspective on the 
range of available middleware platforms, the next two chapters examine alternative 
approaches based on the adoption of web-based standards (web services) and peer-to-
peer systems.
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EXERCISES

8.1 The Task Bag is an object that stores (key, value) pairs . A key is a string and a value is 
a sequence of bytes. Its interface provides the following remote methods:

pairOut, with two parameters through which the client specifies a key and a value to 
be stored.

pairIn, whose first parameter allows the client to specify the key of a pair to be 
removed from the Task Bag. The value in the pair is supplied to the client via a 
second parameter. If no matching pair is available, an exception is thrown. 

readPair, which is the same as pairIn except that the pair remains in the Task Bag.

Use CORBA IDL to define the interface of the Task Bag. Define an exception that can 
be thrown whenever any one of the operations cannot be carried out. Your exception 
should return an integer indicating the problem number and a string describing the 
problem. The Task Bag interface should define a single attribute giving the number of 
tasks in the bag. page 341

8.2 Define an alternative signature for the methods pairIn and readPair, whose return value 
indicates when no matching pair is available. The return value should be defined as an 
enumerated type whose values can be ok and wait. Discuss the relative merits of the two 
alternative approaches. Which approach would you use to indicate an error such as a key 
that contains illegal characters? page 342

8.3 Which of the methods in the Task Bag interface could have been defined as a oneway

operation? Give a general rule regarding the parameters and exceptions of oneway

methods. In what way does the meaning of the oneway keyword differ from the 
remainder of IDL? page 342

8.4 The IDL union type can be used for a parameter that will need to pass one of a small 
number of types. Use it to define the type of a parameter that is sometimes empty and 
sometimes has the type Value. page 345

8.5 In Figure 8.2 the type All was defined as a sequence of fixed length. Redefine this as an 
array of the same length. Give some recommendations as to the choice between arrays 
and sequences in an IDL interface. page 345

8.6 The Task Bag is intended to be used by cooperating clients, some of which add pairs 
(describing tasks) and others of which remove them (and carry out the tasks described). 
When a client is informed that no matching pair is available, it cannot continue with its 
work until a pair becomes available. Define an appropriate callback interface for use in 
this situation. page 357

8.7 Describe the necessary modifications to the Task Bag interface to allow callbacks to be 
used. page 357

8.8 Which of the parameters of the methods in the Task Bag interface are passed by value 
and which are passed by reference? page 343
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8.9 Use the Java IDL compiler to process the interface you defined in Exercise 8.1. Inspect 
the definition of the signatures for the methods pairIn and readPair in the generated 
Java equivalent of the IDL interface. Look also at the generated definition of the holder 
method for the value argument for the methods pairIn and readPair. Now give an 
example showing how the client will invoke the pairIn method, explaining how it will 
acquire the value returned via the second argument. page 346

8.10 Give an example to show how a Java client will access the attribute giving the number 
of tasks in the Task Bag object. In what respects does an attribute differ from an instance 
variable of an object? page 345

8.11 Explain why the interfaces to remote objects in general and CORBA objects in 
particular do not provide constructors. Explain how CORBA objects can be created in 
the absence of constructors. Chapter 5 and page 355

8.12 Redefine the Task Bag interface from Exercise 8.1 in IDL so that it makes use of a struct

to represent a Pair, which consists of a Key and a Value. Note that there is no need to 
use a typedef to define a struct. page 345

8.13 Discuss the functions of the implementation repository from the point of view of 
scalability and fault tolerance. page 350, page 351

8.14 To what extent may CORBA objects be migrated from one server to another?
page 350, page 351

8.15 Explain carefully how component-based middleware in general and EJB in particular 
can overcome the key limitations of distributed object middleware. Provide examples to 
illustrate your answer. page 358-364

8.16 Discuss whether the EJB architecture would be suitable to implement a massively 
multiplayer online game (an application domain initially introduced in Section 1.2.2). 
What would be the strengths and weaknesses of using EJB in this domain? page 364

8.17 Would Fractal be a more suitable implementation choice for the MMOG domain? 
Justify your answer. page 372

8.18 Explain how the container-based philosophy could be adopted to provide migration 
transparency for distributed components. page 362, 362

8.19 How would you achieve the same effect in Fractal? page 375

8.20 Consider the implementation of Java RMI as a composite binding in Fractal. Discuss the 
extent to which such a binding can be both configurable and reconfigurable.

Chapter 5, page 373
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WEB SERVICES

9.1 Introduction
9.2 Web services
9.3 Service descriptions and IDL for web services
9.4 A directory service for use with web services
9.5 XML security
9.6 Coordination of web services
9.7 Applications of web services
9.8 Summary

A web service provides a service interface enabling clients to interact with servers in a 
more general way than web browsers do. Clients access the operations in the interface of 
a web service by means of requests and replies formatted in XML and usually transmitted 
over HTTP. Web services can be accessed in a more ad hoc manner than CORBA-based 
services, enabling them to be more easily used in Internet-wide applications. 

As with CORBA and Java, the interfaces of web services can be described in an IDL. 
But for web services, additional information, including the encoding and communication 
protocols in use and the service locations must be provided. 

Users require a secure means for creating, storing and modifying documents and 
exchanging them over the Internet. The secure channels of Transport Layer Security (TLS, 
described in Chapter 9) do not provide all of the necessary requirements. XML security is 
intended to bridge this gap. 

Web services are increasingly important in distributed systems: they support 
interoperability across the global Internet, including the key area of business-to-business 
integration and also the emergent ‘mashup’ culture enabling third-party developers to 
creative innovative software on top of the existing service base. Web services also provide 
the underlying middleware for both the Grid and cloud computing.
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9.1 Introduction

The growth of the Web in the last two decades (see Figure 1.6) proves the effectiveness 
of using simple protocols over the Internet as the basis for a large number of wide-area 
services and applications. In particular, the HTTP request-reply protocol (Section 5.2), 
allows general-purpose clients, called browsers, to view web pages and other resources 
with reference to their Uniform Resource Locators (URLs – see the box below for a note 
on URIs, URLs and URNs).

URI, URL and URN   •  The Uniform Resource Identifier (URI) is a general resource 
identifier, whose value may be either a URL or a URN. URLs, which include 
resource location information such as the domain name of the server of a resource 
being named, are well known to all web users. Uniform Resource Names (URNs) are 
location-independent – they rely on a lookup service to map them onto the URLs of 
resources. URNs are discussed in more detail in Section 13.1.

However, the use of a general-purpose browser as client, even with the 
enhancements provided by downloaded application-specific applets, restricts the 
potential scope of applications. In the original client-server model, both client and server 
were functionally specialized. Web services return to this model, in which an 
application-specific client interacts with a service with a functionally specialized 
interface over the Internet. 

Thus, web services provide an infrastructure for maintaining a richer and more 
structured form of interoperability between clients and servers. They provide a basis 
whereby a client program in one organization may interact with a server in another 
organization without human supervision. In particular, web services allow complex 
applications to be developed by providing services that integrate several other services. 
Due to the generality of their interactions, web services cannot be accessed directly by 
browsers.

The provision of web services as an addition to web servers is based on the ability 
to use an HTTP request to cause the execution of a program. Recall that when a URL in 
an HTTP request refers to an executable program, for example, a search, the result is 
produced by that program and returned. In a similar way, web services are an extension 
of the Web and can be provided by web servers. However, their servers need not be web 
servers. The terms ‘web server’ and ‘web services’ should not be confused: a web server 
provides a basic HTTP service, whereas a web service provides a service based on the 
operations defined in its interface.

External data representation and marshalling of messages exchanged between 
clients and web services is done in XML, which is described in Section 4.3.3. To recap, 
XML is a textual representation that, although more bulky than alternative 
representations, has been adopted for its readability and the consequent ease of 
debugging. 

The SOAP protocol (Section 9.2.1) specifies the rules for using XML to package 
messages, for example to support a request-reply protocol. Figure 9.1 summarizes the 
main points about the communication architecture in which web services operate: a web
service is identified by a URI and can be accessed by clients using messages formatted 
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in XML. SOAP is used to encapsulate these messages and transmit them over HTTP or 
another protocol, for example, TCP or SMTP. A web service deploys service 
descriptions to specify the interface and other aspects of the service for the benefit of 
potential clients. 

The top layer of the figure illustrates the following:

•  Web services and applications may be built on top of other web services.   

• Some particular web services provide general functionality required for the 
operation of a large number of other web services. They include directory 
services, security and choreography, all of which are discussed later in this 
chapter.

A web service generally provides a service description, which includes an interface 
definition and other information, such as the server’s URL. This is used as the basis for 
a common understanding between client and server as to the service on offer. Section 
9.3 presents the Web Services Description Language (WSDL).

Another common need in middleware is for a naming or directory service to allow 
clients to find out about services. Clients of web services have similar needs, but 
frequently manage without directory services. For example, they often find out about 
services from information on a web page (say, as the result of a Google search). 
However, some work has been done to provide a directory service that is suitable for use 
within organizations. This is discussed in Section 9.4.

XML security is introduced in Section 9.5. In this approach to security, documents 
or parts of documents may be signed or encrypted. A document that has signed or 
encrypted elements may then be transmitted or stored; later additions may be made and 
these too may be signed or encrypted. 

Web services provide access to resources for remote clients, but they do not 
provide a means for coordinating their operations with one another. Section 9.7.3
discusses choreography of web services, which is intended to allow one web service to 
use predefined patterns of access in using a set of other web services.

The last section of this chapter considers applications of web services, including 
support for service-oriented architecture, the Grid and cloud computing. 
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9.2 Web services

A web service interface generally consists of a collection of operations that can be used 
by a client over the Internet. The operations in a web service may be provided by a 
variety of different resources, for example, programs, objects or databases. A web 
service may be managed by a web server along with web pages; or it may be a totally 
separate service.

The key characteristic of most web services is that they can process XML-
formatted SOAP messages (see Section 9.2.1). An alternative is the REST approach 
which is outlined in the box on page 386. Each web service uses its own service 
description to deal with the service-specific characteristics of the messages it receives. 
For a good account of many more-detailed aspects of web services, see Newcomer 
[2002] or Alonso et al. [2004]. 

Many well-known commercial web servers including Amazon, Yahoo, Google 
and eBay, offer web service interfaces that allow clients to manipulate their web 
resources. As an example, the web service offered by Amazon.com provides operations 
to allow clients to get information about products, to add an item to a shopping cart or 
to check the status of a transaction. The Amazon web services [associates.amazon.com]
may be accessed either by SOAP or by REST. This enables third-party applications to 
build value-added services over those provided by Amazon.com. For example, an 
inventory control and purchasing application might order supplies of various 
commodities as they are needed from Amazon.com and automatically keep track of the 
changing status of each order. Over 50,000 developers  registered to use these web 
services in the first two years after they were introduced [Greenfield and Dornan 2004]. 

Another interesting example of an application that requires the presence of a web 
service is one that implements ‘sniping’ in eBay auctions –  that is, placing a bid during 
the last few seconds before an auction closes. Although humans can perform the same 
actions by direct interaction with the web page, they cannot do it as quickly. 

Combination of web services  •  Providing an interface for a web service allows its 
operations to be combined with those of other services to provide new functionality (see 
also Section 9.7.1). The purchasing application mentioned above might be using other 
suppliers as well. As another example of the benefits of combining several services, 
consider the fact that many people book flights, hotels and rental cars for trips online 
using a variety of different web sites. If each of these web sites were to provide a 
standard web service interface, then a ‘travel agent service’ could use their operations 
to provide a traveller with a combination of these services. This point is illustrated in 
Figure 9.2.

Communication patterns  •  The travel agent service illustrates the possible use of the two 
alternative communication patterns available in web services:

• The processing of a booking takes a long time to complete and could well be 
supported by an asynchronous exchange of documents, starting with the details of 
the dates and destinations, followed by a return of status information from time to 
time and eventually the details of completion. Performance is not an issue here.
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• The checking of credit card details and the interactions with the client should be 
supported by a request-reply protocol.

In general, web services either use a synchronous request-reply pattern of 
communication with their clients or communicate by means of asynchronous messages. 
The latter style of communication may be used even when requests require replies, in 
which case the client sends a request and then later receives the reply asynchronously. 
An event-style pattern can also be used: for example, clients of a directory service may 
register for events of interest and will be notified whenever certain events (such as the 
arrival or departure of a service) occur.

To allow for a variety of patterns of communication, the SOAP protocol 
(discussed in Section 9.2.1) is based on the packaging of single one-way messages. Its 
supports request-reply interactions by using pairs of single messages and specifying 
how to represent operations, their arguments and their results.

More generally, web services are designed to support distributed computing in the 
Internet, in which many different programming languages and paradigms coexist. 
Hence, they are designed to be independent of any particular programming paradigm. 
This is in contrast to, for example, distributed objects which advocate a rather specific 
programming paradigm for developers (further discussion of the distinctions between 
web services and distributed objects can be found in Section 9.2.2).

Loose coupling  •  There is considerable interest in loose coupling in distributed systems, 
particularly in the web services community. The terminology is often ill-defined and 
imprecise, though. In the context of web services, loose coupling refers to minimizing 
the dependencies between services in order to have a flexible underlying architecture 
(reducing the risk that a change in one service will have a knock-on effect on other 
services). This is partially supported by the intended independence of web services with 
the subsequent intention to produce combinations of web services as discussed above. 
Loose coupling is, however, further enhanced by a number of additional features:

• Programming with interfaces (as discussed in Chapter 5) provides one level of 
loose coupling by separating the interface from its implementation (and also 
supports important areas of heterogeneity, – for example in the choice of 
programming language and platform used). Programming with interfaces is 
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adopted by most distributed systems paradigms including distributed objects and 
components (discussed in Chapter 8) as well as web services.

• There is a trend towards simple, generic interfaces in distributed systems and this 
is exemplified by the minimal interface offered by the World Wide Web and the 
REST approach

REST (Representational State Transfer)  •  REST [Fielding 2000] is an approach with 
a very constrained style of operation, in which clients use URLs and the HTTP 
operations GET, PUT, DELETE and POST to manipulate resources that are 
represented in XML. The emphasis is on the manipulation of data resources rather 
than on interfaces. When a new resource is created, it has a new URL by which it can 
be accessed or updated. Clients are supplied with the entire state of a resource instead 
of calling an operation to get some part of it. Fielding argues that in the context of the 
Internet, the proliferation of different service interfaces will not be as useful as a 
simple minimum uniform set of operations. It is interesting to note that, according to 
Greenfield and Dornan [2004], 80% of the requests to the web services at 
Amazon.com are via the REST interface, with the remaining 20% using SOAP.

 in web services. This approach contributes to loose coupling by 
reducing dependency on specific operation names (the Google case study in 
Chapter 21 provides a further example of this style of distributed programming). 
One consequence of this is that data becomes more important than operation, with 
the semantics of interoperation often held in the data (for example, the associated 
XML document definition in web services); this data-oriented view is discussed 
further in the context of mobile systems Section 19.3.2.

• As mentioned above, web services can be used with a variety of communication 
paradigms, including request-reply communication, asynchronous messaging or 
indeed indirect communication paradigms (as featured in Chapter 6). The level of 
coupling is directly affected by this choice. For example, in request-reply 
communication, the two parties are intrinsically coupled; asynchronous 
messaging offers a degree of decoupling (referred to as synchronization 
uncoupling in Chapter 6), whereas indirect communication also offers time and 
space uncoupling.

In conclusion, there are a number of dimensions to loose coupling, and it is important to 
bear this in mind when using the term. Web services intrinsically support a level of loose 
coupling due to the design philosophy adopted and the programming with interfaces 
approach used. This can be further enhanced by additional design choices, including the 
adoption of the REST approach and the use of indirect communication.

Representation of messages   •  Both SOAP and the data it carries are represented in 
XML, a textual self-describing format introduced in Section 4.3.3. Textual 
representations take up more space than binary ones and the parsing that they require 
takes more time to process. In document-style interactions speed is not an issue, but it is 
important in request-reply interactions. However, it is argued that there is an advantage 
in a human-readable format that allows for the easy construction of simple messages and 
for debugging of more complex ones.

Each item in an XML description is annotated with its type and the meaning of 
each type is defined by a schema referenced within the description. This makes the 
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format extensible, enabling any type of data to be transported. There is no limit to the 
potential richness and complexity of documents formatted in XML, but there could be a 
problem in interpreting those that become unduly complex.

Service references  •  In general, each web service has a URI, which clients use to refer 
to it. The URL is the most frequently used form of URI. Because a URL contains the 
domain name of a computer, the service to which it refers will always be accessed at that 
computer. However, the access point of a web service with a URN can depend on 
context and can change from time to time – its current URL can be obtained from a URN 
lookup service. This service reference is known as an endpoint in web services.

Activation of services  •  A web service will be accessed via the computer whose domain 
name is included in its current URL. That computer may run the web service itself or it 
may run it on another server computer. For example, a service with tens of thousands of 
clients may need to be deployed on hundreds of computers. A web service may run 
continuously, or it may be activated on demand. The URL is a persistent reference, 
meaning that it will continue to refer to the service for as long as the server the URL 
points to exists. 

Transparency  •  A major task of many middleware platforms is to protect the 
programmer from the details of data representation and marshalling; another is to make 
remote invocations look like local ones. None of these things are provided as a part of 
an infrastructure or middleware platform for web services. At the simplest level, clients 
and servers may read and write their messages directly in SOAP, using XML. 

But for convenience, the details of SOAP and XML are generally hidden by a 
local API in a programming language such as Java, Perl, Python or C++. In this case, 
the service description may be used as a basis for automatically generating the necessary 
marshalling and unmarshalling procedures. 

Proxies: One way to hide the difference between local and remote calls is by providing 
a client proxy or a set of stub procedures. Section 9.2.3 explains how this is done in Java. 
Client proxies or stubs provide a static form of invocation in which the framework for 
each call and the marshalling procedures are generated before any invocations are made. 

Dynamic invocation: An alternative to proxies is to provide clients with a generic 
operation to be used irrespective of the remote procedure to be called, similar to the 
DoOperation procedure defined in Figure 5.3 (but without the first argument). In this 
case, the client specifies the name of an operation and its arguments and they are 
converted to SOAP and XML on the fly. The asynchronous communication of single 
messages can be achieved in a similar way by providing clients with generic operations 
for sending and receiving messages.

9.2.1 SOAP

SOAP is designed to enable both client-server and asynchronous interaction over the 
Internet. It defines a scheme for using XML to represent the contents of request and 
reply messages (see Figure 5.4) as well as a scheme for the communication of 
documents. Originally SOAP was based only on HTTP, but the current version is 
designed to use a variety of transport protocols including SMTP, TCP or UDP. The 
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description in this section is based on SOAP version 1.2 [www.w3.org IX], which is a 
World Wide Web Consortium (W3C) recommendation. SOAP is an extension of 
Userland’s XML-RPC [Winer 1999]. 

Figure 9.3 SOAP message in an envelope
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body element

header element

body element

The SOAP specification states:

• how XML is to be used to represent the contents of individual messages; 

• how a pair of single messages can be combined to produce a request-reply pattern; 

• the rules as to how the recipients of messages should process the XML elements 
that they contain; 

• how HTTP and SMTP should be used to communicate SOAP messages. It is 
expected that future versions of the specification will define how to use other 
transport protocols, for example, TCP.

This section describes how SOAP uses XML to represent messages and HTTP to 
communicate them. However, the programmer does not normally need to be concerned 
with these details, since SOAP APIs have been implemented in many programming 
languages, including Java, JavaScript, Perl, Python, .NET, C, C++, C# and Visual Basic. 

To support client-server communication, SOAP specifies how to use the HTTP 
POST method for the request message and its response for the reply message. The 
combined use of XML and HTTP provides a standard protocol for client-server 
communication over the Internet. 

It is intended that a SOAP message can be passed via intermediaries on the way 
to the computer that manages the resource to be accessed and that higher-level 
middleware services such as transactions or security may use these intermediaries to 
perform processing. 

SOAP messages   •  A SOAP message is carried in an ‘envelope’. Inside the envelope 
there is an optional header and a body, as shown in Figure 9.3. Message headers can be 
used for establishing the necessary context for a service or for keeping a log or audit of 
operations. An intermediary may interpret and act on the information in the message 
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headers, for example by adding, altering or removing information. The message body 
carries an XML document for a particular web service. 

Figure 9.4 Example of a simple request without headers

m:exchange

env:envelope xmlns:env =namespace URI for SOAP envelopes

m:arg1

env:body

xmlns:m = namespace URI of the service description

Hello

In this figure and the next, each XML element is represented by a shaded box with its 

m:arg2
World

name in italics,at the top left corner,followed by any attributes and its content 

The XML elements envelope, header and body, together with other attributes and 
elements of SOAP messages, are defined as a schema in the SOAP XML namespace. 
The definition of this schema can be found on the W3C web site [www.w3.org IX].
Since they use a textual encoding, XML schemas can be viewed with the ‘view source’ 
option of a browser. Both the header and the body contain inner elements. 

The previous section explained that service descriptions contain information that 
is to be shared by clients and servers. Message senders use these descriptions to generate 
the body and to ensure that it contains the correct contents, and message recipients use 
them to parse and check the validity of the contents. 

A SOAP message may be used either to convey a document or to support client-
server communication:

• A document to be communicated is placed directly inside the body element 
together with a reference to an XML schema containing the service description – 
which defines the names and types used in the document. This sort of SOAP 
message may be sent either synchronously or asynchronously. 

• For client-server communication, the body element contains either a Request or a 
Reply. These two cases are illustrated in Figure 9.4 and Figure 9.5.

Figure 9.4 shows an example of a simple request message without a header. The body

encloses an element containing the name of the procedure to be called and the URI of 
the namespace (the file containing the XML schema) for the relevant service 
description, which is denoted by m. The inner elements of a request message contain the 
arguments of the procedure. This request message provides two strings to be returned in 
the opposite order by the procedure at the server. The XML namespace denoted by env

contains the SOAP definitions for an envelope. Figure 9.5 shows the corresponding 
successful reply message, which contains the two output arguments. Note that the name 
of the procedure has ‘Response’ added to it. If a procedure has a return value, then it may 
be denoted as an element called rpc:result. The reply message uses the same two XML 



Figure 9.5 Example of a reply corresponding to the request in Figure 9.4

env:envelope xmlns:env = namespace URI for SOAP envelope

m:res1

env:body

xmlns:m = namespace URI for the service description

m:res2
World

m:exchangeResponse

Hello
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schemas as the request message, the first defining the SOAP envelope and the second 
the application-specific procedure and argument names. 

Soap faults: If a request fails in some way, the fault descriptions are conveyed in the 
body of a reply message in a fault element. This element contains information about the 
fault, including a code and an associated string, together with application-specific 
details.

SOAP headers  •  Message headers are intended to be used by intermediaries to add to 
the service that deals with the message carried in the corresponding body. However, two 
aspects of this usage are left unclear in the SOAP specification:

1. How the headers will be used by any particular higher middleware service. For 
example, a header might contain:

– a transaction identifier for use with a transaction service; 

– a message identifier for relating messages to one another, for example, for 
implementing reliable delivery; 

– a username, a digital signature or a public key. 

2. How the messages will be routed via a set of intermediaries to the ultimate 
recipient. For example, a message transported by HTTP could be routed via a 
chain of proxy servers, some of which might assume a SOAP role. 

However, the specification does specify the roles and duties of intermediaries. An 
attribute called role can specify whether every intermediary, none of them, or just the 
ultimate recipient must process the element [www.w3.org IX]. The particular actions to 
be carried out are defined by applications – for example, an action might be to log the 
contents of an element.

Transport of SOAP messages   •  A transport protocol is required to send a SOAP 
message to its destination. SOAP messages are independent of the type of transport used 
– their envelopes contain no reference to the destination address. HTTP (or whatever 
protocol is used to transport a SOAP message) is left to specify the destination address. 

Figure 9.6 illustrates how the HTTP POST method is used to transmit a SOAP 
message. The HTTP headers and body are used as follows:



Figure 9.6 Use of HTTP POST Request in SOAP client-server communication
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• The HTTP headers specify the endpoint address (the URI of the ultimate receiver) 
and the action to be carried out. The Action header is intended to optimize 
dispatching by revealing the name of the operation without the need to analyze the 
SOAP message in the body of the HTTP message.

• The HTTP body carries the SOAP message.

As HTTP is a synchronous protocol, it is used to return a reply containing the SOAP
reply, like the one shown in Figure 9.5. Section 5.2 details the status codes and reasons 
returned by HTTP for successful and failing requests. 

If a SOAP Request is just a request for information to be returned, has no 
arguments and does not alter data in the server, then the HTTP GET method can be used 
to carry it out. 

The above point about the Action header and dispatching applies to any service 
that performs a variety of different actions for clients, even if it does not offer operations 
as such. For example, a web service may be able to deal with various types of 
documents, such as purchase orders and enquiries, which are dealt with by different 
software modules. The Action header enables the correct module to be chosen without 
inspecting the SOAP message. This header can be used if the HTTP content type is 
specified as application/soap+xml.

The separation of the definition of the SOAP envelope from the information as to 
how and where it is to be sent makes it possible to use a variety of different underlying 
protocols. For example, the SOAP specification states how SMTP can be used as an 
alternative way of transmitting documents encoded as SOAP messages. 

But this strength is also a weakness. It implies that the developer must be involved 
in the details of the specific transport protocol chosen. In addition, it makes it difficult 
to use different protocols for different parts of the route followed by a particular 
message.

WS-Addressing: Advances in SOAP addressing and routing  •  Two problems were men-
tioned above:

• how to make SOAP independent of the underlying transport used;

• how to specify a route to be followed by a SOAP message via a set of 
intermediaries.
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Early work in this area by Nielsen and Thatte [2001] suggests that the endpoint address 
and the dispatching information should be specified in SOAP headers. This effectively 
separates the message destination from the underlying protocol. They suggested 
specifying the path to be followed by giving the address of the endpoint and the ‘next 
hop’. Each of the intermediaries would update the ‘next hop’ information.

 The work of Box and Curbera [2004] suggests that having intermediaries alter the 
headers could lead to breaches of security. They proposed  WS-Addressing, which 
allows SOAP headers to specify message routing data, with an underlying SOAP 
infrastructure providing the ‘next hop’ information.  The W3C recommendations for 
WS-Addressing are defined in [www.w3.org XXIII]. This form of addressing uses an 
Endpoint Reference – an XML structure containing the destination address, routing 
information and possibly other information about the service. To support long-running 
asynchronous interactions, SOAP headers can supply a return address and message 
identifiers of their own and of related messages.

WS-ReliableMessaging: Reliable communication    •   SOAP’s usual protocol, HTTP, 
runs over TCP, whose failure model is discussed in Section 4.2.4. To summarize: TCP 
does not guarantee to deliver messages in the face of all difficulties, and when it times 
out while waiting for acknowledgements, it declares that the connection is broken, at 
which point the communicating processes are left without any idea as to whether the 
messages they sent recently have been received or not. 

Early work on the provision of reliable communication of SOAP messages with 
guaranteed delivery, no duplicates and guaranteed message ordering led to two 
competing specifications by Ferris and Langworthy [2004] and Evans et al. [2003]. 

More recently, Oasis (a global consortium that works on the development, 
agreement and adoption of e-business and web service standards) has made a 
recommendation called WS-ReliableMessaging [www.oasis.org]. This allows a SOAP 
message to be delivered  at-least-once, at-most-once or exactly-once, with the following 
semantics:

At-least-once: The message is delivered at least once, but an error is reported if it 
cannot be delivered.

At-most-once: The message is delivered at most once, but without any error  report if 
it cannot be delivered.

Exactly-once: The message is delivered exactly once, but an error is reported if it 
cannot be delivered.

Ordering of messages is also provided in combination with any of the above:

In-order: Messages will be delivered to the destination in the order in which they 
were sent by a particular sender.

Note that WS-ReliableMessaging is concerned with the delivery of single messages and 
should not be confused with the RPC call semantics described in Section 5.3.1, which 
refer to the number of times the server executes the remote procedure. The reader is 
referred to Exercise 9.16 for further consideration of the comparison. 

Traversing firewalls  •  Web services are intended to be used by clients in one 
organization to access servers in another organization over the Internet. Most 
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organizations use a firewall to protect the resources on their own networks, and 
transport protocols such as those used by Java RMI or CORBA will not normally be able 
to pass through a firewall. However, firewalls do normally allow both HTTP and SMTP 
messages to pass through them. Therefore it is convenient to use one of these protocols 
for transporting SOAP messages. 

9.2.2 A comparison of web services with the distributed object model

A web service has a service interface that can provide operations for accessing and 
updating the data resources it manages. At a superficial level, the interaction between 
client and server is very similar to RMI, where a client uses a remote object reference to 
invoke an operation in a remote object. For a web service, the client uses a URI to invoke 
an operation in the resource named by that URI. For arguments about the similarities and 
differences between web services and distributed objects, see Birman [2004], Vinoski 
[2002] and Vogels [2003].

We shall attempt to show that there are limits to the above analogy, by making use 
of the shared whiteboard example used in Section 5.5 for Java RMI and Section 8.3 for 
CORBA.

Remote object references versus URIs  •  The URI of a web service can be compared 
with the remote object reference of a single object. However, in the distributed object 
model, objects can create remote objects dynamically and return remote references to 
them. The recipient of these remote references can use them to invoke operations in the 
objects to which they refer. In the shared whiteboard example, an invocation of the 
newShape factory method causes a new instance of Shape to be created and a remote 
reference to it is returned. Nothing like this can be done with web services, which cannot 
create instances of remote objects; effectively, a web service consists of a single remote 
object and therefore both garbage collection and remote object referencing are 
irrelevant.

Web services model  •  The users of the Java web services toolkit (JAX-RPC) 
[java.sun.com VII] must model their web services programs to allow for the fact that 
they are not using transparent Java-to-Java remote invocation but rather are using the 
web services model, in which remote objects cannot be instantiated. This is taken into 
account by JAX-RPC, which does not permit remote object references to be passed as 
arguments or returned as results. 

Figure 9.7 shows a version of the interface given in Figure 5.16 which has been 
modified as follows to become a web services interface:

• In the original (distributed object) version of the program, instances of Shape are 
created in the server and remote references to them are returned by newShape,
whose modified (web service) version is shown in line 1. To avoid the 
instantiation of remote objects and the consequent use of remote object references, 
the Shape interface is removed and its operations (getAllState and getGOVersion 

– originally getVersion) are added to the ShapeList interface.

• In the original (distributed object) version of the program, the server stored a 
vector of Shape. This will be changed to a vector of GraphicalObject. The new 



Figure 9.7 Java web service interface ShapeList

import java.rmi.*;

  public interface ShapeList extends Remote {

int newShape(GraphicalObject g) throws RemoteException;    1

int numberOfShapes() throws RemoteException;

int getVersion() throws RemoteException;

int getGOVersion(int i) throws RemoteException;

GraphicalObject getAllState(int i) throws RemoteException;

}
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(web service) version of the method newShape returns an integer that gives the 
offset of the GraphicalObject in that vector.

This change to the method newShape means that it is no longer a factory method – that 
is, it does not create instances of remote objects. 

Servants  •  In the distributed object model, the server program is generally modelled as 
a collection of servants (potentially remote objects). For example, the shared whiteboard 
application used one servant for the list of shapes and one servant for each graphical 
object created. These servants were created as instances of the servant classes ShapeList

and Shape, respectively. When the server started, its main function created the instance 
of ShapeList, and each time the client called the newShape method the server created an 
instance of Shape.

In contrast, web services do not support servants. Therefore web services 
applications cannot create servants as and when they are needed to handle different 
server resources. To enforce this situation, the implementations of web service 
interfaces must not have either constructors or main methods.

9.2.3 The use of SOAP with Java

The Java API for developing web services and clients over SOAP is called JAX-RPC. 
It is described in the Java web services tutorial [java.sun.com VII]. This API hides all 
the details of SOAP from the programmers of both clients and the services. 

JAX-RPC maps some of the types in the Java language to definitions in XML used 
in both SOAP messages and service descriptions. The permitted types include Integer,
String, Date and Calendar, as well as java.net.uri, which allows URIs to be passed as 
arguments or returned as results. It supports some of the collection types (including 
Vector) as well as the primitive types of the language and arrays. 

In addition, instances of some classes may be passed as arguments and results of 
remote calls, provided that:

• Each of their instance variables is one of the permitted types. 

• They have a public default constructor. 

• They do not implement the Remote interface. 
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In general, as mentioned in the previous section, values of types that are remote 
references (that is, that implement the Remote interface) cannot be passed as arguments 
or returned as results of remote calls. 

Figure 9.8 Java implementation of the ShapeList server

import java.util.Vector;

public class ShapeListImpl implements ShapeList{

private Vector theList = new Vector();

private int version = 0;

private Vector theVersions = new Vector();

public int newShape(GraphicalObject g) throws RemoteException{

version++;

theList.addElement(g);   

theVersions.addElement(new Integer(version));             

return theList.size();

}

public int numberOfShapes(){}

public int getVersion() {}    

public int getGOVersion(int i){}

public GraphicalObject getAllState(int i) {}

}

The service interface  •  The Java interface of a web service must conform to the 
following rules, some of which are illustrated in Figure 9.7:

• It must extend the Remote interface.

• It must not have constant declarations, such as public final static.

• The methods must throw java.rmi.RemoteException or one of its subclasses.

• Method parameters and return types must be permitted JAX-RPC types.

The server program  •  The class that implements the interface ShapeList is shown in 
Figure 9.8. As explained above, there is no main method, and the implementation of the 
ShapeList interface does not have a constructor. In effect, a web service is a single object 
that offers a set of procedures. The source of the programs shown in Figure 9.7, Figure 
9.8 and Figure 9.9 is available on the book’s web site at www.cdk5.net/web.

The service interface and its implementation are compiled as usual. A pair of tools 
called wscompile and wsdeploy can be used to generate the skeleton class and the service 
description (in WSDL, as described in Section 9.3), using information concerning the 
URL of the service, its name and description retrieved from a configuration file written 
in XML. The name of the service (in this case, MyShapeListService) is used to generate 
the name of the class used in the client program to access it – that is, 
MyShapeListService_Impl.
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Servlet container  •  The service implementation is run as a servlet inside a servlet 

container whose role is to load, initialize and execute servlets. The servlet container 
includes a dispatcher and skeletons (see Section 5.4.2). When a request arrives, the 
dispatcher maps it to a particular skeleton, which translates it into Java and passes on the 
request to the appropriate method in the servlet. That method carries out the request and 
produces a reply, which the skeleton translates back into a SOAP reply. The URL of a 
service consists of a concatenation of the URL of the servlet container and the service 
category and name, for example, http://localhost:8080/ShapeList-jaxrpc/ShapeList. 

Tomcat [jakarta.apache.org] is a commonly used servlet container. When Tomcat 
is running, its management interface is available at a URL for viewing with a browser. 
This interface shows the names of servlets that are currently deployed and provides 
operations for managing them and for accessing information about each one, including 
its service description. Once a servlet is deployed in Tomcat, clients may access it and 
the combined effects of their operations will be stored in its instance variables. In our 
example, a list of GraphicalObjects will be built up as each one is added as the result of 
a client request to the newShape operation. If a servlet is stopped by Tomcat’s 
management interface, then the values of the instance variables are reset when it is 
restarted.

Tomcat also provides access to a description of each of the services that it 
contains, to enable programmers to design client programs and to facilitate the 
automatic compilation of the proxies required by client code. The service description is 
human-readable since it is expressed in XML notation (more specifically, in WSDL, as 
introduced in Section 9.3).

Note that it is possible to develop web services without using servlet containers; 
for example, Apache Axis hides this level of detail from the programmer.

The client program  •  The client program may use static proxies, dynamic proxies or a 
dynamic invocation interface. In all cases, the relevant service description may be used 
to obtain any information required by client code. In our example, the service 
description can be obtained from Tomcat. 

Static proxies: Figure 9.9 shows the ShapeList client making a call through a proxy – a 
local object that passes on messages to the remote service. The code for the proxy is 
generated by wscompile from the service description. The class name for the proxy is 
formed by adding ‘_Impl’ to the name of the service – in this case, the proxy class is 
called MyShapeListService_Impl. This name is implementation-specific, since the 
SOAP specification does not give a rule for naming proxy classes. 

At line 1, the createProxy method is called. This method is shown at line 5; line 6 
creates a proxy, using the class MyShapeListService_Impl, which it returns (note that 
proxies are sometimes called stubs, hence the name of the class, Stub). At line 2, the 
URL of the service is supplied to the proxy via the argument given on the command line. 
At line 3, the type of the proxy is narrowed to suit the type of the interface – ShapeList.
Line 4 makes a call to the remote procedure getAllState, asking the service to return the 
object at element 0 in the vector of GraphicalObjects.

Because the proxy is created at compile time, it is called a static proxy. The service 
description of the service from which it was generated will not necessarily have been 
generated from a Java interface, but may have been made by any one of a variety of tools 



Figure 9.9 Java implementation of the ShapeList client

package staticstub;

import javax.xml.rpc.Stub;

public class ShapeListClient {

public static void main(String[] args) { /* pass URL of service */

    try {

Stub proxy = createProxy(); 1

proxy._setProperty 2

    (javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]); 

ShapeList aShapeList = (ShapeList)proxy; 3

GraphicalObject g = aShapeList.getAllState(0); 4

    } catch (Exception ex) { ex.printStackTrace(); }

}   

private static Stub createProxy() { 5

return 

(Stub) (new MyShapeListService_Impl().getShapeListPort()); 6

    }

}
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associated with various different language systems. It may even have been written 
directly in XML.

Dynamic proxies: Instead of using a precompiled static proxy, the client may use a 
dynamic proxy whose class is created at runtime from the information in the service 
description and the interface of the service. This method avoids the need for involving 
an implementation-specific name for the proxy class. 

Dynamic invocation interface: This allows a client to call a remote procedure, even if its 
signature or the name of the service is unknown until runtime. In contrast to the above 
alternatives, the client does not require a proxy. Instead, it has to use a series of 
operations to set the name of the server operation, the return value and each of the 
parameters before making the procedure call.

Implementation of Java SOAP  •  The way the Java API is implemented can be explained 
with reference to Figure 5.15. The following paragraphs explain the roles of the various 
components in a Java/SOAP environment – the interactions between the components are 
the same as before. There is no remote reference module.

Communication modules: The tasks of these modules are carried out by a pair of HTTP 
modules. The HTTP module in the server selects the dispatcher according to the URL 
given in the Action header to the POST request.

Client proxy: A proxy (or stub) method knows the URL of the service and marshals its 
own method name and its arguments, together with a reference to the XML schema for 
the service, into a SOAP request envelope. Unmarshalling the reply consists of 
analyzing a SOAP envelope in order to extract the results, return value or fault report. 
The client’s request method call is sent to the service as an HTTP request.
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Dispatcher and skeleton: As mentioned above, the dispatcher and skeletons live in the 
servlet container. The dispatcher extracts the name of the operation from the Action

header in the HTTP request and invokes the corresponding method in the appropriate 
skeleton, passing the SOAP envelope to it. A skeleton method carries out the following 
tasks: it analyzes the SOAP envelope in the request message and extracts its arguments, 
calls the corresponding method and assembles a SOAP reply envelope containing the 
results.

Errors, faults and correctness in SOAP/XML: Faults may be reported by the HTTP 
module, the dispatcher, the skeleton or the service itself. The service can report its errors 
via a return value or by means of fault parameters specified in the service description. 
The skeleton is responsible for checking that the SOAP envelope contains a request and 
that the XML in which it is written is well-formed. Having established that the XML is 
well-formed, the skeleton will use the XML namespace in the envelope to check that the 
request corresponds to the service on offer and that the operation and its arguments are 
appropriate. If the checking of the request fails at either of these levels, then an error is 
returned to the client. Similar checks are made by the proxy when it receives the SOAP 
envelope containing the result. 

9.2.4 Comparison of web services with CORBA

The main difference between web services and CORBA or other similar middleware is 
the intended usage context. CORBA was designed for use within a single organization 
or between a small number of collaborating organizations. This resulted in certain 
aspects of the design being too centralized for collaborative use by independent 
organizations or for ad hoc use without prior arrangements, as will now be explained.

Naming issues  •  In CORBA, each remote object is referenced by means of a name that 
is managed by an instance of the CORBA Naming Service (see Section 8.3.5). This 
service, like the DNS, provides a mapping from a name to a value to be used as an 
address (an IOR in CORBA). But unlike the DNS, the CORBA Naming Service is 
designed for use within an organization, instead of throughout the Internet. 

In the CORBA Naming Service, each server manages a graph of names with an 
initial naming context and is initially independent of any other servers. Although 
separate organizations may federate their naming services, this is not automatic. Before 
a server can federate with another, it needs to know the other server’s initial naming 
context. Thus, the design of the CORBA Naming Service effectively restricts the 
sharing of CORBA objects to within a small set of organizations that have federated 
their naming services.

Reference issues  •  We now consider whether a CORBA remote object reference, 
which is called an IOR (Section 8.3.3), could be used as an Internet-wide object 
reference in the same way as a URL. Each IOR contains a slot that specifies the type 
identifier of the interface of the object it references. However, this type identifier is 
understood only by the interface repository that stores the definition of the 
corresponding type. This has the implication that the client and server need to use the 
same interface repository, which is not really practical on a global scale.
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In contrast, in the web services model, a service is identified by means of a URL, 
enabling a client anywhere in the Internet to make a request to a service that may belong 
to any organization anywhere else. That is, a web service can be shared by clients 
throughout the Internet. The DNS is the only service required for URL access,  and it is 
designed to work effectively Internet-wide. 

Separation of activation and location  •  The tasks of locating and activating web services 
are neatly separated. In contrast, a CORBA persistent reference refers to a component 
of the platform (the implementation repository) that activates the corresponding object 
on demand on any suitable computer and is also responsible for locating the object once 
it has been activated. 

Ease of use  •  The HTTP and XML infrastructure for web services is well understood 
and convenient to use and is already installed on all of the most commonly used 
operating systems, although the user does require a convenient programming language 
API to SOAP. In contrast, the CORBA platform is a large and complex piece of software 
requiring installation and support. 

Efficiency  •  CORBA has been designed to be efficient: CORBA CDR (Section 4.3.1) is 
binary, whereas XML is textual. A study by Olson and Ogbuji [2002] compared the 
performance of CORBA with that of SOAP and XML-RPC. They found that SOAP 
request messages are 14 times as large as the equivalent ones in CORBA and that a 
SOAP request took, on average, 882 times as long as an equivalent CORBA invocation. 
Although the relative performance is dependent on the language used and also the 
particular middleware implementation employed, this example does provide an 
indication of the potential overhead of XML-based approaches. For many applications, 
however, the message overhead and slower performance of SOAP are not noticed, and 
its effects are made less obvious by the availability of cheap bandwidth, processors, 
memory and disk space. 

The W3C and others have been investigating the possibility of allowing binary 
data to be included in XML elements, so as to increase efficiency. Discussions of this 
topic can be found at [www.w3.org XXI] and [www.w3.org XXII]. Note that XML does 
already provide for both hexadecimal and base64 representations of binary data. The 
base64 representation is used in conjunction with XML encryption (see Section 9.5).
There is a considerable time and space overhead when binary data is converted to base64 
or hexadecimal, so what is really needed is to be able to include a binary representation 
of a preparsed sequence of data items such as, for example, that produced by CORBA 
CDR or gzip. Another approach that is also under investigation is to take a SOAP 
message – together with attachments, some of which may be binary – and use a multipart 
MIME document to transport it.

The strengths of CORBA   •  The availability of CORBA services for transactions, 
concurrency control, security and access control, events and persistent objects makes it 
a desirable choice for use in many applications that are intended for use within an 
organization or a related group of organizations. In general, it is a good choice for those 
applications that require very complex interactions. In addition, the distributed object 
model is an attractive one for the design of complex applications, and it is worth the 
extra learning effort needed to understand the details of the relationship between the 
CORBA object model (Section 8.3) and the particular programming language in use. 
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9.3 Service descriptions and IDL for web services

Figure 9.10 The main elements in a WSDL description

abstract concrete

how where

definitions

types

target namespace

interface bindings servicesmessage

document-style request-reply-style

Interface definitions are needed to allow clients to communicate with services. For web 
services, interface definitions are provided as part of a more general service description,
which specifies two other additional characteristics – how the messages are to be 
communicated (for example, by SOAP over HTTP) and the URI of the service. To cater 
for use in a multi-language environment, service descriptions are written in XML.

A service description forms the basis of an agreement between a client and a 
server as to the service on offer. It assembles all of the facts concerning the service that 
are relevant to its clients. Service descriptions are generally used to generate client stubs 
that automatically implement the correct behaviour for the client. 

The IDL-like component of a service description is more flexible than other IDLs, 
in that a service may be specified either in terms of the types of messages that it will send 
and receive or in terms of the operations it supports, to allow for both document 
exchange and request-reply-style interactions.

A variety of different methods of communication can be used by web services and 
their clients. Therefore the method of communication is left to be decided by the service 
provider and specified in the service description, rather than built into the system, as it 
is  in CORBA, for example.

The ability to specify the URI of a service as a part of the service description 
avoids the need for the separate binder or naming service used by most other 
middleware. It has the implication that the URI cannot be changed once the service 
description has been made available to potential clients, but the URN scheme does cater 
for a change of location by allowing for an indirection at the reference level. 

In contrast, in the binder approach, the client uses a name to look up the service 
reference at runtime, allowing the service references to change over time. This approach 
requires an indirection from a name to a service reference for all services, even though 
many of them may always remain at the same location. 

In the web services context, the Web Services Description Language (WSDL) is 
commonly used for service descriptions. The current version, WSDL 2.0 [www.w3.org 
XI], became a W3C Recommendation in 2007. It defines an XML schema for 
representing the components of a service description, which include, for example, the 
element names definitions, types, message, interface, bindings and services.

WSDL separates the abstract part of a service description from the concrete part, 
as shown in Figure 9.10.
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The abstract part of the description includes a set of definitions of the types used 
by the service – in particular, the types of the values exchanged in messages. The Java 
example from Section 9.2.3, whose Java interface is shown in Figure 9.7, uses the Java 
types int and GraphicalObject. The former (like any basic type) can be translated 
directly into the XML equivalent, but GraphicalObject is defined in Java in terms of the 
types int, String and boolean. GraphicalObject is represented in XML, for common use 
by heterogeneous clients, as a complexType consisting of a sequence of named XML 
types including, for example:

<element name="isFilled" type="boolean"/>

<element name="originx" type="int"/>

The set of names defined within the types section of a WSDL definition is called its 
target namespace. The message section of the abstract part contains a description of the 
set of messages exchanged. For the document style of interaction, these messages will 
be used directly. For the request-reply style of interaction, there are two messages for 
each operation, which are used to describe the operations in the interface section. The 
concrete part specifies how and where the service may be contacted. 

The inherent modularity of a WSDL definition allows its components to be 
combined in different ways –  for example, the same interface may be used with 
different bindings or locations. The types may be defined inside the types element or 
they may be defined in a separate document referenced by a URI from the types element. 
In the latter case, the type definitions can be referenced from several different WSDL 
documents. 

Figure 9.11 WSDL request and reply messages for the newShape operation

message name = "ShapeList_newShape"

type = "ns:GraphicalObject"
part name="GraphicalObject_1"

tns – target namespace xsd – XML schema definitions

message name = "ShapeList_newShapeResponse"

part name="result"
type = "xsd:int"

Messages or operations  •  In web services, all that the client and the server need is to 
have a common idea about the messages to be exchanged. For a service based on the 
exchange of a small number of different types of document, WSDL just describes the 
types of the different messages to be exchanged. When a client sends one of these 
messages to a web service, the latter decides what operation to perform and what type 
of message to send back to the client on the basis of the message type received. In our 
Java example, two messages will be defined for each of the operations in the interface – 
one for the request and one for the reply. For example, Figure 9.11 shows the request 
and reply messages for the newShape operation, which has a single input argument of 
type GraphicalObject and a single output argument of type int.

For services that support several different operations, it is more effective to 
specify the messages exchanged as requests for operations with arguments and their 
corresponding replies, allowing the service to dispatch each request to the appropriate 
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operation. However, in WSDL an operation is a construct for relating request and reply 
messages, in contrast to the definition of an operation in a service interface. 

Interface  •  The collection of operations belonging to a web service are grouped 
together in an XML element named interface (sometimes called portType). Each 
operation must specify the message exchange pattern between client and server. The 
available options include those shown in Figure 9.12

Figure 9.12 Message exchange patterns for WSDL operations

Name    Messages sent by

Client Server Delivery Fault message

In-Out Request Reply May replace Reply

In-Only Request No fault message

Robust In-Only Request Guaranteed May be sent

Out-In Reply Request May replace Reply

Out-Only Request No fault message

Robust Out-Only Request Guaranteed May send fault

. The first one, In-Out, is the 
commonly used request-reply form of client-server communication. In this pattern, the 
reply message may be replaced with a fault message. In-Only is for one-way messages 
with maybe semantics and Out-Only is for oneway messages from server to client; fault 
messages cannot be sent with either. Robust In-Only and Robust Out-Only are the 
corresponding messages with guaranteed delivery; fault messages may be exchanged. 
Out-In is a request-reply interaction initiated by the server. WSDL 2.0 is also extensible 
in that organizations can introduce their own message exchange patterns if the 
predefined ones prove to be inadequate.

Returning to our Java example, each of the operations is defined to have an In-Out

pattern. The operation newShape is shown in Figure 9.13, using the messages defined in 
Figure 9.11

Figure 9.13 WSDL operation newShape

operation name = "newShape"

input message = "tns:ShapeList_newShape"

output message = "tns:ShapeList_newShapeResponse"

pattern = In-Out

tns – target namespace xsd – XML schema definitions

The names operation, pattern, input and output are defined in the XML schema for WSDL 

. This definition, together with definitions of the four other operations will 
be enclosed in an XML interface element. An operation may also specify the fault 
messages that can be sent. 



SECTION 9.3 SERVICE DESCRIPTIONS AND IDL FOR WEB SERVICES 403

If, for example, an operation has two arguments – say, an integer and a string –
there is no need to define a new data type, since these types are defined for XML 
schemas. However, it will be necessary to define a message that has these two parts. This 
message can then be used as an input or output in the definition for the operation. 

Inheritance: Any WSDL interface may extend one or more other WSDL interfaces. This 
is a simple form of inheritance in which an interface supports the operations of any 
interfaces it extends in addition to those it defines itself. Recursive definition of 
interfaces is not allowed; that is, if interface B extends interface A, then interface A 
cannot extend interface B. 

Concrete part  •  The remaining (concrete) part of a WSDL document consists of the 
binding (the choice of protocols) and the service (the choice of endpoint or server 
address). The two are related, since the form of address depends on the type of protocol 
in use. For example, a SOAP endpoint will use a URI whereas a CORBA endpoint will 
use a CORBA-specific object identifier. 

Binding: The binding section in a WSDL document says which message formats and 
form of external data representation are to be used. For example, web services frequently 
use SOAP, HTTP and MIME.  Bindings may be associated with particular operations or 
interfaces, or they may be left free for use by a variety of different web services.

Figure 9.14

Figure 9.14 SOAP binding and service definitions

soap:binding transport = URI 

binding

style= "rpc"

endpoint

service 
name = 

binding =  "tns:ShapeListBinding"

soap:address
 location = service URI

name = "MyShapeListService"

name =  "ShapeListPort"
for schemas for soap/http

The service URI is:

 operation

 soap:operation
soapAction

"ShapeListBinding"
"tns:ShapeList"type = 

name="newShape"
   input

soap:body
   encoding, namespace

soap:body
   encoding, namespace

   output
"http://localhost:8080/ShapeList-jaxrpc/ShapeList"

 shows an example of a binding enclosing a soap:binding that specifies 
the URL of a particular protocol for transmitting SOAP envelopes: the HTTP binding 
for SOAP. Optional attributes of this element may also specify the following:

• the message exchange pattern, which may be either rpc (request-reply) or 
document exchange – the default value is document;
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• the XML schema for the message formats – the default is the SOAP envelope;

• the XML schema for the external data representation – the default is the SOAP 
encoding of XML. 

Figure 9.14 also shows the details of the bindings for one of the operations (newShape),
specifying that both the input and the output message should travel in a soap:body, using 
a particular encoding style, and that the operation should be transmitted as a soapAction.

Service: Each service element in a WSDL document specifies the name of the service 
and one or more endpoints (or ports) where an instance of the service may be contacted. 
Each of the endpoint elements refers to the name of the binding in use and, in the case 
of a SOAP binding, uses a soap:address element to specify the URI of the service 
location.

Documentation  •  Both human- and machine-readable information may be inserted in a 
documentation element at most points within a WSDL document. This information may 
be removed before WSDL is used for automatic processing, for example, by stub 
compilers.

WSDL use  •  Complete WSDL documents can be accessed via their URIs by clients and 
servers, either directly or indirectly via a directory service such as UDDI. Tools are 
available for generating WSDL definitions from information provided via a graphical 
user interface, removing the need for users to be involved in the complex details and 
structure of WSDL. For example, the Web Services Description Language for Java 
Toolkit (WSDL4J) allows the creation, representation and manipulation of WSDL 
documents describing services [wsdl4j.sourceforge.org]. WSDL definitions can also be 
generated from interface definitions written in other languages, such as Java JAX-RPC, 
discussed in Section 9.2.1.

9.4 A directory service for use with web services

There are many ways in which clients can obtain service descriptions. For example, 
anyone providing a higher-level web service like the travel agent service discussed in 
Section 9.1 would almost certainly make a web page advertising the service and 
potential clients would come across the web page when searching for services of that 
type. 

However, any organization that plans to base its applications on web services will 
find it more convenient to use a directory service to make these services available to 
clients. This is the purpose of the Universal Description, Discovery and Integration 
service (UDDI) [Bellwood et al. 2003], which provides both a name service and a 
directory service (see Section 13.3). That is, WSDL service descriptions may be looked 
up by name (a white pages service) or by attribute (a yellow pages service). They may 
also be accessed directly via their URLs, which is convenient for developers who are 
designing client programs that use the service. 

Clients may use the yellow pages approach to look up a particular category of 
service, such as travel agent or bookseller, or they may use the white pages approach to 
look up a service with reference to the organization that provides it. 
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Data structures  •  The data structures supporting UDDI are designed to allow all the 
above styles of access and can incorporate any amount of human-readable information. 
The data is organized in terms of the four structures shown in Figure 9.15

tModel

businessServices

tModel

Figure 9.15  The main UDDI data structures
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, each of which 
can be accessed individually by means of an identifier called a key (apart from tModel,
which can be accessed by a URL):

businessEntity describes the organization that provides these web services, giving its 
name, address and activities, etc.; 

businessServices stores information about a set of instances of a web service, such as 
its name and a description of its purpose (for example, travel agent or bookseller); 

bindingTemplate holds the address of a web service instance and references to 
service descriptions; 

tModel holds service descriptions, usually WSDL documents, stored outside the 
database and accessed by means of URLs. 

Lookup  •  UDDI provides an API for looking up services based on two sets of query
operations: 

• The get_xxx set of operations includes get_BusinessDetail, get_ServiceDetail,
get_bindingDetail and get_tModelDetail; they retrieve an entity corresponding to 
a given key. 

• The find_xxx set of operations includes find_business, find_service, find_binding 

and find_tModel; they retrieve the set of entities that matches a particular set of 
search criteria, providing a summary of names, descriptions, keys and URLs.

Thus clients in possession of a particular key may use a get_xxx operation to retrieve the 
corresponding entity directly, and other clients may use browsing to assist with searches, 
starting with a large set of results and gradually narrowing it down. For example, they 
may start by using the find_business operation in order to get a list containing a summary 
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of information on matching providers. From this summary, the user may use the 
find_service operation to narrow the search by matching the sort of service required. In 
both cases, they will find the key of a suitable bindingTemplate and thereby find the 
URL for retrieving the WSDL document for a suitable service. 

In addition, UDDI provides a notify/subscribe interface by which clients register 
interest in a particular set of entities in a UDDI registry and get change notifications, 
either synchronously or asynchronously.

Publication  •  UDDI provides an interface for publishing and updating information 
about web services. The first time that a data structure (see Figure 9.15) is published at 
a UDDI server, it is given a key in the form of a URI – for example, uddi:cdk5.net:213 

– and that server becomes its owner. 

Registries  •  The UDDI service is based on replicated data stored in registries. A UDDI 
registry consists of one or more UDDI servers, each of which has a copy of the same set 
of data. The data is replicated between the members of a registry. Each of them may 
respond to queries and publish information. Changes to a data structure must be 
submitted to its owner – that is, the server at which it was first published. It is possible 
for an owner to pass on the ownership to another UDDI server in the same registry. 

Replication scheme: The members of a registry propagate copies of data structures to one 
another as follows: a server that has made changes notifies the other servers in the 
registry, which then request the changes. A form of vector timestamp is used to 
determine which of the changes should be propagated and applied. The scheme is simple 
in comparison with other replication schemes that use vector timestamps, such as Gossip 
(Section 18.4.1) or Coda (Section 18.4.3) for two reasons:

1. All changes to a particular data structure are made at the same server.

2. Updates from a particular server are received in sequential order by the other 
members, but no particular ordering is imposed between update operations made 
by different servers.

Interaction between servers: As described above, servers interact with one another to 
carry out the replication scheme. They can also interact in order to transfer ownership of 
data structures. However, the response to a lookup operation is made by a single server 
without any interaction with other servers in the registry, unlike in the X.500 directory 
service (Section 13.5), in which data is partitioned between servers that cooperate with 
one another in finding the relevant server for a particular request. 

9.5 XML security

XML security consists of a set of related W3C designs for signing, key management and 
encryption. It is intended for use in cooperative work over the Internet involving 
documents whose contents may need to be authenticated or encrypted. Typically the 
documents are created, exchanged, stored and then exchanged again, possibly after 
being modified by a series of different users. 
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WS-Security [Kaler 2002] is another approach to security that is concerned with 
applying message integrity, message confidentiality and single message authentication 
to SOAP. 

As an example of a context in which XML security would be useful, consider a 
document containing a patient’s medical records. Different parts of this document are 
used at the local doctor’s surgery and at the various special clinics and hospitals visited 
by the patient. It will be updated by doctors, nurses and consultants making notes on the 
patient’s condition and treatment, by administrators making appointments and by 
pharmacists providing medicine. Different parts of the document will be viewable by the 
different roles mentioned above, and possibly the patient as well. It is essential that 
certain parts of the document, for example, recommendations as to treatment, can be 
attributed to the person that made them and can be guaranteed not to have been altered.

These needs cannot be met by TLS (previously known as SSL and described in 
Section 11.6.3), which is used to create a secure channel for the communication of 
information. It allows the processes at the two ends of the channel to negotiate as to the 
need for authentication or encryption and the keys and algorithms to be used, both when 
a channel is set up and during its lifetime. For example, data about a financial transaction 
might be signed and sent in the clear until sensitive information such as credit card 
details are to be given, at which point encryption will be applied.

To allow for the new type of usage outlined above, the security must be specified 
within the document itself and applied to the document rather than as a property of the 
channel that will convey it from one user to another. 

This is possible in XML or other structured document formats, in which metadata 
can be used. XML tags can be used to define the properties of the data in the document. 
In particular, XML security depends on new tags that can be used to indicate the 
beginning and end of sections of encrypted or signed data and of signatures. Once the 
necessary security has been applied within a document, it may be sent to a variety of 
different users, even by means of multicast. 

Basic requirements  •  XML security should provide at least the same level of protection 
as TLS. That is: 

To be able to encrypt either an entire document or just some selected parts of it: For 
example, consider the information about a financial transaction, which includes a 
person’s name, the type of transaction and details about the credit or debit card being 
used. In one case, just the card details could be hidden, making it possible to identify 
the transaction before decrypting the record. In another case, the type of transaction 
could also be hidden, so that outsiders cannot tell whether it is, for example, an order 
or a payment.

To be able to sign either an entire document or just some selected parts of it: When 
a document is intended to be used for cooperative work by a group of people, there 
can be some critical parts of the document that should be signed in order to guarantee 
that they were made by a particular person or that they have not been changed. But it 
is also useful to be able to have other parts that can be altered during the use of the 
document – these should not be signed.
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Additional basic requirements  •  Further requirements arise from the need to store 
documents, possibly to modify them and then to send them on to a variety of different 
recipients: 

To add to a document that is already signed and to sign the result: For example, Alice 
may sign a document and pass it on to Bob, who ‘witnesses her signature’ by adding 
a remark to that effect and then signing the entire document. (Section 11.1  introduces 
the names, including Alice and Bob, used for the protagonists in security protocols.)

To authorize different users to view different parts of a document: In the case of a 
medical record, a researcher can view some particular section of the medical data, an 
administrator can view personal details and a doctor can view both. 

To add to a document that already contains encrypted sections and to encrypt part of 

the new version, possibly including some of the already encrypted sections.

The flexibility and structuring capabilities of XML notation make it possible do all of 
the above, without any additions to the scheme derived from the basic requirements.

Requirements concerning algorithms  •  XML secure documents are signed and/or en-
crypted well in advance of any consideration as to who will be accessing them. If the 
originator is no longer involved, it is not possible to negotiate the protocols and whether 
to use authentication or encryption. Therefore:

The standard should specify a suite of algorithms to be provided in any implementa-

tion of XML security: At least one encryption and one signature algorithm should be 
mandatory, to enable the widest possible interoperability. Other optional algorithms 
should be provided for use within smaller groups. 

The algorithms used for encryption and authentication of a particular document must 

be selected from that suite and the names of the algorithms in use must be referenced 

within the XML document itself: If the places where the document will be used cannot 
be predicted, then one of the required protocols should be used.

XML security defines the names of elements that can be used to specify the URI of the 
algorithm in use for signing or encryption. So as to be able to select a variety of 
algorithms within the same XML document, an element that specifies an algorithm is 
generally nested inside an element containing signed information or encrypted data.

Requirements for finding keys  •  When a document is created and each time that it is 
updated, appropriate keys must be chosen, without any negotiation with those parties 
that may access the document in the future. This leads to the following requirements: 

To help the users of secure documents with finding the necessary keys: For example, 
a document that includes signed data should contain information as to the public key 
to be used to validate the signature, such as a name that can be used to obtain the key, 
or a certificate. A KeyInfo element can be used for this purpose.

To make it possible for cooperating users to help one another with keys: Provided 
that the KeyInfo element is not cryptographically bound to the signature itself, 
information may be added without breaking the digital signature. For example, 
suppose Alice signs a document and sends it to Bob with a KeyInfo element that 
specifies only the name of the key. When Bob receives the document he retrieves the 
information needed to validate the signature and adds this to the KeyInfo element
when he passes the document to Carol.



SECTION 9.5 XML SECURITY 409

The KeyInfo element  •  XML security specifies a KeyInfo element for indicating the key 
to be used to validate a signature or to decrypt some data. It may contain, for example, 
certificates, the names of keys or key agreement algorithms. Its use is optional: the 
signer may not want to reveal any key information to all of the parties that access the 
document, and in some cases the application using XML security may already have 
access to the keys in use. 

Canonical XML  •  Some applications may make changes that have no effect on the 
actual information content of an XML document. This arises because there are a variety 
of different ways of representing what is logically the same XML document. For 
example, attributes may be in different orders and differing character encodings may be 
used, yet the information content is equivalent. Canonical XML [www.w3.org X] was 
designed for use with digital signatures, which are used to guarantee that the information 
content of a document has not been changed. XML elements are canonicalized before 
being signed and the name of the canonicalization algorithm is stored, together with the 
signature. This enables the same algorithm to be used when the signature is validated. 

The canonical form is a standard serialization of XML as a stream of bytes. It adds 
default attributes and removes superfluous schemas, putting the attributes and schema 
declarations in lexicographic order in each element. It uses a standard form for line 
breaks and the UTF-8 encoding for characters. Any two equivalent XML documents 
have the same canonical form. 

When a subset of an XML document – say an element – is canonicalized, the 
canonical form includes the ancestor context, that is, the namespaces declared and the 
values of the attributes. Thus when canonical XML is used in conjunction with digital 
signatures, the signature of an element will not pass its validation if that element is 
placed in a different context.

A variation of this algorithm, called Exclusive Canonical XML, omits the context 
from the serialization. This could be used if the application intends a particular signed 
element to be used in different contexts. 

Figure 9.16 Algorithms required for XML signature 

Type of algorithm Name of algorithm Required reference

Message digest SHA-1 Required Section 11.4.3
Encoding base64 Required [Freed and Borenstein 1996]
Signature DSA with SHA-1 Required [NIST 1994]
(asymmetric) RSA with SHA-1 Recommended Section 11.3.2
MAC signature
(symmetric) 

HMAC-SHA-1 Required Section 11.4.2 and 
Krawczyk et al. [1997]

Canonicalization Canonical XML Required Page 409 

Use of digital signatures in XML   •  The specification for digital signatures in XML 
[www.w3.org XII] is a W3C recommendation that defines new XML element types to 
hold signatures, the names of algorithms, keys and references to signed information. The 
names provided in this specification are defined in the XML Signature schema which 
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includes the elements Signature, SignatureValue, SignedInfo and KeyInfo. Figure 9.16
shows the algorithms that must be available in an implementation of XML Signature. 

Key management service  •  The specification of the XML key management service 
[www.w3.org XIII] contains protocols for distributing and registering public keys for 
use in XML signatures. Although it does not require any particular public key 
infrastructure, the service is designed to be compatible with existing ones, for example, 
X.509 certificates (Section 11.4.4), SPKI (the Simple Public Key Infrastructure, Section 
11.4.4) or PGP key identifiers (Pretty Good Privacy, Section 11.5.2).

Clients can use this service to find the public key of a person. For example, if Alice 
wants to send an encrypted email to Bob, she can use this service to obtain his public 
key. In another example, Bob receives a signed document from Alice containing her 
X.509 certificate and then asks the key information service to extract the public key.

XML encryption  •  The standard for encryption in XML is defined in a W3C 
recommendation that specifies both the way to represent encrypted data in XML and the 
process for encrypting and decrypting it [www.w3.org XIV]. It introduces an 
EncryptedData element for enclosing portions of encrypted data. 

Figure 9.17

Figure 9.17 Algorithms required for XML encryption (the algorithms in Figure 9.16 are also required)

Type of algorithm Name of algorithm Required reference

Block cipher TRIPLEDES, 
AES-128, AES-256

Required Section 11.3.1

AES-192 Optional
Encoding base64 Required [Freed and Borenstein 1996]
Key transport RSA-v1.5, 

RSA-OAEP
Required Section 11.3.2

[Kaliski and Staddon 1998]
Symmetric key wrap 

(signature by   
shared key)

TRIPLEDES 
KeyWrap, 
AES-128 KeyWrap, 
AES-256KeyWrap

Required [Housley 2002]

AES-192 KeyWrap Optional
Key agreement Diffie-Hellman Optional [Rescorla, 1999]

specifies the encryption algorithms that should be included in an 
implementation of XML encryption. Block cipher algorithms are used for encrypting the 
data, and base64 encoding is used in XML for representing digital signatures and 
encrypted data. Key transport algorithms are public key encryption algorithms designed 
for use in encrypting and decrypting the keys themselves.

Symmetric key wrap algorithms are shared secret key encryption algorithms 
designed for encrypting and decrypting symmetric keys by means of another key. This 
could be used if a key were to be included in a KeyInfo element. 

A key agreement algorithm allows a shared secret key to be derived from a 
computation on a pair of public keys. This algorithm is made available for use by 
applications that need to agree a shared key without any exchange. It is not applied by 
the XML security system itself.
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9.6 Coordination of web services

The SOAP infrastructure supports single request-response interactions between clients 
and web services. However, many useful applications involve several requests that need 
to be done in a particular order. For example, when booking a flight, the price and 
availability information is collected before the reservations are made. When a user 
interacts with web pages by means of a browser, for example, to book a flight or to make 
a bid in an auction, the interface provided by the browser (which is based on the 
information provided by the server) controls the sequence in which the operations are 
performed.

However, if it is a web service that is making reservations, like the travel agent 
service shown in Figure 9.2, that web service needs to work from a description of the 
appropriate way to proceed when interacting with other services are used for, e.g., car 
hire and hotel bookings as well as flight bookings. Figure 9.18

Figure 9.18 Travel agent scenario 

1. The client asks the travel agent service for information about a set of services; for 
example, flights, car hire and hotel bookings.

2. The travel agent service collects prices and availability information and sends it 
to the client, which chooses one of the following on behalf of the user:

(a) Refine the query, possibly involving more providers to get more information, 
then repeat step 2.

(b) Make reservation.

(c) Quit.

3. The client requests a reservation and the travel agent service checks availability. 

4. Either all are available; 

or for services that are not available;

either alternatives are offered to the client, which goes back to step 3; 

or the client goes back to step 1.

5. Take deposit.

6. Give the client a reservation number as a confirmation.

7. During the period until the final payment, the client may modify or cancel 
reservations.

 shows an example of such 
a description. 

This example illustrates the need for web services as clients to be provided with a 
description of a particular protocol to follow when interacting with other web services. 
But there is also the issue of maintaining consistency in the server data when it is 
receiving and responding to requests from multiple clients. Chapters 16 and 17 discuss 
transactions, illustrating the issues by means of a series of banking transactions. As a 
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simple example, in a transfer of money between two bank accounts, consistency requires 
that both the deposit in one account and the withdrawal from the other must be 
performed. Chapter 17 presents the two-phase commit protocol that is used by 
cooperating servers to ensure consistency of transactions. 

In some cases, atomic transactions suit the requirements of applications using web 
services. However, activities such as those of the travel agent take a long time to 
complete, and it would be impractical to use a two-phase commit protocol to carry them 
out because it involves keeping resources locked for long periods of time. An alternative 
is to use a more relaxed protocol in which each participant makes changes to persistent 
state as they occur. In the case of failure, an application-level protocol is used to undo 
these actions.

In conventional middleware, the infrastructure provides a simple request-reply 
protocol, leaving other services such as transactions, persistency and security to be 
implemented as separate higher-level services that can be used when they are needed. 
The same is true for web services, where the W3C and others have been putting in effort 
towards the definition of higher-level services.

Work has been done on a general model for coordination of web services, which 
is similar to the distributed transaction model described in Section 17.2 in that it has 
coordinator and participant roles that are able to act out particular protocols, for 
example, to carry out a distributed transaction. This work, which is called WS-
Coordination, is described by Langworthy [2004]. The same group has also shown how 
transactions may be carried out within this model. For a comprehensive study of web 
services coordination protocols, see Alonso et al. [2004]. 

In the remainder of this section, we outline the ideas behind web service 
choreography. Consider the fact that it would be possible to describe all of the possible 
valid alternative paths through the set of interactions between pairs of web services 
working together in a joint task such as the travel agent scenario. If such a description 
were available, it could be used as an aid to the coordination of joint tasks. It could also 
be used as a specification to be followed by new instances of a service, such as a new 
flight booking service wishing to join a collaboration. 

The W3C uses the term choreography to refer to a language based on WSDL for 
defining coordination. For example, the language might specify constraints on the order 
and the conditions in which messages are exchanged by participants. A choreography is 
intended to provide a global description of a set of interactions, showing the behaviour 
of each member of a set of participants, with a view to enhancing interoperability.

Requirements for choreography  •  Choreography is intended to support interactions 
between web services which are generally managed by different companies and 
organizations. A collaboration involving multiple web services and clients should be 
described in terms of the sets of observable interactions between pairs of them. Such a 
description might be seen as a contract between the participants, and could be used for 
the following purposes:

• to generate code outlines for a new service that wants to participate;

• as a basis for generating test messages for a new service;

• to promote a common understanding of the collaboration;

• to analyze the collaboration, for example to identify possible deadlock situations.
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The use of a common choreography description by a set of collaborating web services 
should result in more robust services with better interoperability. In addition, it should 
be easier to develop and to introduce new services, making the overall service more 
useful.

The W3C working draft document [www.w3.org XV] suggests that a 
choreography language should include the following features:

• hierarchical and recursive composition of choreographies; 

• the ability to add new instances of an existing service and new services;

• concurrent paths, alternative paths and the ability to repeat a section of a 
choreography;

• variable timeouts – for example, different periods for holding reservations;

• exceptions, for example, to deal with messages arriving out of sequence and user 
actions such as cancellations;

• asynchronous interactions (callbacks);

• reference passing, for example, to allow a car hire company to consult a bank for 
a credit check on behalf of a user;

• marking of the boundaries of the separate transactions that take place, for 
example, to allow for recovery;

• the ability to include human-readable documentation. 

A model based on these requirements is described in another W3C working draft 
document [www.w3.org XVI].

Languages for choreography  •  The intention is to produce a declarative, XML-based 
language for defining choreographies that can make use of WSDL definitions. The W3C 
has made a recommendation for Web Services Choreography Definition Language 
Version 1 [www.w3.org XVII]. Prior to this, a group of companies submitted to the 
W3C a specification for the web services choreography interface [www.w3.org XVIII].

9.7 Applications of web services

Web services are now one of the dominant paradigms for programming distributed 
systems. In this section, we discuss a number of the major areas where web services have 
been employed extensively: in supporting service-oriented architecture, the Grid and 
latterly, cloud computing.

9.7.1 Service-oriented architecture

Service-oriented architecture (SOA) is a set of design principles whereby distributed 
systems are developed using sets of loosely coupled services that can be dynamically 
discovered and then communicate with each other or are coordinated through 
choreography to provide enhanced services. Service-oriented architecture is an abstract 
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concept that can be implemented using a variety of technologies including the 
distributed object or component-based approaches discussed in Chapter 8. The principal 
means of realizing service-oriented architecture, however, is through the use of web 
services, largely due to the loose coupling inherent in this approach (as discussed in 
Section 9.2).

This style of architecture can be used within a business or organization to offer a 
flexible software architecture and to achieve interoperability between the various 
services. Its prime use, however is in the broader Internet, offering a common view of 
services making them globally accessible and amenable to subsequent composition. 
This makes it possible to transcend the levels of heterogeneity inherent in the Internet 
and also to deal with the problem of different organizations adopting different 
middleware products internally – it is possible for one organization to use CORBA 
internally and another to use .NET but both then to expose interfaces using web services, 
thus encouraging global interoperability. The resultant property is known as business-

to-business (B2B) integration. We already saw one example of the need for B2B 
integration in Figure 9.18 (the travel agent scenario), where the travel agent may deal 
with a wide range of companies offering flights, car rentals and hotel accommodation.

Service-oriented architecture also enables and encourages a mashup approach to 
software development. A mashup is a new service created by a third-party developer  by 
combining two or more services available in the distributed environment. The mashup 
culture relies on the ready availability of useful services with well-defined interfaces 
coupled with an open innovation community where individuals or groups engage in the 
development of experimental combined services and make them available to others for 
further development. Both conditions are now met by the Internet, particularly with the 
emergence of cloud computing and software as a service (as introduced in Section 
7.7.1), where major software developers such as Amazon, Flickr and eBay make 
services available through published interfaces to other developers. As an example, refer 
to JBidwatcher [www.jbidwatcher.org], a Java-based mashup that interfaces to eBay to 
manage bids proactively on behalf of a client, for example tracking auctions and bidding 
at the last minute to maximize chances of success.

9.7.2 The Grid

The name ‘Grid’ is used to refer to middleware that is designed to enable the sharing of 
resources such as files, computers, software, data and sensors on a very large scale. The 
resources are shared typically by groups of users in different organizations who are 
collaborating on the solution of problems requiring large numbers of computers to solve 
them, either by the sharing of data or by the sharing of computing power. These 
resources are necessarily supported by heterogeneous computer hardware, operating 
systems, programming languages and applications. Management is needed to coordinate 
the use of resources to ensure that clients get what they need and that services can afford 
to supply it. In some cases, sophisticated security techniques are required to ensure that 
the correct use is made of resources in this type of environment. For an example of a 
Grid application, refer to the box on page 415, which features the World-Wide 
Telescope application developed at Microsoft Research.



The World-Wide Telescope: A Grid application

This project is concerned with deploying the data resources shared by the 
astronomy community. It is described in the work of Szalay and Gray [2004], Szalay 
and Gray [2001] and Gray and Szalay [2002]. Astronomy data consists of archives of 
observations, each of which covers a particular period of time, a part of the 
electromagnetic spectrum (optical, x-ray, radio) and a particular area of the sky. 
These observations are made by different instruments deployed at various places 
throughout the world. 

A study of how astronomers share their data is useful for deriving the 
characteristics of a typical Grid application, because astronomers freely share their 
results with one another and issues of security can be omitted, making this discussion 
simpler.

 Astronomers make studies that need to combine data on the same celestial 
objects but involve several different periods of time and multiple parts of the 
spectrum. The ability to use independent observations of data is important to 
research. Visualization allows astronomers to see the data as 2D or 3D scatter plots. 

The teams gathering the data store it in immense archives (currently terabytes), 
which are managed locally by each team that gathers data. The instruments used in 
gathering data are subject to Moore’s law, so the amount of data gathered grows 
exponentially. As it is gathered, the data is analyzed by a pipeline process and stored 
as derived data for use by astronomers throughout the world. But before data can be 
used by other researchers, scientists working in a particular field need to agree on a 
common way of labelling their data.

Szalay and Gray [2004] point out that in the past, scientific research data was 
included by authors in articles and published in journals that lived in libraries. But 
nowadays, the quantity of data is too great to be included in a publication. This 
applies not only to astronomy, but also to the fields of particle physics and genome 
and biology research. The role of author now belongs to the collaborations, which 
take 5–10 years to build their experiments before producing the data that is published 
to the world in web-based archives. Thus, the scientists working on the projects 
become data publishers and librarians as well as authors.

This additional role requires any project that manages a data archive to make it 
accessible to other researchers. This implies a considerable overhead in addition to 
the original task of data analysis. To make such sharing possible, the raw data 
requires metadata to describe, for example, the time it was collected, the part of the 
sky and the instrument used. In addition, the derived data needs to be accompanied 
by metadata describing the parameters of the pipelines through which it was 
processed. 

The calculation of derived data requires heavy computational support. It often 
has to be recalculated as techniques improve. All of this is a considerable expense for 
the project that owns the data.

The aim of the World-Wide Telescope is to unify the world’s astronomy 
archives into a giant database containing astronomy literature, images, raw data, 
derived datasets and simulation data. 
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Requirements of Grid applications  •  The World-Wide Telescope is typical of a range of 
data-intensive Grid applications, wherein:

• data is collected by means of scientific instruments; 

• the data is stored in archives at separate sites whose locations can be in different 
places throughout the world;

• the data is managed by teams of scientists belonging to separate organizations;

• an immense and increasing quantity (terabytes or petabytes) of raw data is 
generated from the instruments; 

• computer programs are used to analyze and make summaries of the raw data, for 
example, to classify, calibrate and catalogue the raw data representing celestial 
objects. 

The Internet makes all of these data archives potentially available to scientists 
throughout the world, enabling them to get data from different instruments gathered at 
different times and at different sites. However, a particular scientist using this data for 
their own research will be interested in just a subset of the objects in the archives. 

The immense quantity of data in an archive makes it infeasible to transfer it to the 
location of the user before processing it to extract the objects of interest, due to 
considerations such as transmission time and the local disk space required. Therefore, it 
is not appropriate to use FTP or web access in this context. The processing of the raw 
data should take place at the location where it is collected and stored in a database. Then 
when a scientist makes a query about particular objects, the information in each database 
should be analyzed and if necessary, visualizations produced before returning the results 
to the remote query.

The fact that data is processed at many different sites provides an inbuilt 
parallelism that effectively divides the immense task being undertaken.

From the above characteristics, the following requirements are derived:

R1: Remote access to resources – that is, to the required information in the archives.

R2: Processing of data at the site where it is stored and managed, either when it is 
gathered or in response to a request. A typical query might result in a 
visualization based on data collected for one region of sky recorded by different 
instruments at different times. It will involve selecting a small quantity of data 
from each massive data archive. 

R3: The resource manager of a data archive should be able to create service instances 
dynamically to deal with the particular section of data required, just as in the 
distributed object model, where servants are created whenever they are needed 
to handle different resources managed by a service.

R4: Metadata to describe:

–  characteristics of the data in an archive – for example, for astronomy, the area 
of the sky, the date and time collected and the instruments used;

– characteristics of a service managing that data – for example, its cost, its 
geographic location, its publisher or its load or space available.
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R5: Directory services based on the above metadata.

R6: Software to manage queries, data transfers and advance reservation of resources, 
taking into account that the resources are generally managed by the projects that 
generate the data and that access to them may need to be rationed.

Web services can deal with the first two requirements by providing a convenient way 
for scientists to access operations on data in remote archives. This will require that each 
particular application provide a service description that includes a set of methods for 
accessing its data. The Grid middleware must deal with the remaining requirements. 

Grids are also used for computationally intensive Grid applications such as 
processing the vast quantities of data produced by the CMS high-energy particle accel-
erator at CERN [www.uscms.org], testing the effects of candidate drug molecules 
[Taufer et al. 2003, Chien 2004] or supporting massively multiplayer online games us-
ing spare capacity in cluster computers [www.butterfly.net]. Where computationally-in-
tensive applications are deployed on a Grid, resource management will be concerned 
with allocating computing resources and balancing loads. 

 Finally, security will be needed for many Grid applications. For example, the Grid 
is in use for medical research and for business applications. Even when the privacy of 
data is not an issue, it will be important to establish the identity of the people who 
created the data.

Grid middleware  •  The Open Grid Services Architecture (OGSA) is a standard for 
Grid-based applications [Foster et al. 2001, 2002]. It provides a framework within 
which the above requirements can be met, based on web services. Resources are 
managed by application-specific Grid services. The Globus toolkit then implements the 
architecture.

The Globus Project started in 1994 with a view to providing software that 
integrates and standardizes the functions required by a family of scientific applications. 
These functions include directory services, security and resource management. The first 
Globus toolkit appeared in 1997. The OGSA evolved from the second version of the 
toolkit (called GT2), which is described in Foster and Kesselman [2004]. The third 
version (GT3), which appeared in 2002, was based on OGSA and therefore built on web 
services. It was developed by the Globus Alliance (www.globus.org) and is described in 
Sandholm and Gawor [2003]. Since then, two further versions have been released – the 
latest version is referred to as GT5 and is available as open source software 
[www.globus.org]).

A case study of OGSA and the Globus toolkit (up to GT3) can be found on the 
companion web site [www.cdk5.net/web].

9.7.3 Cloud computing

Cloud computing was introduced in Chapter 1 as a set of Internet-based application, 
storage and computing services sufficient to support most users’ needs, thus enabling 
them to largely or totally dispense with local data storage and application software. 
Cloud computing also promotes a view of everything as a service, from physical or 
virtual infrastructure through to software, often paid for on a per-usage basis rather than 
purchased. The concept is therefore intrinsically linked to a new business model for 
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computing where cloud suppliers offer a range of computational, data and other services 
to customers as required for their daily use, for example offering sufficient storage 
capacity across the Internet to act as an archival or backup service.

Chapter 1 also comments on the overlap between cloud computing and the Grid. 
The development of the Grid preceded the emergence of cloud computing and was a 
significant factor in its emergence. They share the same goal of providing resources 
(services) out there in the greater Internet. Whereas the Grid tends to focus on high-end 
data-heavy or computationally expensive applications, cloud computation is more 
general,  offering a range of services for individual computer users through to high-end 
users. The business model associated with cloud computing is also a distinguishing 
characteristic. It is therefore fair to say that the Grid is an early example of cloud 
computing, but cloud computing has developed significantly since then. 

With the view of everything as a service, web services offer a natural 
implementation path for cloud computing, and indeed many vendors go down this path. 
The most notable offering in this space is Amazon Web Services (AWS) 
[aws.amazon.com], and we look briefly at this technology below. We will see an 
alternative approach to cloud computing in Chapter 21, when we look at Google 
infrastructure and the associated Google App Engine, which both feature a lighter-
weight, higher-performance approach than web services.

Amazon Web Services are a set of cloud services implemented on the extensive 
physical infrastructure owned by Amazon.com. Originally developed for internal 
purposes in support of their electronic retail business, Amazon now offers many of the 
facilities to external users, enabling them to run independent services on the 
infrastructure. The implementation of AWS takes care of key distributed systems issues 
such as managing service availability, scalability and performance, allowing developers 
to focus on the use of their services. Services are made available using web service 
standards described earlier in this chapter. This has the advantage that programmers 
familiar with web services can readily use AWS and can develop mashups that 
incorporate Amazon Web Services in their construction. More generally, the approach 
enables interoperability across the Internet. Amazon also adopts the REST approach, as 
advocated by Fielding [2000] and discussed in Section 9.2.

Amazon offers a wide and extensible set of services, the most significant of which 
are listed in Figure 9.19. We feature EC2 in more detail. EC2 is an elastic compute 
service, where the term ‘elastic’ refers to the ability to offer computing capacity that is 
resizeable to the customers needs. Rather than an actual machine, EC2 offers the user a 
virtual machine, called an instance, to their desired specification. For example, a user 
can request an instance of the following types:

• a standard instance designed to be suitable for most applications;

• a high-memory instance that offers additional memory capacity, for example for 
applications involving caching;

• a high-CPU instance designed to support computationally intensive tasks;

• a cluster compute instance offering a cluster of virtual processors with high- 
bandwidth interconnection for high-performance computing tasks.



Figure 9.19 A selection of Amazon Web Services

Web service Description

Amazon Elastic Compute Cloud (EC2) Web-based service offering access to virtual 
machines of a given performance and storage 
capacity

Amazon Simple Storage Service (S3) Web-based storage service for unstructured data

Amazon Simple DB Web-based storage service for querying 
structured data

Amazon Simple Queue Service (SQS) Hosted service supporting message queuing (as 
discussed in Chapter 6)

Amazon Elastic MapReduce Web-based service for distributed computation 
using the MapReduce model (introduced in 
Chapter 21)

Amazon Flexible Payments Service (FPS) Web-based service supporting electronic 
payments
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Several of these can be further refined – for example, for a standard instance it is 
possible to request a small, medium or large instance representing different 
specifications in terms of processing power, memory, disk storage and so on.

EC2 is built on top of the Xen hypervisor, described in Section 7.7.2. The 
instances can be configured to run a variety of operating systems including Windows 
Server 2008, Linux or OpenSolaris. They can also be configured with a variety of 
software. For example, it is possible to request an installation of Apache HTTP to 
support web hosting.

EC2 supports the interesting concept of an elastic IP address, which looks like a 
traditional IP address but is associated with the user’s account, not a particular instance. 
This means that if a (virtual) machine fails, the IP address can be reassigned to a 
different machine without requiring the intervention of a network administrator.

9.8 Summary

In this chapter we have shown that web services have arisen from the need to provide an 
infrastructure to support interworking between different organizations. This infrastruc-
ture generally uses the widely used HTTP protocol to transport messages between cli-
ents and servers over the Internet and is based on the use of URIs to refer to resources. 
XML, a textual format, is used for data representation and marshalling.

Two separate influences led to the emergence of web services. One of these was 
the addition of service interfaces to web servers with a view to allowing the resources 
on a site to be accessed by client programs other than browsers and using a richer form 
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of interaction. The other was the desire to provide something like RPC over the Internet, 
based on the existing protocols. The resulting web services provide interfaces with sets 
of operations that can be called remotely. Like any other form of service, a web service 
can be the client of another web service, thus allowing a web service to integrate or 
combine a set of other web services.

 SOAP is the communication protocol that is generally used by web services and 
their clients. It can be used to transmit request messages and their replies between client 
and server, either by the asynchronous exchange of documents or by a form of request-
reply protocol based on a pair of asynchronous message exchanges. In both cases, the 
request or reply message is enclosed in an XML-formatted document called an 
envelope. The SOAP envelope is generally transmitted over the synchronous HTTP 
protocol, although other transports can be used. 

XML and SOAP processors are available for all of the widely used programming 
languages and operating systems. This enables web services and their clients to be 
deployed almost anywhere. This form of interworking is enabled by the facts that web 
services are not tied to any particular programming language and do not support the 
distributed object model. 

In conventional middleware services, interface definitions provide clients with the 
details of services. However, in the case of web services, service descriptions are used. 
A service description specifies the communication protocol to be used (for example, 
SOAP) and the URI of the service, as well as describing its interface. The interface may 
be described either as a set of operations or as a set of messages to be exchanged between 
client and server. 

XML security was designed to provide the necessary protection for the contents 
of a document exchanged by members of a group of people, who have different tasks to 
perform on that document. Different parts of the document will be available to different 
people, some with the ability to add to or alter the content and others only to read it. To 
enable complete flexibility in its future use, the security properties are defined within the 
document itself. This is achieved by means of XML, which is a self-describing format. 
XML elements are used to specify document parts that are encrypted or signed as well 
as details of the algorithms used and information to help with finding keys.

Web services have been used for a variety of purposes in distributed systems. For 
example, web services provide a natural implementation of the concept of service-
oriented architecture, in which their loose coupling enables interoperability in Internet-
scale applications  –  including business-to-business (B2B) applications. Their inherent 
loose coupling also supports the emergence of a mashup approach to web service 
construction. Web services also underpin the Grid, supporting collaborations between 
scientists or engineers in organizations in different parts of the world. Their work is very 
often based on the use of raw data collected by instruments at different sites and then 
processed locally. The Globus toolkit is an implementation of the architecture that has 
been used in a variety of data-intensive and computationally intensive applications. 
Finally, web services are heavily used in cloud computing. For example Amazon’s 
AWS is based entirely on web service standards coupled with the REST philosophy of 
service construction.
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EXERCISES

9.1 Compare the request-reply protocol as described in Section 5.2 with the implementation 
of client-server communication in SOAP. State two reasons why the use of 
asynchronous messages by SOAP is more appropriate over the Internet. To what extent 
does the use of HTTP by SOAP reduce the difference between the two approaches?

page 388

9.2 Compare the structure of URLs as used for web services with that of remote object 
references as specified in Section 4.3.4. State in each case how they are used to execute 
a client request. page 393

9.3 Illustrate the contents of a SOAP Request message and corresponding Reply message in 
the Election service example of Exercise 5.11, using the pictorial version of XML as 
shown in Figure 9.4 and Figure 9.5. page 389

9.4 Outline the five main elements of a WSDL service description. In the case of the 
Election service defined in Exercise 5.11, state the type of information to be used by the 
Request and Reply messages – does any of this need to be included in the target 
namespace? For the vote operation, draw diagrams similar to Figure 9.11 and Figure 
9.13. page 402

9.5 Continuing with the example of the Election service, explain why the part of the WSDL 
service description defined in Exercise 9.4 is referred to as ‘abstract’. What would need 
to be added to the service description to make it completely concrete? page 400

9.6 Define a Java interface for the Election service suitable for use as a web service. State 
why you think the interface you defined is suitable. Explain how a WSDL document for 
the service is generated and how it is made available to clients. page 396

9.7 Describe the contents of a Java client proxy for the Election service. Explain how the 
appropriate marshalling and unmarshalling methods can be obtained for a static proxy.  

page 396

9.8 Explain the role of a servlet container in the deploying of a web service and the 
execution of a client request. page 396

9.9 In the Java example illustrated in Figure 9.8 and Figure 9.9, both client and server are 
dealing with objects, although web services do not support distributed objects. How can 
this be the case? What are the limitations imposed on the interfaces of Java web 
services? page 395

9.10 Outline the replication scheme used in UDDI. Supposing that vector timestamps are 
used to support this scheme, define a pair of operations for use by registries needing to 
exchange data. page 406

9.11 Explain why UDDI can be described as being both a name service and a directory 
service, mentioning the types of enquiries that can be made. The second ‘D’ in the name 
UDDI refers to ‘discovery’ – is UDDI really a discovery service?

Chapter 13 and page 404
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9.12 Outline the main difference between TLS and XML security. Explain why XML is 
particularly suitable for the role it plays, in terms of these differences.   

Chapter 11 and page 406

9.13 Documents protected by XML security may be signed or encrypted long before anyone 
can predict who will be the ultimate recipients. What measures are taken to ensure that 
the latter have access to the algorithms used by the former? page 406

9.14 Explain the relevance of canonical XML to digital signatures. What contextual 
information can be included in the canonical form? Give an example of a breach of 
security where the context is omitted from the canonical form. page 409

9.15 A coordination protocol could be carried out in order to coordinate the actions of web 
services. Outline an architecture for (i) a centralized and (ii) a distributed coordination 
protocol. In each case, describe the interactions needed to establish coordination 
between a pair of web services. page 411

9.16 Compare  RPC call semantics with the semantics of WS-ReliableMessaging:
i) State the entities to which each refers. 
ii) Compare the differing meanings of the available semantics (for example, at-

least-once, at-most-once, exactly-once).
Chapter 5 and page 392



                     423

10

PEER-TO-PEER SYSTEMS

10.1 Introduction
10.2 Napster and its legacy
10.3 Peer-to-peer middleware
10.4 Routing overlays
10.5 Overlay case studies: Pastry, Tapestry
10.6 Application case studies: Squirrel, OceanStore, Ivy
10.7 Summary

Peer-to-peer systems represent a paradigm for the construction of distributed systems
and applications in which data and computational resources are contributed by many
hosts on the Internet, all of which participate in the provision of a uniform service. Their
emergence is a consequence of the very rapid growth of the Internet, embracing many
millions of computers and similar numbers of users requiring access to shared resources.

A key problem for peer-to-peer systems is the placement of data objects across
many hosts and subsequent provision for access to them in a manner that balances the
workload and ensures availability without adding undue overheads. We describe several
recently developed systems and applications that are designed to achieve this.

Peer-to-peer middleware systems are emerging that have the capacity to share
computing resources, storage and data present in computers ‘at the edges of the Internet’
on a global scale. They exploit existing naming, routing, data replication and security
techniques in new ways to build a reliable resource-sharing layer over an unreliable and
untrusted collection of computers and networks.

 Peer-to-peer applications have been used to provide file sharing, web caching,
information distribution and other services, exploiting the resources of tens of thousands
of machines across the Internet. They are at their most effective when used to store very
large collections of immutable data. Their design diminishes their effectiveness for
applications that store and update mutable data objects. 
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10.1 Introduction

The demand for services in the Internet can be expected to grow to a scale that is limited
only by the size of the world’s population. The goal of peer-to-peer systems is to enable
the sharing of data and resources on a very large scale by eliminating any requirement
for separately managed servers and their associated infrastructure.  

The scope for expanding popular services by adding to the number of the
computers hosting them is limited when all the hosts must be owned and managed by
the service provider. Administration and fault recovery costs tend to dominate. The
network bandwidth that can be provided to a single server site over available physical
links is also a major constraint. System-level services such as Sun NFS (Section 12.3),
the Andrew File System (Section 12.4) or video servers (Section 20.6.1) and
application-level services such as Google, Amazon or eBay all exhibit this problem to
varying degrees.

Peer-to-peer systems aim to support useful distributed services and applications
using data and computing resources available in the personal computers and
workstations that are present in the Internet and other networks in ever-increasing
numbers. This is increasingly attractive as the performance difference between desktop
and server machines narrows and broadband network connections proliferate. 

But there is another, broader aim: one author [Shirky 2000] has defined peer-to-
peer applications as ‘applications that exploit resources available at the edges of the
Internet – storage, cycles, content, human presence’. Each type of resource sharing
mentioned in that definition is already represented by distributed applications available
for most types of personal computer. The purpose of this chapter is to describe some
general techniques that simplify the construction of peer-to-peer applications and
enhance their scalability, reliability and security.

Traditional client-server systems manage and provide access to resources such as
files, web pages or other information objects located on a single server computer or a
small cluster of tightly coupled servers. With such centralized designs, few decisions are
required about the placement of the resources or the management of server hardware
resources, but the scale of the service is limited by the server hardware capacity and
network connectivity. Peer-to-peer systems provide access to information resources
located on computers throughout a network (whether it be the Internet or a corporate
network). Algorithms for the placement and subsequent retrieval of information objects
are a key aspect of the system design. The aim is to deliver a service that is fully
decentralized and self-organizing, dynamically balancing the storage and processing
loads between all the participating computers as computers join and leave the service. 

Peer-to-peer systems share these characteristics:

• Their design ensures that each user contributes resources to the system.

• Although they may differ in the resources that they contribute, all the nodes in a
peer-to-peer system have the same functional capabilities and responsibilities. 

• Their correct operation does not depend on the existence of any centrally
administered systems.
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• They can be designed to offer a limited degree of anonymity to the providers and
users of resources.

• A key issue for their efficient operation is the choice of an algorithm for the
placement of data across many hosts and subsequent access to it in a manner that
balances the workload and ensures availability without adding undue overheads. 

Computers and network connections owned and managed by a multitude of different
users and organizations are necessarily volatile resources; their owners do not guarantee
to keep them switched on, connected and fault-free. So the availability of the processes
and computers participating in peer-to-peer systems is unpredictable. Peer-to-peer
services therefore cannot rely on guaranteed access to individual resources, although
they can be designed to make the probability of failure to access a copy of a replicated
object arbitrarily small. It is worth noting that this weakness of peer-to-peer systems can
be turned into a strength if the replication of resources that it calls for is exploited to
achieve a degree of resistance to tampering by malicious nodes (for example, through
Byzantine fault-tolerance techniques; see Chapter 18).

Several early Internet-based services, including DNS (Section 13.2.3) and
Netnews/Usenet [Kantor and Lapsley 1986], adopted a multi-server scalable and fault-
tolerant architecture. The Xerox Grapevine name registration and mail delivery service
[Birrell et al. 1982, Schroeder et al. 1984] provides an interesting early example of a
scalable, fault-tolerant distributed service. Lamport’s part-time parliament algorithm for
distributed consensus [Lamport 1989], the Bayou replicated storage system (see Section
18.4.2) and the classless interdomain IP routing algorithm (see Section 3.4.3) are all
examples of distributed algorithms for the placement or location of information and can
be considered as antecedents of peer-to-peer systems. 

But the potential for the deployment of peer-to-peer services using resources at the
edges of the Internet emerged only when a significant number of users had acquired
always-on, broadband connections to the network, making their desktop computers
suitable platforms for resource sharing. This occurred first in the United States around
1999. By mid-2004 the worldwide number of broadband Internet connections had
comfortably exceeded 100 million [Internet World Stats 2004].

Three generations of peer-to-peer system and application development can be
identified. The first generation was launched by the Napster music exchange service
[OpenNap 2001], which we describe in the next section. A second generation of file-
sharing applications offering greater scalability, anonymity and fault tolerance quickly
followed including Freenet [Clarke et al. 2000, freenetproject.org], Gnutella, Kazaa
[Leibowitz et al. 2003] and BitTorrent [Cohen 2003]. 

Peer-to-peer middleware  •  The third generation is characterized by the emergence of
middleware layers for the application-independent management of distributed resources
on a global scale. Several research teams have now completed the development,
evaluation and refinement of peer-to-peer middleware platforms and demonstrated or
deployed them in a range of application services. The best-known and most fully
developed examples include Pastry [Rowstron and Druschel 2001], Tapestry [Zhao et

al. 2004], CAN [Ratnasamy et al. 2001], Chord [Stoica et al. 2001] and Kademlia
[Maymounkov and Mazieres 2002]. 
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These platforms are designed to place resources (data objects, files) on a set of
computers that are widely distributed throughout the Internet and to route messages to
them on behalf of clients, relieving clients of any need to make decisions about placing
resources and to hold information about the whereabouts of the resources they require.
Unlike the second-generation systems, they provide guarantees of delivery for requests
in a bounded number of network hops. They place replicas of resources on available host
computers in a structured manner, taking account of their volatile availability, their
variable trustworthiness and requirements for load balancing and locality of information
storage and use.

Resources are identified by globally unique identifiers (GUIDs), usually derived
as a secure hash (described in Section 11.4.3) from some or all of the resource’s state.
The use of a secure hash makes a resource ‘self certifying’ – clients receiving a resource
can check the validity of the hash. This protects it against tampering by untrusted nodes
on which it may be stored, but this technique requires that the states of resources are
immutable, since a change to the state would result in a different hash value. Hence peer-
to-peer storage systems are inherently best suited to the storage of immutable objects

Figure 10.1 Distinctions between IP and overlay routing for peer-to-peer applications 

IP Application-level routing overlay

Scale IPv4 is limited to 232 addressable 
nodes. The IPv6 namespace is much 
more generous (2128), but addresses 
in both versions are hierarchically 
structured and much of the space is 
preallocated according to 
administrative requirements. 

Peer-to-peer systems can address 
more objects. The GUID namespace 
is very large and flat (>2128), 
allowing it to be much more fully 
occupied. 

Load balancing Loads on routers are determined by 
network topology and associated 
traffic patterns.

Object locations can be randomized 
and hence traffic patterns are 
divorced from the network topology.

Network dynamics 

(addition/deletion of 

objects/nodes)

IP routing tables are updated 
asynchronously on a best-effort basis 
with time constants on the order of 1 
hour.

Routing tables can be updated 
synchronously or asynchronously 
with fractions-of-a-second delays.

Fault tolerance Redundancy is designed into the IP 
network by its managers, ensuring 
tolerance of a single router or 
network connectivity failure. n-fold
replication is costly.

Routes and object references can be 
replicated n-fold, ensuring tolerance 
of n failures of nodes or connections.

Target identification Each IP address maps to exactly one 
target node.

Messages can be routed to the nearest 
replica of a target object.

Security and 

anonymity

Addressing is only secure when all 
nodes are trusted. Anonymity for the 
owners of addresses is not 
achievable.

Security can be achieved even in 
environments with limited trust. A 
limited degree of anonymity can be 
provided.
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(such as music or video files). Their use for objects with changing values is more
challenging, but this can be accommodated by the addition of trusted servers to manage
a sequence of versions and identify the current version (as is done for example in
OceanStore and Ivy, described in Sections 10.6.2 and 10.6.3).

The use of peer-to-peer systems for applications that demand a high level of
availability for the objects stored requires careful application design to avoid situations
in which all of the replicas of an object are simultaneously unavailable. There is a risk
of this for objects stored on computers with the same ownership, geographic location,
administration, network connectivity, country or jurisdiction. The use of randomly
distributed GUIDs assists by distributing the object replicas to randomly located nodes
in the underlying network. If the underlying network spans many organizations across
the globe, then the risk of simultaneous unavailability is much reduced.

Overlay routing versus IP routing  •  At first sight, routing overlays share many
characteristics with the IP packet routing infrastructure that constitutes the primary
communication mechanism of the Internet (see Section 3.4.3). It is therefore legitimate
to ask why an additional application-level routing mechanism is required in peer-to-peer
systems. The answer lies in several distinctions that are identified in Figure 10.1. It may
be argued that some of these distinctions arise from the ‘legacy’ nature of IP as the
Internet’s primary protocol, but the legacy’s impact is too strong for it to be overcome
in order to support peer-to-peer applications more directly. 

Distributed computation  •  The exploitation of spare computing power on end-user
computers has long been a subject of interest and experiment. Work with the first
personal computers at Xerox PARC [Shoch and Hupp 1982] showed the feasibility of
performing loosely coupled compute-intensive tasks by running background processes
on ~100 personal computers linked by a local network. More recently, much larger
numbers of computers have been put to use to perform several scientific calculations
that require almost unlimited quantities of computing power. 

The most widely known effort of this type is the SETI@home project [Anderson
et al. 2002], which is part of a wider project called the Search for Extra-Terrestrial
Intelligence. SETI@home partitions a stream of digitized radio telescope data into 107-
second work units, each of about 350 kbytes and distributes them to client computers
whose computing power is contributed by volunteers. Each work unit is distributed
redundantly to 3–4 personal computers to guard against erroneous or malicious nodes
and is examined for significant signal patterns. The distribution of work units and the
coordination of results is handled by a single server that is responsible for
communication with all of the clients. Anderson et al. [2002] reported that 3.91 million
personal computers had participated in the SETI@home project by August 2002,
resulting in the processing of 221 million work units and representing an average 27.36
teraflops of computational power during the 12 months to July 2002. The work
completed to that date represented the largest single computation on record.

The SETI@home computation is unusual in that it does not involve any
communication or coordination between computers while they are processing the work
units; the results are communicated to a central server in a single short message that may
be delivered whenever the client and server are available. Some other scientific tasks of
this nature have been identified, including the search for large prime numbers and
attempts at brute-force decryption, but the unleashing of the computational power in the



428 CHAPTER 10 PEER-TO-PEER SYSTEMS

Internet for a broader range of tasks will depend upon the development of a distributed
platform that supports data sharing and the coordination of computation between
participating computers on a large scale. That is the goal of the Grid project, discussed
in Chapter 19. 

In this chapter we focus on algorithms and systems developed to date for the
sharing of data in peer-to-peer networks. In Section 10.2 we summarize Napster’s
design and review the lessons learned from it. In Section 10.3 we describe the general
requirements for peer-to-peer middleware layers. The following sections cover the
design and application of peer-to-peer middleware platforms, starting with an abstract
specification in Section 10.4, followed by detailed descriptions of two fully developed
examples in Section 10.5 and some applications of them in Section 10.6.

10.2 Napster and its legacy

The first application in which a demand for a globally scalable information storage and
retrieval service emerged was the downloading of digital music files. Both the need for
and the feasibility of a peer-to-peer solution were first demonstrated by the Napster file-
sharing system [OpenNap 2001] which provided a means for users to share files.
Napster became very popular for music exchange soon after its launch in 1999. At its
peak, several million users were registered and thousands were swapping music files
simultaneously. 

Napster’s architecture included centralized indexes, but users supplied the files,
which were stored and accessed on their personal computers. Napster’s method of
operation is illustrated by the sequence of steps shown in Figure 10.2. Note that in step 5
clients are expected to add their own music files to the pool of shared resources by

Figure 10.2 Napster: peer-to-peer file sharing with a centralized, replicated index
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transmitting a link to the Napster indexing service for each available file. Thus the
motivation for Napster and the key to its success was the making available of a large,
widely distributed set of files to users throughout the Internet, fulfilling Shirky’s dictum
by providing access to ‘shared resources at the edges of the Internet’. 

Napster was shut down as a result of legal proceedings instituted against the
operators of the Napster service by the owners of the copyright in some of the material
(i.e., digitally encoded music) that was made available on it (see the box below). 

Anonymity for the receivers and the providers of shared data and other resources
is a concern for the designers of peer-to-peer systems. In systems with many nodes, the
routing of requests and results can be made sufficiently tortuous to conceal their source
and the contents of files can be distributed across multiple nodes, spreading the
responsibility for making them available. Mechanisms for anonymous communication
that are resistant to most forms of traffic analysis are available [Goldschlag et al. 1999].
If files are also encrypted before they are placed on servers, the owners of the servers
can plausibly deny any knowledge of the contents. But these anonymity techniques add
to the cost of resource sharing, and recent work has shown that the anonymity available
is weak against some attacks [Wright et al. 2002]. 

The Freenet [Clarke et al. 2000] and FreeHaven [Dingledine et al. 2000] projects
are focused on providing Internet-wide file services that offer anonymity for the
providers and users of the shared files. Ross Anderson has proposed the Eternity Service
[Anderson 1996], a storage service that provides long-term guarantees of data

Peer-to-peer systems and copyright ownership issues

The developers of Napster argued that they were not liable for the infringement of the
copyright owners’ rights because they were not participating in the copying process,
which was performed entirely between users’ machines. Their argument failed
because the index servers were deemed an essential part of the process. Since the
index servers were located at well-known addresses, their operators were unable to
remain anonymous and so could be targeted in lawsuits. 

A more fully distributed file-sharing service might have achieved a better
separation of legal responsibilities, spreading the responsibility across all of the users
and thus making the pursuit of legal remedies very difficult, if not impossible.
Whatever view one takes about the legitimacy of file copying for the purpose of
sharing copyright-protected material, there are legitimate social and political
justifications for the anonymity of clients and servers in some application contexts.
The most persuasive justification arises when anonymity is used to overcome
censorship and maintain freedom of expression for individuals in oppressive
societies or organizations. 

It is known that email and web sites have played a significant role in achieving
public awareness at times of political crisis in such societies; their role could be
strengthened if the authors could be protected by anonymity. ‘Whistle-blowing’ is a
related case: a ‘whistle-blower’ is an employee who publicizes or reports their
employer’s wrongdoings to authorities without revealing their own identity for fear
of sanctions or dismissal. In some circumstances it is reasonable for such an action
to be protected by anonymity.
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availability through resistance to all sorts of accidental data loss and denial of service
attacks. He bases the need for such a service on the observation that whereas publication
is a permanent state for printed information – it is virtually impossible to delete material
once it has been published and distributed to a few thousand libraries in diverse
organizations and jurisdictions around the world – electronic publications cannot easily
achieve the same level of resistance to censorship or suppression. Anderson covers the
technical and economic requirements to ensure the integrity of the store and also points
out that anonymity is often an essential requirement for the persistence of information,
since it provides the best defence against legal challenges, as well as illegal actions such
as bribes or attacks on the originators, owners or keepers of the data.

Lessons learned from Napster  •  Napster demonstrated the feasibility of building a
useful large-scale service that depends almost wholly on data and computers owned by
ordinary Internet users. To avoid swamping the computing resources of individual users
(for example, the first user to offer a chart-topping song) and their network connections,
Napster took account of network locality – the number of hops between the client and
the server – when allocating a server to a client requesting a song. This simple load-
distribution mechanism enabled the service to scale to meet the needs of large numbers
of users.

Limitations: Napster used a (replicated) unified index of all available music files. For the
application in question, the requirement for consistency between the replicas was not
strong, so this did not hamper performance, but for many applications it would
constitute a limitation. Unless the access path to the data objects is distributed, object
discovery and addressing are likely to become a bottleneck.

Application dependencies: Napster took advantage of the special characteristics of the
application for which it was designed in other ways:

• Music files are never updated, avoiding any need to make sure all the replicas of
files remain consistent after updates.

• No guarantees are required concerning the availability of individual files – if a
music file is temporarily unavailable, it can be downloaded later. This reduces the
requirement for dependability of individual computers and their connections to
the Internet.

10.3 Peer-to-peer middleware

A key problem in the design of peer-to-peer applications is providing a mechanism to
enable clients to access data resources quickly and dependably wherever they are
located throughout the network. Napster maintained a unified index of available files for
this purpose, giving the network addresses of their hosts. Second-generation peer-to-
peer file storage systems such as Gnutella and Freenet employ partitioned and
distributed indexes, but the algorithms used are specific to each system.

This location problem existed in several services that predate the peer-to-peer
paradigm as well. For example, Sun NFS addresses this need with the aid of a virtual file
system abstraction layer at each client that accepts requests to access files stored on
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multiple servers in terms of virtual file references (i.e., v-nodes, see Section 12.3). This
solution relies on a substantial amount of preconfiguration at each client and manual
intervention when file distribution patterns or server provision changes. It is clearly not
scalable beyond a service managed by a single organization. AFS (Section 12.4) has
similar properties.

Peer-to-peer middleware systems are designed specifically to meet the need for
the automatic placement and subsequent location of the distributed objects managed by
peer-to-peer systems and applications. 

Functional requirements  •  The function of peer-to-peer middleware is to simplify the
construction of services that are implemented across many hosts in a widely distributed
network. To achieve this it must enable clients to locate and communicate with any
individual resource made available to a service, even though the resources are widely
distributed amongst the hosts. Other important requirements include the ability to add
new resources and to remove them at will and to add hosts to the service and remove
them. Like other middleware, peer-to-peer middleware should offer a simple
programming interface to application programmers that is independent of the types of
distributed resource that the application manipulates.

Non-functional requirements  •  To perform effectively, peer-to-peer middleware must
also address the following non-functional requirements [cf. Kubiatowicz 2003]: 

Global scalability: One of the aims of peer-to-peer applications is to exploit the
hardware resources of very large numbers of hosts connected to the Internet. Peer-to-
peer middleware must therefore be designed to support applications that access
millions of objects on tens of thousands or hundreds of thousands of hosts. 

Load balancing: The performance of any system designed to exploit a large number
of computers depends upon the balanced distribution of workload across them. For
the systems we are considering, this will be achieved by a random placement of
resources together with the use of replicas of heavily used resources. 

Optimization for local interactions between neighbouring peers: The ‘network dis-
tance’ between nodes that interact has a substantial impact on the latency of individ-
ual interactions, such as client requests for access to resources. Network traffic
loadings are also impacted by it. The middleware should aim to place resources close
to the nodes that access them the most.

Accommodating to highly dynamic host availability: Most peer-to-peer systems are
constructed from host computers that are free to join or leave the system at any time.
The hosts and network segments used in peer-to-peer systems are not owned or
managed by any single authority; neither their reliability nor their continuous
participation in the provision of a service is guaranteed. A major challenge for peer-
to-peer systems is to provide a dependable service despite these facts. As hosts join
the system, they must be integrated into the system and the load must be redistributed
to exploit their resources. When they leave the system whether voluntarily or
involuntarily, the system must detect their departure and redistribute their load and
resources.

 Studies of peer-to-peer applications and systems such as Gnutella and Overnet
have shown a considerable turnover of participating hosts [Saroiu et al. 2002,
Bhagwan et al. 2003]. For the Overnet peer-to-peer file-sharing system, with 85,000
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active hosts throughout the Internet, Bhagwan et al. measured an average session
length of 135 minutes (and a median of 79 minutes) for a random sample of 1,468
hosts over a 7-day period, with 260 to 650 of the 1,468 hosts available to the service
at any time. (A session represents a period during which a host is available before it
is voluntarily or unavoidably disconnected.) 

On the other hand, Microsoft researchers measured a session length of 37.7
hours for a random sample of 20,000 machines connected to the Microsoft corporate
network, with between 14,700 and 15,600 of the machines available for service at
any given time [Castro et al. 2003]. These measurements are based on a feasibility
study for the Farsite peer-to-peer file system [Bolosky et al. 2000]. The huge variance
amongst the figures obtained in these studies is mainly attributable to the differences
in behaviour and network environment between individual Internet users and the
users in a corporate network such as Microsoft’s.

Security of data in an environment with heterogeneous trust: In global-scale sys-
tems with participating hosts of diverse ownership, trust must be built up by the use
of authentication and encryption mechanisms to ensure the integrity and privacy of
information.

Anonymity, deniability and resistance to censorship: We have noted (in the box on
page 429) that anonymity for the holders and recipients of data is a legitimate concern
in many situations demanding resistance to censorship. A related requirement is that
the hosts that hold data should be able to plausibly deny responsibility for holding or
supplying it. The use of large numbers of hosts in peer-to-peer systems can be helpful
in achieving these properties.

How best to design a middleware layer to support global-scale peer-to-peer systems is
therefore a difficult problem. The requirements for scalability and availability make it

Figure 10.3 Distribution of information in a routing overlay
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infeasible to maintain a database at all client nodes giving the locations of all the
resources (objects) of interest.

Knowledge of the locations of objects must be partitioned and distributed
throughout the network. Each node is made responsible for maintaining detailed
knowledge of the locations of nodes and objects in a portion of the namespace as well
as a general knowledge of the topology of the entire namespace (Figure 10.3). A high
degree of replication of this knowledge is necessary to ensure dependability in the face
of the volatile availability of hosts and intermittent network connectivity. In the systems
we describe below, replication factors as high as 16 are typically used.

10.4 Routing overlays

The development of middleware that meets the functional and non-functional
requirements outlined in the previous section is an active area of research, and several
significant middleware systems have already emerged. In this chapter we describe
several of them in detail.

In peer-to-peer systems a distributed algorithm known as a routing overlay takes
responsibility for locating nodes and objects. The name denotes the fact that the
middleware takes the form of a layer that is responsible for routing requests from any
client to a host that holds the object to which the request is addressed. The objects of
interest may be placed at and subsequently relocated to any node in the network without
client involvement. It is termed an overlay since it implements a routing mechanism in
the application layer that is quite separate from any other routing mechanisms deployed
at the network level such as IP routing. This approach to the management and location
of replicated objects was first analyzed and shown to be effective for networks involving
sufficiently many nodes in a groundbreaking paper by Plaxton et al. [1997].

The routing overlay ensures that any node can access any object by routing each
request through a sequence of nodes, exploiting knowledge at each of them to locate the
destination object. Peer-to-peer systems usually store multiple replicas of objects to
ensure availability. In that case, the routing overlay maintains knowledge of the location
of all the available replicas and delivers requests to the nearest ‘live’ node (i.e. one that
has not failed) that has a copy of the relevant object.

The GUIDs used to identify nodes and objects are an example of the ‘pure’ names
referred to in Section 13.1.1. These are also known as opaque identifiers, since they
reveal nothing about the locations of the objects to which they refer. 

The main task of a routing overlay is the following:

Routing of requests to objects: A client wishing to invoke an operation on an object
submits a request including the object’s GUID to the routing overlay, which routes
the request to a node at which a replica of the object resides.

But the routing overlay must also perform some other tasks: 

Insertion of objects: A node wishing to make a new object available to a peer-to-peer
service computes a GUID for the object and announces it to the routing overlay,
which then ensures that the object is reachable by all other clients. 
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Deletion of objects: When clients request the removal of objects from the service the
routing overlay must make them unavailable.

Node addition and removal: Nodes (i.e., computers) may join and leave the service.
When a node joins the service, the routing overlay arranges for it to assume some of
the responsibilities of other nodes. When a node leaves (either voluntarily or as a
result of a system or network fault), its responsibilities are distributed amongst the
other nodes.

An object’s GUID is computed from all or part of the state of the object using a function
that delivers a value that is, with very high probability, unique. Uniqueness is verified
by searching for another object with the same GUID. A hash function (such as SHA-1,
see Section 11.4) is used to generate the GUID from the object’s value. Because these
randomly distributed identifiers are used to determine the placement of objects and to
retrieve them, overlay routing systems are sometimes described as distributed hash

tables (DHT). This is reflected by the simplest form of API used to access them, as
shown in Figure 10.4. With this API, the put() operation is used to submit a data item to
be stored together with its GUID. The DHT layer takes responsibility for choosing a
location for it, storing it (with replicas to ensure availability) and providing access to it
via the get() operation. 

A slightly more flexible form of API is provided by a distributed object location

and routing (DOLR) layer, as shown in Figure 10.5. With this interface objects can be
stored anywhere and the DOLR layer is responsible for maintaining a mapping between
object identifiers (GUIDs) and the addresses of the nodes at which replicas of the objects
are located. Objects may be replicated and stored with the same GUID at different hosts,
and the routing overlay takes responsibility for routing requests to the nearest available
replica.

With the DHT model, a data item with GUID X is stored at the node whose GUID
is numerically closest to X and at the r hosts whose GUIDs are next-closest to it
numerically, where r is a replication factor chosen to ensure a very high probability of
availability. With the DOLR model, locations for the replicas of data objects are decided
outside the routing layer and the DOLR layer is notified of the host address of each
replica using the publish() operation.

Figure 10.4 Basic programming interface for a distributed hash table (DHT) as implemented by the 
PAST API over Pastry 

put(GUID, data) 

Stores data in replicas at all nodes responsible for the object identified by GUID.

remove(GUID)

Deletes all references to GUID and the associated data.

value = get(GUID)

Retrieves the data associated with GUID from one of the nodes responsible for it. 
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The interfaces in Figures 10.4 and 10.5 are based on a set of abstract
representations proposed by Dabek et al. [2003] to show that most peer-to-peer routing
overlay implementations developed to date provide very similar functionality.

Research on the design of routing overlay systems began in 2000 and had reached
fruition by 2005, with the development and evaluation of several successful prototypes.
The evaluations demonstrated that their performance and dependability were adequate
for use in many production environments. In the next section we describe two of these
in detail: Pastry, which implements a distributed hash table API similar to the one
presented in Figure 10.4, and Tapestry, which implements an API similar to that shown
in Figure 10.5. Both Pastry and Tapestry employ a routing mechanism known as prefix

routing to determine routes for the delivery of messages based on the values of the
GUIDs to which they are addressed. Prefix routing narrows the search for the next node
along the route by applying a binary mask that selects an increasing number of
hexadecimal digits from the destination GUID after each hop. (This technique is also
employed in classless interdomain routing for IP packets, as outlined in Section 3.4.3.) 

Other routing schemes have been developed that exploit different measures of
distance to narrow the search for the next hop destination. Chord [Stoica et al. 2001]
bases the choice on the numerical difference between the GUIDs of the selected node
and the destination node. CAN [Ratnasamy et al. 2001] uses distance in a d-dimensional
hyperspace into which nodes are placed. Kademlia [Maymounkov and Mazieres 2002]
uses the XOR of pairs of GUIDs as a metric for distance between nodes. Because XOR
is symmetric, Kademlia can maintain participants’ routing tables very simply; they
always receive requests from the same nodes contained in their routing tables.

GUIDs are not human-readable, so client applications must obtain the GUIDs for
resources of interest through some form of indexing service using human-readable
names or search requests. Ideally, these indexes are also stored in a peer-to-peer manner
to overcome the weaknesses of centralized indexes evidenced by Napster. But in simple
cases, such as music files or publications available for peer-to-peer download, they can
simply be indexed on web pages (cf. BitTorrent [Cohen 2003]). In BitTorrent a web

Figure 10.5 Basic programming interface for distributed object location and routing (DOLR) as 
implemented by Tapestry

publish(GUID) 

GUID can be computed from the object (or some part of it, e.g., its name). This 
function makes the node performing a publish operation the host for the object 
corresponding to GUID.

unpublish(GUID)

Makes the object corresponding to GUID inaccessible.

sendToObj(msg, GUID, [n])

Following the object-oriented paradigm, an invocation message is sent to an object 
in order to access it. This might be a request to open a TCP connection for data 
transfer or to return a message containing all or part of the object’s state. The final 
optional parameter [n], if present, requests the delivery of the same message to n
replicas of the object.
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index search leads to a stub file containing details of the desired resource, including its
GUID and the URL of a tracker – a host that holds an up-to-date list of network
addresses for providers willing to supply the file (see Chapter 20 for more details of the
BitTorrent protocol).

The foregoing description of routing overlays will probably have raised questions
in the reader’s mind about their performance and reliability. Answers to these questions
will emerge from the descriptions of practical routing overlay systems in the next
section.

10.5 Overlay case studies: Pastry, Tapestry

The prefix routing approach is adopted by both Pastry and Tapestry. Pastry is the
message routing infrastructure deployed in several applications including PAST
[Druschel and Rowstron 2001], an archival (immutable) file storage system
implemented as a distributed hash table with the API in Figure 10.4, and Squirrel, a peer-
to-peer web caching service described in Section 10.6.1. Pastry has a straightforward but
effective design that makes it a good first example for us to study in detail. 

Tapestry is the basis for the OceanStore storage system, which we describe in
Section 10.6.2. It has a more complex architecture than Pastry because it aims to support
a wider range of locality approaches. We describe Tapestry in Section 10.5.2.

We also look at alternative unstructured approaches in Section 10.5.3, looking in
detail at the overlay style adopted by Gnutella.

10.5.1 Pastry

Pastry [Rowstron and Druschel 2001, Castro et al. 2002a, freepastry.org] is a routing
overlay with the characteristics that we outlined in Section 10.4. All the nodes and
objects that can be accessed through Pastry are assigned 128-bit GUIDs. For nodes,
these are computed by applying a secure hash function (such as SHA-1; see Section
11.4.3) to the public key with which each node is provided. For objects such as files, the
GUID is computed by applying a secure hash function to the object’s name or to some
part of the object’s stored state. The resulting GUIDs have the usual properties of secure
hash values – that is, they are randomly distributed in the range 0 to 2128–1. They
provide no clues as to the value from which they were computed, and clashes between
GUIDs for different nodes or objects are extremely unlikely. (If a clash occurs, Pastry
detects it and takes remedial action.)

In a network with N participating nodes, the Pastry routing algorithm will
correctly route a message addressed to any GUID in O(log N) steps. If the GUID
identifies a node that is currently active, the message is delivered to that node; otherwise,
the message is delivered to the active node whose GUID is numerically closest to it.
Active nodes take responsibility for processing requests addressed to all objects in their
numerical neighbourhood. 

Routing steps involve the use of an underlying transport protocol (normally UDP)
to transfer the message to a Pastry node that is ‘closer’ to its destination. But note that
the closeness referred to here is in an entirely artificial space – the space of GUIDs. The
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real transport of a message across the Internet between two Pastry nodes may require a
substantial number of IP hops. To minimize the risk of unnecessarily extended transport
paths, Pastry uses a locality metric based on network distance in the underlying network
(such as a hop counts or round-trip latency measurements) to select appropriate
neighbours when setting up the routing tables used at each node.

Thousands of hosts located at widely dispersed sites can participate in a Pastry
overlay. It is fully self-organizing: when new nodes join the overlay they obtain the data
needed to construct a routing table and other required state from existing members in
O(log N) messages, where N is the number of hosts participating in the overlay. In the
event of a node failure or departure, the remaining nodes can detect its absence and
cooperatively reconfigure to reflect the required changes in the routing structure in a
similar number of messages. 

Routing algorithm  •  The full routing algorithm involves the use of a routing table at
each node to route messages efficiently, but for the purposes of explanation, we describe
the routing algorithm in two stages. The first stage describes a simplified form of the
algorithm that routes messages correctly but inefficiently without a routing table, and

Figure 10.6 Circular routing alone is correct but inefficient Based on Rowstron and Druschel [2001]

The dots depict live nodes. The space is considered as circular: node 0 is adjacent to node
(2128-1). The diagram illustrates the routing of a message from node 65A1FC to D46A1C
using leaf set information alone, assuming leaf sets of size 8 (l = 4). This is a degenerate type
of routing that would scale very poorly; it is not used in practice. 

0 FFFFF....F (2128-1)
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D13DA3
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D467C4
D46A1C
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the second stage describes the full routing algorithm, which routes a request to any node
in O(log N) messages:

Stage I: Each active node stores a leaf set – a vector L (of size 2l) containing the
GUIDs and IP addresses of the nodes whose GUIDs are numerically closest on either
side of its own (l above and l below). Leaf sets are maintained by Pastry as nodes join
and leave. Even after a node failure, they will be corrected within a short time. (Fault
recovery is discussed below.) It is therefore an invariant of the Pastry system that the
leaf sets reflect a recent state of the system and that they converge on the current state
in the face of failures up to some maximum rate of failure.

The GUID space is treated as circular: GUID 0’s lower neighbour is 2128–1.
Figure 10.6 gives a view of active nodes distributed in this circular address space.
Since every leaf set includes the GUIDs and IP addresses of the current node’s
immediate neighbours, a Pastry system with correct leaf sets of size at least 2 can
route messages to any GUID trivially as follows: any node A that receives a message
M with destination address D routes the message by comparing D with its own GUID
A and with each of the GUIDs in its leaf set and forwarding M to the node amongst
them that is numerically closest to D.

Figure 10.7 First four rows of a Pastry routing table

The routing table is located at a node whose GUID begins 65A1. Digits are in hexadecimal.
The ns represent [GUID, IP address] pairs that act as node handles specifying the next hop
to be taken by messages addressed to GUIDs that match each given prefix. Grey-shaded
entries in the table body indicate that the prefix matches the current GUID up to the given
value of p: the next row down or the leaf set should be examined to find a route. Although
there are a maximum of 128 rows in the table, only log16 N rows will be populated on average
in a network with N active nodes. 

 p = GUID prefixes and corresponding node handles n

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

n n n n n n n n n n n n n n n

1 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6F 6E 6F

n n n n n n n n n n n n n n n

2 650 651 652 653 654 655 656 657 658 659 65A 65B 65C 65D 65E 65F

n n n n n n n n n n n n n n n

3 65A0 65A1 65A2 65A3 65A4 65A5 65A6 65A7 65A8 65A9 65AA 65AB 65AC 65AD 65AE 65AF

n n n n n n n n n n n n n n n
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Figure 10.6 illustrates this for a Pastry system with l = 4. (In typical real
installations of Pastry, l = 8.) Based on the definition of leaf sets we can conclude that
at each step M is forwarded to a node that is closer to D than the current node and that
this process will eventually deliver M to the active node closest to D. But such a
routing scheme is clearly very inefficient, requiring ~ N/2l hops to deliver a message
in a network with N nodes.

Stage II: The second part of our explanation describes the full Pastry algorithm and
shows how efficient routing is achieved with the aid of routing tables.

Each Pastry node maintains a tree-structured routing table giving GUIDs and
IP addresses for a set of nodes spread throughout the entire range of 2128 possible
GUID values, with increased density of coverage for GUIDs numerically close to its
own. 

Figure 10.7 shows the structure of the routing table for a specific node, and
Figure 10.8 illustrates the actions of the routing algorithm. The routing table is
structured as follows: GUIDs are viewed as hexadecimal values and the table
classifies GUIDs based on their hexadecimal prefixes. The table has as many rows as
there are hexadecimal digits in a GUID, so for the prototype Pastry system that we
are describing, there are 128/4 = 32 rows. Any row n contains 15 entries – one for
each possible value of the nth hexadecimal digit, excluding the value in the local

Figure 10.8 Pastry routing example Based on Rowstron and Druschel [2001]

Routing a message from node 65A1FC to D46A1C. With the aid of a well-populated routing
table the message can be delivered in ~ log16(N ) hops. 
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node’s GUID. Each entry in the table points to one of the potentially many nodes
whose GUIDs have the relevant prefix.

The routing process at any node A uses the information in its routing table R
and leaf set L to handle each request from an application and each incoming message
from another node according to the algorithm shown in Figure 10.9.

We can be sure that the algorithm will succeed in delivering M to its destination because
lines 1, 2 and 7 perform the actions described in Stage I of our description above, and
we have shown this to be a complete, although inefficient, routing algorithm. The
remaining steps are designed to use the routing table to improve the algorithm’s
performance by reducing the number of hops required. 

Lines 4–5 come into play whenever D does not fall within the numeric range of
the current node’s leaf set and relevant routing table entries are available. The selection
of a destination for the next hop involves comparing the hexadecimal digits of D with
those of A (the GUID of the current node) from left to right to discover the length, p, of
their longest common prefix. This length is then used as a row offset, together with the
first non-matching digit of D as a column offset, to access the required element of the
routing table. The construction of the table ensures that this element (if not empty)
contains the IP address of a node whose GUID has p+1 prefix digits in common with D.

Line 7 is used when D falls outside the numeric range of the leaf set and there isn’t
a relevant routing table entry. This case is rare; it arises only when nodes have recently
failed and the table hasn’t yet been updated. The routing algorithm is able to proceed by
scanning both the leaf set and the routing table and forwarding M to another node whose
GUID has p matching prefix digits but is numerically closer to D. If that node is in L,
then we are following the Stage I procedure illustrated in Figure 10.6. If it is in R, then
it must be closer to D than any node in L, hence we are improving on Stage I. 

Host integration  •  New nodes use a joining protocol in order to acquire their routing
table and leaf set contents and notify other nodes of changes they must make to their

Figure 10.9 Pastry’s routing algorithm

To handle a message M addressed to a node D (where R[p,i] is the element at column i,
row p of the routing table):

1. If (L-l < D < Ll) {  // the destination is within the leaf set or is the current node.
2. Forward M to the element Li of the leaf set with GUID closest to D or the 

current node A.
3. } else { // use the routing table to despatch M to a node with a closer GUID
4. Find p, the length of the longest common prefix of D and A,. and i, the (p+1)th

hexadecimal digit of D.
5. If (R[p,i] null) forward M to R[p,i] // route M to a node with a longer common pre-

fix.
6. else { // there is no entry in the routing table.
7. Forward M to any node in L or R with a common prefix of length p but a

GUID that is numerically closer.
}

}
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tables. First, the new node computes a suitable GUID (typically by applying the SHA-1
hash function to the node’s public key), then it makes contact with a nearby Pastry node.
(Here we use the term nearby to refer to network distance, i.e., a small number of
network hops or low transmission delay; see the box below.)

Suppose that the new node’s GUID is X and the nearby node it contacts has GUID
A. Node X sends a special join request message to A, giving X as its destination. A

despatches the join message via Pastry in the normal way. Pastry will route the join

message to the existing node whose GUID is numerically closest to X; let us call this
destination node Z.

A, Z and all the nodes (B, C,...) through which the join message is routed on its
way to Z add additional steps to the normal Pastry routing algorithm, which result in the
transmission of the contents of the relevant parts of their routing tables and leaf sets to
X. X examines them and constructs its own routing table and leaf set from them,
requesting some additional information from other nodes if necessary. 

To see how X builds its routing table, note that the first row of the table depends
on the value of X’s GUID, and to minimize routing distances, the table should be
constructed to route messages via neighbouring nodes whenever possible. A is a
neighbour of X, so the first row of A’s table is a good initial choice for the first row of
X’s table, X0. On the other hand, A’s table is probably not relevant for the second row,
X1, because X’s and A’s GUIDs may not share the same first hexadecimal digit. The
routing algorithm ensures that X’s and B’s GUIDs do share the same first digit, though,
which implies that the second row of B’s routing table, B1, is a suitable initial value for
X1. Similarly, C2 is suitable for X2, and so on.

Furthermore, recalling the properties of leaf sets, note that since Z’s GUID is
numerically closest to X’s, X’s leaf set should be similar to Z’s. In fact, X’s ideal leaf set
will differ from Z’s by just one member. Z’s leaf set is therefore taken as an adequate
initial approximation, which will eventually be optimized through interaction with its
neighbours as described in the fault tolerance subsection below.

Finally, once X has constructed its leaf set and routing table in the manner outlined
above, it sends their contents to all the nodes identified in the leaf set and the routing
table and they adjust their own tables to incorporate the new node. The entire task of
incorporating a new node into the Pastry infrastructure requires the transmission of
O(log N) messages.

Host failure or departure  •  Nodes in the Pastry infrastructure may fail or depart without
warning. A Pastry node is considered failed when its immediate neighbours (in GUID
space) can no longer communicate with it. When this occurs, it is necessary to repair the
leaf sets that contain the failed node’s GUID. 

Nearest neighbour algorithm

The new node should have the address of at least one existing Pastry node, but it
might not be nearby. To ensure that nearby nodes are known Pastry includes a
‘nearest neighbour’ algorithm to find a nearby node by recursively measuring the
round-trip delay for a probe message sent periodically to each member of the leaf set
of the nearest currently known Pastry node.
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To repair its leaf set L, the node that discovers the failure looks for a live node
close to the failed node in L and requests a copy of that node’s leaf set, L’. L’ will contain
a sequence of GUIDs that partly overlap those in L, including one with an appropriate
value to replace the failed node. Other neighbouring nodes are then informed of the
failure and they perform a similar procedure. This repair procedure guarantees that leaf
sets will be repaired unless l adjacently numbered nodes fail simultaneously.

Repairs to routing tables are made on a ‘when discovered’ basis. The routing of
messages can proceed with some routing table entries that are no longer live – failed
routing attempts result in the use of a different entry from the same row of a routing
table.

Locality  •  The Pastry routing structure is highly redundant: there are many routes
between each pair of nodes. The construction of the routing tables aims to take
advantage of this redundancy to reduce actual message transmission times by exploiting
the locality properties of nodes in the underlying transport network (which is normally
a subset of nodes in the Internet). 

Recall that each row in a routing table contains 16 entries. The entries in the ith

row give the addresses of 16 nodes with GUIDs with i–1 initial hexadecimal digits that
match the current node’s GUID and an ith digit that takes each of the possible
hexadecimal values. A well-populated Pastry overlay will contain many more nodes
than can be contained in an individual routing table; whenever a new routing table is
being constructed a choice is made for each position between several candidates (taken
from routing information supplied by other nodes) based on a proximity neighbour
selection algorithm [Gummadi et al. 2003]. A locality metric (number of IP hops or
measured latency) is used to compare candidates and the closest available node is
chosen. Since the information available is not comprehensive, this mechanism cannot
produce globally optimal routings, but simulations have shown that it results in routes
that are on average only about 30–50% longer than the optimum. 

Fault tolerance  •  As described above, the Pastry routing algorithm assumes that all
entries in routing tables and leaf sets refer to live, correctly functioning nodes. All nodes
send ‘heartbeat’ messages (i.e., messages sent at fixed time intervals to indicate that the
sender is alive) to neighbouring nodes in their leaf sets, but information about failed
nodes detected in this manner may not be disseminated sufficiently rapidly to eliminate
routing errors. Nor does it account for malicious nodes that may attempt to interfere with
correct routing. To overcome these problems, clients that depend upon reliable message
delivery are expected to employ an at-least-once delivery mechanism (see Section
5.3.1) and repeat their requests several times in the absence of a response. This will
allow Pastry a longer time window to detect and repair node failures. 

To deal with any remaining failures or malicious nodes, a small degree of
randomness is introduced into the route selection algorithm described in Figure 10.9.
Essentially, the step in line 5 of Figure 10.9 is modified in a randomly selected small
proportion of cases to yield a common prefix that is less than the maximum length. This
results in the use of a routing taken from an earlier row of the routing table, producing
less optimal but different routing than the standard version of the algorithm. With this
random variation in the routing algorithm, client retransmissions should eventually
succeed even in the presence of a small number of malicious nodes.
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Dependability   •  The authors of Pastry have developed an updated version called
MSPastry [Castro et al. 2003] that uses the same routing algorithm and similar host
management methods, but also includes some additional dependability measures and
some performance optimizations in the host management algorithms. 

Dependability measures include the use of acknowledgements at each hop in the
routing algorithm. If the sending host does not receive an acknowledgement after a
specified timeout, it selects an alternative route and retransmits the message. The node
that failed to send an acknowledgement is then noted as a suspected failure.

As mentioned above, to detect failed nodes each Pastry node periodically sends a
heartbeat message to its immediate neighbour to the left (i.e., with a lower GUID) in the
leaf set. Each node also records the time of the last heartbeat message received from its
immediate neighbour on the right (with a higher GUID). If the interval since the last
heartbeat exceeds a timeout threshold, the detecting node starts a repair procedure that
involves contacting the remaining nodes in the leaf set with a notification about the
failed node and a request for suggested replacements. Even in the case of multiple
simultaneous failures, this procedure terminates with all nodes on the left side of the
failed node having leaf sets that contain the l live nodes with the closest GUIDs.

We have seen that the routing algorithm can function correctly using leaf sets
alone; but the maintenance of the routing tables is important for performance. Suspected
failed nodes in routing tables are probed in a similar manner to that used for the leaf set
and if they fail to respond, their routing table entries are replaced with a suitable
alternative obtained from a nearby node. In addition, a simple gossip protocol (see
Section 18.4.1) is used to periodically exchange routing table information between
nodes in order to repair failed entries and prevent slow deterioration of the locality
properties. The gossip protocol is run about every 20 minutes.

Evaluation work  •  Castro and his colleagues have carried out an exhaustive
performance evaluation of MSPastry, aimed at determining the impact on performance
and dependability of the host join/leave rate and the associated dependability
mechanisms [Castro et al. 2003].

The evaluation was performed by running the MSPastry system under control of
a simulator running on a single machine that simulates a large network of hosts, with
message passing replaced by simulated transmission delays. The simulation realistically
modelled the join/leave behaviour of hosts and IP transmission delays based on
parameters from real installations. 

All of the dependability mechanisms of MSPastry were included, with realistic
intervals for probe and heartbeat messages. The simulation work was validated by
comparison with measurements taken with MSPastry running a real application load
across an internal network with 52 nodes.

Here we summarize the key results.

Dependability: With an assumed IP message loss rate of 0%, MSPastry failed to
deliver 1.5 in 100,000 requests (presumably due to the non-availability of destination
hosts), and all requests that were delivered arrived at the correct node. 

With an assumed IP message loss rate of 5%, MSPastry lost about 3.3 in
100,000 requests and 1.6 in 100,000 requests were delivered to the wrong node. The
use of per-hop acknowledgements in MSPastry ensures that all lost or misdirected
messages are eventually retransmitted and reach the correct node.



444 CHAPTER 10 PEER-TO-PEER SYSTEMS

Performance: The metric used to evaluate the performance of MSPastry is called
relative delay penalty (RDP) [Chu et al. 2000], or stretch. RDP is a direct measure
of the extra cost incurred in employing an overlay routing layer. It is the ratio between
the average delay in delivering a request by the routing overlay and in delivering a
similar message between the same two nodes via UDP/IP. The RDP values observed
for MSPastry under simulated loads ranged from ~1.8 with zero network message
loss to ~2.2 with 5% network message loss. 

Overheads: The extra network load generated by control traffic – messages involved
in maintaining leaf sets and routing tables – was less than 2 messages per minute per
node. The RDP and control traffic were both increased significantly for session
lengths less than about 60 minutes due to initial setup overheads. 

Overall these results show that overlay routing layers can be constructed that achieve
good performance and high dependability with thousands of nodes operating in realistic
environments. Even with mean session lengths shorter than 60 minutes and high
network error rates the system degrades gracefully, continuing to provide an effective
service.

Optimizing overlay lookup latency  •  Zhang et al. [2005a] have shown that the lookup
performance of an important class of overlay networks (including Pastry, Chord and
Tapestry) can be substantially enhanced by the inclusion of a simple learning algorithm
that measures the latencies actually experienced in accessing the overlay nodes and thus
incrementally modifies the overlay routing tables to optimize access latencies.

10.5.2 Tapestry

Tapestry implements a distributed hash table and routes messages to nodes based on
GUIDs associated with resources using prefix routing in a manner similar to Pastry. But
Tapestry’s API conceals the distributed hash table from applications behind a DOLR
interface like the one shown in Figure 10.5. Nodes that hold resources use the
publish(GUID) primitive to make them known to Tapestry, and the holders of resources
remain responsible for storing them. Replicated resources are published with the same
GUID by each node that holds a replica, resulting in multiple entries in the Tapestry
routing structure.

This gives Tapestry applications additional flexibility: they can place replicas
close (in network distance) to frequent users of resources in order to reduce latency and
minimize network load or to ensure tolerance of network and host failures. But this
distinction between Pastry and Tapestry is not fundamental: Pastry applications can
achieve similar flexibility by making the objects associated with GUIDs simply act as
proxies for more complex application-level objects and Tapestry can be used to
implement a distributed hash table in terms of its DOLR API [Dabek et al. 2003].

In Tapestry 160-bit identifiers are used to refer both to objects and to the nodes
that perform routing actions. Identifiers are either NodeIds, which refer to computers
that perform routing operations, or GUIDs, which refer to the objects. For any resource
with GUID G there is a unique root node with GUID RG that is numerically closest to
G. Hosts H holding replicas of G periodically invoke publish(G) to ensure that newly
arrived hosts become aware of the existence of G. On each invocation of publish(G) a
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publish message is routed from the invoker towards node RG. On receipt of a publish
message RG enters (G, IPH), the mapping between G and the sending host’s IP address
in its routing table, and each node along the publication path caches the same mapping.
This process is illustrated in Figure 10.10. When nodes hold multiple (G, IP) mappings
for the same GUID, they are sorted by the network distance (round-trip time) to the IP
address. For replicated objects this results in the selection of the nearest available replica
of the object as the destination for subsequent messages sent to the object. 

Zhao et al. [2004] give full details of the Tapestry routing algorithms and the
management of Tapestry’s routing tables in the face of node arrival and departure. Their
paper includes comprehensive performance evaluation data based on simulation of
large-scale Tapestry networks, showing that its performance is similar to Pastry’s. In
Section 10.6.2 we describe the OceanStore file store, which has been built and deployed
over Tapestry.

10.5.3 From structured to unstructured peer-to-peer

The discussion so far has focused exclusively on what are known as structured peer-to-

peer approaches. In structured approaches, there is an overall global policy governing
the topology of the network, the placement of objects in the network and the routing or
search functions used to locate objects in the network. In other words, there is a specific
(distributed) data structure underpinning the associated overlay and a set of algorithms

Figure 10.10 Tapestry routing From Zhao et al. [2004]

Replicas of the file Phil’s Books (G=4378) are hosted at nodes 4228 and AA93. Node 4377 is
the root node for object 4378. The Tapestry routings shown are some of the entries in routing
tables. The publish paths show routes followed by the publish messages laying down cached
location mappings for object 4378. The location mappings are subsequently used to route
messages sent to 4378.

4228

4377

437A

4361

43FE

4664

4B4F

E791

4A6D

AA9357EC

4378
Phil’s
Books

4378
Phil’s
Books

(Root for 4378)

publish path

Tapestry routings
for 4377

Location mapping
for 4378

Routes actually 
taken by send(4378)



446 CHAPTER 10 PEER-TO-PEER SYSTEMS

operating over that data structure. This can clearly be seen in the examples of Pastry and
Tapestry based on the underlying distributed hash table and associated ring structures.
Because of the structure imposed, such algorithms are efficient and offer time bounds
on the location of objects, but at the cost of maintaining the underlying structures, often
in highly dynamic environments.

Because of this maintenance argument, unstructured peer-to-peer approaches
have also been developed. In unstructured approaches, there is no overall control over
the topology or the placement of objects within the network. Rather, the overlay is
created in an ad hoc manner, with each node that joins the network following some
simple, local rules to establish connectivity. In particular, a joining node will establish
contact with a set of neighbours knowing that the neighbours will also be connected to
further neighbours and so on, forming a network that is fundamentally decentralized and
self-organizing and hence resilient to node failure. To locate a given object, it is then
necessary to carry out a search of the resultant network topology; clearly, this approach
cannot offer any guarantees of being able to find the object and performance will be
unpredictable. In addition, there is a real risk of generating excessive message traffic to
locate objects.

A summary of the relative strengths of structured and unstructured peer-to-peer
systems is provided in Figure 10.11. It is interesting to reflect that, despite the apparent
drawbacks of unstructured peer-to-peer systems, this approach is dominant in the
Internet, particularly in supporting peer-to-peer file sharing (with systems such as
Gnutella, FreeNet and BitTorrent all adopting unstructured approaches). As will be
seen, significant advancements have been made in such systems to improve the
performance of unstructured approaches and this work is significant given the amount
of traffic generated by peer-to-peer file sharing in the Internet (for example, a study
carried out in the years 2008/9 indicates that peer-to-peer file-sharing applications
account for between 43% and 70% of all Internet traffic, depending on the part of the
world being considered [www.ipoque.com]).

Strategies for effective search  •  In peer-to-peer file sharing, all nodes in the network
offer files to the greater environment. As mentioned above, the problem of locating a file
then maps onto a search of the whole network to locate appropriate files. If implemented
naively, this would be implemented by flooding the network with requests. This is
precisely the strategy adopted in early versions of Gnutella. In particular, in Gnutella

Figure 10.11 Structured versus unstructured peer-to-peer systems 

Structured peer-to-peer Unstructured peer-to-peer

Advantages Guaranteed to locate objects (assuming 
they exist) and can offer time and 
complexity bounds on this operation;
relatively low message overhead.

Self-organizing and naturally resilient to 
node failure.

Disadvantages Need to maintain often complex 
overlay structures, which can be 
difficult and costly to achieve, 
especially in highly dynamic 
environments.

Probabilistic and hence cannot offer 
absolute guarantees on locating objects;
prone to excessive messaging overhead 
which can affect scalability.
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0.4, every node forwarded a request to each of its neighbours, who then in turn passed
this on to their neighbours, and so on until a match was found. Each search was also
constrained with a time-to-live field limiting the number of hops. At the time Gnutella
0.4 was deployed, the average connectivity was around 5 neighbours per node. This
approach is simple but does not scale and quickly floods the network with search-related
traffic.

A number of refinements have been developed for search in unstructured
networks [Lv et al. 2002, Tsoumakos and Roussopoulos 2006], including:

Expanded ring search: In this approach, the initiating node carries out a series of
searches with increasing values in the time-to-live field, recognizing that a significant
number of the requests will be met locally (especially if coupled with an effective
replication strategy, as discussed below).

Random walks: With random walks, the initiating node sets off a number of walkers
who follow their own random pathways through the interconnected graph offered by
the unstructured overlay.

Gossiping: In gossiping approaches, a node sends a request to a given neighbour with
a certain probability, and hence requests propagate through the network in a manner
similar to a virus through a population (as such, gossip protocols are also referred to
as epidemic protocols). The probability can either be fixed for a given network or
calculated dynamically based on previous experience and/or the current context.
(Note that gossiping is a common technique in distributed systems; further
applications can be found in Chapters 6 and 18).

Such strategies can significantly reduce the overhead of search in unstructured networks
and hence increase the scalability of the algorithms. Such strategies are also often
supported by appropriate replication techniques. By replicating content across a number
of peers, the probability of efficient discovery of particular files is significantly
enhanced. Techniques include whole file replication and the scattering of fragments of
files across the Internet – an approach that is used effectively in BitTorrent, for example,
to reduce the burden on any one peer in downloading large files (see Chapter 20).

Case study: Gnutella  •  Gnutella was originally launched in 2000 and since then has
grown to be one of the dominant and most influential peer-to-peer file-sharing
applications. As mentioned above, initially the protocol adopted a rather simple flooding
strategy that did not scale particularly well. In response to this, Gnutella 0.6 introduced
a range of modifications that have significantly improved the performance of the
protocol.

The first major amendment was to move from a pure peer-to-peer architecture
where all nodes are equal to one where all peers still cooperate to offer the service but
some nodes, designated to have additional resources, are elected as ultrapeers, and form
the heart of the network, with other peers taking on the role of leaf nodes (or leaves).
Leaves connect themselves to a small number of ultrapeers which are heavily connected
to other ultrapeers (with over 32 connections each). This dramatically reduces the
maximum number of hops required for exhaustive search. This style of peer-to-peer
architecture is referred to as a hybrid architecture and is also the approach adopted in
Skype (as discussed in Section 4.5.2).
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The other key enhancement was the introduction of a Query Routing Protocol
(QRP) designed to reduce the number of queries issued by nodes. The protocol is based
on exchanging information about files contained on nodes and hence only forwarding
queries down paths where the system thinks there will be a positive outcome. Rather
than sharing information about files directly, the protocol produces a set of numbers
from hashing on the individual words in a file name. For example, a file name such as
“Chapter ten on P2P” will be represented by four numbers, say <65, 47, 09, 76>. A node
produces a Query Routing Table (QRT) containing the hash values representing each of
the files contained on that node which it then sends to all its associated ultrapeers.
Ultrapeers then produce their own Query Routing Tables based on a union of all the
entries from all the connected leaves together with entries for files contained in that
node, and exchange these with other connected ultrapeers. In this way, ultrapeers can
determine which paths offer a valid route for a given query, thus significantly reducing
the amount of unnecessary traffic. More specifically, an ultrapeer will forward a query
to a node if a match is found (indicating that node has the file) and will carry out the
same check before passing it on to another ultrapeer if it is the last hop to the file. Note
that, in order to avoid overloading of ultrapeers, nodes will send a query to one ultrapeer
at a time and then wait for a specified period to see if they get a positive response.

Finally, a query in Gnutella contains the network address of the initiating
ultrapeer, which implies that once a file is found it can be sent directly to the associated
ultrapeer (using UDP), avoiding a reverse traversal through the graph. 

The major elements associated with Gnutella 0.6 are summarized in Figure 10.12.

Figure 10.12 Key elements in the Gnutella protocol

File QRT

Ultrapeer

QRT

Leaf node



SECTION 10.6 APPLICATION CASE STUDIES: SQUIRREL, OCEANSTORE, IVY 449

10.6 Application case studies: Squirrel, OceanStore, Ivy

The routing overlay layers described in the preceding section have been exploited in
several application experiments and the resulting applications have been extensively
evaluated. We have chosen three of them for further study, the Squirrel web caching
service based on Pastry, and the OceanStore and Ivy file stores.

10.6.1 Squirrel web cache

The authors of Pastry have developed the Squirrel peer-to-peer web caching service for
use in local networks of personal computers [Iyer et al. 2002]. In medium and large local
networks web caching is typically performed using a dedicated server computer or
cluster. The Squirrel system performs the same task by exploiting storage and
computing resources already available on desktop computers in the local network. We
first give a brief general description of the operation of a web caching service, then we
outline the design of Squirrel and review its effectiveness. 

Web caching  •  Web browsers generate HTTP GET requests for Internet objects like
HTML pages, images, etc. These may be serviced from a browser cache on the client
machine, from a proxy web cache (a service running on another computer in the same
local network or on a nearby node in the Internet) or from the origin web server (the
server whose domain name is included in the parameters of the GET request), depending
on which contains a fresh copy of the object. The local and proxy caches each contain a
set of recently retrieved objects organized for fast lookup by URL. Some objects are
uncacheable because they are generated dynamically by the server in response to each
request.

When a browser cache or proxy web cache receives a GET request, there are three
possibilities: the requested object is uncacheable, there is a cache miss or the object is
found in the cache. In the first two cases the request is forwarded to the next level
towards the origin web server. When the requested object is found in a cache, the cached
copy must be tested for freshness.

Web objects are stored in web servers and cache servers with some additional
metadata values including a timestamp giving a date of last modification (T) and
possibly a time-to-live (t) or an eTag (a hash computed from the contents of a web page).
These metadata items are supplied by the origin server whenever an object is returned
to a client.

Objects that have an associated time-to-live t, are considered fresh if T+t is later
than the current real time. For objects without a time-to-live, an estimated value for t is
used (often only a few seconds). If the result of this freshness evaluation is positive, the
cached object is returned to the client without contacting the origin web server.
Otherwise, a conditional GET (cGET) request is issued to the next level for validation.
There are two basic types of cGET requests: an If-Modified-Since request containing the
timestamp of the last known modification, and an If-None-Match request containing an
eTag representing the object contents. This cGET request can be serviced either by
another web cache or by the origin server. A web cache that receives a cGET request and
does not have a fresh copy of the object forwards the request towards the origin web
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server. The response contains either the entire object, or a not-modified message if the
cached object is unchanged.

Whenever a newly modified cacheable object is received from the origin server,
it is added to the set of objects in the local cache (displacing older objects that are still
valid if necessary) together with a timestamp, a time-to-live and an eTag if available.

The scheme described above is the basis of operation for the centralized proxy
web caching services deployed in most local networks that support large numbers of
web clients. Proxy web caches are typically implemented as a multi-threaded process
running on a single dedicated host or a set of processes running on a cluster of computers
and require a substantial quantity of dedicated computing resources in both cases. 

Squirrel  •  The Squirrel web caching service performs the same functions using a small
part of the resources of each client computer on a local network. The SHA-1 secure hash
function is applied to the URL of each cached object to produce a 128-bit Pastry GUID.
Since the GUID is not used to validate the contents, it need not be based on the entire
object contents, as it is in other Pastry applications. The authors of Squirrel base their
justification for this on the end-to-end argument (Section 2.3.3), arguing that the
authenticity of a web page may be compromised at many points in its journey from the
host to the client; authentication of cached pages adds little to any overall guarantee of
authenticity and the HTTPS protocol (incorporating end-to-end Transport Layer
Security, discussed in Section 11.6.3) should be used to achieve a much better guarantee
for those interactions that require it. 

In the simplest implementation of Squirrel – which proved to be the most effective
one – the node whose GUID is numerically closest to the GUID of an object becomes
that object’s home node, responsible for holding the cached copy of the object when
there is one. 

Client nodes are configured to include a local Squirrel proxy process, which takes
responsibility for both local and remote caching of web objects. If a fresh copy of a
required object is not in the local cache, Squirrel routes a Get request or a cGet request
(when there is a stale copy of the object in the local cache) via Pastry to the home node.
If the home node has a fresh copy, it directly responds to the client with a not-modified

message or a fresh copy, as appropriate. If the home node has a stale copy or no copy of
the object, it issues a cGet or a Get to the origin server, respectively. The origin server
may respond with a not-modified message or a copy of the object. In the former case, the
home node revalidates its cache entry and forwards a copy of the object to the client. In
the latter case, it forwards a copy of the new value to the client and places a copy in its
local cache if the object is cacheable.

Evaluation of Squirrel  •  Squirrel was evaluated by simulation using modelled loads
derived from traces of the activity of existing centralized proxy web caches in two real
working environments within Microsoft, one with 105 active clients (in Cambridge) and
the other with more than 36,000 (in Redmond). The evaluation compared the
performance of a Squirrel web cache with a centralized one in three respects: 

The reduction in total external bandwidth used: The total external bandwidth is
inversely related to the hit ratio, since it is only cache misses that generate requests
to external web servers. The hit ratios observed for centralized web cache servers
were 29% (for Redmond) and 38% (for Cambridge). When the same activity logs
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were used to generate a simulated load for the Squirrel cache, with each client
contributing 100 Mbytes of disk storage, very similar hit ratios of 28% (Redmond)
and 37% (Cambridge) were achieved. It follows that the external bandwidth would
be reduced by a similar proportion. 

 The latency perceived by users for access to web objects: The use of a routing
overlay results in several message transfers (routing hops) across the local network
to transmit a request from a client to the host responsible for caching the relevant
object (the home node). The mean numbers of routing hops observed in the
simulation were 4.11 hops to deliver a GET request in the Redmond case and 1.8 hops
in the Cambridge case, whereas only a single message transfer is required to access
a centralized cache service.

However local transfers take only a few milliseconds with modern Ethernet
hardware, including TCP connection setup time, whereas wide area TCP message
transfers across the Internet require 10–100 ms. The Squirrel authors therefore argue
that the latency for access to objects found in the cache is swamped by the much
greater latency of access to objects not found in the cache, giving a similar user
experience to that provided with a centralized cache. 

The computational and storage load imposed on client nodes: The average number
of cache requests served for other nodes by each node over the whole period of the
evaluation was extremely low, at only 0.31 per minute (Redmond), indicating that the
overall proportion of system resources consumed is extremely low. 

Based on the measurements described above, the authors of Squirrel concluded that its
performance is comparable to that of a centralized cache. Squirrel achieves a reduction
in the observed latency for web page access close to that achievable by a centralized
cache server with a similarly sized dedicated cache. The additional load imposed on
client nodes is low and likely to be imperceptible to users. The Squirrel system was
subsequently deployed as the primary web cache in a local network with 52 client
machines using Squirrel, and the results confirmed their conclusions. 

10.6.2 OceanStore file store

The developers of Tapestry have designed and built a prototype for a peer-to-peer file
store. Unlike PAST, it supports the storage of mutable files. The OceanStore design
[Kubiatowicz et al. 2000; Kubiatowicz 2003; Rhea et al. 2001, 2003] aims to provide a
very large scale, incrementally scalable persistent storage facility for mutable data
objects with long-term persistence and reliability in an environment of constantly
changing network and computing resources. OceanStore is intended for use in a variety
of applications including the implementation of an NFS-like file service, electronic mail
hosting, databases and other applications involving the sharing and persistent storage of
large numbers of data objects.

The design includes provision for the replicated storage of both mutable and
immutable data objects. The mechanism for maintaining consistency between replicas
can be tailored to application needs in a manner that was inspired by the Bayou system
(Section 18.4.2). Privacy and integrity are achieved through the encryption of data and
the use of a Byzantine agreement protocol (see Section 15.5) for updates to replicated
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objects. This is needed because the trustworthiness of individual hosts cannot be
assumed.

An OceanStore prototype, called Pond [Rhea et al. 2003], has been built. It is
sufficiently complete to support applications and its performance has been evaluated
against a variety of benchmarks in order to validate the OceanStore design and compare
its performance with more traditional approaches. In the remainder of this section we
give an overview of the OceanStore/Pond design and summarize the evaluation results.

Pond uses the Tapestry routing overlay mechanism to place blocks of data at
nodes distributed throughout the Internet and to despatch requests to them.

Storage organization  •  OceanStore/Pond data objects are analogous to files, with their
data stored in a set of blocks. But each object is represented as an ordered sequence of
immutable versions that are (in principle) kept forever. Any update to an object results
in the generation of a new version. The versions share any unchanged blocks, following
the copy-on-write technique for creating and updating objects described in Section
7.4.2. So a small difference between versions requires only a small amount of additional
storage.

Objects are structured in a manner that is reminiscent of the Unix filing system,
with the data blocks organized and accessed through a metadata block called the root
block and additional indirection blocks if necessary (cf. Unix i-nodes). Another level of
indirection is used to associate a persistent textual or other externally visible name (for
example, the pathname for a file) with the sequence of versions of a data object. Figure

Figure 10.13 Storage organization of OceanStore objects
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10.13 illustrates this organization. GUIDs are associated with the object (an AGUID),
the root block for each version of the object (a VGUID), the indirection blocks and the
data blocks (BGUIDs). Several replicas of each block are stored at peer nodes selected
according to locality and storage availability criteria, and their GUIDs are published
(using the publish() primitive of Figure 10.5) by each of the nodes that holds a replica
so that Tapestry can be used by clients to access the blocks.

Three types of GUIDs are used, as summarized in Figure 10.14. The first two are
GUIDs of the type normally assigned to objects stored in Tapestry – they are computed
from the contents of the relevant block using a secure hash function so that they can be
used later to authenticate and verify the integrity of the contents. The blocks that they
reference are necessarily immutable, since any change to the contents of a block would
invalidate the use of the GUID as an authentication token. 

The third type of identifier used is AGUIDs. These refer (indirectly) to the entire
stream of versions of an object, enabling clients to access the current version of the
object or any previous version. Since the objects stored are mutable, the GUIDs used to
identify them cannot be derived from their contents, because that would render GUIDs
held in indexes, etc., obsolete whenever an object changed.

Instead, whenever a new storage object is created a permanent AGUID is
generated by applying a secure hash function to an application-specific name (e.g., a file
name) supplied by the client creating the object and a public key that represents the
object’s owner (see Section 11.2.5). In a filing system application, an AGUID would be
stored in the directories against each file name. 

The association between an AGUID and the sequence of versions of the object
that it identifies is recorded in a signed certificate that is stored and replicated by a
primary copy replication scheme (also called passive replication; see Section 18.3.1).
The certificate includes the VGUID of the current version and the root block for every
version contains the VGUID of the previous version, so there is a chain of references
enabling clients that hold a certificate to traverse the entire chain of versions (Figure
10.13). A signed certificate is needed to ensure that the association is authentic and has
been made by an authorized principal. Clients are expected to check this. Whenever a
new version of an object is created, a new certificate is generated holding the VGUID
of the new version together with a timestamp and a version sequence number. 

The trust model for peer-to-peer systems requires that construction of each new
certificate is agreed (as described below) amongst a small set of hosts called the inner

ring. Whenever a new object is stored in OceanStore, a set of hosts is selected to act as
the inner ring for that object. They use Tapestry’s publish() primitive to make the
AGUID for the object known to Tapestry. Clients can then use Tapestry to route requests
for the object’s certificate to one of the nodes in the inner ring.

Figure 10.14 Types of identifier used in OceanStore 

Name Meaning Description

BGUID block GUID Secure hash of a data block

VGUID version GUID BGUID of the root block of a version

AGUID active GUID Uniquely identifies all the versions of an object
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The new certificate replaces the old primary copy held at each inner ring node and
is disseminated to a larger number of secondary copies. It is left to clients to determine
how often they check for a new version (a similar decision has to be taken for cached
copies of files in NFS; most installations operate with a consistency window of 30
seconds between client and server; see Section 12.3).

As usual in peer-to-peer systems, trust cannot be placed in any individual host.
The updating of primary copies requires consensus agreement between the hosts in the
inner ring. They use a version of a state-machine-based Byzantine agreement algorithm
described by Castro and Liskov [2000] to update the object and sign the certificate. The
use of a Byzantine agreement protocol ensures that the certificate is correctly maintained
even if some members of the inner ring fail or behave maliciously. Because the
computational and communication costs of Byzantine agreement rise with the square of
the number of hosts involved, the number of hosts in the inner ring is kept small and the
resulting certificate is replicated more widely using the primary copy scheme mentioned
above.

Performing an update also involves checking access rights and serializing the
update with any other pending writes. Once the update process is completed for the
primary copy, the results are disseminated to secondary replicas stored on hosts outside
the inner ring using a multicast routing tree that is managed by Tapestry.

Because of their read-only nature, data blocks are replicated by a different, more
storage-efficient mechanism. This mechanism is based on the division of each block into
m equal-sized fragments, which are encoded using erasure codes [Weatherspoon and
Kubiatowicz 2002] to n fragments, where n>m. The key property of erasure coding is
that it is possible to reconstruct a block from any m of its fragments. In a system that uses
erasure coding all data objects remain available with the loss of up to n–m hosts. In the
Pond implementation m = 16 and n = 32, so for a doubling of the storage cost, the system
can tolerate the failure of up to 16 hosts without loss of data. Tapestry is used to store
fragments in and retrieve them from the network.

This high level of fault tolerance and data availability is achieved at some cost in
terms of reconstructing blocks from erasure-coded fragments. To minimize the impact
of this, the whole blocks are also stored in the network using Tapestry. Since they can
be reconstructed from their fragments, these blocks are treated as a cache – they are not
fault tolerant and they can be disposed of when storage space is required.

Performance  •  Pond was developed as a prototype to prove the feasibility of a scalable
peer-to-peer file service, rather than as a production implementation. It is implemented
in Java and includes almost all of the design outlined above. It was evaluated against
several purpose-designed benchmarks and in a simple emulation of an NFS client and
server in terms of OceanStore objects. The developers tested the NFS emulation against
the Andrew benchmark [Howard et al. 1988], which emulates a software development
workload. The table in Figure 10.15 shows the results for the latter. They were obtained
using 1 GHz Pentium III PC running Linux. The LAN tests were performed using a
Gigabit Ethernet and the WAN results were obtained using two sets of nodes linked by
the Internet. 

The conclusions drawn by the authors were that the performance of
OceanStore/Pond when operating over a wide area network (i.e., the Internet)
substantially exceeds that of NFS for reading and is within a factor of three of NFS for
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updating files and directories; the LAN results were substantially worse. Overall, the
results suggest that an Internet-scale peer-to-peer file service based on the OceanStore
design would be an effective solution for the distribution of files that do not change very
rapidly (such as cached copies of web pages). Its potential for use as an alternative to
NFS is questionable even for wide-area networks and is clearly uncompetitive for purely
local use.

These results were obtained with data blocks stored without erasure-code-based
fragmentation and replication. The use of public keys contributes substantially to the
computational cost of Pond’s operation. The figures shown are for 512-bit keys, whose
security is good but less than perfect. The results for 1024-bit keys were substantially
worse for the phases of those benchmarks that involved file updates. Other results
obtained with purpose-designed benchmarks included measurement of the impact of the
Byzantine agreement process on the latency of updates. These were in the range of 100
ms to 10 seconds. A test of update throughput achieved a maximum of 100
updates/second.

10.6.3 Ivy file system

Like OceanStore, Ivy [Muthitacharoen et al. 2002] is a read/write file system supporting
multiple readers and writers implemented over an overlay routing layer and a distributed
hash-addressed data store. Unlike OceanStore, the Ivy file system emulates a Sun NFS
server. Ivy stores the state of files as logs of the file update requests issued by Ivy clients
and reconstructs the files by scanning the logs whenever it is unable to satisfy an access
request from its local cache. The log records are held in the DHash distributed hash-
addressed storage service [Dabek et al. 2001]. (Logs were first used to record file
updates in the Sprite distributed operating system [Rosenblum and Ooosterhout 1992],
as described briefly in Section 12.5, but there they were used simply to optimize the
update performance of the file system.)

Figure 10.15 Performance evaluation of the Pond prototype emulating NFS 

The figures show times in seconds to run different phases of the Andrew benchmark. It has
five phases: (1) creates subdirectories recursively, (2) copies a source tree, (3) examines the
status of all the files in the tree without examining their data, (4) examines every byte of data
in all the files and (5) compiles and links the files.

LAN WAN Predominant 

operations in 

benchmark
Phase Linux

NFS

Pond Linux

NFS

Pond

1 0.0 1.9 0.9 2.8 Read and write

2 0.3 11.0 9.4 16.8 Read and write

3 1.1 1.8 8.3 1.8 Read

4 0.5 1.5 6.9 1.5 Read

5 2.6 21.0 21.5 32.0 Read and write

Total 4.5 37.2 47.0 54.9
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The design of Ivy resolves several previously unresolved issues arising from the
need to host files in partially trusted or unreliable machines, including:

• The maintenance of consistent file metadata (cf. i-node contents in Unix/NFS file
systems) with potentially concurrent file updates at different nodes. Locking is not
used because the failure of nodes or network connectivity might cause indefinite
blocking.

• Partial trust between participants and vulnerability to attacks of participants’
machines. Recovery from integrity failures caused by such attacks is based on the
notion of views of the file system. A view is a representation of the state
constructed from logs of the updates made by a set of participants. Participants
may be removed and a view recomputed without their updates. Thus a shared file
system is seen as the result of merging all the updates performed by a
(dynamically selected) set of participants.

• Continued operation during partitions in the network, which can result in
conflicting updates to shared files. Conflicting updates are resolved using methods
related to those used in the Coda file system (Section 18.4.3). 

Ivy implements an API at each client node that is based on the NFS server protocol
(similar to the set of operations listed in Section 12.3, Figure 12.9). Client nodes include
an Ivy server process that uses DHash to store and access log records at nodes
throughout a local or wide area network based on keys (GUIDs) that are computed as
the hash of the record contents (see Figure 10.16). DHash implements a programming
interface like the one shown in Figure 10.4 and replicates all entries at several nodes for

Figure 10.16 Ivy system architecture
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resilience and availability. The Ivy authors note that DHash could in principle be
replaced by another distributed hash-addressed store such as Pastry, Tapestry or CAN.

An Ivy file store consists of a set of update logs, one log per participant. Each Ivy
participant appends only to its own log but can read from all the logs that comprise the
file system. Updates are stored in separate per-participant logs so that they can be rolled
back in case of security breaches or consistency failures. 

An Ivy log is a reverse time-ordered linked list of log entries. Each log entry is a
timestamped record of a client request to change the contents or metadata of a file or
directory. DHash uses the 160-bit SHA-1 hash of a record as a key for placing and
retrieving the record. Each participant also maintains a mutable DHash block (called a
log-head) that points to the participant’s most recent log record. Mutable blocks are
assigned a cryptographic public-key pair by their owner. The contents of the block are
signed with the private key and can therefore be authenticated with the corresponding
public key. Ivy uses version vectors (that is, vector timestamps; see Section 14.4) to
impose a total order on log entries when reading from multiple logs. 

DHash stores a log record using a SHA-1 hash of its contents as the key. Log
records are chained in timestamp order using the DHash key as a link. The log-head
holds the key for the most recent log entry. To store and retrieve log-heads, a public key
pair is computed by the owner of the log. The public key value is used as its DHash key
and the private key is used by the owner to sign the log-head. Any participant that has
the public key can retrieve the log-head and use it to access all of the records in the log.

Assuming a file system composed of a single log for the moment, the canonical
execution method for a request to read a sequence of bytes from a file requires a
sequential scan of the log to find the log records that contain updates for the relevant
portion of the file. Logs are of unlimited length, but the scan terminates when the first
record or records are found that cover the required sequence of bytes. 

The canonical algorithm to access a multi-user, multiple-log file system involves
the comparison of vector timestamps in log records to determine the order of updates
(since a global clock cannot be assumed).

The time taken to perform this process for an operation as simple as a read request
is potentially very long. It is reduced to a more tolerable and predicable duration through
the use of a combination of local caches and snapshots. Snapshots are representations of
the file system computed and stored locally by each participant as a by-product of their
use of the logs. They constitute a soft representation of the file system in the sense that
they may be invalidated if a participant is ejected from the system.

Update consistency is close-to-open; that is, the updates performed on a file by an
application are not visible to other processes until the file is closed. The use of a close-
to-open consistency model enables write operations on a file to be saved at the client
node until the file is closed; then the entire set of write operations is written as a single
log record and a new log-head record is generated and written (an extension to the NFS
protocol enables the occurrence of a close operation in the application to be notified to
the Ivy server).

Since there is a separate Ivy server at each node and each autonomously stores its
updates in a separate log without coordination with the other servers, the serialization of
updates must be done at the time when logs are read in order to construct the content of
files. The version vectors written into log records can be used to order most updates, but
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conflicting updates are possible and they must be resolved by application-specific
automatic or manual methods, as is done in Coda (see Section 18.4.3).

Data integrity is achieved by a combination of the mechanisms that we have
already mentioned: log records are immutable and their address is a secure hash of their
contents; log-heads are verified by checking a public-key signature of their contents. But
the trust model allows for the possibility that a malicious participant may gain access to
a file system. For example, they might delete files that they own maliciously. When this
is detected, the malicious participant is ejected from the view; their log is no longer used
to calculate the contents of the file system and files that they have deleted are once again
visible in the new view.

The Ivy authors used a modified Andrew benchmark [Howard et al. 1988] to
compare the performance of Ivy with a standard NFS server in local and wide area
network environments. They considered (a) Ivy using local DHash servers compared to
a single local NFS server and (b) Ivy using DHash servers located at several remote
Internet sites compared to a single remote NFS server. They also considered the
performance characteristics as a function of the numbers of participants in a view, the
number of participants writing concurrently and the number of DHash servers used to
store the logs. 

They found that Ivy execution times were within a factor of two of NFS execution
times for most of the tests in the benchmark and within a factor of three for all of them.
The execution times for the wide area network deployment exceeded those for the local
case by a factor of 10 or more, but similar ratios were obtained for a remote NFS server.
Full details of the performance evaluation can be found in the Ivy paper [Muthitacharoen
et al. 2002]. It should be noted, though, that NFS was not designed for wide area use;
the Andrew File System and other more recently developed server-based systems such
as xFS [Anderson et al. 1996] offer higher performance in wide area deployments and
might have made better bases for the comparison. The primary contribution of Ivy is in
its novel approach to the management of security and integrity in an environment of
partial trust – an inevitable feature of very large distributed systems that span many
organizations and jurisdictions.

10.7 Summary

Peer-to-peer architectures were first shown to support very large scale data sharing with
the Internet-wide use of Napster and its descendants for digital music sharing. The fact
that much of their use conflicted with copyright laws doesn’t diminish their technical
significance, although they did also have technical drawbacks that restricted their
deployment to applications in which guarantees of data integrity and availability were
unimportant. 

Subsequent research resulted in the development of peer-to-peer middleware
platforms that deliver requests to data objects wherever they are located in the Internet.
In structured approaches, the objects are addressed using GUIDs, which are pure names
containing no IP addressing information. Objects are placed at nodes according to some
mapping function that is specific to each middleware system. Delivery is performed by
a routing overlay in the middleware that maintains routing tables and forwards requests
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along a route determined by calculating distance according to the chosen mapping
function. In unstructured approaches, nodes form themselves into an ad hoc network and
then propagate searches through neighbours to find appropriate resources. Several
strategies have been developed to improve the performance of this search function and
increase the overall scalability of the system.

The middleware platforms add integrity guarantees based on the use of a secure
hash function to generate the GUIDs and availability guarantees based on the replication
of objects at several nodes and on fault-tolerant routing algorithms.

The platforms have been deployed in several large-scale pilot applications, refined
and evaluated. Recent evaluation results indicate that the technology is ready for
deployment in applications involving large numbers of users sharing many data objects.
The benefits of peer-to-peer systems include:

• their ability to exploit unused resources (storage, processing) in the host
computers;

• their scalability to support large numbers of clients and hosts with excellent
balancing of the loads on network links and host computing resources;

• the self-organizing properties of the middleware platforms which result in support
costs that are largely independent of the numbers of clients and hosts deployed.

Weaknesses and subjects of current research include:

• their use for the storage of mutable data is relatively costly compared to a trusted,
centralized service;

• the promising basis that they provide for client and host anonymity has not yet
resulted in strong guarantees of anonymity.

EXERCISES

10.1 Early file-sharing applications such as Napster were restricted in their scalability by the
need to maintain a central index of resources and the hosts that hold them. What other
solutions to the indexing problem can you identify? 

pages 428– 430, 435, Section 18.4

10.2 The problem of maintaining indexes of available resources is application-dependent.
Consider the suitability of each of your answers to Exercise 10.1 for:

i) music and media file sharing;

ii) long-term storage of archived material such as journal or newspaper content;

iii)network storage of general-purpose read-write files.

10.3 What are the main guarantees that users expect conventional servers (e.g., web servers
or file servers) to offer? Section 1.5.5

10.4 The guarantees offered by conventional servers may be violated as a result of:

i) physical damage to the host;

ii) Errors or inconsistencies introduced by system administrators or their managers;
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iii)successful attacks on the security of the system software;

iv)hardware or software errors.

Give two examples of possible incidents for each type of violation. Which of them could
be described as a breach of trust or a criminal act? Would they be breaches of trust if
they occurred on a personal computer that was contributing some resources to a peer-to-
peer service? Why is this relevant for peer-to-peer systems? Section 11.1.1

10.5 Peer-to-peer systems typically depend on untrusted and volatile computer systems for
most of their resources. Trust is a social phenomenon with technical consequences.
Volatility (i.e., unpredictable availability) also is often due to human actions. Elaborate
your answers to Exercise 10.4 by discussing the possible ways in which each of them
are likely to differ according to the following attributes of the computers used:

i) ownership;

ii) geographic location;

iii)network connectivity;

iv)country or jurisdiction.

What does this suggest about policies for the placement of data objects in a peer-to-peer
storage service?

10.6 Assess the availability and trustworthiness of the personal computers in your
environment. You should estimate:

Uptime: How many hours per day is the computer operating and connected to the
Internet? 

Software consistency: Is the software managed by a competent technician?

Security: Is the computer fully protected against tampering by its users or others?

Based on your assessment, discuss the feasibility of running a datasharing service on the
set of computers you have assessed and outline the problems that must be addressed in
a peer-to-peer data sharing service. pages 431–432

10.7 Explain why using the secure hash of an object to identify and route messages to it is
tamper-proof. What properties are required of the hash function? How can integrity be
maintained, even if a substantial proportion of peer nodes are subverted?

pages 426, 453, Section 11.4.3

10.8 It is often argued that peer-to-peer systems can offer anonymity for:

i) clients accessing resources; 

ii) the hosts providing access to resources. 

Discuss each of these propositions. Suggest a way in which the resistance to attacks on
anonymity might be improved. page 429

10.9 Routing algorithms choose a next hop according to an estimate of distance in some
addressing space. Pastry and Tapestry both use circular linear address spaces in which a
function based on the approximate numerical difference between GUIDs determines
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their separation. Kademlia uses the XOR of the GUIDs. How does this help in the
maintenance of routing tables? Does the XOR operation provide appropriate properties
for a distance metric? pages 435, [Maymounkov and Mazieres 2002]

10.10 When the Squirrel peer-to-peer web caching service was evaluated by simulation, 4.11
hops were required on average to route a request for a cache entry when simulating the
Redmond traffic, whereas only 1.8 were required for the Cambridge traffic. Explain this
and show that it supports the theoretical performance claimed for Pastry.

pages 436, 450

10.11 In unstructured peer-to-peer systems, significant improvements on search results can be
provided by the adoption of particular search strategies. Compare and contrast expanded
ring search and random walk strategies, highlighting when each approach is likely to be
effective. page 446
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11.1 Introduction
11.2 Overview of security techniques
11.3 Cryptographic algorithms
11.4 Digital signatures
11.5 Cryptography pragmatics
11.6 Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi
11.7 Summary

There is a pervasive need for measures to guarantee the privacy, integrity and availability 
of resources in distributed systems. Security attacks take the forms of eavesdropping, 
masquerading, tampering and denial of service. Designers of secure distributed systems 
must cope with exposed service interfaces and insecure networks in an environment 
where attackers are likely to have knowledge of the algorithms used and to deploy 
computing resources. 

Cryptography provides the basis for the authentication of messages as well as their 
secrecy and integrity; carefully designed security protocols are required to exploit it. The 
selection of cryptographic algorithms and the management of keys are critical to the 
effectiveness, performance and usability of security mechanisms. Public-key 
cryptography makes it easy to distribute cryptographic keys but its performance is 
inadequate for the encryption of bulk data. Secret-key cryptography is more suitable for 
bulk encryption tasks. Hybrid protocols such as Transport Layer Security (TLS) establish 
a secure channel using public-key cryptography and then use it to exchange secret keys 
for use in subsequent data exchanges.

Digital information can be signed, producing digital certificates. Certificates enable 
trust to be established among users and organizations.

The chapter concludes with case studies on the approaches to security system 
design and the security mechanisms deployed in Kerberos, TLS/SSL and 802.11 WiFi.
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11.1 Introduction

In Section 2.4.3 we introduced a simple model for examining the security requirements 
in distributed systems. We concluded that the need for security mechanisms in 
distributed systems arises from the desire to share resources. (Resources that are not 
shared can generally be protected by isolating them from external access.) If we regard 
shared resources as objects, then the requirement is to protect any processes that 
encapsulate shared objects and any communication channels that are used to interact 
with them against all conceivable forms of attack. The model introduced in Section 2.4.3 
provides a good starting point for the identification of security requirements. It can be 
summarized as follows:

• Processes encapsulate resources (both programming language–level objects and 
system-defined resources) and allow clients to access them through interfaces. 
Principals (users or other processes) are authorized to operate on resources. 
Resources must be protected against unauthorized access (Figure 2.17).

• Processes interact through a network that is shared by many users. Enemies 
(attackers) can access the network. They can copy or attempt to read any message 
transmitted through the network and they can inject arbitrary messages, addressed 
to any destination and purporting to come from any source, into the network 
(Figure 2.18). 

The need to protect the integrity and privacy of information and other resources 
belonging to individuals and organizations is pervasive in both the physical and the 
digital world. It arises from the desire to share resources. In the physical world, 
organizations adopt security policies that provide for the sharing of resources within 
specified limits. For example, a company may permit entry to its buildings only to its 
employees and accredited visitors. A security policy for documents may specify groups 
of employees who can access classes of documents, or it may be defined for individual 
documents and users.

Security policies are enforced with the help of security mechanisms. For example, 
access to a building may be controlled by a reception clerk, who issues badges to 
accredited visitors, and enforced by a security guard or by electronic door locks. Access 
to paper documents is usually controlled by concealment and restricted distribution. In 
the electronic world, the distinction between security policies and mechanisms is 
equally important; without it, it would be difficult to determine whether a particular 
system was secure. Security policies are independent of the technology used, just as the 
provision of a lock on a door does not ensure the security of a building unless there is a 
policy for its use (for example, that the door will be locked whenever nobody is guarding 
the entrance). The security mechanisms that we describe here do not in themselves 
ensure the security of a system. In Section 11.1.2, we outline the requirements for 
security in various simple electronic commerce scenarios, illustrating the need for 
policies in that context.

The provision of mechanisms for the protection of data and other resources in 
distributed systems while allowing interactions between computers that are permitted 
by security policies is the concern of this chapter. The mechanisms that we shall describe 
are designed to enforce security policies against the most determined attacks.
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The role of cryptography  •  Digital cryptography provides the basis for most computer 
security mechanisms, but it is important to note that computer security and cryptography 
are distinct subjects. Cryptography is the art of encoding information in a format that 
only the intended recipients can decode. Cryptography can also be employed to provide 
proof of the authenticity of information, in a manner analogous to the use of signatures 
in conventional transactions.

Cryptography has a long and fascinating history. The military need for secure 
communication and the corresponding need of an enemy to intercept and decrypt it led 
to the investment of much intellectual effort by some of the best mathematical brains of 
their time. Readers interested in exploring this history will find absorbing reading in 
books on the topic by David Kahn [Kahn 1967, 1983, 1991] and Simon Singh [Singh 
1999]. Whitfield Diffie, one of the inventors of public-key cryptography, has written 
with firsthand knowledge on the recent history and politics of cryptography [Diffie 
1988, Diffie and Landau 1998].

It is only in recent times that cryptography has emerged from the wraps previously 
placed on it by the political and military establishments that used to control its 
development and use. It is now the subject of open research by a large and active 
community, with the results presented in many books, journals and conferences. The 
publication of Schneier’s book Applied Cryptography [Schneier 1996] was a milestone 
in the opening up of knowledge in the field. It was the first book to publish many 
important algorithms with source code – a courageous step, because when the first 
edition appeared in 1994 the legal status of such publication was unclear. Schneier’s 
book remains the definitive reference on most aspects of modern cryptography. A more 
recent book co-authored by Schneier [Ferguson and Schneier 2003] provides an 
excellent introduction to computer cryptography and a discursive overview of virtually 
all the important algorithms and techniques in current use, including several published 
since Schneier’s earlier book. In addition, Menezes et al. [1997] provide a good practical 
handbook with a strong theoretical basis and the Network Security Library 
[www.secinf.net] is an excellent online source of practical knowledge and experience.

Ross Anderson’s Security Engineering [Anderson 2008] is also outstanding. It is 
replete with object lessons on the design of secure systems, drawn from real-world 
situations and system security failures.

The new openness is largely a result of the tremendous growth of interest in non-
military applications of cryptography and the security requirements of distributed 
computer systems, which has led to the existence for the first time of a self-sustaining 
community of cryptographic researchers outside the military domain.

Ironically, the opening of cryptography to public access and use has resulted in a 
great improvement in cryptographic techniques, both in their strength to withstand 
attacks by enemies and in the convenience with which they can be deployed. Public-key 
cryptography is one of the fruits of this openness. As another example, we note that the 
DES encryption algorithm that was adopted and used by the US military and 
government agencies was initially a military secret. Its eventual publication and 
successful efforts to crack it resulted in the development of much stronger secret-key 
encryption algorithms.

Another useful spin-off has been the development of a common terminology and 
approach. An example of the latter is the adoption of a set of familiar names for 
protagonists (principals) involved in the transactions that are to be secured. The use of 
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familiar names for principals and attackers helps to clarify and bring to life descriptions 
of security protocols and potential attacks on them, which aids in identifying their 
weaknesses. The names shown in Figure 11.1

Figure 11.1 Familiar names for the protagonists in security protocols

Alice First participant
Bob Second participant
Carol Participant in three- and four-party protocols
Dave Participant in four-party protocols
Eve Eavesdropper
Mallory Malicious attacker
Sara A server

 are used extensively in the security 
literature and we use them freely here. We have not been able to discover their origins; 
the earliest occurrence of which we are aware is in the original RSA public-key 
cryptography paper [Rivest et al. 1978]. An amusing commentary on their use can be 
found in Gordon [1984].

11.1.1 Threats and attacks

Some threats are obvious – for example, in most types of local network it is easy to 
construct and run a program on a connected computer that obtains copies of the 
messages transmitted between other computers. Other threats are more subtle – if clients 
fail to authenticate servers, a program might install itself in place of an authentic file 
server and thereby obtain copies of confidential information that clients unwittingly 
send to it for storage. 

In addition to the danger of loss or damage to information or resources through 
direct violations, fraudulent claims may be made against the owner of a system that is 
not demonstrably secure. To avoid such claims, the owner must be in a position to 
disprove the claim by showing that the system is secure against such violations or by 
producing a log of all of the transactions for the period in question. A common instance 
is the ‘phantom withdrawal’ problem in automatic cash dispensers (teller machines). 
The best answer that a bank can supply to such a claim is to provide a record of the 
transaction that is digitally signed by the account holder in a manner that cannot be 
forged by a third party.

The main goal of security is to restrict access to information and resources to just 
those principals that are authorized to have access. Security threats fall into three broad 
classes:

Leakage: Refers to the acquisition of information by unauthorized recipients.

Tampering: Refers to the unauthorized alteration of information.

Vandalism: Refers to interference with the proper operation of a system without gain
to the perpetrator.
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Attacks on distributed systems depend upon obtaining access to existing communication 
channels or establishing new channels that masquerade as authorized connections. (We 
use the term channel to refer to any communication mechanism between processes.) 
Methods of attack can be further classified according to the way in which a channel is 
misused:

Eavesdropping: Obtaining copies of messages without authority.

Masquerading: Sending or receiving messages using the identity of another 
principal without their authority.

Message tampering: Intercepting messages and altering their contents before 
passing them on to the intended recipient. The man-in-the-middle attack is a form of 
message tampering in which an attacker intercepts the very first message in an 
exchange of encryption keys to establish a secure channel. The attacker substitutes 
compromised keys that enable them to decrypt subsequent messages before re-
encrypting them in the correct keys and passing them on. 

Replaying: Storing intercepted messages and sending them at a later date. This 
attack may be effective even with authenticated and encrypted messages.

Denial of service: Flooding a channel or other resource with messages in order to 
deny access for others.

These are the dangers in theory, but how are attacks carried out in practice? Successful 
attacks depend upon the discovery of loopholes in the security of systems. 
Unfortunately, these are all too common in today’s systems, and they are not necessarily 
particularly obscure. Cheswick and Bellovin [1994] identify 42 weaknesses that they 
regard as posing serious risks in widely used Internet systems and components. They 
range from password guessing to attacks on the programs that perform the Network 
Time Protocol or handle mail transmission. Some of these have led to successful and 
well-publicized attacks [Stoll 1989, Spafford 1989], and many of them have been 
exploited for mischievous or criminal purposes.

When the Internet and the systems that are connected to it were designed, security 
was not a priority. The designers probably had no conception of the scale to which the 
Internet would grow, and the basic design of systems such as UNIX predates the advent 
of computer networks. As we shall see, the incorporation of security measures needs to 
be carefully thought out at the basic design stage, and the material in this chapter is 
intended to provide the basis for such thinking.

We focus on the threats to distributed systems that arise from the exposure of their 
communication channels and their interfaces. For many systems, these are the only 
threats that need to be considered (other than those that arise from human error – security 
mechanisms cannot guard against a badly chosen password or one that is carelessly 
disclosed). But for systems that include mobile programs and systems whose security is 
particularly sensitive to information leakage, there are further threats.

Threats from mobile code  •  Several recently developed programming languages have 
been designed to enable programs to be loaded into a process from a remote server and 
then executed locally. In that case, the internal interfaces and objects within an executing 
process may be exposed to attack by mobile code.
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Java is the most widely used language of this type, and its designers paid 
considerable attention to the design and construction of the language and the 
mechanisms for remote loading in an effort to restrict the exposure (the sandbox model 
of protection against mobile code). 

The Java virtual machine (JVM) is designed with mobile code in view. It gives 
each application its own environment in which to run. Each environment has a security 
manager that determines which resources are available to the application. For example, 
the security manager might stop an application reading and writing files or give it 
limited access to network connections. Once a security manager has been set, it cannot 
be replaced. When a user runs a program such as a browser that downloads mobile code 
to be run locally on their behalf, they have no very good reason to trust the code to 
behave in a responsible manner. In fact, there is a danger of downloading and running 
malicious code that removes files or accesses private information. To protect users 
against untrusted code, most browsers specify that applets cannot access local files, 
printers or network sockets. Some applications of mobile code are able to assume 
various levels of trust in downloaded code. In this case, the security managers are 
configured to provide more access to local resources.

The JVM takes two further measures to protect the local environment: 

1. The downloaded classes are stored separately from the local classes, preventing 
them from replacing local classes with spurious versions. 

2. The bytecodes are checked for validity. Valid Java bytecode is composed of Java 
virtual machine instructions from a specified set. The instructions are also checked 
to ensure that they will not produce certain errors when the program runs, such as 
accessing illegal memory addresses.

The security of Java has been the subject of much subsequent investigation, in the course 
of which it became clear that the original mechanisms adopted were not free of 
loopholes [McGraw and Felden 1999]. The identified loopholes were corrected and the 
Java protection system was refined to allow mobile code to access local resources when 
authorized to do so [java.sun.com V]. 

Despite the inclusion of type-checking and code-validation mechanisms, the 
security mechanisms incorporated into mobile code systems do not yet produce the same 
level of confidence in their effectiveness as those used to protect communication 
channels and interfaces. This is because the construction of an environment for 
execution of programs offers many opportunities for error, and it is difficult to be 
confident that all have been avoided. Volpano and Smith [1999] have pointed out that 
an alternative approach, based on proofs that the behaviour of mobile code is sound, 
might offer a better solution. 

Information leakage  •  If the transmission of a message between two processes can be 
observed, some information can be gleaned from its mere existence – for example, a 
flood of messages to a dealer in a particular stock might indicate a high level of trading 
in that stock. There are many more subtle forms of information leakage, some malicious 
and others arising from inadvertent error. The potential for leakage arises whenever the 
results of a computation can be observed. Work was done on the prevention of this type 
of security threat in the 1970s [Denning and Denning 1977]. The approach taken is to 
assign security levels to information and channels and to analyze the flow of information 
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into channels with the aim of ensuring that high-level information cannot flow into 
lower-level channels. A method for the secure control of information flows was first 
described by Bell and LaPadula [1975]. The extension of this approach to distributed 
systems with mutual distrust between components is the subject of recent research 
[Myers and Liskov 1997]. 

11.1.2 Securing electronic transactions

Many uses of the Internet in industry, commerce and elsewhere involve transactions that 
depend crucially on security. For example:

Email: Although email systems did not originally include support for security, there 
are many uses of email in which the contents of messages must be kept secret (for 
example, when sending a credit card number) or the contents and sender of a message 
must be authenticated (for example when submitting an auction bid by email). 
Cryptographic security based on the techniques described in this chapter is now 
included in many mail clients.

Purchase of goods and services: Such transactions are now commonplace. Buyers 
select goods and pay for them via the Web and the goods are delivered through an 
appropriate delivery mechanism. Software and other digital products (such as 
recordings and videos) can be delivered by downloading. Tangible goods such as 
books, CDs and almost every other type of product are also sold by Internet vendors; 
these are supplied via a delivery service.

Banking transactions: Electronic banks now offer users virtually all of the facilities 
provided by conventional banks. They can check their balances and statements, 
transfer money between accounts, set up regular automatic payments and so on.

Micro-transactions: The Internet lends itself to the supply of small quantities of 
information and other services to many customers. Most web pages currently can be 
viewed without charge, but the development of the Web as a high-quality publishing 
medium surely depends upon the ability of information providers to obtain payments 
from consumers of the information. Voice and videoconferencing on the Internet is 
currently also free, but it is charged for when a telephone network is also involved. 
The price for such services may amount to only a fraction of a cent, and the payment 
overheads must be correspondingly low. In general, schemes based on the 
involvement of a bank or credit card server for each transaction cannot achieve this.

Transactions such as these can be safely performed only when they are protected by 
appropriate security policies and mechanisms. A purchaser must be protected against the 
disclosure of credit codes (card numbers) during transmission and against fraudulent 
vendors who obtain payment with no intention of supplying the goods. Vendors must 
obtain payment before releasing the goods, and for downloadable products they must 
ensure that only paying customers obtain the data in a usable form. The required 
protection must be achieved at a cost that is reasonable in comparison with the value of 
the transaction.
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Sensible security policies for Internet vendors and buyers lead to the following 
requirements for securing web purchases:

1. Authenticate the vendor to the buyer, so that the buyer can be confident that they 
are in contact with a server operated by the vendor with whom they intended to 
deal.

2. Keep the buyer’s credit card number and other payment details from falling into 
the hands of any third party and ensure that they are transmitted unaltered from 
the buyer to the vendor.

3. If the goods are in a form suitable for downloading, ensure that their content is 
delivered to the buyer without alteration and without disclosure to third parties.

The identity of the buyer is not normally required by the vendor (except for the purpose 
of delivering the goods,  if they are not downloaded). The vendor will wish to check that 
the buyer has sufficient funds to pay for the purchase, but this is usually done by 
demanding payment from the buyer’s bank before delivering the goods. 

The security needs of banking transactions using an open network are similar to 
those for purchase transactions, with the buyer as the account holder and the bank as the 
vendor, but there there is a fourth requirement as well:

4. Authenticate the identity of the account holder to the bank before giving them 
access to their account.

Note that in this situation, it is important for the bank to ensure that the account holder 
cannot deny that they participated in a transaction. Non-repudiation is the name given 
to this requirement.

In addition to the above requirements, which are dictated by security policies, 
there are some system requirements. These arise from the very large scale of the 
Internet, which makes it impractical to require buyers to enter into special relationships 
with vendors (by registering encryption keys for later use, etc.). It should be possible for 
a buyer to complete a secure transaction with a vendor even if there has been no previous 
contact between buyer and vendor and without the involvement of a third party. 
Techniques such as the use of ‘cookies’ – records of previous transactions stored on the 
user’s client host – have obvious security weaknesses; desktop and mobile hosts are 
often located in insecure physical environments.

Because of the importance of security for Internet commerce and the rapid growth 
in Internet commerce, we have chosen to illustrate the use of cryptographic security 
techniques by describing in Section 11.6 the de facto standard security protocol used in 
most electronic commerce – Transport Layer Security (TLS). A description of Millicent, 
a protocol specifically designed for micro-transactions, can be found at 
www.cdk5.net/security.

Internet commerce is an important application of security techniques, but it is 
certainly not the only one. It is needed wherever computers are used by individuals or 
organizations to store and communicate important information. The use of encrypted 
email for private communication between individuals is a case in point that has been the 
subject of considerable political discussion. We refer to this debate in Section 11.5.2.
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11.1.3 Designing secure systems

Immense strides have been made in recent years in the development of cryptographic 
techniques and their application, yet designing secure systems remains an inherently 
difficult task. At the heart of this dilemma is the fact that the designer’s aim is to exclude 
all possible attacks and loopholes. The situation is analogous to that of the programmer 
whose aim is to exclude all bugs from their program. In neither case is there a concrete 
method to ensure this goal is met during the design. One designs to the best available 
standards and applies informal analysis and checks. Once a design is complete, formal 
validation is an option. Work on the formal validation of security protocols has produced 
some important results [Lampson et al. 1992, Schneider 1996, Abadi and Gordon 1999]. 
A description of one of the first steps in this direction, the BAN logic of authentication 
[Burrows et al. 1990], and its application can be found at www.cdk5.net/security.

Security is about avoiding disasters and minimizing mishaps. When designing for 
security it is necessary to assume the worst. The box on page 472 shows a set of useful 
assumptions and design guidelines. These assumptions underly the thinking behind the 
techniques that we describe in this chapter.

To demonstrate the validity of the security mechanisms employed in a system, the 
system’s designers must first construct a list of threats – methods by which the security 
policies might be violated – and show that each of them is prevented by the mechanisms 
employed. This demonstration may take the form of an informal argument or, better, a 
logical proof. 

No list of threats is likely to be exhaustive, so auditing methods must also be used 
in security-sensitive applications to detect violations. These are straightforward to 
implement if a secure log of security-sensitive system actions is always recorded with 
details of the users performing the actions and their authority.

A security log will contain a sequence of timestamped records of users’ actions. 
At a minimum the records will include the identity of a principal, the operation 
performed (e.g., delete file, update accounting record), the identity of the object 
operated on and a timestamp. Where particular violations are suspected, the records may 
be extended to include physical resource utilization (network bandwidth, peripherals), 
or the logging process may be targeted at operations on particular objects. Subsequent 
analysis may be statistical or search-based. Even when no violations are suspected, the 
statistics may be compared over time to help to discover any unusual trends or events.

The design of secure systems is an exercise in balancing costs against the threats. 
The range of techniques that can be deployed for protecting processes and securing 
interprocess communication are strong enough to withstand almost any attack, but their 
use incurs expense and inconvenience:

• A cost (in terms of computational effort and network usage) is incurred for their 
use. The costs must be balanced against the threats. 

• Inappropriately specified security measures may exclude legitimate users from 
performing necessary actions.

Such trade-offs are difficult to identify without compromising security and may seem to 
conflict with the advice in the first paragraph of this subsection, but the strength of 
security techniques required can be quantified and techniques can be selected based on 



Worst-case assumptions and design guidelines

Interfaces are exposed:  Distributed systems are composed of processes that offer 
services or share information. Their communication interfaces are necessarily open 
(to allow new clients to access them) – an attacker can send a message to any 
interface.

Networks are insecure:  For example, message sources can be falsified – messages can 
be made to look as though they came from Alice when they were actually sent by 
Mallory. Host addresses can be ‘spoofed’ – Mallory can connect to the network with 
the same address as Alice and receive copies of messages intended for her.

Limit the lifetime and scope of each secret:  When a secret key is first generated we can 
be confident that it has not been compromised. The longer we use it and the more 
widely it is known, the greater the risk. The use of secrets such as passwords and 
shared secret keys should be time-limited, and sharing should be restricted.

Algorithms and program code are available to attackers:  The bigger and the more 
widely distributed a secret is, the greater the risk of its disclosure. Secret encryption 
algorithms are totally inadequate for today’s large-scale network environments. Best 
practice is to publish the algorithms used for encryption and authentication, relying 
only on the secrecy of cryptographic keys. This helps to ensure that the algorithms 
are strong by throwing them open to scrutiny by third parties.

Attackers may have access to large resources:  The cost of computing power is rapidly 
decreasing. We should assume that attackers will have access to the largest and most 
powerful computers projected in the lifetime of a system, then add a few orders of 
magnitude to allow for unexpected developments.

Minimize the trusted base:  The portions of a system that are responsible for the 
implementation of its security, and all the hardware and software components upon 

which they rely, have to be trusted – this is often referred to as the trusted computing 

base. Any defect or programming error in this trusted base can produce security 
weaknesses, so we should aim to minimize its size. For example, application 
programs should not be trusted to protect data from their users.
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the estimated cost of attacks. The relatively low-cost techniques employed in the 
Millicent protocol, described at www.cdk5.net/security provide an example.

As an illustration of the difficulties and mishaps that can arise in the design of 
secure systems, we review difficulties that arose with the security design originally 
incorporated in the IEEE 802.11 WiFi networking standard in Section 11.6.4.

11.2 Overview of security techniques

The purpose of this section is to introduce the reader to some of the more important 
techniques and mechanisms for securing distributed systems and applications. Here we 
describe them informally, reserving more rigorous descriptions for Sections 11.3 and 
11.4. We use the familiar names for principals introduced in Figure 11.1 and the 
notations for encrypted and signed items shown in Figure 11.2.



Figure 11.2 Cryptography notations

KA Alice’s secret key
KB Bob’s secret key
KAB Secret key shared between Alice and Bob
KApriv Alice’s private key (known only to Alice)
KApub Alice’s public key (published by Alice for all to read)
{M}K Message M encrypted with key K
[M]K Message M signed with key K
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11.2.1 Cryptography

Encryption is the process of encoding a message in such a way as to hide its contents. 
Modern cryptography includes several secure algorithms for encrypting and decrypting 
messages. They are all based on the use of secrets called keys. A cryptographic key is a 
parameter used in an encryption algorithm in such a way that the encryption cannot be 
reversed without knowledge of the key. 

There are two main classes of encryption algorithm in general use. The first uses 
shared secret keys – the sender and the recipient must share a knowledge of the key and 
it must not be revealed to anyone else. The second class of encryption algorithms uses 
public/private key pairs. Here the sender of a message uses a public key – one that has 
already been published by the recipient – to encrypt the message. The recipient uses a 
corresponding private key to decrypt the message. Although many principals may 
examine the public key, only the recipient can decrypt the message, because they have
the private key. 

Both classes of encryption algorithm are extremely useful and are used widely in 
the construction of secure distributed systems. Public-key encryption algorithms 
typically require 100 to 1000 times as much processing power as secret-key algorithms, 
but there are situations where their convenience outweighs this disadvantage.

11.2.2 Uses of cryptography

Cryptography plays three major roles in the implementation of secure systems. We 
introduce them here in outline by means of some simple scenarios. In later sections of 
this chapter, we describe these and other protocols in greater detail, addressing some 
unresolved problems that are merely highlighted here.

In all of our scenarios below, we can assume that Alice, Bob and any other 
participants have already agreed about the encryption algorithms that they wish to use 
and have implementations of them. We also assume that any secret keys or private keys 
that they hold can be stored securely to prevent attackers obtaining them. 

Secrecy and integrity  •  Cryptography is used to maintain the secrecy and integrity of 
information whenever it is exposed to potential attacks – for example, during 
transmission across networks that are vulnerable to eavesdropping and message 
tampering. This use of cryptography corresponds to its traditional role in military and 
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intelligence activities. It exploits the fact that a message that is encrypted with a 
particular encryption key can only be decrypted by a recipient who knows the 
corresponding decryption key. Thus it maintains the secrecy of the encrypted message 
as long as the decryption key is not compromised (disclosed to non-participants in the 
communication) and provided that the encryption algorithm is strong enough to defeat 
any possible attempts to crack it. Encryption also maintains the integrity of the 
encrypted information, provided that some redundant information such as a checksum 
is included and checked.

Scenario 1. Secret communication with a shared secret key: Alice wishes to send some in-
formation secretly to Bob. Alice and Bob share a secret key KAB.

1. Alice uses KAB and an agreed encryption function E(KAB, M) to encrypt and send 
any number of messages {Mi}KAB to Bob. (Alice can go on using KAB as long as 
it is safe to assume that KAB has not been compromised.)

2. Bob decrypts the encrypted messages using the corresponding decryption function 
D(KAB, M).

Bob can now read the original message M. If the decrypted message makes sense, or 
better, if it includes some value agreed between Alice and Bob (such as a checksum of 
the message) then Bob knows that the message is from Alice and that it hasn’t been 
tampered with. But there are still some problems:

Problem 1: How can Alice send a shared key KAB to Bob securely?

Problem 2: How does Bob know that any {Mi} isn’t a copy of an earlier encrypted 
message from Alice that was captured by Mallory and replayed later? Mallory 
needn’t have the key KAB to carry out this attack – he can simply copy the bit pattern 
that represents the message and send it to Bob later. For example, if the message is a 
request to pay some money to someone, Mallory might trick Bob into paying twice.

We show how these problems can be resolved later in this chapter.

Authentication  •  Cryptography is used in support of mechanisms for authenticating 
communication between pairs of principals. A principal who decrypts a message 
successfully using a particular key can assume that the message is authentic if it contains 
a correct checksum or (if the block-chaining mode of encryption, described in Section 
11.3, is used) some other expected value. They can infer that the sender of the message 
possessed the corresponding encryption key and hence deduce the identity of the sender 
if the key is known only to two parties. Thus if keys are held in private, a successful 
decryption authenticates the decrypted message as coming from a particular sender. 

Scenario 2. Authenticated communication with a server: Alice wishes to access files held 
by Bob, a file server on the local network of the organization where she works. Sara is 
an authentication server that is securely managed. Sara issues users with passwords and 
holds current secret keys for all of the principals in the system it serves (generated by 
applying some transformation to the user’s password). For example, it knows Alice’s 
key KA and Bob’s KB. In our scenario we refer to a ticket. A ticket is an encrypted item 
issued by an authentication server, containing the identity of the principal to whom it is 
issued and a shared key that has been generated for the current communication session.
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1. Alice sends an (unencrypted) message to Sara stating her identity and requesting 
a ticket for access to Bob.

2. Sara sends a response to Alice encrypted in KA consisting of a ticket (to be sent to 
Bob with each request for file access) encrypted in KB and a new secret key KAB

for use when communicating with Bob. So the response that Alice receives looks 
like this: {{Ticket}KB, KAB}KA.

3. Alice decrypts the response using KA (which she generates from her password 
using the same transformation; the password is not transmitted over the network,
and once it has been used it is deleted from local storage to avoid compromising 
it). If Alice has the correct password-derived key KA, she obtains a valid ticket for 
using Bob’s service and a new encryption key for use in communicating with Bob. 
Alice can’t decrypt or tamper with the ticket, because it is encrypted in KB. If the 
recipient isn’t Alice then they won’t know Alice’s password, so they won’t be able 
to decrypt the message.

4. Alice sends the ticket to Bob together with her identity and a request R to access 
a file: {Ticket}KB, Alice, R.

5. The ticket, originally created by Sara, is actually: {KAB, Alice}KB. Bob decrypts 
the ticket using his key KB. So Bob gets the authentic identity of Alice (based on 
the knowledge shared between Alice and Sara of Alice’s password) and a new 
shared secret key KAB for use when interacting with Alice. (This is called a session 

key because it can safely be used by Alice and Bob for a sequence of interactions.)

This scenario is a simplified version of the authentication protocol originally developed 
by Roger Needham and Michael Schroeder [1978] and subsequently used in the 
Kerberos system developed and used at MIT [Steiner et al. 1988], which is described in 
Section 11.6.2. In our simplified description of their protocol above there is no 
protection against the replay of old authentication messages. This and some other 
weaknesses are dealt with in our description of the full Needham–Schroeder protocol in 
Section 11.6.1.

The authentication protocol we have described depends upon prior knowledge by 
the authentication server Sara of Alice’s and Bob’s keys, KA and KB. This is feasible in 
a single organization where Sara runs on a physically secure computer and is managed 
by a trusted principal who generates initial values of the keys and transmits them to users 
by a separate secure channel. But it isn’t appropriate for electronic commerce or other 
wide area applications, where the use of a separate channel is extremely inconvenient 
and the requirement for a trusted third party is unrealistic. Public-key cryptography 
rescues us from this dilemma. 

The usefulness of challenges: An important aspect of Needham and Schroeder’s 1978 
breakthrough was the realization that a user’s password does not have to be submitted 
to an authentication service (and hence exposed in the network) each time it is 
authenticated. Instead, they introduced the concept of a cryptographic challenge. This 
can be seen in step 2 of our scenario above, where the server, Sara, issues a ticket to 
Alice encrypted in Alice’s secret key, KA. This constitutes a challenge because Alice 
cannot make use of the ticket unless she can decrypt it, and she can only decrypt it if she 
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can determine KA, which is derived from Alice’s password. An imposter claiming to be 
Alice would be defeated at this point.

Scenario 3. Authenticated communication with public keys: Assuming that Bob has gener-
ated a public/private key pair, the following dialogue enables Bob and Alice to establish 
a shared secret key, KAB:

1. Alice accesses a key distribution service to obtain a public-key certificate giving 
Bob’s public key. It’s called a certificate because it is signed by a trusted authority 
– a person or organization that is widely known to be reliable. After checking the 
signature, she reads Bob’s public key, KBpub, from the certificate. (We discuss the 
construction and use of public-key certificates in Section 11.2.3.)

2. Alice creates a new shared key, KAB, and encrypts it using KBpub with a public-
key algorithm. She sends the result to Bob, along with a name that uniquely 
identifies a public/private key pair (since Bob may have several of them) – that is,
Alice sends keyname,{KAB}KBpub.

3. Bob selects the corresponding private key, KBpriv, from his private key store and 
uses it to decrypt KAB. Note that Alice’s message to Bob might have been 
corrupted or tampered with in transit. The consequence would simply be that Bob 
and Alice don’t share the same key KAB. If this is a problem, it can be 
circumvented by adding an agreed value or string to the message, such as Bob’s 
and Alice’s names or email addresses, which Bob can check after decrypting.

The above scenario illustrates the use of public-key cryptography to distribute a shared 
secret key. This technique is known as a hybrid cryptographic protocol and is very 
widely used, since it exploits useful features of both public-key and secret-key 
encryption algorithms.

Problem: This key exchange is vulnerable to man-in-the-middle attacks. Mallory 
may intercept Alice’s initial request to the key distribution service for Bob’s public-
key certificate and send a response containing his own public key. He can then 
intercept all the subsequent messages. In our description above, we guard against this 
attack by requiring Bob’s certificate to be signed by a well-known authority. To 
protect against this attack, Alice must ensure that Bob’s public-key certificate is 
signed with a public key (as described below) that she has received in a totally secure 
manner.

Digital signatures  •  Cryptography is used to implement a mechanism known as a 
digital signature. This emulates the role of a conventional signature, verifying to a third 
party that a message or a document is an unaltered copy of one produced by the signer. 

Digital signature techniques are based upon an irreversible binding to the message 
or document of a secret known only to the signer. This can be achieved by encrypting 
the message – or better, a compressed form of the message called a digest – using a key 
that is known only to the signer. A digest is a fixed-length value computed by applying 
a secure digest function. A secure digest function is similar to a checksum function, but 
it is very unlikely to produce a similar digest value for two different messages. The 
resulting encrypted digest acts as a signature that accompanies the message. Public-key 
cryptography is generally used for this: the originator generates a signature with their 
private key, and the signature can be decrypted by any recipient using the corresponding 
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public key. There is an additional requirement: the verifier should be sure that the public 
key really is that of the principal claiming to be the signer – this is dealt with by the use 
of public-key certificates, described in Section 11.2.3.

Scenario 4. Digital signatures with a secure digest function: Alice wants to sign a document 
M so that any subsequent recipient can verify that she is the originator of it. Thus when 
Bob later accesses the signed document after receiving it by any route and from any 
source (for example, it could be sent in a message or it could be retrieved from a 
database), he can verify that Alice is the originator.

1. Alice computes a fixed-length digest of the document, Digest(M).

2. Alice encrypts the digest in her private key, appends it to M and makes the result,
M, {Digest(M)}KApriv, available to the intended users.

3. Bob obtains the signed document, extracts M and computes Digest(M).

4. Bob decrypts {Digest(M)}KApriv using Alice’s public key, KApub, and compares 
the result with his calculated Digest(M). If they match, the signature is valid. 

11.2.3 Certificates

A digital certificate is a document containing a statement (usually short) signed by a 
principal. We illustrate the concept with a scenario.

Scenario 5. The use of certificates: Bob is a bank. When his customers establish contact 
with him they need to be sure that they are talking to Bob the bank, even if they have 
never contacted him before. Bob needs to authenticate his customers before he gives 
them access to their accounts.

For example, Alice might find it useful to obtain a certificate from her bank stating 
her bank account number (Figure 11.3

Figure 11.3 Alice’s bank account certificate 

1. Certificate type: Account number
2. Name: Alice
3. Account: 6262626
4. Certifying authority: Bob’s Bank
5. Signature: {Digest(field 2 + field 3)}KBpriv

). Alice could use this certificate when shopping 
to certify that she has an account with Bob’s Bank. The certificate is signed using Bob’s 
private key, KBpriv. A vendor, Carol, can accept such a certificate for charging items to 
Alice’s account provided that she can validate the signature in field 5. To do so, Carol 
needs to have Bob’s public key and she needs to be sure that it is authentic to guard 
against the possibility that Alice might sign a false certificate associating her name with 
someone else’s account. To carry out this attack, Alice would simply generate a new key 
pair, KB'pub, KB'priv, and use them to generate a forged certificate purporting to come 
from Bob’s Bank.
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What Carol needs is a certificate stating Bob’s public key, signed by a well-known 
and trusted authority. Let us assume that Fred represents the Bankers Federation, one of 
whose roles is to certify the public keys of banks. Fred could issue a public-key

certificate for Bob (Figure 11.4

Figure 11.4 Public-key certificate for Bob’s Bank 

1. Certificate type: Public key
2. Name: Bob’s Bank
3. Public key: KBpub

4. Certifying authority: Fred – The Bankers Federation
5. Signature: {Digest(field 2 + field 3)}KFpriv

).
Of course, this certificate depends upon the authenticity of Fred’s public key,

KFpub, so we have a recursive problem of authenticity – Carol can only rely on this 
certificate if she can be sure she knows Fred’s authentic public key, KFpub. We can break 
this recursion by ensuring that Carol obtains KFpub by some means in which she can 
have confidence – she might be handed it by a representative of Fred or she might 
receive a signed copy of it from someone she knows and trusts who says they got it 
directly from Fred. Our example illustrates a certification chain – one with two links, in 
this case.

We have already alluded to one of the problems arising with certificates – the 
difficulty of choosing a trusted authority from which a chain of authentications can start. 
Trust is seldom absolute, so the choice of an authority must depend upon the purpose to 
which the certificate is to be put. Other problems arise over the risk of private keys being 
compromised (disclosed) and the permissible length of a certification chain – the longer 
the chain, the greater the risk of a weak link.

Provided that care is taken to address these issues, chains of certificates are an 
important cornerstone for electronic commerce and other kinds of real-world 
transaction. They help to address the problem of scale: there are six billion people in the 
world, so how can we construct an electronic environment in which we can establish the 
credentials of any of them? 

 Certificates can be used to establish the authenticity of many types of statement. 
For example, the members of a group or association might wish to maintain an email list 
that is open only to members of the group. A good way to do this would be for the 
membership manager (Bob) to issue a membership certificate (S,Bob,{Digest(S)}KBpriv)
to each member, where S is a statement of the form Alice is a member of the Friendly 

Society and KBpriv is Bob’s private key. A member applying to join the Friendly Society 
email list would have to supply a copy of this certificate to the list management system, 
which checks the certificate before allowing the member to join the list.

To make certificates useful, two things are needed:

• a standard format and representation for them so that certificate issuers and 
certificate users can successfully construct and interpret them;
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• agreement on the manner in which chains of certificates are constructed, and in 
particular the notion of a trusted authority.

We return to these requirements in Section 11.4.4.
There is sometimes a need to revoke a certificate – for example, Alice might 

discontinue her membership of the Friendly Society, but she and others would probably 
continue to hold stored copies of her membership certificate. It would be expensive, if 
not impossible, to track down and delete all such certificates, and it is not easy to 
invalidate a certificate – it would be necessary to notify all possible recipients of the 
revocation. The usual solution to this problem is to include an expiry date in the 
certificate. Anyone receiving an expired certificate should reject it, and the subject of 
the certificate must request its renewal. If a more rapid revocation is required, then one 
of the more cumbersome mechanisms mentioned above must be resorted to.

11.2.4 Access control

Here we outline the concepts on which the control of access to resources is based in 
distributed systems and the techniques by which it is implemented. The conceptual basis 
for protection and access control was very clearly set out in a classic paper by Lampson 
[1971], and details of non-distributed implementations can be found in many books on 
operating systems (see e.g., [Stallings 2008]). 

Historically, the protection of resources in distributed systems has been largely 
service-specific. Servers receive request messages of the form <op, principal, 

resource>, where op is the requested operation, principal is an identity or a set of 
credentials for the principal making the request and resource identifies the resource to 
which the operation is to be applied. The server must first authenticate the request 
message and the principal’s credentials and then apply access control, refusing any 
request for which the requesting principal does not have the necessary access rights to 
perform the requested operation on the specified resource.

In object-oriented distributed systems there may be many types of object to which 
access control must be applied, and the decisions are often application-specific. For 
example, Alice may be allowed only one cash withdrawal from her bank account per 
day, while Bob is allowed three. Access control decisions are usually left to the 
application-level code, but generic support is provided for much of the machinery that 
supports the decisions. This includes the authentication of principals, the signing and 
authentication of requests, and the management of credentials and access rights data. 

Protection domains  •  A protection domain is an execution environment shared by a 
collection of processes: it contains a set of <resource, rights> pairs, listing the resources 
that can be accessed by all processes executing within the domain and specifying the 
operations permitted on each resource. A protection domain is usually associated with a 
given principal – when a user logs in, their identity is authenticated and a protection 
domain is created for the processes that they will run. Conceptually, the domain includes 
all of the access rights that the principal possesses, including any rights that they acquire 
through membership of various groups. For example, in UNIX, the protection domain 
of a process is determined by the user and group identifiers attached to the process at 
login time. Rights are specified in terms of allowed operations. For example, a file might 
be readable and writable by one process and only readable by another.
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A protection domain is only an abstraction. Two alternative implementations are 
commonly used in distributed systems:  capabilities and access control lists.

Capabilities: A set of capabilities is held by each process according to the domain in 
which it is located. A capability is a binary value that acts as an access key, allowing the 
holder access to certain operations on a specified resource. For use in distributed 
systems, where capabilities must be unforgeable, they take a form such as:

Resource identifier A unique identifier for the target resource
Operations A list of the operations permitted on the resource
Authentication code A digital signature making the capability unforgeable

Services only supply capabilities to clients when they have authenticated them as 
belonging to the claimed protection domain. The list of operations in the capability is a 
subset of the operations defined for the target resource and is often encoded as a bit map. 
Different capabilities are used for different combinations of access rights to the same 
resource.

When capabilities are used, client requests are of the form <op, userid, 

capability>. That is, they include a capability for the resource to be accessed instead of 
a simple identifier, giving the server immediate proof that the client is authorized to 
access the resource identified by the capability with the operations specified by the 
capability. An access-control check on a request that is accompanied by a capability 
involves only the validation of the capability and a check that the requested operation is 
in the set permitted by the capability. This feature is the major advantage of capabilities 
– they constitute a self-contained access key, just as a physical key to a door lock is an 
access key to the building that the lock protects.

Capabilities share two drawbacks of keys to a physical lock: 

Key theft: Anyone who holds the key to a building can use it to gain access, whether 
or not they are an authorized holder of the key – they may have stolen the key or 
obtained it in some fraudulent manner.

The revocation problem: The entitlement to hold a key changes with time. For 
example, the holder may cease to be an employee of the owner of the building, but 
they might retain the key, or a copy of it, and use it in an unauthorized manner. 

The only available solutions to these problems for physical keys are (a) to put the illicit 
key holder in jail – not always feasible on a timescale that will prevent them doing 
damage – or (b) to change the lock and reissue keys to all key holders – a clumsy and 
expensive operation.

The analogous problems for capabilities are clear:

• Capabilities may, through carelessness or as a result of an eavesdropping attack, 
fall into the hands of principals other than those to whom they were issued. If this 
happens, servers are powerless to prevent them being used illicitly.

• It is difficult to cancel capabilities. The status of the holder may change and their 
access rights should change accordingly, but they can still use their capabilities.

Solutions to both of these problems, based on the inclusion of information identifying 
the holder and on timeouts plus lists of revoked capabilities, respectively, have been 
proposed and developed [Gong 1989, Hayton et al. 1998]. Although they add 
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complexity to an otherwise simple concept, capabilities remain an important technique 
– for example, they can be used in conjunction with access control lists to optimize 
access control on repeated access to the same resource, and they provide the neatest 
mechanism for the implementation of delegation (see Section 11.2.5).

It is interesting to note the similarity between capabilities and certificates. 
Consider Alice’s certificate of ownership of her bank account introduced in Section 
11.2.3. It differs from capabilities as described here only in that there is no list of 
permitted operations and that the issuer is identified. Certificates and capabilities may 
be interchangeable concepts in some circumstances. Alice’s certificate might be 
regarded as an access key allowing her to perform all the operations permitted to account 
holders on her bank account, provided her identity can be proven.

Access control lists: A list is stored with each resource, containing an entry of the form 
<domain, operations> for each domain that has access to the resource and giving the 
operations permitted to the domain. A domain may be specified by an identifier for a 
principal or it may be an expression that can be used to determine a principal’s 
membership of the domain. For example, the owner of this file is an expression that can 
be evaluated by comparing the requesting principal’s identity with the owner’s identity 
stored with a file. 

This is the scheme adopted in most file systems, including UNIX and 
Windows NT, where a set of access permission bits is associated with each file, and the 
domains to which the permissions are granted are defined by reference to the ownership 
information stored with each file.

Requests to servers are of the form <op, principal, resource>. For each request, 
the server authenticates the principal and checks to see that the requested operation is 
included in the principal’s entry in the access control list of the relevant resource.

Implementation  •  Digital signatures, credentials and public-key certificates provide the 
cryptographic basis for secure access control. Secure channels offer performance 
benefits, enabling multiple requests to be handled without a need for repeated checking 
of principals and credentials [Wobber et al. 1994]. 

Both CORBA and Java offer Security APIs. Support for access control is one of 
their major purposes. Java provides support for distributed objects to manage their own 
access control with Principal, Signer and ACL classes and default methods for 
authentication and support for certificates, signature validation and access-control 
checks. Secret-key and public-key cryptography are also supported. Farley [1998] 
provides a good introduction to these features of Java. The protection of Java programs 
that include mobile code is based upon the protection domain concept – local code and 
downloaded code are provided with different protection domains in which to execute. 
There can be a protection domain for each download source, with access rights for 
different sets of local resources depending upon the level of trust that is placed in the 
downloaded code.

Corba offers a Security Service specification [Blakley 1999, OMG 2002b] with a 
model for ORBs to provide secure communication, authentication, access control with 
credentials, ACLs and auditing; these are described further in Section 8.3.
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11.2.5 Credentials

Credentials are a set of evidence provided by a principal when requesting access to a 
resource. In the simplest case, a certificate from a relevant authority stating the 
principal’s identity is sufficient, and this would be used to check the principal’s 
permissions in an access control list (see Section 11.2.4). This is often all that is required 
or provided, but the concept can be generalized to deal with many more subtle 
requirements.

It is not convenient to require users to interact with the system and authenticate 
themselves each time their authority is required to perform an operation on a protected 
resource. Instead, the notion that a credential speaks for a principal is introduced. Thus 
a user’s public-key certificate speaks for that user – any process receiving a request 
authenticated with the user’s private key can assume that the request was issued by that 
user.

The speaks for idea can be carried much further. For example, in a cooperative 
task, it might be required that certain sensitive actions should only be performed with 
the authority of two members of the team; in that case, the principal requesting the action 
would submit their own identifying credential and a backing credential from another 
member of the team, together with an indication that they are to be taken together when 
checking the credentials. 

Similarly, to vote in an election, a vote request would be accompanied by an 
elector certificate as well as an identifying certificate. A delegation certificate allows a 
principal to act on behalf of another, and so on. In general, an access-control check 
involves the evaluation of a logical formula combining the certificates supplied. 
Lampson et al. [1992] have developed a comprehensive logic of authentication for use 
in evaluating the speaks for authority carried by a set of credentials. Wobber et al. [1994] 
describe a system that supports this very general approach. Further work on useful forms 
of credential for use in real-world cooperative tasks can be found in Rowley [1998]. 

Role-based credentials seem particularly useful in the design of practical access 
control schemes [Sandhu et al. 1996]. Sets of role-based credentials are defined for 
organizations or for cooperative tasks, and application-level access rights are 
constructed with reference to them. Roles can then be assigned to specific principals by 
the generation of role certificates associating principals with named roles in specific 
tasks or organizations [Coulouris et al. 1998]. 

Delegation  •  A particularly useful form of credential is one that entitles a principal, or 
a process acting for a principal, to perform an action with the authority of another 
principal. A need for delegation can arise in any situation where a service needs to 
access a protected resource in order to complete an action on behalf of its client. 
Consider the example of a print server that accepts requests to print files. It would be 
wasteful of resources to copy the file, so the name of the file is passed to the print server 
and it is accessed by the print server on behalf of the user making the request. If the file 
is read-protected, this does not work unless the print server can acquire temporary rights 
to read the file. Delegation is a mechanism designed to solve problems such as this.

Delegation can be achieved using a delegation certificate or a capability. The 
certificate is signed by the requesting principal and it authorizes another principal (the 
print server in our example) to access a named resource (the file to be printed). In 
systems that support them, capabilities can achieve the same result without the need to 
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identify the principals – a capability to access a resource can be passed in a request to a 
server. The capability is an unforgeable, encoded set of rights to access the resource.

When rights are delegated, it is common to restrict them to a subset of the rights 
held by the issuing principal, so that the delegated principal cannot misuse them. In our 
example, the certificate could be time-limited to reduce the risk of the print server’s code 
subsequently being compromised and the file disclosed to third parties. The CORBA 
Security Service includes a mechanism for the delegation of rights based on certificates, 
with support for the restriction of the rights carried. 

11.2.6 Firewalls

Firewalls were introduced and described in Section 3.4.8. They protect intranets, 
performing filtering actions on incoming and outgoing communications. Here we 
discuss their advantages and drawbacks as security mechanisms.

In an ideal world, communication would always be between mutually trusting 
processes and secure channels would always be used. There are many reasons why this 
ideal is not attainable, some fixable, but others inherent in the open nature of distributed 
systems or resulting from the errors that are present in most software. The ease with 
which request messages can be sent to any server, anywhere, and the fact that many 
servers are not designed to withstand malicious attacks from hackers or accidental 
errors, makes it easy for information that is intended to be confidential to leak out of the 
owning organization’s servers. Undesirable items can also penetrate an organization’s 
network, allowing worm programs and viruses to enter its computers. See 
[web.mit.edu II] for a further critique of firewalls.

Firewalls produce a local communication environment in which all external 
communication is intercepted. Messages are forwarded to the intended local recipient 
only for communications that are explicitly authorized.

Access to internal networks may be controlled by firewalls, but access to public 
services on the Internet is unrestricted because their purpose is to offer services to a wide 
range of users. The use of firewalls offers no protection against attacks from inside an 
organization, and it is crude in its control of external access. There is a need for finer-
grained security mechanisms, enabling individual users to share information with 
selected others without compromising privacy and integrity. Abadi et al. [1998] 
describe an approach to the provision of access to private web data for external users 
based on a web tunnel mechanism that can be integrated with a firewall. It offers access 
for trusted and authenticated users to internal web servers via a secure proxy based on 
the HTTPS (HTTP over TLS) protocol. 

Firewalls are not particularly effective against denial-of-service attacks such as 
the one based on IP spoofing that was outlined in Section 3.4.2. The problem is that the 
flood of messages generated by such attacks overwhelms any single point of defence 
such as a firewall. Any remedy for incoming floods of messages must be applied well 
upstream of the target. Remedies based on the use of quality of service mechanisms to 
restrict the flow of messages from the network to a level that the target can handle seem 
the most promising.
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11.3 Cryptographic algorithms

A message is encrypted by the sender applying some rule to transform the plaintext

message (any sequence of bits) to a ciphertext (a different sequence of bits). The 
recipient must know the inverse rule in order to transform the ciphertext back into the 
original plaintext. Other principals are unable to decipher the message unless they also 
know the inverse rule. The encryption transformation is defined with two parts, a
function E and a key K. The resulting encrypted message is written M K .

E K M M K=

The encryption function E defines an algorithm that transforms data items in plaintext 
into encrypted data items by combining them with the key and transposing them in a 
manner that is heavily dependent on the value of the key. We can think of an encryption 
algorithm as the specification of a large family of functions from which a particular 
member is selected by any given key. Decryption is carried out using an inverse function 
D, which also takes a key as a parameter. For secret-key encryption, the key used for 
decryption is the same as that used for encryption:

D K E K M M=

Because of its symmetrical use of keys, secret-key cryptography is often referred to as 
symmetric cryptography, whereas public-key cryptography is referred to as asymmetric

because the keys used for encryption and decryption are different, as we shall see below. 
In the next section, we describe several widely used encryption functions of both types. 

Symmetric algorithms  •  If we remove the key parameter from consideration by defining 
FK M E K M= , then it is a property of strong encryption functions that 
FK M is relatively easy to compute, whereas the inverse, FK

1– M , is so hard to 
compute that it is not feasible. Such functions are known as one-way functions. The 
effectiveness of any method for encrypting information depends upon the use of an 
encryption function FK that has this one-way property. It is this that protects against 
attacks designed to discover M given M K .

For well-designed symmetric algorithms such as those described in the next 
section, their strength against attempts to discover K given a plaintext M and the 
corresponding ciphertext M K  depends on the size of K. This is because the most 
effective general form of attack is the crudest, known as a brute-force attack. The brute-
force approach is to run through all possible values of K, computing E K M  until the 
result matches the value of M K  that is already known. If K has N bits then such an 
attack requires 2

N 1–
 iterations on average, and a maximum of 2

N
 iterations, to find K.

Hence the time to crack K is exponential in the number of bits in K.

Asymmetric algorithms  •  When a public/private key pair is used, one-way functions are 
exploited in another way. The feasibility of a public-key scheme was first proposed by 
Diffie and Hellman [1976] as a cryptographic method that eliminates the need for trust 
between the communicating parties. The basis for all public-key schemes is the 
existence of trap-door functions. A trap-door function is a one-way function with a 
secret exit – it is easy to compute in one direction but infeasible to compute the inverse 
unless a secret is known. It was the possibility of finding such functions and using them 
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in practical cryptography that Diffie and Hellman first suggested. Since then, several 
practical public-key schemes have been proposed and developed. They all depend upon 
the use of trap-door functions involving large numbers.

The pair of keys needed for asymmetric algorithms is derived from a common 
root. For the RSA algorithm, described in Section 11.3.2, the root is an arbitrarily chosen 
pair of very large prime numbers. The derivation of the pair of keys from the root is a 
one-way function. In the case of the RSA algorithm, the large primes are multiplied 
together – a computation that takes only a few seconds, even for the very large primes 
used. The resulting product, N, is of course much larger than the multiplicands. This use 
of multiplication is a one-way function in the sense that it is computationally infeasible 
to derive the original multiplicands from the product – that is, to factorize the product.

One of the pair of keys is used for encryption. For RSA, the encryption function 
obscures the plaintext by treating each block of bits as a binary number and raising it to 
the power of the key, modulo N. The resulting number is the corresponding ciphertext 
block.

The size of N and at least one of the pair of keys is much larger than the safe key 
size for symmetric keys to ensure that N is not factorizable. For this reason, the potential 
for brute-force attacks on RSA is small; its resistance to attacks depends on the 
infeasibility of factorizing N. We discuss safe sizes for N in Section 11.3.2.

Block ciphers  •  Most encryption algorithms operate on fixed-size blocks of data; 64 bits 
is a popular size for the blocks. A message is subdivided into blocks, the last block is 
padded to the standard length if necessary and each block is encrypted independently. 
The first block is available for transmission as soon as it has been encrypted. 

For a simple block cipher, the value of each block of ciphertext does not depend 
upon the preceding blocks. This constitutes a weakness, since an attacker can recognize 
repeated patterns and infer their relationship to the plaintext. Nor is the integrity of 
messages guaranteed unless a checksum or secure digest mechanism is used. Most block 
cipher algorithms employ cipher block chaining (CBC)

n

n+3 n+2

Figure 11.5 Cipher block chaining
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 to overcome these weaknesses.

Cipher block chaining: In cipher block chaining mode, each plaintext block is combined 
with the preceding ciphertext block using the exclusive-or operation (XOR) before it is 
encrypted (Figure 11.5). On decryption, the block is decrypted and then the preceding 
encrypted block (which should have been stored for this purpose) is XOR-ed with it to 
obtain the new plaintext block. This works because the XOR operation is its own inverse
– two applications of it produce the original value.

CBC is intended to prevent identical portions of plaintext encrypting to identical 
pieces of ciphertext. But there is a weakness at the start of each sequence of blocks – if 
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we open encrypted connections to two destinations and send the same message, the 
encrypted sequences of blocks will be the same, and an eavesdropper might gain some 
useful information from this. To prevent this, we need to insert a different piece of 
plaintext in front of each message. Such text is called an initialization vector. A 
timestamp makes a good initialization vector, forcing each message to start with a 
different plaintext block. This, combined with CBC operation, will result in different 
ciphertexts even for two identical plaintexts.

The use of CBC mode is restricted to the encryption of data that is transferred 
across a reliable connection. Decryption will fail if any blocks of ciphertext are lost, 
since the decryption process will be unable to decrypt any further blocks. It is therefore 
unsuitable for use in applications such as those described in Chapter 18, in which some 
data loss can be tolerated. A stream cipher should be used in such circumstances.

Stream ciphers  •  For some applications, such as the encryption of telephone 
conversations, encryption in blocks is inappropriate because the data streams are 
produced in real time in small chunks. Data samples can be as small as 8 bits or even a 
single bit, and it would be wasteful to pad each of these to 64 bits before encrypting and 
transmitting them. Stream ciphers are encryption algorithms that can perform 
encryption incrementally, converting plaintext to ciphertext one bit at a time. 

This sounds difficult to achieve, but in fact it is very simple to convert a block 
cipher algorithm for use as a stream cipher. The trick is to construct a keystream 

generator. A keystream is an arbitrary-length sequence of bits that can be used to 
obscure the contents of a data stream by XOR-ing the keystream with the data stream 
(Figure 11.6)

Figure 11.6 Stream cipher
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. If the keystream is secure, then so is the resulting encrypted data stream. 
The idea is analogous to a technique used in the intelligence community to foil 

eavesdroppers, where ‘white noise’ is played to hide the conversation in a room while 
still recording the conversation. If the noisy room sound and the white noise are recorded 
separately, the conversation can be played back without noise by subtracting the white 
noise recording from the noisy room recording. 

A keystream generator can be constructed by iterating a mathematical function 
over a range of input values to produce a continuous stream of output values. The output 
values are then concatenated to make plaintext blocks, and the blocks are encrypted 
using a key shared by the sender and the receiver. The keystream can be further 
disguised by applying CBC. The resulting encrypted blocks are used as the keystream. 
An iteration of almost any function that delivers a range of different non-integer values 
will do for the source material, but a random number generator is generally used with a 
starting value for the iteration agreed between the sender and receiver. To maintain 
quality of service for the data stream, the keystream blocks should be produced a little 
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ahead of the time at which they will be used, and the process that produces them should 
not demand so much processing effort that the data stream is delayed. 

Thus in principle, real-time data streams can be encrypted just as securely as 
batched data, provided that sufficient processing power is available to encrypt the 
keystream in real time. Of course, some devices that could benefit from real-time 
encryption, such as mobile phones, are not equipped with very powerful processors, and 
in that case it may be necessary to reduce the security of the keystream algorithm.

Design of cryptographic algorithms  •  There are many well-designed cryptographic 
algorithms such that E K M M K=  conceals the value of M and makes it 
practically impossible to retrieve K more quickly than by brute force. All encryption 
algorithms rely on information-preserving manipulations of M using principles based on 
information theory [Shannon 1949]. Schneier [1996] describes Shannon’s principles of 
confusion and diffusion to conceal the content of a ciphertext block M, combining it with 
a key K of sufficient size to render it proof against brute-force attacks.

Confusion: Non-destructive operations such as XOR and circular shifting are used to 
combine each block of plaintext with the key, producing a new bit pattern that obscures 
the relationship between the blocks in M and {M}K. If the blocks are larger than a few 
characters this will defeat analysis based on a knowledge of character frequencies. (The 
WWII German Enigma machine used chained single-letter blocks, and was eventually
defeated by statistical analysis.)

Diffusion: There is usually repetition and redundancy in the plaintext. Diffusion 
dissipates the regular patterns that result by transposing portions of each plaintext block. 
If CBC is used, the redundancy is also distributed throughout a longer text. Stream 
ciphers cannot use diffusion since there are no blocks.

In the next two sections, we describe the design of several important practical 
algorithms. All of them have been designed in the light of the above principles have been 
subject to rigorous analysis and are considered to be secure against all known attacks 
with a considerable margin of safety. With the exception of the TEA algorithm, which 
is described for illustrative purposes, the algorithms described here are among those 
most widely used in applications where strong security is required. In some of them 
there remain some minor weaknesses or areas of concern; space does not allow us to 
describe all of those concerns here, and the reader is referred to Schneier [1996] for 
further information. We summarize and compare the security and performance of the 
algorithms in Section 11.5.1.

Readers who do not require an understanding of the operation of cryptographic 
algorithms may omit Sections 11.3.1 and 11.3.2.

11.3.1 Secret-key (symmetric) algorithms

Many cryptographic algorithms have been developed and published in recent years. 
Schneier [1996] describes more than 25 symmetric algorithms, many of which he 
identifies as secure against known attacks. Here we have room to describe only three of 
them. We have chosen the first, TEA, for the simplicity of its design and 
implementation, and we use it to give a concrete illustration of the nature of such 
algorithms. We go on to discuss the DES and IDEA algorithms in less detail. DES was
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a US national standard for many years, but it is now largely of historical interest because 
its 56-bit keys are too small to resist brute-force attack with modern hardware. IDEA 
uses a 128-bit key. It is one of the most effective symmetric block encryption algorithms
and a good all-round choice for bulk encryption. 

In 1997, the US National Institute for Standards and Technology (NIST) issued an 
invitation for proposals for an algorithm to replace DES as a new US Advanced 
Encryption Standard (AES). In October 2000 the winner was selected from 21 
algorithms submitted by cryptographers from 11 countries. The winning Rijndael 
algorithm was chosen for its combination of strength and efficiency. Further information 
on it is given below.

TEA  •  The design principles for symmetric algorithms outlined above are illustrated 
well in the Tiny Encryption Algorithm (TEA) developed at Cambridge University 
[Wheeler and Needham 1994]. The encryption function, programmed in C, is given in 
its entirety in 

Figure 11.7 TEA encryption function

void encrypt(unsigned long k[], unsigned long text[]) {

unsigned long y = text[0], z = text[1]; 1

unsigned long delta = 0x9e3779b9, sum = 0; int n; 2

for (n= 0; n < 32; n++) { 3

sum += delta; 4

y += ((z << 4) + k[0]) ^ (z+sum) ^ ((z >> 5) + k[1]); 5

z += ((y << 4) + k[2]) ^ (y+sum) ^ ((y >> 5) + k[3]); 6

}

text[0] = y;  text[1] = z; 7

}

Figure 11.7.
The TEA algorithm uses rounds of integer addition, XOR (the ^ operator) and 

bitwise logical shifts (<< and >>) to achieve diffusion and confusion of the bit patterns 
in the plaintext. The plaintext is a 64-bit block represented as two 32-bit integers in the 
vector text[]. The key is 128 bits long, represented as four 32-bit integers.

On each of the 32 rounds, the two halves of the text are repeatedly combined with 
shifted portions of the key and each other in lines 5 and 6. The use of XOR and shifted 
portions of the text provides confusion, and the shifting and swapping of the two 
portions of the text provides diffusion. The non-repeating constant delta is combined 
with each portion of the text on each cycle to obscure the key in case it might be revealed 
by a section of text that does not vary. The decryption function is the inverse of that for 
encryption and is given in Figure 11.8.

This short program provides secure and reasonably fast secret-key encryption. It
is somewhat faster than the DES algorithm, and the conciseness of the program lends 
itself to optimization and hardware implementation. The 128-bit key is secure against 
brute-force attacks. Studies by its authors and others have revealed only two very minor 
weaknesses, which the authors addressed in a subsequent note [Wheeler and Needham 
1997].



Figure 11.8 TEA decryption function

void decrypt(unsigned long k[], unsigned long text[]) {

unsigned long y = text[0], z = text[1];

unsigned long delta = 0x9e3779b9, sum = delta << 5;  int n;

for (n= 0; n < 32; n++) {

z -= ((y << 4) + k[2]) ^ (y + sum) ^ ((y >> 5) + k[3]);

y -= ((z << 4) + k[0]) ^ (z + sum) ^ ((z >> 5) + k[1]);

sum -= delta;

}

text[0] = y; text[1] = z; 

}
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To illustrate its use

Figure 11.9 TEA in use

void tea(char mode, FILE *infile, FILE *outfile, unsigned long k[]) {

/* mode is 'e' for encrypt, 'd' for decrypt, k[] is the key.*/

char ch, Text[8]; int i;

while(!feof(infile)) {

i = fread(Text, 1, 8, infile); /* read 8 bytes from infile into Text */

if (i <= 0) break;

while (i < 8) { Text[i++] = ' ';} /* pad last block with spaces */

switch (mode) {

case 'e':

encrypt(k, (unsigned long*) Text); break;

case 'd':

decrypt(k, (unsigned long*) Text); break;

}

fwrite(Text, 1, 8, outfile); /* write 8 bytes from Text to outfile */

}

}

, Figure 11.9 shows a simple procedure that uses TEA to 
encrypt and decrypt a pair of previously opened files (using the C stdio library).

DES  •  The Data Encryption Standard (DES) [National Bureau of Standards 1977] was 
developed by IBM and subsequently adopted as a US national standard for government 
and business applications. In this standard, the encryption function maps a 64-bit 
plaintext input into a 64-bit encrypted output using a 56-bit key. The algorithm has 16 
key-dependent stages known as rounds, in which the data to be encrypted is bit-rotated 
by a number of bits determined by the key and three key-independent transpositions. 
The algorithm was time-consuming to perform in software on the computers of the 
1970s and 1980s, but it was implemented in fast VLSI hardware and can easily be 
incorporated into network interface and other communication chips.
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In June 1997, it was successfully cracked in a widely publicized brute-force 
attack. The attack was performed in the context of a competition to demonstrate the lack 
of security of encryption with keys shorter than 128 bits [www.rsasecurity.com II]. A 
consortium of Internet users ran a client application program on a their PCs and other 
workstations, whose numbers reached 14,000 during one 24-hour period [Curtin and 
Dolske 1998]. 

The client program was aimed at cracking the particular key used in a known 
plaintext/ciphertext sample and then using it to decrypt a secret challenge message. The 
clients interacted with a single server that coordinated their work, issuing each client 
with ranges of key values to check and receiving progress reports from them. The typical 
client computer ran the client program only as a background activity and had a 
performance approximately equal to a 200 MHz Pentium processor. The key was 
cracked in about 12 weeks, after approximately 25% of the possible 256 or 6 1016

values had been checked. In 1998 a machine was developed by the Electronic Frontier 
Foundation [EFF 1998] that can successfully crack DES keys in around three days.

Although it is still used in many commercial and other applications, DES in its 
basic form should be considered obsolete for the protection of all but low-value 
information. A solution that is frequently used is known as triple-DES (or 3DES) [ANSI 
1985, Schneier 1996]. This involves applying DES three times with two keys, K1 and K2:

E3DES K1 K2 M EDES K1 DDES K2 EDES K1 M=

This gives a strength against brute-force attacks equivalent to a key length of 112 bits –
adequate for the foreseeable future – but it has the drawback of poor performance 
resulting from the triple application of an algorithm that is already slow by modern 
standards.

IDEA  •  The International Data Encryption Algorithm (IDEA) was developed in the 
early 1990s [Lai and Massey 1990, Lai 1992] as a successor to DES. Like TEA, it uses 
a 128-bit key to encrypt 64-bit blocks. Its algorithm is based on the algebra of groups 
and has eight rounds of XOR, addition modulo 216 and multiplication. For both DES and 
IDEA, the same function is used for encryption and decryption: a useful property for 
algorithms that are to be implemented in hardware.

The strength of IDEA has been extensively analyzed, and no significant 
weaknesses have been found. It performs encryption and decryption at approximately 
three times the speed of DES.

RC4  •  RC4 is a stream cipher developed by Ronald Rivest [Rivest 1992b]. Keys can be 
of any length up to 256 bytes. RC4 is easy to implement [Schneier 1996, pp. 397–8] and 
performs encryption and decryption about 10 times as fast as DES. It was therefore 
widely adopted in applications including IEEE 802.11 WiFi networks, but a weakness 
was subsequently discovered by Fluhrer et al. [2001] that enabled attackers to crack 
some keys. This led to a redesign of 802.11 security (see Section 11.6.4 for further 
details).

AES  •  The Rijndael algorithm selected to become the Advanced Encryption Standard 
algorithm by NIST was developed by Joan Daemen and Vincent Rijmen [Daemen and 
Rijmen 2000, 2002]. The cipher has a variable block length and key length, with 
specifications for keys with a length of 128, 192 or 256 bits to encrypt blocks with a 
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length of 128, 192 or 256 bits. Both block length and key length can be extended by 
multiples of 32 bits. The number of rounds in the algorithm varies from 9 to 13 
depending on the key and block sizes. Rijndael can be implemented efficiently on a wide 
range of processors and in hardware. 

11.3.2 Public-key (asymmetric) algorithms

Only a few practical public-key schemes have been developed to date. They depend 
upon the use of trap-door functions of large numbers to produce the keys. The keys Ke
and Kd are a pair of very large numbers, and the encryption function performs an 
operation, such as exponentiation on M, using one of them. Decryption is a similar 
function using the other key. If the exponentiation uses modular arithmetic, it can be 
shown that the result is the same as the original value of M; that is: 

D(Kd, E(Ke, M)) = M

A principal wishing to participate in secure communication with others makes a pair of 
keys, Ke and Kd, and keeps the decryption key Kd a secret. The encryption key Ke can 
be made known publicly for use by anyone who wants to communicate. The encryption 
key Ke can be seen as a part of the one-way encryption function E, and the decryption 
key Kd is the piece of secret knowledge that enables principal p to reverse the 
encryption. Any holder of Ke (which is widely available) can encrypt messages {M}Ke,
but only the principal who has the secret Kd can operate the trapdoor.

The use of functions of large numbers leads to large processing costs in computing 
the functions E and D. We shall see later that this is a problem that has to be addressed 
by the use of public keys only in the initial stages of secure communication sessions. The 
RSA algorithm is certainly the most widely known public-key algorithm and we 
describe it in some detail here. Another class of algorithms is based on functions derived 
from the behaviour of elliptic curves in a plane. These algorithms offer the possibility of 
less costly encryption and decryption functions with the same level of security, but their 
practical application is less advanced and we deal with them only briefly.

RSA  •  The Rivest, Shamir and Adelman (RSA) design for a public-key cipher [Rivest 
et al. 1978] is based on the use of the product of two very large prime numbers (greater 
than 10100), relying on the fact that the determination of the prime factors of such large 
numbers is so computationally difficult as to be effectively impossible. 

 Despite extensive investigations no flaws have been found in it, and it is now very 
widely used. An outline of the method follows. To find a key pair <e,d>: 

1. Choose two large prime numbers, P and Q (each greater than 10100), and form 
N = P Q

Z = (P–1) (Q–1)

2. For d, choose any number that is relatively prime with Z (that is, such that d has 
no common factors with Z).

We illustrate the computations involved using small integer values for P and Q:
P = 13, Q = 17 N = 221, Z = 192 
d = 5
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3. To find e, solve the equation:
e d = 1 mod Z

That is, e d is the smallest element divisible by d in the series Z+1, 2Z+1, 3Z+1, ... .

e d  =  1 mod 192   = 1, 193, 385, ...
385 is divisible by d
e = 385/5 = 77

To encrypt text using the RSA method, the plaintext is divided into equal blocks of 
length k bits, where 2k < N (that is, such that the numerical value of a block is always 
less than N; in practical applications, k is usually in the range 512 to 1024).

k = 7, since 27 = 128 

The function for encrypting a single block of plaintext M is:

E'(e,N,M) = Me mod N

for a message M, the ciphertext is M77 mod 221

The function for decrypting a block of encrypted text c to produce the original plaintext 
block is:

D'(d,N,c) = cd mod N

Rivest, Shamir and Adelman proved that E' and D' are mutual inverses (that is, 
E'(D'(x)) = D'(E'(x)) = x) for all values of P in the range 0  P  N.

The two parameters e,N can be regarded as a key for the encryption function, and 
similarly the parameters d,N represent a key for the decryption function. So we can write 
Ke = <e,N> and Kd = <d,N>, and we get the encryption functions E(Ke, M) ={M}K (the 
notation here indicating that the encrypted message can be decrypted only by the holder 
of the private key Kd) and D(Kd, {M}K) = M.

It is worth noting one potential weakness of all public-key algorithms – because 
the public key is available to attackers, they can easily generate encrypted messages. 
Thus they can attempt to decrypt an unknown message by exhaustively encrypting 
arbitrary bit sequences until a match with the target message is achieved. This attack, 
which is known as a chosen plaintext attack, is defeated by ensuring that all messages 
are longer than the key length, so that this form of brute-force attack is less feasible than 
a direct attack on the key. 

An intending recipient of secret information must publish or otherwise distribute 
the pair <e,N> while keeping d secret. The publication of <e,N> does not compromise 
the secrecy of d, because any attempt to determine d requires knowledge of the original 
prime numbers P and Q, and these can only be obtained by the factorization of N.
Factoring of large numbers (we recall that P and Q were chosen to be > 10100, so N > 
10200) is extremely time-consuming, even on very high-performance computers. In 
1978, Rivest et al. concluded that factoring a number as large as 10200 would take more 
than four billion years with the best known algorithm on a computer that performs one 
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million instructions per second. A similar calculation for today’s computers would 
reduce this time to around a million years,

The RSA Corporation has issued a series of challenges to factor numbers of more 
than 100 decimal digits [www.rsasecurity.com III]. At the time of writing, numbers of
up to 174 decimal digits (576 binary digits) have been successfully factored, so the use 
of the RSA algorithm with 512-bit keys is clearly unacceptably weak for many purposes.
The RSA Corporation (holders of the patents in the RSA algorithm) recommends a key 
length of at least 768 bits, or about 230 decimal digits, for long-term (~20 years) 
security. Keys as large as 2048 bits are used in some applications.

The above strength calculations assume that the currently known factoring 
algorithms are the best available. RSA and other forms of asymmetric cryptography that 
use prime number multiplication as their one-way function will be vulnerable if a faster 
factorization algorithm is discovered.

Elliptic curve algorithms  •  A method for generating public/private key pairs based on 
the properties of elliptic curves has been developed and tested. Full details can be found 
in the book by Menezes devoted to the subject [Menezes 1993]. The keys are derived 
from a different branch of mathematics, and unlike RSA their security does not depend 
upon the difficulty of factoring large numbers. Shorter keys are secure, and the 
processing requirements for encryption and decryption are lower than those for RSA. 
Elliptic curve encryption algorithms are likely to be adopted more widely in the future, 
especially in systems such as those incorporating mobile devices, which have limited 
processing resources. The relevant mathematics involves some quite complex properties 
of elliptic curves and is beyond the scope of this book. 

11.3.3 Hybrid cryptographic protocols

Public-key cryptography is convenient for electronic commerce because there is no need 
for a secure key-distribution mechanism. (There is a need to authenticate public keys,
but this is much less onerous, requiring only a public-key certificate to be sent with the 
key.) But the processing costs of public-key cryptography are too high for the encryption 
of even the medium-sized messages normally encountered in electronic commerce. The 
solution adopted in most large-scale distributed systems is to use a hybrid encryption 
scheme in which public-key cryptography is used to authenticate the parties and to 
encrypt an exchange of secret keys, which are used for all subsequent communication. 
We describe the implementation of a hybrid protocol in the TLS case study in 
Section 11.6.3.

11.4 Digital signatures

Strong digital signatures are an essential requirement for secure systems. They are 
needed in order to certify certain pieces of information – for example, to provide 
trustworthy statements binding users’ identities to their public keys or binding some 
access rights or roles to users’ identities. 
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The need for signatures in many kinds of business and personal transaction is 
beyond dispute. Handwritten signatures have been used as a means of verifying 
documents for as long as documents have existed. Handwritten signatures are used to 
meet the needs of document recipients to verify that the document is:

Authentic: It convinces the recipient that the signer deliberately signed the document 
and it has not been altered by anyone else.

Unforgeable: It provides proof that the signer, and no one else, deliberately signed 
the document. The signature cannot be copied and placed on another document.

Non-repudiable: The signer cannot credibly deny that the document was signed by 
them.

In reality, none of these desirable properties of signing is entirely achieved by 
conventional signatures – forgeries and copies are hard to detect, documents can be 
altered after signing and signers are sometimes deceived into signing a document 
involuntarily or unwittingly – but we are willing to live with their imperfection because 
of the difficulty of cheating and the risk of detection. Like handwritten signatures, 
digital signatures depend upon the binding of a unique and secret attribute of the signer 
to a document. In the case of handwritten signatures, the secret is the handwriting pattern 
of the signer.

The properties of digital documents held in stored files or messages are 
completely different from those of paper documents. Digital documents are trivially 
easy to generate, copy and alter. Simply appending the identity of the originator, 
whether as a text string, a photograph or a handwritten image, has no value for 
verification purposes.

What is needed is a means to irrevocably bind a signer’s identity to the entire 
sequence of bits representing a document. This should meet the first requirement above, 
for authenticity. As with handwritten signatures, though, the date of a document cannot 
be guaranteed by a signature. The recipient of a signed document knows only that the 
document was signed before they received it.

Regarding non-repudiation, there is a problem that does not arise with handwritten 
signatures. What if the signer deliberately reveals their private key and subsequently 
denies having signed, saying that there are others who could have done so, since the key 
was not private? Some protocols have been developed to address this problem under the 
heading of undeniable digital signatures [Schneier 1996], but they add considerably to 
the complexity.

A document with a digital signature can be considerably more resistant to forgery 
than a handwritten one. But the word ‘original’ has little meaning with reference to 
digital documents. As we shall see in our discussion of the needs of electronic 
commerce, digital signatures alone cannot, for example, prevent double-spending of 
electronic cash – other measures are needed to prevent that. We now describe two 
techniques for signing documents digitally, binding a principal’s identity to the 
document. Both depend upon the use of cryptography.

Digital signing  •  An electronic document or message M can be signed by a principal A
by encrypting a copy of M with a key KA and attaching it to a plaintext copy of M and 
A’s identifier. The signed document then consists of: M, A, [M]KA. The signature can be 
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verified by a principal that subsequently receives the document to check that it was 
originated by A and that its contents, M, have not subsequently been altered. 

If a secret key is used to encrypt the document, only principals that share the secret 
can verify the signature. But if public-key cryptography is used, then the signer uses 
their private key and anyone who has the corresponding public key can verify the 
signature. This is a better analogue for conventional signatures and meets a wider range 
of user needs. The verification of signatures proceeds differently depending on whether 
secret-key or public-key cryptography is used to produce the signature. We describe the 
two cases in Sections 11.4.1 and 11.4.2.

Digest functions  •  Digest functions are also called secure hash functions and denoted 
H(M). They must be carefully designed to ensure that H(M) is different from H(M') for 
all likely pairs of messages M and M'. If there are any pairs of different messages M and 
M' such that H(M) = H(M'), then a duplicitous principal could send a signed copy of M,
but when confronted with it claim that M' was originally sent and that it must have been 
altered in transit. We discuss some secure hash functions in Section 11.4.3.
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E(Kpri, h)

128 bits
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{h}Kpri h'
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Figure 11.10 Digital signatures with public keys
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11.4.1 Digital signatures with public keys

Public-key cryptography is particularly well adapted for the generation of digital 
signatures because it is relatively simple and does not require any communication 
between the recipient of a signed document and the signer or any third party. 

The method for A to sign a message M and B to verify it is as follows (and is 
illustrated graphically in Figure 11.10):

1. A generates a key pair Kpub and Kpriv and publishes the public key Kpub by 
placing it in a well-known location.
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2. A computes the digest of M, H(M) using an agreed secure hash function H and 
encrypts it using the private key Kpriv to produce the signature S = {H(M)}Kpriv.

3. A sends the signed message [M]K = M,S to B.

4. B decrypts S using Kpub and computes the digest of M, H(M). If they match, the 
signature is valid.

The RSA algorithm is quite suitable for use in constructing digital signatures. Note that 
the private key of the signer is used to encrypt the signature, in contrast to the use of the 
recipient’s public key for encryption when the aim is to transmit information in secrecy. 
The explanation for this difference is straightforward – a signature must be created using 
a secret known only to the signer and it should be accessible to all for verification.

11.4.2 Digital signatures with secret keys – MACs

There is no technical reason why a secret-key encryption algorithm should not be used 
to encrypt a digital signature, but in order to verify such signatures the key must be 
disclosed, and this causes some problems:

• The signer must arrange for the verifier to receive the secret key used for signing 
securely.

• It may be necessary to verify a signature in several contexts and at different times 
– at the time of signing, the signer may not know the identities of the verifiers. To 
resolve this, verification could be delegated to a trusted third party who holds 
secret keys for all signers, but this adds complexity to the security model and 
requires secure communication with the trusted third party. 

• The disclosure of a secret key used for signing is undesirable because it weakens 
the security of signatures made with that key – a signature could be forged by a 
holder of the key who is not the owner of it. 

For all these reasons, the public-key method for generating and verifying signatures 
offers the most convenient solution in most situations. 

An exception arises when a secure channel is used to transmit unencrypted 
messages but there is a need to verify the authenticity of the messages. Since a secure 
channel provides secure communication between a pair of processes, a shared secret key 
can be established using the hybrid method outlined in Section 11.3.3 and used to 
produce low-cost signatures. These signatures are called message authentication codes

(MACs) to reflect their more limited purpose – they authenticate communication 
between pairs of principals based on a shared secret.

A low-cost signing technique based on shared secret keys that has adequate 
security for many purposes is illustrated in Figure 11.11 and outlined below. The 
method depends upon the existence of a secure channel through which the shared key 
can be distributed:

1. A generates a random key K for signing and distributes it using secure channels to 
one or more principals who will need to authenticate messages received from A.
The principals are trusted not to disclose the shared key.
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2. For any document M that A wishes to sign, A concatenates M with K, computes 
the digest of the result, h H M K+= , and sends the signed document 

M K M h= to anyone wishing to verify the signature. (The digest h is a MAC.) 
K will not be compromised by the disclosure of h, since the hash function has 
totally obscured its value.

3. The receiver, B, concatenates the secret key K with the received document M and 
computes the digest h' H M K+= . The signature is verified if h h'= .

Although this method suffers from the disadvantages listed above, it has a performance 
advantage because it involves no encryption. (Secure hashing is typically about 3–10 
times faster than symmetric encryption; see Section 11.5.1.) The TLS secure channel 
protocol described in Section 11.6.3 supports the use of a wide variety of MACs, 
including the scheme described here. The method is also used in the Millicent electronic 
cash protocol described at www.cdk5.net/security, where it is important to keep the 
processing cost low for low-value transactions.

11.4.3 Secure digest functions

There are many ways to produce a fixed-length bit pattern that characterizes an 
arbitrary-length message or document. Perhaps the simplest is to use the XOR operation 
iteratively to combine fixed-length pieces of the source document. Such a function is 
often used in communication protocols to produce a short fixed-length hash to 
characterize a message for error-detection purposes, but it is inadequate as the basis for 
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a digital signature scheme. A secure digest function h = H(M) should have the following 
properties:

1. Given M, it is easy to compute h.

2. Given h, it is hard to compute M.

3. Given M, it is hard to find another message M', such that H(M) = H(M').

Such functions are also called one-way hash functions. The reason for this name is self-
evident based on the first two properties. Property 3 demands an additional feature: even 
though we know that the result of a hash function cannot be unique (because the digest 
is an information-reducing transformation), we need to be sure that an attacker, given a 
message M that produces a hash h, cannot discover another message M' that also 
produces h. If an attacker could do this, then they could forge a signed document M'

without knowledge of the signing key by copying the signature from the signed 
document M and appending it to M'.

Admittedly, the set of messages that hash to the same value is restricted and the 
attacker would have difficulty in producing a meaningful forgery, but with patience it 
could be done, so it must be guarded against. The feasibility of doing so is considerably 
enhanced in the case of a so-called birthday attack:

1. Alice prepares two versions, M and M', of a contract for Bob. M is favourable to 
Bob and M' is not.

2. Alice makes several subtly different versions of both M and M' that are visually 
indistinguishable from each other by methods such as adding spaces at the ends of 
lines. She compares the hashes of all the Ms with all the M's. If she finds two that 
are the same, she can proceed to the next step; if not, she goes on producing 
visually indistinguishable versions of the two documents until she gets a match.

3. When she has a pair of documents M and M' that hash to the same value, she gives 
the favourable document M to Bob for him to sign with a digital signature using 
his private key. When he returns it, she substitutes the matching unfavourable 
version M', retaining the signature from M.

If our hash values are 64 bits long, we require only 232 versions of M and M' on average. 
This is too small for comfort. We need to make our hash values at least 128 bits long to 
guard against this type of attack.

The attack relies on a statistical paradox known as the birthday paradox – the 
probability of finding a matching pair in a given set is far greater than that for finding a 
match for a given individual. Stallings [2005] gives the statistical derivation for the 
probability that there will be two people with the same birthday in a set of n people. The 
result is that for a set of only 23 people the chances are even, whereas we require a set 
of 253 people for an even chance that there will be one with a birthday on a given day. 

To satisfy the properties listed above, a secure digest function needs to be 
carefully designed. The bit-level operations used and their sequencing are similar to 
those found in symmetric cryptography, but in this case the operations need not be 
information-preserving, since the function is definitely not intended to be reversible. So 
a secure digest function can make use of the full range of arithmetic and bit-wise logical 
operations. The length of the source text is usually included in the digested data.



SECTION 11.4 DIGITAL SIGNATURES 499

Two widely used digest functions for practical applications are the MD5 
algorithm (so called because it is the fifth in a sequence of message digest algorithms 
developed by Ron Rivest) and  SHA-1 (the Secure Hash Algorithm), which has been
adopted for standardization by the US National Institute for Standards and Technology 
(NIST). Both have been carefully tested and analyzed and can be considered adequately 
secure for the foreseeable future, while their implementations are reasonably efficient. 
We describe them briefly here. Schneier [1996] and Mitchell et al. [1992] survey digital 
signature techniques and message digest functions in depth. 

MD5  •  The MD5 algorithm [Rivest 1992a] uses four rounds, each applying one of four 
nonlinear functions to each of 16 32-bit segments of a 512-bit block of source text. The 
result is a 128-bit digest. MD5 is one of the most efficient algorithms currently available.

SHA-1  •  SHA-1 [NIST 2002] is an algorithm that produces a 160-bit digest. It is based 
on Rivest’s MD4 algorithm (which is similar to MD5), with some additional operations. 
It is substantially slower than MD5, but the 160-bit digest does offer greater security 
against brute-force and birthday-style attacks. SHA algorithms that deliver longer 
digests (224, 256 and 512 bits) are also included in the standard [NIST 2002]. Of course, 
their additional length implies additional costs for the generation, storage and 
communication of digital signatures and MACs, but following the publication of attacks 
on SHA-1’s predecessors, which suggest that SHA-1 is vulnerable [Randall and Szydlo 
2004], NIST announced that is to be superseded by the longer SHA digest versions in 
US government software by 2010 [NIST 2004].

Using an encryption algorithm to make a digest  •  It is possible to use a symmetric 
encryption algorithm such as those detailed in Section 11.3.1 to produce a secure digest. 
In this case, the key should be published so that the digest algorithm can be applied by 
anyone wishing to verify a digital signature. The encryption algorithm is used in CBC 
mode, and the digest is the result of combining the penultimate CBC value with the final 
encrypted block.

11.4.4 Certificate standards and certificate authorities

Figure 11.12 X509 Certificate format

Subject Distinguished Name, Public Key
Issuer Distinguished Name, Signature
Period of validity Not Before Date, Not After Date
Administrative information Version, Serial Number
Extended information

X.509 is the most widely used standard format for certificates [CCITT 1988b]. Although 
the X.509 certificate format is a part of the X.500 standard for the construction of global 
directories of names and attributes [CCITT 1988a], it is commonly used in 
cryptographic work as a format definition for freestanding certificates. We describe the 
X.500 naming standard in Chapter 13.
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The structure and content of an X.509 certificate are illustrated in Figure 11.12.
As can be seen, it binds a public key to a named entity called a subject. The binding is 
in the signature, which is issued by another named entity called the issuer. The 
certificate has a period of validity, which is defined by a pair of dates. The 
<Distinguished Name> entries are intended to be the name of a person, organization or 
other entity together with sufficient contextual information to render it unique. In a full 
X.500 implementation this contextual information would be drawn from a directory 
hierarchy in which the named entity appears, but in the absence of global X.500 
implementations it can only be a descriptive string.

This format is included in the TLS protocol for electronic commerce and is widely 
used in practice to authenticate the public keys of services and their clients. Certain well-
known companies and organizations have established themselves to act as certificate 

authorities (for example, Verisign [www.verisign.com] and CREN [www.cren.net]), 
and other companies and individuals can obtain X.509 public-key certificates from them 
by submitting satisfactory evidence of their identity. This leads to a two-step verification 
procedure for any X.509 certificate:

1. Obtain the public-key certificate of the issuer (a certification authority) from a 
reliable source.

2. Validate the signature.

The SPKI approach  •  The X.509 approach is based on the global uniqueness of 
distinguished names. It has been pointed out that this is an impractical goal that does not 
reflect the reality of current legal and commercial practice [Ellison 1996], in which the 
identities of individuals are not assumed to be unique but are made unique by reference 
to other people and organizations. This can be seen in the use of a driving licence or a 
letter from a bank to authenticate an individual’s name and address (a name alone is 
unlikely to be unique among the world’s population). This leads to longer verification 
chains, because there are many possible issuers of public-key certificates, and their 
signatures must be validated through a chain of verification that leads back to someone 
known and trusted by the principal performing the verification. But the resulting 
verification is likely to be more convincing, and many of the steps in such a chain can 
be cached to shorten the process on future occasions.

The arguments above are the basis for the recently developed Simple Public-Key 
Infrastructure (SPKI) proposals (see RFC 2693 [Ellison et al. 1999]). This is a scheme 
for the creation and management of sets of public certificates. It enables chains of 
certificates to be processed using logical inference to produce derived certificates. For 
example, ‘Bob believes that Alice’s public key is KApub’ and ‘Carol trusts Bob on 
Alice’s keys’ implies ‘Carol believes that Alice’s public key is KApub’.

11.5 Cryptography pragmatics

In Section 11.5.1, we compare the performance of the encryption and secure hash 
algorithms described or mentioned above. We consider encryption algorithms alongside 
secure hash functions because encryption can also be used as a method for digital 
signing.
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In Section 11.5.2, we discuss some non-technical issues surrounding the use of 
cryptography. There is not space to do justice to the vast amount of political discussion 
that has taken place on this subject since strong cryptographic algorithms first appeared 
in the public domain, nor have the debates yet reached many definitive conclusions. Our 
aim is merely to give the reader some awareness of this ongoing debate.

11.5.1 Performance of cryptographic algorithms

Figure 11.13 Performance of symmetric encryption and secure digest algorithms

Key size/hash size
(bits)

PRB optimized
90 MHz Pentium 1

(Mbytes/s)

Crypto++
2.1 GHz Pentium 4

(Mbytes/s)

TEA 128 – 23.801
DES 56 2.113 21.340
Triple-DES 112 0.775 9.848
IDEA 128 1.219 18.963
AES 128 – 61.010
AES 192 – 53.145
AES 256 – 48.229
MD5 128 17.025 216.674
SHA-1 160 – 67.977

Figure 11.13 compares the speeds of the symmetric encryption algorithms and secure 
digest functions that we have discussed in this chapter. Where available, we give two 
speed measurements. In the column labelled PRB optimized we give figures based on 
those published by Preneel et al. [1998]. The figures in the column labelled Crypto++

were obtained much more recently by the authors of the Crypto++ open source library 
of cryptographic schemes [www.cryptopp.com]. The column headings indicate the 
speed of the hardware used for these benchmarks. The PRB implementations were hand-
optimized assembler programs whereas the Crypto++ ones were C++ programs 
generated with an optimizing compiler.

The key lengths give an indication of computational cost of a brute-force attack 
on the key; the true strength of cryptographic algorithms is much more difficult to 
evaluate and rests on reasoning about the success of the algorithm in obscuring the plain 
text. Preneel et al. provide a useful discussion on the strength and performance of the 
main symmetric algorithms.

What do these performance figures signify for real applications of cryptography, 
such as their use in the TLS scheme for secure web interactions (the https protocol, 
described in Section 11.6.3)? Web pages are seldom larger than 100 kilobytes, so the 
contents of a page can be encrypted using any of the symmetric algorithms in a few 
milliseconds, even with a processor that is quite slow by today’s standards. RSA is used 
primarily for digital signatures, and that step can also be performed in a few 
milliseconds. Thus the impact of algorithm performance on the perceived speed of the 
https application is minimal.
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Asymmetric algorithms such as RSA are seldom used for data encryption, but 
their performance for signing is of interest. The Crypto++ library pages indicate that 
with the hardware mentioned in the last column of Figure 11.13 it takes about 4.75 ms 
using RSA with a 1024-bit key to sign a secure hash (presumably using 160-bit SHA-1) 
and about 0.18 ms to verify the signature. 

11.5.2 Applications of cryptography and political obstacles

The algorithms described above all emerged during the 1980s and 1990s, when 
computer networks were beginning to be used for commercial purposes and it was 
becoming evident that their lack of security was a major problem. As we mentioned in 
the introduction to this chapter, the emergence of cryptographic software was strongly 
resisted by the US government. The resistance had two sources: the US National 
Security Agency (NSA), which was thought to have a policy to restrict the strength of 
cryptography available to other nations to a level at which the NSA could decrypt any 
secret communication for military intelligence purposes; and the US Federal Bureau of 
Investigation (FBI) which aimed to ensure that its agents could have privileged access 
to the cryptographic keys used by all private organizations and individuals in the US for 
law-enforcement purposes.

Cryptographic software was classified as a munition in the United States and was 
subject to stringent export restrictions. Other countries, especially allies of the US, 
applied similar (or in some cases even more stringent) restrictions. The problem was 
compounded by the general ignorance among politicians and the general public as to 
what cryptographic software was and its potential non-military applications. US 
software companies protested that the restrictions were inhibiting the export of software 
such as browsers, and the export restrictions were eventually formulated in a form that 
allowed the export of code using keys of no more than 40 bits – hardly strong 
cryptography! 

The export restrictions may have hindered the growth of electronic commerce, but 
they were not particularly effective in preventing the spread of cryptographic expertise 
or in keeping cryptographic software out of the hands of users in other countries, since 
many programmers inside and outside the US were eager and able to implement and 
distribute cryptographic code. The current position is that software that implements 
most of the major cryptographic algorithms has been available world-wide for several 
years, in print [Schneier 1996] and online, in commercial and freeware versions 
[www.rsasecurity.com I, cryptography.org, privacy.nb.ca, www.openssl.org].

An example is the program called PGP (Pretty Good Privacy) [Garfinkel 1994, 
Zimmermann 1995], originally developed by Philip Zimmermann and carried forward 
by him and others. This is part of a technical and political campaign to ensure that the 
availability of cryptographic methods is not controlled by the US government. PGP has 
been developed and distributed with the aim of enabling all computer users to enjoy the 
level of privacy and integrity afforded by the use of public-key cryptography in their 
communications. PGP generates and manages public and secret keys on behalf of a user. 
It uses RSA public-key encryption for authentication and to transmit secret keys to the 
intended communication partner, and it uses the IDEA or 3DES secret-key encryption 
algorithms to encrypt mail messages and other documents. (At the time PGP was first 
developed, use of the DES algorithm was controlled by the US government.) PGP is 
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widely available in both free and commercial versions. It is distributed via separate 
distribution sites for North American users [www.pgp.com] and those in other parts of 
the world [International PGP] to circumvent (perfectly legally) the US export 
regulations.

The US government eventually recognized the futility of the NSA’s position and 
the harm that it was causing to the US computer industry (which was unable to market 
secure versions of web browsers, distributed operating systems and many other products 
world-wide). In January 2000 the US government introduced a new policy 
[www.bxa.doc.gov] intended to allow US software vendors to export software that 
incorporates strong encryption. But a legal bar was retained on delivery to certain 
countries and end-users, see www.rsa.com for further information. Of course, the US 
does not have a monopoly on the production or the publication of cryptographic 
software; open source implementations are available for all the well-known algorithms 
[www.cryptopp.com]. The effect of the regulations is simply to hamper the marketing 
of some US-produced commercial software products.

Other political initiatives have aimed to maintain control over the use of 
cryptography by introducing legislation insisting on the inclusion of loopholes or trap 
doors available only to government law-enforcement and security agencies. Such 
proposals spring from the perception that secret communication channels can be very 
useful to criminals of all sorts. Before the advent of digital cryptography, governments 
always had the means to intercept and analyze communications between members of the 
public. Strong digital cryptography radically alters that situation. But these proposals to 
legislate to prevent the use of strong, uncompromized cryptography have been strongly 
resisted by citizens and civil liberties bodies, who are concerned about their impact on 
citizens’ privacy rights. So far, none of these legislative proposals has been adopted, but 
political efforts are continuing and the eventual introduction of a legal framework for 
the use of cryptography may be inevitable. 

11.6 Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi

The authentication protocols originally published by Needham and Schroeder [1978] are 
at the heart of many security techniques. We present them in detail in Section 11.6.1.
One of the most important applications of their secret-key authentication protocol is the 
Kerberos system [Neuman and Ts’o 1994], which is the subject of our second case study 
(Section 11.6.2). Kerberos was designed to provide authentication between clients and 
servers in networks that form a single management domain (intranets).

Our third case study (Section 11.6.3) deals with the Transport Layer Security
(TLS) protocol. This was designed specifically to meet the need for secure electronic 
transactions. It is now supported by most web browsers and servers and is employed in 
most of the commercial transactions that take place via the Web. 

Our final case study (Section 11.6.4) illustrates the difficulty of engineering 
secure systems. The IEEE 802.11 WiFi standard was published in 1999 with a security 
specification included. But subsequent analysis and attacks have shown the 
specification to be severely inadequate. We identify the weaknesses and relate them to 
the cryptographic principles covered in this chapter.
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11.6.1 The Needham–Schroeder authentication protocol

The protocols described here were developed in response to the need for a secure means 
to manage keys (and passwords) in a network. At the time the work was published 
[Needham and Schroeder 1978], network file services were just emerging and there was 
an urgent need for better ways to manage security in local networks. 

In networks that are integrated for management purposes, this need can be met by 
a secure key service that issues session keys in the form of challenges (see Section 
11.2.2). That is the purpose of the secret-key protocol developed by Needham and 
Schroeder. In the same paper, Needham and Schroeder also set out a protocol based on 
the use of public keys for authentication and key distribution that does not depend upon 
the existence of secure key servers and is hence more suitable for use in networks with 
many independent management domains, such as the Internet. We do not describe the 
public-key version here, but the TLS protocol described in Section 11.6.3 is a variation 
of it.

Needham and Schroeder proposed a solution to authentication and key 
distribution based on an authentication server that supplies secret keys to clients. The 
job of the authentication server is to provide a secure way for pairs of processes to obtain 
shared keys. To do this, it must communicate with its clients using encrypted messages.

Needham and Schroeder with secret keys  •  In their model, a process acting on behalf of 
a principal A that wishes to initiate secure communication with another process acting 
on behalf of a principal B can obtain a key for this purpose. The protocol is described 
for two arbitrary processes A and B, but in client-server systems, A is likely to be a client 
initiating a sequence of requests to some server B. The key is supplied to A in two forms:
one that A can use to encrypt the messages that it sends to B and one that it can transmit 
securely to B. (The latter is encrypted in a key that is known to B but not to A, so that B 
can decrypt it and the key is not compromised during transmission.) 

The authentication server S maintains a table containing a name and a secret key 
for each principal known to the system. The secret key is used only to authenticate client 
processes to the authentication server and to transmit messages securely between client 
processes and the authentication server. It is never disclosed to third parties and it is 
transmitted across the network at most once, when it is generated. (Ideally, a key should 
always be transmitted by some other means, such as on paper or in a verbal message, 
avoiding any exposure on the network.) A secret key is the equivalent of the password 
used to authenticate users in centralized systems. For human principals, the name held 
by the authentication service is their username and the secret key is their password. Both 
are supplied by the user on request to client processes acting on the user’s behalf. 

The protocol is based on the generation and transmission of tickets by the 
authentication server. A ticket is an encrypted message containing a secret key for use 
in communication between A and B. We tabulate the messages in the Needham and 
Schroeder secret-key protocol in Figure 11.14. The authentication server is S. 

NA and NB are nonces. A nonce is an integer value that is added to a message to 
demonstrate its freshness. Nonces are used only once and are generated on demand. For 
example, the nonces may be generated as a sequence of integer values or by reading the 
clock at the sending machine. 

If the protocol is successfully completed, both A and B can be sure that any 
message encrypted in KAB that they receive comes from the other, and that any message 



Figure 11.14 The Needham–Schroeder secret-key authentication protocol 

Header Message Notes

1. A  S: A, B, NA A requests S to supply a key for communication 
with B.

2. S  A: {NA, B, KAB,

{KAB, A}KB}KA

S returns a message encrypted in A’s secret key, 
containing a newly generated key KAB, and a 
‘ticket’ encrypted in B’s secret key. The nonce NA

demonstrates that the message was sent in response 
to the preceding one. A believes that S sent the 
message because only S knows A’s secret key. 

3. A  B: {KAB, A}KB A sends the ticket to B.

4. B  A: {NB}KAB B decrypts the ticket and uses the new key, KAB, to 
encrypt another nonce, NB.

5. A  B: {NB – 1}KAB A demonstrates to B that it was the sender of the 
previous message by returning an agreed 
transformation of NB.
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encrypted in KAB that they send can be understood only by the other or by S (and S is 
assumed to be trustworthy). This is so because the only messages that have been sent 
containing KAB were encrypted in A’s secret key or B’s secret key.

There is a weakness in this protocol in that B has no reason to believe that message 
3 is fresh. An intruder who manages to obtain the key KAB and make a copy of the ticket 
and authenticator {KAB, A}KB

 (both of which might have been left in an exposed storage 
location by a careless or a failed client program running under A’s authority) can use 
them to initiate a subsequent exchange with B, impersonating A. For this attack to occur 
an old value of KAB has to be compromised; in today’s terminology, Needham and 
Schroeder did not include this possibility on their threat list, and the consensus of 
opinion is that one should do so. The weakness can be remedied by adding a nonce or 
timestamp to message 3, so that it becomes: {KAB, A,t}KBpub. B decrypts this message 
and checks that t is recent. This is the solution adopted in Kerberos.

11.6.2 Kerberos

Kerberos was developed at MIT in the 1980s [Steiner et al. 1988] to provide a range of 
authentication and security facilities for use in the campus computing network at MIT 
and other intranets. It has undergone several revisions and enhancements in the light of 
experience and feedback from user organizations. Kerberos version 5 [Neuman and Ts’o 
1994], which we describe here, is an Internet standard (see RFC 4120 [Neuman et al.

2005]) and is used by many companies and organizations. Source code for an 
implementation of Kerberos is available from MIT [web.mit.edu I]; it is included in the 
OSF Distributed Computing Environment (DCE) [OSF 1997] and as the default 
authentication service in Microsoft Windows [www.microsoft.com II]. An extension 
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was included to incorporate the use of public-key certificates for the initial 
authentication of principals (Step A in Figure 11.15) [Neuman et al. 1999].

Figure 11.15

Figure 11.15  System architecture of Kerberos
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 shows the process architecture. Kerberos deals with three kinds of 
security object:

Ticket:  A token issued to a client by the Kerberos ticket-granting service for 
presentation to a particular server, verifying that the sender has recently been 
authenticated by Kerberos. Tickets include an expiry time and a newly generated 
session key for use by the client and the server.

Authenticator:  A token constructed by a client and sent to a server to prove the 
identity of the user and the currency of any communication with a server. An 
authenticator can be used only once. It contains the client’s name and a timestamp 
and is encrypted in the appropriate session key.

Session key: A secret key randomly generated by Kerberos and issued to a client for 
use when communicating with a particular server. Encryption is not mandatory for 
all communication with servers; the session key is used for encrypting 
communication with those servers that demand it and for encrypting all 
authenticators (see above).

Client processes must possess a ticket and a session key for each server that they use. It 
would be impractical to supply a new ticket and key for each client-server interaction, 
so most tickets are granted to clients with a lifetime of several hours so that they can be 
used for interaction with a particular server until they expire. 

A Kerberos server is known as a Key Distribution Centre (KDC). Each KDC 
offers an Authentication Service (AS) and a Ticket-Granting Service (TGS). On login, 
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users are authenticated by the AS, using a network-secure variation of the password 
method, and the client process acting on behalf of the user is supplied with a ticket-

granting ticket and a session key for communicating with the TGS. Subsequently, the 
original client process and its descendants can use the ticket-granting ticket to obtain 
tickets and session keys for specific services from the TGS.

The Needham and Schroeder [1978] protocol is followed quite closely in 
Kerberos, with time values (integers representing a date and time) used as nonces. This 
serves two purposes:

• to guard against replay of old messages intercepted in the network or the reuse of 
old tickets found lying in the memory of machines from which the authorized user 
has logged out (nonces were used to achieve this purpose in Needham and 
Schroeder);

• to apply a lifetime to tickets, enabling the system to revoke users’ rights when, for 
example, they cease to be authorized users of the system.

Below we describe the Kerberos protocols in detail, using the notation defined at the 
bottom of the page. First, we describe the protocol by which the client obtains a ticket 
and a session key for access to the TGS. 

A Kerberos ticket has a fixed period of validity starting at time t1 and ending at 
time t2. A ticket for a client C to access a server S takes the form: 

Notation:

A Name of Kerberos authentication service.
T Name of Kerberos ticket-granting service.
C Name of client.

n A nonce.
t A timestamp.
t1 Starting time for validity of ticket.
t2 Ending time for validity of ticket.

C S t1 t2 KCS KS

, which we denote as ticket C S KS

The client’s name is included in the ticket to avoid possible use by impostors, as we shall 
see later. The step and message numbers in Figure 11.15 correspond to those in tabulated
description A. Note that message 1 is not encrypted and does not include C’s password. 
It contains a nonce that is used to check the validity of the reply. 

A. Obtain Kerberos session key and TGS ticket, once per login session

Header Message Notes

1. C  A:
Request for 
TGS ticket

C, T, n Client C requests the Kerberos 
authentication server A to supply a 
ticket for communication with the 
ticket-granting service T.

2. A  C: 
TGS session 
key and
ticket

{KCT, n}
KC

, {ticket(C,T)}
KT

containing

C, T, t1, t2, KCT

A returns a message containing a 
ticket encrypted in its secret key 
and a session key for C to use with 
T. The inclusion of the nonce n
encrypted in KC shows that the 
message comes from the recipient 
of message 1, who must know KC.
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Message 2 is sometimes called a ‘challenge’ because it presents the requester with 
information that is only useful if it knows C’s secret key, KC. An impostor who attempts 
to impersonate C by sending message 1 can get no further, since they cannot decrypt 
message 2. For principals that are users, KC is a scrambled version of the user’s 
password. The client process will prompt the user to type their password and will 
attempt to decrypt message 2 with it. If the user gives the right password, the client 
process obtains the session key KCT and a valid ticket for the ticket-granting service; if 
not, it obtains gibberish. Servers have secret keys of their own, known only to the 
relevant server process and to the authentication server. 

When a valid ticket has been obtained from the authentication service, the client 
C can use it to communicate with the ticket-granting service to obtain tickets for other 
servers any number of times until the ticket expires. Thus to obtain a ticket for any server 
S, C constructs an authenticator encrypted in KCT of the form: 

{C, t}
KCT

, which we denote as {auth(C)}
KCT

, and sends a request to T:

B. Obtain ticket for a server S, once per client-server session

3. C  T:
Request
ticket for 
service S

{auth(C)}
KCT

,

{ticket(C,T)}
KT

, S, n

C requests the ticket-granting 
server T to supply a ticket for 
communication with another 
server, S.

4. T  C:
Service
ticket

{KCS, n}
KCT

, {ticket(C,S)}
KS

T checks the ticket. If it is valid T 
generates a new random session 
key, KCS, and returns it with a 
ticket for S (encrypted in the 
server’s secret key, KS).

C is then ready to issue request messages to the server, S:

C. Issue a server request with a ticket

5. C  S:
Service
request

{auth(C)}KCS
, {ticket(C,S)}

KS
,

request, n

C sends the ticket to S with a 
newly generated authenticator for 
C and a request. The request 
would be encrypted in KCS if 
secrecy of the data is required.

For the client to be sure of the server’s authenticity, S should return the nonce n to C (to 
reduce the number of messages required, this could be included in the messages that 
contain the server’s reply to the request):

D. Authenticate server (optional)

6. S  C:
Server auth-
entication

{n}KCS
(Optional): S sends the nonce to C, 

encrypted in KCS.
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Application of Kerberos  •  Kerberos was developed for use in Project Athena at MIT – a 
campus-wide networked computing facility for undergraduate education with many 
workstations and servers providing a service to more than 5000 users. The environment 
is such that neither the trustworthiness of clients nor the security of the network and the 
machines that offer network services can be assumed – for example, workstations are 
not protected against the installation of user-developed system software, and server 
machines (other than the Kerberos server) are not necessarily secured against physical 
interference with their software configuration.

Kerberos provides virtually all of the security in the Athena system. It is used to 
authenticate users and other principals. Most of the servers running on the network have 
been extended to require a ticket from each client at the start of every client-server 
interaction. These include file storage (NFS and Andrew File System), electronic mail, 
remote login and printing. Users’ passwords are known only to the user and to the 
Kerberos authentication service. Services have secret keys that are known only to 
Kerberos and the servers that provide the service.

We describe here the way in which Kerberos is applied to the authentication of 
users on login. Its use to secure the NFS file service is described in Chapter 12.

Login with Kerberos  •  When a user logs into a workstation, the login program sends the 
user’s name to the Kerberos authentication service. If the user is known to the 
authentication service, it replies with a session key, a nonce encrypted in the user’s 
password and a ticket for the TGS. The login program then attempts to decrypt the 
session key and the nonce using the password that the user typed in response to the 
password prompt. If the password is correct, the login program obtains the session key 
and the nonce. It checks the nonce and stores the session key with the ticket for 
subsequent use when communicating with the TGS. At this point, the login program can 
erase the user’s password from its memory, since the ticket now serves to authenticate 
the user. A login session is then started for the user on the workstation. Note that the 
user’s password is never exposed to eavesdropping on the network – it is retained in the 
workstation and is erased from memory soon after it is entered.

Accessing servers with Kerberos  •  Whenever a program running on a workstation needs 
to access a new service, it requests a ticket for the service from the ticket-granting serv-
ice. For example, when a UNIX user wishes to log into a remote computer, the rlogin

command program on the user’s workstation obtains a ticket from the Kerberos ticket-
granting service for access to the rlogind network service. The rlogin command program 
sends the ticket, together with a new authenticator, in a request to the rlogind process on 
the computer where the user wishes to log in. The rlogind program decrypts the ticket 
with the rlogin service’s secret key and checks the validity of the ticket (that is, that the 
ticket’s lifetime has not expired). Server machines must take care to store their secret 
keys in storage that is inaccessible to intruders.

The rlogind program then uses the session key included in the ticket to decrypt the 
authenticator and checks that the authenticator is fresh (authenticators can be used only 
once). Once the rlogind program is satisfied that the ticket and authenticator are valid, 
there is no need for it to check the user’s name and password, because the user’s identity 
is known to the rlogind program and a login session is established for that user on the 
remote machine.
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Implementation of Kerberos  •  Kerberos is implemented as a server that runs on a secure 
machine. A set of libraries is provided for use by client applications and services. The 
DES encryption algorithm is used, but this is implemented as a separate module that can 
be easily replaced.

The Kerberos service is scalable – the world is divided into separate domains of 
authentication authority, called realms, each with its own Kerberos server. Most 
principals are registered in just one realm, but the Kerberos ticket-granting servers are 
registered in all of the realms. Principals can authenticate themselves to servers in other 
realms through their local ticket-granting server.

Within a single realm, there can be several authentication servers, all of which 
have copies of the same authentication database. The authentication database is 
replicated by a simple master–slave technique. Updates are applied to the master copy 
by a single Kerberos Database Management service (KDBM) that runs only on the 
master machine. The KDBM handles requests from users to change their passwords and 
requests from system administrators to add or delete principals and to change their 
passwords.

To make this scheme transparent to users, the lifetime of TGS tickets ought to be 
as long as the longest possible login session, since the use of an expired ticket will result 
in the rejection of service requests; the only remedy is for the user to reauthenticate the 
login session and then request new server tickets for all of the services in use. In practice, 
ticket lifetimes in the region of 12 hours are used. 

Critiques of Kerberos  •  The protocol for Kerberos version 5 described above contains 
several improvements designed to deal with criticisms of earlier versions [Bellovin and 
Merritt 1990, Burrows et al. 1990]. The most important criticism of version 4 was that 
the nonces used in authenticators were implemented as timestamps, and protection 
against the replay of authenticators depended upon at least loose synchronization of 
clients’ and servers’ clocks. Furthermore, if a synchronization protocol is used to bring 
client and server clocks into loose synchrony, the synchronization protocol must itself 
be secure against security attacks. See Chapter 14 for information on clock 
synchronization protocols.

The protocol definition for version 5 allows the nonces in authenticators to be 
implemented as timestamps or as sequence numbers. In both cases, it requires that they 
be unique and that servers hold a list of recently received nonces from each client to 
check that they are not replayed. This is an inconvenient implementation requirement 
and is difficult for servers to guarantee in case of failures. Kehne et al. [1992] have 
published a proposed improvement to the Kerberos protocol that does not rely on 
synchronized clocks. 

The security of Kerberos depends on limited session lifetimes. The period of 
validity of TGS tickets is generally limited to a few hours; the period must be chosen to 
be long enough to avoid inconvenient interruptions of service but short enough to ensure 
that users who have been deregistered or downgraded do not continue to use the 
resources for more than a short period. This might cause difficulties in some commercial 
environments, because the consequent requirement for the user to supply a new set of 
authentication details at an arbitrary point in the interaction might intrude on the 
application.
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11.6.3 Securing electronic transactions with secure sockets

The Secure Sockets Layer (SSL) protocol was originally developed by the Netscape 
Corporation [www.mozilla.org] and proposed as a standard specifically to meet the 
needs described below. An extended version of SSL has been adopted as an Internet 
standard under the name Transport Layer Security (TLS), described in RFC 2246 
[Dierks and Allen 1999]. TLS is supported by most browsers and is widely used in 
Internet commerce. We explore its main features below:

Figure 11.16 TLS protocol stack
(Figures 11.16 to 11.19 are based on diagrams in Hirsch [1997] and are used with Frederick Hirsch’s permission)
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Negotiable encryption and authentication algorithms  •  In an open network we should 
not assume that all parties use the same client software or that all client and server 
software includes a particular encryption algorithm. In fact, the laws of some countries 
attempt to restrict the use of certain encryption algorithms to those countries alone. TLS
has been designed so that the algorithms used for encryption and authentication are 
negotiated between the processes at the two ends of the connection during the initial 
handshake. It may turn out that they do not have sufficient algorithms in common, and 
in that case the connection attempt will fail.

Bootstrapped secure communication  •  To meet the need for secure communication 
without previous negotiation or help from third parties, the secure channel is established 
using a protocol similar to the hybrid scheme mentioned in Section 11.3.3. Unencrypted 
communication is used for the initial exchanges, then public-key cryptography and 
finally secret-key cryptography once a shared secret key has been established. Each 
switch is optional and preceded by a negotiation. 

Thus the secure channel is fully configurable, allowing communication in each 
direction to be encrypted and authenticated but not requiring it, so that computing 
resources need not be consumed in performing unnecessary encryption.

The details of the TLS protocol are published and standardized, and several 
software libraries and toolkits are available to support it [Hirsch 1997,
www.openssl.org], some of them in the public domain. It has been incorporated in a 
wide range of application software, and its security has been verified by independent 
review.
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TLS consists of two layers (Figure 11.16): TLS Record Protocol layer, which 
implements a secure channel, encrypting and authenticating messages transmitted 
through any connection-oriented protocol; and a handshake layer, containing the TLS 
handshake protocol and two other related protocols that establish and maintain a TLS 
session (that is, a secure channel) between a client and a server. Both are usually 
implemented by software libraries at the application level in the client and the server. 
The TLS record protocol is a session-level layer; it can be used to transport application-
level data transparently between a pair of processes while guaranteeing its secrecy, 
integrity and authenticity. These are exactly the properties we specified for secure 
channels in our security model (Section 2.4.3), but in TLS there are options for the 
communicating partners to choose whether or not to deploy decryption and 
authentication of messages in each direction. Each secure session is given an identifier, 
and each partner can store session identifiers in a cache for subsequent reuse, avoiding 
the overhead of establishing a new session when another secure session with the same 
partner is required.

TLS is widely used to add a secure communication layer below existing 
application-level protocols. It is probably most widely used to secure HTTP interactions 
for use in Internet commerce and other security-sensitive applications. It is implemented 
by virtually all web browsers and web servers: the use of the protocol prefix https: in 
URLs initiates the establishment of a TLS secure channel between a browser and a web 
server. It has also been widely deployed to provide secure implementations of Telnet, 
FTP and many other application protocols. TLS is the de facto standard for use in 
applications requiring secure channels; there is a wide choice of available 
implementations, both commercial and public-domain, with APIs for CORBA and Java. 

The TLS handshake protocol is illustrated in Figure 11.17. The handshake is 
performed over an existing connection. It begins in the clear and it establishes a TLS
session by exchanging the agreed options and parameters needed to perform encryption 
and authentication. The handshake sequence varies depending on whether client and 
server authentication are required. The handshake protocol may also be invoked at a 
later time to change the specification of a secure channel – for example, communication 
may begin with message authentication using message authentication codes only, and at 
a later point, encryption may be added. This is achieved by performing the handshake 
protocol again to negotiate a new cipher specification using the existing channel.

The TLS initial handshake is potentially vulnerable to man-in-the-middle attacks,
as described in Section 11.2.2, Scenario 3. To protect against them, the public key used 
to verify the first certificate received may be delivered by a separate channel – for 
example, browsers and other Internet software delivered on a CD-ROM may include a 
set of public keys for some well-known certificate authorities. Another defence for the 
clients of well-known services is based on the inclusion of the service’s domain name in 
its public-key certificates – clients should only deal with the service at the IP address 
corresponding to that domain name.

TLS supports a variety of options for the cryptographic functions to be used. 
These are collectively known as a cipher suite. A cipher suite includes a single choice 
for each of the features shown in Figure 11.18.

A variety of popular cipher suites are preloaded, with standard identifiers in the 
client and the server. During the handshake, the server offers the client a list of the cipher 
suite identifiers that it has available, and the client responds by selecting one of them (or 
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giving an error indication if it has none that match). At this stage they also agree on a 
(optional) compression method and a random start value for CBC block encryption 
functions (see Section 11.3).

Next, the partners optionally authenticate each other by exchanging signed public-
key certificates in X.509 format. These certificates may be obtained from a public-key 
authority or they may simply be generated temporarily for the purpose. In any case, at 
least one public key must be available for use in the next stage of the handshake.

One partner then generates a pre-master secret and sends it to the other partner 
encrypted with the public key. A pre-master secret is a large random value that is used 
by both partners to generate the two session keys (called write keys) for encrypting data 
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in each direction and the message authentication secrets to be used for message 
authentication. When all this has been done, a secure session begins. This is triggered 
by the ChangeCipherSpec messages exchanged between the partners. These are 
followed by Finished messages. Once the Finished messages have been exchanged, all 
further communication is encrypted and signed according to the chosen cipher suite with 
the agreed keys.

Figure 11.19
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 shows the operation of the record protocol. A message for 
transmission is first fragmented into blocks of a manageable size, then the blocks are 
optionally compressed. Compression is not strictly a feature of secure communication, 
but it is provided here because a compression algorithm can usefully share some of the 
work of processing the bulk data with the encryption and digital signature algorithms. 
In other words, a pipeline of data transformations can be set up within the TLS record 
layer that will perform all of the transformations required more efficiently than could be 
done independently.

The encryption and message authentication (MAC) transformations deploy the 
algorithms specified in the agreed cipher suite exactly as described in Sections 11.3.1
and 11.4.2. Finally, the signed and encrypted block is transmitted to the partner through 
the associated TCP connection, where the transformations are reversed to produce the 
original data block.

Summary  •  TLS provides a practical implementation of a hybrid encryption scheme 
with authentication and key exchange based on public keys. Because the ciphers are 
negotiated in the handshake, it does not depend upon the availability of any particular 
algorithms. Nor does it depend upon any secure services at the time of session 
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establishment. The only requirement is that the public-key certificates are issued by an 
authority recognized by both parties. 

Because the SSL basis for TLS and its reference implementation were published 
[www.mozilla.org], it was the subject of review and debate. Some amendments were 
made to the early designs, and it was widely endorsed as a valuable standard. TLS is now 
integrated in most web browsers and web servers and is used in other applications such 
as secure Telnet and FTP. Commercial and public-domain [www.rsasecurity.com I,
Hirsch 1997, www.openssl.org] implementations are widely available in the form of 
libraries and browser plug-ins.

11.6.4 Weaknesses in the original IEEE 802.11 WiFi security design

The IEEE 802.11 standard for wireless LANs described in Section 3.5.2 was first 
released in 1999 [IEEE 1999]. It was implemented in base stations, laptops and portable 
devices from a similar date and widely used for mobile communication. Unfortunately, 
the security design in the standard was subsequently found to be severely inadequate in 
several respects. We outline that initial design and its weaknesses as a case study in the 
difficulties of security design already referred to in Section 11.1.3.

It was recognized that wireless networks are by their nature more exposed to 
attack than wired networks because the network and the transmitted data are available 
for eavesdropping and masquerading by any device equipped with a transmitter/receiver 
within range. The initial 802.11 design therefore aimed to provide access control for 
WiFi networks and privacy and integrity for the data transmitted on them through a 
security specification entitled Wired Equivalent Privacy (WEP), which embodies the 
following measures, that can optionally be activated by a network administrator: 

Access control by a challenge-response protocol (cf. Kerberos, Section 11.6.2), in 
which a joining node is challenged by the base station to demonstrate that it has the 
correct shared key. A single key, K, is assigned by a network administrator and 
shared between the base station and all authorized devices.

Privacy and integrity using an optional encryption mechanism based on the RC4 
stream cipher. The same key, K, used for access control is also used in encryption. 
There are key length options of 40, 64 or 128 bits. An encrypted checksum is 
included in each packet to protect its integrity.

The following deficiencies and design weaknesses were discovered soon after the 
standard was deployed: 

The sharing of a single key by all users of a network renders the design weak in 
practice, since:

– The key is liable to be transmitted to new users on unprotected channels. 

– A single careless or malicious user (such as a disgruntled former employee) 
who has gained access to the key can compromise the security of the entire 
network, and this can go undiscovered. 

Solution: Use a public-key-based protocol for negotiating individual keys, as is 
done in TLS/SSL (see Section 11.6.3).
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Base stations are never authenticated, so an attacker who knows the current shared 
key could introduce a spoof base station and eavesdrop on, insert or tamper with any 
traffic.

Solution: Base stations should supply a certificate that can be authenticated by 
the use of a public key obtained from a third party.

Figure 11.20 Use of RC4 stream cipher in IEEE 802.11 WEP
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Inappropriate use of a stream cipher rather than a block cipher (see descriptions of 
block and stream ciphers in Section 11.3). Figure 11.20 shows the process of 
encryption and decyption in 802.11 WEP security. Each packet is encrypted by
XOR-ing its content with a keystream produced by the RC4 algorithm. The receiving 
station uses RC4 to generate the same keystream and decrypts the packet with 
another XOR. To avoid keystream synchronization errors when packets are lost or 
corrupted, RC4 is restarted with a start value consisting of a 24-bit initial value

concatenated with the globally shared key. The initial value is updated and included 
(in the clear) in each packet transmitted. The shared key cannot easily be changed in 
normal use, so the starting value has only s = 224 (or about 107) different states, 
resulting in the repetition of the start value and hence the keystream, after 107 packets 
are sent. In practice this can occur within a few hours, and even shorter repetition 
cycles can arise if packets are lost. An attacker receiving the encrypted packets can 
always detect repetitions since the initial value is sent in the clear.

The RC4 specification explicitly warns against keystream repetition. This is 
because an attacker who receives an encrypted packet Ci and knows the plain text Pi
(for example, by guessing that it is a standard enquiry to a server) can calculate the 
keystream Ki used to encrypt the packet. The same value of Ki will recur after s

packets are transmitted, and the attacker can use it to decrypt the newly transmitted 
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packet. The attacker may eventually succeed in decrypting a high proportion of 
packets in this manner by guessing plaintext packets correctly. This weakness was 
first pointed out by Borisov et al. [2001] and led to a major reappraisal of WEP 
security and its replacement in later versions of 802.11.

Solution: Negotiate a new key after a time less than the worst case for repetition. 
An explicit termination code would be needed, as is the case in TLS.

Key lengths of 40 bits and 64 bits were included in the standard to enable products to 
be shipped abroad by US suppliers at a time when the US government regulations 
referred to in Section 11.5.2 restricted key lengths for exported devices to 40 bits (and 
subsequently 64 bits). But 40-bit keys are so easily cracked by brute force that they 
offer very little security, and even 64-bit keys are potentially crackable with a 
determined attack.

Solution: Use 128-bit keys only. This has been adopted in many recent WiFi 
products.

The RC4 stream cipher was shown, after publication of the 802.11 standard, to have 
weaknesses that enabled the key to be discovered after observation of a substantial 
quantity of traffic even without repetition of the keystream [Fluhrer et al. 2001]. This 
weakness was demonstrated in practice. It rendered the WEP scheme insecure even 
with 128-bit keys and led some companies to ban the use of WiFi networks by their 
employees.

Solution: Provide for the negotiation of cipher specifications as is done in TLS, 
giving a choice of encryption algorithms. RC4 is hard-wired into the WEP 
standard, with no provision for the negotiation of encryption algorithms. 

Users often didn’t deploy the protection offered by the WEP scheme, probably 
because they didn’t realize just how exposed their data was. This was not a weakness 
in the design of the standard but in the marketing of products based on it. Most were 
designed to start up with security disabled and their documentation of the security 
risks was often weak.

Solution: Better default settings and documentation can help. Users want to 
obtain optimum performance, though, and communication was perceptibly slower 
with encryption enabled using the hardware available at the time. Attempts to 
avoid the use of WEP encryption led to the addition to base stations of features for 
the suppression of the identifying packets normally broadcast by base stations and 
the rejection of packets not sent from an authorized MAC address (see Section 
3.5.1). Neither of these offered much security, since a network can be discovered 
by intercepting (‘sniffing’) packets in transmission and MAC addresses can be 
spoofed by operating system modifications.

IEEE set up a dedicated task group to create a replacement security solution and their 
work led to a completely new security protocol known as Wi-Fi Protected Access 
(WPA). This was specified in the IEEE 802.11i draft [IEEE 2004b, Edney and Arbaugh 
2003], and started to appear in products in mid-2003. IEEE 802.11i (also known as 
WPA2) itself was ratified in June 2004, and uses AES encryption, instead of RC4, which 
was used in WEP. Subsequent developments of IEEE 802.11 also incorporate WPA2.
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11.7 Summary

Threats to the security of distributed systems are pervasive. It is essential to protect the 
communication channels and the interfaces of any system that handles information that 
could be the subject of attacks. Personal mail, electronic commerce and other financial 
transactions are all examples of such information. Security protocols are carefully 
designed to guard against loopholes. The design of secure systems starts from a list of 
threats and a set of ‘worst case’ assumptions. 

Security mechanisms are based on public-key and secret-key cryptography. 
Cryptographic algorithms scramble messages in a manner that cannot be reversed 
without knowledge of the decryption key. Secret-key cryptography is symmetric – the 
same key serves for both encryption and decryption. If two parties share a secret key, 
they can exchange encrypted information without risk of eavesdropping or tampering 
and with guarantees of authenticity.

Public-key cryptography is asymmetric – separate keys are used for encryption 
and decryption, and knowledge of one does not reveal the other. One key is made public, 
enabling anyone to send secure messages to the holder of the corresponding private key 
and allowing the holder of the private key to sign messages and certificates. Certificates 
can act as credentials for the use of protected resources.

Resources are protected by access-control mechanisms. Access-control schemes 
assign rights to principals (that is, the holders of credentials) to perform operations on 
distributed objects and collections of objects. Rights may be held in access control lists 
(ACLs) associated with collections of objects or they may be held by principals in the 
form of capabilities – unforgeable keys for access to collections of resources. 
Capabilities are convenient for the delegation of access rights but are hard to revoke. 
Changes to ACLs take effect immediately, revoking the previous access rights, but they 
are more complex and costly to manage than capabilities.

Until recently, the DES encryption algorithm was the most widely used symmetric 
encryption scheme, but its 56-bit keys are no longer safe against brute-force attacks. The 
triple version of DES gives 112-bit key strength, which is safe, but other modern 
algorithms (such as IDEA and AES) are much faster and provide greater strength.

RSA is the most widely used asymmetric encryption scheme. For safety against 
factoring attacks, it should be used with 768-bit keys or greater. Public-key 
(asymmetric) algorithms are outperformed by secret-key (symmetric) algorithms by 
several orders of magnitude, so they are generally used only in hybrid protocols such as 
TLS, for the establishment of secure channels that use shared keys for subsequent 
exchanges.

The Needham–Schroeder authentication protocol was the first general-purpose, 
practical security protocol, and it still provides the basis for many practical systems. 
Kerberos is a well-designed scheme for the authentication of users and the protection of 
services within a single organization. Kerberos is based on Needham–Schroeder and 
symmetric cryptography. TLS is the security protocol designed for and used widely in 
electronic commerce. It is a flexible protocol for the establishment and use of secure 
channels based on both symmetric and asymmetric cryptography. The weaknesses of 
IEEE 802.11 WiFi security provide an object lesson in the difficulties of security design.
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EXERCISES

11.1 Describe some of the physical security policies in your organization. Express them in 
terms that could be implemented in a computerized door locking system. page 464

11.2 Describe some of the ways in which conventional email is vulnerable to eavesdropping, 
masquerading, tampering, replay and denial of service attacks. Suggest methods by 
which email could be protected against each of these forms of attack. page 466

11.3 Initial exchanges of public keys are vulnerable to man-in-the-middle attacks. Describe 
as many defences against it as you can. pages 473, 511

11.4 PGP is often used to secure email communication. Describe the steps that a pair of users 
using PGP must take before they can exchange email messages with privacy and 
authenticity guarantees. What scope is there to make the preliminary key negotiation 
invisible to users? (The PGP negotiation is an instance of the hybrid scheme.)

pages 493, 502

11.5 How would email be sent to a large list of recipients using PGP or a similar scheme? 
Suggest a scheme that is simpler and faster when the list is used frequently.

page 502, Section 4.4

11.6 The implementation of the TEA symmetric encryption algorithm given in Figures 
11.7–11.9 is not portable between all machine architectures. Explain why. How could a 
message encrypted using the TEA implementation be transmitted to decrypt it correctly 
on all other architectures? page 488

11.7 Modify the TEA application program in Figure 11.9 to use cipher block chaining (CBC).
pages 485, 488

11.8 Construct a stream cipher application based on the program in Figure 11.9.
pages 486, 488

11.9 Estimate the time required to crack a 56-bit DES key by a brute-force attack using a 
2000 MIPS (million instruction per second) computer, assuming that the inner loop for 
a brute-force attack program involves around 10 instructions per key value, plus the time 
to encrypt an 8-byte plaintext (see Figure 11.13). Perform the same calculation for a 
128-bit IDEA key.  Extrapolate your calculations to obtain the cracking time for a 
200,000 MIPS parallel processor (or an Internet consortium with similar processing 
power).

page 489

11.10 In the Needham and Shroeder authentication protocol with secret keys, explain why the 
following version of message 5 is not secure:

A  B: {NB}KAB

page 504

11.11 Review the solutions proposed in the discussion of the 802.11 Wireless Equivalent 
Privacy protocol design, outlining ways in which each solution could be implemented 
and mentioning any drawbacks or inconveniences. (5 answers) page 515
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12

DISTRIBUTED FILE SYSTEMS

12.1 Introduction
12.2 File service architecture
12.3 Case study: Sun Network File System
12.4 Case study: The Andrew File System
12.5 Enhancements and further developments
12.6 Summary

A distributed file system enables programs to store and access remote files exactly as they 
do local ones, allowing users to access files from any computer on a network. The 
performance and reliability experienced for access to files stored at a server should be 
comparable to that for files stored on local disks. 

In this chapter we define a simple architecture for file systems and describe two 
basic distributed file service implementations with contrasting designs that have been in 
widespread use for over two decades:

• the Sun Network File System, NFS;

• the Andrew File System, AFS.

Each emulates the UNIX file system interface, with differing degrees of scalability, fault 
tolerance and deviation from the strict UNIX one-copy file update semantics.

Several related file systems that exploit new modes of data organization on disk or 
across multiple servers to achieve high-performance, fault-tolerant and scalable file 
systems are also reviewed. Other types of distributed storage system are described 
elsewhere in the book. These include peer-to-peer storage systems (Chapter 10), 
replicated file systems (Chapter 18), multimedia data servers (Chapter 20) and the 
particular style of storage service required to support Internet search and other large-
scale, data-intensive applications (Chapter 21). 
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12.1 Introduction

In Chapters 1 and 2, we identified the sharing of resources as a key goal for distributed 
systems. The sharing of stored information is perhaps the most important aspect of 
distributed resource sharing. Mechanisms for data sharing take many forms and are 
described in several parts of this book. Web servers provide a restricted form of data 
sharing in which files stored locally,  in file systems at the server or in servers on a local 
network, are made available to clients throughout the Internet. The design of large-scale 
wide area read-write file storage systems poses problems of load balancing, reliability, 
availability and security, whose resolution is the goal of the peer-to-peer file storage 
systems described in Chapter 10. Chapter 18 focuses on replicated storage systems that 
are suitable for applications requiring reliable access to data stored on systems where the 
availability of individual hosts cannot be guaranteed. In Chapter 20 we describe a media 
server that is designed to serve streams of video data to large numbers of users in real 
time. Chapter 21 describes a file system designed to support large-scale, data-intensive 
applications such as Internet search.

The requirements for sharing within local networks and intranets lead to a need 
for a different type of service – one that supports the persistent storage of data and 
programs of all types on behalf of clients and the consistent distribution of up-to-date 
data. The purpose of this chapter is to describe the architecture and implementation of 
these basic distributed file systems. We use the word ‘basic’ here to denote distributed 
file systems whose primary purpose is to emulate the functionality of a non-distributed 
file system for client programs running on multiple remote computers. They do not 
maintain multiple persistent replicas of files, nor do they support the bandwidth and 
timing guarantees required for multimedia data streaming – those requirements are 
addressed in later chapters. Basic distributed file systems provide an essential 
underpinning for organizational computing based on intranets. 

File systems were originally developed for centralized computer systems and 
desktop computers as an operating system facility providing a convenient programming 
interface to disk storage. They subsequently acquired features such as access-control 
and file-locking mechanisms that made them useful for the sharing of data and 
programs. Distributed file systems support the sharing of information in the form of files 
and hardware resources in the form of persistent storage throughout an intranet. A well-
designed file service provides access to files stored at a server with performance and 
reliability similar to, and in some cases better than, files stored on local disks. Their 
design is adapted to the performance and reliability characteristics of local networks, 
and hence they are most effective in providing shared persistent storage for use in 
intranets. The first file servers were developed by researchers in the 1970s [Birrell and 
Needham 1980, Mitchell and Dion 1982, Leach et al. 1983], and Sun’s Network File 
System became available in the early 1980s [Sandberg et al. 1985, Callaghan 1999].

A file service enables programs to store and access remote files exactly as they do 
local ones, allowing users to access their files from any computer in an intranet. The 
concentration of persistent storage at a few servers reduces the need for local disk 
storage and (more importantly) enables economies to be made in the management and 
archiving of the persistent data owned by an organization. Other services, such as the 
name service, the user authentication service and the print service, can be more easily 
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implemented when they can call upon the file service to meet their needs for persistent 
storage. Web servers are reliant on filing systems for the storage of the web pages that 
they serve. In organizations that operate web servers for external and internal access via 
an intranet, the web servers often store and access the material from a local distributed 
file system. 

With the advent of distributed object-oriented programming, a need arose for the 
persistent storage and distribution of shared objects. One way to achieve this is to 
serialize objects (in the manner described in Section 4.3.2) and to store and retrieve the 
serialized objects using files. But this method for achieving persistence and distribution 
is impractical for rapidly changing objects, so several more direct approaches have been 
developed. Java remote object invocation and CORBA ORBs provide access to remote, 
shared objects, but neither of these ensures the persistence of the objects, nor are the 
distributed objects replicated.

Figure 12.1 Storage systems and their properties

Types of consistency:
1: strict one-copy  :  slightly weaker guarantees  2: considerably weaker guarantees

Sharing Persistence Distributed
cache/replicas

Consistency
maintenance

Example

Main memory 1 RAM

File system 1 UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (DSM, Ch. 6)

Remote objects (RMI/ORB) 1 CORBA

Persistent object store 1 CORBA Persistent 
State Service

Peer-to-peer storage system 2 OceanStore (Ch. 10)

Figure 12.1 provides an overview of types of storage system. In addition to those 
already mentioned, the table includes distributed shared memory (DSM) systems and 
persistent object stores. DSM was described in Chapter 6. It provides an emulation of a 
shared memory by the replication of memory pages or segments at each host, but it does 
not necessarily provide automatic persistence. Persistent object stores were introduced 
in Chapter 5. They aim to provide persistence for distributed shared objects. Examples 
include the CORBA Persistent State Service (see Chapter 8) and persistent extensions 
to Java [Jordan 1996, java.sun.com VIII]. Some research projects have developed in 
platforms that support the automatic replication and persistent storage of objects (for 
example, PerDiS [Ferreira et al. 2000] and Khazana [Carter et al. 1998]). Peer-to-peer 
storage systems offer scalability to support client loads much larger than the systems 
described in this chaper, but they incur high performance costs in providing secure 
access control and consistency between updatable replicas.
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The consistency column indicates whether mechanisms exist for the maintenance 
of consistency between multiple copies of data when updates occur. Virtually all storage 
systems rely on the use of caching to optimize the performance of programs. Caching 
was first applied to main memory and non-distributed file systems, and for those the 
consistency is strict (denoted by a ‘1’, for one-copy consistency in Figure 12.1) – 
programs cannot observe any discrepancies between cached copies and stored data after 
an update. When distributed replicas are used, strict consistency is more difficult to 
achieve. Distributed file systems such as Sun NFS and the Andrew File System cache 
copies of portions of files at client computers, and they adopt specific consistency 
mechanisms to maintain an approximation to strict consistency – this is indicated by a 
tick ( ) in the consistency column of Figure 12.1. We discuss these mechanisms and 
the degree to which they deviate from strict consistency in Sections 12.3 and 12.4.

The Web uses caching extensively both at client computers and at proxy servers 
maintained by user organizations. The consistency between the copies stored at web 
proxies and client caches and the original server is only maintained by explicit user 
actions. Clients are not notified when a page stored at the original server is updated; they 
must perform explicit checks to keep their local copies up-to-date. This serves the 
purposes of web browsing adequately, but it does not support the development of 
cooperative applications such as a shared distributed whiteboard. The consistency 
mechanisms used in DSM systems are discussed in depth on the companion web site to 
the book [www.cdk5.net]. Persistent object systems vary considerably in their approach 
to caching and consistency. The CORBA and Persistent Java schemes maintain single 
copies of persistent objects, and remote invocation is required to access them, so the 
only consistency issue is between the persistent copy of an object on disk and the active 
copy in memory, which is not visible to remote clients. The PerDiS and Khazana 
projects that we mentioned above maintain cached replicas of objects and employ quite 
elaborate consistency mechanisms to produce forms of consistency similar to those 
found in DSM systems.

Figure 12.2 File system modules

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: performs disk I/O and buffering

Having introduced some wider issues relating to storage and distribution of 
persistent and non-persistent data, we now return to the main topic of this chapter – the 
design of basic distributed file systems. We describe some relevant characteristics of 
(non-distributed) file systems in Section 12.1.1 and the requirements for distributed file 
systems in Section 12.1.2. Section 12.1.3 introduces the case studies that will be used 
throughout the chapter. In Section 12.2, we define an abstract model for a basic 
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distributed file service, including a set of programming interfaces. Sun NFS is described 
in Section 12.3; it shares many of the features of the abstract model. In Section 12.4 we 
describe the Andrew File System, a widely used system that employs substantially 
different caching and consistency mechanisms. Section 12.5 reviews some recent 
developments in the design of file services.

The systems described in this chapter do not cover the full spectrum of distributed 
file and data management systems. Several systems with more advanced characteristics 
will be described later in the book. Chapter 18 includes a description of Coda, a 
distributed file system that maintains persistent replicas of files for reliability, 
availability and disconnected working. Bayou, a distributed data management system 
that provides a weakly consistent form of replication for high availability, is also 
covered in Chapter 18. Chapter 20 covers the Tiger video file server, which is designed 
to provide timely delivery of streams of data to large numbers of clients. Chapter 21 
describes the Google File System (GFS), a file system designed specifically to support 
large-scale, data-intensive applications including Internet search.

12.1.1 Characteristics of file systems

Figure 12.3 File attribute record structure

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

File systems are responsible for the organization, storage, retrieval, naming, sharing and 
protection of files. They provide a programming interface that characterizes the file 
abstraction, freeing programmers from concern with the details of storage allocation and 
layout. Files are stored on disks or other non-volatile storage media.

Files contain both data and attributes. The data consist of a sequence of data items 
(typically 8-bit bytes), accessible by operations to read and write any portion of the 
sequence. The attributes are held as a single record containing information such as the 
length of the file, timestamps, file type, owner’s identity and access control lists. A 
typical attribute record structure is illustrated in Figure 12.3. The shaded attributes are 
managed by the file system and are not normally updatable by user programs.
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File systems are designed to store and manage large numbers of files, with 
facilities for creating, naming and deleting files. The naming of files is supported by the 
use of directories. A directory is a file, often of a special type, that provides a mapping 
from text names to internal file identifiers. Directories may include the names of other 
directories, leading to the familiar hierarchic file-naming scheme and the multi-part 
pathnames for files used in UNIX and other operating systems. File systems also take 
responsibility for the control of access to files, restricting access to files according to 
users’ authorizations and the type of access requested (reading, updating, executing and 
so on).

The term metadata is often used to refer to all of the extra information stored by 
a file system that is needed for the management of files. It includes file attributes, 
directories and all the other persistent information used by the file system.

Figure 12.2 shows a typical layered module structure for the implementation of a 
non-distributed file system in a conventional operating system. Each layer depends only 
on the layers below it. The implementation of a distributed file service requires all of the 
components shown there, with additional components to deal with client-server 
communication and with the distributed naming and location of files.

File system operations  •  

Figure 12.4 UNIX file system operations

filedes = open(name, mode)

filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open 
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually 
transferred and advance the read-write pointer.

pos = lseek(filedes, offset, 

whence)

Moves the read-write pointer to offset (relative or absolute, 
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file 
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).

status = stat(name, buffer) Puts the file attributes for file name into buffer.

Figure 12.4 summarizes the main operations on files that are 
available to applications in UNIX systems. These are the system calls implemented by 
the kernel; application programmers usually access them through procedure libraries 
such as the C Standard Input/Output Library or the Java file classes. We give the 
primitives here as an indication of the operations that file services are expected to 
support and for comparison with the file service interfaces that we shall introduce below. 
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The UNIX operations are based on a programming model in which some file state 
information is stored by the file system for each running program. This consists of a list 
of currently open files with a read-write pointer for each, giving the position within the 
file at which the next read or write operation will be applied.

The file system is responsible for applying access control for files. In local file 
systems such as UNIX, it does so when each file is opened, checking the rights allowed 
for the user’s identity in the access control list against the mode of access requested in 
the open system call. If the rights match the mode, the file is opened and the mode is 
recorded in the open file state information.

12.1.2 Distributed file system requirements

Many of the requirements and potential pitfalls in the design of distributed services were 
first observed in the early development of distributed file systems. Initially, they offered 
access transparency and location transparency; performance, scalability, concurrency 
control, fault tolerance and security requirements emerged and were met in subsequent 
phases of development. We discuss these and related requirements in the following 
subsections. 

Transparency  •  The file service is usually the most heavily loaded service in an intranet, 
so its functionality and performance are critical. The design of the file service should 
support many of the transparency requirements for distributed systems identified in 
Section 1.5.7. The design must balance the flexibility and scalability that derive from 
transparency against software complexity and performance. The following forms of 
transparency are partially or wholly addressed by current file services: 

Access transparency: Client programs should be unaware of the distribution of files. 
A single set of operations is provided for access to local and remote files. Programs 
written to operate on local files are able to access remote files without modification.

Location transparency: Client programs should see a uniform file name space. Files 
or groups of files may be relocated without changing their pathnames, and user 
programs see the same name space wherever they are executed.

Mobility transparency: Neither client programs nor system administration tables in 
client nodes need to be changed when files are moved. This allows file mobility – 
files or, more commonly, sets or volumes of files may be moved, either by system 
administrators or automatically.

Performance transparency: Client programs should continue to perform satisfacto-
rily while the load on the service varies within a specified range.

Scaling transparency: The service can be expanded by incremental growth to deal 
with a wide range of loads and network sizes.

Concurrent file updates  •  Changes to a file by one client should not interfere with the 
operation of other clients simultaneously accessing or changing the same file. This is the 
well-known issue of concurrency control, discussed in detail in Chapter 16. The need for 
concurrency control for access to shared data in many applications is widely accepted 
and techniques are known for its implementation, but they are costly. Most current file 
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services follow modern UNIX standards in providing advisory or mandatory file- or 
record-level locking.

File replication  •  In a file service that supports replication, a file may be represented by 
several copies of its contents at different locations. This has two benefits – it enables 
multiple servers to share the load of providing a service to clients accessing the same set 
of files, enhancing the scalability of the service, and it enhances fault tolerance by 
enabling clients to locate another server that holds a copy of the file when one has failed. 
Few file services support replication fully, but most support the caching of files or 
portions of files locally, a limited form of replication. The replication of data is 
discussed in Chapter 18, which includes a description of the Coda replicated file service.

Hardware and operating system heterogeneity  •  The service interfaces should be de-
fined so that client and server software can be implemented for different operating sys-
tems and computers. This requirement is an important aspect of openness. 

Fault tolerance  •  The central role of the file service in distributed systems makes it 
essential that the service continue to operate in the face of client and server failures. 
Fortunately, a moderately fault-tolerant design is straightforward for simple servers. To 
cope with transient communication failures, the design can be based on at-most-once

invocation semantics (see Section 5.3.1); or it can use the simpler at-least-once

semantics with a server protocol designed in terms of idempotent operations, ensuring 
that duplicated requests do not result in invalid updates to files. The servers can be 
stateless, so that they can be restarted and the service restored after a failure without any 
need to recover previous state. Tolerance of disconnection or server failures requires file 
replication, which is more difficult to achieve and will be discussed in Chapter 18.

Consistency  •  Conventional file systems such as that provided in UNIX offer one-copy

update semantics. This refers to a model for concurrent access to files in which the file 
contents seen by all of the processes accessing or updating a given file are those that they 
would see if only a single copy of the file contents existed. When files are replicated or 
cached at different sites, there is an inevitable delay in the propagation of modifications 
made at one site to all of the other sites that hold copies, and this may result in some 
deviation from one-copy semantics.

Security  •  Virtually all file systems provide access-control mechanisms based on the 
use of access control lists. In distributed file systems, there is a need to authenticate 
client requests so that access control at the server is based on correct user identities and 
to protect the contents of request and reply messages with digital signatures and 
(optionally) encryption of secret data. We discuss the impact of these requirements in 
the case studies later in this chapter.

Efficiency  •  A distributed file service should offer facilities that are of at least the same 
power and generality as those found in conventional file systems and should achieve a 
comparable level of performance. Birrell and Needham [1980] expressed their design 
aims for the Cambridge File Server (CFS) in these terms:

We would wish to have a simple, low-level file server in order to share an 
expensive resource, namely a disk, whilst leaving us free to design the filing 
system most appropriate to a particular client, but we would wish also to have 
available a high-level system shared between clients.
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The changed economics of disk storage have reduced the significance of their first goal, 
but their perception of the need for a range of services addressing the requirements of 
clients with different goals remains and can best be addressed by a modular architecture 
of the type outlined above.

The techniques used for the implementation of file services are an important part 
of the design of distributed systems. A distributed file system should provide a service 
that is comparable with, or better than, local file systems in performance and reliability. 
It must be convenient to administer, providing operations and tools that enable system 
administrators to install and operate the system conveniently.

12.1.3 Case studies

We have constructed an abstract model for a file service to act as an introductory 
example, separating implementation concerns and providing a simplified model. We 
describe the Sun Network File System in some detail, drawing on our simpler abstract 
model to clarify its architecture. The Andrew File System is then described, providing a 
view of a distributed file system that takes a different approach to scalability and 
consistency maintenance.

File service architecture  •  This is an abstract architectural model that underpins both 
NFS and AFS. It is based upon a division of responsibilities between three modules – a 
client module that emulates a conventional file system interface for application 
programs, and server modules, that perform operations for clients on directories and on 
files. The architecture is designed to enable a stateless implementation of the server 
module.

SUN NFS  •  Sun Microsystems’s Network File System (NFS) has been widely adopted 
in industry and in academic environments since its introduction in 1985. The design and 
development of NFS were undertaken by staff at Sun Microsystems in 1984 [Sandberg 
et al. 1985, Sandberg 1987, Callaghan 1999]. Although several distributed file services 
had already been developed and used in universities and research laboratories, NFS was 
the first file service that was designed as a product. The design and implementation of 
NFS have achieved success both technically and commercially. 

To encourage its adoption as a standard, the definitions of the key interfaces were 
placed in the public domain [Sun 1989], enabling other vendors to produce 
implementations, and the source code for a reference implementation was made 
available to other computer vendors under licence. It is now supported by many vendors, 
and the NFS protocol (version 3) is an Internet standard, defined in RFC 1813 
[Callaghan et al. 1995]. Callaghan’s book on NFS [Callaghan 1999] is an excellent 
source on the design and development of NFS and related topics.

NFS provides transparent access to remote files for client programs running on 
UNIX and other systems. The client-server relationship is symmetrical: each computer 
in an NFS network can act as both a client and a server, and the files at every machine 
can be made available for remote access by other machines. Any computer can be a 
server, exporting some of its files, and a client, accessing files on other machines. But it 
is common practice to configure larger installations with some machines as dedicated 
servers and others as workstations. 
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An important goal of NFS is to achieve a high level of support for hardware and 
operating system heterogeneity. The design is operating system–independent: client and 
server implementations exist for almost all operating systems and platforms, including 
all versions of Windows, Mac OS, Linux and every other version of UNIX. 
Implementations of NFS on high-performance multiprocessor hosts have been 
developed by several vendors, and these are widely used to meet storage requirements 
in intranets with many concurrent users. 

Andrew File System  •  Andrew is a distributed computing environment developed at 
Carnegie Mellon University (CMU) for use as a campus computing and information 
system [Morris et al. 1986]. The design of the Andrew File System (henceforth 
abbreviated AFS) reflects an intention to support information sharing on a large scale by 
minimizing client-server communication. This is achieved by transferring whole files 
between server and client computers and caching them at clients until the server receives 
a more up-to-date version. We shall describe AFS-2, the first ‘production’ 
implementation, following the descriptions by Satyanarayanan [1989a, 1989b]. More 
recent descriptions can be found in Campbell [1997] and [Linux AFS].

AFS was initially implemented on a network of workstations and servers running 
BSD UNIX and the Mach operating system at CMU and was subsequently made 
available in commercial and public-domain versions. A public-domain implementation 
of AFS is available in the Linux operating system [Linux AFS]. AFS was adopted as the 
basis for the DCE/DFS file system in the Open Software Foundation’s Distributed 
Computing Environment (DCE) [www.opengroup.org]. The design of DCE/DFS went 
beyond AFS in several important respects, which we outline in Section 12.5.

12.2 File service architecture

An architecture that offers a clear separation of the main concerns in providing access 
to files is obtained by structuring the file service as three components – a flat file service,
a directory service and a client module. The relevant modules and their relationships are 
shown in Figure 12.5. The flat file service and the directory service each export an 
interface for use by client programs, and their RPC interfaces, taken together, provide a 
comprehensive set of operations for access to files. The client module provides a single 
programming interface with operations on files similar to those found in conventional 
file systems. The design is open in the sense that different client modules can be used to 
implement different programming interfaces, simulating the file operations of a variety 
of different operating systems and optimizing the performance for different client and 
server hardware configurations.

The division of responsibilities between the modules can be defined as follows:

Flat file service  •  The flat file service is concerned with implementing operations on the 
contents of files. Unique file identifiers (UFIDs) are used to refer to files in all requests 
for flat file service operations. The division of responsibilities between the file service 
and the directory service is based upon the use of UFIDs. UFIDs are long sequences of 
bits chosen so that each file has a UFID that is unique among all of the files in a 



Figure 12.5 File service architecture

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

SECTION 12.2 FILE SERVICE ARCHITECTURE 531

distributed system. When the flat file service receives a request to create a file, it 
generates a new UFID for it and returns the UFID to the requester. 

Directory service  •  The directory service provides a mapping between text names for 
files and their UFIDs. Clients may obtain the UFID of a file by quoting its text name to 
the directory service. The directory service provides the functions needed to generate 
directories, to add new file names to directories and to obtain UFIDs from directories. It 
is a client of the flat file service; its directory files are stored in files of the flat file 
service. When a hierarchic file-naming scheme is adopted, as in UNIX, directories hold 
references to other directories.

Client module  •  A client module runs in each client computer, integrating and 
extending the operations of the flat file service and the directory service under a single 
application programming interface that is available to user-level programs in client 
computers. For example, in UNIX hosts, a client module would be provided that 
emulates the full set of UNIX file operations, interpreting UNIX multi-part file names 
by iterative requests to the directory service. The client module also holds information 
about the network locations of the flat file server and directory server processes. Finally, 
the client module can play an important role in achieving satisfactory performance 
through the implementation of a cache of recently used file blocks at the client.

Flat file service interface  •  Figure 12.6 contains a definition of the interface to a flat file 
service. This is the RPC interface used by client modules. It is not normally used directly 
by user-level programs. A FileId is invalid if the file that it refers to is not present in the 
server processing the request or if its access permissions are inappropriate for the 
operation requested. All of the procedures in the interface except Create throw 
exceptions if the FileId argument contains an invalid UFID or the user doesn’t have 
sufficient access rights. These exceptions are omitted from the definition for clarity.

The most important operations are those for reading and writing. Both the Read

and the Write operation require a parameter i specifying a position in the file. The Read

operation copies the sequence of n data items beginning at item i from the specified file 



Figure 12.6 Flat file service operations

Read(FileId, i, n)  Data 

— throws BadPosition

If 1  i  Length(File): Reads a sequence of up to n items 
from a file starting at item i and returns it in Data.

Write(FileId, i, Data) 

— throws BadPosition

If 1  i  Length(File)+1: Writes a sequence of Data to a 
file, starting at item i, extending the file if necessary.

Create()  FileId Creates a new file of length 0 and delivers a UFID for it. 

Delete(FileId) Removes the file from the file store.

GetAttributes(FileId)  Attr Returns the file attributes for the file. 

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not 
shaded in Figure 12.3).
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into Data, which is then returned to the client. The Write operation copies the sequence 
of data items in Data into the specified file beginning at item i, replacing the previous 
contents of the file at the corresponding position and extending the file if necessary.

Create creates a new, empty file and returns the UFID that is generated. Delete

removes the specified file. 

GetAttributes and SetAttributes enable clients to access the attribute record. 
GetAttributes is normally available to any client that is allowed to read the file. Access 
to the SetAttributes operation would normally be restricted to the directory service that 
provides access to the file. The values of the length and timestamp portions of the 
attribute record are not affected by SetAttributes; they are maintained separately by the 
flat file service itself.

Comparison with UNIX: Our interface and the UNIX file system primitives are 
functionally equivalent. It is a simple matter to construct a client module that emulates 
the UNIX system calls in terms of our flat file service and the directory service 
operations described in the next section. 

In comparison with the UNIX interface, our flat file service has no open and close

operations – files can be accessed immediately by quoting the appropriate UFID. The 
Read and Write requests in our interface include a parameter specifying a starting point 
within the file for each transfer, whereas the equivalent UNIX operations do not. In 
UNIX, each read or write operation starts at the current position of the read-write 
pointer, and the read-write pointer is advanced by the number of bytes transferred after 
each read or write. A seek operation is provided to enable the read-write pointer to be 
explicitly repositioned. 

The interface to our flat file service differs from the UNIX file system interface 
mainly for reasons of fault tolerance:

Repeatable operations: With the exception of Create, the operations are 
idempotent, allowing the use of at-least-once RPC semantics – clients may repeat 
calls to which they receive no reply. Repeated execution of Create produces a 
different new file for each call. 
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Stateless servers: The interface is suitable for implementation by stateless servers. 
Stateless servers can be restarted after a failure and resume operation without any 
need for clients or the server to restore any state.

The UNIX file operations are neither idempotent nor consistent with the requirement for 
a stateless implementation. A read-write pointer is generated by the UNIX file system 
whenever a file is opened, and it is retained, together with the results of access-control 
checks, until the file is closed. The UNIX read and write operations are not idempotent; 
if an operation is accidentally repeated, the automatic advance of the read-write pointer 
results in access to a different portion of the file in the repeated operation. The read-write 
pointer is a hidden, client-related state variable. To mimic it in a file server, open and 
close operations would be needed, and the read-write pointer’s value would have to be 
retained by the server as long as the relevant file is open. By eliminating the read-write 
pointer, we have eliminated most of the need for the file server to retain state 
information on behalf of specific clients.

Access control  •  In the UNIX file system, the user’s access rights are checked against 
the access mode (read or write) requested in the open call (Figure 12.4 shows the UNIX 
file system API) and the file is opened only if the user has the necessary rights. The user 
identity (UID) used in the access rights check is retrieved during the user’s earlier 
authenticated login and cannot be tampered with in non-distributed implementations. 
The resulting access rights are retained until the file is closed, and no further checks are 
required when subsequent operations on the same file are requested.

In distributed implementations, access rights checks have to be performed at the 
server because the server RPC interface is an otherwise unprotected point of access to 
files. A user identity has to be passed with requests, and the server is vulnerable to 
forged identities. Furthermore, if the results of an access rights check were retained at 
the server and used for future accesses, the server would no longer be stateless. Two 
alternative approaches to the latter problem can be adopted:

• An access check is made whenever a file name is converted to a UFID, and the 
results are encoded in the form of a capability (see Section 11.2.4), which is 
returned to the client for submission with subsequent requests.

• A user identity is submitted with every client request, and access checks are 
performed by the server for every file operation.

Both methods enable stateless server implementation, and both have been used in 
distributed file systems. The second is more common; it is used in both NFS and AFS. 
Neither of these approaches overcomes the security problem concerning forged user 
identities, but we saw in Chapter 11 that this can be addressed by the use of digital 
signatures. Kerberos is an effective authentication scheme that has been applied to both 
NFS and AFS.

In our abstract model, we make no assumption about the method by which access 
control is implemented. The user identity is passed as an implicit parameter and can be 
used whenever it is needed. 

Directory service interface  •  Figure 12.7 contains a definition of the RPC interface to a 
directory service. The primary purpose of the directory service is to provide a service for 
translating text names to UFIDs. In order to do so, it maintains directory files containing 



Figure 12.7 Directory service operations

Lookup(Dir, Name)  FileId

— throws NotFound 

Locates the text name in the directory and returns the 
relevant UFID. If Name is not in the directory, throws an 
exception.

AddName(Dir, Name, FileId) 

— throws NameDuplicate 

If Name is not in the directory, adds (Name, File) to the 
directory and updates the file’s attribute record.
If Name is already in the directory, throws an exception. 

UnName(Dir, Name) 

— throws NotFound 

If Name is in the directory, removes the entry containing 
Name from the directory. 
If Name is not in the directory, throws an exception. 

GetNames(Dir, Pattern)  NameSeq Returns all the text names in the directory that match the 
regular expression Pattern.
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the mappings between text names for files and UFIDs. Each directory is stored as a 
conventional file with a UFID, so the directory service is a client of the file service. 

We define only operations on individual directories. For each operation, a UFID 
for the file containing the directory is required (in the Dir parameter). The Lookup

operation in the basic directory service performs a single Name UFID translation. It 
is a building block for use in other services or in the client module to perform more 
complex translations, such as the hierarchic name interpretation found in UNIX. As 
before, exceptions caused by inadequate access rights are omitted from the definitions.

There are two operations for altering directories: AddName and UnName.
AddName adds an entry to a directory and increments the reference count field in the 
file’s attribute record. 

UnName removes an entry from a directory and decrements the reference count. 
If this causes the reference count to reach zero, the file is removed. GetNames is 
provided to enable clients to examine the contents of directories and to implement 
pattern-matching operations on file names such as those found in the UNIX shell. It 
returns all or a subset of the names stored in a given directory. The names are selected 
by pattern matching against a regular expression supplied by the client.

The provision of pattern matching in the GetNames operation enables users to 
determine the names of one or more files by giving an incomplete specification of the 
characters in the names. A regular expression is a specification for a class of strings in 
the form of an expression containing a combination of literal substrings and symbols 
denoting variable characters or repeated occurrences of characters or substrings.

Hierarchic file system  •  A hierarchic file system such as the one that UNIX provides 
consists of a number of directories arranged in a tree structure. Each directory holds the 
names of the files and other directories that are accessible from it. Any file or directory 
can be referenced using a pathname – a multi-part name that represents a path through 
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the tree. The root has a distinguished name, and each file or directory has a name in a 
directory. The UNIX file-naming scheme is not a strict hierarchy – files can have several 
names, and they can be in the same or different directories. This is implemented by a 
link operation, which adds a new name for a file to a specified directory.

A UNIX-like file-naming system can be implemented by the client module using 
the flat file and directory services that we have defined. A tree-structured network of 
directories is constructed with files at the leaves and directories at the other nodes of the 
tree. The root of the tree is a directory with a ‘well-known’ UFID. Multiple names for 
files can be supported using the AddName operation and the reference count field in the 
attribute record.

A function can be provided in the client module that gets the UFID of a file given 
its pathname. The function interprets the pathname starting from the root, using Lookup

to obtain the UFID of each directory in the path.

In a hierarchic directory service, the file attributes associated with files should 
include a type field that distinguishes between ordinary files and directories. This is used 
when following a path to ensure that each part of the name, except the last, refers to a 
directory.

File groups  •  A file group is a collection of files located on a given server. A server may 
hold several file groups, and groups can be moved between servers, but a file cannot 
change the group to which it belongs. A similar construct called a filesystem is used in 
UNIX and in most other operating systems. (Terminology note: the single word 
filesystem refers to the set of files held in a storage device or partition, whereas the words 
file system refer to a software component that provides access to files.) File groups were 
originally introduced to support facilities for moving collections of files stored on 
removable media between computers. In a distributed file service, file groups support 
the allocation of files to file servers in larger logical units and enable the service to be 
implemented with files stored on several servers. In a distributed file system that 
supports file groups, the representation of UFIDs includes a file group identifier 
component, enabling the client module in each client computer to take responsibility for 
dispatching requests to the server that holds the relevant file group.

File group identifiers must be unique throughout a distributed system. Since file 
groups can be moved and distributed systems that are initially separate can be merged 
to form a single system, the only way to ensure that file group identifiers will always be 
distinct in a given system is to generate them with an algorithm that ensures global 
uniqueness. For example, whenever a new file group is created, a unique identifier can 
be generated by concatenating the 32-bit IP address of the host creating the new group 
with a 16-bit integer derived from the date, producing a unique 48-bit integer:

32 bits 16 bits 

file group identifier: IP address date

Note that the IP address cannot be used for the purpose of locating the file group, since 
it may be moved to another server. Instead, a mapping between group identifiers and 
servers should be maintained by the file service.
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12.3 Case study: Sun Network File System

Figure 12.8

Figure 12.8 NFS architecture
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 shows the architecture of Sun NFS. It follows the abstract model defined in 
the preceding section. All implementations of NFS support the NFS protocol – a set of 
remote procedure calls that provide the means for clients to perform operations on a 
remote file store. The NFS protocol is operating system–independent but was originally 
developed for use in networks of UNIX systems, and we shall describe the UNIX 
implementation the NFS protocol (version 3).

The NFS server module resides in the kernel on each computer that acts as an NFS 
server. Requests referring to files in a remote file system are translated by the client 
module to NFS protocol operations and then passed to the NFS server module at the 
computer holding the relevant file system.

The NFS client and server modules communicate using remote procedure calls. 
Sun’s RPC system, described in Section 5.3.3, was developed for use in NFS. It can be 
configured to use either UDP or TCP, and the NFS protocol is compatible with both. A 
port mapper service is included to enable clients to bind to services in a given host by 
name. The RPC interface to the NFS server is open: any process can send requests to an 
NFS server; if the requests are valid and they include valid user credentials, they will be 
acted upon. The submission of signed user credentials can be required as an optional 
security feature, as can the encryption of data for privacy and integrity.

Virtual file system  •  Figure 12.8 makes it clear that NFS provides access transparency: 
user programs can issue file operations for local or remote files without distinction. 
Other distributed file systems may be present that support UNIX system calls, and if so, 
they could be integrated in the same way.
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The integration is achieved by a virtual file system (VFS) module, which has been 
added to the UNIX kernel to distinguish between local and remote files and to translate 
between the UNIX-independent file identifiers used by NFS and the internal file 
identifiers normally used in UNIX and other file systems. In addition, VFS keeps track 
of the filesystems that are currently available both locally and remotely, and it passes 
each request to the appropriate local system module (the UNIX file system, the NFS 
client module or the service module for another file system).

The file identifiers used in NFS are called file handles. A file handle is opaque to 
clients and contains whatever information the server needs to distinguish an individual 
file. In UNIX implementations of NFS, the file handle is derived from the file’s i-node 

number by adding two extra fields as follows (the i-node number of a UNIX file is a 
number that serves to identify and locate the file within the file system in which the file 
is stored):

File handle: Filesystem identifier i-node number
of file

i-node generation
number

NFS adopts the UNIX mountable filesystem as the unit of file grouping defined in the 
preceding section. The filesystem identifier field is a unique number that is allocated to 
each filesystem when it is created (and in the UNIX implementation is stored in the 
superblock of the file system). The i-node generation number is needed because in the 
conventional UNIX file system i-node numbers are reused after a file is removed. In the 
VFS extensions to the UNIX file system, a generation number is stored with each file 
and is incremented each time the i-node number is reused (for example, in a UNIX creat

system call). The client obtains the first file handle for a remote file system when it 
mounts it. File handles are passed from server to client in the results of lookup, create

and mkdir operations (see Figure 12.9) and from client to server in the argument lists of 
all server operations.

The virtual file system layer has one VFS structure for each mounted file system 
and one v-node per open file. A VFS structure relates a remote file system to the local 
directory on which it is mounted. The v-node contains an indicator to show whether a 
file is local or remote. If the file is local, the v-node contains a reference to the index of 
the local file (an i-node in a UNIX implementation). If the file is remote, it contains the 
file handle of the remote file.

Client integration  •  The NFS client module plays the role described for the client 
module in our architectural model, supplying an interface suitable for use by 
conventional application programs. But unlike our model client module, it emulates the 
semantics of the standard UNIX file system primitives precisely and is integrated with 
the UNIX kernel. It is integrated with the kernel and not supplied as a library for loading 
into client processes so that:

• user programs can access files via UNIX system calls without recompilation or 
reloading;

• a single client module serves all of the user-level processes, with a shared cache 
of recently used blocks (described below);



Figure 12.9 NFS server operations (NFS version 3 protocol, simplified)

lookup(dirfh, name)  fh, attr Returns file handle and attributes for the file name in the directory dirfh.

create(dirfh, name, attr) 

newfh, attr

Creates a new file name in directory dirfh with attributes attr and returns 
the new file handle and attributes.

remove(dirfh, name)  status Removes file name from directory dirfh.

getattr(fh)  attr Returns file attributes of file fh. (Similar to the UNIX stat system call.)

setattr(fh, attr)  attr Sets the attributes (mode, user ID, group ID, size, access time and 
modify time of a file). Setting the size to 0 truncates the file.

read(fh, offset, count)  attr, data Returns up to count bytes of data from a file starting at offset. Also 
returns the latest attributes of the file.

write(fh, offset, count, data)  attr Writes count bytes of data to a file starting at offset. Returns the 
attributes of the file after the write has taken place.

rename(dirfh, name, todirfh, 

toname)  status

Changes the name of file name in directory dirfh to toname in directory 
todirfh.

link(newdirfh, newname, fh) 

 status

Creates an entry newname in the directory newdirfh that refers to the file 
or directory fh.

symlink(newdirfh, newname, string) 

 status

Creates an entry newname in the directory newdirfh of type symbolic 

link with the value string. The server does not interpret the string but 
makes a symbolic link file to hold it.

readlink(fh)  string Returns the string that is associated with the symbolic link file identified 
by fh.

mkdir(dirfh, name, attr)  newfh, 

attr

Creates a new directory name with attributes attr and returns the new 
file handle and attributes.

rmdir(dirfh, name)  status Removes the empty directory name from the parent directory dirfh.
Fails if the directory is not empty.

readdir(dirfh, cookie, count) 

entries

Returns up to count bytes of directory entries from the directory dirfh.
Each entry contains a file name, a file handle and an opaque pointer to 
the next directory entry, called a cookie. The cookie is used in 
subsequent readdir calls to start reading from the following entry. If the 
value of cookie is 0, reads from the first entry in the directory.

statfs(fh)  fsstats Returns file system information (such as block size, number of free 
blocks and so on) for the file system containing a file fh.
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• the encryption key used to authenticate user IDs passed to the server (see below) 
can be retained in the kernel, preventing impersonation by user-level clients.

The NFS client module cooperates with the virtual file system in each client machine. It 
operates in a similar manner to the conventional UNIX file system, transferring blocks 
of files to and from the server and caching the blocks in the local memory whenever 
possible. It shares the same buffer cache that is used by the local input-output system. 
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But since several clients in different host machines may simultaneously access the same 
remote file, a new and significant cache consistency problem arises.

Access control and authentication  •  Unlike the conventional UNIX file system, the NFS 
server is stateless and does not keep files open on behalf of its clients. So the server must 
check the user’s identity against the file’s access permission attributes afresh on each 
request, to see whether the user is permitted to access the file in the manner requested. 
The Sun RPC protocol requires clients to send user authentication information (for 
example, the conventional UNIX 16-bit user ID and group ID) with each request and this 
is checked against the access permission in the file attributes. These additional 
parameters are not shown in our overview of the NFS protocol in Figure 12.9; they are 
supplied automatically by the RPC system.

In its simplest form, there is a security loophole in this access-control mechanism. 
An NFS server provides a conventional RPC interface at a well-known port on each host 
and any process can behave as a client, sending requests to the server to access or update 
a file. The client can modify the RPC calls to include the user ID of any user, 
impersonating the user without their knowledge or permission. This security loophole 
has been closed by the use of an option in the RPC protocol for the DES encryption of 
the user’s authentication information. More recently, Kerberos has been integrated with 
Sun NFS to provide a stronger and more comprehensive solution to the problems of user 
authentication and security; we describe this below.

NFS server interface  •  A simplified representation of the RPC interface provided by 
NFS version 3 servers (defined in RFC 1813 [Callaghan et al. 1995]) is shown in Figure 
12.9. The NFS file access operations read, write, getattr and setattr are almost identical 
to the Read, Write, GetAttributes and SetAttributes operations defined for our flat file 
service model (Figure 12.6). The lookup operation and most of the other directory 
operations defined in Figure 12.9 are similar to those in our directory service model 
(Figure 12.7).

The file and directory operations are integrated in a single service; the creation and 
insertion of file names in directories is performed by a single create operation, which 
takes the text name of the new file and the file handle for the target directory as 
arguments. The other NFS operations on directories are create, remove, rename, link,
symlink, readlink, mkdir, rmdir, readdir and statfs. They resemble their UNIX 
counterparts with the exception of readdir, which provides a representation-
independent method for reading the contents of directories, and statfs, which gives the 
status information on remote file systems.

Mount service  •  The mounting of subtrees of remote filesystems by clients is supported 
by a separate mount service process that runs at user level on each NFS server computer. 
On each server, there is a file with a well-known name (/etc/exports) containing the 
names of local filesystems that are available for remote mounting. An access list is 
associated with each filesystem name indicating which hosts are permitted to mount the 
filesystem.

Clients use a modified version of the UNIX mount command to request mounting 
of a remote filesystem, specifying the remote host’s name, the pathname of a directory 
in the remote filesystem and the local name with which it is to be mounted. The remote 
directory may be any subtree of the required remote filesystem, enabling clients to 
mount any part of the remote filesystem. The modified mount command communicates 
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with the mount service process on the remote host using a mount protocol. This is an 
RPC protocol and includes an operation that takes a directory pathname and returns the 
file handle of the specified directory if the client has access permission for the relevant 
filesystem. The location (IP address and port number) of the server and the file handle 
for the remote directory are passed on to the VFS layer and the NFS client.

Figure 12.10

Figure 12.10 Local and remote filesystems accessible on an NFS client
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at /export/people in Server 1; the filesystem mounted at /usr/staff in the client is 
actually the subtree located at /nfs/users in Server 2.
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 illustrates a Client with two remotely mounted file stores. The nodes 
people and users in filesystems at Server 1 and Server 2 are mounted over nodes students

and staff in Client’s local file store. The meaning of this is that programs running at 
Client can access files at Server 1 and Server 2 by using pathnames such as 
/usr/students/jon and /usr/staff/ann.

Remote filesystems may be hard-mounted or soft-mounted in a client computer. 
When a user-level process accesses a file in a filesystem that is hard-mounted, the 
process is suspended until the request can be completed, and if the remote host is 
unavailable for any reason the NFS client module continues to retry the request until it 
is satisfied. Thus in the case of a server failure, user-level processes are suspended until 
the server restarts and then they continue just as though there had been no failure. But if 
the relevant filesystem is soft-mounted, the NFS client module returns a failure 
indication to user-level processes after a small number of retries. Properly constructed 
programs will then detect the failure and take appropriate recovery or reporting actions. 
But many UNIX utilities and applications do not test for the failure of file access 
operations, and these behave in unpredictable ways in the case of failure of a soft-
mounted filesystem. For this reason, many installations use hard mounting exclusively, 
with the consequence that programs are unable to recover gracefully when an NFS 
server is unavailable for a significant period.

Pathname translation  •  UNIX file systems translate multi-part file pathnames to i-node 
references in a step-by-step process whenever the open, creat or stat system calls are 
used. In NFS, pathnames cannot be translated at a server, because the name may cross a 
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‘mount point’ at the client – directories holding different parts of a multi-part name may 
reside in filesystems at different servers. So pathnames are parsed, and their translation 
is performed in an iterative manner by the client. Each part of a name that refers to a 
remote-mounted directory is translated to a file handle using a separate lookup request 
to the remote server. 

The lookup operation looks for a single part of a pathname in a given directory and 
returns the corresponding file handle and file attributes. The file handle returned in the 
previous step is used as a parameter in the next lookup step. Since file handles are 
opaque to NFS client code, the virtual file system is responsible for resolving file 
handles to a local or a remote directory and performing the necessary indirection when 
it references a local mount point. Caching of the results of each step in pathname 
translations alleviates the apparent inefficiency of this process, taking advantage of 
locality of reference to files and directories; users and programs typically access files in 
only one or a small number of directories.

Automounter  •  The automounter was added to the UNIX implementation of NFS in 
order to mount a remote directory dynamically whenever an ‘empty’ mount point is 
referenced by a client. The original implementation of the automounter ran as a user-
level UNIX process in each client computer. Later versions (called autofs) were 
implemented in the kernel for Solaris and Linux. We describe the original version here.

The automounter maintains a table of mount points (pathnames) with a reference 
to one or more NFS servers listed against each. It behaves like a local NFS server at the 
client machine. When the NFS client module attempts to resolve a pathname that 
includes one of these mount points, it passes to the local automounter a lookup() request 
that locates the required filesystem in its table and sends a ‘probe’ request to each server 
listed. The filesystem on the first server to respond is then mounted at the client using 
the normal mount service. The mounted filesystem is linked to the mount point using a 
symbolic link, so that accesses to it will not result in further requests to the automounter. 
File access then proceeds in the normal way without further reference to the 
automounter unless there are no references to the symbolic link for several minutes. In 
the latter case, the automounter unmounts the remote filesystem.

The later kernel implementations replaced the symbolic links with real mounts, 
avoiding some problems that arose with applications that cached the temporary 
pathnames used in user-level automounters [Callaghan 1999].

A simple form of read-only replication can be achieved by listing several servers 
containing identical copies of a filesystem or file subtree against a name in the 
automounter table. This is useful for heavily used file systems that change infrequently, 
such as UNIX system binaries. For example, copies of the /usr/lib directory and its 
subtree might be held on more than one server. On the first occasion that a file in /usr/lib

is opened at a client, all of the servers will be sent probe messages, and the first to 
respond will be mounted at the client. This provides a limited degree of fault tolerance 
and load balancing, since the first server to respond will be one that has not failed and is 
likely to be one that is not heavily occupied with servicing other requests.

Server caching  •  Caching in both the client and the server computer are indispensable 
features of NFS implementations in order to achieve adequate performance.

In conventional UNIX systems, file pages, directories and file attributes that have 
been read from disk are retained in a main memory buffer cache until the buffer space 
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is required for other pages. If a process then issues a read or a write request for a page 
that is already in the cache, it can be satisfied without another disk access. Read-ahead

anticipates read accesses and fetches the pages following those that have most recently 
been read, and delayed-write optimizes writes: when a page has been altered (by a write 
request), its new contents are written to disk only when the buffer page is required for 
another page. To guard against loss of data in a system crash, the UNIX sync operation 
flushes altered pages to disk every 30 seconds. These caching techniques work in a 
conventional UNIX environment because all read and write requests issued by user-
level processes pass through a single cache that is implemented in the UNIX kernel 
space. The cache is always kept up-to-date, and file accesses cannot bypass the cache.

NFS servers use the cache at the server machine just as it is used for other file 
accesses. The use of the server’s cache to hold recently read disk blocks does not raise 
any consistency problems; but when a server performs write operations, extra measures 
are needed to ensure that clients can be confident that the results of the write operations 
are persistent, even when server crashes occur. In version 3 of the NFS protocol, the 
write operation offers two options for this (not shown in Figure 12.9):

1. Data in write operations received from clients is stored in the memory cache at the 
server and written to disk before a reply is sent to the client. This is called write-

through caching. The client can be sure that the data is stored persistently as soon 
as the reply has been received.

2. Data in write operations is stored only in the memory cache. It will be written to 
disk when a commit operation is received for the relevant file. The client can be 
sure that the data is persistently stored only when a reply to a commit operation for 
the relevant file has been received. Standard NFS clients use this mode of 
operation, issuing a commit whenever a file that was open for writing is closed. 

Commit is an additional operation provided in version 3 of the NFS protocol; it was 
added to overcome a performance bottleneck caused by the write-through mode of 
operation in servers that receive large numbers of write operations. 

 The requirement for write-through in distributed file systems is an instance of the 
independent failure modes discussed in Chapter 1 – clients continue to operate when a 
server fails, and application programs may take actions on the assumption that the 
results of previous writes are committed to disk storage. This is unlikely to occur in the 
case of local file updates, because the failure of a local file system is almost certain to 
result in the failure of all the application processes running on the same computer.

Client caching  •  The NFS client module caches the results of read, write, getattr,
lookup and readdir operations in order to reduce the number of requests transmitted to 
servers. Client caching introduces the potential for different versions of files or portions 
of files to exist in different client nodes, because writes by a client do not result in the 
immediate updating of cached copies of the same file in other clients. Instead, clients are 
responsible for polling the server to check the currency of the cached data that they hold.

A timestamp-based method is used to validate cached blocks before they are used. 
Each data or metadata item in the cache is tagged with two timestamps:

Tc is the time when the cache entry was last validated.

Tm is the time when the block was last modified at the server.
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A cache entry is valid at time T if T – Tc is less than a freshness interval t, or if the value 
for Tm recorded at the client matches the value of Tm at the server (that is, the data has 
not been modified at the server since the cache entry was made). Formally, the validity 
condition is:

T Tc– t Tmclient Tmserver=

The selection of a value for t involves a compromise between consistency and efficiency. 
A very short freshness interval will result in a close approximation to one-copy 
consistency, at the cost of a relatively heavy load of calls to the server to check the value 
of Tmserver.  In Sun Solaris clients, t is set adaptively for individual files to a value in the 
range 3 to 30 seconds, depending on the frequency of updates to the file. For directories 
the range is 30 to 60 seconds, reflecting the lower risk of concurrent updates.

There is one value of Tmserver for all the data blocks in a file and another for the 
file attributes. Since NFS clients cannot determine whether a file is being shared or not, 
the validation procedure must be used for all file accesses. A validity check is performed 
whenever a cache entry is used. The first half of the validity condition can be evaluated 
without access to the server. If it is true, then the second half need not be evaluated; if it 
is false, the current value of Tmserver is obtained (by means of a getattr call to the server) 
and compared with the local value Tmclient. If they are the same, then the cache entry is 
taken to be valid and the value of Tc for that cache entry is updated to the current time. 
If they differ, then the cached data has been updated at the server and the cache entry is 
invalidated, resulting in a request to the server for the relevant data.

Several measures are used to reduce the traffic of getattr calls to the server:

• Whenever a new value of Tmserver is received at a client, it is applied to all cache 
entries derived from the relevant file.

• The current attribute values are sent ‘piggybacked’ with the results of every 
operation on a file, and if the value of Tmserver has changed the client uses it to 
update the cache entries relating to the file.

• The adaptive algorithm for setting freshness interval t outlined above reduces the 
traffic considerably for most files.

The validation procedure does not guarantee the same level of consistency of files that 
is provided in conventional UNIX systems, since recent updates are not always visible 
to clients sharing a file. There are two sources of time lag; the delay after a write before 
the updated data leaves the cache in the updating client’s kernel and the three-second 
‘window’ for cache validation. Fortunately, most UNIX applications do not depend 
critically upon the synchronization of file updates, and few difficulties have been 
reported from this source.

Writes are handled differently. When a cached page is modified it is marked as 
‘dirty’ and is scheduled to be flushed to the server asynchronously. Modified pages are 
flushed when the file is closed or a sync occurs at the client, and they are flushed more 
frequently if bio-daemons are in use (see below). This does not provide the same 
persistence guarantee as the server cache, but it emulates the behaviour for local writes. 

To implement read-ahead and delayed-write, the NFS client needs to perform 
some reads and writes asynchronously. This is achieved in UNIX implementations of 
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NFS by the inclusion of one or more bio–daemon processes at each client. (Bio stands 
for block input-output; the term daemon is often used to refer to user-level processes that 
perform system tasks.) The role of the bio-daemons is to perform read-ahead and 
delayed-write operations. A bio-daemon is notified after each read request, and it 
requests the transfer of the following file block from the server to the client cache. In the 
case of writing, the bio-daemon will send a block to the server whenever a block has 
been filled by a client operation. Directory blocks are sent whenever a modification has 
occurred.

Bio-daemon processes improve performance, ensuring that the client module does 
not block waiting for reads to return or writes to commit at the server. They are not a 
logical requirement, since in the absence of read-ahead, a read operation in a user 
process will trigger a synchronous request to the relevant server, and the results of writes
in user processes will be transferred to the server when the relevant file is closed or when 
the virtual file system at the client performs a sync operation.

Other optimizations  •  The Sun file system is based on the UNIX BSD Fast File System 
which uses 8-kbyte disk blocks, resulting in fewer file system calls for sequential file 
access than previous UNIX systems. The UDP packets used for the implementation of 
Sun RPC are extended to 9 kilobytes, enabling an RPC call containing an entire block 
as an argument to be transferred in a single packet and minimizing the effect of network 
latency when reading files sequentially. In NFS version 3, there is no limit on the 
maximum size of file blocks that can be handled in read and write operations; clients 
and servers can negotiate sizes larger than 8 kbytes if both are able to handle them.

As mentioned above, the file status information cached at clients must be updated 
at least every three seconds for active files. To reduce the consequential server load 
resulting from getattr requests, all operations that refer to files or directories are taken 
as implicit getattr requests, and the current attribute values are ‘piggybacked’ along with 
the other results of the operation.

Securing NFS with Kerberos  •  In Section 11.6.2 we described the Kerberos 
authentication system developed at MIT, which has become an industry standard for 
securing intranet servers against unauthorized access and imposter attacks. The security 
of NFS implementations has been strengthened by the use of the Kerberos scheme to 
authenticate clients. In this subsection, we describe the ‘Kerberization’ of NFS as 
carried out by the designers of Kerberos.

In the original standard implementation of NFS, the user’s identity is included in 
each request in the form of an unencrypted numeric identifier. (The identifier can be 
encrypted in later versions of NFS.) NFS does not take any further steps to check the 
authenticity of the identifier supplied. This implies a high degree of trust in the integrity 
of the client computer and its software by NFS, whereas the aim of Kerberos and other 
authentication-based security systems is to reduce to a minimum the range of 
components in which trust is assumed. Essentially, when NFS is used in a ‘Kerberized’ 
environment it should accept requests only from clients whose identity can be shown to 
have been authenticated by Kerberos.

One obvious solution considered by the Kerberos developers was to change the 
nature of the credentials required by NFS to be a full-blown Kerberos ticket and 
authenticator. But because NFS is implemented as a stateless server, each individual file 
access request is handled on its face value and the authentication data would have to be 
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included in each request. This was considered unacceptably expensive in terms of the 
time required to perform the necessary encryptions and because it would have entailed 
adding the Kerberos client library to the kernel of all workstations.

Instead, a hybrid approach was adopted in which the NFS mount server is supplied 
with full Kerberos authentication data for the users when their home and root 
filesystems are mounted. The results of this authentication, including the user’s 
conventional numerical identifier and the address of the client computer, are retained by 
the server with the mount information for each filesystem. (Although the NFS server 
does not retain state relating to individual client processes, it does retain the current 
mounts at each client computer.)

On each file access request, the NFS server checks the user identifier and the 
sender’s address and grants access only if they match those stored at the server for the 
relevant client at mount time. This hybrid approach involves only minimal additional 
cost and is safe against most forms of attack, provided that only one user at a time can 
log in to each client computer. At MIT, the system is configured so that this is the case. 
Recent NFS implementations include Kerberos authentication as one of several options 
for authentication, and sites that also run Kerberos servers are advised to use this option. 

Performance   •  Early performance figures reported by Sandberg [1987] showed that the 
use of NFS did not normally impose a performance penalty in comparison with access 
to files stored on local disks. He identified two remaining problem areas:

• frequent use of the getattr call in order to fetch timestamps from servers for cache 
validation;

• relatively poor performance of the write operation because write-through was 
used at the server. 

He noted that writes are relatively infrequent in typical UNIX workloads (about 5% of 
all calls to the server), and the cost of write-through is therefore tolerable except when 
large files are written to the server. Further, the version of NFS that he tested did not 
include the commit mechanism outlined above, which has resulted in a substantial 
improvement in write performance in current versions. His results also show that the 
lookup operation accounts for almost 50% of server calls. This is a consequence of the 
step-by-step pathname translation method necessitated by UNIX’s file-naming 
semantics. 

Measurements are taken regularly by Sun and other NFS implementors using an 
updated version of an exhaustive set of benchmark programs known as LADDIS [Keith 
and Wittle 1993]. Current and past results are available at the SPEC web site 
[www.spec.org]. Performance is summarized there for NFS server implementations 
from many vendors and different hardware configurations. Single-CPU 
implementations based on PC hardware but with dedicated operating systems achieve 
throughputs in excess of 12,000 server operations per second and large multi-processor 
configurations with many disks and controllers have achieved throughputs of up to 
300,000 server operations per second. These figures indicate that NFS offers a very 
effective solution to distributed storage needs in intranets of most sizes and types of use, 
ranging for example from a traditional UNIX load of development by several hundred 
software engineers to a battery of web servers serving material from an NFS server.
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NFS summary  •  Sun NFS closely follows our abstract model. The resulting design 
provides good location and access transparency if the NFS mount service is used 
properly to produce similar name spaces at all clients. NFS supports heterogeneous 
hardware and operating systems. The NFS server implementation is stateless, enabling 
clients and servers to resume execution after a failure without the need for any recovery 
procedures. Migration of files or filesystems is not supported, except at the level of 
manual intervention to reconfigure mount directives after the movement of a filesystem 
to a new location. 

The performance of NFS is much enhanced by the caching of file blocks at each 
client computer. This is important for the achievement of satisfactory performance but 
results in some deviation from strict UNIX one-copy file update semantics.

The other design goals of NFS and the extent to which they have been achieved are 
discussed below.

Access transparency: The NFS client module provides an application programming 
interface to local processes that is identical to the local operating system’s interface. 
Thus in a UNIX client, accesses to remote files are performed using the normal UNIX 
system calls. No modifications to existing programs are required to enable them to 
operate correctly with remote files.

Location transparency: Each client establishes a file name space by adding mounted 
directories in remote filesystems to its local name space. File systems have to be 
exported by the node that holds them and remote-mounted by a client before they can 
be accessed by processes running in the client (see Figure 12.10). The point in a 
client’s name hierarchy at which a remote-mounted file system appears is determined 
by the client; NFS does not enforce a single network-wide file name space – each 
client sees a set of remote filesystems that is determined locally, and remote files may 
have different pathnames on different clients, but a uniform name space can be 
established with appropriate configuration tables in each client, achieving the goal of 
location transparency.

Mobility transparency: Filesystems (in the UNIX sense, that is, subtrees of files) 
may be moved between servers, but the remote mount tables in each client must then 
be updated separately to enable the clients to access the filesystems in their new 
locations, thus migration transparency is not fully achieved by NFS.

Scalability: The published performance figures show that NFS servers can be built 
to handle very large real-world loads in an efficient and cost-effective manner. The 
performance of a single server can be increased by the addition of processors, disks 
and controllers. When the limits of that process are reached, additional servers must 
be installed and the filesystems must be reallocated between them. The effectiveness 
of that strategy is limited by the existence of ‘hot spot’ files – single files that are 
accessed so frequently that the server reaches a performance limit. When loads 
exceed the maximum performance available with that strategy, a distributed file 
system that supports replication of updatable files (such as Coda, described in 
Chapter 18), or one such as AFS that reduces the protocol traffic by the caching of 
whole files, may offer a better solution. We discuss other approaches to scalability in 
Section 12.5.
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File replication: Read-only file stores can be replicated on several NFS servers, but 
NFS does not support file replication with updates. The Sun Network Information 
Service (NIS) is a separate service available for use with NFS that supports the 
replication of simple databases organized as key-value pairs (for example, the UNIX 
system files /etc/passwd and /etc/hosts). It manages the distribution of updates and 
accesses to the replicated files based on a simple master–slave replication model 
(also known as the primary copy model, discussed further in Chapter 18) with 
provision for the replication of part or all of the database at each site. NIS provides a 
shared repository for system information that changes infrequently and does not 
require updates to occur simultaneously at all sites. 

Hardware and operating system heterogeneity: NFS has been implemented for 
almost every known operating system and hardware platform and is supported by a 
variety of filing systems. 

Fault tolerance: The stateless and idempotent nature of the NFS file access protocol 
ensures that the failure modes observed by clients when accessing remote files are 
similar to those for local file access. When a server fails, the service that it provides 
is suspended until the server is restarted, but once it has been restarted user-level 
client processes proceed from the point at which the service was interrupted, unaware 
of the failure (except in the case of access to soft-mounted remote file systems). In 
practice, hard mounting is used in most instances, and this tends to impede 
application programs handling server failures gracefully.

The failure of a client computer or a user-level process in a client has no effect 
on any server that it may be using, since servers hold no state on behalf of their 
clients.

Consistency: We have described the update behaviour in some detail. It provides a 
close approximation to one-copy semantics and meets the needs of the vast majority 
of applications, but the use of file sharing via NFS for communication or close 
coordination between processes on different computers cannot be recommended.

Security: The need for security in NFS emerged with the connection of most 
intranets to the Internet. The integration of Kerberos with NFS was a major step 
forward. Other recent developments include the option to use a secure RPC 
implementation (RPCSEC_GSS, documented in RFC 2203 [Eisler et al. 1997]) for 
authentication and to ensure the privacy and security of the data transmitted with read 
and write operations. Installations that have not deployed these mechanisms abound, 
though, and they are insecure.

Efficiency: The measured performance of several implementations of NFS and its 
widespread adoption for use in situations that generate very heavy loads are clear 
indications of the efficiency with which the NFS protocol can be implemented. 
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12.4 Case study: The Andrew File System

Like NFS, AFS provides transparent access to remote shared files for UNIX programs 
running on workstations. Access to AFS files is via the normal UNIX file primitives, 
enabling existing UNIX programs to access AFS files without modification or 
recompilation. AFS is compatible with NFS. AFS servers hold ‘local’ UNIX files, but 
the filing system in the servers is NFS-based, so files are referenced by NFS-style file 
handles rather than i-node numbers, and the files may be remotely accessed via NFS.

AFS differs markedly from NFS in its design and implementation. The differences 
are primarily attributable to the identification of scalability as the most important design 
goal. AFS is designed to perform well with larger numbers of active users than other 
distributed file systems. The key strategy for achieving scalability is the caching of 
whole files in client nodes. AFS has two unusual design characteristics:

Whole-file serving: The entire contents of directories and files are transmitted to 
client computers by AFS servers (in AFS-3, files larger than 64 kbytes are 
transferred in 64-kbyte chunks).

Whole-file caching: Once a copy of a file or a chunk has been transferred to a 
client computer it is stored in a cache on the local disk. The cache contains several 
hundred of the files most recently used on that computer. The cache is permanent, 
surviving reboots of the client computer. Local copies of files are used to satisfy 
clients’ open requests in preference to remote copies whenever possible.

Scenario  •  Here is a simple scenario illustrating the operation of AFS: 

1. When a user process in a client computer issues an open system call for a file in 
the shared file space and there is not a current copy of the file in the local cache, 
the server holding the file is located and is sent a request for a copy of the file. 

2. The copy is stored in the local UNIX file system in the client computer. The copy 
is then opened and the resulting UNIX file descriptor is returned to the client. 

3. Subsequent read, write and other operations on the file by processes in the client 
computer are applied to the local copy. 

4. When the process in the client issues a close system call, if the local copy has been 
updated its contents are sent back to the server. The server updates the file 
contents and the timestamps on the file. The copy on the client’s local disk is 
retained in case it is needed again by a user-level process on the same workstation.

We discuss the observed performance of AFS below, but we can make some general 
observations and predictions here based on the design characteristics described above:

• For shared files that are infrequently updated (such as those containing the code 
of UNIX commands and libraries) and for files that are normally accessed by only 
a single user (such as most of the files in a user’s home directory and its subtree), 
locally cached copies are likely to remain valid for long periods – in the first case 
because they are not updated and in the second because if they are updated, the 
updated copy will be in the cache on the owner’s workstation. These classes of file 
account for the overwhelming majority of file accesses.
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• The local cache can be allocated a substantial proportion of the disk space on each 
workstation – say, 100 megabytes. This is normally sufficient for the establishment 
of a working set of the files used by one user. The provision of sufficient cache 
storage for the establishment of a working set ensures that files in regular use on a 
given workstation are normally retained in the cache until they are needed again.

• The design strategy is based on some assumptions about average and maximum 
file size and locality of reference to files in UNIX systems. These assumptions are 
derived from observations of typical UNIX workloads in academic and other 
environments [Satyanarayanan 1981, Ousterhout et al. 1985, Floyd 1986]. The 
most important observations are: 

– Files are small; most are less than 10 kilobytes in size. 

– Read operations on files are much more common than writes (about six times 
more common). 

– Sequential access is common, and random access is rare. 

– Most files are read and written by only one user. When a file is shared, it is 
usually only one user who modifies it.

– Files are referenced in bursts. If a file has been referenced recently, there is a 
high probability that it will be referenced again in the near future. 

These observations were used to guide the design and optimization of AFS, not to 
restrict the functionality seen by users.

• AFS works best with the classes of file identified in the first point above. There is 
one important type of file that does not fit into any of these classes – databases are 
typically shared by many users and are often updated quite frequently. The 
designers of AFS have explicitly excluded the provision of storage facilities for 
databases from their design goals, stating that the constraints imposed by different 
naming structures (that is, content-based access) and the need for fine-grained data 
access, concurrency control and atomicity of updates make it difficult to design a 
distributed database system that is also a distributed file system. They argue that 
the provision of facilities for distributed databases should be addressed separately 
[Satyanarayanan 1989a].

12.4.1 Implementation

The above scenario illustrates AFS’s operation but leaves many questions about its 
implementation unanswered. Among the most important are: 

• How does AFS gain control when an open or close system call referring to a file 
in the shared file space is issued by a client?

• How is the server holding the required file located?

• What space is allocated for cached files in workstations?

• How does AFS ensure that the cached copies of files are up-to-date when files may 
be updated by several clients?

We answer these questions below. 



Figure 12.11 Distribution of processes in the Andrew File System

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

550 CHAPTER 12  DISTRIBUTED FILE SYSTEMS

AFS is implemented as two software components that exist as UNIX processes 
called Vice and Venus. Figure 12.11 shows the distribution of Vice and Venus processes. 
Vice is the name given to the server software that runs as a user-level UNIX process in 
each server computer, and Venus is a user-level process that runs in each client computer 
and corresponds to the client module in our abstract model.

The files available to user processes running on workstations are either local or 
shared. Local files are handled as normal UNIX files. They are stored on a workstation’s 
disk and are available only to local user processes. Shared files are stored on servers, and 
copies of them are cached on the local disks of workstations. The name space seen by 
user processes is illustrated in Figure 12.12. It is a conventional UNIX directory 
hierarchy, with a specific subtree (called cmu) containing all of the shared files. This 
splitting of the file name space into local and shared files leads to some loss of location 
transparency, but this is hardly noticeable to users other than system administrators. 
Local files are used only for temporary files (/tmp) and processes that are essential for 
workstation startup. Other standard UNIX files (such as those normally found in /bin,
/lib and so on) are implemented as symbolic links from local directories to files held in 
the shared space. Users’ directories are in the shared space, enabling users to access their 
files from any workstation.

The UNIX kernel in each workstation and server is a modified version of BSD 
UNIX. The modifications are designed to intercept open, close and some other file 
system calls when they refer to files in the shared name space and pass them to the Venus 
process in the client computer (illustrated in Figure 12.13). One other kernel 
modification is included for performance reasons, and this is described later.

One of the file partitions on the local disk of each workstation is used as a cache, 
holding the cached copies of files from the shared space. Venus manages the cache, 
removing the least recently used files when a new file is acquired from a server to make 
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the required space if the partition is full. The workstation cache is usually large enough 
to accommodate several hundred average-sized files, rendering the workstation largely 
independent of the Vice servers once a working set of the current user’s files and 
frequently used system files has been cached.

AFS resembles the abstract file service model described in Section 12.2 in these 
respects:

• A flat file service is implemented by the Vice servers, and the hierarchic directory
structure required by UNIX user programs is implemented by the set of Venus 
processes in the workstations.

• Each file and directory in the shared file space is identified by a unique, 96-bit file 
identifier (fid) similar to a UFID. The Venus processes translate the pathnames 
issued by clients to fids.
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Files are grouped into volumes for ease of location and movement. Volumes are 
generally smaller than the UNIX filesystems, which are the unit of file grouping in NFS. 
For example, each user’s personal files are generally located in a separate volume. Other 
volumes are allocated for system binaries, documentation and library code. 

The representation of fids includes the volume number for the volume containing 
the file (cf. the file group identifier in UFIDs), an NFS file handle identifying the file 
within the volume (cf. the file number in UFIDs) and a uniquifier to ensure that file 
identifiers are not reused: 

32 bits 32 bits 32 bits 

Volume number File handle Uniquifier

User programs use conventional UNIX pathnames to refer to files, but AFS uses fids in 
the communication between the Venus and Vice processes. The Vice servers accept 
requests only in terms of fids. Venus translates the pathnames supplied by clients into 
fids using a step-by-step lookup to obtain the information from the file directories held 
in the Vice servers.

Figure 12.14 describes the actions taken by Vice, Venus and the UNIX kernel 
when a user process issues each of the system calls mentioned in our outline scenario 
above. The callback promise mentioned here is a mechanism for ensuring that cached 
copies of files are updated when another client closes the same file after updating it. This 
mechanism is discussed in the next section.

12.4.2 Cache consistency

When Vice supplies a copy of a file to a Venus process it also provides a callback

promise – a token issued by the Vice server that is the custodian of the file, guaranteeing 
that it will notify the Venus process when any other client modifies the file. Callback 
promises are stored with the cached files on the workstation disks and have two states: 
valid or cancelled. When a server performs a request to update a file it notifies all of the 
Venus processes to which it has issued callback promises by sending a callback to each 
– a callback is a remote procedure call from a server to a Venus process. When the Venus 
process receives a callback, it sets the callback promise token for the relevant file to 
cancelled.

Whenever Venus handles an open on behalf of a client, it checks the cache. If the 
required file is found in the cache, then its token is checked. If its value is cancelled, then 
a fresh copy of the file must be fetched from the Vice server, but if the token is valid,
then the cached copy can be opened and used without reference to Vice.

When a workstation is restarted after a failure or a shutdown, Venus aims to retain 
as many as possible of the cached files on the local disk, but it cannot assume that the 
callback promise tokens are correct, since some callbacks may have been missed. Before 
the first use of each cached file or directory after a restart, Venus therefore generates a 
cache validation request containing the file modification timestamp to the server that is 
the custodian of the file. If the timestamp is current, the server responds with valid and 
the token is reinstated. If the timestamp shows that the file is out of date, then the server 
responds with cancelled and the token is set to cancelled. Callbacks must be renewed 



Figure 12.14 Implementation of file system calls in AFS

User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding callback
promises on the file.

SECTION 12.4 CASE STUDY: THE ANDREW FILE SYSTEM 553

before an open if a time T (typically on the order of a few minutes) has elapsed since the 
file was cached without communication from the server. This is to deal with possible 
communication failures, which can result in the loss of callback messages.

This callback-based mechanism for maintaining cache consistency was adopted as 
offering the most scalable approach, following the evaluation in the prototype (AFS-1) 
of a timestamp-based mechanism similar to that used in NFS. In AFS-1, a Venus process 
holding a cached copy of a file interrogates the Vice process on each open to determine 
whether the timestamp on the local copy agrees with that on the server. The callback-
based approach is more scalable because it results in communication between client and 
server and activity in the server only when the file has been updated, whereas the 
timestamp approach results in a client-server interaction on each open, even when there 
is a valid local copy. Since the majority of files are not accessed concurrently, and read

operations predominate over writes in most applications, the callback mechanism 
results in a dramatic reduction in the number of client-server interactions.

The callback mechanism used in AFS-2 and later versions of AFS requires Vice 
servers to maintain some state on behalf of their Venus clients, unlike AFS-1, NFS and 
our file service model. The client-dependent state required consists of a list of the Venus 
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processes to which callback promises have been issued for each file. These callback lists 
must be retained over server failures – they are held on the server disks and are updated 
using atomic operations.

Figure 12.15

Figure 12.15 The main components of the Vice service interface

Note: Directory and administrative operations (Rename, Link, Makedir, Removedir, GetTime,
CheckToken and so on) are not shown.

Fetch(fid)  attr, data Returns the attributes (status) and, optionally, the contents of 
the file identified by fid and records a callback promise on it.

Store(fid, attr, data) Updates the attributes and (optionally) the contents of a 
specified file.

Create()  fid Creates a new file and records a callback promise on it.

Remove(fid) Deletes the specified file.

SetLock(fid, mode) Sets a lock on the specified file or directory. The mode of the 
lock may be shared or exclusive. Locks that are not removed 
expire after 30 minutes.

ReleaseLock(fid) Unlocks the specified file or directory.

RemoveCallback(fid) Informs the server that a Venus process has flushed a file from 
its cache.

BreakCallback(fid) Call made by a Vice server to a Venus process; cancels the 
callback promise on the relevant file.

 shows the RPC calls provided by AFS servers for operations on files 
(that is, the interface provided by AFS servers to Venus processes).

Update semantics  •  The goal of this cache-consistency mechanism is to achieve the 
best approximation to one-copy file semantics that is practicable without serious 
performance degradation. A strict implementation of one-copy semantics for UNIX file 
access primitives would require that the results of each write to a file be distributed to 
all sites holding the file in their cache before any further accesses can occur. This is not 
practicable in large-scale systems; instead, the callback promise mechanism maintains 
a well-defined approximation to one-copy semantics. 

For AFS-1, the update semantics can be formally stated in very simple terms. For 
a client C operating on a file F whose custodian is a server S, the following guarantees 
of currency for the copies of F are maintained:

after a successful open: latest(F, S)

after a failed open: failure(S)

after a successful close: updated(F, S)

after a failed close: failure(S)

where latest(F, S) denotes a guarantee that the current value of F at C is the same as the 
value at S, failure(S) denotes that the open or close operation has not been performed at 
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S (and the failure can be detected by C), and updated(F, S) denotes that C’s value of F
has been successfully propagated to S.

For AFS-2, the currency guarantee for open is slightly weaker, and the 
corresponding formal statement of the guarantee is more complex. This is because a 
client may open an old copy of a file after it has been updated by another client. This 
occurs if a callback message is lost, for example as a result of a network failure. But 
there is a maximum time, T, for which a client can remain unaware of a newer version 
of a file. Hence we have the following guarantee:

after a successful open: latest(F, S, 0)
or (lostCallback(S, T) and inCache(F) and 

latest(F, S, T)) 

where latest(F, S, T) denotes that the copy of F seen by the client is no more than T
seconds out of date, lostCallback(S, T) denotes that a callback message from S to C has 
been lost at some time during the last T seconds, and inCache(F) indicates that the file 
F was in the cache at C before the open operation was attempted. The above formal 
statement expresses the fact that the cached copy of F at C after an open operation is the 
most recent version in the system or a callback message has been lost (due to a 
communication failure) and the version that was already in the cache has been used; the 
cached version will be no more than T seconds out of date. (T is a system constant 
representing the interval at which callback promises must be renewed. At most 
installations, the value of T is about 10 minutes.) 

In line with its goal – to provide a large-scale, UNIX-compatible distributed file 
service – AFS does not provide any further mechanism for the control of concurrent 
updates. The cache consistency algorithm described above comes into action only on 
open and close operations. Once a file has been opened, the client may access and update 
the local copy in any way it chooses without the knowledge of any processes on other 
workstations. When the file is closed, a copy is returned to the server, replacing the 
current version.

If clients in different workstations open, write and close the same file 
concurrently, all but the update resulting from the last close will be silently lost (no error 
report is given). Clients must implement concurrency control independently if they 
require it. On the other hand, when two client processes in the same workstation open a 
file, they share the same cached copy and updates are performed in the normal UNIX 
fashion – block by block. 

Although the update semantics differ depending on the locations of the concurrent 
processes accessing a file and are not precisely the same as those provided by the 
standard UNIX file system, they are sufficiently close for the vast majority of existing 
UNIX programs to operate correctly.

12.4.3 Other aspects

AFS introduces several other interesting design developments and refinements that we 
outline here, together with a summary of performance evaluation results:

UNIX kernel modifications  •  We have noted that the Vice server is a user-level process 
running in the server computer and the server host is dedicated to the provision of an 
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AFS service. The UNIX kernel in AFS hosts is altered so that Vice can perform file 
operations in terms of file handles instead of the conventional UNIX file descriptors. 
This is the only kernel modification required by AFS, and it is necessary if Vice is not 
to maintain any client state (such as file descriptors).

Location database  •  Each server contains a copy of a fully replicated location database 
giving a mapping of volume names to servers. Temporary inaccuracies in this database 
may occur when a volume is moved, but they are harmless because forwarding 
information is left behind in the server from which the volume is moved.

Threads  •  The implementations of Vice and Venus make use of a non-preemptive 
threads package to enable requests to be processed concurrently at both the client (where 
several user processes may have file access requests in progress concurrently) and the 
server. In the client, the tables describing the contents of the cache and the volume 
database are held in memory that is shared between the Venus threads.

Read-only replicas  •  Volumes containing files that are frequently read but rarely 
modified, such as the UNIX /bin and /usr/bin directories of system commands and /man

directory of manual pages, can be replicated as read-only volumes at several servers. 
When this is done, there is only one read-write replica and all updates are directed to it. 
The propagation of the changes to the read-only replicas is performed after the update 
by an explicit operational procedure. Entries in the location database for volumes that 
are replicated in this way are one-to-many, and the server for each client request is 
selected on the bases of server loads and accessibility.

Bulk transfers  •  AFS transfers files between clients and servers in 64-kilobyte chunks. 
The use of such a large packet size is an important aid to performance, minimizing the 
effect of network latency. Thus the design of AFS enables the use of the network to be 
optimized.

Partial file caching  •  The need to transfer the entire contents of files to clients even 
when the application requirement is to read only a small portion of the file is an obvious 
source of inefficiency. Version 3 of AFS removed this requirement, allowing file data 
to be transferred and cached in 64-kbyte blocks while still retaining the consistency 
semantics and other features of the AFS protocol.

Performance  •  The primary goal of AFS is scalability, so its performance with large 
numbers of users is of particular interest. Howard et al. [1988] give details of extensive 
comparative performance measurements, which were undertaken using a specially 
developed AFS benchmark that has subsequently been widely used for the evaluation of 
distributed file systems. Not surprisingly, whole-file caching and the callback protocol 
led to dramatically reduced loads on the servers. Satyanarayanan [1989a] states that a 
server load of 40% was measured with 18 client nodes running a standard benchmark, 
against a load of 100% for NFS running the same benchmark. Satyanarayanan attributes 
much of the performance advantage of AFS to the reduction in server load deriving from 
the use of callbacks to notify clients of updates to files, compared with the timeout 
mechanism used in NFS for checking the validity of pages cached at clients. 

Wide area support:   •  Version 3 of AFS supports multiple administrative cells, each 
with its own servers, clients, system administrators and users. Each cell is a completely 
autonomous environment, but a federation of cells can cooperate in presenting users 
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with a uniform, seamless file name space. The resulting system was widely deployed by 
the Transarc Corporation, and a detailed survey of the resulting performance usage 
patterns was published [Spasojevic and Satyanarayanan 1996]. The system was installed 
on over 1000 servers at over 150 sites. The survey showed cache hit ratios in the range 
of 96 –98% for accesses to a sample of 32,000 file volumes holding 200 Gbytes of data.

12.5 Enhancements and further developments

Several advances have been made in the design of distributed file systems since the 
emergence of NFS and AFS. In this section, we describe advances that enhance the 
performance, availability and scalability of conventional distributed file systems. More 
radical advances are described elsewhere in the book, including the maintenance of 
consistency in replicated read-write filesystems to support disconnected operation and 
high availability in the Bayou and Coda systems (Sections 18.4.2 and 18.4.3) and a 
highly scalable architecture for the delivery of streams of real-time data with quality 
guarantees in the Tiger video file server (Section 20.6.1).

NFS enhancements  •  Several research projects have addressed the need for one-copy 
update semantics by extending the NFS protocol to include open and close operations 
and adding a callback mechanism to enable the server to notify clients of the need to 
invalidate cache entries. We describe two such efforts here; their results seem to indicate 
that these enhancements can be accommodated without undue complexity or extra 
communication costs.

Some recent efforts by Sun and other NFS developers have been directed at 
making NFS servers more accessible and useful in wide-area networks. While the HTTP 
protocol supported by web servers offers an effective and highly scalable method for 
making whole files available to clients throughout the Internet, it is less useful to 
application programs that require access to portions of large files or those that update 
portions of files. The WebNFS development (described below) makes it possible for 
application programs to become clients of NFS servers anywhere in the Internet (using 
the NFS protocol directly instead of indirectly through a kernel module). This, together 
with appropriate libraries for Java and other network programming languages, should 
offer the possibility of implementing Internet applications that share data directly, such 
as multi-user games or clients of large dynamic databases.

Achieving one-copy update semantics: The stateless server architecture of NFS brought 
great advantages in terms of robustness and ease of implementation, but it precluded the 
achievement of precise one-copy update semantics (the effects of concurrent writes by 
different clients to the same file are not guaranteed to be the same as they would be in a 
single UNIX system when multiple processes write to a local file). It also prevents the 
use of callbacks notifying clients of changes to files, and this results in frequent getattr

requests from clients to check for file modification. 
Two research systems have been developed that address these drawbacks. Spritely 

NFS [Srinivasan and Mogul 1989, Mogul 1994] is a version of the file system developed 
for the Sprite distributed operating system at Berkeley [Nelson et al. 1988]. Spritely 
NFS is an implementation of the NFS protocol with the addition of open and close calls. 
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Clients’ modules must send an open operation whenever a local user-level process opens 
a file that is on the server. The parameters of the Sprite open operation specify a mode 
(read, write or both) and include counts of the number of local processes that currently 
have the file open for reading and for writing. Similarly, when a local process closes a 
remote file, a close operation is sent to the server with updated counts of readers and 
writers. The server records these numbers in an open files table with the IP address and 
port number of the client.

When the server receives an open, it checks the open files table for other clients 
that have the same file open and sends callback messages to those clients instructing 
them to modify their caching strategy. If the open specifies write mode, then it will fail 
if any other client has the file open for writing. Other clients that have the file open for 
reading will be instructed to invalidate any locally cached portions of the file.

For open operations that specify read mode, the server sends a callback message 
to any client that is writing, instructing it to stop caching (i.e., to use a strictly write-
through mode of operation), and it instructs all clients that are reading to cease caching 
the file (so that all local read calls result in a request to the server). 

These measures result in a file service that maintains the UNIX one-copy update 
semantics at the expense of carrying some client-related state at the server. They also 
enable some efficiency gains in the handling of cached writes. If the client-related state 
is held in volatile memory at the server, it is vulnerable to server crashes. Spritely NFS 
implements a recovery protocol that interrogates a list of clients that have recently 
opened files on the server to recover the full open files table. The list of clients is stored 
on disk, is updated relatively infrequently and is ‘pessimistic’ – it may safely include 
more clients than those that had files open at the time of a crash. Failed clients may also 
result in excess entries in the open files table, but these entries will be removed when the 
clients restart.

When Spritely NFS was evaluated against NFS version 2, it showed a modest 
performance improvement. This was due to the improved caching of writes. Changes in 
NFS version 3 would probably result in at least as great an improvement, but the results 
of the Spritely NFS project certainly indicate that it is possible to achieve one-copy 
update semantics without substantial loss of performance, albeit at the expense of some 
extra implementation complexity in the client and server modules and the need for a 
recovery mechanism to restore the state after a server crash.

NQNFS: The NQNFS (Not Quite NFS) project [Macklem 1994] had similar aims to 
Spritely NFS – to add more precise cache consistency to the NFS protocol and to 
improve performance through better use of caching. An NQNFS server maintains 
similar client-related state concerning open files, but it uses leases (Section 5.4.3) to aid 
recovery after a server crash. The server sets an upper bound on the time for which a 
client may hold a lease on an open file. If the client wishes to continue beyond that time, 
it must renew the lease. Callbacks are used in a similar manner to Spritely NFS to 
request clients to flush their caches when a write request occurs, but if the clients don’t 
reply, the server simply waits until their leases expire before responding to the new write 
request.

WebNFS: The advent of the Web and Java applets led to the recognition by the NFS 
development team and others that some Internet applications could benefit from direct 
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access to NFS servers without many of the overheads associated with the emulation of 
UNIX file operations included in standard NFS clients. 

The aim of WebNFS (described in RFCs 2055 and 2056 [Callaghan 1996a, 
1996b]) is to enable web browsers and other applications to access files on an NFS 
server that ‘publishes’ them using a public file handle relative to a public root directory. 
This mode of use bypasses the mount service and the port mapper service (described in 
Chapter 5). WebNFS clients interact with an NFS server at a well-known port number 
(2049). To access files by pathname, they issue lookup requests using a public file 
handle. The public file handle has a well-known value that is interpreted specially by the 
virtual file system at the server. Because of the high latency of wide-area networks, a 
multicomponent variant of the lookup operation is used to look up a multi-part pathname 
in a single request. 

Thus WebNFS enables clients to be written that access portions of files stored in 
NFS servers at remote sites with minimal setup overheads. There is provision for access 
control and authentication, but in many cases the client will require only read access to 
public files, and in that case the authentication option can be turned off. To read a 
portion of a single file located on an NFS server that supports WebNFS requires the 
establishment of a TCP connection and two RPC calls – a multicomponent lookup and 
a read operation. The size of the block of data read is not limited by the NFS protocol.

For example, a weather service might publish a file on its NFS server containing 
a large database of frequently updated weather data with a URL such as:

nfs://data.weather.gov/weatherdata/global.data

An interactive WeatherMap client, that displays weather maps could be constructed in 
Java or any other language that supports a WebNFS procedure library. The client reads 
only those portions of the /weatherdata/global.data file that are needed to construct the 
particular maps requested by a user, whereas a similar application that used HTTP to 
access a weather data server either would have to transfer the entire database to the client 
or would require the support of a special-purpose server program to supply it with the 
data it requires.

NFS version 4: A new version of the NFS protocol was introduced in 2000. The goals of 
NFS version 4 are described in RFC 2624 [Shepler 1999] and in Brent Callaghan’s book 
[Callaghan 1999]. Like WebNFS, it aims to make it practical to use NFS in wide-area 
networks and Internet applications. It includes the features of WebNFS, but the 
introduction of a new protocol also offers an opportunity to make more radical 
enhancements. (WebNFS was restricted to changes to the server that did not involve the 
addition of new operations to the protocol.)

NFS version 4 exploits results that have emerged from research in file server 
design over the past decade, such as the use of callbacks or leases to maintain 
consistency. NFS version 4 supports on-the-fly recovery from server faults by allowing 
file systems to be moved to new servers transparently. Scalability is improved by using 
proxy servers in a manner analogous to their use in the Web.

AFS enhancements  •  We have mentioned that DCE/DFS, the distributed file system 
included in the Open Software Foundation’s Distributed Computing Environment 
[www.opengroup.org], was based on the Andrew File System. The design of DCE/DFS 
goes beyond AFS, particularly in its approach to cache consistency. In AFS, callbacks 
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are generated only when the server receives a close operation for a file that has been 
updated. DFS adopted a similar strategy to Spritely NFS and NQNFS to generating 
callbacks as soon as a file is updated. In order to update a file, a client must obtain a write

token from the server, specifying a range of bytes in the file that the client is permitted 
to update. When a write token is requested, clients holding copies of the same file for 
reading receive revocation callbacks. Tokens of other types are used to achieve 
consistency for cached file attributes and other metadata. All tokens have an associated 
lifetime, and clients must renew them after their lifetime has expired.

Improvements in storage organization  •  There has been considerable progress in the 
organization of file data stored on disks. The impetus for much of this work arose from 
the increased loads and greater reliability that distributed file systems need to support, 
and they have resulted in file systems with substantially improved performance. The 
principal results of this work are:

Redundant Arrays of Inexpensive Disks (RAID): This is a mode of storage 
[Patterson et al. 1988, Chen et al. 1994] in which data blocks are segmented into 
fixed-size chunks and stored in ‘stripes’ across several disks, along with redundant 
error-correcting codes that enable the data blocks to be reconstructed completely and 
operation to continue normally in the event of disk failures. RAID also produces 
considerably better performance than a single disk, because the stripes that make up 
a block are read and written concurrently.

Log-structured file storage (LFS): Like Spritely NFS, this technique originated in 
the Sprite distributed operating system project at Berkeley [Rosenblum and 
Ousterhout 1992]. The authors observed that as larger amounts of main memory 
became available for caching in file servers, an increased level of cache hits resulted 
in excellent read performance, but write performance remained mediocre. This arose 
from the high latencies associated with writing individual data blocks to disk and 
associated updates to metadata blocks (that is, the blocks known as i-nodes that hold 
file attributes and a vector of pointers to the blocks in a file).

The LFS solution is to accumulate a set of writes in memory and then commit 
them to disk in large, contiguous, fixed-sized segments. These are called log 

segments because the data and metadata blocks are stored strictly in the order in 
which they were updated. A log segment is 1 Mbyte or larger in size and is stored in 
a single disk track, removing the disk head latencies associated with writing 
individual blocks. Fresh copies of updated data and metadata blocks are always 
written, requiring the maintenance of a dynamic map (in memory with a persistent 
backup) pointing to the i-node blocks. Garbage collection of stale blocks is also 
required, with compaction of ‘live’ blocks to leave contiguous areas of storage free 
for the storage of log segments. The latter is a fairly complex process; it is carried out 
as a background activity by a component called the cleaner. Some sophisticated 
cleaner algorithms have been developed for it based on the results of simulations.

Despite these extra costs, the overall performance gain is outstanding; 
Rosenblum and Ousterhout measured a write throughput as high as 70% of the 
available disk bandwidth, compared with less than 10% for a conventional UNIX file 
system. The log structure also simplifies recovery after server crashes. The Zebra file 
system [Hartman and Ousterhout 1995], developed as a follow-on to the original LFS 
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work, combines log-structured writes with a distributed RAID approach – the log 
segments are subdivided into sections with error-correcting data and written to disks 
on separate network nodes. Performance four to five times better than that of NFS is 
claimed for writing large files, with smaller gains for short files.

New design approaches  •  The availability of high-performance switched networks 
(such as ATM and switched high-speed Ethernet) have prompted several efforts to 
provide persistent storage systems that distribute file data in a highly scalable and fault-
tolerant manner among many nodes on an intranet, separating the responsibilities for 
reading and writing data from the responsibilities for managing the metadata and 
servicing client requests. In the following, we outline two such developments.

These approaches scale better than the more centralized servers that we have 
described in the preceding sections. They generally demand a high level of trust among 
the computers that cooperate to provide the service, because they include a fairly low-
level protocol for communication with the nodes holding data (somewhat analogous to 
a ‘virtual disk’ API). Hence their scope is likely to be limited to a single local network. 

xFS: A group at the University of California, Berkeley, proposed a serverless network 
file system architecture and developed a prototype implementation called xFS 
[Anderson et al. 1996]. Their approach was motivated by three factors: 

1. the opportunity provided by fast switched LANs for multiple file servers in a local 
network to transfer bulk data to clients concurrently; 

2. increased demand for access to shared data; 

3. the fundamental limitations of systems based on central file servers.

Concerning (3), they refer to the facts that the construction of high-performance NFS 
servers requires relatively costly hardware with multiple CPUs, disks and network 
controllers, and that there are limits to the process of partitioning the file space – i.e., 
placing shared files in separate filesystems mounted on different servers. They also 
point to the fact that a central server represents a single point of failure.

xFS is ‘serverless’ in the sense that it distributes file server processing 
responsibilities across a set of available computers in a local network at the granularity 
of individual files. Storage responsibilities are distributed independently of management 
and other service responsibilities: xFS implements a software RAID storage system, 
striping file data across disks on multiple computers (in this regard it is a precursor to 
the Tiger video file server described in Chapter 20), together with a log-structuring 
technique similar to the Zebra file system.

Responsibility for the management of each file can be allocated to any of the 
computers supporting the xFS service. This is achieved through a metadata structure 
called the manager map, which is replicated at all clients and servers. File identifiers 
include a field that acts as an index into the manager map, and each entry in the map 
identifies the computer that is currently responsible for managing the corresponding file. 
Several other metadata structures, similar to those found in other log-structured and 
RAID storage systems, are used for the management of the log-structured file storage 
and the striped disk storage.

Anderson et al. constructed a preliminary prototype of xFS and evaluated its 
performance. The prototype was incomplete at the time the evaluation was carried out – 
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the implementation of crash recovery was unfinished and the log-structured storage 
scheme lacked a cleaner component to recover space occupied by stale logs and compact 
files.

The performance evaluations carried out with this preliminary prototype used 32 
single-processor and dual-processor Sun SPARCstations connected to a high-speed 
network. The evaluations compared the xFS file service running on up to 32 
workstations with NFS and with AFS, each running on a single dual-processor Sun 
SPARCStation. The read and write bandwidths achieved with xFS with 32 servers 
exceeded those of NFS and AFS with a single dual-processor server by approximately 
a factor of 10. The difference in performance was much less marked when xFS was 
compared with NFS and AFS using the standard AFS benchmark. But overall, the 
results indicate that the highly distributed processing and storage architecture of xFS 
offers a promising direction for achieving better scalability in distributed file systems.

Frangipani: Frangipani is a highly scalable distributed file system developed and 
deployed at the Digital Systems Research Center (now Compaq Systems Research 
Center) [Thekkath et al. 1997]. Its goals are very similar to those of xFS, and like xFS, 
it approaches them with a design that separates persistent storage responsibilities from 
other file service actions. But Frangipani’s service is structured as two totally 
independent layers. The lower layer is provided by the Petal distributed virtual disk 
system [Lee and Thekkath 1996].

Petal provides a distributed virtual disk abstraction across many disks located on 
multiple servers on a switched local network. The virtual disk abstraction tolerates most 
hardware and software failures with the aid of replicas of the stored data and 
autonomously balances the load on servers by relocating data. Petal virtual disks are 
accessed through a UNIX disk driver using standard block input-output operations, so 
they can be used to support most file systems. Petal adds between 10 and 100% to the 
latency of disk accesses, but the caching strategy results in read and write throughputs 
at least as good as those of the underlying disk drives.

Frangipani server modules run within the operating system kernel. As in xFS, the 
responsibility for managing files and associated tasks (including the provision of a file-
locking service for clients) is assigned to hosts dynamically, and all machines see a 
unified file name space with coherent access (with approximately single-copy 
semantics) to shared updatable files. Data is stored in a log-structured and striped format 
in the Petal virtual disk store. The use of Petal relieves Frangipani of the need to manage 
physical disk space, resulting in a much simpler distributed file system implementation. 
Frangipani can emulate the service interfaces of several existing file services, including 
NFS and DCE/DFS. Frangipani’s performance is at least as good as that of the Digital 
implementation of the UNIX file system.
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12.6 Summary

The key design issues for distributed file systems are:

• the effective use of client caching to achieve performance equal to or better than 
that of local file systems;

• the maintenance of consistency between multiple cached client copies of files 
when they are updated;

• recovery after client or server failure;

• high throughput for reading and writing files of all sizes;

• scalability.

Distributed file systems are very heavily employed in organizational computing, and 
their performance has been the subject of much tuning. NFS has a simple stateless 
protocol, but it has maintained its early position as the dominant distributed file system 
technology with the help of some relatively minor enhancements to the protocol, tuned 
implementations and high-performance hardware support.

AFS demonstrated the feasibility of a relatively simple architecture using server 
state to reduce the cost of maintaining coherent client caches. AFS outperforms NFS in 
many situations. Recent advances have employed data striping across multiple disks and 
log-structured writing to further improve performance and scalability. 

Current state-of-the-art distributed file systems are highly scalable, provide good 
performance across both local and wide-area networks, maintain one-copy file update 
semantics and tolerate and recover from failures. Future requirements include support 
for mobile users with disconnected operation, and automatic reintegration and quality of 
service guarantees to meet the need for the persistent storage and delivery of streams of 
multimedia and other time-dependent data. Solutions to these requirements are 
discussed in Chapters 18 and 20.

EXERCISES

12.1 Why is there no open or close operation in our interface to the flat file service or the 
directory service? What are the differences between our directory service Lookup

operation and the UNIX open? pages 532–534

12.2 Outline methods by which a client module could emulate the UNIX file system interface 
using our model file service. pages 532–534

12.3 Write a procedure PathLookup(Pathname, Dir) UFID that implements Lookup for 
UNIX-like pathnames based on our model directory service. pages 532–534

12.4 Why should UFIDs be unique across all possible file systems? How is uniqueness for 
UFIDs ensured? page 535
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12.5 To what extent does Sun NFS deviate from one-copy file update semantics? Construct 
a scenario in which two user-level processes sharing a file would operate correctly in a 
single UNIX host but would observe inconsistencies when running in different hosts.

page 542

12.6 Sun NFS aims to support heterogeneous distributed systems by the provision of an 
operating system–independent file service. What are the key decisions that the 
implementer of an NFS server for an operating system other than UNIX would have to 
take? What constraints should an underlying filing system obey to be suitable for the 
implementation of NFS servers? page 536

12.7 What data must the NFS client module hold on behalf of each user-level process?
pages 536–537

12.8 Outline client module implementations for the UNIX open() and read() system calls, 
using the NFS RPC calls of Figure 12.9, (i) without and (ii) with a client cache.

pages 538, 542

12.9 Explain why the RPC interface to early implementations of NFS is potentially insecure. 
The security loophole has been closed in NFS 3 by the use of encryption. How is the 
encryption key kept secret? Is the security of the key adequate? pages 539, 544

12.10 After the timeout of an RPC call to access a file on a hard-mounted file system the NFS 
client module does not return control to the user-level process that originated the call. 
Why? page 539

12.11 How does the NFS automounter help to improve the performance and scalability of 
NFS? page 541

12.12 How many lookup calls are needed to resolve a five-part pathname (for example, 
/usr/users/jim/code/xyz.c) for a file that is stored on an NFS server? What is the reason 
for performing the translation step-by-step? page 540

12.13 What condition must be fulfilled by the configuration of the mount tables at the client 
computers for access transparency to be achieved in an NFS-based filing system?

page 540

12.14 How does AFS gain control when an open or close system call referring to a file in the 
shared file space is issued by a client? page 549

12.15 Compare the update semantics of UNIX when accessing local files with those of NFS 
and AFS. Under what circumstances might clients become aware of the differences?

pages 542, 554

12.16 How does AFS deal with the risk that callback messages may be lost? page 552

12.17 Which features of the AFS design make it more scalable than NFS? What are the limits 
on its scalability, assuming that servers can be added as required? Which recent 
developments offer greater scalability? pages 545, 556, 561
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13

NAME SERVICES

13.1 Introduction
13.2 Name services and the Domain Name System
13.3 Directory services
13.4 Case study: The Global Name Service
13.5 Case study: The X.500 Directory Service
13.6 Summary

This chapter introduces the name service as a distinct service that is used by client 
processes to obtain attributes such as the addresses of resources or objects when given 
their names. The entities named can be of many types, and they may be managed by 
different services. For example, name services are often used to hold the addresses and 
other details of users, computers, network domains, services and remote objects. As well 
as name services, we describe directory services, which look up services when given 
some of their attributes. 

Basic design issues for name services, such as the structure and management of 
the space of names recognized by the service and the operations that the name service 
supports, are outlined and illustrated in the context of the Internet Domain Name 
System(DNS).

We also examine how name services are implemented, covering such aspects as 
navigation through a collection of name servers when resolving a name, caching naming 
data and replicating naming data to increase performance and availability.

Two further case studies are included: the Global Name Service (GNS), and the 
X.500 Directory Service, including LDAP.
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13.1 Introduction

In a distributed system, names are used to refer to a wide variety of resources such as 
computers, services, remote objects and files, as well as to users. Naming is an issue that 
is easily overlooked but is nonetheless fundamental in distributed system design. Names 
facilitate communication and resource sharing. A name is needed to request a computer 
system to act upon a specific resource chosen out of many; for example, a name in the 
form of a URL is needed to access a specific web page. Processes cannot share particular 
resources managed by a computer system unless they can name them consistently. Users 
cannot communicate with one another via a distributed system unless they can name one 
another, for example, with email addresses.

Names are not the only useful means of identification: descriptive attributes are 
another. Sometimes clients do not know the name of the particular entity that they seek, 
but they do have some information that describes it. Or they may require a service and 
know some of its characteristics but not what entity implements it.

This chapter introduces name services, which provide clients with data about 
named objects in distributed systems, and the related concept of directory services, 
which provide data about objects that satisfy a given description. We describe 
approaches to be taken in the design and implementation of these services, using the 
Domain Name Service (DNS), the Global Name Service (GNS) and X500 as case 
studies. We begin by examining the fundamental concepts of names and attributes.

13.1.1 Names, addresses and other attributes

Any process that requires access to a specific resource must possess a name or an 
identifier for it. Examples of human-readable names are file names such as /etc/passwd,
URLs such as http://www.cdk5.net/ and Internet domain names such as www.cdk5.net.

The term identifier is sometimes used to refer to names that are interpreted only by 
programs. Remote object references and NFS file handles are examples of identifiers. 
Identifiers are chosen for the efficiency with which they can be looked up and stored by 
software. 

Needham [1993] makes the distinction between a pure name and other names. 
Pure names are simply uninterpreted bit patterns. Non-pure names contain information 
about the object that they name; in particular, they may contain information about the 
location of the object. Pure names always have to be looked up before they can be of any 
use. At the other extreme from a pure name is an object’s address: a value that identifies 
the location of the object rather than the object itself. Addresses are efficient for 
accessing objects, but objects can sometimes be relocated, so addresses are inadequate 
as a means of identification. For example, users’ email addresses usually have to change 
when they move between organizations or Internet service providers; they are not in 
themselves guaranteed to refer to a specific individual over time. 

We say that a name is resolved when it is translated into data about the named 
resource or object, often in order to invoke an action upon it. The association between a 
name and an object is called a binding. In general, names are bound to attributes of the 
named objects, rather than the implementation of the objects themselves. An attribute is 
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the value of a property associated with an object. A key attribute of an entity that is 
usually relevant in a distributed system is its address. For example:

• The DNS maps domain names to the attributes of a host computer: its IP address, 
the type of entry (for example, a reference to a mail server or another host) and, 
for example, the length of time the host’s entry will remain valid.

• The X500 directory service can be used to map a person’s name onto attributes 
including their email address and telephone number.

• The CORBA Naming Service and Trading Service were presented in Chapter 8. 
The Naming Service maps the name of a remote object onto its remote object 
reference, whereas the Trading Service maps the name of a remote object onto its 
remote object reference, together with an arbitrary number of attributes describing 
the object in terms understandable by human users. 

Note that an ‘address’ may be considered just another name that must be looked up, or 
it may contain such a name. An IP address must be looked up to obtain a network 
address such as an Ethernet address. Similarly, web browsers and email clients make use 
of the DNS to interpret the domain names in URLs and email addresses. 

Figure 13.1 Composed naming domains used to access a resource from a URL

http://www.cdk5.net:8888/WebExamples/earth.html

URL

Resource ID (IP number, port number, pathname)

Network address

2:60:8c:2:b0:5a

Web server

55.55.55.55 WebExamples/earth.html8888

DNS lookup

Socket

 file

Figure 13.1
shows the domain name portion of a URL resolved first via the DNS into an IP address 
and then, at the final hop of Internet routing, via ARP to an Ethernet address for the web 
server. The last part of the URL is resolved by the file system on the web server to locate 
the relevant file.

Names and services  •  Many of the names used in a distributed system are specific to 
some particular service. For example,  users of the social networking web site 
twitter.com,  have names such as @magmapoetry that no other service resolves. Also, a 
client may use a service-specific name when requesting a service to perform an 
operation upon a named object or resource that it manages. For example, a file name is 
given to the file service when requesting that the file be deleted, and a process identifier 
is presented to the process management service when requesting that it be sent a signal. 
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These names are used only in the context of the service that manages the objects named, 
except when clients communicate about shared objects.

Names are also sometimes needed to refer to entities in a distributed system that 
are beyond the scope of any single service. The major examples of these entities are 
users (with proper names and email addresses), computers (with hostnames such as 
www.cdk5.net) and services themselves (such as file service or printer service). In 
object-based middleware, names refer to remote objects that provide services or 
applications. Note that many of these names must be readable by and meaningful to 
humans, since users and system administrators need to refer to the major components 
and configuration of distributed systems, programmers need to refer to services in 
programs, and users need to communicate with each other via the distributed system and 
discuss what services are available in different parts of it. Given the connectivity 
provided by the Internet, these naming requirements are potentially world-wide in 
scope.

Uniform Resource Identifiers  •  Uniform Resource Identifiers (URIs) [Berners-Lee et al.

2005] came about from the need to identify resources on the Web, and other Internet 
resources such as electronic mailboxes. An important goal was to identify resources in 
a coherent way, so that they could all be processed by common software such as 
browsers. URIs are ‘uniform’ in that their syntax incorporates that of indefinitely many 
individual types of resource identifiers (that is, URI schemes), and there are procedures 
for managing the global namespace of schemes. The advantage of uniformity is that it 
eases the process of introducing new types of identifier, as well as using existing types 
of identifier in new contexts, without disrupting existing usage. 

For example, if someone was to invent a new type of ‘widget’ URI, then URIs 
beginning widget: would have to obey the global URI syntax, as well as any local rules 
defined for the widget identifier scheme. These URIs would identify widget resources 
in a well-defined way. But even existing software that did not access widget resources 
could still process widget URIs – for example, by managing directories containing them. 
Turning to an example of incorporating existing identifiers, that has been done for 
telephone numbers by prefixing them with the scheme name tel and standardizing their 
representation, as in tel:+1-816-555-1212. These tel URIs are intended for uses such as 
web links that cause telephone calls to be made when invoked.

Uniform Resource Locators: Some URIs contain information that can be used to locate 
and access a resource; others are pure resource names. The familiar term Uniform

Resource Locator (URL) is often used for URIs that provide location information and 
specify the method for accessing the resource, including the ‘http’ URLs introduced in 
Section 1.6. For example, http://www.cdk5.net/ identifies a web page at the given path 
(‘/’) on the host www.cdk5.net, and specifies that the HTTP protocol be used to access 
it. Another example is a ‘mailto’ URL, such as mailto:fred@flintstone.org, which 
identifies the mailbox at the given address. 

URLs are efficient identifiers for accessing resources. But they suffer from the 
disadvantage that if a resource is deleted or if it moves, say from one web site to another, 
there may be dangling links to the resource containing the old URL. If a user clicks on 
a dangling link to a web resource, then the web server will either respond that the 
resource is not found or – worse, perhaps – supply a different resource that now occupies 
the same location.
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Uniform Resource Names: Uniform Resource Names (URNs) are URIs that are used as 
pure resource names rather than locators. For example, the URI:

 mid:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com 

is a URN that identifies the email message containing it in its ‘Message-Id’ field. The 
URI distinguishes that message from any other email message. But it does not provide 
the message’s address in any store, so a lookup operation is needed to find it. 

A special subtree of URIs beginning with urn: has been reserved for URNs – 
although, as the mid: example shows, not all URNs are urn: URIs. The latter urn-
prefixed URIs are all of the form urn:nameSpace:nameSpace-specificName. For 
example, urn:ISBN:0-201-62433-8 identifies books that bear the name 0-201-62433-8 in 
the standard ISBN naming scheme. For another example, the (invented) name 
urn:doi:10.555/music-pop-1234 refers to the publication called music-pop-1234 in the 
naming scheme of the publisher known as 10.555 in the Digital Object Identifier (DOI) 
scheme [www.doi.org].

There are resolution services (name services, in the terminology of this chapter) 
such as the Handle System [www.handle.net] for resolving URNs such as DOIs to 
resource attributes, but none is in widespread use. Indeed, there continues to be debate 
in the Web and Internet research communities about the extent to which a separate 
category of URNs is needed. One school of thought is that ‘cool URLs do not change’ 
– in other words, that everyone should assign URLs to resources with guarantees about 
their continuity of reference. Against that point of view is the observation that not 
everyone is in a position to make such guarantees, which require the wherewithal to 
maintain control of a domain name and administer resources carefully. 

13.2 Name services and the Domain Name System

A name service stores information about a collection of textual names, in the form of 
bindings between the names and the attributes of the entities they denote, such as users, 
computers, services and objects.  The collection is often subdivided into one or more 
naming contexts: individual subsets of the bindings that are managed as a unit. The 
major operation that a name service supports is to resolve a name – that is, to look up 
attributes from a given name. We describe the implementation of name resolution in 
Section 13.2.2. Operations are also required for creating new bindings, deleting bindings 
and listing bound names, and adding and deleting contexts.

Name management is separated from other services largely because of the 
openness of distributed systems, which brings the following motivations:

Unification: It is often convenient for resources managed by different services to use 
the same naming scheme. URIs are a good example of this.

Integration: It is not always possible to predict the scope of sharing in a distributed 
system. It may become necessary to share and therefore name resources that were 
created in different administrative domains. Without a common name service, the 
administrative domains may use entirely different naming conventions.
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General name service requirements  •  Name services were originally quite simple, since 
they were designed only to meet the need to bind names to addresses in a single 
management domain, corresponding to a single LAN or WAN. The interconnection of 
networks and the increased scale of distributed systems have produced a much larger 
name-mapping problem.

Grapevine [Birrell et al. 1982] was one of the earliest extensible, multi-domain 
name services. It was designed to be scalable in the number of names and the load of 
requests that it could handle.

The Global Name Service, developed at the Digital Equipment Corporation 
Systems Research Center [Lampson 1986], is a descendant of Grapevine with ambitious 
goals, including:

To handle an essentially arbitrary number of names and to serve an arbitrary number 

of administrative organizations: For example, the system should be capable of 
handling the names of all the documents in the world.

A long lifetime: Many changes will occur in the organization of the set of names and 
in the components that implement the service during its lifetime.

High availability: Most other systems depend upon the name service; they can’t 
work when it is broken.

Fault isolation: Local failures should not cause the entire service to fail.

Tolerance of mistrust: A large open system cannot have any component that is 
trusted by all of the clients in the system.

Two examples of name services that have concentrated on the goal of scalability to large 
numbers of objects such as documents are the Globe name service [van Steen et al.

1998] and the Handle System [www.handle.net]. Far more familiar is the Internet 
Domain Name System (DNS), introduced in Chapter 3, which names computers (and 
other entities) across the Internet.

In this section, we discuss the main design issues for name services, giving 
examples from the DNS. We follow this with a more detailed case study of the DNS.

13.2.1 Name spaces

A name space is the collection of all valid names recognized by a particular service. The 
service will attempt to look up a valid name, even though that name may prove not to 
correspond to any object – i.e., to be unbound. Name spaces require a syntactic 
definition to separate valid names from invalid names. For example, ‘...’ is not 
acceptable as the DNS name of a computer, whereas www.cdk99.net is valid (even 
though it is unbound).

Names may have an internal structure that represents their position in a hierarchic 
name space such as pathnames in a file system, or in an organizational hierarchy such 
as Internet domain names; or they may be chosen from a flat set of numeric or symbolic 
identifiers. One important advantage of a hierarchy is that it makes large name spaces 
more manageable. Each part of a hierarchic name is resolved relative to a separate 
context of relatively small size, and the same name may be used with different meanings 
in different contexts, to suit different situations of use. In the case of file systems, each 
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directory represents a context. Thus /etc/passwd is a hierarchic name with two 
components. The first, ‘etc’, is resolved relative to the context ‘/’, or root, and the second 
part, ‘passwd’, is relative to the context ‘/etc’. The name /oldetc/passwd can have a 
different meaning because its second component is resolved in a different context. 
Similarly, the same name /etc/passwd may resolve to different files in the contexts of 
two different computers. 

Hierarchic name spaces are potentially infinite, so they enable a system to grow 
indefinitely. By contrast, flat name spaces are usually finite; their size is determined by 
fixing a maximum permissible length for names. Another potential advantage of a 
hierarchic name space is that different contexts can be managed by different people or 
organizations.

The structure of ‘http’ URLs was introduced in Chapter 1. The URL name space 
also includes relative names such as ../images/figure1.jpg. When a browser or other web 
client encounters such a relative name, it uses the resource in which the relative name is 
embedded to determine the server host name and the directory to which this pathname 
refers. 

DNS names are strings called domain names. Some examples are www.cdk5.net 

(a computer), net, com and ac.uk (the latter three are domains).
The DNS name space has a hierarchic structure: a domain name consists of one or 

more strings called name components or labels, separated by the delimiter ‘.’. There is 
no delimiter at the beginning or end of a domain name, although the root of the DNS 
name space is sometimes referred to as ‘.’ for administrative purposes. The name 
components are non-null printable strings that do not contain ‘.’. In general, a prefix of 
a name is an initial section of the name that contains only zero or more entire 
components. For example, in DNS www and www.cdk5 are both prefixes of 
www.cdk5.net. DNS names are not case-sensitive, so www.cdk5.net and 
WWW.CDK5.NET have the same meaning.

DNS servers do not recognize relative names: all names are referred to the global 
root. However, in practical implementations, client software keeps a list of domain 
names that are appended automatically to any single-component name before resolution. 
For example, the name www presented in the domain cdk5.net probably refers to 
www.cdk5.net; client software will append the default domain cdk5.net and attempt to 
resolve this name. If this fails, then further default domain names may be appended; 
finally, the (absolute) name www will be presented to the root for resolution (an 
operation that will of course fail in this case). Names with more than one component, 
however, are normally presented intact to the DNS, as absolute names.

Aliases  •  An alias is a name defined to denote the same information as another name, 
similar to a symbolic link between file path names. Aliases allow more convenient 
names to be substituted for relatively complicated ones, and allow alternative names to 
be used by different people for the same entity. An example is the common use of URL 
shorteners, often used in Twitter posts and other situations where space is at a premium. 
For example, using web redirection, http://bit.ly/ctqjvH refers to 
http://cdk5.net/additional/rmi/programCode/ShapeListClient.java. As another 
example, the DNS allows aliases in which one domain name is defined to stand for 
another. Aliases are often used to specify the names of machines that run a web server 
or an FTP server. For example, the name www.cdk5.net is an alias for cdk5.net. This has 



572 CHAPTER 13  NAME SERVICES

the advantage that clients can use either name for the web server, and if the web server 
is moved to another computer, only the entry for cdk5.net needs to be updated in the 
DNS database. 

Naming domains  •  A naming domain is a name space for which there exists a single 
overall administrative authority responsible for assigning names within it. This authority 
is in overall control of which names may be bound within the domain, but it is free to 
delegate this task. 

Domains in DNS are collections of domain names; syntactically, a domain’s name 
is the common suffix of the domain names within it, but otherwise it cannot be 
distinguished from, for example, a computer name. For example, net is a domain that 
contains cdk5.net. Note that the term ‘domain name’ is potentially confusing, since only 
some domain names identify domains (others identify computers).

The administration of domains may be devolved to subdomains. The domain 
dcs.qmul.ac.uk – the Department of Computer Science at Queen Mary, University of 
London in the UK – can contain any name the department wishes. But the domain name 
dcs.qmul.ac.uk itself had to be agreed with the college authorities, who manage the 
domain qmul.ac.uk. Similarly, qmul.ac.uk had to be agreed with the registered authority 
for ac.uk, and so on.

Responsibility for a naming domain normally goes hand in hand with 
responsibility for managing and keeping up-to-date the corresponding part of the 
database stored in an authoritative name server and used by the name service. Naming 
data belonging to different naming domains are in general stored by distinct name 
servers managed by the corresponding authorities.

Combining and customizing name spaces  •  The DNS provides a global and homogene-
ous name space in which a given name refers to the same entity, no matter which process 
on which computer looks up the name. By contrast, some name services allow distinct 
name spaces – sometimes heterogeneous name spaces – to be embedded into them; and 
some name services allow the name space to be customized to suit the needs of individ-
ual groups, users or even processes.

Merging: The practice of mounting file systems in UNIX and NFS (see Section 12.3) 
provides an example in which a part of one name space is conveniently embedded in 
another. But consider how to merge the entire UNIX file systems of two (or more) 
computers called red and blue. Each computer has its own root, with overlapping file 
names. For example, /etc/passwd refers to one file on red and a different file on blue.
The obvious way to merge the file systems is to replace each computer’s root with a 
‘super root’ and mount each computer’s file system in this super root, say as /red and 
/blue. Users and programs can then refer to /red/etc/passwd and /blue/etc/passwd. But 
the new naming convention by itself would cause programs on the two computers that 
still use the old name /etc/passwd to malfunction. A solution is to leave the old root 
contents on each computer and embed the mounted file systems /red and /blue of both 
computers (assuming that this does not produce name clashes with the old root 
contents). 

The moral is that we can always merge name spaces by creating a higher-level root 
context, but this may raise a problem of backward-compatibility. Fixing the 
compatibility problem, in turn, leaves us with hybrid name spaces and the inconvenience 
of having to translate old names between the users of the two computers.
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Heterogeneity: The Distributed Computing Environment (DCE) name space [OSF 
1997] allows heterogeneous name spaces to be embedded within it. DCE names may 
contain junctions, which are similar to mount points in NFS and UNIX (see Section 
12.3), except that they allow heterogeneous name spaces to be mounted. For example, 
consider the full DCE name /.../dcs.qmul.ac.uk/principals/Jean.Dollimore. The first part 
of this name, /.../dcs.qmul.ac.uk, denotes a context called a cell. The next component is 
a junction. For example, the junction principals is a context containing security 
principals in which the final component, Jean.Dollimore, may be looked up, and in 
which these principal names have their own syntax. Similarly, in 
/.../dcs.qmul.ac.uk/files/pub/reports/TR2000-99, the junction files is a context 
corresponding to a file system directory, in which the final component 
pub/reports/TR2000-99 is looked up and in which the file name space has a distinct 
syntax. The two junctions principals and files are the roots of heterogeneous name 
spaces, implemented by heterogeneous name services.

Customization: We saw in the example of embedding NFS-mounted file systems above 
that sometimes users prefer to construct their name spaces independently rather than 
sharing a single name space. File system mounting enables users to import files that are 
stored on servers and shared, while the other names continue to refer to local, unshared 
files and can be administered autonomously. But the same files accessed from two 
different computers may be mounted at different points and thus have different names. 
Not sharing the entire name space means users must translate names between 
computers.

The Spring naming service [Radia et al. 1993] provides the ability to construct 
name spaces dynamically and to share individual naming contexts selectively. Even two 
different processes on the same computer can have different naming contexts. Spring 
naming contexts are first-class objects that can be shared around a distributed system. 
For example, suppose a user on computer red wishes to run a program on blue that issues 
file pathnames such as /etc/passwd, but these names are to resolve to the files on red’s
file system, not blue’s. This can be achieved in Spring by passing a reference to red’s
local naming context to blue and using it as the program’s naming context. Plan 9 [Pike 
et al. 1993] also allows processes to have their own file system name space. A novel 
feature of Plan 9 (which can also be implemented in Spring) is that physical directories 
can be ordered and merged into a single logical directory. The effect is that a name 
looked up in the single logical directory is looked up in the succession of physical 
directories until there is a match, when the attributes are returned. This eliminates the 
need to supply lists of paths when looking for program or library files.

13.2.2 Name resolution

For the common case of hierarchic name spaces, name resolution is an iterative or 
recursive process whereby a name is repeatedly presented to naming contexts in order 
to look up the attributes to which it refers. A naming context either maps a given name 
onto a set of primitive attributes (such as those of a user) directly, or maps it onto a 
further naming context and a derived name to be presented to that context. To resolve a 
name, it is first presented to some initial naming context; resolution iterates as long as 
further contexts and derived names are output. We illustrated this at the start of Section 
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13.2.1 with the example of /etc/passwd, in which ‘etc’ is presented to the context ‘/’, and 
then ‘passwd’ is presented to the context ‘/etc’.

Another example of the iterative nature of resolution is the use of aliases. For 
example, whenever a DNS server is asked to resolve an alias such as 
www.dcs.qmul.ac.uk, the server first resolves the alias to another domain name (in this 
case traffic.dcs.qmul.ac.uk), which must be further resolved to produce an IP address. 

In general, the use of aliases makes it possible for cycles to be present in the name 
space, in which case resolution may never terminate. Two possible solutions are, to 
abandon a resolution process if it passes a threshold number of resolutions, or to leave 
administrators to veto any aliases that would introduce cycles.

Name servers and navigation  •  Any name service, such as DNS, that stores a very large 
database and is used by a large population will not store all of its naming information on 
a single server computer. Such a server would be a bottleneck and a critical point of 
failure. Any heavily used name services should use replication to achieve high 
availability. We shall see that DNS specifies that each subset of its database is replicated 
in at least two failure-independent servers. 

We mentioned above that the data belonging to a naming domain is usually stored 
by a local name server managed by the authority responsible for that domain. Although, 
in some cases, a name server may store data for more than one domain, it is generally 
true to say that data is partitioned into servers according to its domain. We shall see that 
in DNS, most of the entries are for local computers. But there are also name servers for 
the higher domains, such as yahoo.com and ac.uk, and for the root.

The partitioning of data implies that the local name server cannot answer all 
enquiries without the help of other name servers. For example, a name server in the 
dcs.qmul.ac.uk domain would not be able to supply the IP address of a computer in the 
domain cs.purdue.edu unless it was cached – certainly not the first time it is asked. 

The process of locating naming data from more than one name server in order to 
resolve a name is called navigation. The client name resolution software carries out 
navigation on behalf of the client. It communicates with name servers as necessary to 
resolve a name. It may be provided as library code and linked into clients, as for example 
in the BIND implementation for DNS (see Section 13.2.3) or in Grapevine [Birrell et al.

1982]. The alternative, used with X500, is to provide name resolution in a separate 
process that is shared by all of the client processes on that computer.

One navigation model that DNS supports is known as iterative navigation (see 
Figure 13.2). To resolve a name, a client presents the name to the local name server, 
which attempts to resolve it. If the local name server has the name, it returns the result 
immediately. If it does not, it will suggest another server that will be able to help. 
Resolution proceeds at the new server, with further navigation as necessary until the 
name is located or is discovered to be unbound.

As DNS is designed to hold entries for millions of domains and is accessed by vast 
numbers of clients, it would not be feasible to have all queries starting at a root server, 
even if it were replicated heavily. The DNS database is partitioned between servers in 
such a way as to allow many queries to be satisfied locally and others to be satisfied 
without needing to resolve each part of the name separately. The scheme for resolving 
names in DNS is described in more detail in Section 13.2.3.
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NFS also employs iterative navigation in the resolution of a file name, on a 
component-by-component basis (see Chapter 12). This is because the file service may 
encounter a symbolic link when resolving a name. A symbolic link must be interpreted 
in the client’s file system name space because it may point to a file in a directory stored 
at another server. The client computer must determine which server this is, because only 
the client knows its mount points.

In multicast navigation, a client multicasts the name to be resolved and the 
required object type to the group of name servers. Only the server that holds the named 
attributes responds to the request. Unfortunately, however, if the name proves to be 
unbound, the request is greeted with silence. Cheriton and Mann [1989] describe a 
multicast-based navigation scheme in which a separate server is included in the group 
to respond when the required name is unbound.

Another alternative to the iterative navigation model is one in which a name server 
coordinates the resolution of the name and passes the result back to the user agent. Ma 
[1992] distinguishes non-recursive and recursive server-controlled navigation (Figure 
13.3). Under non-recursive server-controlled navigation, any name server may be 
chosen by the client. This server communicates by multicast or iteratively with its peers 
in the style described above, as though it were a client. Under recursive server-controlled 
navigation, the client once more contacts a single server. If this server does not store the 
name, the server contacts a peer storing a (larger) prefix of the name, which in turn 
attempts to resolve it. This procedure continues recursively until the name is resolved.

If a name service spans distinct administrative domains, then clients executing in 
one administrative domain may be prohibited from accessing name servers belonging to 
another such domain. Moreover, even name servers may be prohibited from discovering 
the disposition of naming data across name servers in another administrative domain. 
Then, both client-controlled and non-recursive server-controlled navigation are 
inappropriate, and recursive server-controlled navigation must be used. Authorized 
name servers request name service data from designated name servers managed by 
different administrations, which return the attributes without revealing where the 
different parts of the naming database are stored.
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Caching  •  In DNS and other name services, client name resolution software and servers 
maintain a cache of the results of previous name resolutions. When a client requests a 
name lookup, the name resolution software consults its cache. If it holds a recent result 
from a previous lookup for the name, it returns it to the client; otherwise, it sets about 
finding it from a server. That server, in turn, may return data cached from other servers.

Caching is key to a name service’s performance and assists in maintaining the 
availability of both the name service and other services in spite of name server crashes. 
Its role in enhancing response times by saving communication with name servers is 
clear. Caching can be used to eliminate high-level name servers – the root server, in 
particular – from the navigation path, allowing resolution to proceed despite some server 
failures. 

Caching by client name resolvers is widely applied in name services and is 
particularly successful because naming data are changed relatively rarely. For example, 
information such as computer or service addresses is liable to remain unchanged for 
months or years. However, the possibility exists of a name service returning out-of-date 
attributes – for example, an out-of-date address – during resolution. 

13.2.3 The Domain Name System

The Domain Name System is a name service design whose main naming database is 
used across the Internet. It was devised principally by Mockapetris and specified in RFC 
1034 [Mockapetris 1987] and RFC 1035. DNS replaced the original Internet naming 
scheme, in which all host names and addresses were held in a single central master file 
and downloaded by FTP to all computers that required them [Harrenstien et al. 1985]. 
This original scheme was soon seen to suffer from three major shortcomings:

• It did not scale to large numbers of computers.

• Local organizations wished to administer their own naming systems.

• A general name service was needed – not one that serves only for looking up 
computer addresses.
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The objects named by the DNS are primarily computers – for which mainly IP addresses 
are stored as attributes – and what we have referred to in this chapter as naming domains 
are called simply domains in the DNS. In principle, however, any type of object can be 
named, and its architecture gives scope for a variety of implementations. Organizations 
and departments within them can manage their own naming data. Millions of names are 
bound by the Internet DNS, and lookups are made against it from around the world. Any 
name can be resolved by any client. This is achieved by hierarchical partitioning of the 
name database, by replication of the naming data, and by caching.

Domain names   •  The DNS is designed for use in multiple implementations, each of 
which may have its own name space. In practice, however, only one is in widespread 
use, and that is the one used for naming across the Internet. The Internet DNS name 
space is partitioned both organizationally and according to geography. The names are 
written with the highest-level domain on the right. The original top-level organizational 
domains (also called generic domains) in use across the Internet were:

com – Commercial organizations

edu – Universities and other educational institutions

gov – US governmental agencies

mil – US military organizations

net – Major network support centres

org – Organizations not mentioned above

int – International organizations

New top-level domains such as biz and mobi have been added since the early 2000s. A 
full list of current generic domain names is available from the Internet Assigned 
Numbers Authority [www.iana.org I].

In addition, every country has its own domains: 

us – United States

uk – United Kingdom

fr – France

... – ...

Countries, particularly those other than the US often use their own subdomains to 
distinguish their organizations. The UK, for example, has domains co.uk and ac.uk,
which correspond to com and edu respectively (ac stands for ‘academic community’).

Note that, despite its geographic-sounding uk suffix, a domain such as doit.co.uk

could have data referring to computers in the Spanish office of Doit Ltd., a notional 
British company. In other words, even geographic-sounding domain names are 
conventional and are completely independent of their physical locations.
DNS queries   •  The Internet DNS is primarily used for simple host name resolution 
and for looking up electronic mail hosts, as follows:

Host name resolution: In general, applications use the DNS to resolve host names 
into IP addresses. For example, when a web browser is given a URL containing the 
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domain name www.dcs.qmul.ac.uk, it makes a DNS enquiry and obtains the 
corresponding IP address. As was pointed out in Chapter 4, browsers then use HTTP 
to communicate with the web server at the given IP address, using a reserved port 
number if none is specified in the URL. FTP and SMTP services work in a similar 
way; for example, an FTP program may be given the domain name ftp.dcs.qmul.ac.uk 

and can make a DNS enquiry to get its IP address and then use TCP to communicate 
with it at the reserved port number.

Mail host location: Electronic mail software uses the DNS to resolve domain names 
into the IP addresses of mail hosts – i.e., computers that will accept mail for those 
domains. For example, when the address tom@dcs.rnx.ac.uk is to be resolved, the 
DNS is queried with the address dcs.rnx.ac.uk and the type designation ‘mail’. It 
returns a list of domain names of hosts that can accept mail for dcs.rnx.ac.uk, if such 
exist (and, optionally, the corresponding IP addresses). The DNS may return more 
than one domain name so that the mail software can try alternatives if the main mail 
host is unreachable for some reason. The DNS returns an integer preference value for 
each mail host, indicating the order in which the mail hosts should be tried.

Some other types of query that are implemented in some installations but are less 
frequently used than those just given are:

Reverse resolution: Some software requires a domain name to be returned given an 
IP address. This is just the reverse of the normal host name query, but the name server 
receiving the query replies only if the IP address is in its own domain.

Host information: The DNS can store the machine architecture type and operating 
system with the domain names of hosts. It has been suggested that this option should 
not be used in public, because it provides useful information for those attempting to 
gain unauthorized access to computers.

In principle, the DNS can be used to store arbitrary attributes. A query is specified by a 
domain name, class and type. For domain names in the Internet, the class is IN. The type 
of query specifies whether an IP address, a mail host, a name server or some other type 
of information is required. A special domain, in-addr.arpa, exists to hold IP addresses for 
reverse lookups. The class attribute is used to distinguish, for example, the Internet 
naming database from other (experimental) DNS naming databases. A set of types is 
defined for a given database; those for the Internet database are given in Figure 13.5.

DNS name servers  •  The problems of scale are treated by a combination of partitioning 
the naming database and replicating and caching parts of it close to the points of need. 
The DNS database is distributed across a logical network of servers. Each server holds 
part of the naming database – primarily data for the local domain. Queries concerning 
computers in the local domain are satisfied by servers within that domain. However, 
each server records the domain names and addresses of other name servers, so that 
queries pertaining to objects outside the domain can be satisfied. 

The DNS naming data are divided into zones. A zone contains the following data:

• Attribute data for names in a domain, less any subdomains administered by lower-
level authorities. For example, a zone could contain data for Queen Mary, 
University of London – qmul.ac.uk – less the data held by departments (for 
example the Department of Computer Science – dcs.qmul.ac.uk).
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• The names and addresses of at least two name servers that provide authoritative

data for the zone. These are versions of zone data that can be relied upon as being 
reasonably up-to-date.

• The names of name servers that hold authoritative data for delegated subdomains; 
and ‘glue’ data giving the IP addresses of these servers. 

• Zone-management parameters, such as those governing the caching and 
replication of zone data.

A server may hold authoritative data for zero or more zones. So that naming data are 
available even when a single server fails, the DNS architecture specifies that each zone 
must be replicated authoritatively in at least two servers.

System administrators enter the data for a zone into a master file, which is the 
source of authoritative data for the zone. There are two types of server that are 
considered to provide authoritative data. A primary or master server reads zone data 
directly from a local master file. Secondary servers download zone data from a primary 
server. They communicate periodically with the primary server to check whether their 
stored version matches that held by the primary server. If a secondary’s copy is out of 
date, the primary sends it the latest version. The frequency of the secondary’s check is 
set by administrators as a zone parameter, and its value is typically once or twice a day.

Any server is free to cache data from other servers to avoid having to contact them 
when name resolution requires the same data again; it does this on the proviso that 
clients are told that such data is non-authoritative as supplied. Each entry in a zone has 
a time-to-live value. When a non-authoritative server caches data from an authoritative 
server, it notes the time to live. It will only provide its cached data to clients for up to 
this time; when queried after the time period has expired, it recontacts the authoritative 
server to check its data. This is a useful feature that minimizes the amount of network 
traffic while retaining flexibility for system administrators. When attributes are 
expected to change rarely, they can be given a correspondingly large time to live. If an 
administrator knows that attributes are likely to change soon, they can reduce the time 
to live accordingly.

Figure 13.4 shows the arrangement of some of the DNS database as it stood in the 
year 2001. This example is equally valid today even if some of the data has altered as 
systems have been reconfigured over time. Note that, in practice, root servers such as 
a.root-servers.net hold entries for several levels of domain, as well as entries for first-
level domain names. This is to reduce the number of navigation steps required to resolve 
domain names. Root name servers hold authoritative entries for the name servers for the 
top-level domains. They are also authoritative name servers for the generic top-level 
domains, such as com and edu. However, the root name servers are not name servers for 
the country domains. For example, the uk domain has a collection of name servers, one 
of which is called ns1.nic.net. These name servers know the name servers for the 
second-level domains in the United Kingdom such as ac.uk and co.uk. The name servers 
for the domain ac.uk know the name servers for all of the university domains in the 
country, such as qmul.ac.uk or ic.ac.uk. In some cases, a university domain delegates 
some of its responsibilities to a subdomain, such as dcs.qmul.ac.uk.

 The root domain information is replicated by a primary server to a collection of 
secondary servers, as described above. In spite of this, root servers serve thousands or 



Figure 13.4  DNS name servers
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more queries per second. All DNS servers store the addresses of one or more root name 
servers, which do not change very often. They also usually store the address of an 
authoritative server for the parent domain. A query involving a three-component domain 
name such as www.berkeley.edu can be satisfied using at worst two navigation steps: 
one to a root server that stores an appropriate name server entry, and a second to the 
server whose name is returned.

Referring to Figure 13.4, the domain name jeans-pc.dcs.qmul.ac.uk can be looked 
up from within dcs.qmul.ac.uk using the local server dns0.dcs.qmul.ac.uk. This server 
does not store an entry for the web server www.ic.ac.uk, but it does keep a cached entry 
for ic.ac.uk (which it obtained from the authorized server ns0.ja.net). The server dns0-

doc.ic.ac.uk can be contacted to resolve the full name. 

Navigation and query processing  •  A DNS client is called a resolver. It is normally 
implemented as library software. It accepts queries, formats them into messages in the 
form expected under the DNS protocol and communicates with one or more name 
servers in order to satisfy the queries. A simple request-reply protocol is used, typically 
using UDP packets on the Internet (DNS servers use a well-known port number). The 
resolver times out and resends its query if necessary. The resolver can be configured to 
contact a list of initial name servers in order of preference in case one or more are 
unavailable. 



Figure 13.5 DNS resource records

Record type Meaning Main contents

A A computer address (IPv4) IPv4 number

AAAA A computer address (IPv6) IPv6 number

NS An authoritative name server Domain name for server

CNAME The canonical name for an alias Domain name for alias

SOA Marks the start of data for a zone Parameters governing the zone

PTR
Domain name pointer (reverse 
lookups)

Domain name

HINFO Host information
Machine architecture and operating 
system

MX Mail exchange List of <preference, host> pairs

TXT Text string Arbitrary text
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The DNS architecture allows for recursive navigation as well as iterative 
navigation. The resolver specifies which type of navigation is required when contacting 
a name server. However, name servers are not bound to implement recursive navigation. 
As was pointed out above, recursive navigation may tie up server threads, meaning that 
other requests might be delayed. 

In order to save on network communication, the DNS protocol allows for multiple 
queries to be packed into the same request message and for name servers 
correspondingly to send multiple replies in their response messages.

Resource records  •  Zone data are stored by name servers in files in one of several fixed 
types of resource record. For the Internet database, these include the types given in 
Figure 13.5. Each record refers to a domain name, which is not shown. The entries in the 
table refer to items already mentioned, except that AAAA records store IPv6 addresses 
whereas A records store IPv4 addresses, and TXT entries are included to allow arbitrary 
other information to be stored along with domain names. 

The data for a zone starts with an SOA-type record, which contains the zone 
parameters that specify, for example, the version number and how often secondaries 
should refresh their copies. This is followed by a list of records of type NS specifying 
the name servers for the domain and a list of records of type MX giving the domain 
names of mail hosts, each prefixed by a number expressing its preference. For example, 
part of the database for the domain dcs.qmul.ac.uk at one point is shown in Figure 13.6,
where the time to live 1D means 1 day.

Further records of type A later in the database give the IP addresses for the two 
name servers dns0 and dns1. The IP addresses of the mail hosts and the third name server 
are given in the databases corresponding to their domains. 



Figure 13.6 DNS zone data records

domain name time to live class type value

dcs.qmul.ac.uk 1D IN NS dns0

dcs.qmul.ac.uk 1D IN NS dns1

dcs.qmul.ac.uk 1D IN MX 1   mail1.qmul.ac.uk

dcs.qmul.ac.uk 1D IN MX 2   mail2.qmul.ac.uk
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The majority of the remainder of the records in a lower-level zone like 
dcs.qmul.ac.uk will be of type A and map the domain name of a computer onto its IP 
address. They may contain some aliases for the well-known services, for example:

domain name time to live class type value

www 1D IN CNAME traffic
traffic 1D IN A 138.37.95.150

If the domain has any subdomains, there will be further records of type NS specifying 
their name servers, which will also have individual A entries. For example, at one point 
the database for qmul.ac.uk contained the following records for the name servers in its 
subdomain dcs.qmul.ac.uk:

domain name time to live class type value

dcs 1D IN NS dns0.dcs

dns0.dcs 1D IN A 138.37.88.249

dcs 1D IN NS dns1.dcs

dns1.dcs 1D IN A 138.37.94.248

Load sharing by name servers: At some sites, heavily used services such as the Web and 
FTP are supported by a group of computers on the same network. In this case, the same 
domain name is used for each member of the group. When a domain name is shared by 
several computers, there is one record for each computer in the group, giving its IP 
address. By default, the name server responds to queries for which multiple records 
match the requested name by returning the IP addresses according to a round-robin 
schedule. Successive clients are given access to different servers so that the servers can 
share the workload. Caching has a potential for spoiling this scheme, for once a non-
authoritative name server or a client has the server’s address in its cache it will continue 
to use it. To counteract this effect, the records are given a short time to live. 

The BIND implementation of the DNS  •  The Berkeley Internet Name Domain (BIND) is 
an implementation of the DNS for computers running UNIX. Client programs link in 
library software as the resolver. DNS name server computers run the named daemon.
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BIND allows for three categories of name server: primary servers, secondary 
servers and caching-only servers. The named program implements just one of these 
types, according to the contents of a configuration file. The first two categories are as 
described above. Caching-only servers read in from a configuration file sufficient names 
and addresses of authoritative servers to resolve any name. Thereafter, they only store 
this data and data that they learn by resolving names for clients.

A typical organization has one primary server, with one or more secondary servers 
that provide name serving on different local area networks at the site. Additionally, 
individual computers often run their own caching-only server, to reduce network traffic 
and speed up response times still further.

Discussion of the DNS  •  The DNS Internet implementation achieves relatively short 
average response times for lookups, considering the amount of naming data and the 
scale of the networks involved. We have seen that it achieves this by a combination of 
partitioning, replicating and caching naming data. The objects named are primarily 
computers, name servers and mail hosts. Computer (host) name–to–IP address 
mappings change relatively rarely, as do the identities of name servers and mail hosts, 
so caching and replication occur in a relatively clement environment.

 The DNS allows naming data to become inconsistent. That is, if naming data is 
changed, then other servers may provide clients with stale data for periods on the order 
of days. None of the replication techniques explored in Chapter 18 is applied. However, 
inconsistency is of no consequence until such time as a client attempts to use stale data. 
The DNS does not address itself to how staleness of addresses is detected. 

Apart from computers, the DNS also names one particular type of service – the 
mail service – on a per-domain basis. DNS assumes there to be only one mail service per 
addressed domain, so users do not have to include the name of this service explicitly in 
names. Electronic mail applications transparently select this service by using the 
appropriate type of query when contacting DNS servers. 

In summary, the DNS stores a limited variety of naming data, but this is sufficient 
in so far as applications such as electronic mail impose their own naming schemes on 
top of domain names. It might be argued that the DNS database represents the lowest 
common denominator of what would be considered useful by the many user 
communities on the Internet. The DNS was not designed to be the only name service in 
the Internet; it coexists with local name and directory services that store data most 
pertinent to local needs (such as Sun’s Network Information Service, which stores 
encoded passwords, for example, or Microsoft’s Active Directory Services 
[www.microsoft.com I], which stores detailed information about all the resources within 
a domain).

What remains as a potential problem for the DNS design is its rigidity with respect 
to changes in the structure of the name space, and the lack of ability to customize the 
name space to suit local needs. These aspects of naming design are taken up by the case 
study of the Global Name Service in Section 13.4. But before that, we consider directory 
services.
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13.3 Directory services

We have described how name services store collections of <name, attribute> pairs, and 
how the attributes are looked up from a name. It is natural to consider the dual of this 
arrangement, in which attributes are used as values to be looked up. In these services, 
textual names can be considered to be just another attribute. Sometimes users wish to 
find a particular person or resource, but they do not know its name, only some of its other 
attributes. For example, a user may ask: ‘What is the name of the user with telephone 
number 020-555 9980?’ Likewise, sometimes users require a service, but they are not 
concerned with what system entity supplies that service, as long as the service is 
conveniently accessible. For example, a user might ask, ‘Which computers in this 
building are Macintoshes running the Mac OS X operating system?’ or ‘Where can I 
print a high-resolution colour image?’

A service that stores collections of bindings between names and attributes and that 
looks up entries that match attribute-based specifications is called a directory service.
Examples are Microsoft’s Active Directory Services, X.500 and its cousin LDAP 
(described in Section 13.5), Univers [Bowman et al. 1990] and Profile [Peterson 1988]. 
Directory services are sometimes called yellow pages services, and conventional name 
services are correspondingly called white pages services, in an analogy with the 
traditional types of telephone directory. Directory services are also sometimes known as 
attribute-based name services.

A directory service returns the sets of attributes of any objects found to match 
some specified attributes. So, for example, the request ‘TelephoneNumber = 020 555 
9980’ might return {‘Name = John Smith’, ‘TelephoneNumber = 020 555 9980’, 
‘emailAddress = john@dcs.gormenghast.ac.uk’, ...}. The client may specify that only a 
subset of the attributes is of interest – for example, just the email addresses of matching 
objects. X.500 and some other directory services also allow objects to be looked up by 
conventional hierarchic textual names. The Universal Directory and Discovery Service 
(UDDI), which was presented in Section 9.4, provides both white pages and yellow 
pages services to provide information about organizations and the web services they 
offer. 

UDDI aside, the term discovery service normally denotes the special case of a 
directory service for services provided by devices in a spontaneous networking 
environment. As Section 1.3.2 described, devices in spontaneous networks are liable to 
connect and disconnect unpredictably. One core difference between a discovery service 
and other directory services is that the address of a directory service is normally well 
known and preconfigured in clients, whereas a device entering a spontaneous 
networking environment has to resort to multicast navigation, at least the first time it 
accesses the local discovery service. Section 19.2.1 describes discovery services in 
detail.

Attributes are clearly more powerful than names as designators of objects: 
programs can be written to select objects according to precise attribute specifications 
where names might not be known. Another advantage of attributes is that they do not 
expose the structure of organizations to the outside world, as do organizationally 
partitioned names. However, the relative simplicity of use of textual names makes them 
unlikely to be replaced by attribute-based naming in many applications.
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13.4 Case study: The Global Name Service 

A Global Name Service (GNS) was designed and implemented by Lampson and 
colleagues at the DEC Systems Research Center [Lampson 1986] to provide facilities 
for resource location, mail addressing and authentication. The design goals of the GNS 
have already been listed at the end of Section 13.1; they reflect the fact that a name 
service for use in an internetwork must support a naming database that may extend to 
include the names of millions of computers and (eventually) email addresses for billions 
of users. The designers of the GNS also recognized that the naming database is likely to 
have a long lifetime and that it must continue to operate effectively while it grows from 
small to large scale and while the network on which it is based evolves. The structure of 
the name space may change during that time to reflect changes in organizational 
structures. The service should accommodate changes in the names of the individuals, 
organizations and groups that it holds, and changes in the naming structure such as those 
that occur when one company is taken over by another. In this description, we  focus on 
those features of the design that enable it to accommodate such changes. 

The potentially large naming database and the scale of the distributed environment 
in which the GNS is intended to operate make the use of caching essential and render it 
extremely difficult to maintain complete consistency between all copies of a database 
entry. The cache consistency strategy adopted relies on the assumption that updates to 
the database will be infrequent and that slow dissemination of updates is acceptable, 
since clients can detect and recover from the use of out-of-date naming data.

The GNS manages a naming database that is composed of a tree of directories 
holding names and values. Directories are named by multi-part pathnames referred to a 
root, or relative to a working directory, much like file names in a UNIX file system. Each 
directory is also assigned an integer, which serves as a unique directory identifier (DI). 
In this section, we use names in italics when referring to the DI of a directory, so that 
EC is the identifier of the EC directory. A directory contains a list of names and 
references. The values stored at the leaves of the directory tree are organized into value 

trees, so that the attributes associated with names can be structured values. 
Names in the GNS have two parts: <directory name, value name>. The first part 

identifies a directory; the second refers to a value tree, or some portion of a value tree. 
For example, see Figure 13.7, in which the DIs are illustrated as small integers (although 
they are actually chosen from a range of integers to ensure uniqueness). The attributes 
of a user Peter.Smith in the directory QMUL would be stored in the value tree named 
<EC/UK/AC/QMUL, Peter.Smith>. The value tree includes a password, which can be 
referenced as <EC/UK/AC/QMUL, Peter.Smith/password>, and several mail addresses, 
each of which would be listed in the value tree as a single node with the name 
<EC/UK/AC/QMUL, Peter.Smith/mailboxes>.

The directory tree is partitioned and stored in many servers, with each partition 
replicated in several servers. The consistency of the tree is maintained in the face of two 
or more concurrent updates – for example, two users may simultaneously attempt to 
create entries with the same name, and only one should succeed. Replicated directories 
present a second consistency problem; this is addressed by an asynchronous update 
distribution algorithm that ensures eventual consistency, but with no guarantee that all 
copies are always current.



Figure 13.7 GNS directory tree and value tree for user Peter.Smith
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Accommodating change  •  We now turn to the aspects of the design that are concerned 
with accommodating growth and change in the structure of the naming database. At the 
level of clients and administrators, growth is accommodated through extension of the 
directory tree in the usual manner. But we may wish to integrate the naming trees of two 
previously separate GNS services. For example, how could we integrate the database 
rooted at the EC directory shown in Figure 13.7 with another database for NORTH

AMERICA? Figure 13.8

Figure 13.8 Merging trees under a new root
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 shows a new root, WORLD, introduced above the existing roots 
of the two trees to be merged. This is a straightforward technique, but how does it affect 
clients that continue to use names that are referred to what was ‘the root’ before 
integration took place? For example, </UK/AC/QMUL, Peter.Smith> is a name used by 
clients before integration. It is an absolute name (since it begins with the symbol for the 
root, ‘/’), but the root it refers to is EC, not WORLD. EC and NORTH AMERICA are 
working roots – initial contexts against which names beginning with the root ‘/’ are to 
be looked up.
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The existence of unique directory identifiers can be used to solve this problem. 
The working root for each program must be identified as part of its execution 
environment (much as is done for a program’s working directory). When a client in the 
European Community uses a name of the form </UK/AC/QMUL, Peter.Smith>, its 
local user agent, which is aware of the working root, prefixes the directory identifier EC

(#599), thus producing the name <#599/UK/AC/QMUL, Peter.Smith>. The user agent 
passes this derived name in the lookup request to a GNS server. The user agent may deal 
similarly with relative names referred to working directories. Clients that are aware of 
the new configuration may also supply absolute names to the GNS server, which are 
referred to the conceptual super-root directory containing all directory identifiers – for 
example, <WORLD/EC/UK/AC/QMUL, Peter.Smith> –  but the design cannot assume 
that all clients will be updated to take account of such a change. 

The technique described above solves the logical problem, allowing users and 
client programs to continue to use names that are defined relative to an old root even 
when a new real root is inserted, but it leaves an implementation problem: in a 
distributed naming database that may contain millions of directories, how can the GNS 
service locate a directory given only its identifier, such as #599? The solution adopted 
by the GNS is to list those directories that are used as working roots, such as EC, in a 
table of ‘well-known directories’ held in the current real root directory of the naming 
database. Whenever the real root of the naming database changes, as it does in Figure 
13.8, all GNS servers are informed of the new location of the real root. They can then 
interpret names of the form WORLD/EC/UK/AC/QMUL (referred to the real root) in 
the usual way, and they can interpret names of the form #599/UK/AC/QMUL by using 
the table of ‘well-known directories’ to translate them to full pathnames beginning at the 
real root.

The GNS also supports the restructuring of the database to accommodate 
organizational change. Suppose that the United States becomes part of the European 
Community (!). Figure 13.9

Figure 13.9 Restructuring the directory
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 shows the new directory tree. But if the US subtree is simply 
moved to the EC directory, names beginning WORLD/NORTH AMERICA/US will no 
longer work. The solution adopted by the GNS is to insert a ‘symbolic link’ in place of 
the original US entry (shown in bold in Figure 13.9). The GNS directory lookup 
procedure interprets the link as a redirection to the US directory in its new location.
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Discussion of the GNS  •  The GNS is descended from Grapevine [Birrell et al. 1982] and 
Clearinghouse [Oppen and Dalal 1983], two successful naming systems developed 
primarily for the purposes of mail delivery by the Xerox Corporation. The GNS 
successfully addresses needs for scalability and reconfigurability, but the solution 
adopted for merging and moving directory trees results in a requirement for a database 
(the table of well-known directories) that must be replicated at every node. In a large-
scale network, reconfigurations may occur at any level, and this table could grow to a 
large size, conflicting with the scalability goal.

13.5 Case study: The X.500 Directory Service

X.500 is a directory service in the sense defined in Section 13.3. It can be used in the 
same way as a conventional name service, but it is primarily used to satisfy descriptive 
queries and is designed to discover the names and attributes of other users or system 
resources. Users may have a variety of requirements for searching and browsing in a 
directory of network users, organizations and system resources to obtain information 
about the entities that the directory contains. The uses for such a service are likely to be 
quite diverse. They range from enquiries that are directly analogous to the use of 
telephone directories, such as a simple ‘white pages’ access to obtain a user’s electronic 
mail address or a ‘yellow pages’ query aimed, for example, at obtaining the names and 
telephone numbers of garages specializing in the repair of a particular make of car, to 
the use of the directory to access personal details such as job roles, dietary habits or even 
photographic images of the individuals. 

Such queries may originate from users, in the ‘yellow pages’example mentioned 
above, or from processes, when they may be used to identify services to meet a 
functional requirement.

Individuals and organizations can use a directory service to make available a wide 
range of information about themselves and the resources that they wish to offer for use 
in the network. Users can search the directory for specific information with only partial 
knowledge of its name, structure or content.

The ITU and ISO standards organizations defined the X.500 Directory Service

[ITU/ISO 1997] as a network service intended to meet these requirements. The standard 
refers to it as a service for access to information about ‘real-world entities’, but it is also 
likely to be used for access to information about hardware and software services and 
devices. X.500 is specified as an application-level service in the Open Systems 
Interconnection (OSI) set of standards, but its design does not depend to any significant 
extent on the other OSI standards, and it can be viewed as a design for a general-purpose 
directory service. We outline the design of the X.500 directory service and its 
implementation here. Readers interested in a more detailed description of X.500 and 
methods for its implementation are advised to study Rose’s book on the subject [Rose 
1992]. X.500 is also the basis for LDAP (discussed below), and it is used in the DCE 
directory service [OSF 1997].
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The data stored in X.500 servers is organized in a tree structure with named nodes, 
as in the case of the other name servers discussed in this chapter, but in X.500 a wide 
range of attributes are stored at each node in the tree, and access is possible not just by 
name but also by searching for entries with any required combination of attributes. 

The X.500 name tree is called the Directory Information Tree (DIT), and the 
entire directory structure including the data associated with the nodes, is called the 
Directory Information Base (DIB). There is intended to be a single integrated DIB 
containing information provided by organizations throughout the world, with portions 
of the DIB located in individual X.500 servers. Typically, a medium-sized or large 
organization would provide at least one server. Clients access the directory by 
establishing a connection to a server and issuing access requests. Clients can contact any 
server with an enquiry. If the data required are not in the segment of the DIB held by the 
contacted server, it will either invoke other servers to resolve the query or redirect the 
client to another server. 

Figure 13.10 X.500 service architecture
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In the terminology of the X.500 standard, servers are Directory Service Agents

(DSAs), and their clients are termed Directory User Agents (DUAs). Figure 13.10
shows the software architecture and one of the several possible navigation models, with 
each DUA client process interacting with a single DSA process, which accesses other 
DSAs as necessary to satisfy requests.

Each entry in the DIB consists of a name and a set of attributes. As in other name 
servers, the full name of an entry corresponds to a path through the DIT from the root of 
the tree to the entry. In addition to full or absolute names, a DUA can establish a context, 
which includes a base node, and then use shorter relative names that give the path from 
the base node to the named entry.

Figure 13.11 shows the portion of the Directory Information Tree that includes the 
notional University of Gormenghast in Great Britain, and Figure 13.12 is one of the 
associated DIB entries. The data structure for the entries in the DIB and the DIT is very 
flexible. A DIB entry consists of a set of attributes, where an attribute has a type and one 
or more values. The type of each attribute is denoted by a type name (for example, 
countryName, organizationName, commonName, telephoneNumber, mailbox,
objectClass). New attribute types can be defined if they are required. For each distinct 



Figure 13.11 Part of the X.500 Directory Information Tree

... France (country) Great Britain (country) Greece (country) ...

BT Plc (organization) University of Gormenghast (organization)...
...

Department of Computer Science (organizationalUnit)

Computing Service (organizationalUnit)

Engineering Department (organizationalUnit)

...

...

X.500 Service (root)

Departmental Staff (organizationalUnit)

Research Students (organizationalUnit)

ely (applicationProcess)

...

...

Alice Flintstone (person) Pat King (person) James Healey (person) ......      Janet Papworth (person)...
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type name there is a corresponding type definition, which includes a type description 
and a syntax definition in the ASN.1 notation (a standard notation for syntax definitions) 
defining representations for all permissible values of the type.

DIB entries are classified in a manner similar to the object class structures found 
in object-oriented programming languages. Each entry includes an objectClass attribute, 
which determines the class (or classes) of the object to which an entry refers. 
Organization, organizationalPerson and document are all examples of objectClass

values. Further classes can be defined as they are required. The definition of a class 
determines which attributes are mandatory and which are optional for entries of the 
given class. The definitions of classes are organized in an inheritance hierarchy in which 
all classes except one (called topClass) must contain an objectClass attribute, and the 
value of the objectClass attribute must be the names of one or more classes. If there are 
several objectClass values, the object inherits the mandatory and optional attributes of 
each of the classes. 

The name of a DIB entry (the name that determines its position in the DIT) is 
determined by selecting one or more of its attributes as distinguished attributes. The 
attributes selected for this purpose are referred to as the entry’s Distinguished Name

(DN).
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Now we can consider the methods by which the directory is accessed. There are 
two main types of access request: 

read: An absolute or relative name (a domain name in X.500 terminology) for an 
entry is given, together with a list of attributes to be read (or an indication that all 
attributes are required). The DSA locates the named entry by navigating in the DIT, 
passing requests to other DSA servers where it does not hold relevant parts of the tree. 
It retrieves the required attributes and returns them to the client.

search: This is an attribute-based access request. A base name and a filter expression 
are supplied as arguments. The base name specifies the node in the DIT from which 
the search is to commence; the filter expression is a boolean expression that is to be 
evaluated for every node below the base node. The filter specifies a search criterion: 
a logical combination of tests on the values of any of the attributes in an entry. The 
search command returns a list of names (domain names) for all of the entries below 
the base node for which the filter evaluates to TRUE.

For example, a filter might be constructed and applied to find the 
commonNames of members of staff who occupy room Z42 in the Department of 
Computer Science at the University of Gormenghast (Figure 13.12

Figure 13.12 An X.500 DIB Entry

info
Alice Flintstone, Departmental Staff, Department of Computer Science,

University of Gormenghast, GB

commonName

Alice.L.Flintstone
Alice.Flintstone
Alice Flintstone
A. Flintstone

surname

Flintstone
telephoneNumber

+44 986 33 4604

uid

       alf
mail

       alf@dcs.gormenghast.ac.uk
       Alice.Flintstone@dcs.gormenghast.ac.uk
roomNumber

       Z42
userClass

       Research Fellow

). A read request 
could then be used to obtain any or all of the attributes of those DIB entries. 

Searching can be quite costly when it is applied to large portions of the 
directory tree (which may reside in several servers). Additional arguments can be 
supplied to search to restrict the scope, the time for which the search is allowed to 
continue and the size of the list of entries that is returned.

Administration and updating of the DIB  •  The DSA interface includes operations for 
adding, deleting and modifying entries. Access control is provided for both queries and 
updating operations, so access to parts of the DIT may be restricted to certain users or 
classes of user. 
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The DIB is partitioned, with the expectation that each organization will provide at 
least one server holding the details of the entities in that organization. Portions of the 
DIB may be replicated in several servers.

As a standard (or a ‘recommendation’ in CCITT terminology), X.500 does not 
address implementation issues. However, it is quite clear that any implementation 
involving multiple servers in a wide area network must rely on extensive use of 
replication and caching techniques to avoid too much redirection of queries.

One implementation, described by Rose [1992], is a system developed at 
University College, London, known as QUIPU [Kille 1991]. In this implementation, 
both caching and replication are performed at the level of individual DIB entries, and at 
the level of collections of entries descended from the same node. It is assumed that 
values may become inconsistent after an update, and the time interval in which the 
consistency is restored may be several minutes. This form of update dissemination is 
generally considered acceptable for directory service applications.

Lightweight Directory Access Protocol  •  X.500’s assumption that organizations would 
provide information about themselves in public directories within a common system has 
proved largely unfounded. Equally, its compexity has meant that its uptake has been 
relatively modest. 

A group at the University of Michigan proposed a more lightweight approach 
called the Lightweight Directory Access Protocol (LDAP), in which a DUA accesses 
X.500 directory services directly over TCP/IP instead of the upper layers of the ISO 
protocol stack. This is described in RFC 2251 [Wahl et al. 1997]. LDAP also simplifies 
the interface to X.500 in other ways: for example, it provides a relatively simple API and 
it replaces ASN.1 encoding with textual encoding. 

Although the LDAP specification is based on X.500, LDAP does not require it. 
An implementation may use any other directory server that obeys the simpler LDAP 
specification, as opposed to the X.500 specification. For example, Microsoft’s Active 
Directory Services provides an LDAP interface. 

Unlike X.500, LDAP has been widely adopted, particularly for intranet directory 
services. It provides secure access to directory data through authentication.  

13.6 Summary

This chapter has described the design and implementation of name services in 
distributed systems. Name services store the attributes of objects in a distributed system 
– in particular, their addresses – and return these attributes when a textual name is 
supplied to be looked up.

The main requirements for the name service are an ability to handle an arbitrary 
number of names, a long lifetime, high availability, the isolation of faults and the 
tolerance of mistrust.

The primary design issue is the structure of the name space – the syntactic rules 
governing names. A related issue is the resolution model, which sets out the rules by 
which a multi-component name is resolved to a set of attributes. The set of bound names 
must be managed. Most designs consider the name space to be divided into domains – 
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discrete sections of the name space, each of which is associated with a single authority 
controlling the binding of names within it.

The implementation of the name service may span different organizations and 
user communities. The collection of bindings between names and attributes, in other 
words, is stored at multiple name servers, each of which stores at least part of the set of 
names within a naming domain. The question of navigation therefore arises – by what 
procedure can a name be resolved when the necessary information is stored at several 
sites? The types of navigation that are supported are iterative, multicast, recursive 
server-controlled and non-recursive server-controlled.

Another important aspect of the implementation of a name service is the use of 
replication and caching. Both of these assist in making the service highly available, and 
both also reduce the time taken to resolve a name. 

This chapter has considered two main cases of name service design and 
implementation. The Domain Name System is widely used for naming computers and 
addressing electronic mail across the Internet; it achieves good response times through 
replication and caching. The Global Name Service is a design that has tackled the issue 
of reconfiguring the name space as organizational changes occur. 

The chapter also considered directory services, which provide data about 
matching objects and services when clients supply attribute-based descriptions. X.500 
is a model for directory services that can range in scope from individual organizations 
to global directories. It has been taken up more widely for use in intranets since the 
arrival of the LDAP software.

EXERCISES

13.1 Describe the names (including identifiers) and attributes used in a distributed file service 
such as NFS (see Chapter 12). page 566

13.2 Discuss the problems raised by the use of aliases in a name service, and indicate how, if 
at all, these may be overcome. page 571

13.3 Explain why iterative navigation is necessary in a name service in which different name 
spaces are partially integrated, such as the file-naming scheme provided by NFS.

page 574

13.4 Describe the problem of unbound names in multicast navigation. What is implied by the 
installation of a server for responding to lookups of unbound names? page 575

13.5 How does caching help a name service’s availability? page 576

13.6 Discuss the absence of a syntactic distinction (such as the use of a final ‘.’) between 
absolute and relative names in the DNS. page 571

13.7 Investigate your local configuration of DNS domains and servers. You may find a 
program such as dig or nslookup installed, which enables you to carry out individual 
name server queries. page 578
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13.8 Why do DNS root servers hold entries for two-level names such as yahoo.com and 
purdue.edu, rather than one-level names such as edu and com? page 579

13.9 Which other name server addresses do DNS name servers hold by default, and why?
page 579

13.10 Why might a DNS client choose recursive navigation rather than iterative navigation? 
What is the relevance of the recursive navigation option to concurrency within a name 
server? page 581

13.11 When might a DNS server provide multiple answers to a single name lookup, and why?
page 581

13.12 The GNS does not guarantee that all copies of entries in the naming database are up-to-
date. How are clients of the GNS likely to become aware that they have been given an 
out-of-date entry? Under what circumstances might it be harmful? page 585

13.13 Discuss the potential advantages and drawbacks of the use of an X.500 directory service 
in place of the DNS and the Internet mail delivery programs. Sketch the design of a mail 
delivery system for an internetwork in which all mail users and mail hosts are registered 
in an X.500 database. page 588

13.14 What security issues are liable to be relevant to a directory service such as X500 
operating within an organization such as a university? page 588
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14

TIME AND GLOBAL STATES

14.1 Introduction
14.2 Clocks, events and process states
14.3 Synchronizing physical clocks
14.4 Logical time and logical clocks
14.5 Global states
14.6 Distributed debugging
14.7 Summary

In this chapter, we introduce some topics related to the issue of time in distributed 
systems. Time is an important practical issue. For example, we require computers around 
the world to timestamp electronic commerce transactions consistently. Time is also an 
important theoretical construct in understanding how distributed executions unfold. But 
time is problematic in distributed systems. Each computer may have its own physical 
clock, but the clocks typically deviate, and we cannot synchronize them perfectly. We 
examine algorithms for synchronizing physical clocks approximately and then go on to 
explain logical clocks, including vector clocks, which are a tool for ordering events without 
knowing precisely when they occurred. 

The absence of global physical time makes it difficult to find out the state of our 
distributed programs as they execute. We often need to know what state process A is in 
when process B is in a certain state, but we cannot rely on physical clocks to know what 
is true at the same time. The second half of the chapter examines algorithms to determine 
global states of distributed computations despite the lack of global time. 
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14.1 Introduction

This chapter introduces fundamental concepts and algorithms related to monitoring 
distributed systems as their execution unfolds, and to timing the events that occur in their 
executions.

Time is an important and interesting issue in distributed systems, for several 
reasons. First, time is a quantity we often want to measure accurately. In order to know 
at what time of day a particular event occurred at a particular computer it is necessary to 
synchronize its clock with an authoritative, external source of time. For example, an 
eCommerce transaction involves events at a merchant’s computer and at a bank’s 
computer. It is important, for auditing purposes, that those events are timestamped 
accurately.

Second, algorithms that depend upon clock synchronization have been developed 
for several problems in distribution [Liskov 1993]. These include maintaining the 
consistency of distributed data (the use of timestamps to serialize transactions is 
discussed in Section 16.6), checking the authenticity of a request sent to a server (a 
version of the Kerberos authentication protocol, discussed in Chapter 11, depends on 
loosely synchronized clocks) and eliminating the processing of duplicate updates (see, 
for example, Ladin et al. [1992]).

Measuring time can be problematic due to the existence of multiple frames of 
reference. Einstein demonstrated, in his Special Theory of Relativity, the intriguing 
consequences that follow from the observation that the speed of light is constant for all 
observers, regardless of their relative velocity. He proved from this assumption, among 
other things, that two events that are judged to be simultaneous in one frame of reference 
are not necessarily simultaneous according to observers in other frames of reference that 
are moving relative to it. For example, an observer on the Earth and an observer 
travelling away from the Earth in a spaceship will disagree on the time interval between 
events, the more so as their relative speed increases. 

The relative order of two events can even be reversed for two different observers. 
But this cannot happen if one event causes the other to occur. In that case, the physical 
effect follows the physical cause for all observers, although the time elapsed between 
cause and effect can vary. The timing of physical events was thus proved to be relative 
to the observer, and Newton’s notion of absolute physical time was shown to be without 
foundation. There is no special physical clock in the universe to which we can appeal 
when we want to measure intervals of time.

The notion of physical time is also problematic in a distributed system. This is not 
due to the effects of special relativity, which are negligible or nonexistent for normal 
computers (unless one counts computers travelling in spaceships!). Rather, the problem 
is based on a similar limitation in our ability to timestamp events at different nodes 
sufficiently accurately to know the order in which any pair of events occurred, or 
whether they occurred simultaneously. There is no absolute, global time to which we 
can appeal. And yet we sometimes need to observe distributed systems and establish 
whether certain states of affairs occurred at the same time. For example, in object-
oriented systems we need to be able to establish whether references to a particular object 
no longer exist – whether the object has become garbage (in which case we can free its 
memory). Establishing this requires observations of the states of processes (to find out 
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whether they contain references) and of the communication channels between processes 
(in case messages containing references are in transit).

In the first half of this chapter, we examine methods whereby computer clocks can 
be approximately synchronized, using message passing. We go on to introduce logical 
clocks, including vector clocks, which are used to define an order of events without 
measuring the physical time at which they occurred. 

In the second half, we describe algorithms whose purpose is to capture global 
states of distributed systems as they execute.

14.2 Clocks, events and process states

Chapter 2 presented an introductory model of interaction between the processes within 
a distributed system. Here we refine that model in order to help us to understand how to 
characterize the system’s evolution as it executes, and how to timestamp the events in a 
system’s execution that interest users. We begin by considering how to order and 
timestamp the events that occur at a single process.

 We take a distributed system to consist of a collection  of N processes 
pi i 1 2 N.=  Each process executes on a single processor, and the processors do 
not share memory (Chapter 6 briefly considered the case of processes that share 
memory). Each process pi in  has a state si  that, in general, it transforms as it 
executes. The process’s state includes the values of all the variables within it. Its state 
may also include the values of any objects in its local operating system environment that 
it affects, such as files. We assume that processes cannot communicate with one another 
in any way except by sending messages through the network. So, for example, if the 
processes operate robot arms connected to their respective nodes in the system, then they 
are not allowed to communicate by shaking one another’s robot hands!

As each process pi  executes it takes a series of actions, each of which is either a 
message send or receive operation, or an operation that transforms pi ’s state – one that 
changes one or more of the values in si.  In practice, we may choose to use a high-level 
description of the actions, according to the application. For example, if the processes in 

are engaged in an eCommerce application, then the actions may be ones such as 
‘client dispatched order message’ or ‘merchant server recorded transaction to log’.

We define an event to be the occurrence of a single action that a process carries 
out as it executes – a communication action or a state-transforming action. The sequence 
of events within a single process pi  can be placed in a single, total ordering, which we 
denote by the relation i between the events. That is, e i e'  if and only if the event e
occurs before e  at pi . This ordering is well defined, whether or not the process is multi-
threaded, since we have assumed that the process executes on a single processor.

Now we can define the history of process pi  to be the series of events that take 
place within it, ordered as we have described by the relation i:

history(pi hi <ei
0

ei
1

ei
2

>= =

Clocks •  We have seen how to order the events at a process, but not how to timestamp
them – i.e., to assign to them a date and time of day. Computers each contain their own 
physical clocks. These clocks are electronic devices that count oscillations occurring in 
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a crystal at a definite frequency, and typically divide this count and store the result in a 
counter register. Clock devices can be programmed to generate interrupts at regular 
intervals in order that, for example, timeslicing can be implemented; however, we shall 
not concern ourselves with this aspect of clock operation. 

The operating system reads the node’s hardware clock value, Hi t , scales it and 
adds an offset so as to produce a software clock Ci t Hi t +=  that approximately 
measures real, physical time t for process pi . In other words, when the real time in an 
absolute frame of reference is t, Ci t  is the reading on the software clock. For example, 
Ci t  could be the 64-bit value of the number of nanoseconds that have elapsed at time 
t since a convenient reference time. In general, the clock is not completely accurate, so 
Ci t  will differ from t. Nonetheless, if Ci  behaves sufficiently well (we shall examine 
the notion of clock correctness shortly), we can use its value to timestamp any event at 
pi . Note that successive events will correspond to different timestamps only if the clock

resolution – the period between updates of the clock value – is smaller than the time 
interval between successive events. The rate at which events occur depends on such 
factors as the length of the processor instruction cycle.

Clock skew and clock drift •  Computer clocks, like any others, tend not to be in perfect 
agreement (Figure 14.1

Figure 14.1  Skew between computer clocks in a distributed system

Network

). The instantaneous difference between the readings of any two 
clocks is called their skew. Also, the crystal-based clocks used in computers are, like any 
other clocks, subject to clock drift, which means that they count time at different rates, 
and so diverge. The underlying oscillators are subject to physical variations, with the 
consequence that their frequencies of oscillation differ. Moreover, even the same 
clock’s frequency varies with temperature. Designs exist that attempt to compensate for 
this variation, but they cannot eliminate it. The difference in the oscillation period 
between two clocks might be extremely small, but the difference accumulated over 
many oscillations leads to an observable difference in the counters registered by two 
clocks, no matter how accurately they were initialized to the same value. A clock’s drift 

rate is the change in the offset (difference in reading) between the clock and a nominal 
perfect reference clock per unit of time measured by the reference clock. For ordinary 
clocks based on a quartz crystal this is about 10–6 seconds/second, giving a difference 
of 1 second every 1,000,000 seconds, or 11.6 days. The drift rate of ‘high-precision’ 
quartz clocks is about 10–7 or 10–8.

Coordinated Universal Time •  Computer clocks can be synchronized to external sources 
of highly accurate time. The most accurate physical clocks use atomic oscillators, whose 
drift rate is about one part in 1013. The output of these atomic clocks is used as the 
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standard for elapsed real time, known as International Atomic Time. Since 1967, the 
standard second has been defined as 9,192,631,770 periods of transition between the 
two hyperfine levels of the ground state of Caesium-133 (Cs133).

Seconds and years and other time units that we use are rooted in astronomical 
time. They were originally defined in terms of the rotation of the Earth on its axis and 
its rotation about the Sun. However, the period of the Earth’s rotation about its axis is 
gradually getting longer, primarily because of tidal friction; atmospheric effects and 
convection currents within the Earth’s core also cause short-term increases and 
decreases in the period. So astronomical time and atomic time have a tendency to get out 
of step.

Coordinated Universal Time – abbreviated as UTC (from the French equivalent) 
– is an international standard for timekeeping. It is based on atomic time, but a so-called 
‘leap second’ is inserted – or, more rarely, deleted – occasionally to keep it in step with 
astronomical time. UTC signals are synchronized and broadcast regularly from land-
based radio stations and satellites covering many parts of the world. For example, in the 
USA, the radio station WWV broadcasts time signals on several shortwave frequencies. 
Satellite sources include the Global Positioning System (GPS).

Receivers are available commercially. Compared with ‘perfect’ UTC, the signals 
received from land-based stations have an accuracy on the order of 0.1–10 milliseconds, 
depending on the station used. Signals received from GPS satellites are accurate to about 
1 microsecond. Computers with receivers attached can synchronize their clocks with 
these timing signals.

14.3 Synchronizing physical clocks

In order to know at what time of day events occur at the processes in our distributed 
system  – for example, for accountancy purposes – it is necessary to synchronize the 
processes’ clocks, Ci , with an authoritative, external source of time. This is external

synchronization. And if the clocks Ci  are synchronized with one another to a known 
degree of accuracy, then we can measure the interval between two events occurring at 
different computers by appealing to their local clocks, even though they are not 
necessarily synchronized to an external source of time. This is internal synchronization.
We define these two modes of synchronization more closely as follows, over an interval 
of real time I:

External synchronization: For a synchronization bound D 0 , and for a source S of 
UTC time, S t Ci t– < D, for i 1 2 N=  and for all real times t in I. Another 
way of saying this is that the clocks Ci  are accurate to within the bound D.

Internal synchronization: For a synchronization bound D 0 , Ci t Cj t– D

for i j 1 2 N= , and for all real times t in I. Another way of saying this is that 
the clocks Ci  agree within the bound D.

Clocks that are internally synchronized are not necessarily externally synchronized, 
since they may drift collectively from an external source of time even though they agree 
with one another. However, it follows from the definitions that if the system  is 
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externally synchronized with a bound D, then the same system is internally 
synchronized with a bound of 2D.

Various notions of correctness for clocks have been suggested. It is common to 
define a hardware clock H to be correct if its drift rate falls within a known bound 
(a value derived from one supplied by the manufacturer, such as 10–6 seconds/second). 
This means that the error in measuring the interval between real times t and t  ( t t ) is 
bounded:

1 – t t– H t H t 1 + t t––

This condition forbids jumps in the value of hardware clocks (during normal operation). 
Sometimes we also require our software clocks to obey the condition but a weaker 
condition of monotonicity may suffice. Monotonicity is the condition that a clock C only 
ever advances:

t t C t C t

For example, the UNIX make facility is a tool that is used to compile only those source 
files that have been modified since they were last compiled. The modification dates of 
each corresponding pair of source and object files are compared to determine this 
condition. If a computer whose clock was running fast set its clock back after compiling 
a source file but before the file was changed, the source file might appear to have been 
modified prior to the compilation. Erroneously, make will not recompile the source file.

We can achieve monotonicity despite the fact that a clock is found to be running 
fast. We need only change the rate at which updates are made to the time as given to 
applications. This can be achieved in software without changing the rate at which the 
underlying hardware clock ticks – recall that Ci t Hi t += , where we are free to 
choose the values of  and .

A hybrid correctness condition that is sometimes applied is to require that a clock 
obeys the monotonicity condition, and that its drift rate is bounded between 
synchronization points, but to allow the clock value to jump ahead at synchronization 
points. 

A clock that does not keep to whatever correctness conditions apply is defined to 
be faulty. A clock’s crash failure is said to occur when the clock stops ticking altogether; 
any other clock failure is an arbitrary failure. A historical example of an arbitrary failure 
is that of a clock with the ‘Y2K bug’, which broke the monotonicity condition by 
registering the date after 31 December 1999 as 1 January 1900 instead of 2000; another 
example is a clock whose batteries are very low and whose drift rate suddenly becomes 
very large.

Note that clocks do not have to be accurate to be correct, according to the 
definitions. Since the goal may be internal rather than external synchronization, the 
criteria for correctness are only concerned with the proper functioning of the clock’s 
‘mechanism’, not its absolute setting.

We now describe algorithms for external synchronization and for internal 
synchronization.
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14.3.1 Synchronization in a synchronous system

We begin by considering the simplest possible case: of internal synchronization between 
two processes in a synchronous distributed system. In a synchronous system, bounds are 
known for the drift rate of clocks, the maximum message transmission delay, and the 
time required to execute each step of a process (see Section 2.4.1). 

One process sends the time t on its local clock to the other in a message m. In 
principle, the receiving process could set its clock to the time t Ttrans+ , where Ttrans  is 
the time taken to transmit m between them. The two clocks would then agree (since the 
aim is internal synchronization, it does not matter whether the sending process’s clock 
is accurate).

Unfortunately, Ttrans  is subject to variation and is unknown. In general, other 
processes are competing for resources with the processes to be synchronized at their 
respective nodes, and other messages compete with m for the network resources. 
Nonetheless, there is always a minimum transmission time, min, that would be obtained 
if no other processes executed and no other network traffic existed; min can be measured 
or conservatively estimated. 

In a synchronous system, by definition, there is also an upper bound max on the 
time taken to transmit any message. Let the uncertainty in the message transmission time 
be u, so that u max min–= . If the receiver sets its clock to be t min+ , then the 
clock skew may be as much as u, since the message may in fact have taken time max to 
arrive. Similarly, if it sets its clock to t max+ , the skew may again be as large as u. If, 
however, it sets its clock to the halfway point, t max min+ 2+ , then the skew is at 
most u 2 . In general, for a synchronous system, the optimum bound that can be 
achieved on clock skew when synchronizing N clocks is u 1 1 N–  [Lundelius and 
Lynch 1984].

Most distributed systems found in practice are asynchronous: the factors leading 
to message delays are not bounded in their effect, and there is no upper bound max on 
message transmission delays. This is particularly so for the Internet. For an 
asynchronous system, we may say only that Ttrans min x+= , where x  0. The value 
of x is not known in a particular case, although a distribution of values may be 
measurable for a particular installation.

14.3.2 Cristian’s method for synchronizing clocks

Cristian [1989] suggested the use of a time server, connected to a device that receives 
signals from a source of UTC, to synchronize computers externally. Upon request, the 
server process S supplies the time according to its clock, as shown in Figure 14.2

Figure 14.2  Clock synchronization using a time server

m r

m t
Time Server, SP

mr
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p Time server, S

.



602 CHAPTER 14  TIME AND GLOBAL STATES

Cristian observed that while there is no upper bound on message transmission delays in 
an asynchronous system, the round-trip times for messages exchanged between pairs of 
processes are often reasonably short – a small fraction of a second. He describes the 
algorithm as probabilistic: the method achieves synchronization only if the observed 
round-trip times between client and server are sufficiently short compared with the 
required accuracy.

A process p requests the time in a message mr , and receives the time value t in a 
message mt  (t is inserted in mt  at the last possible point before transmission from S’s
computer). Process p records the total round-trip time Tround  taken to send the request 
mr  and receive the reply mt . It can measure this time with reasonable accuracy if its 
rate of clock drift is small. For example, the round-trip time should be on the order of 
1–10 milliseconds on a LAN, over which time a clock with a drift rate of 10–6

seconds/second varies by at most 10–5 milliseconds. 
A simple estimate of the time to which p should set its clock is t Tround 2+ ,

which assumes that the elapsed time is split equally before and after S placed t in mt .
This is normally a reasonably accurate assumption, unless the two messages are 
transmitted over different networks. If the value of the minimum transmission time min

is known or can be conservatively estimated, then we can determine the accuracy of this 
result as follows. 

The earliest point at which S could have placed the time in mt  was min after p
dispatched mr . The latest point at which it could have done this was min before mt
arrived at p. The time by S’s clock when the reply message arrives is therefore in the 
range t min+  t Tround min–+[ , ] . The width of this range is Tround 2min– , so the 
accuracy is ± Tround 2 min– .

Variability can be dealt with to some extent by making several requests to S

(spacing the requests so that transitory congestion can clear) and taking the minimum 
value of Tround  to give the most accurate estimate. The greater the accuracy required, 
the smaller the probability of achieving it. This is because the most accurate results are 
those in which both messages are transmitted in a time close to min – an unlikely event 
in a busy network.

Discussion of Cristian’s algorithm •  As described, Cristian’s method suffers from the 
problem associated with all services implemented by a single server: that the single time 
server might fail and thus render synchronization temporarily impossible. Cristian 
suggested, for this reason, that time should be provided by a group of synchronized time 
servers, each with a receiver for UTC time signals. For example, a client could multicast 
its request to all servers and use only the first reply obtained.

Note that a faulty time server that replied with spurious time values, or an imposter 
time server that replied with deliberately incorrect times, could wreak havoc in a 
computer system. These problems were beyond the scope of the work described by 
Cristian [1989], which assumes that sources of external time signals are self-checking. 
Cristian and Fetzer [1994] describe a family of probabilistic protocols for internal clock 
synchronization, each of which tolerates certain failures. Srikanth and Toueg [1987] 
first described an algorithm that is optimal with respect to the accuracy of the 
synchronized clocks, while tolerating some failures. Dolev et al. [1986] showed that if 
f is the number of faulty clocks out of a total of N, then we must have N 3f  if the other, 
correct, clocks are still to be able to achieve agreement. The problem of dealing with 
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faulty clocks is partially addressed by the Berkeley algorithm, which is described next. 
The problem of malicious interference with time synchronization can be dealt with by 
authentication techniques.

14.3.3 The Berkeley algorithm

Gusella and Zatti [1989] describe an algorithm for internal synchronization that they 
developed for collections of computers running Berkeley UNIX. In it, a coordinator 
computer is chosen to act as the master. Unlike in Cristian’s protocol, this computer 
periodically polls the other computers whose clocks are to be synchronized, called 
slaves. The slaves send back their clock values to it. The master estimates their local 
clock times by observing the round-trip times (similarly to Cristian’s technique), and it 
averages the values obtained (including its own clock’s reading). The balance of 
probabilities is that this average cancels out the individual clocks’ tendencies to run fast 
or slow. The accuracy of the protocol depends upon a nominal maximum round-trip time 
between the master and the slaves. The master eliminates any occasional readings 
associated with larger times than this maximum.

Instead of sending the updated current time back to the other computers – which 
would introduce further uncertainty due to the message transmission time – the master 
sends the amount by which each individual slave’s clock requires adjustment. This can 
be a positive or negative value.

The Berkeley algorithm eliminates readings from faulty clocks. Such clocks could 
have a significant adverse effect if an ordinary average was taken so instead the master 
takes a fault-tolerant average. That is, a subset is chosen of clocks that do not differ from 
one another by more than a specified amount, and the average is taken of readings from 
only these clocks. 

Gusella and Zatti describe an experiment involving 15 computers whose clocks 
were synchronized to within about 20–25 milliseconds using their protocol. The local 
clocks’ drift rates were measured to be less than 2 10–5, and the maximum round-trip 
time was taken to be 10 milliseconds.

Should the master fail, then another can be elected to take over and function 
exactly as its predecessor. Section 15.3 discusses some general-purpose election 
algorithms. Note that these are not guaranteed to elect a new master in bounded time, so 
the difference between two clocks would be unbounded if they were used.

14.3.4 The Network Time Protocol

Cristian’s method and the Berkeley algorithm are intended primarily for use within 
intranets. The Network Time Protocol (NTP) [Mills 1995] defines an architecture for a 
time service and a protocol to distribute time information over the Internet. 

NTP’s chief design aims and features are as follows:

To provide a service enabling clients across the Internet to be synchronized 

accurately to UTC: Although large and variable message delays are encountered in 
Internet communication, NTP employs statistical techniques for the filtering of 
timing data and it discriminates between the quality of timing data from different 
servers. 
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To provide a reliable service that can survive lengthy losses of connectivity: There
are redundant servers and redundant paths between the servers. The servers can 
reconfigure so as to continue to provide the service if one of them becomes 
unreachable.

To enable clients to resynchronize sufficiently frequently to offset the rates of drift 

found in most computers: The service is designed to scale to large numbers of clients 
and servers. 

To provide protection against interference with the time service, whether malicious 

or accidental: The time service uses authentication techniques to check that timing 
data originate from the claimed trusted sources. It also validates the return addresses 
of messages sent to it.

The NTP service is provided by a network of servers located across the Internet. Primary 

servers are connected directly to a time source such as a radio clock receiving UTC; 
secondary servers are synchronized, ultimately, with primary servers. The servers are 
connected in a logical hierarchy called a synchronization subnet (see Figure 14.3

Figure 14.3 An example synchronization subnet in an NTP implementation
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 Arrows denote synchronization control, numbers denote strata.

),
whose levels are called strata. Primary servers occupy stratum 1: they are at the root. 
Stratum 2 servers are secondary servers that are synchronized directly with the primary 
servers; stratum 3 servers are synchronized with stratum 2 servers, and so on. The 
lowest-level (leaf) servers execute in users’ workstations. 

The clocks belonging to servers with high stratum numbers are liable to be less 
accurate than those with low stratum numbers, because errors are introduced at each 
level of synchronization. NTP also takes into account the total message round-trip 
delays to the root in assessing the quality of timekeeping data held by a particular server.

The synchronization subnet can reconfigure as servers become unreachable or 
failures occur. If, for example, a primary server’s UTC source fails, then it can become 
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a stratum 2 secondary server. If a secondary server’s normal source of synchronization 
fails or becomes unreachable, then it may synchronize with another server.

NTP servers synchronize with one another in one of three modes: multicast, 
procedure-call and symmetric mode. Multicast mode is intended for use on a high-speed 
LAN. One or more servers periodically multicasts the time to the servers running in 
other computers connected by the LAN, which set their clocks assuming a small delay. 
This mode can achieve only relatively low accuracies, but ones that nonetheless are 
considered sufficient for many purposes.

Procedure-call mode is similar to the operation of Cristian’s algorithm, described 
in Section 14.3.2. In this mode, one server accepts requests from other computers, which 
it processes by replying with its timestamp (current clock reading). This mode is suitable 
where higher accuracies are required than can be achieved with multicast, or where 
multicast is not supported in hardware. For example, file servers on the same or a 
neighbouring LAN that need to keep accurate timing information for file accesses could 
contact a local server in procedure-call mode. 

Finally, symmetric mode is intended for use by the servers that supply time 
information in LANs and by the higher levels (lower strata) of the synchronization 
subnet, where the highest accuracies are to be achieved. A pair of servers operating in 
symmetric mode exchange messages bearing timing information. Timing data are 
retained as part of an association between the servers that is maintained in order to 
improve the accuracy of their synchronization over time.

In all modes, messages are delivered unreliably, using the standard UDP Internet 
transport protocol. In procedure-call mode and symmetric mode, processes exchange 
pairs of messages. Each message bears timestamps of recent message events: the local 
times when the previous NTP message between the pair was sent and received, and the 
local time when the current message was transmitted. The recipient of the NTP message 
notes the local time when it receives the message. The four times Ti 3– , Ti 2– , Ti 1–
and Ti  are shown in Figure 14.4

Figure 14.4 Messages exchanged between a pair of NTP peers
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 for the messages m and m' sent between servers A and 
B. Note that in symmetric mode, unlike in Cristian’s algorithm, there can be a non-
negligible delay between the arrival of one message and the dispatch of the next. Also, 
messages may be lost, but the three timestamps carried by each message are nonetheless 
valid.



606 CHAPTER 14  TIME AND GLOBAL STATES

For each pair of messages sent between two servers the NTP calculates an offset

oi , which is an estimate of the actual offset between the two clocks, and a delay di ,
which is the total transmission time for the two messages. If the true offset of the clock 
at B relative to that at A is o, and if the actual transmission times for m and m' are t and 
t', respectively, then we have:

Ti 2– Ti 3– t o+ +=  and Ti Ti 1– t o–+=

This leads to:

di t t+ Ti 2– Ti 3–– Ti Ti 1––+= =

and:

o oi t t– 2+= , where oi Ti 2– Ti 3–– Ti 1–+ Ti– 2=

Using the fact that t t 0 , it can be shown that oi di 2– o oi di 2+ . Thus oi  is 
an estimate of the offset, and di  is a measure of the accuracy of this estimate.

NTP servers apply a data filtering algorithm to successive pairs <oi di>,  which 
estimates the offset o and calculates the quality of this estimate as a statistical quantity 
called the filter dispersion. A relatively high filter dispersion represents relatively 
unreliable data. The eight most recent pairs <oi di>  are retained. As with Cristian’s 
algorithm, the value of oj  that corresponds to the minimum value dj is chosen to estimate 
o.

The value of the offset derived from communication with a single source is not 
necessarily used by itself to control the local clock, however. In general, an NTP server 
engages in message exchanges with several of its peers. In addition to data filtering 
applied to exchanges with each single peer, NTP applies a peer-selection algorithm. This 
examines the values obtained from exchanges with each of several peers, looking for 
relatively unreliable values. The output from this algorithm may cause a server to 
change the peer that it primarily uses for synchronization. 

Peers with lower stratum numbers are more favoured than those in higher strata 
because they are ‘closer’ to the primary time sources. Also, those with the lowest 
synchronization dispersion are relatively favoured. This is the sum of the filter 
dispersions measured between the server and the root of the synchronization subnet. 
(Peers exchange synchronization dispersions in messages, allowing this total to be 
calculated.)

NTP employs a phase lock loop model [Mills 1995], which modifies the local 
clock’s update frequency in accordance with observations of its drift rate. To take a 
simple example, if a clock is discovered always to gain time at the rate of, say, four 
seconds per hour, then its frequency can be reduced slightly (in software or hardware) 
to compensate for this. The clock’s drift in the intervals between synchronization is thus 
reduced.

Mills quotes synchronization accuracies on the order of tens of milliseconds over 
Internet paths, and one millisecond on LANs.
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14.4 Logical time and logical clocks

From the point of view of any single process, events are ordered uniquely by times 
shown on the local clock. However, as Lamport [1978] pointed out, since we cannot 
synchronize clocks perfectly across a distributed system, we cannot in general use 
physical time to find out the order of any arbitrary pair of events occurring within it.

In general, we can use a scheme that is similar to physical causality but that applies 
in distributed systems to order some of the events that occur at different processes. This 
ordering is based on two simple and intuitively obvious points:

• If two events occurred at the same process pi i 1 2 N= , then they 
occurred in the order in which pi  observes them – this is the order i that we 
defined above. 

• Whenever a message is sent between processes, the event of sending the message 
occurred before the event of receiving the message.

Lamport called the partial ordering obtained by generalizing these two relationships the 
happened-before relation. It is also sometimes known as the relation of causal ordering

or potential causal ordering.
We can define the happened-before relation, denoted by , as follows:

HB1: If process pi : e i e', then e e .

HB2: For any message m, send(m) receive(m)
– where send(m) is the event of sending the message, and receive(m)
is the event of receiving it.

HB3: If e, e and e are events such that e e  and e e , then e e .

Thus, if e and e  are events, and if e e , then we can find a series of events 
e1 e2 en  occurring at one or more processes such that e e1=  and e en= , and 
for i 1 2 N 1–=  either HB1 or HB2 applies between ei  and ei 1+

·
. That is, either 

they occur in succession at the same process, or there is a message m such that ei  = 
send(m) and ei 1+  = receive(m). The sequence of events e1 e2 en  need not be 
unique.

The relation is illustrated for the case of three processes,  p1 , p2 and p3 , in 
Figure 14.5

Figure 14.5 Events occurring at three processes
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. It can be seen that a b, since the events occur in this order at process p1
(a i b), and similarly c d. Furthermore, b c, since these events are the sending and 
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reception of message m1 , and similarly d f. Combining these relations, we may also 
say that, for example, a f.

It can also be seen from Figure 14.5 that not all events are related by the relation 
. For example, a e/  and e a/ , since they occur at different processes, and there is 

no chain of messages intervening between them. We say that events such as a and e that 
are not ordered by  are concurrent and write this a e .

The relation  captures a flow of data intervening between two events. Note, 
however, that in principle data can flow in ways other than by message passing. For 
example, if Smith enters a command to his process to send a message, then telephones 
Jones, who commands her process to issue another message, the issuing of the first 
message clearly happened-before that of the second. Unfortunately, since no network 
messages were sent between the issuing processes, we cannot model this type of 
relationship in our system.

Another point to note is that if the happened-before relation holds between two 
events, then the first might or might not actually have caused the second. For example, 
if a server receives a request message and subsequently sends a reply, then clearly the 
reply transmission is caused by the request transmission. However, the relation 
captures only potential causality, and two events can be related by  even though there 
is no real connection between them. A process might, for example, receive a message 
and subsequently issue another message, but one that it issues every five minutes 
anyway and that bears no specific relation to the first message. No actual causality has 
been involved, but the relation  would order these events.

Logical clocks •  Lamport [1978] invented a simple mechanism by which the happened-
before ordering can be captured numerically, called a logical clock. A Lamport logical 
clock is a monotonically increasing software counter, whose value need bear no 
particular relationship to any physical clock. Each process pi  keeps its own logical 
clock, Li , which it uses to apply so-called Lamport timestamps to events. We denote the 
timestamp of event e at pi  by Li e , and by L e  we denote the timestamp of event e
at whatever process it occurred at.

To capture the happened-before relation , processes update their logical clocks 
and transmit the values of their logical clocks in messages as follows:

LC1: Li  is incremented before each event is issued at process pi :
Li := Li 1.+

LC2: (a) When a process pi  sends a message m, it piggybacks on m the value 
t Li= .

(b) On receiving (m, t), a process pj  computes Lj := max Lj t  and then 
applies LC1 before timestamping the event receive(m).

Although we increment clocks by 1, we could have chosen any positive value. It can 
easily be shown, by induction on the length of any sequence of events relating two 
events e and e , that e e L e L e .

Note that the converse is not true. If L e L e , then we cannot infer that 
e e . In Figure 14.6 we illustrate the use of logical clocks for the example given in 
Figure 14.5. Each of the processes p1 , p2  and p3  has its logical clock initialized to 0. 
The clock values given are those immediately after the event to which they are adjacent. 
Note that, for example, L b L e  but b e .
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Totally ordered logical clocks •  Some pairs of distinct events, generated by different 
processes, have numerically identical Lamport timestamps. However, we can create a 
total order on the set of events – that is, one for which all pairs of distinct events are 
ordered – by taking into account the identifiers of the processes at which events occur. 
If e is an event occurring at pi  with local timestamp Ti

, and e  is an event occurring at 
pj  with local timestamp Tj , we define the global logical timestamps for these events to 
be Ti i  and Tj j , respectively. And we define Ti i Tj j  if and only if either 
Ti Tj , or Ti Tj=  and i j . This ordering has no general physical significance 
(because process identifiers are arbitrary), but it is sometimes useful. Lamport used it, 
for example, to order the entry of processes to a critical section. 

Vector clocks •  Mattern [1989] and Fidge [1991] developed vector clocks to overcome 
the shortcoming of Lamport’s clocks: the fact that from L e L e  we cannot 
conclude that e e

·
. A vector clock for a system of N processes is an array of N

integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local 
events. Like Lamport timestamps, processes piggyback vector timestamps on the 
messages they send to one another, and there are simple rules for updating the clocks:

VC1: Initially, Vi j 0= , for i j 1 2 N= .

VC2: Just before pi  timestamps an event, it sets Vi i :=Vi i 1.+

VC3: pi  includes the value t Vi=  in every message it sends.

VC4: When pi  receives a timestamp t in a message, it sets 
Vi j :=  max Vi j t j , for j 1 2 N= . Taking the component-
wise maximum of two vector timestamps in this way is known as a merge

operation.

For a vector clock Vi , Vi i  is the number of events that pi  has timestamped, and 
Vi j  j i  is the number of events that have occurred at pj  that have potentially 
affected pi . (Process pj  may have timestamped more events by this point, but no 
information has flowed to pi  about them in messages as yet.)
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We may compare vector timestamps as follows:

V V   iff  V j V j= = for j 1 2 N=

V V   iff  V j V j for j 1 2 N=

V V   iff  V V V V

Figure 14.7 Vector timestamps for the events shown in Figure 14.5
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Let V e  be the vector timestamp applied by the process at which e occurs. It is 
straightforward to show, by induction on the length of any sequence of events relating 
two events e and e , that e e V e V e . Exercise 10.13 leads the reader to 
show the converse: if V e V e , then e e .

Figure 14.7 shows the vector timestamps of the events of Figure 14.5. It can be 
seen, for example, that V a V f , which reflects the fact that a f. Similarly, we 
can tell when two events are concurrent by comparing their timestamps. For example, 
that c e  can be seen from the facts that neither V c V e  nor V e V c .

Vector timestamps have the disadvantage, compared with Lamport timestamps, of 
taking up an amount of storage and message payload that is proportional to N, the 
number of processes. Charron-Bost [1991] showed that, if we are to be able to tell 
whether or not two events are concurrent by inspecting their timestamps, then the 
dimension N is unavoidable. However, techniques exist for storing and transmitting 
smaller amounts of data, at the expense of the processing required to reconstruct 
complete vectors. Raynal and Singhal [1996] give an account of some of these 
techniques. They also describe the notion of matrix clocks, whereby processes keep 
estimates of other processes’ vector times as well as their own.

14.5 Global states

In this and the next section we examine the problem of finding out whether a particular 
property is true of a distributed system as it executes. We begin by giving the examples 
of distributed garbage collection, deadlock detection, termination detection and 
debugging:
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Distributed garbage collection: An object is considered to be garbage if there are no 
longer any references to it anywhere in the distributed system. The memory taken up 
by that object can be reclaimed once it is known to be garbage. To check that an 
object is garbage, we must verify that there are no references to it anywhere in the 
system. In Figure 14.8(a), process p1  has two objects that both have references – one 
has a reference within p1  itself, and p2  has a reference to the other. Process p2  has 
one garbage object, with no references to it anywhere in the system. It also has an 
object for which neither p1  nor p2  has a reference, but there is a reference to it in a 
message that is in transit between the processes. This shows that when we consider 
properties of a system, we must include the state of communication channels as well 
as the state of the processes.

Figure 14.8 Detecting global properties
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Distributed deadlock detection: A distributed deadlock occurs when each of a 
collection of processes waits for another process to send it a message, and where 
there is a cycle in the graph of this ‘waits-for’ relationship. Figure 14.8(b) shows that 
processes p1  and p2  are each waiting for a message from the other, so this system 
will never make progress.

Distributed termination detection:  The problem here is how to detect that a 
distributed algorithm has terminated. Detecting termination is a problem that sounds 
deceptively easy to solve: it seems at first only necessary to test whether each process 
has halted. To see that this is not so, consider a distributed algorithm executed by two 
processes p1  and p2 , each of which may request values from the other. 
Instantaneously, we may find that a process is either active or passive – a passive 
process is not engaged in any activity of its own but is prepared to respond with a 
value requested by the other. Suppose we discover that p1  is passive and that p2  is 



612 CHAPTER 14  TIME AND GLOBAL STATES

passive (Figure 14.8c). To see that we may not conclude that the algorithm has 
terminated, consider the following scenario: when we tested p1  for passivity, a 
message was on its way from p2 , which became passive immediately after sending 
it. On receipt of the message, p1  became active again – after we had found it to be 
passive. The algorithm had not terminated. 

The phenomena of termination and deadlock are similar in some ways, but they 
are different problems. First, a deadlock may affect only a subset of the processes in 
a system, whereas all processes must have terminated. Second, process passivity is 
not the same as waiting in a deadlock cycle: a deadlocked process is attempting to 
perform a further action, for which another process waits; a passive process is not 
engaged in any activity.

Distributed debugging: Distributed systems are complex to debug [Bonnaire et al.
1995], and care needs to be taken in establishing what occurred during the execution. 
For example, suppose Smith has written an application in which each process pi
contains a variable xi  ( i 1 2 N= ). The variables change as the program 
executes, but they are required always to be within a value of one another. 
Unfortunately, there is a bug in the program, and Smith suspects that under certain 
circumstances xi xj–  for some i and j, breaking her consistency constraints. Her 
problem is that this relationship must be evaluated for values of the variables that 
occur at the same time.

Each of the problems above has specific solutions tailored to it; but they all illustrate the 
need to observe a global state, and so motivate a general approach.

14.5.1 Global states and consistent cuts

It is possible in principle to observe the succession of states of an individual process, but 
the question of how to ascertain a global state of the system – the state of the collection 
of processes – is much harder to address. 

The essential problem is the absence of global time. If all processes had perfectly 
synchronized clocks, then we could agree on a time at which each process would record 
its state – the result would be an actual global state of the system. From the collection of 
process states we could tell, for example, whether the processes were deadlocked. But 
we cannot achieve perfect clock synchronization, so this method is not available to us. 

So we might ask whether we can assemble a meaningful global state from local 
states recorded at different real times. The answer is a qualified ‘yes’, but in order to see 
this we must first introduce some definitions.

Let us return to our general system  of N processes pi  ( i 1 2 N= ), whose 
execution we wish to study. We said above that a series of events occurs at each process, 
and that we may characterize the execution of each process by its history:

history(pi hi <ei
0

ei
1

ei
2

>= =

Similarly, we may consider any finite prefix of the process’s history:

hi
k

<ei
0

ei
1

ei
k
>=
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Each event either is an internal action of the process (for example, the updating of one 
of its variables), or is the sending or receipt of a message over the communication 
channels that connect the processes.

In principle, we can record what occurred in ’s execution. Each process can 
record the events that take place there, and the succession of states it passes through. We 
denote by si

k  the state of process pi  immediately before the kth event occurs, so that si
0

is the initial state of pi . We noted in the examples above that the state of the 
communication channels is sometimes relevant. Rather than introducing a new type of 
state, we make the processes record the sending or receipt of all messages as part of their 
state. If we find that process pi  has recorded that it sent a message m to process 
pj i j , then by examining whether pj  has received that message we can infer whether 
or not m is part of the state of the channel between pi  and pj .

We can also form the global history of as the union of the individual process 
histories:

H h0 h1 hN 1–=

Mathematically, we can take any set of states of the individual processes to form a global 
state S s1 s2 sN= . But which global states are meaningful – that is, which 
process states could have occurred at the same time? A global state corresponds to initial 
prefixes of the individual process histories. A cut of the system’s execution is a subset 
of its global history that is a union of prefixes of process histories:

C h1
c1 h2

c2 hN

cN=

The state si  in the global state S corresponding to the cut C is that of pi  immediately 
after the last event processed by pi  in the cut – ei

ci  ( i 1 2 N= ). The set of events 
{ei

ci : i 1 2 N= } is called the frontier of the cut.
Consider the events occurring at processes p1  and p2  shown in Figure 14.9

Figure 14.9 Cuts
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The leftmost cut is inconsistent. This is because at p2  it includes the receipt of the 
message m1 , but at p1  it does not include the sending of that message. This is showing 
an ‘effect’ without a ‘cause’. The actual execution never was in a global state 
corresponding to the process states at that frontier, and we can in principle tell this by 
examining the relation between events. By contrast, the rightmost cut is consistent.
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It includes both the sending and the receipt of message m1  and the sending but not the 
receipt of message m2 . That is consistent with the actual execution – after all, the 
message took some time to arrive.

A cut C is consistent if, for each event it contains, it also contains all the events 
that happened-before that event:

For all events e C , f e f C

A consistent global state is one that corresponds to a consistent cut. We may 
characterize the execution of a distributed system as a series of transitions between 
global states of the system: 

S0 S1 S2

In each transition, precisely one event occurs at some single process in the system. This 
event is either the sending of a message, the receipt of a message or an internal event. If 
two events happened simultaneously, we may nonetheless deem them to have occurred 
in a definite order – say, ordered according to process identifiers. (Events that occur 
simultaneously must be concurrent: neither happened-before the other.) A system 
evolves in this way through consistent global states.

A run is a total ordering of all the events in a global history that is consistent with 
each local history’s ordering, i i 1 2 N= . A linearization or consistent run is 
an ordering of the events in a global history that is consistent with this happened-before
relation on H. Note that a linearization is also a run. 

Not all runs pass through consistent global states, but all linearizations pass only 
through consistent global states. We say that a state S  is reachable from a state S if 
there is a linearization that passes through S and then S .

 Sometimes we may alter the ordering of concurrent events within a linearization, 
and derive a run that still passes through only consistent global states. For example, if 
two successive events in a linearization are the receipt of messages by two processes, 
then we may swap the order of these two events.

14.5.2 Global state predicates, stability, safety and liveness

Detecting a condition such as deadlock or termination amounts to evaluating a global 

state predicate. A global state predicate is a function that maps from the set of global 
states of processes in the system to {True, False}. One of the useful characteristics 
of the predicates associated with the state of an object being garbage, of the system being 
deadlocked or the system being terminated is that they are all stable: once the system 
enters a state in which the predicate is True, it remains True in all future states reachable 
from that state. By contrast, when we monitor or debug an application we are often 
interested in non-stable predicates, such as that in our example of variables whose 
difference is supposed to be bounded. Even if the application reaches a state in which 
the bound obtains, it need not stay in that state.

We also note here two further notions relevant to global state predicates: safety 
and liveness. Suppose there is an undesirable property  that is a predicate of the 
system’s global state – for example,  could be the property of being deadlocked. Let 
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 be the original state of the system. Safety with respect to  is the assertion that 
evaluates to False for all states S reachable from S0 . Conversely, let  be a desirable 
property of a system’s global state – for example, the property of reaching termination. 
Liveness with respect to  is the property that, for any linearization L starting in the state 
S0 ,  evaluates to True for some state SL  reachable from S0 .

14.5.3 The ‘snapshot’ algorithm of Chandy and Lamport

Chandy and Lamport [1985] describe a ‘snapshot’ algorithm for determining global 
states of distributed systems, which we now present. The goal of the algorithm is to 
record a set of process and channel states (a ‘snapshot’) for a set of processes pi
( i 1 2 N= ) such that, even though the combination of recorded states may never 
have occurred at the same time, the recorded global state is consistent.

We shall see that the state that the snapshot algorithm records has convenient 
properties for evaluating stable global predicates. 

The algorithm records state locally at processes; it does not give a method for 
gathering the global state at one site. An obvious method for gathering the state is for all 
processes to send the state they recorded to a designated collector process, but we shall 
not address this issue further here. 

The algorithm assumes that:

• Neither channels nor processes fail – communication is reliable so that every 
message sent is eventually received intact, exactly once.

• Channels are unidirectional and provide FIFO-ordered message delivery.

• The graph of processes and channels is strongly connected (there is a path between 
any two processes).

• Any process may initiate a global snapshot at any time.

• The processes may continue their execution and send and receive normal 
messages while the snapshot takes place.

For each process pi , let the incoming channels be those at pi  over which other processes 
send it messages; similarly, the outgoing channels of pi  are those on which it sends 
messages to other processes. The essential idea of the algorithm is as follows. Each 
process records its state and also, for each incoming channel, a set of messages sent to 
it. The process records, for each channel, any messages that arrived after it recorded its 
state and before the sender recorded its own state. This arrangement allows us to record 
the states of processes at different times but to account for the differentials between 
process states in terms of messages transmitted but not yet received. If process pi  has 
sent a message m to process pj , but pj  has not received it, then we account for m as 
belonging to the state of the channel between them.

The algorithm proceeds through use of special marker messages, which are 
distinct from any other messages the processes send and which the processes may send 
and receive while they proceed with their normal execution. The marker has a dual role: 
as a prompt for the receiver to save its own state, if it has not already done so; and as a 
means of determining which messages to include in the channel state. 



Figure 14.10 Chandy and Lamport’s ‘snapshot’ algorithm

Marker receiving rule for process 

On receipt of a marker message at  over channel c:
if (  has not yet recorded its state) it

records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else

 records the state of c as the set of messages it has received over c
since it saved its state.

end if

Marker sending rule for process 

After  has recorded its state, for each outgoing channel c:
 sends one marker message over c

(before it sends any other message over c).

pi
pi

pi

pi

pi
pi

pi
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The algorithm is defined through two rules, the marker receiving rule and the 
marker sending rule (Figure 14.10). The marker sending rule obligates processes to send 
a marker after they have recorded their state, but before they send any other messages. 

The marker receiving rule obligates a process that has not recorded its state to do 
so. In that case, this is the first marker that it has received. It notes which messages 
subsequently arrive on the other incoming channels. When a process that has already 
saved its state receives a marker (on another channel), it records the state of that channel 
as the set of messages it has received on it since it saved its state.

Any process may begin the algorithm at any time. It acts as though it has received 
a marker (over a nonexistent channel) and follows the marker receiving rule. Thus it 
records its state and begins to record messages arriving over all its incoming channels. 
Several processes may initiate recording concurrently in this way (as long as the markers 
they use can be distinguished).

Figure 14.11 Two processes and their initial states

p1 p2
c2

c1

account widgets

$1000 (none)

account widgets

$50 2000

We illustrate the algorithm for a system of two processes, p1  and p2 , connected 
by two unidirectional channels, c1  and c2 . The two processes trade in ‘widgets’. 
Process p1  sends orders for widgets over c2  to p2 , enclosing payment at the rate of $10 
per widget. Some time later, process p2  sends widgets along channel c1  to p1 . The 
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processes have the initial states shown in Figure 14.11. Process p2  has already received 
an order for five widgets, which it will shortly dispatch to p1 .

Figure 14.12

Figure 14.12 The execution of the processes in Figure 14.11

p1 p2(empty)<$1000, 0> <$50, 2000>

(empty)

c2

c1

1. Global state S0

2. Global state S1

3. Global state S2

4. Global state S3

p1 p2(Order 10, $100), M<$900, 0> <$50, 2000>

(empty)

c2

c1

p1 p2(Order 10, $100), M<$900, 0> <$50, 1995>

(five widgets)

c2

c1

p1 p2(Order 10, $100)<$900, 5> <$50, 1995>

(empty)

c2

c1

(M = marker message)

 shows an execution of the system while the state is recorded. Process 
p1  records its state in the actual global state S0 , when the state of p1  is <$1000, 0>. 
Following the marker sending rule, process p1  then emits a marker message over its 
outgoing channel c2  before it sends the next application-level message: (Order 10, 
$100), over channel c2 . The system enters actual global state S1 .

Before p2  receives the marker, it emits an application message (five widgets) over 
c1  in response to p1 ’s previous order, yielding a new actual global state S2 .

Now process p1  receives p2 ’s message (five widgets), and p2  receives the 
marker. Following the marker receiving rule, p2  records its state as <$50, 1995> and 
that of channel c2  as the empty sequence. Following the marker sending rule, it sends a 
marker message over c1 .

When process p1  receives p2 ’s marker message, it records the state of channel 
c1  as the single message (five widgets) that it received after it first recorded its state. 
The final actual global state is S3 .

The final recorded state is p1 : <$1000, 0>; p2 : <$50, 1995>; c1 : <(five 
widgets)>; c2 : < >. Note that this state differs from all the global states through which 
the system actually passed.

Termination of the snapshot algorithm •  We assume that a process that has received a 
marker message records its state within a finite time and sends marker messages over 
each outgoing channel within a finite time (even when it no longer needs to send 
application messages over these channels). If there is a path of communication channels 
and processes from a process pi  to a process pj j i , then it is clear on these 
assumptions that pj  will record its state a finite time after pi  recorded its state. Since 
we are assuming the graph of processes and channels to be strongly connected, it follows 
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that all processes will have recorded their states and the states of incoming channels a 
finite time after some process initially records its state.

Characterizing the observed state • The snapshot algorithm selects a cut from the history 
of the execution. The cut, and therefore the state recorded by this algorithm, is 
consistent. To see this, let ei  and ej  be events occurring at pi  and pj , respectively, such 
that ei ej . We assert that if ej  is in the cut, then ei  is in the cut. That is, if ej  occurred 
before pj  recorded its state, then ei  must have occurred before pi  recorded its state. 
This is obvious if the two processes are the same, so we shall assume that j i . Assume, 
for the moment, the opposite of what we wish to prove: that pi  recorded its state before 
ei  occurred. Consider the sequence of H messages m1 m2 mH  (H 1 ), giving rise 
to the relation ei ej . By FIFO ordering over the channels that these messages 
traverse, and by the marker sending and receiving rules, a marker message would have 
reached pj  ahead of each of m1 m2 mH . By the marker receiving rule, pj  would 
therefore have recorded its state before the event ej . This contradicts our assumption 
that ej  is in the cut, and we are done.

We may further establish a reachability relation between the observed global state 
and the initial and final global states when the algorithm runs. Let Sys e0 e1=  be 
the linearization of the system as it executed (where two events occurred at exactly the 
same time, we order them according to process identifiers). Let Sinit  be the global state 
immediately before the first process recorded its state; let Sfinal  be the global state when 
the snapshot algorithm terminates, immediately after the last state-recording action; and 
let Ssnap  be the recorded global state.

We shall find a permutation of Sys, Sys e0 e1 e2=  such that all three states 
Sinit , Ssnap  and Sfinal  occur in Sys , Ssnap  is reachable from Sinit  in Sys , and Sfinal
is reachable from Ssnap  in Sys . Figure 14.13 shows this situation, in which the upper 
linearization is Sys and the lower linearization is Sys .

Figure 14.13 Reachability between states in the snapshot algorithm

Sinit Sfinal

Ssnap

actual execution e0,e1,...

recording recording
begins ends

pre-snap: e'0,e'1,...e'R-1 post-snap: e'R,e'R+1,...

We derive Sys  from Sys  by first categorizing all events in Sys  as pre-snap

events or post-snap events. A pre-snap event at process pi  is one that occurred at pi
before it recorded its state; all other events are post-snap events. It is important to 
understand that a post-snap event may occur before a pre-snap event in Sys , if the events 
occur at different processes. (Of course, no post-snap event may occur before a pre-snap 
event at the same process.) 

We shall show how we may order all pre-snap events before post-snap events to 
obtain Sys . Suppose that ej  is a post-snap event at one process, and ej 1+  is a pre-snap 
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event at a different process. It cannot be that ej ej 1+  for then these two events would 
be the sending and receiving of a message, respectively. A marker message would have 
to have preceded the message, making the reception of the message a post-snap event, 
but by assumption ej 1+  is a pre-snap event. We may therefore swap the two events 
without violating the happened-before relation (that is, the resultant sequence of events 
remains a linearization). The swap does not introduce new process states, since we do 
not alter the order in which events occur at any individual process.

We continue swapping pairs of adjacent events in this way as necessary until we 
have ordered all pre-snap events e0 e1 e2 eR 1–  prior to all post-snap events 
eR eR 1+ eR 2+  with Sys  the resulting execution. For each process, the set of 
events in e0 e1 e2 eR 1–  that occurred at it is exactly the set of events that it 
experienced before it recorded its state. Therefore the state of each process at that point, 
and the state of the communication channels, is that of the global state Ssnap  recorded 
by the algorithm. We have disturbed neither of the states Sinit  or Sfinal  with which the 
linearization begins and ends. So we have established the reachability relationship.

Stability and the reachability of the observed state • The reachability property of the 
snapshot algorithm is useful for detecting stable predicates. In general, any non-stable 
predicate we establish as being True in the state Ssnap  may or may not have been True

in the actual execution whose global state we recorded. However, if a stable predicate is
True in the state Ssnap  then we may conclude that the predicate is True in the state Sfinal ,
since by definition a stable predicate that is True of a state S is also True of any state 
reachable from S. Similarly, if the predicate evaluates to False for Ssnap , then it must 
also be False for Sinit .

14.6 Distributed debugging

We now examine the problem of recording a system’s global state so that we may make 
useful statements about whether a transitory state – as opposed to a stable state – 
occurred in an actual execution. This is what we require, in general, when debugging a 
distributed system. We gave an example above in which each of a set of processes pi
has a variable xi . The safety condition required in this example is xi xj–
( i j 1 2 N= ); this constraint is to be met even though a process may change the 
value of its variable at any time. Another example is a distributed system controlling a 
system of pipes in a factory where we are interested in whether all the valves (controlled 
by different processes) were open at some time. In these examples, we cannot in general 
observe the values of the variables or the states of the valves simultaneously. The 
challenge is to monitor the system’s execution over time – to capture ‘trace’ information 
rather than a single snapshot – so that we can establish post hoc whether the required 
safety condition was or may have been violated.

Chandy and Lamport’s [1985] snapshot algorithm collects state in a distributed 
fashion, and we pointed out how the processes in the system could send the state they 
gather to a monitor process for collection. The algorithm we describe next (due to 
Marzullo and Neiger [1991]) is centralized. The observed processes send their states to 
a process called a monitor, which assembles globally consistent states from what it 
receives. We consider the monitor to lie outside the system, observing its execution.
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Our aim is to determine cases where a given global state predicate  was definitely 
True at some point in the execution we observed, and cases where it was possibly True.
The notion ‘possibly’ arises as a natural concept because we may extract a consistent 
global state S from an executing system and find that S  is True. No single 
observation of a consistent global state allows us to conclude whether a non-stable 
predicate ever evaluated to True in the actual execution. Nevertheless, we may be 
interested to know whether they might have occurred, as far as we can tell by observing 
the execution.

The notion ‘definitely’ does apply to the actual execution and not to a run that we 
have extrapolated from it. It may sound paradoxical for us to consider what happened in 
an actual execution. However, it is possible to evaluate whether was definitely True

by considering all linearizations of the observed events. 
We now define the notions of possibly  and definitely  for a predicate  in terms 

of linearizations of H, the history of the system’s execution:

possibly  The statement possibly  means that there is a consistent global state S 

through which a linearization of H passes such that S  is True.

definitely :The statement definitely  means that for all linearizations L of H,
there is a consistent global state S through which L passes such that S  is True.

When we use Chandy and Lamport’s snapshot algorithm and obtain the global state 
Ssnap , we may assert possibly  if Ssnap  happens to be True. But in general 
evaluating possibly  entails a search through all consistent global states derived from 
the observed execution. Only if S  evaluates to False for all consistent global states
S is it not the case that possibly . Note also that while we may conclude definitely 

from possibly , we may not conclude possibly  from definitely . The latter 
is the assertion that  holds at some state on every linearization: may hold for other 
states.

We now describe: how the process states are collected; how the monitor extracts 
consistent global states; and how the monitor evaluates possibly  and definitely  in 
both asynchronous and synchronous systems.

14.6.1 Collecting the state

The observed processes pi i 1 2 N=  send their initial state to the monitor 
initially, and thereafter from time to time, in state messages. The monitor records the 
state messages from each process pi  in a separate queue Qi , for each i 1 2 N= .

The activity of preparing and sending state messages may delay the normal 
execution of the observed processes, but it does not otherwise interfere with it. There is 
no need to send the state except initially and when it changes. There are two 
optimizations to reduce the state-message traffic to the monitor. First, the global state 
predicate may depend only on certain parts of the processes’ states – for example, only 
on the states of particular variables – so the observed processes need only send the 
relevant state to the monitor. Second, they need only send their state at times when the 
predicate may become True or cease to be True. There is no point in sending changes 
to the state that do not affect the predicate’s value. 
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For example, in the example system of processes pi  that are supposed to obey the 
constraint xi xj– . ( i j 1 2 N= ), each process need only notify the monitor 
when the values of its own variable xi  changes. When they send their state, they supply 
the value of xi  but do not need to send any other variables.

14.6.2 Observing consistent global states

The monitor must assemble consistent global states against which it evaluates . Recall 
that a cut C is consistent if and only if for all events e in the cut C, f e f C .

For example, 

Figure 14.14 Vector timestamps and variable values for the execution of Figure 14.9

m1 m2

p1

p2
Physical 

time

Cut C1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)

x1= 1 x1= 100 x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C2

Figure 14.14 shows two processes p1  and p2  with variables x1  and 
x2 , respectively. The events shown on the timelines (with vector timestamps) are 
adjustments to the values of the two variables. Initially, x1 x2 0= = . The requirement 
is x1 x2– 50 . The processes make adjustments to their variables, but ‘large’ 
adjustments cause a message containing the new value to be sent to the other process. 
When either of the processes receives an adjustment message from the other, it sets its 
variable equal to the value contained in the message.

Whenever one of the processes p1  or p2  adjusts the value of its variable (whether 
it is a ‘small’ adjustment or a ‘large’ one), it sends the value in a state message to the 
monitor. The latter keeps the state messages in the per-process queues for analysis. If the 
monitor were to use values from the inconsistent cut C1  in Figure 14.14, then it would 
find that x1 1 x2 100= = , breaking the constraint x1 x2– 50 . But this state of 
affairs never occurred. On the other hand, values from the consistent cut C2  show 
x1 105 x2 90= = .

In order that the monitor can distinguish consistent global states from inconsistent 
global states, the observed processes enclose their vector clock values with their state 
messages. Each queue Qi  is kept in sending order, which can immediately be 
established by examining the ith component of the vector timestamps. Of course, the 
monitor may deduce nothing about the ordering of states sent by different processes 
from their arrival order, because of variable message latencies. It must instead examine 
the vector timestamps of the state messages.

Let S s1 s2 sN=  be a global state drawn from the state messages that the 
monitor has received. Let V si be the vector timestamp of the state si  received from 
pi . Then it can be shown that S is a consistent global state if and only if:
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for i j 1 2 N=  – (Condition CGS)

This says that the number of pi ’s events known at pj  when it sent sj  is no more than 
the number of events that had occurred at pi  when it sent si . In other words, if one 
process’s state depends upon another (according to happened-before ordering), then the 
global state also encompasses the state upon which it depends.

In summary, we now possess a method whereby the monitor may establish 
whether a given global state is consistent, using the vector timestamps kept by the 
observed processes and piggybacked on the state messages that they send to it.

Figure 14.15 The lattice of global states for the execution of Figure 14.14

Sij= global state after i events at process 1

       and j events at process 2

S00

S10

S20

S21S30

S31

S32

S22

S23

S33

S43

Level 0

1

2

3

4

5

6

7

Figure 14.15 shows the lattice of consistent global states corresponding to the 
execution of the two processes in Figure 14.14. This structure captures the relation of 
reachability between consistent global states. The nodes denote global states, and the 
edges denote possible transitions between these states. The global state S00  has both 
processes in their initial state; S10  has p2  still in its initial state and p1  in the next state 
in its local history. The state S01  is not consistent, because of the message m1  sent from 
p1  to p2 , so it does not appear in the lattice.

The lattice is arranged in levels with, for example, S00  in level 0 and S10  in level 
1. In general, Sij  is in level i j+ . A linearization traverses the lattice from any global 
state to any global state reachable from it on the next level – that is, in each step some 
process experiences one event. For example, S22  is reachable from S20 , but S22  is not 
reachable from S30 .

The lattice shows us all the linearizations corresponding to a history. It is now 
clear in principle how a monitor should evaluate possibly  and definitely . To evaluate 
possibly , the monitor starts at the initial state and steps through all consistent states 
reachable from that point, evaluating  at each stage. It stops when  evaluates to True.
To evaluate definitely , the monitor must attempt to find a set of states through which 
all linearizations must pass, and at each of which  evaluates to True. For example, if 

S30  and S21  in Figure 14.15 are both True then, since all linearizations pass 
through these states, definitely  holds.
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14.6.3 Evaluating possibly

To evaluate possibly , the monitor must traverse the lattice of reachable states, starting 
from the initial state s1

0 s2
0 sN

0 .

Figure 14.16 Algorithms to evaluate possibly and definitely 

1. Evaluating possibly  for global history H of N processes

L := 0; 
States := { };
while (  for all )

L := L + 1;
Reachable := { :  reachable in H from some };
States := Reachable

end while

output "possibly ";

2. Evaluating definitely  for global history H of N processes

L := 0; 
if ( ) then States := {} else States := { };
while (States  {})

L := L + 1;
Reachable := { :  reachable in H from some };
States := { : }

end while

output "definitely ";

s1
0 s2

0 sN
0

S False= S States

S S S States level S L=

s1
0 s2

0 sN
0 s1

0 s2
0 sN

0

S S S States level S' L=
S Reachable S False=

The algorithm is shown in Figure 14.16. The 
algorithm assumes that the execution is infinite. It may easily be adapted for a finite 
execution.

The monitor may discover the set of consistent states in level L 1+  reachable 
from a given consistent state in level L by the following method. Let 
S s1 s2 sN=  be a consistent state. Then a consistent state in the next level 
reachable from S is of the form S s1 s2 si sN= , which differs from S only by 
containing the next state (after a single event) of some process pi . The monitor can find 
all such states by traversing the queues of state messages Qi  ( i 1 2 N= ). The 
state S  is reachable from S if and only if:

for j 1 2 N j i,= : V sj j V si j

This condition comes from condition CGS above and from the fact that S was already a 
consistent global state. A given state may in general be reached from several states at the 
previous level, so the monitor should take care to evaluate the consistency of each state 
only once.  
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14.6.4 Evaluating definitely

To evaluate definitely , the monitor again traverses the lattice of reachable states a level 
at a time, starting from the initial state s1

0 s2
0 sN

0 . The algorithm (shown in Figure 
14.16) again assumes that the execution is infinite but may easily be adapted for a finite 
execution. It maintains the set States, which contains those states at the current level that 
may be reached on a linearization from the initial state by traversing only states for 
which  evaluates to False. As long as such a linearization exists, we may not assert 
definitely : the execution could have taken this linearization, and  would be False at 
every stage along it. If we reach a level for which no such linearization exists, we may 
conclude definitely .

Figure 14.17 Evaluating definitely

F = ( S False); T = ( S True) 

 ?

–

Level 0

1

2

3

4

5

F

F

F

F T

F

In Figure 14.17, at level 3 the set States consists of only one state, which is 
reachable by a linearization on which all states are False (marked in bold lines). The 
only state considered at level 4 is the one marked ‘F’. (The state to its right is not 
considered, since it can only be reached via a state for which evaluates to True.) If 
evaluates to True in the state at level 5, then we may conclude definitely . Otherwise, 
the algorithm must continue beyond this level.

Cost • The algorithms we have just described are combinatorially explosive. Suppose 
that k is the maximum number of events at a single process. Then the algorithms we have 
described entail O k

N
 comparisons (the monitor compares the states of each of the N 

observed processes with one another). 
There is also a space cost to these algorithms of O kN . However, we observe 

that the monitor may delete a message containing state si  from queue Qi  when no other 
item of state arriving from another process could possibly be involved in a consistent 
global state containing si . That is, when:

V sj
last

i V si i for j 1 2 N j i=

where sj
last

 is the last state that the monitor has received from process pj .
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14.6.5 Evaluating possibly and definitely in synchronous systems

The algorithms we have given so far work in an asynchronous system: we have made no 
timing assumptions. But the price paid for this is that the monitor may examine a 
consistent global state S s1 s2 sN=  for which any two local states si  and sj
occurred an arbitrarily long time apart in the actual execution of the system. Our 
requirement, by contrast, is to consider only those global states that the actual execution 
could in principle have traversed.

In a synchronous system, suppose that the processes keep their physical clocks 
internally synchronized within a known bound, and that the observed processes provide 
physical timestamps as well as vector timestamps in their state messages. Then the 
monitor need consider only those consistent global states whose local states could 
possibly have existed simultaneously, given the approximate synchronization of the 
clocks. With good enough clock synchronization, these will number many less than all 
globally consistent states.  

We now give an algorithm to exploit synchronized clocks in this way. We assume 
that each observed process pi  ( i 1 2 N= ) and the monitor, which we shall call 
p0 , keep a physical clock Ci  ( i 0 1 N= ). These are synchronized to within a 
known bound D 0 ; that is, at the same real time:

Ci t Cj t– D for i j 0 1 N=

The observed processes send both their vector time and physical time with their state 
messages to the monitor. The monitor now applies a condition that not only tests for 
consistency of a global state S s1 s2 sN= , but also tests whether each pair of 
states could have happened at the same real time, given the physical clock values. In 
other words, for i j 1 2 N= :

V si i V sj i and si and sj could have occurred at the same real time.

The first clause is the condition that we used earlier. For the second clause, note that pi
is in the state si  from the time it first notifies the monitor, Ci si , to some later local 
time Li si – say, when the next state transition occurs at pi . For si  and sj  to have 
obtained at the same real time we thus have, allowing for the bound on clock 
synchronization:

Ci si D Cj sj Li si D+–  – or vice versa (swapping i and j).

The monitor must calculate a value for Li si , which is measured against pi ’s clock. If 
the monitor has received a state message for pi ’s next state si , then Li si  is Ci si .
Otherwise, the monitor estimates Li si  as C0 – max + D, where C0 is the monitor’s 
current local clock value and max is the maximum transmission time for a state message.
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14.7 Summary

This chapter began by describing the importance of accurate timekeeping for distributed 
systems. It then described algorithms for synchronizing clocks despite the drift between 
them and the variability of message delays between computers.

The degree of synchronization accuracy that is practically obtainable fulfils many 
requirements but is nonetheless not sufficient to determine the ordering of an arbitrary 
pair of events occurring at different computers. The happened-before relation is a partial 
order on events that reflects a flow of information between them – within a process, or 
via messages between processes. Some algorithms require events to be ordered in 
happened-before order, for example, successive updates made to separate copies of data. 
Lamport clocks are counters that are updated in accordance with the happened-before
relationship between events. Vector clocks are an improvement on Lamport clocks, in 
that it is possible to determine by examining their vector timestamps whether two events 
are ordered by happened-before or are concurrent.

We introduced the concepts of events, local and global histories, cuts, local and 
global states, runs, consistent states, linearizations (consistent runs) and reachability. A 
consistent state or run is one that is in accord with the happened-before relation.

We went on to consider the problem of recording a consistent global state by 
observing a system’s execution. Our objective was to evaluate a predicate on this state. 
An important class of predicates are the stable predicates. We described the snapshot 
algorithm of Chandy and Lamport, which captures a consistent global state and allows 
us to make assertions about whether a stable predicate holds in the actual execution. We 
went on to give Marzullo and Neiger’s algorithm for deriving assertions about whether 
a predicate held or may have held in the actual run. This algorithm employs a monitor 
process to collect states. The monitor examines vector timestamps to extract consistent 
global states, and it constructs and examines the lattice of all consistent global states. 
This algorithm involves great computational complexity but is valuable for 
understanding and can be of some practical benefit in real systems where relatively few 
events change the global predicate’s value. The algorithm has a more efficient variant in 
synchronous systems, where clocks may be synchronized.
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EXERCISES

14.1 Why is computer clock synchronization necessary? Describe the design requirements 
for a system to synchronize the clocks in a distributed system. page 596

14.2 A clock is reading 10:27:54.0 (hr:min:sec) when it is discovered to be 4 seconds fast. 
Explain why it is undesirable to set it back to the right time at that point and show 
(numerically) how it should be adjusted so as to be correct after 8 seconds have elapsed.

page 600

14.3 A scheme for implementing at-most-once reliable message delivery uses synchronized 
clocks to reject duplicate messages. Processes place their local clock value (a 
‘timestamp’) in the messages they send. Each receiver keeps a table giving, for each 
sending process, the largest message timestamp it has seen. Assume that clocks are 
synchronized to within 100 ms, and that messages can arrive at most 50 ms after 
transmission.

i) When may a process ignore a message bearing a timestamp T, if it has recorded 
the last message received from that process as having timestamp T ?

ii) When may a receiver remove a timestamp 175,000 (ms) from its table? (Hint: use 
the receiver’s local clock value.)

iii) Should the clocks be internally synchronized or externally synchronized?
page 601

14.4 A client attempts to synchronize with a time server. It records the round-trip times and 
timestamps returned by the server in the table below.

Which of these times should it use to set its clock? To what time should it set it? 
Estimate the accuracy of the setting with respect to the server’s clock. If it is known that 
the time between sending and receiving a message in the system concerned is at least 8 
ms, do your answers change?

Round-trip (ms) Time (hr:min:sec)

22 10:54:23.674

25 10:54:25.450

20 10:54:28.342

page 601

14.5 In the system of Exercise 14.4 it is required to synchronize a file server’s clock to within 
±1 millisecond. Discuss this in relation to Cristian’s algorithm. page 601

14.6 What reconfigurations would you expect to occur in the NTP synchronization subnet?
page 604

14.7 An NTP server B receives server A’s message at 16:34:23.480, bearing a timestamp of 
16:34:13.430, and replies to it. A receives the message at 16:34:15.725, bearing B’s 
timestamp, 16:34:25.7. Estimate the offset between B and A and the accuracy of the 
estimate. page 605
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14.8 Discuss the factors to be taken into account when deciding to which NTP server a client 
should synchronize its clock. page 606

14.9 Discuss how it is possible to compensate for clock drift between synchronization points 
by observing the drift rate over time. Discuss any limitations to your method. page 607

14.10 By considering a chain of zero or more messages connecting events e and e  and using 
induction, show that e e L e L e . page 608

14.11 Show that Vj i Vi i . page 609

14.12 In a similar fashion to Exercise 14.10, show that e e V e V e . page 610

14.13 Using the result of Exercise 14.11, show that if events e and e  are concurrent then 
neither V e V e  nor V e V e . Hence show that if V e V e  then e e .

page 610

14.14 Two processes P and Q are connected in a ring using two channels, and they constantly 
rotate a message m. At any one time, there is only one copy of m in the system. Each 
process’s state consists of the number of times it has received m, and P sends m first. At 
a certain point, P has the message and its state is 101. Immediately after sending m, P

initiates the snapshot algorithm. Explain the operation of the algorithm in this case, 
giving the possible global state(s) reported by it. page 615

Time

p1

p2

14.15 The figure above shows events occurring for each of two processes, p1 and p2. Arrows 
between processes denote message transmission.

Draw and label the lattice of consistent states (p1 state, p2 state), beginning with 
the initial state (0,0).

page 622

14.16 Jones is running a collection of processes p1 p2 pN . Each process pi  contains a 
variable vi . She wishes to determine whether all the variables v1 v2 vN  were ever 
equal in the course of the execution.

i) Jones’ processes run in a synchronous system. She uses a monitor process to 
determine whether the variables were ever equal. When should the application 
processes communicate with the monitor process, and what should their messages 
contain?

ii) Explain the statement possibly (v1 v2 vN= = = ). How can Jones determine 
whether this statement is true of her execution?

page 623
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15

COORDINATION AND AGREEMENT

15.1 Introduction
15.2 Distributed mutual exclusion
15.3 Elections
15.4 Coordination and agreement in group communication
15.5 Consensus and related problems
15.6 Summary

In this chapter, we introduce some topics and algorithms related to the issue of how 
processes coordinate their actions and agree on shared values in distributed systems, 
despite failures. The chapter begins with algorithms to achieve mutual exclusion among 
a collection of processes, so as to coordinate their accesses to shared resources. It goes 
on to examine how an election can be implemented in a distributed system – that is,  how 
a group of processes can agree on a new coordinator of their activities after the previous 
coordinator has failed. 

The second half of the chapter examines the related problems of group 
communication, consensus, Byzantine agreement and interactive consistency. In the 
context of group communication, the issue is how to agree on such matters as the order 
in which messages are to be delivered. Consensus and the other problems generalize from 
this: how can any collection of processes agree on some value, no matter what the domain 
of the values in question? We encounter a fundamental result in the theory of distributed 
systems: that under certain conditions – including surprisingly benign failure conditions 
– it is impossible to guarantee that processes will reach consensus.
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15.1 Introduction

This chapter introduces a collection of algorithms whose goals vary but that share an aim 
that is fundamental in distributed systems: for a set of processes to coordinate their 
actions or to agree on one or more values. For example, in the case of a complex piece 
of machinery such as a spaceship, it is essential that the computers controlling it agree 
on such conditions as whether the spaceship’s mission is proceeding or has been 
aborted. Furthermore, the computers must coordinate their actions correctly with respect 
to shared resources (the spaceship’s sensors and actuators). The computers must be able 
to do so even where there is no fixed master-slave relationship between the components 
(which would make coordination particularly simple). The reason for avoiding fixed 
master-slave relationships is that we often require our systems to keep working correctly 
even if failures occur, so we need to avoid single points of failure, such as fixed masters.

An important distinction for us, as in Chapter 14, will be whether the distributed 
system under study is asynchronous or synchronous. In an asynchronous system we can 
make no timing assumptions. In a synchronous system, we shall assume that there are 
bounds on the maximum message transmission delay, on the time taken to execute each 
step of a process, and on clock drift rates. The synchronous assumptions allow us to use 
timeouts to detect process crashes.

Another important aim of the chapter is to consider failures, and how to deal with 
them when designing algorithms. Section 2.4.2 introduced a failure model, which we 
shall use in this chapter. Coping with failures is a subtle business, so we begin by 
considering some algorithms that tolerate no failures and progress through benign 
failures before exploring how to tolerate arbitrary failures. Along the way, we encounter 
a fundamental result in the theory of distributed systems: even under surprisingly benign 
failure conditions, it is impossible to guarantee in an asynchronous system that a 
collection of processes can agree on a shared value – for example, for all of a spaceship’s 
controlling processes to agree ‘mission proceed’ or ‘mission abort’.

Section 15.2 examines the problem of distributed mutual exclusion. This is the 
extension to distributed systems of the familiar problem of avoiding race conditions in 
kernels and multi-threaded applications. Since much of what occurs in distributed 
systems is resource sharing, this is an important problem to solve. Next, Section 15.3
introduces the related but more general issue of how to ‘elect’ one of a collection of 
processes to perform a special role. For example, in Chapter 14 we saw how processes 
synchronize their clocks to a designated time server. If this server fails and several 
surviving servers can fulfil that role, then for the sake of consistency it is necessary to 
choose just one server to take over. 

Coordination and agreement related to group communication is the subject of 
Section 15.4. As Section 4.4.1 explained, the ability to multicast a message to a group is 
a very useful communication paradigm, with applications from locating resources to 
coordinating the updates to replicated data. Section 15.4 examines multicast reliability 
and ordering semantics, and gives algorithms to achieve the variations. Multicast 
delivery is essentially a problem of agreement between processes: the recipients agree 
on which messages they will receive, and in which order they will receive them. Section 
15.5 discusses the problem of agreement more generally, primarily in the forms known 
as consensus and Byzantine agreement.
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The treatment followed in this chapter involves stating the assumptions and the 
goals to be met, and giving an informal account of why the algorithms presented are 
correct. There is insufficient space to provide a more rigorous approach. For that, we 
refer the reader to a text that gives a thorough account of distributed algorithms, such as 
Attiya and Welch [1998] and Lynch [1996].

Before presenting the problems and algorithms, we discuss failure assumptions 
and the practical matter of detecting failures in distributed systems.

15.1.1 Failure assumptions and failure detectors

For the sake of simplicity, this chapter assumes that each pair of processes is connected 
by reliable channels. That is, although the underlying network components may suffer 
failures, the processes use a reliable communication protocol that masks these failures – 
for example, by retransmitting missing or corrupted messages. Also for the sake of 
simplicity, we assume that no process failure implies a threat to the other processes’ 
ability to communicate. This means that none of the processes depends upon another to 
forward messages.

Note that a reliable channel eventually delivers a message to the recipient’s input 
buffer. In a synchronous system, we suppose that there is hardware redundancy where 
necessary, so that a reliable channel not only eventually delivers each message despite 
underlying failures, but does so within a specified time bound.

Figure 15.1 A network partition

Crashed
router

In any particular interval of time, communication between some processes may 
succeed while communication between others is delayed. For example, the failure of a 
router between two networks may mean that a collection of four processes is split into 
two pairs, such that intra-pair communication is possible over their respective networks; 
but inter-pair communication is not possible while the router has failed. This is known 
as a network partition (Figure 15.1). Over a point-to-point network such as the Internet, 
complex topologies and independent routing choices mean that connectivity may be 
asymmetric: communication is possible from process p to process q, but not vice versa. 
Connectivity may also be intransitive: communication is possible from p to q and from 
q to r, but p cannot communicate directly with r. Thus our reliability assumption entails 
that eventually any failed link or router will be repaired or circumvented. Nevertheless, 
the processes may not all be able to communicate at the same time.
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The chapter assumes, unless we state otherwise, that processes fail only by 
crashing – an assumption that is good enough for many systems. In Section 15.5, we 
shall consider how to treat the cases where processes have arbitrary (Byzantine) failures. 
Whatever the type of failure, a correct process is one that exhibits no failures at any 
point in the execution under consideration. Note that correctness applies to the whole 
execution, not just to a part of it. So a process that suffers a crash failure is ‘non-failed’ 
before that point, not ‘correct’ before that point.

One of the problems in the design of algorithms that can overcome process crashes 
is that of deciding when a process has crashed. A failure detector [Chandra and Toueg 
1996, Stelling et al. 1998] is a service that processes queries about whether a particular 
process has failed. It is often implemented by an object local to each process (on the 
same computer) that runs a failure-detection algorithm in conjunction with its 
counterparts at other processes. The object local to each process is called a local failure 

detector. We outline how to implement failure detectors shortly, but first we concentrate 
on some of the properties of failure detectors.

A failure ‘detector’ is not necessarily accurate. Most fall into the category of 
unreliable failure detectors. An unreliable failure detector may produce one of two 
values when given the identity of a process: Unsuspected or Suspected. Both of these 
results are hints, which may or may not accurately reflect whether the process has 
actually failed. A result of Unsuspected signifies that the detector has recently received 
evidence suggesting that the process has not failed; for example, a message was recently 
received from it. But of course, the process may have failed since then. A result of 
Suspected signifies that the failure detector has some indication that the process may 
have failed. For example, it may be that no message from the process has been received 
for more than a nominal maximum length of silence (even in an asynchronous system, 
practical upper bounds can be used as hints). The suspicion may be misplaced: for 
example, the process could be functioning correctly but be on the other side of a network 
partition, or it could be running more slowly than expected.

A reliable failure detector is one that is always accurate in detecting a process’s 
failure. It answers processes’ queries with either a response of Unsuspected – which, as 
before, can only be a hint – or Failed. A result of Failed means that the detector has 
determined that the process has crashed. Recall that a process that has crashed stays that 
way, since by definition a process never takes another step once it has crashed. 

It is important to realize that, although we speak of one failure detector acting for
a collection of processes, the response that the failure detector gives to a process is only 
as good as the information available at that process. A failure detector may sometimes 
give different responses to different processes, since communication conditions vary 
from process to process.

We can implement an unreliable failure detector using the following algorithm. 
Each process p sends a ‘p is here’ message to every other process, and it does this every 
T seconds. The failure detector uses an estimate of the maximum message transmission 
time of D seconds. If the local failure detector at process q does not receive a ‘p is here’ 
message within T D+  seconds of the last one, then it reports to q that p is Suspected.
However, if it subsequently receives a ‘p is here’ message, then it reports to q that p is 
OK.

In a real distributed system, there are practical limits on message transmission 
times. Even email systems give up after a few days, since it is likely that communication 
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links and routers will have been repaired in that time. If we choose small values for T
and D (so that they total 0.1 second, say), then the failure detector is likely to suspect 
non-crashed processes many times, and much bandwidth will be taken up with ‘p is 
here’ messages. If we choose a large total timeout value (a week, say), then crashed 
processes will often be reported as Unsuspected.

A practical solution to this problem is to use timeout values that reflect the 
observed network delay conditions. If a local failure detector receives a ‘p is here’ in 20 
seconds instead of the expected maximum of 10 seconds, it can reset its timeout value 
for p accordingly. The failure detector remains unreliable, and its answers to queries are 
still only hints, but the probability of its accuracy increases.

In a synchronous system, our failure detector can be made into a reliable one. We 
can choose D so that it is not an estimate but an absolute bound on message transmission 
times; the absence of a ‘p is here’ message within T D+  seconds entitles the local 
failure detector to conclude that p has crashed.

The reader may wonder whether failure detectors are of any practical use.
Unreliable failure detectors may suspect a process that has not failed (they may be 
inaccurate), and they may not suspect a process that has in fact failed (they may be 
incomplete). Reliable failure detectors, on the other hand, require that the system is 
synchronous (and few practical systems are).

We have introduced failure detectors because they help us to think about the 
nature of failures in a distributed system. And any practical system that is designed to 
cope with failures must detect them – however imperfectly. But it turns out that even 
unreliable failure detectors with certain well-defined properties can help us to provide 
practical solutions to the problem of coordinating processes in the presence of failures. 
We return to this point in Section 15.5.

15.2 Distributed mutual exclusion

Distributed processes often need to coordinate their activities. If a collection of 
processes share a resource or collection of resources, then often mutual exclusion is 
required to prevent interference and ensure consistency when accessing the resources. 
This is the critical section problem, familiar in the domain of operating systems. In a 
distributed system, however, neither shared variables nor facilities supplied by a single 
local kernel can be used to solve it, in general. We require a solution to distributed 

mutual exclusion: one that is based solely on message passing.
In some cases shared resources are managed by servers that also provide 

mechanisms for mutual exclusion – Chapter 16 describes how some servers synchronize 
client accesses to resources. But in some practical cases, a separate mechanism for 
mutual exclusion is required. 

Consider users who update a text file. A simple means of ensuring that their 
updates are consistent is to allow them to access it only one at a time, by requiring the 
editor to lock the file before updates can be made. NFS file servers, described in Chapter 
12, are designed to be stateless and therefore do not support file locking. For this reason, 
UNIX systems provide a separate file-locking service, implemented by the daemon 
lockd, to handle locking requests from clients.
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A particularly interesting example is where there is no server, and a collection of 
peer processes must coordinate their accesses to shared resources amongst themselves. 
This occurs routinely on networks such as Ethernets and IEEE 802.11 wireless networks 
in ‘ad hoc’ mode, where network interfaces cooperate as peers so that only one node 
transmits at a time on the shared medium. Consider, also, a system monitoring the 
number of vacancies in a car park with a process at each entrance and exit that tracks the 
number of vehicles entering and leaving. Each process keeps a count of the total number 
of vehicles within the car park and displays whether or not it is full. The processes must 
update the shared count of the number of vehicles consistently. There are several ways 
of achieving that, but it would be convenient for these processes to be able to obtain 
mutual exclusion solely by communicating among themselves, eliminating the need for 
a separate server.

It is useful to have a generic mechanism for distributed mutual exclusion at our 
disposal – one that is independent of the particular resource management scheme in 
question. We now examine some algorithms for achieving that.

15.2.1 Algorithms for mutual exclusion

We consider a system of N processes pi i 1 2 N= , that do not share variables. 
The processes access common resources, but they do so in a critical section. For the sake 
of simplicity, we assume that there is only one critical section. It is straightforward to 
extend the algorithms we present to more than one critical section.

We assume that the system is asynchronous, that processes do not fail and that 
message delivery is reliable, so that any message sent is eventually delivered intact, 
exactly once.

The application-level protocol for executing a critical section is as follows:

enter() // enter critical section – block if necessary
resourceAccesses() // access shared resources in critical section
exit() // leave critical section – other processes may now enter

Our essential requirements for mutual exclusion are as follows:

ME1: (safety) At most one process may execute in the critical section 
(CS) at a time.

ME2: (liveness) Requests to enter and exit the critical section eventually 
succeed.

Condition ME2 implies freedom from both deadlock and starvation. A deadlock would 
involve two or more of the processes becoming stuck indefinitely while attempting to 
enter or exit the critical section, by virtue of their mutual interdependence. But even 
without a deadlock, a poor algorithm might lead to starvation: the indefinite 
postponement of entry for a process that has requested it. 

The absence of starvation is a fairness condition. Another fairness issue is the 
order in which processes enter the critical section. It is not possible to order entry to the 
critical section by the times that the processes requested it, because of the absence of 
global clocks. But a useful fairness requirement that is sometimes made makes use of 
the happened-before ordering (Section 14.4) between messages that request entry to the 
critical section:
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ME3: ( ordering) If one request to enter the CS happened-before another, 
then entry to the CS is granted in that order.

If a solution grants entry to the critical section in happened-before order, and if all 
requests are related by happened-before, then it is not possible for a process to enter the 
critical section more than once while another waits to enter. This ordering also allows 
processes to coordinate their accesses to the critical section. A multi-threaded process 
may continue with other processing while a thread waits to be granted entry to a critical 
section. During this time, it might send a message to another process, which 
consequently also tries to enter the critical section. ME3 specifies that the first process 
be granted access before the second.

We evaluate the performance of algorithms for mutual exclusion according to the 
following criteria:

• the bandwidth consumed, which is proportional to the number of messages sent in 
each entry and exit operation;

• the client delay incurred by a process at each entry and exit operation;

• the algorithm’s effect upon the throughput of the system. This is the rate at which 
the collection of processes as a whole can access the critical section, given that 
some communication is necessary between successive processes. We measure the 
effect using the synchronization delay between one process exiting the critical 
section and the next process entering it; the throughput is greater when the 
synchronization delay is shorter.

We do not take the implementation of resource accesses into account in our descriptions. 
We do, however, assume that the client processes are well behaved and spend a finite 
time accessing resources within their critical sections. 

The central server algorithm  •  

Figure 15.2 Server managing a mutual exclusion token for a set of processes
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The simplest way to achieve mutual exclusion is to 
employ a server that grants permission to enter the critical section. Figure 15.2 shows 
the use of this server. To enter a critical section, a process sends a request message to 
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the server and awaits a reply from it. Conceptually, the reply constitutes a token 
signifying permission to enter the critical section. If no other process has the token at the 
time of the request, then the server replies immediately, granting the token. If the token 
is currently held by another process, then the server does not reply, but queues the 
request. When a process exits the critical section, it sends a message to the server, giving 
it back the token. 

If the queue of waiting processes is not empty, then the server chooses the oldest 
entry in the queue, removes it and replies to the corresponding process. The chosen 
process then holds the token. In the figure, we show a situation in which p2 ’s request 
has been appended to the queue, which already contained p4 ’s request. p3 exits the 
critical section, and the server removes p4 ’s entry and grants permission to enter to p4
by replying to it. Process p1  does not currently require entry to the critical section.

Given our assumption that no failures occur, it is easy to see that the safety and 
liveness conditions are met by this algorithm. The reader should verify, however, that 
the algorithm does not satisfy property ME3. 

We now evaluate the performance of this algorithm. Entering the critical section 
– even when no process currently occupies it – takes two messages (a request followed 
by a grant) and delays the requesting process by the time required for this round-trip. 
Exiting the critical section takes one release message. Assuming asynchronous message 
passing, this does not delay the exiting process. 

The server may become a performance bottleneck for the system as a whole. The 
synchronization delay is the time taken for a round-trip: a release message to the server, 
followed by a grant message to the next process to enter the critical section.

A ring-based algorithm  •  
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Figure 15.3 A ring of processes transferring a mutual exclusion token
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One of the simplest ways to arrange mutual exclusion between 
the N processes without requiring an additional process is to arrange them in a logical 
ring. This requires only that each process pi  has a communication channel to the next 
process in the ring, p i 1+ mod N . The idea is that exclusion is conferred by obtaining a 
token in the form of a message passed from process to process in a single direction – 
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clockwise, say – around the ring. The ring topology may be unrelated to the physical 
interconnections between the underlying computers.

If a process does not require to enter the critical section when it receives the token, 
then it immediately forwards the token to its neighbour. A process that requires the token 
waits until it receives it, but retains it. To exit the critical section, the process sends the 
token on to its neighbour.

The arrangement of processes is shown in Figure 15.3. It is straightforward to 
verify that the conditions ME1 and ME2 are met by this algorithm, but that the token is 
not necessarily obtained in happened-before order. (Recall that the processes may 
exchange messages independently of the rotation of the token.)

This algorithm continuously consumes network bandwidth (except when a 
process is inside the critical section): the processes send messages around the ring even 
when no process requires entry to the critical section. The delay experienced by a 
process requesting entry to the critical section is between 0 messages (when it has just 
received the token) and N messages (when it has just passed on the token). To exit the 
critical section requires only one message. The synchronization delay between one 
process’s exit from the critical section and the next process’s entry is anywhere from 1 
to N message transmissions.

An algorithm using multicast and logical clocks  •  

Figure 15.4 Ricart and Agrawala’s algorithm

On initialization

state := RELEASED; 

To enter the section

state := WANTED;
Multicast request to all processes;
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i  j)

if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section

state := RELEASED;
reply to any queued requests;

Request processing deferred here

Ricart and Agrawala [1981] devel-
oped an algorithm to implement mutual exclusion between N peer processes that is 
based upon multicast. The basic idea is that processes that require entry to a critical sec-
tion multicast a request message, and can enter it only when all the other processes have 
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replied to this message. The conditions under which a process replies to a request are 
designed to ensure that conditions ME1–ME3 are met. 

The processes p1 p2 pN  bear distinct numeric identifiers. They are assumed 
to possess communication channels to one another, and each process pi  keeps a 
Lamport clock, updated according to the rules LC1 and LC2 of Section 14.4. Messages 
requesting entry are of the form <T pi >, where T is the sender’s timestamp and pi  is 
the sender’s identifier.

Each process records its state of being outside the critical section (RELEASED),
wanting entry (WANTED) or being in the critical section (HELD) in a variable state. The 
protocol is given in Figure 15.4.

If a process requests entry and the state of all other processes is RELEASED, then 
all processes will reply immediately to the request and the requester will obtain entry. If 
some process is in the state HELD, then that process will not reply to requests until it has 
finished with the critical section, and so the requester cannot gain entry in the meantime. 
If two or more processes request entry at the same time, then whichever process’s 
request bears the lowest timestamp will be the first to collect N 1–  replies, granting it 
entry next. If the requests bear equal Lamport timestamps, the requests are ordered 
according to the processes’ corresponding identifiers. Note that, when a process requests 
entry, it defers processing requests from other processes until its own request has been 
sent and it has recorded the timestamp T of the request. This is so that processes make 
consistent decisions when processing requests.

This algorithm achieves the safety property ME1. If it were possible for two 
processes pi  and pj  ( i j ) to enter the critical section at the same time, then both of 
those processes would have to have replied to the other. But since the pairs <Ti pi > are 
totally ordered, this is impossible. We leave the reader to verify that the algorithm also 
meets requirements ME2 and ME3.

 To illustrate the algorithm, consider a situation involving three processes, p1 , p2
and p3 , shown in Figure 15.5

Figure 15.5 Multicast synchronization
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. Let us assume that p3  is not interested in entering the 
critical section, and that p1  and p2  request entry concurrently. The timestamp of p1’s
request is 41, and that of p2  is 34. When p3  receives their requests, it replies 
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immediately. When p2  receives p1’s request, it finds that its own request has the lower 
timestamp and so does not reply, holding p1  off. However, p1  finds that p2 ’s request 
has a lower timestamp than that of its own request and so replies immediately. On 
receiving this second reply, p2  can enter the critical section. When p2  exits the critical 
section, it will reply to p1 ’s request and so grant it entry.

Gaining entry takes 2 N 1–  messages in this algorithm: N 1–  to multicast the 
request, followed by N 1–  replies. Or, if there is hardware support for multicast, only 
one message is required for the request; the total is then N messages. It is thus a more 
expensive algorithm, in terms of bandwidth consumption, than the algorithms just 
described. However, the client delay in requesting entry is again a round-trip time 
(ignoring any delay incurred in multicasting the request message).

The advantage of this algorithm is that its synchronization delay is only one 
message transmission time. Both the previous algorithms incurred a round-trip 
synchronization delay. 

The performance of the algorithm can be improved. First, note that the process 
that last entered the critical section and that has received no other requests for it still goes 
through the protocol as described, even though it could simply decide locally to reenter 
the critical section. Second, Ricart and Agrawala refined this protocol so that it requires 
N messages to obtain entry in the worst (and common) case, without hardware support 
for multicast. This is described in Raynal [1988].

Maekawa’s voting algorithm  •  Maekawa [1985] observed that in order for a process to 
enter a critical section, it is not necessary for all of its peers to grant it access. Processes 
need only obtain permission to enter from subsets of their peers, as long as the subsets 
used by any two processes overlap. We can think of processes as voting for one another 
to enter the critical section. A ‘candidate’ process must collect sufficient votes to enter. 
Processes in the intersection of two sets of voters ensure the safety property ME1, that 
at most one process can enter the critical section, by casting their votes for only one 
candidate.

Maekawa associated a voting set Vi with each process pi  ( i 1 2 N= ),
where Vi p1 p1 pN . The sets Vi  are chosen so that, for all i j 1 2 N= :

• pi Vi

• Vi Vj  – there is at least one common member of any two voting sets

• Vi K=  – to be fair, each process has a voting set of the same size

• Each process pj  is contained in M of the voting sets Vi .

Maekawa showed that the optimal solution, which minimizes K and allows the 
processes to achieve mutual exclusion, has K N  and M = K (so that each process is 
in as many of the voting sets as there are elements in each one of those sets). It is non-
trivial to calculate the optimal sets Ri . As an approximation, a simple way of deriving 
sets Ri  such that Ri 2 N  is to place the processes in a N  by N  matrix and let 
Vi  be the union of the row and column containing pi .

Maekawa’s algorithm is shown in Figure 15.6. To obtain entry to the critical 
section, a process pi  sends request messages to all K members of Vi  (including itself). 
pi  cannot enter the critical section until it has received all K reply messages. When a 
process pj  in Vi  receives pi ’s request message, it sends a reply message immediately,
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unless either its state is HELD or it has already replied (‘voted’) since it last received a 
release message. Otherwise, it queues the request message (in the order of its arrival) 
but does not yet reply. When a process receives a release message, it removes the head 
of its queue of outstanding requests (if the queue is nonempty) and sends a reply

message (a ‘vote’) in response to it. To leave the critical section, pi  sends release

messages to all K members of Vi  (including itself).

Figure 15.6 Maekawa’s algorithm

On initialization

state := RELEASED; 
voted := FALSE;

For to enter the critical section

state := WANTED;
Multicast request to all processes in ;
Wait until (number of replies received = K);
state := HELD;

On receipt of a request from  at 

if (state = HELD or voted = TRUE)
then

queue request from  without replying; 
else

send reply to ;
voted := TRUE;

end if

For to exit the critical section

state := RELEASED;
Multicast release to all processes in ;

On receipt of a release from  at 

if (queue of requests is non-empty)
then

remove head of queue – from , say; 
send reply to ;
voted := TRUE;

else

voted := FALSE;
end if
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This algorithm achieves the safety property, ME1. If it were possible for two 
processes pi  and pj  to enter the critical section at the same time, then the processes in 
Vi Vj  would have to have voted for both. But the algorithm allows a process to 
make at most one vote between successive receipts of a release message, so this 
situation is impossible. 

Unfortunately, the algorithm is deadlock-prone. Consider three processes, p1 , p2
and p3 , with V1 p1 p2= , V2 p2 p3=  and V3 p3 p1= . If the three 
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processes concurrently request entry to the critical section, then it is it is possible for p1
to reply to itself and hold off p2 , for p2  to reply to itself and hold off p3 , and for p3  to 
reply to itself and hold off p1 . Each process has received one out of two replies, and 
none can proceed.

The algorithm can be adapted [Sanders 1987] so that it becomes deadlock-free. In 
the adapted protocol, processes queue outstanding requests in happened-before order, so 
that requirement ME3 is also satisfied.

The algorithm’s bandwidth utilization is 2 N  messages per entry to the critical 
section and N  messages per exit (assuming no hardware multicast facilities). The total 
of 3 N  is superior to the 2 N 1–  messages required by Ricart and Agrawala’s 
algorithm, if N > 4. The client delay is the same as that of Ricart and Agrawala’s 
algorithm, but the synchronization delay is worse: a round-trip time instead of a single 
message transmission time.

Fault tolerance  •  The main points to consider when evaluating the above algorithms 
with respect to fault tolerance are:

• What happens when messages are lost?

• What happens when a process crashes?

None of the algorithms that we have described would tolerate the loss of messages, if 
the channels were unreliable. The ring-based algorithm cannot tolerate a crash failure of 
any single process. As it stands, Maekawa’s algorithm can tolerate some process crash 
failures: if a crashed process is not in a voting set that is required, then its failure will not 
affect the other processes. The central server algorithm can tolerate the crash failure of 
a client process that neither holds nor has requested the token. The Ricart and Agrawala 
algorithm as we have described it can be adapted to tolerate the crash failure of such a 
process, by taking it to grant all requests implicitly.

We invite the reader to consider how to adapt the algorithms to tolerate failures, 
on the assumption that a reliable failure detector is available. Even with a reliable failure 
detector, care is required to allow for failures at any point (including during a recovery 
procedure), and to reconstruct the state of the processes after a failure has been detected. 
For example, in the central-server algorithm, if the server fails it must be established 
whether it or one of the client processes held the token.

We examine the general problem of how processes should coordinate their actions 
in the presence of faults in Section 15.5.

15.3 Elections

An algorithm for choosing a unique process to play a particular role is called an election

algorithm. For example, in a variant of our central-server algorithm for mutual 
exclusion, the ‘server’ is chosen from among the processes pi i 1 2 N=  that 
need to use the critical section. An election algorithm is needed for this choice. It is 
essential that all the processes agree on the choice. Afterwards, if the process that plays 
the role of server wishes to retire then another election is required to choose a 
replacement.
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We say that a process calls the election if it takes an action that initiates a 
particular run of the election algorithm. An individual process does not call more than 
one election at a time, but in principle the N processes could call N concurrent elections. 
At any point in time, a process pi  is either a participant – meaning that it is engaged in 
some run of the election algorithm – or a non-participant – meaning that it is not 
currently engaged in any election.

An important requirement is for the choice of elected process to be unique, even 
if several processes call elections concurrently. For example, two processes could 
decide independently that a coordinator process has failed, and both call elections.

Without loss of generality, we require that the elected process be chosen as the one 
with the largest identifier. The ‘identifier’ may be any useful value, as long as the 
identifiers are unique and totally ordered. For example, we could elect the process with 
the lowest computational load by having each process use <1 load , i > as its identifier, 
where load > 0 and the process index i is used to order identifiers with the same load.

 Each process pi  ( i 1 2 N= ) has a variable electedi , which will contain the 
identifier of the elected process. When the process first becomes a participant in an 
election it sets this variable to the special value ‘ ’ to denote that it is not yet defined. 

Our requirements are that, during any particular run of the algorithm:

E1: (safety) A participant process pi  has electedi =  or electedi = P,
where P is chosen as the non-crashed process at the end of 
the run with the largest identifier.

E2: (liveness) All processes pi  participate and eventually either set 
electedi  – or crash.

Note that there may be processes pj  that are not yet participants, which record in 
electedj  the identifier of the previous elected process.

We measure the performance of an election algorithm by its total network 
bandwidth utilization (which is proportional to the total number of messages sent), and 
by the turnaround time for the algorithm: the number of serialized message transmission 
times between the initiation and termination of a single run.

A ring-based election algorithm  •  The algorithm of Chang and Roberts [1979] is 
suitable for a collection of processes arranged in a logical ring. Each process pi  has a 
communication channel to the next process in the ring, p i 1+ mod N , and all messages 
are sent clockwise around the ring. We assume that no failures occur, and that the system 
is asynchronous. The goal of this algorithm is to elect a single process called the 
coordinator, which is the process with the largest identifier. 

Initially, every process is marked as a non-participant in an election. Any process 
can begin an election. It proceeds by marking itself as a participant, placing its identifier 
in an election message and sending it to its clockwise neighbour.

When a process receives an election message, it compares the identifier in the 
message with its own. If the arrived identifier is greater, then it forwards the message to 
its neighbour. If the arrived identifier is smaller and the receiver is not a participant, then 
it substitutes its own identifier in the message and forwards it; but it does not forward 
the message if it is already a participant. On forwarding an election message in any case, 
the process marks itself as a participant.



Figure 15.7 A ring-based election in progress
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If, however, the received identifier is that of the receiver itself, then this process’s 
identifier must be the greatest, and it becomes the coordinator. The coordinator marks 
itself as a non-participant once more and sends an elected message to its neighbour, 
announcing its election and enclosing its identity.

When a process pi  receives an elected message, it marks itself as a non-

participant, sets its variable electedi  to the identifier in the message and, unless it is the 
new coordinator, forwards the message to its neighbour.

It is easy to see that condition E1 is met. All identifiers are compared, since a 
process must receive its own identifier back before sending an elected message. For any 
two processes, the one with the larger identifier will not pass on the other’s identifier. It 
is therefore impossible that both should receive their own identifier back.

Condition E2 follows immediately from the guaranteed traversals of the ring 
(there are no failures). Note how the non-participant and participant states are used so 
that duplicate messages arising when two processes start an election at the same time are 
extinguished as soon as possible, and always before the ‘winning’ election result has 
been announced. 

If only a single process starts an election, then the worst-performing case is when 
its anti-clockwise neighbour has the highest identifier. A total of N 1–  messages are 
then required to reach this neighbour, which will not announce its election until its 
identifier has completed another circuit, taking a further N messages. The elected

message is then sent N times, making 3N 1–  messages in all. The turnaround time is 
also 3N 1– , since these messages are sent sequentially.
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An example of a ring-based election in progress is shown in Figure 15.7. The 
election message currently contains 24, but process 28 will replace this with its identifier 
when the message reaches it.

While the ring-based algorithm is useful for understanding the properties of 
election algorithms in general, the fact that it tolerates no failures makes it of limited 
practical value. However, with a reliable failure detector it is in principle possible to re-
constitute the ring when a process crashes.

The bully algorithm  •  

Figure 15.8 The bully algorithm
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The bully algorithm [Garcia-Molina 1982] allows processes to 
crash during an election, although it assumes that message delivery between processes 
is reliable. Unlike the ring-based algorithm, this algorithm assumes that the system is 
synchronous: it uses timeouts to detect a process failure. Another difference is that the 
ring-based algorithm assumed that processes have minimal a priori knowledge of one 
another: each knows only how to communicate with its neighbour, and none knows the 
identifiers of the other processes. The bully algorithm, on the other hand, assumes that 
each process knows which processes have higher identifiers, and that it can 
communicate with all such processes.

There are three types of message in this algorithm: an election message is sent to 
announce an election; an answer message is sent in response to an election message and 
a coordinator message is sent to announce the identity of the elected process – the new 
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‘coordinator’. A process begins an election when it notices, through timeouts, that the 
coordinator has failed. Several processes may discover this concurrently.

Since the system is synchronous, we can construct a reliable failure detector. 
There is a maximum message transmission delay, Ttrans , and a maximum delay for 
processing a message Tprocess . Therefore, we can calculate a time 
T 2Ttrans Tprocess+=  that is an upper bound on the time that can elapse between 
sending a message to another process and receiving a response. If no response arrives 
within time T, then the local failure detector can report that the intended recipient of the 
request has failed.

The process that knows it has the highest identifier can elect itself as the 
coordinator simply by sending a coordinator message to all processes with lower 
identifiers. On the other hand, a process with a lower identifier can begin an election by 
sending an election message to those processes that have a higher identifier and awaiting 
answer messages in response. If none arrives within time T, the process considers itself 
the coordinator and sends a coordinator message to all processes with lower identifiers 
announcing this. Otherwise, the process waits a further period T for a coordinator

message to arrive from the new coordinator. If none arrives, it begins another election.
If a process pi  receives a coordinator message, it sets its variable electedi  to the 

identifier of the coordinator contained within it and treats that process as the coordinator.
If a process receives an election message, it sends back an answer message and 

begins another election – unless it has begun one already.
When a process is started to replace a crashed process, it begins an election. If it 

has the highest process identifier, then it will decide that it is the coordinator and 
announce this to the other processes. Thus it will become the coordinator, even though 
the current coordinator is functioning. It is for this reason that the algorithm is called the 
‘bully’ algorithm.

The operation of the algorithm is shown in Figure 15.8. There are four processes, 
p1 –p4 . Process p1  detects the failure of the coordinator p4  and announces an election 
(stage 1 in the figure). On receiving an election message from p1 , processes p2  and p3
send answer messages to p1  and begin their own elections; p3  sends an answer

message to p2 , but p3  receives no answer message from the failed process p4  (stage 
2). It therefore decides that it is the coordinator. But before it can send out the 
coordinator message, it too fails (stage 3). When p1 ’s timeout period T  expires (which 
we assume occurs before p2 ’s timeout expires), it deduces the absence of a coordinator

message and begins another election. Eventually, p2  is elected coordinator (stage 4).
This algorithm clearly meets the liveness condition E2, by the assumption of 

reliable message delivery. And if no process is replaced, then the algorithm meets 
condition E1. It is impossible for two processes to decide that they are the coordinator, 
since the process with the lower identifier will discover that the other exists and defer to 
it.

But the algorithm is not guaranteed to meet the safety condition E1 if processes 
that have crashed are replaced by processes with the same identifiers. A process that 
replaces a crashed process p may decide that it has the highest identifier just as another 
process (which has detected p’s crash) decides that it has the highest identifier. Two 
processes will therefore announce themselves as the coordinator concurrently. 
Unfortunately, there are no guarantees on message delivery order, and the recipients of 
these messages may reach different conclusions on which is the coordinator process.
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Furthermore, condition E1 may be broken if the assumed timeout values turn out 
to be inaccurate – that is, if the processes’ failure detector is unreliable.

Taking the example just given, suppose that either p3  had not failed but was just 
running unusually slowly (that is, that the assumption that the system is synchronous is 
incorrect), or that p3  had failed but was then replaced. Just as p2  sends its coordinator 

message, p3  (or its replacement) does the same. p2  receives p3 ‘s coordinator message
after it has sent its own and so sets elected2 p3= . Due to variable message 
transmission delays, p1  receives p2 ’s coordinator message after p3 ’s and so 
eventually sets elected1 p2= . Condition E1 has been broken.

With regard to the performance of the algorithm, in the best case the process with 
the second-highest identifier notices the coordinator’s failure. Then it can immediately 
elect itself and send N 2–  coordinator messages. The turnaround time is one message. 
The bully algorithm requires O N

2
 messages in the worst case – that is, when the 

process with the lowest identifier first detects the coordinator’s failure. For then N 1–
processes altogether begin elections, each sending messages to processes with higher 
identifiers.

15.4 Coordination and agreement in group communication

This chapter examines the key coordination and agreement problems related to group 
communication – that is, how to achieve the desired reliability and ordering properties 
across all members of a group. Chapter 6 introduced group communication as an 
example of an indirect communication technique whereby processes can send messages 
to a group. This message is propagated to all members of the group with certain 
guarantees in terms of reliability and ordering. We are particularly seeking  reliability in 
terms of the properties of validity, integrity and agreement, and ordering in terms of 
FIFO ordering, causal ordering and total ordering.

In this chapter, we study multicast communication to groups of processes whose 
membership is known. Chapter 18 will expand our study to fully fledged group 
communication, including the management of dynamically varying groups.

System model  •  The system under consideration contains a collection of processes, 
which can communicate reliably over one-to-one channels. As before, processes may 
fail only by crashing.

The processes are members of groups, which are the destinations of messages sent 
with the multicast operation. It is generally useful to allow processes to be members of 
several groups simultaneously – for example, to enable processes to receive information 
from several sources by joining several groups. But to simplify our discussion of 
ordering properties, we shall sometimes restrict processes to being members of at most 
one group at a time.

The operation multicast(g, m) sends the message m to all members of the group g
of processes. Correspondingly, there is an operation deliver(m) that delivers a message 
sent by multicast to the calling process. We use the term deliver rather than receive to 
make clear that a multicast message is not always handed to the application layer inside 
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the process as soon as it is received at the process’s node. This is explained when we 
discuss multicast delivery semantics shortly.

Every message m carries the unique identifier of the process sender(m) that sent 
it, and the unique destination group identifier group(m). We assume that processes do 
not lie about the origin or destinations of messages.

Some algorithms assume that groups are closed (as defined in Chapter 6).

15.4.1 Basic multicast

It is useful to have at our disposal a basic multicast primitive that guarantees, unlike IP 
multicast, that a correct process will eventually deliver the message, as long as the 
multicaster does not crash. We call the primitive B-multicast and its corresponding basic 
delivery primitive B-deliver. We allow processes to belong to several groups, and each 
message is destined for some particular group.

A straightforward way to implement B-multicast is to use a reliable one-to-one 
send operation, as follows:

To B-multicast(g, m): for each process p g , send(p, m);

On receive(m) at p: B-deliver(m) at p.

The implementation may use threads to perform the send operations concurrently, in an 
attempt to reduce the total time taken to deliver the message. Unfortunately, such an 
implementation is liable to suffer from a so-called ack-implosion if the number of 
processes is large. The acknowledgements sent as part of the reliable send operation are 
liable to arrive from many processes at about the same time. The multicasting process’s 
buffers will rapidly fill, and it is liable to drop acknowledgements. It will therefore 
retransmit the message, leading to yet more acknowledgements and further waste of 
network bandwidth. A more practical basic multicast service can be built using IP 
multicast, and we invite the reader to show this in Exercise 15.10.

15.4.2 Reliable multicast

Chapter 6 discussed reliable multicast in terms of validity, integrity and agreement. This 
section builds on this informal discussion, presenting a more complete definition.

Following Hadzilacos and Toueg [1994] and Chandra and Toueg [1996], we 
define a reliable multicast with corresponding operations R-multicast and R-deliver.
Properties analogous to integrity and validity are clearly highly desirable in reliable 
multicast delivery, but we add another: a requirement that all correct processes in the 
group must receive a message if any of them does. It is important to realize that this is 
not a property of the B-multicast algorithm that is based on a reliable one-to-one send

operation. The sender may fail at any point while B-multicast proceeds, so some 
processes may deliver a message while others do not.

A reliable multicast is one that satisfies the following properties:

Integrity: A correct process p delivers a message m at most once. Furthermore, 
p group m  and m was supplied to a multicast operation by sender(m). (As with 
one-to-one communication, messages can always be distinguished by a sequence 
number relative to their sender.)
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Validity: If a correct process multicasts message m, then it will eventually deliver m.

Agreement: If a correct process delivers message m, then all other correct processes 
in group(m) will eventually deliver m.

The integrity property is analogous to that for reliable one-to-one communication. The 
validity property guarantees liveness for the sender. This may seem an unusual property, 
because it is asymmetric (it mentions only one particular process). But notice that 
validity and agreement together amount to an overall liveness requirement: if one 
process (the sender) eventually delivers a message m, since the correct processes agree 
on the set of messages they deliver, it follows that m will eventually be delivered to all 
the group’s correct members.

Figure 15.9 Reliable multicast algorithm

On initialization

Received := {}; 

For process p to R-multicast message m to group g

B-multicast(g, m); //  is included as a destination

On B-deliver(m) at process q with g = group(m)
if ( )
then

Received := ;
if ( ) then B-multicast(g, m); end if

R-deliver m;
end if

p g

m Received

Received m

q p

The advantage of expressing the validity condition in terms of self-delivery is 
simplicity. What we require is that the message be delivered eventually by some correct 
member of the group.

The agreement condition is related to atomicity, the property of ‘all or nothing’, 
applied to delivery of messages to a group. If a process that multicasts a message crashes 
before it has delivered it, then it is possible that the message will not be delivered to any 
process in the group; but if it is delivered to some correct process, then all other correct 
processes will deliver it. Many papers in the literature use the term ‘atomic’ to include 
a total ordering condition; we define this shortly.

Implementing reliable multicast over B-multicast  •  Figure 15.9 gives a reliable multi-
cast algorithm, with primitives R-multicast and R-deliver, that allows processes to be-
long to several closed groups simultaneously. To R-multicast a message, a process B-

multicasts the message to the processes in the destination group (including itself). When 
the message is B-delivered, the recipient in turn B-multicasts the message to the group 
(if it is not the original sender), and then R-delivers the message. Since a message may 
arrive more than once, duplicates of the message are detected and not delivered.

This algorithm clearly satisfies the validity property, since a correct process will 
eventually B-deliver the message to itself. By the integrity property of the underlying 
communication channels used in B-multicast, the algorithm also satisfies the integrity 
property.
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Agreement follows from the fact that every correct process B-multicasts the 
message to the other processes after it has B-delivered it. If a correct process does not R-

deliver the message, then this can only be because it never B-delivered it. That in turn 
can only be because no other correct process B-delivered it either; therefore none will 
R-deliver it. 

The reliable multicast algorithm that we have described is correct in an 
asynchronous system, since we made no timing assumptions. But the algorithm is 
inefficient for practical purposes. Each message is sent g  times to each process.

Reliable multicast over IP multicast  •  An alternative realization of R-multicast is to use 
a combination of IP multicast, piggybacked acknowledgements (that is, acknowledge-
ments attached to other messages) and negative acknowledgements. This R-multicast

protocol is based on the observation that IP multicast communication is often successful. 
In the protocol, processes do not send separate acknowledgement messages; instead, 
they piggyback acknowledgements on the messages that they send to the group. Proc-
esses send a separate response message only when they detect that they have missed a 
message. A response indicating the absence of an expected message is known as a neg-

ative acknowledgement.

 The description assumes that groups are closed. Each process p maintains a 
sequence number Sg

p
 for each group g to which it belongs. The sequence number is 

initially zero. Each process also records Rg
q

, the sequence number of the latest message 
it has delivered from process q that was sent to group g.

For p to R-multicast a message to group g, it piggybacks onto the message the 
value Sg

p
 and acknowledgements, of the form <q, Rg

q
>. An acknowledgement states, for 

some sender q, the sequence number of the latest message from q destined for g that p
has delivered since it last multicast a message. The multicaster p then IP-multicasts the 
message with its piggybacked values to g, and increments Sg

p
 by one. 

The piggybacked values in a multicast message enable the recipients to learn 
about messages that they have not received. A process R-delivers a message destined for 
g bearing the sequence number S from p if and only if S Rg

p
1+= , and it increments 

Rg
p

 by one immediately after delivery. If an arriving message has S Rg
p

, then r has 
delivered the message before and it discards it. If S Rg

p
1+ , or if R Rg

q
 for an 

enclosed acknowledgement <q, R>, then there are one or more messages that it has not 
yet received (and which are likely to have been dropped, in the first case). It keeps any 
message for which S Rg

p
1+  in a hold-back queue (Figure 15.10) – such queues are 

often used to meet message delivery guarantees. It requests missing messages by 
sending negative acknowledgements, either to the original sender or to a process q from 
which it has received an acknowledgement <q, Rg

q
> with Rg

q
 no less than the required 

sequence number.  
The hold-back queue is not strictly necessary for reliability, but it simplifies the 

protocol by enabling us to use sequence numbers to represent sets of delivered 
messages. It also provides us with a guarantee of delivery order (see Section 15.4.3).

The integrity property follows from the detection of duplicates and the underlying 
properties of IP multicast (which uses checksums to expunge corrupted messages). The 
validity property holds because IP multicast has that property. For agreement we 
require, first, that a process can always detect missing messages. That in turn means that 
it will always receive a further message that enables it to detect the omission. As this 



Figure 15.10 The hold-back queue for arriving multicast messages
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simplified protocol stands, we guarantee detection of missing messages only in the case 
where correct processes multicast messages indefinitely. Second, the agreement 
property requires that there is always an available copy of any message needed by a 
process that did not receive it. We therefore assume that processes retain copies of the 
messages they have delivered – indefinitely, in this simplified protocol. 

Neither of the assumptions we made to ensure agreement is practical (see Exercise 
15.15). However, agreement is practically addressed in the protocols from which ours is 
derived: the Psync protocol [Peterson et al. 1989], Trans protocol [Melliar-Smith et al.

1990] and scalable reliable multicast protocol [Floyd et al. 1997]. Psync and Trans also 
provide further delivery ordering guarantees.

Uniform properties  •  The definition of agreement given above refers only to the 
behaviour of correct processes – processes that never fail. Consider what would happen 
in the algorithm of Figure 15.9 if a process was not correct and crashed after it had R-

delivered a message. Since any process that R-delivers the message must first B-

multicast it, it follows that all correct processes will still eventually deliver the message. 
Any property that holds whether or not processes are correct is called a uniform 

property. We define uniform agreement as follows:

Uniform agreement: If a process, whether it is correct or fails, delivers message m,
then all correct processes in group(m) will eventually deliver m.

Uniform agreement allows a process to crash after it has delivered a message, while still 
ensuring that all correct processes will deliver the message. We have argued that the 
algorithm of Figure 15.9 satisfies this property, which is stronger than the non-uniform 
agreement property defined above. 

Uniform agreement is useful in applications where a process may take an action 
that produces an observable inconsistency before it crashes. For example, suppose that 
the processes are servers that manage copies of a bank account, and that updates to the 
account are sent using reliable multicast to the group of servers. If the multicast does not 
satisfy uniform agreement, then a client that accesses a server just before it crashes may 
observe an update that no other server will process.
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It is interesting to note that if we reverse the lines ‘R-deliver m’ and ‘if (q p )
then B-multicast(g, m); end if’ in Figure 15.9, then the resultant algorithm does not 
satisfy uniform agreement.

Just as there is a uniform version of agreement, there are also uniform versions of 
any multicast property, including validity and integrity and the ordering properties that 
we are about to define.

15.4.3 Ordered multicast

The basic multicast algorithm of Section 15.4.1 delivers messages to processes in an 
arbitrary order, due to arbitrary delays in the underlying one-to-one send operations.
This lack of an ordering guarantee is not satisfactory for many applications. For 
example, in a nuclear power plant it may be important that events signifying threats to 
safety conditions and events signifying actions by control units are observed in the same 
order by all processes in the system.

As discussed in Chapter 6, the common ordering requirements are total ordering, 
causal ordering and FIFO ordering, together with hybrid solutions (in particular, total-
causal and total-FIFO). To simplify our discussion, we define these orderings under the 
assumption that any process belongs to at most one group (later we discuss the 
implications of allowing groups to overlap):

FIFO ordering: If a correct process issues multicast(g, m) and then multicast(g, m ),
then every correct process that delivers m  will deliver m before m .

Causal ordering: If multicast(g, m) multicast(g, m ), where is the 
happened-before relation induced only by messages sent between the members of g,
then any correct process that delivers m  will deliver m before m .

Total ordering: If a correct process delivers message m before it delivers m , then 
any other correct process that delivers m  will deliver m before m .

Causal ordering implies FIFO ordering, since any two multicasts by the same process 
are related by happened-before. Note that FIFO ordering and causal ordering are only 
partial orderings: not all messages are sent by the same process, in general; similarly, 
some multicasts are concurrent (not ordered by happened-before).

Figure 15.11 illustrates the orderings for the case of three processes. Close
inspection of the figure shows that the totally ordered messages are delivered in the 
opposite order to the physical time at which they were sent. In fact, the definition of total 
ordering allows message delivery to be ordered arbitrarily, as long as the order is the 
same at different processes. Since total ordering is not necessarily also a FIFO or causal 
ordering, we define the hybrid of FIFO-total ordering as one for which message delivery 
obeys both FIFO and total ordering; similarly, under causal-total ordering message 
delivery obeys both causal and total ordering.

The definitions of ordered multicast do not assume or imply reliability. For 
example, the reader should check that, under total ordering, if correct process p delivers 
message m and then delivers m , then a correct process q can deliver m without also 
delivering m or any other message ordered after m.

We can also form hybrids of ordered and reliable protocols. A reliable totally 
ordered multicast is often referred to in the literature as an atomic multicast. Similarly, 



Figure 15.11 Total, FIFO and causal ordering of multicast messages
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we may form reliable FIFO multicast, reliable causal multicast and reliable versions of 
the hybrid ordered multicasts.

Ordering the delivery of multicast messages, as we shall see, can be expensive in 
terms of delivery latency and bandwidth consumption. The ordering semantics that we 
have described may delay the delivery of messages unnecessarily. That is, at the 
application level, a message may be delayed for another message that it does not in fact 
depend upon. For this reason, some have proposed multicast systems that use the 
application-specific message semantics alone to determine the order of message 
delivery [Cheriton and Skeen 1993, Pedone and Schiper 1999].

The example of the bulletin board  •  To make multicast delivery semantics more 
concrete, consider an application in which users post messages to bulletin boards. Each 
user runs a bulletin-board application process. Every topic of discussion has its own 
process group. When a user posts a message to a bulletin board, the application 
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multicasts the user’s posting to the corresponding group. Each user’s process is a 
member of the group for the topic in which that user is interested, so they will receive 
just the postings concerning that topic.

Reliable multicast is required if every user is to receive every posting eventually. 
The users also have ordering requirements. 

Figure 15.12 Display from bulletin board program

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach 

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

Figure 15.12 shows the postings as they 
appear to a particular user. At a minimum, FIFO ordering is desirable, since then every 
posting from a given user – ‘A.Hanlon’, say – will be received in the same order, and 
users can talk consistently about A.Hanlon’s second posting.

Note that the messages whose subjects are ‘Re: Microkernels’ (25) and ‘Re: 
Mach’ (27) appear after the messages to which they refer. A causally ordered multicast 
is needed to guarantee this relationship. Otherwise, arbitrary message delays could mean 
that, say, the message ‘Re: Mach’ could appear before the original message about Mach. 

If the multicast delivery was totally ordered, then the numbering in the lefthand 
column would be consistent between users. Users could refer unambiguously, for 
example, to ‘message 24’.

In practice, the USENET bulletin board system implements neither causal nor 
total ordering. The communication costs of achieving these orderings on a large scale 
outweigh their advantages.

Implementing FIFO ordering  •  FIFO-ordered multicast (with operations FO-multicast

and FO-deliver) is achieved with sequence numbers, much as we would achieve it for 
one-to-one communication. We shall consider only non-overlapping groups. The reader 
should verify that the reliable multicast protocol that we defined on top of IP multicast 
in Section 15.4.2 also guarantees FIFO ordering, but we shall show how to construct a 
FIFO-ordered multicast on top of any given basic multicast. We use the variables Sg

p

and Rg
q

 held at process p from the reliable multicast protocol of Section 15.4.2: Sg
p

 is a 
count of how many messages p has sent to g and, for each q, Rg

q
 is the sequence number 

of the latest message p has delivered from process q that was sent to group g.

For p to FO-multicast a message to group g, it piggybacks the value Sg
p

 onto the 
message, B-multicasts the message to g and then increments Sg

p
 by 1. Upon receipt of a 

message from q bearing the sequence number S, p checks whether S Rg
q

1+= . If so, 
this message is the next one expected from the sender q and p FO-delivers it, setting



Rg
q
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:=S. If S Rg
q

1+ , it places the message in the hold-back queue until the intervening 
messages have been delivered and S Rg

q
1+= .

Since all messages from a given sender are delivered in the same sequence, and 
since a message’s delivery is delayed until its sequence number has been reached, the 
condition for FIFO ordering is clearly satisfied. But this is so only under the assumption 
that groups are non-overlapping.

Note that we can use any implementation of B-multicast in this protocol.
Moreover, if we use a reliable R-multicast primitive instead of B-multicast, then we 
obtain a reliable FIFO multicast. 

Implementing total ordering  •  The basic approach to implementing total ordering is to 
assign totally ordered identifiers to multicast messages so that each process makes the 
same ordering decision based upon these identifiers. The delivery algorithm is very 
similar to the one we described for FIFO ordering; the difference is that processes keep 
group-specific sequence numbers rather than process-specific sequence numbers. We 
only consider how to totally order messages sent to non-overlapping groups. We call the 
multicast operations TO-multicast and TO-deliver.

We discuss two main methods for assigning identifiers to messages. The first of 
these is for a process called a sequencer to assign them (Figure 15.13). A process 
wishing to TO-multicast a message m to group g attaches a unique identifier id(m) to it. 
The messages for g are sent to the sequencer for g, sequencer(g), as well as to the 
members of g. (The sequencer may be chosen to be a member of g.) The process 
sequencer(g) maintains a group-specific sequence number sg , which it uses to assign 
increasing and consecutive sequence numbers to the messages that it B-delivers. 
It announces the sequence numbers by B-multicasting order messages to g (see Figure 
15.13 for the details). 

A message will remain in the hold-back queue indefinitely until it can be TO-

delivered according to the corresponding sequence number. Since the sequence numbers 
are well defined (by the sequencer), the criterion for total ordering is met. Furthermore, 
if the processes use a FIFO-ordered variant of B-multicast, then the totally ordered 
multicast is also causally ordered. We leave the reader to show this.

The obvious problem with a sequencer-based scheme is that the sequencer may 
become a bottleneck and is a critical point of failure. Practical algorithms exist that 
address the problem of failure. Chang and Maxemchuk [1984] first suggested a 
multicast protocol employing a sequencer (which they called a token site). Kaashoek et

al. [1989] developed a sequencer-based protocol for the Amoeba system. These 
protocols ensure that a message is in the hold-back queue at f 1+  nodes before it is 
delivered; up to f failures can thus be tolerated. Like Chang and Maxemchuk, Birman et

al. [1991] also employ a token-holding site that acts as a sequencer. The token can be 
passed from process to process so that, for example, if only one process sends totally 
ordered multicasts that process can act as the sequencer, saving communication.

The protocol of Kaashoek et al. uses hardware-based multicast – available on an 
Ethernet, for example – rather than reliable point-to-point communication. In the 
simplest variant of their protocol, processes send the message to be multicast to the 
sequencer, one-to-one. The sequencer multicasts the message itself, as well as the 
identifier and sequence number. This has the advantage that the other members of the 



Figure 15.13 Total ordering using a sequencer

1. Algorithm for group member p

On initialization:  := 0;

To TO-multicast message m to group g

B-multicast( , <m, i>);

On B-deliver(<m, i>) with g = group(m)
Place <m, i> in hold-back queue;

On B-deliver(  = <“order”, i, S>) with g = group( )
wait until <m, i> in hold-back queue and ;
TO-deliver m; // (after deleting it from the hold-back queue)

 := ;

2. Algorithm for sequencer of g

On initialization:  := 0;

On B-deliver(<m, i>) with g = group(m)
B-multicast(g, <“order”, i, >);

 := ;
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group receive only one message per multicast; its disadvantage is increased bandwidth 
utilization. The protocol is described in full at www.cdk5.net/coordination.

The second method that we examine for achieving totally ordered multicast is one 
in which the processes collectively agree on the assignment of sequence numbers to 
messages in a distributed fashion. A simple algorithm – similar to one that was originally 
developed to implement totally ordered multicast delivery for the ISIS toolkit [Birman 
and Joseph 1987a] – is shown in Figure 15.14. Once more, a process B-multicasts its 
message to the members of the group. The group may be open or closed. The receiving 
processes propose sequence numbers for messages as they arrive and return these to the 
sender, which uses them to generate agreed sequence numbers.

Each process q in group g keeps Ag
q

, the largest agreed sequence number it has 
observed so far for group g, and Pg

q
, its own largest proposed sequence number. The

algorithm for process p to multicast a message m to group g is as follows:

1. p B-multicasts <m, i> to g, where i is a unique identifier for m.

2. Each process q replies to the sender p with a proposal for the message’s agreed 
sequence number of Pg

q
:= Max(Ag

q
, Pg

q
) + 1. In reality, we must include process 

identifiers in the proposed values Pg
q

to ensure a total order, since otherwise 
different processes could propose the same integer value; but for the sake of 
simplicity we shall not make that explicit here. Each process provisionally assigns 
the proposed sequence number to the message and places it in its hold-back queue, 
which is ordered with the smallest sequence number at the front.



Figure 15.14 The ISIS algorithm for total ordering
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3. p collects all the proposed sequence numbers and selects the largest one, a, as the 
next agreed sequence number. It then B-multicasts <i, a> to g. Each process q in 
g sets Ag

q
:= Max(Ag

q
, a) and attaches a to the message (which is identified by i).

It reorders the message in the hold-back queue if the agreed sequence number 
differs from the proposed one. When the message at the front of the hold-back 
queue has been assigned its agreed sequence number, it is transferred to the tail of 
the delivery queue. Messages that have been assigned their agreed sequence 
number but are not at the head of the hold-back queue are not yet transferred, 
however.

If every process agrees the same set of sequence numbers and delivers them in the 
corresponding order, then total ordering is satisfied. It is clear that correct processes 
ultimately agree on the same set of sequence numbers, but we must show that they are 
monotonically increasing and that no correct process can deliver a message prematurely. 

Assume that a message m1  has been assigned an agreed sequence number and has 
reached the front of the hold-back queue. By construction, a message that is received 
after this stage will and should be delivered after m1: it will have a larger proposed 
sequence number and thus a larger agreed sequence number than m1 . So let m2  be any 
other message that has not yet been assigned its agreed sequence number but that is on 
the same queue. We have that:

agreedSequence(m2 )  proposedSequence(m2 )

by the algorithm just given. Since m1  is at the front of the queue:

proposedSequence(m2 ) > agreedSequence(m1 )

Therefore:

agreedSequence(m2 ) > agreedSequence(m1 )
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and total ordering is assured.
This algorithm has higher latency than the sequencer-based multicast algorithm: 

three messages are sent serially between the sender and the group before a message can 
be delivered. 

Note that the total ordering chosen by this algorithm is not also guaranteed to be 
causally or FIFO-ordered: any two messages are delivered in an essentially arbitrary 
total order, influenced by communication delays. 

For other approaches to implementing total ordering, see Melliar-Smith et al.

[1990], Garcia-Molina and Spauster [1991] and Hadzilacos and Toueg [1994].

Implementing causal ordering  •  Next we give an algorithm for non-overlapping closed 
groups based on that developed by Birman et al. [1991], shown in 

Figure 15.15 Causal ordering using vector timestamps

Algorithm for group member ( )

On initialization

 := 0 ( );

To CO-multicast message m to group g

 := ;

B-multicast(g, < , m>);

On B-deliver(< , m>) from  ( ), with g = group(m)

place < , m> in hold-back queue;

wait until and ( );

CO-deliver m; // after removing it from the hold-back queue

 := ;
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Figure 15.15, in which 
the causally ordered multicast operations are CO-multicast and CO-deliver. The
algorithm takes account of the happened-before relationship only as it is established by 
multicast messages. If the processes send one-to-one messages to one another, then 
these will not be accounted for. 

Each process pi  ( i 1 2 N= ) maintains its own vector timestamp (see 
Section 14.4). The entries in the timestamp count the number of multicast messages 
from each process that happened-before the next message to be multicast. 

To CO-multicast a message to group g, the process adds 1 to its entry in the 
timestamp and B-multicasts the message along with its timestamp to g.

When a process pi B-delivers a message from pj , it must place it in the hold-back 
queue before it can CO-deliver it – that is, until it is assured that it has delivered any 
messages that causally preceded it. To establish this, pi  waits until (a) it has delivered 
any earlier message sent by pj , and (b) it has delivered any message that pj  had 
delivered at the time it multicast the message. Both of those conditions can be detected 
by examining vector timestamps, as shown in Figure 15.15. Note that a process can 
immediately CO-deliver to itself any message that it CO-multicasts, although this is not 
described in Figure 15.15.
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Each process updates its vector timestamp upon delivering any message, to 
maintain the count of causally precedent messages. It does this by incrementing the jth 
entry in its timestamp by one. This is an optimization of the merge operation that appears 
in the rules for updating vector clocks in Section 14.4. We can make the optimization in 
view of the delivery condition in the algorithm of Figure 15.15, which guarantees that 
only the jth entry will increase.

We outline the proof of the correctness of this algorithm as follows. Suppose that 
multicast(g, m) multicast(g, m ). Let V and V  be the vector timestamps of m and 
m , respectively. It is straightforward to prove inductively from the algorithm that 
V V . In particular, if process pk  multicast m, then V k V k .

Consider what happens when some correct process pi B-delivers m  (as opposed 
to CO-delivering it) without first CO-delivering m. By the algorithm, Vi k  can increase 
only when pi  delivers a message from pk , when it increases by 1. But pi  has not 
received m, and therefore Vi k  cannot increase beyond V k 1– . It is therefore not 
possible for pi  to CO-deliver m , since this would require that Vi k V k , and 
therefore that Vi k V k .

The reader should check that if we substitute the reliable R-multicast primitive in 
place of B-multicast, then we obtain a multicast that is both reliable and causally 
ordered. 

Furthermore, if we combine the protocol for causal multicast with the sequencer-
based protocol for totally ordered delivery, then we obtain message delivery that is both 
total and causal. The sequencer delivers messages according to the causal order and 
multicasts the sequence numbers for the messages in the order in which it receives them. 
The processes in the destination group do not deliver a message until they have received 
an order message from the sequencer and the message is next in the delivery sequence. 

Since the sequencer delivers messages in causal order, and since all other 
processes deliver messages in the same order as the sequencer, the ordering is indeed 
both total and causal. 

Overlapping groups  •  We have considered only non-overlapping groups in the 
preceding definitions and algorithms for FIFO, total and causal ordering semantics. This 
simplifies the problem, but it is not satisfactory, since in general processes need to be 
members of multiple overlapping groups. For example, a process may be interested in 
events from multiple sources and thus join a corresponding set of event-distribution 
groups.

We can extend the ordering definitions to global orders [Hadzilacos and Toueg 
1994], in which we have to consider that if message m is multicast to g, and if message 
m  is multicast to g , then both messages are addressed to the members of g g :

Global FIFO ordering: If a correct process issues multicast(g, m) and then 
multicast(g , m ), then every correct process in g g  that delivers m  will deliver 
m before m .

Global causal ordering: If multicast(g, m) multicast(g , m ), where is
the happened-before relation induced by any chain of multicast messages, then any
correct process in g g  that delivers m  will deliver m before m .
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Pairwise total ordering: If a correct process delivers message m sent to g before it 
delivers m  sent to g , then any other correct process in g g  that delivers m  will 
deliver m before m .

Global total ordering: Let ‘<’ be the relation of ordering between delivery events. 
We require that ‘<’ obeys pairwise total ordering and that it is acyclic – under 
pairwise total ordering, ‘<’ is not acyclic by default.

One way of implementing these orders would be to multicast each message m to the 
group of all processes in the system. Each process either discards or delivers the 
message according to whether it belongs to group(m). This would be an inefficient and 
unsatisfactory implementation: a multicast should involve as few processes as possible 
beyond the members of the destination group. Alternatives are explored in Birman et al.

[1991], Garcia-Molina and Spauster [1991], Hadzilacos and Toueg [1994], Kindberg 
[1995] and Rodrigues et al. [1998].

Multicast in synchronous and asynchronous systems  •  In this section, we have described 
algorithms for reliable unordered multicast, (reliable) FIFO-ordered multicast, (reliable) 
causally ordered multicast and totally ordered multicast. We also indicated how to 
achieve a multicast that is both totally and causally ordered. We leave the reader to 
devise an algorithm for a multicast primitive that guarantees both FIFO and total 
ordering. All the algorithms that we have described work correctly in asynchronous 
systems.

We did not, however, give an algorithm that guarantees both reliable and totally 
ordered delivery. Surprising though it may seem, while possible in a synchronous

system, a protocol with these guarantees is impossible in an asynchronous distributed 
system – even one that has at worst suffered a single process crash failure. We return to 
this point in the next section.

15.5 Consensus and related problems

This section introduces the problem of consensus [Pease et al. 1980, Lamport et al.

1982] and the related problems of Byzantine generals and interactive consistency. We 
refer to these collectively as problems of agreement. Roughly speaking, the problem is 
for processes to agree on a value after one or more of the processes has proposed what 
that value should be.

For example, in Chapter 2 we described a situation in which two armies should 
decide consistently to attack the common enemy or retreat. Similarly, we may require 
that all the correct processes controlling a spaceship’s engines should decide to either 
‘proceed’ or ‘abort’ after each has proposed one action or the other, and in a transaction 
to transfer funds from one account to another the processes involved must consistently 
agree to perform the respective debit and credit. In mutual exclusion, the processes agree 
on which process can enter the critical section. In an election, the processes agree on 
which is the elected process. In totally ordered multicast, the processes agree on the 
order of message delivery. 

Protocols exist that are tailored to these individual types of agreement. We 
described some of them above, and Chapters 16 and 17 examine transactions. But it is 
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useful for us to consider more general forms of agreement, in a search for common 
characteristics and solutions.

This section defines consensus more precisely and relates it to three related 
agreement problems: Byzantine generals, interactive consistency and totally ordered 
multicast. We go on to examine under what circumstances the problems can be solved, 
and to sketch some solutions. In particular, we discuss the well-known impossibility 
result of Fischer et al. [1985], which states that in an asynchronous system a collection 
of processes containing only one faulty process cannot be guaranteed to reach 
consensus. Finally, we consider how it is that practical algorithms exist despite the 
impossibility result.

15.5.1 System model and problem definitions

Our system model includes a collection of processes pi  ( i 1 2 N= ) communicat-
ing by message passing. An important requirement that applies in many practical situa-
tions is for consensus to be reached even in the presence of faults. We assume, as before, 
that communication is reliable but that processes may fail. In this section we consider 
Byzantine (arbitrary) process failures, as well as crash failures. We sometimes specify 
an assumption that up to some number f of the N processes are faulty – that is, they ex-
hibit some specified types of fault; the remainder of the processes are correct.

If arbitrary failures can occur, then another factor in specifying our system is 
whether the processes digitally sign the messages that they send (see Section 11.4). If 
processes sign their messages, then a faulty process is limited in the harm it can do. 
Specifically, during an agreement algorithm it cannot make a false claim about the 
values that a correct process has sent to it. The relevance of message signing will 
become clearer when we discuss solutions to the Byzantine generals problem. By 
default, we assume that signing does not take place.

Definition of the consensus problem  •  To reach consensus, every process pi  begins in 
the undecided state and proposes a single value vi , drawn from a set D

( i 1 2 N= ). The processes communicate with one another, exchanging values. 
Each process then sets the value of a decision variable, di . In doing so it enters the 
decided state, in which it may no longer change di  ( i 1 2 N= ). Figure 15.16
shows three processes engaged in a consensus algorithm. Two processes propose 
‘proceed’ and a third proposes ‘abort’ but then crashes. The two processes that remain 
correct each decide ‘proceed’.

The requirements of a consensus algorithm are that the following conditions 
should hold for every execution of it:

Termination: Eventually each correct process sets its decision variable.

Agreement: The decision value of all correct processes is the same: if pi  and pj  are
correct and have entered the decided state, then di dj=  ( i j 1 2 N= ).

Integrity: If the correct processes all proposed the same value, then any correct 
process in the decided state has chosen that value. 

Variations on the definition of integrity may be appropriate, according to the 
application. For example, a weaker type of integrity would be for the decision value to 



Figure 15.16 Consensus for three processes

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed

SECTION 15.5 CONSENSUS AND RELATED PROBLEMS 661

equal a value that some correct process proposed – not necessarily all of them. We use 
the definition above except where stated otherwise. Integrity is also known as validity in 
the literature.

To help in understanding how the formulation of the problem translates into an 
algorithm, consider a system in which processes cannot fail. It is then straightforward to 
solve consensus. For example, we can collect the processes into a group and have each 
process reliably multicast its proposed value to the members of the group. Each process 
waits until it has collected all N values (including its own). It then evaluates the function 
majority v1 v2 vN , which returns the value that occurs most often among its 
arguments, or the special value D  if no majority exists. Termination is guaranteed 
by the reliability of the multicast operation. Agreement and integrity are guaranteed by 
the definition of majority and the integrity property of a reliable multicast. Every process 
receives the same set of proposed values, and every process evaluates the same function 
of those values. So they must all agree, and if every process proposed the same value, 
then they all decide on this value. 

Note that majority is only one possible function that the processes could use to 
agree upon a value from the candidate values. For example, if the values are ordered, 
then the functions minimum and maximum may be appropriate.

If processes can crash this introduces the complication of detecting failures, and it 
is not immediately clear that a run of the consensus algorithm can terminate. In fact, if 
the system is asynchronous, then it may not; we shall return to this point shortly. 

If processes can fail in arbitrary (Byzantine) ways, then faulty processes can in 
principle communicate random values to the others. This may seem unlikely in practice, 
but it is not beyond the bounds of possibility for a process with a bug to fail in this way. 
Moreover, the fault may not be accidental, but the result of mischievous or malevolent 
operation. Someone could deliberately make a process send different values to different 
peers in an attempt to thwart the others, which are trying to reach consensus. In case of 
inconsistency, correct processes must compare what they have received with what other 
processes claim to have received.
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The Byzantine generals problem  •  In the informal statement of the Byzantine generals 

problem [Lamport et al. 1982], three or more generals are to agree to attack or to retreat. 
One, the commander, issues the order. The others, lieutenants to the commander, must 
decide whether to attack or retreat. But one or more of the generals may be ‘treacherous’ 
– that is, faulty. If the commander is treacherous, he proposes attacking to one general 
and retreating to another. If a lieutenant is treacherous, he tells one of his peers that the 
commander told him to attack and another that they are to retreat.

The Byzantine generals problem differs from consensus in that a distinguished 
process supplies a value that the others are to agree upon, instead of each of them 
proposing a value. The requirements are:

Termination: Eventually each correct process sets its decision variable.

Agreement: The decision value of all correct processes is the same: if pi  and pj  are 
correct and have entered the decided state, then di dj=  ( i j 1 2 N= ).

Integrity: If the commander is correct, then all correct processes decide on the value 
that the commander proposed. 

Note that, for the Byzantine generals problem, integrity implies agreement when the 
commander is correct; but the commander need not be correct.

Interactive consistency  •  The interactive consistency problem is another variant of 
consensus, in which every process proposes a single value. The goal of the algorithm is 
for the correct processes to agree on a vector of values, one for each process. We call 
this the ‘decision vector’. For example, the goal could be for each of a set of processes 
to obtain the same information about their respective states. 

The requirements for interactive consistency are:

Termination: Eventually each correct process sets its decision variable.

Agreement: The decision vector of all correct processes is the same. 

Integrity: If pi  is correct, then all correct processes decide on vi  as the ith 
component of their vector. 

Relating consensus to other problems  •  Although it is common to consider the 
Byzantine generals problem with arbitrary process failures, in fact each of the three 
problems – consensus, Byzantine generals and interactive consistency – is meaningful 
in the context of either arbitrary or crash failures. Similarly, each can be framed 
assuming either a synchronous or an asynchronous system.

It is sometimes possible to derive a solution to one problem using a solution to 
another. This is a very useful property, both because it increases our understanding of 
the problems and because by reusing solutions we can potentially save on 
implementation effort and complexity.

Suppose that there exist solutions to consensus (C), Byzantine generals (BG) and 
interactive consistency (IC) as follows:

Ci v1 v2 vN  returns the decision value of pi  in a run of the solution to the 
consensus problem, where v1 v2 vN  are the values that the processes proposed.

BGi j v  returns the decision value of pi  in a run of the solution to the Byzantine 
generals problem, where pj , the commander, proposes the value v.



ICi v1 v2 vN j
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 returns the jth value in the decision vector of pi  in a run of the 
solution to the interactive consistency problem, where v1 v2 vN  are the values 
that the processes proposed.

The definitions of Ci , BGi  and ICi  assume that a faulty process proposes a single 
notional value, even though it may have given different proposed values to each of the 
other processes. This is only a convenience: the solutions will not rely on any such 
notional value.

It is possible to construct solutions out of the solutions to other problems. We give 
three examples:

IC from BG: We construct a solution to IC from BG by running BG N times, once 
with each process pi  ( i j 1 2 N= ) acting as the commander:

ICi v1 v2 vN j BGi j vj= ( i j 1 2 N= )

C from IC: For the case where a majority of processes are correct, we construct a 
solution to C from IC by running IC to produce a vector of values at each process, 
then applying an appropriate function on the vector’s values to derive a single value: 

Ci v1 vN majority ICi v1 vN 1 ICi v1 vN N=

where i 1 2 N=  and majority is as defined above.

BG from C: We construct a solution to BG from C as follows:

• The commander pj  sends its proposed value v to itself and each of the 
remaining processes.

• All processes run C with the values v1 v2 vN  that they receive (pj  may be 
faulty).

• They derive BGi j v Ci v1 v2 vN=  ( i 1 2 N= ).

The reader should check that the termination, agreement and integrity conditions are 
preserved in each case. Fischer [1983] relates the three problems in more detail.

In systems with crash failures, consensus is equivalent to solving reliable and 
totally ordered multicast: given a solution to one, we can solve the other. Implementing 
consensus with a reliable and totally ordered multicast operation RTO-multicast is
straightforward. We collect all the processes into a group, g. To achieve consensus, each 
process pi  performs RTO-multicast(g, vi ). Then each process pi  chooses di mi= ,
where mi  is the first value that pi RTO-delivers. The termination property follows from 
the reliability of the multicast. The agreement and integrity properties follow from the 
reliability and total ordering of multicast delivery. Chandra and Toueg [1996] 
demonstrate how reliable and totally ordered multicast can be derived from consensus.

15.5.2 Consensus in a synchronous system

This section describes an algorithm to solve consensus in a synchronous system, 
although it is based on a modified form of the integrity requirement. The algorithm uses 
only a basic multicast protocol. It assumes that up to f of the N processes exhibit crash 
failures.
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To reach consensus, each correct process collects proposed values from the other 
processes. The algorithm proceeds in f 1+  rounds, in each of which the correct 
processes B-multicast the values between themselves. At most f processes may crash, by 
assumption. At worst, all f crashes will occur during the rounds, but the algorithm 
guarantees that at the end of the rounds all the correct processes that have survived will 
be in a position to agree. 

The algorithm, shown in Figure 15.17

Figure 15.17 Consensus in a synchronous system
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, is based on that by Dolev and Strong 
[1983] and its presentation by Attiya and Welch [1998]. Their modified form of the 
integrity requirement applies to the proposed values of all processes, not just the correct 
ones: if all processes, whether correct or not, proposed the same value, then any correct 
process in the decided state would chose that value. Given that the algorithm assumes 
crash failures at worst, the proposed values of correct and non-correct processes would 
not be expected to differ, at least not on the basis of failures. The revised form of 
integrity enables the convenient use of the minimum function to choose a decision value 
from those proposed.

The variable Valuesi
r  holds the set of proposed values known to process pi  at the 

beginning of round r. Each process multicasts the set of values that it has not sent in 
previous rounds. It then takes delivery of similar multicast messages from other 
processes and records any new values. Although this is not shown in Figure 15.17, the 
duration of a round is limited by setting a timeout based on the maximum time for a 
correct process to multicast a message. After f 1+  rounds, each process chooses the 
minimum value it has received as its decision value.

Termination is obvious from the fact that the system is synchronous. To check the 
correctness of the algorithm, we must show that each process arrives at the same set of 
values at the end of the final round. Agreement and integrity (in its modified form) will 
then follow, because the processes apply the minimum function to this set. 
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Assume, to the contrary, that two processes differ in their final set of values. 
Without loss of generality, some correct process pi  possesses a value v that another 
correct process pj  ( i j ) does not possess. The only explanation for pi  possessing a 
proposed value v at the end that pj  does not possess is that any third process, pk , say, 
that managed to send v to pi  crashed before v could be delivered to pj . In turn, any 
process sending v in the previous round must have crashed, to explain why pk  possesses 
v in that round but pj  did not receive it. Proceeding in this way, we have to posit at least 
one crash in each of the preceding rounds. But we have assumed that at most f crashes 
can occur, and there are f 1+  rounds. We have arrived at a contradiction.

It turns out that any algorithm to reach consensus despite up to f crash failures 
requires at least f 1+  rounds of message exchanges, no matter how it is constructed 
[Dolev and Strong 1983]. This lower bound also applies in the case of Byzantine failures 
[Fischer and Lynch 1982].

15.5.3 The Byzantine generals problem in a synchronous system

Now we discuss the Byzantine generals problem in a synchronous system. Unlike the 
algorithm for consensus described in the previous section, here we assume that 
processes can exhibit arbitrary failures. That is, a faulty process may send any message 
with any value at any time; and it may omit to send any message. Up to f of the N
processes may be faulty. Correct processes can detect the absence of a message through 
a timeout; but they cannot conclude that the sender has crashed, since it may be silent 
for some time and then send messages again.

We assume that the communication channels between pairs of processes are 
private. If a process could examine all the messages that other processes sent, then it 
could detect the inconsistencies in what a faulty process sends to different processes. 
Our default assumption of channel reliability means that no faulty process can inject 
messages into the communication channel between correct processes. 

Lamport et al. [1982] considered the case of three processes that send unsigned 
messages to one another. They showed that there is no solution that guarantees to meet 
the conditions of the Byzantine generals problem if one process is allowed to fail. They 
generalized this result to show that no solution exists if N 3f. We shall demonstrate
these results shortly. They went on to give an algorithm that solves the Byzantine 
generals problem in a synchronous system if N 3f 1+ , for unsigned (they call them 
‘oral’) messages.

Impossibility with three processes  •  Figure 15.18 shows two scenarios in which just one 
of three processes is faulty. In the lefthand configuration one of the lieutenants, p3 , is
faulty; on the right the commander, p1 , is faulty. Each scenario in Figure 15.18 shows 
two rounds of messages: the values the commander sends, and the values that the 
lieutenants subsequently send to each other. The numeric prefixes serve to specify the
sources of messages and to show the different rounds. Read the ‘:’ symbol in messages 
as ‘says’; for example, ‘3:1:u’ is the message ‘3 says 1 says u’.

In the lefthand scenario, the commander correctly sends the same value v to each 
of the other two processes, and p2 correctly echoes this to p3 . However, p3  sends a 
value u v  to p2 . All p2  knows at this stage is that it has received differing values; it 
cannot tell which were sent out by the commander.
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In the righthand scenario, the commander is faulty and sends differing values to 
the lieutenants. After p3  has correctly echoed the value x that it received, p2  is in the 
same situation as it was in when p3  was faulty: it has received two differing values.

If a solution exists, then process p2  is bound to decide on value v when the 
commander is correct, by the integrity condition. If we accept that no algorithm can 
possibly distinguish between the two scenarios, p2  must also choose the value sent by 
the commander in the righthand scenario.

Following exactly the same reasoning for p3 , assuming that it is correct, we are 
forced to conclude (by symmetry) that p3  also chooses the value sent by the commander 
as its decision value. But this contradicts the agreement condition (the commander sends 
differing values if it is faulty). So no solution is possible.

Note that this argument rests on our intuition that nothing can be done to improve 
a correct general’s knowledge beyond the first stage, where it cannot tell which process 
is faulty. It is possible to prove the correctness of this intuition [Pease et al. 1980]. 
Byzantine agreement can be reached for three generals, with one of them faulty, if the 
generals digitally sign their messages.

Impossibility with N 3f  •  Pease et al. generalized the basic impossibility result for 
three processes, to prove that no solution is possible if N 3f. In outline, the argument 
is as follows. Assume that a solution exists with N 3f. Let each of three processes p1 ,
p2  and p3  use the solution to simulate the behaviour of n1 , n2  and n3  generals, 
respectively, where n1 n2 n3+ + N=  and n1 n2 n3 N/3 . Assume, furthermore, that 
one of the three processes is faulty. Those of p1 , p2  and p3  that are correct simulate 
correct generals: they simulate the interactions of their own generals internally and send 
messages from their generals to those simulated by other processes. The faulty process’s 
simulated generals are faulty: the messages that it sends as part of the simulation to the 
other two processes may be spurious. Since N 3f  and n1 n2 n3 N/3 , at most f

simulated generals are faulty. 
Because the algorithm that the processes run is assumed to be correct, the 

simulation terminates. The correct simulated generals (in the two correct processes) 
agree and satisfy the integrity property. But now we have a means for the two correct 
processes out of the three to reach consensus: each decides on the value chosen by all of 
their simulated generals. This contradicts our impossibility result for three processes, 
with one faulty.
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Solution with one faulty process  •  There is not sufficient space to describe fully the 
algorithm of Pease et al. that solves the Byzantine generals problem in a synchronous 
system with N 3f 1+ . Instead, we give the operation of the algorithm for the case 
N 4 , f 1=  and illustrate it for N 4= , f 1= .

The correct generals reach agreement in two rounds of messages:

• In the first round, the commander sends a value to each of the lieutenants.

• In the second round, each of the lieutenants sends the value it received to its peers. 

A lieutenant receives a value from the commander, plus N 2–  values from its peers. If 
the commander is faulty, then all the lieutenants are correct and each will have gathered 
exactly the set of values that the commander sent out. Otherwise, one of the lieutenants 
is faulty; each of its correct peers receives N 2–  copies of the value that the commander 
sent, plus a value that the faulty lieutenant sent to it.

In either case, the correct lieutenants need only apply a simple majority function 
to the set of values they receive. Since N 4, N 2– 2. Therefore, the majority

function will ignore any value that a faulty lieutenant sent, and it will produce the value 
that the commander sent if the commander is correct.

We now illustrate the algorithm that we have just outlined for the case of four 
generals. Figure 15.19 shows two scenarios similar to those in Figure 15.18, but in this 
case there are four processes, one of which is faulty.

Figure 15.19 Four Byzantine generals
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 As in Figure 15.18, in the lefthand 
configuration one of the lieutenants, p3 , is faulty; on the right, the commander, p1 , is 
faulty. 

In the lefthand case, the two correct lieutenant processes agree, deciding on the 
commander's value:

p2  decides on majority v u v v=

p4  decides on majority v v w v=

In the righthand case the commander is faulty, but the three correct processes agree:

p2 , p3  and p4  decide on majority u v w =  (the special value  applies 
where no majority of values exists).
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The algorithm takes account of the fact that a faulty process may omit to send a message. 
If a correct process does not receive a message within a suitable time limit (the system 
is synchronous), it proceeds as though the faulty process had sent it the value .

Discussion  •  We can measure the efficiency of a solution to the Byzantine generals 
problem – or any other agreement problem – by asking: 

• How many message rounds does it take? (This is a factor in how long it takes for 
the algorithm to terminate.) 

• How many messages are sent, and of what size? (This measures the total 
bandwidth utilization and has an impact on the execution time.) 

In the general case ( f 1 ) the Lamport et al. [1982] algorithm for unsigned messages 
operates over f 1+  rounds. In each round, a process sends to a subset of the other 
processes the values that it received in the previous round. The algorithm is very costly: 
it involves sending O N

f 1+
 messages.

Fischer and Lynch [1982] proved that any deterministic solution to consensus 
assuming Byzantine failures (and hence to the Byzantine generals problem, as Section 
15.5.1 showed) will take at least f 1+  message rounds. So no algorithm can operate 
faster in this respect than that of Lamport et al. But there have been improvements in the 
message complexity, for example Garay and Moses [1993].

Several algorithms, such as that of Dolev and Strong [1983], take advantage of 
signed messages. Dolev and Strong’s algorithm again takes f 1+  rounds, but the 
number of messages sent is only O N

2
.

The complexity and cost of the solutions suggest that they are applicable only 
where the threat is great. Solutions that are based on more detailed knowledge of the 
fault model may be more efficient [Barborak et al. 1993]. If malicious users are the 
source of the threat, then a system to counter them is likely to use digital signatures; a 
solution without signatures is impractical.

15.5.4 Impossibility in asynchronous systems

We have provided solutions to consensus and the Byzantine generals problem (and 
hence, by derivation, to interactive consistency). However, all these solutions relied 
upon the system being synchronous. The algorithms assume that message exchanges 
take place in rounds, and that processes are entitled to time out and assume that a faulty 
process has not sent them a message within the round, because the maximum delay has 
been exceeded.

Fischer et al. [1985] proved that no algorithm can guarantee to reach consensus in 
an asynchronous system, even with one process crash failure. In an asynchronous 
system, processes can respond to messages at arbitrary times, so a crashed process is 
indistinguishable from a slow one. Their proof, which is beyond the scope of this book, 
involves showing that there is always some continuation of the processes’ execution that 
avoids consensus being reached. 

We immediately know from the result of Fischer et al. that there is no guaranteed 
solution in an asynchronous system to the Byzantine generals problem, to interactive 
consistency or to totally ordered and reliable multicast. If there were such a solution 
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then, by the results of Section 15.5.1, we would have a solution to consensus – 
contradicting the impossibility result.

Note the word ‘guarantee’ in the statement of the impossibility result. The result 
does not mean that processes can never reach distributed consensus in an asynchronous 
system if one is faulty. It allows that consensus can be reached with some probability 
greater than zero, confirming what we know in practice. For example, despite the fact 
that our systems are often effectively asynchronous, transaction systems have been 
reaching consensus regularly for many years.

One approach to working around the impossibility result is to consider partially 

synchronous systems, which are sufficiently weaker than synchronous systems to be 
useful as models of practical systems, and sufficiently stronger than asynchronous 
systems for consensus to be solvable in them [Dwork et al. 1988]. That approach is 
beyond the scope of this book. However, we shall now outline three other techniques for 
working around the impossibility result: fault masking, and reaching consensus by 
exploiting failure detectors and by randomizing aspects of the processes’ behaviour.

Masking faults  •  The first technique is to avoid the impossibility result altogether by 
masking any process failures that occur (see Section 2.4.2 for an introduction to fault 
masking). For example, transaction systems employ persistent storage, which survives 
crash failures. If a process crashes, then it is restarted (automatically, or by an 
administrator). The process places sufficient information in persistent storage at critical 
points in its program so that if it should crash and be restarted, it will find sufficient data 
to be able to continue correctly with its interrupted task. In other words, it will behave 
like a process that is correct, but that sometimes takes a long time to perform a 
processing step. 

Of course, fault masking is generally applicable in system design. Chapter 16 
discusses how transactional systems take advantage of persistent storage. Chapter 18 
describes how process failures can also be masked by replicating software components.

Consensus using failure detectors  •  Another method for circumventing the 
impossibility result is to employ failure detectors. Some practical systems employ 
‘perfect by design’ failure detectors to reach consensus. No failure detector in an 
asynchronous system that works solely by message passing can really be perfect. 
However, processes can agree to deem a process that has not responded for more than a 
bounded time to have failed. An unresponsive process may not really have failed, but 
the remaining processes act as if it had done. They make the failure ‘fail-silent’ by 
discarding any subsequent messages that they do in fact receive from a ‘failed’ process. 
In other words, we have effectively turned an asynchronous system into a synchronous 
one. This technique is used in the ISIS system [Birman 1993].

This method relies upon the failure detector usually being accurate. When it is 
inaccurate, then the system has to proceed without a group member that otherwise could 
potentially have contributed to the system’s effectiveness. Unfortunately, making the 
failure detector reasonably accurate involves using long timeout values, forcing 
processes to wait a relatively long time (and not perform useful work) before concluding 
that a process has failed. Another issue that arises for this approach is network 
partitioning, which we discuss in Chapter 18.

A quite different approach is to use imperfect failure detectors, and to reach 
consensus while allowing suspected processes to behave correctly instead of excluding 
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them. Chandra and Toueg [1996] analyzed the properties that a failure detector must 
have in order to solve the consensus problem in an asynchronous system. They showed 
that consensus can be solved in an asynchronous system, even with an unreliable failure 
detector, if fewer than N 2  processes crash and communication is reliable. The weakest 
type of failure detector for which this is so is called an eventually weak failure detector.
This is one that is both:

Eventually weakly complete: Each faulty process is eventually suspected 
permanently by some correct process.

Eventually weakly accurate: After some point in time, at least one correct process is 
never suspected by any correct process.

Chandra and Toueg show that we cannot implement an eventually weak failure detector 
in an asynchronous system by message passing alone. However, we described a 
message-based failure detector in Section 15.1 that adapts its timeout values according 
to observed response times. If a process or the connection to it is very slow, then the 
timeout value will grow so that cases of falsely suspecting a process become rare. In the 
case of many real systems, this algorithm behaves sufficiently closely to an eventually 
weak failure detector for practical purposes.

Chandra and Toueg’s consensus algorithm allows falsely suspected processes to 
continue their normal operations and allows processes that have suspected them to 
receive messages from them and process those messages normally. This makes the 
application programmer’s life complicated, but it has the advantage that correct 
processes are not wasted by being falsely excluded. Moreover, timeouts for detecting 
failures can be set less conservatively than with the ISIS approach.

Consensus using randomization  •  The result of Fischer et al. [1985] depends on what 
we can consider to be an ‘adversary’. This is a ‘character’ (actually, just a collection of 
random events) who can exploit the phenomena of asynchronous systems so as to foil 
the processes’ attempts to reach consensus. The adversary manipulates the network to 
delay messages so that they arrive at just the wrong time, and similarly it slows down or 
speeds up the processes just enough so that they are in the ‘wrong’ state when they 
receive a message. 

The third technique that addresses the impossibility result is to introduce an 
element of chance in the processes’ behaviour, so that the adversary cannot exercise its 
thwarting strategy effectively. Consensus might still not be reached in some cases, but 
this method enables processes to reach consensus in a finite expected time. A 
probabilistic algorithm that solves consensus even with Byzantine failures can be found 
in Canetti and Rabin [1993].
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15.6 Summary

We began this chapter by discussing the need for processes to access shared resources 
under conditions of mutual exclusion. Locks are not always implemented by the servers 
that manage the shared resources, and a separate distributed mutual exclusion service is 
then required. Three algorithms were considered that achieve mutual exclusion: one 
employing a central server, a ring-based algorithm and a multicast-based algorithm 
using logical clocks. None of these mechanisms can withstand failure as we described 
them, although they can be modified to tolerate some faults. 

Next we explored elections, considering a ring-based algorithm and the bully 
algorithm, whose common aim is to elect a process uniquely from a given set – even if 
several elections take place concurrently. The bully algorithm could be used, for 
example, to elect a new master time server, or a new lock server, when the previous one 
fails. 

The following section described coordination and agreement in group 
communication. It discussed reliable multicast, in which the correct processes agree on 
the set of messages to be delivered, and multicast with FIFO, causal and total delivery 
ordering. We gave algorithms for reliable multicast and for all three types of delivery 
ordering. 

Finally, we described the three problems of consensus, Byzantine generals and 
interactive consistency. We defined the conditions for their solution and we showed 
relationships between these problems – including the relationship between consensus 
and reliable, totally ordered multicast.

Solutions exist in a synchronous system, and we described some of them. In fact, 
solutions exist even when arbitrary failures are possible.We outlined part of the solution 
to the Byzantine generals problem of Lamport et al. [1982]. More recent algorithms 
have lower complexity, but in principle none can better the f 1+  rounds taken by this 
algorithm, unless messages are digitally signed.

The chapter ended by describing the fundamental result of Fischer et al. [1982] 
concerning the impossibility of guaranteeing consensus in an asynchronous system. We 
discussed how it is that, nonetheless, systems regularly do reach agreement in 
asynchronous systems.

EXERCISES

15.1 Is it possible to implement either a reliable or an unreliable (process) failure detector 
using an unreliable communication channel? page 632

15.2 If all client processes are single-threaded, is mutual exclusion condition ME3, which 
specifies entry in happened-before order, relevant? page 635

15.3 Give a formula for the maximum throughput of a mutual exclusion system in terms of 
the synchronization delay. page 635

15.4 In the central server algorithm for mutual exclusion, describe a situation in which two 
requests are not processed in happened-before order. page 636
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15.5 Adapt the central server algorithm for mutual exclusion to handle the crash failure of any 
client (in any state), assuming that the server is correct and given a reliable failure 
detector. Comment on whether the resultant system is fault-tolerant. What would 
happen if a client that possesses the token is wrongly suspected to have failed? page 

636

15.6 Give an example execution of the ring-based algorithm to show that processes are not 
necessarily granted entry to the critical section in happened-before order. page 637

15.7 In a certain system, each process typically uses a critical section many times before 
another process requires it. Explain why Ricart and Agrawala’s multicast-based mutual 
exclusion algorithm is inefficient for this case, and describe how to improve its 
performance. Does your adaptation satisfy liveness condition ME2? page 639

15.8 In the bully algorithm, a recovering process starts an election and will become the new 
coordinator if it has a higher identifier than the current incumbent. Is this a necessary 
feature of the algorithm? page 644

15.9 Suggest how to adapt the bully algorithm to deal with temporary network partitions 
(slow communication) and slow processes. page 646

15.10 Devise a protocol for basic multicast over IP multicast. page 647

15.11 How, if at all, should the definitions of integrity, agreement and validity for reliable 
multicast change for the case of open groups? page 647

15.12 Explain why reversing the order of the lines ‘R-deliver m’ and ‘if (q p ) then B-

multicast(g, m); end if’ in Figure 15.9 makes the algorithm no longer satisfy uniform 
agreement. Does the reliable multicast algorithm based on IP multicast satisfy uniform 
agreement? page 648

15.13 Explain whether the algorithm for reliable multicast over IP multicast works for open as 
well as closed groups. Given any algorithm for closed groups, how, simply, can we 
derive an algorithm for open groups? page 649

15.14 Explain how to adapt the algorithm for reliable multicast over IP multicast to eliminate 
the hold-back queue – so that a received message that is not a duplicate can be delivered 
immediately, but without any ordering guarantees. Hint: use sets of sequence numbers 
to represent the messages that have been delivered so far. page 649

15.15 Consider how to address the impractical assumptions we made in order to meet the 
validity and agreement properties for the reliable multicast protocol based on IP 
multicast. Hint: add a rule for deleting retained messages when they have been delivered 
everywhere, and consider adding a dummy ‘heartbeat’ message, which is never 
delivered to the application, but which the protocol sends if the application has no 
message to send. page 649

15.16 Show that the FIFO-ordered multicast algorithm does not work for overlapping groups, 
by considering two messages sent from the same source to two overlapping groups, and 
considering a process in the intersection of those groups. Adapt the protocol to work for 
this case. Hint: processes should include with their messages the latest sequence 
numbers of messages sent to all groups. page 654
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15.17 Show that, if the basic multicast that we use in the algorithm of Figure 15.13 is also 
FIFO-ordered, then the resultant totally-ordered multicast is also causally ordered. Is it 
the case that any multicast that is both FIFO-ordered and totally ordered is thereby 
causally ordered? page 655

15.18 Suggest how to adapt the causally ordered multicast protocol to handle overlapping 
groups. page 657

15.19 In discussing Maekawa’s mutual exclusion algorithm, we gave an example of three 
subsets of a set of three processes that could lead to a deadlock. Use these subsets as 
multicast groups to show how a pairwise total ordering is not necessarily acyclic.

page 658

15.20 Construct a solution to reliable, totally ordered multicast in a synchronous system, using 
a reliable multicast and a solution to the consensus problem. page 659

15.21 We gave a solution to consensus from a solution to reliable and totally ordered multicast, 
which involved selecting the first value to be delivered. Explain from first principles 
why, in an asynchronous system, we could not instead derive a solution by using a 
reliable but not totally ordered multicast service and the ‘majority’ function. (Note that, 
if we could, this would contradict the impossibility result of Fischer et al. [1985]!) Hint: 
consider slow/failed processes. page 663

15.22 Consider the algorithm given in Figure 15.17 for consensus in a synchronous system, 
which uses the following integrity definition: if all processes, whether correct or not, 
proposed the same value, then any correct process in the decided state would chose that 
value. Now consider an application in which correct processes may propose different 
results, e.g., by running different algorithms to decide which action to take in a control 
system’s operation. Suggest an appropriate modification to the integrity definition and 
thus to the algorithm. page 664

15.23 Show that Byzantine agreement can be reached for three generals, with one of them 
faulty, if the generals digitally sign their messages. page 665
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16

TRANSACTIONS AND 

CONCURRENCY CONTROL

16.1 Introduction

16.2 Transactions

16.3 Nested transactions

16.4 Locks

16.5 Optimistic concurrency control

16.6 Timestamp ordering

16.7 Comparison of methods for concurrency control

16.8 Summary

This chapter discusses the application of transactions and concurrency control to shared 
objects managed by servers. 

A transaction defines a sequence of server operations that is guaranteed by the 
server to be atomic in the presence of multiple clients and server crashes. Nested 
transactions are structured from sets of other transactions. They are particularly useful in 
distributed systems because they allow additional concurrency.

All of the concurrency control protocols are based on the criterion of serial 
equivalence and are derived from rules for conflicts between operations. Three methods 
are described:

• Locks are used to order transactions that access the same objects according to the 
order of arrival of their operations at the objects. 

• Optimistic concurrency control allows transactions to proceed until they are ready 
to commit, whereupon a check is made to see whether they have performed 
conflicting operations on objects.

• Timestamp ordering uses timestamps to order transactions that access the same 
objects according to their starting times.
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16.1 Introduction

The goal of transactions is to ensure that all of the objects managed by a server remain 
in a consistent state when they are accessed by multiple transactions and in the presence 
of server crashes. Chapter 2 introduced a failure model for distributed systems. 
Transactions deal with crash failures of processes and omission failures in 
communication, but not any type of arbitrary (or Byzantine) behaviour. The failure 
model for transactions is presented in Section 16.1.2.

Objects that can be recovered after their server crashes are called recoverable

objects. In general, the objects managed by a server may be stored in volatile memory 
(for example, RAM) or persistent memory (for example, a hard disk). Even if objects 
are stored in volatile memory, the server may use persistent memory to store sufficient 
information for the state of the objects to be recovered if the server process crashes. This 
enables servers to make objects recoverable. A transaction is specified by a client as a 
set of operations on objects to be performed as an indivisible unit by the servers 
managing those objects. The servers must guarantee that either the entire transaction is 
carried out and the results recorded in permanent storage or, in the case that one or more 
of them crashes, its effects are completely erased. The next chapter discusses issues 
related to transactions that involve several servers, in particular how they decide on the 
outcome of a distributed transaction. This chapter concentrates on the issues for a 
transaction at a single server. A client’s transaction is also regarded as indivisible from 
the point of view of other clients’ transactions in the sense that the operations of one 
transaction cannot observe the partial effects of the operations of another. Section 16.1.1
discusses simple synchronization of access to objects, and Section 16.2 introduces 
transactions, which require more advanced techniques to prevent interference between 
clients. Section 16.3 discusses nested transactions. Sections 16.4 to 16.6 discuss three 
methods of concurrency control for transactions whose operations are all addressed to a 
single server (locks, optimistic concurrency control and timestamp ordering). Chapter 
17 discusses how these methods are extended for use with transactions whose operations 
are addressed to several servers.

To explain some of the points made in this chapter, we use a banking example, 
shown in Figure 16.1. Each account is represented by a remote object whose interface, 
Account, provides operations for making deposits and withdrawals and for enquiring 
about and setting the balance. Each branch of the bank is represented by a remote object 
whose interface, Branch, provides operations for creating a new account, for looking up 
an account by name and for enquiring about the total funds at that branch.

16.1.1 Simple synchronization (without transactions)

One of the main issues of this chapter is that unless a server is carefully designed, its 
operations performed on behalf of different clients may sometimes interfere with one 
another. Such interference may result in incorrect values in the objects. In this section, 
we discuss how client operations may be synchronized without recourse to transactions.

Atomic operations at the server  •  We have seen in earlier chapters that the use of 
multiple threads is beneficial to performance in many servers. We have also noted that 
the use of threads allows operations from multiple clients to run concurrently and 



Figure 16.1 Operations of the Account interface

deposit(amount)

deposit amount in the account

withdraw(amount)

withdraw amount from the account

getBalance()  amount

return the balance of the account

setBalance(amount)

set the balance of the account to amount

Operations of the Branch interface

create(name)  account

create a new account with a given name

lookUp(name)  account 

return a reference to the account with the given name

 branchTotal()  amount

return the total of all the balances at the branch
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possibly access the same objects. Therefore, the methods of objects should be designed 
for use in a multi-threaded context. For example, if the methods deposit and withdraw

are not designed for use in a multi-threaded program, then it is possible that the actions 
of two or more concurrent executions of the method could be interleaved arbitrarily and 
have strange effects on the instance variables of the account objects. 

Chapter 7 explains the use of the synchronized keyword, which can be applied to 
methods in Java to ensure that only one thread at a time can access an object. In our 
example, the class that implements the Account interface will be able to declare the 
methods as synchronized. For example:

public synchronized void deposit(int amount) throws RemoteException{

// adds amount to the balance of the account
}

If one thread invokes a synchronized method on an object, then that object is effectively 
locked, and another thread that invokes one of its synchronized methods will be blocked 
until the lock is released. This form of synchronization forces the execution of threads 
to be separated in time and ensures that the instance variables of a single object are 
accessed in a consistent manner. Without synchronization, two separate deposit

invocations might read the balance before either has incremented it – resulting in an 
incorrect value. Any method that accesses an instance variable that can vary should be 
synchronized. 

Operations that are free from interference from concurrent operations being 
performed in other threads are called atomic operations. The use of synchronized 
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methods in Java is one way of achieving atomic operations. But in other programming 
environments for multi-threaded servers the operations on objects still need to have 
atomic operations in order to keep their objects consistent. This may be achieved by the 
use of any available mutual exclusion mechanism, such as a mutex.

Enhancing client cooperation by synchronization of server operations  •  Clients may use 
a server as a means of sharing some resources. This is achieved by some clients using 
operations to update the server’s objects and other clients using operations to access 
them. The above scheme for synchronized access to objects provides all that is required 
in many applications – it prevents threads interfering with one another. However, some 
applications require a way for threads to communicate with each other. 

For example, a situation may arise in which the operation requested by one client 
cannot be completed until an operation requested by another client has been performed. 
This can happen when some clients are producers and others are consumers – the 
consumers may have to wait until a producer has supplied some more of the commodity 
in question. It can also occur when clients are sharing a resource – clients needing the 
resource may have to wait for other clients to release it. We shall see later in this chapter 
that a similar situation arises when locks or timestamps are used for concurrency control 
in transactions.

The Java wait and notify methods introduced in Chapter 7 allow threads to 
communicate with one another in a manner that solves the above problems. They must 
be used within synchronized methods of an object. A thread calls wait on an object so 
as to suspend itself and to allow another thread to execute a method of that object. A 
thread calls notify to inform any thread waiting on that object that it has changed some 
of its data. Access to an object is still atomic when threads wait for one another: a thread 
that calls wait gives up its lock and suspends itself as a single atomic action; when a 
thread is restarted after being notified it acquires a new lock on the object and resumes 
execution from after its wait. A thread that calls notify (from within a synchronized 
method) completes the execution of that method before releasing the lock on the object. 

Consider the implementation of a shared Queue object with two methods: first

removes and returns the first object in the queue, and append adds a given object to the 
end of the queue. The method first will test whether the queue is empty, in which case 
it will call wait on the queue. If a client invokes first when the queue is empty, it will not 
get a reply until another client has added something to the queue – the append operation 
will call notify when it has added an object to the queue. This allows one of the threads 
waiting on the queue object to resume and to return the first object in the queue to its 
client. When threads can synchronize their actions on an object by means of wait and 
notify, the server holds onto requests that cannot immediately be satisfied and the client 
waits for a reply until another client has produced whatever it needs. 

In Section 16.4, we discuss the implementation of a lock as an object with 
synchronized operations. When clients attempt to acquire a lock, they can be made to 
wait until the lock is released by other clients. 

Without the ability to synchronize threads in this way, a client that cannot be 
satisfied immediately – for example, a client that invokes the first method on an empty 
queue – is told to try again later. This is unsatisfactory, because it will involve the client 
in polling the server and the server in carrying out extra requests. It is also potentially 
unfair because other clients may make their requests before the waiting client tries again. 
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16.1.2 Failure model for transactions

Lampson [1981] proposed a fault model for distributed transactions that accounts for 
failures of disks, servers and communication. In this model, the claim is that the 
algorithms work correctly in the presence of predictable faults, but no claims are made 
about their behaviour when a disaster occurs. Although errors may occur, they can be 
detected and dealt with before any incorrect behaviour results. The model states the 
following:

• Writes to permanent storage may fail, either by writing nothing or by writing a 
wrong value – for example, writing to the wrong block is a disaster. File storage 
may also decay. Reads from permanent storage can detect (by a checksum) when 
a block of data is bad.

• Servers may crash occasionally. When a crashed server is replaced by a new 
process, its volatile memory is first set to a state in which it knows none of the 
values (for example, of objects) from before the crash. After that it carries out a 
recovery procedure using information in permanent storage and obtained from 
other processes to set the values of objects including those related to the two-phase 
commit protocol (see Section 17.6). When a processor is faulty, it is made to crash 
so that it is prevented from sending erroneous messages and from writing wrong 
values to permanent storage – that is, so it cannot produce arbitrary failures. 
Crashes can occur at any time; in particular, they may occur during recovery. 

• There may be an arbitrary delay before a message arrives. A message may be lost, 
duplicated or corrupted. The recipient can detect corrupted messages using a 
checksum. Both forged messages and undetected corrupt messages are regarded 
as disasters.

The fault model for permanent storage, processors and communications was used to 
design a stable system whose components can survive any single fault and present a 
simple failure model. In particular, stable storage provided an atomic write operation in 
the presence of a single fault of the write operation or a crash failure of the process. This 
was achieved by replicating each block on two disk blocks. A write operation was 
applied to the pair of disk blocks, and in the case of a single fault, one good block was 
always available. A stable processor used stable storage to enable it to recover its 
objects after a crash. Communication errors were masked by using a reliable remote 
procedure calling mechanism. 

16.2 Transactions 

In some situations, clients require a sequence of separate requests to a server to be 
atomic in the sense that: 

1. They are free from interference by operations being performed on behalf of other 
concurrent clients. 

2. Either all of the operations must be completed successfully or they must have no 
effect at all in the presence of server crashes. 
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We return to our banking example to illustrate transactions. A client that performs a 
sequence of operations on a particular bank account on behalf of a user will first lookUp

the account by name and then apply the deposit, withdraw and getBalance operations 
directly to the relevant account. In our examples, we use accounts with names A, B and 
C. The client looks them up and stores references to them in variables a, b and c of type 
Account. The details of looking up the accounts by name and the declarations of the 
variables are omitted from the examples. 

Figure 16.2

Figure 16.2 A client’s banking transaction

Transaction T:

a.withdraw(100);

b.deposit(100);

c.withdraw(200);

b.deposit(200);

 shows an example of a simple client transaction specifying a series of 
related actions involving the bank accounts A, B and C. The first two actions transfer 
$100 from A to B and the second two transfer $200 from C to B. A client achieves a 
transfer operation by doing a withdrawal  followed by a deposit.

Transactions originate from database management systems. In that context, a 
transaction is an execution of a program that accesses a database. Transactions were 
introduced to distributed systems in the form of transactional file servers such as XDFS 
[Mitchell and Dion 1982]. In the context of a transactional file server, a transaction is an 
execution of a sequence of client requests for file operations. Transactions on distributed 
objects were provided in several research systems, including Argus [Liskov 1988] and 
Arjuna [Shrivastava et al. 1991]. In this last context, a transaction consists of the 
execution of a sequence of client requests such as, for example, those in Figure 16.2.
From the client’s point of view, a transaction is a sequence of operations that forms a 
single step, transforming the server data from one consistent state to another. 

Transactions can be provided as a part of middleware. For example, CORBA 
provides the specification for an Object Transaction Service [OMG 2003] with IDL 
interfaces allowing clients’ transactions to include multiple objects at multiple servers. 
The client is provided with operations to specify the beginning and end of a transaction. 
The client maintains a context for each transaction, which it propagates with each 
operation in that transaction. In CORBA, transactional objects are invoked within the 
scope of a transaction and generally have some persistent store associated with them.

In all of these contexts, a transaction applies to recoverable objects and is intended 
to be atomic. It is often called an atomic transaction. There are two aspects to atomicity:

All or nothing: A transaction either completes successfully, in which case the effects 
of all of its operations are recorded in the objects, or (if it fails or is deliberately 
aborted) has no effect at all. This all-or-nothing effect has two further aspects of its 
own:

Failure atomicity:  The effects are atomic even when the server crashes.
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Durability: After a transaction has completed successfully, all its effects are 
saved in permanent storage. We use the term ‘permanent storage’ to refer to files 
held on disk or another permanent medium. Data saved in a file will survive if the 
server process crashes.

Isolation: Each transaction must be performed without interference from other 
transactions; in other words, the intermediate effects of a transaction must not be 
visible to other transactions. The box below introduces a mnemonic, ACID, for 
remembering the properties of atomic transactions.

ACID properties

Härder and Reuter [1983] suggested the mnemonic ‘ACID’ to remember the 
properties of transactions, which are as follows:

Atomicity: a transaction must be all or nothing; 

Consistency: a transaction takes the system from one consistent state to another 
consistent state;

Isolation; 

Durability. 

We have not included ‘consistency’ in our list of the properties of transactions 
because it is generally the responsibility of the programmers of servers and clients to 
ensure that transactions leave the database consistent. 

As an example of consistency, suppose that in the banking example, an object 
holds the sum of all the account balances and its value is used as the result of 
branchTotal. Clients can get the sum of all the account balances either by using 
branchTotal or by calling getBalance on each of the accounts. For consistency, they 
should get the same result from both methods. To maintain this consistency, the 
deposit and withdraw operations must update the object holding the sum of all the 
account balances. 

To support the requirement for failure atomicity and durability, the objects must be 
recoverable; that is, when a server process crashes unexpectedly due to a hardware fault 
or a software error, the changes due to all completed transactions must be available in 
permanent storage so that when the server is replaced by a new process, it can recover 
the objects to reflect the all-or-nothing effect. By the time a server acknowledges the 
completion of a client’s transaction, all of the transaction’s changes to the objects must 
have been recorded in permanent storage.

A server that supports transactions must synchronize the operations sufficiently to 
ensure that the isolation requirement is met. One way of doing this is to perform the 
transactions serially – one at a time, in some arbitrary order. Unfortunately, this solution 
would generally be unacceptable for servers whose resources are shared by multiple 
interactive users. For instance, in our banking example it is desirable to allow several 
bank clerks to perform online banking transactions at the same time as one another.

 The aim for any server that supports transactions is to maximize concurrency. 
Therefore transactions are allowed to execute concurrently if this would have the same 
effect as a serial execution – that is, if they are serially equivalent or serializable.



682 CHAPTER 16  TRANSACTIONS AND CONCURRENCY CONTROL

Transaction capabilities can be added to servers of recoverable objects. Each 
transaction is created and managed by a coordinator, which implements the Coordinator

interface shown in Figure 16.3

Figure 16.3 Operations in the Coordinator interface

openTransaction()  trans;

Starts a new transaction and delivers a unique TID trans. This identifier will be used 
in the other operations in the transaction.

closeTransaction(trans)  (commit, abort);

Ends a transaction: a commit return value indicates that the transaction has  
committed; an abort return value indicates that it has aborted.

abortTransaction(trans);

Aborts the transaction.

. The coordinator gives each transaction an identifier, or 
TID. The client invokes the openTransaction method of the coordinator to introduce a 
new transaction – a transaction identifier or TID is allocated and returned. At the end of 
a transaction, the client invokes the closeTransaction method to indicate its end – all of 
the recoverable objects accessed by the transaction should be saved. If, for some reason, 
the client wants to abort a transaction, it invokes the abortTransaction method – all of 
its effects should be removed from sight.

A transaction is achieved by cooperation between a client program, some 
recoverable objects and a coordinator. The client specifies the sequence of invocations 
on recoverable objects that are to comprise a transaction. To achieve this, the client 
sends with each invocation the transaction identifier returned by openTransaction. One 
way to make this possible is to include an extra argument in each operation of a 
recoverable object to carry the TID. For example, in the banking service the deposit

operation might be defined:

deposit(trans, amount)

Deposits amount in the account for transaction with TID trans

When transactions are provided as middleware, the TID can be passed implicitly
with all remote invocations between openTransaction and closeTransaction or 
abortTransaction. This is what the CORBA Transaction Service does. We shall not 
show TIDs in our examples.

Normally, a transaction completes when the client makes a closeTransaction

request. If the transaction has progressed normally, the reply states that the transaction 
is committed – this constitutes a promise to the client that all of the changes requested in 
the transaction are permanently recorded and that any future transactions that access the 
same data will see the results of all of the changes made during the transaction. 

Alternatively, the transaction may have to abort for one of several reasons related 
to the nature of the transaction itself, to conflicts with another transaction or to the 
crashing of a process or computer. When a transaction is aborted the parties involved 
(the recoverable objects and the coordinator) must ensure that none of its effects are 
visible to future transactions, either in the objects or in their copies in permanent storage.

A transaction is either successful or is aborted in one of two ways – the client 
aborts it (using an abortTransaction call to the server) or the server aborts it. Figure 16.4



Figure 16.4 Transaction life histories 

Successful Aborted by client Aborted by server 

openTransaction openTransaction openTransaction

operation operation operation 

operation operation operation 

• • server aborts •

• • transaction •

operation operation operation ERROR 

reported to client

closeTransaction abortTransaction 
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shows these three alternative life histories for transactions. We refer to a transaction as 
failing in both of the latter cases. 

Service actions related to process crashes   •  If a server process crashes unexpectedly, it 
is eventually replaced. The new server process aborts any uncommitted transactions and 
uses a recovery procedure to restore the values of the objects to the values produced by 
the most recently committed transaction. To deal with a client that crashes unexpectedly 
during a transaction, servers can give each transaction an expiry time and abort any 
transaction that has not completed before its expiry time.

Client actions related to server process crashes  •  If a server crashes while a transaction 
is in progress, the client will become aware of this when one of the operations returns an 
exception after a timeout. If a server crashes and is then replaced during the progress of 
a transaction, the transaction will no longer be valid and the client must be informed via 
an exception to the next operation. In either case, the client must then formulate a plan, 
possibly in consultation with the human user, for the completion or abandonment of the 
task of which the transaction was a part.

16.2.1 Concurrency control

This section illustrates two well-known problems of concurrent transactions in the 
context of the banking example – the ‘lost update’ problem and the ‘inconsistent 
retrievals’ problem. We then show how both of these problems can be avoided by using 
serially equivalent executions of transactions. We assume throughout that each of the 
operations deposit, withdraw, getBalance and setBalance is a synchronized operation – 
that is, that its effects on the instance variable that records the balance of an account are 
atomic.

The lost update problem  •  The lost update problem is illustrated by the following pair 
of transactions on bank accounts A, B and C, whose initial balances are $100, $200 and 
$300, respectively. Transaction T transfers an amount from account A to account B.
Transaction U transfers an amount from account C to account B. In both cases, the 



Figure 16.5 The lost update problem

Transaction T: Transaction U:

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10)

balance = b.getBalance();

b.setBalance(balance*1.1);

c.withdraw(balance/10)

balance =  b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10)   $80

c.withdraw(balance/10) $280
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amount transferred is calculated to increase the balance of B by 10%. The net effects on 
account B of executing the transactions T and U should be to increase the balance of 
account B by 10% twice, so its final value is $242.

Now consider the effects of allowing the transactions T and U to run concurrently, 
as in Figure 16.5. Both transactions get the balance of B as $200 and then deposit $20. 
The result is incorrect, increasing the balance of account B by $20 instead of $42. This 
is an illustration of the ‘lost update’ problem. U’s update is lost because T overwrites it 
without seeing it. Both transactions have read the old value before either writes the new 
value. 

Figure 16.6 The inconsistent retrievals problem

Transaction V: Transaction W:

a.withdraw(100)

b.deposit(100)

aBranch.branchTotal()

a.withdraw(100); $100

total = a.getBalance( ) $100

total = total + b.getBalance() $300

total = total + c.getBalance()

b.deposit(100) $300 •

•

In Figure 16.5 onwards, we show the operations that affect the balance of an 
account on successive lines down the page, and the reader should assume that an 
operation on a particular line is executed at a later time than the one on the line above it. 

Inconsistent retrievals  • Figure 16.6 shows another example related to a bank account 
in which transaction V transfers a sum from account A to B and transaction W invokes 
the branchTotal method to obtain the sum of the balances of all the accounts in the bank. 
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The balances of the two bank accounts, A and B, are both initially $200. The result of 
branchTotal includes the sum of A and B as $300, which is wrong. This is an illustration 
of the ‘inconsistent retrievals’ problem. W’s retrievals are inconsistent because V has 
performed only the withdrawal part of a transfer at the time the sum is calculated.

Serial equivalence  •  If each of several transactions is known to have the correct effect 
when it is done on its own, then we can infer that if these transactions are done one at a 
time in some order the combined effect will also be correct. An interleaving of the 
operations of transactions in which the combined effect is the same as if the transactions 
had been performed one at a time in some order is a serially equivalent interleaving. 
When we say that two different transactions have the same effect as one another, we 
mean that the read operations return the same values and that the instance variables of 
the objects have the same values at the end. 

The use of serial equivalence as a criterion for correct concurrent execution 
prevents the occurrence of lost updates and inconsistent retrievals. 

The lost update problem occurs when two transactions read the old value of a 
variable and then use it to calculate the new value. This cannot happen if one transaction 
is performed before the other, because the later transaction will read the value written 
by the earlier one. As a serially equivalent interleaving of two transactions produces the 
same effect as a serial one, we can solve the lost update problem by means of serial 
equivalence. Figure 16.7

Figure 16.7 A serially equivalent interleaving of T and U

Transaction T: Transaction U:

balance = b.getBalance()

b.setBalance(balance*1.1)

a.withdraw(balance/10)

balance = b.getBalance()

b.setBalance(balance*1.1)

c.withdraw(balance/10)

balance =  b.getBalance() $200

b.setBalance(balance*1.1) $220

balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

a.withdraw(balance/10)   $80

c.withdraw(balance/10) $278

 shows one such interleaving in which the operations that affect 
the shared account, B, are actually serial, for transaction T does all its operations on B
before transaction U does. Another interleaving of T and U that has this property is one 
in which transaction U completes its operations on account B before transaction T starts.

We now consider the effect of serial equivalence in relation to the inconsistent 
retrievals problem, in which transaction V is transferring a sum from account A to B and
transaction W is obtaining the sum of all the balances (see Figure 16.6). The inconsistent 
retrievals problem can occur when a retrieval transaction runs concurrently with an 
update transaction. It cannot occur if the retrieval transaction is performed before or 
after the update transaction. A serially equivalent interleaving of a retrieval transaction 
and an update transaction, for example as in Figure 16.8, will prevent inconsistent 
retrievals occurring.



Figure 16.8  A serially equivalent interleaving of V and W

Transaction V: Transaction W:

a.withdraw(100);

b.deposit(100)

aBranch.branchTotal( )

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance( ) $100

total = total + b.getBalance() $400

total = total + c.getBalance()

...
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Conflicting operations  •  When we say that a pair of operations conflicts we mean that 
their combined effect depends on the order in which they are executed. To simplify 
matters we consider a pair of operations, read and write. read accesses the value of an 
object and write changes its value. The effect of an operation refers to the value of an 
object set by a write operation and the result returned by a read operation. The conflict 
rules for read and write operations are given in Figure 16.9.

Figure 16.9 Read and write operation conflict rules

Operations of different 

transactions 

Conflict Reason

read read No
Because the effect of a pair of read operations does 

not depend on the order in which they are executed

read write Yes
Because the effect of a read and a write operation 

depends on the order of their execution 

write write Yes
Because the effect of a pair of write operations 

depends on the order of their execution 

For any pair of transactions, it is possible to determine the order of pairs of 
conflicting operations on objects accessed by both of them. Serial equivalence can be 
defined in terms of operation conflicts as follows:

For two transactions to be serially equivalent, it is necessary and sufficient that all 
pairs of conflicting operations of the two transactions be executed in the same 
order at all of the objects they both access. 
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Consider as an example the transactions T and U, defined as follows:

T: x = read(i); write(i, 10); write(j, 20);
U: y = read(j); write(j, 30); z = read (i);

Then consider the interleaving of their executions, shown in Figure 16.10

Figure 16.10  A non–serially-equivalent interleaving of operations of transactions T and U

Transaction T: Transaction U:

x = read(i)

write(i, 10)

y = read(j)

write(j, 30)

write(j, 20)

z = read (i)

. Note that 
each transaction’s access to objects i and j is serialized with respect to one another, 
because T makes all of its accesses to i before U does and U makes all of its accesses to 
j before T does. But the ordering is not serially equivalent, because the pairs of 
conflicting operations are not done in the same order at both objects. Serially equivalent 
orderings require one of the following two conditions: 

1. T accesses i before U and T accesses j before U.

2. U accesses i before T and U accesses j before T.

Serial equivalence is used as a criterion for the derivation of concurrency control 
protocols. These protocols attempt to serialize transactions in their access to objects. 
Three alternative approaches to concurrency control are commonly used: locking, 
optimistic concurrency control and timestamp ordering. However, most practical 
systems use locking, which is discussed in Section 16.4. When locking is used, the 
server sets a lock, labelled with the transaction identifier, on each object just before it is 
accessed and removes these locks when the transaction has completed. While an object 
is locked, only the transaction that it is locked for can access that object; other 
transactions must either wait until the object is unlocked or, in some cases, share the 
lock. The use of locks can lead to deadlocks, with transactions waiting for each other to 
release locks – for example, when a pair of transactions each has an object locked that 
the other needs to access. We discuss the deadlock problem and some remedies for it in 
Section 16.4.1.

Optimistic concurrency control is described in Section 16.5. In optimistic 
schemes, a transaction proceeds until it asks to commit, and before it is allowed to 
commit the server performs a check to discover whether it has performed operations on 
any objects that conflict with the operations of other concurrent transactions, in which 
case the server aborts it and the client may restart it. The aim of the check is to ensure 
that all the objects are correct.

Timestamp ordering is described in Section 16.6. In timestamp ordering, a server 
records the most recent time of reading and writing of each object and for each 
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operation, the timestamp of the transaction is compared with that of the object to 
determine whether it can be done immediately or must be delayed or rejected. When an 
operation is delayed, the transaction waits; when it is rejected, the transaction is aborted. 

Basically, concurrency control can be achieved either by clients’ transactions 
waiting for one another or by restarting transactions after conflicts between operations 
have been detected, or by a combination of the two. 

16.2.2  Recoverability from aborts

Servers must record all the effects of committed transactions and none of the effects of 
aborted transactions. They must therefore allow for the fact that a transaction may abort 
by preventing it affecting other concurrent transactions if it does so. 

This section illustrates two problems associated with aborting transactions in the 
context of the banking example. These problems are called ‘dirty reads’ and ‘premature 
writes’, and both of them can occur in the presence of serially equivalent executions of 
transactions. These issues are concerned with the effects of operations on objects such 
as the balance of a bank account. To simplify things, operations are considered in two 
categories: read operations and write operations. In our illustrations, getBalance is a 
read operation and setBalance a write operation.

Dirty reads  •  The isolation property of transactions requires that transactions do not see 
the uncommitted state of other transactions. The ‘dirty read’ problem is caused by the 
interaction between a read operation in one transaction and an earlier write operation in 
another transaction on the same object. Consider the executions illustrated in Figure 
16.11

Figure 16.11 A dirty read when transaction T aborts

Transaction T: Transaction U:

a.getBalance()

a.setBalance(balance + 10)

a.getBalance()

a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110

balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

, in which T gets the balance of account A and sets it to $10 more, then U gets the 
balance of account A and sets it to $20 more, and the two executions are serially 
equivalent. Now suppose that the transaction T aborts after U has committed. Then the 
transaction U will have seen a value that never existed, since A will be restored to its 
original value. We say that the transaction U has performed a dirty read. As it has 
committed, it cannot be undone.
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Recoverability of transactions   •  If a transaction (like U) has committed after it has seen 
the effects of a transaction that subsequently aborted, the situation is not recoverable. To 
ensure that such situations will not arise, any transaction (like U) that is in danger of 
having a dirty read delays its commit operation. The strategy for recoverability is to 
delay commits until after the commitment of any other transaction whose uncommitted 
state has been observed. In our example, U delays its commit until after T commits. In 
the case that T aborts, then U must abort as well.

Cascading aborts  •  In Figure 16.11, suppose that transaction U delays committing until 
after T aborts. As we have said, U must abort as well. Unfortunately, if any other 
transactions have seen the effects due to U, they too must be aborted. The aborting of 
these latter transactions may cause still further transactions to be aborted. Such 
situations are called cascading aborts. To avoid cascading aborts, transactions are only 
allowed to read objects that were written by committed transactions. To ensure that this 
is the case, any read operation must be delayed until other transactions that applied a 
write operation to the same object have committed or aborted. The avoidance of 
cascading aborts is a stronger condition than recoverability.

Premature writes   •  Consider another implication of the possibility that a transaction 
may abort. This one is related to the interaction between write operations on the same 
object belonging to different transactions. For an illustration, we consider two 
setBalance transactions, T and U, on account A, as shown in Figure 16.12

Figure 16.12 Overwriting uncommitted values

Transaction T: Transaction U:

a.setBalance(105) a.setBalance(110)

$100

a.setBalance(105) $105

a.setBalance(110) $110

. Before the 
transactions, the balance of account A was $100. The two executions are serially
equivalent, with T setting the balance to $105 and U setting it to $110. If the transaction 
U aborts and T commits, the balance should be $105. 

Some database systems implement the action of abort by restoring ‘before 
images’ of all the writes of a transaction. In our example, A is $100 initially, which is 
the ‘before image’ of T’s write; similarly, $105 is the ‘before image’ of U’s write. Thus 
if U aborts, we get the correct balance of $105.

Now consider the case when U commits and then T aborts. The balance should be 
$110, but as the ‘before image’ of T’s write is $100, we get the wrong balance of $100. 
Similarly, if T aborts and then U aborts, the ‘before image’ of U’s write is $105 and we 
get the wrong balance of $105 – the balance should revert to $100. 

To ensure correct results in a recovery scheme that uses before images, write

operations must be delayed until earlier transactions that updated the same objects have 
either committed or aborted.
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Strict executions of transactions  •  Generally, it is required that transactions delay both 
their read and write operations so as to avoid both dirty reads and premature writes. The 
executions of transactions are called strict if the service delays both read and write

operations on an object until all transactions that previously wrote that object have either 
committed or aborted. The strict execution of transactions enforces the desired property 
of isolation.

Tentative versions  •  For a server of recoverable objects to participate in transactions, it 
must be designed so that any updates of objects can be removed if and when a 
transaction aborts. To make this possible, all of the update operations performed during 
a transaction are done in tentative versions of objects in volatile memory. Each 
transaction is provided with its own private set of tentative versions of any objects that 
it has altered. All the update operations of a transaction store values in the transaction’s 
own private set. Access operations in a transaction take values from the transaction’s 
own private set if possible, or failing that, from the objects. 

The tentative versions are transferred to the objects only when a transaction 
commits, by which time they will also have been recorded in permanent storage. This is 
performed in a single step, during which other transactions are excluded from access to 
the objects that are being altered. When a transaction aborts, its tentative versions are 
deleted.

16.3 Nested transactions 

Nested transactions extend the above transaction model by allowing transactions to be 
composed of other transactions. Thus several transactions may be started from within a 
transaction, allowing transactions to be regarded as modules that can be composed as 
required.

The outermost transaction in a set of nested transactions is called the top-level

transaction. Transactions other than the top-level transaction are called subtransactions.
For example, in Figure 16.13, T is a top-level transaction that starts a pair of 
subtransactions, T1 and T2. The subtransaction T1 starts its own pair of subtransactions, 
T11 and T22. Also, subtransaction T2 starts its own subtransaction, T21, which starts 
another subtransaction, T211.

A subtransaction appears atomic to its parent with respect to transaction failures 
and to concurrent access. Subtransactions at the same level, such as T1 and T2, can run 
concurrently, but their access to common objects is serialized – for example, by the 
locking scheme described in Section 16.4. Each subtransaction can fail independently of 
its parent and of the other subtransactions. When a subtransaction aborts, the parent 
transaction can sometimes choose an alternative subtransaction to complete its task. For 
example, a transaction to deliver a mail message to a list of recipients could be structured 
as a set of subtransactions, each of which delivers the message to one of the recipients. 
If one or more of the subtransactions fails, the parent transaction could record the fact 
and then commit, with the result that all the successful child transactions commit. It 
could then start another transaction to attempt to redeliver the messages that were not 
sent the first time.



Figure 16.13 Nested transactions

T  : top-level transaction

T1 = openSubTransaction T2 = openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

T1 : T2 :

T11 : T12 : 

T211 : 

T21 : 

provisional commit

provisional commit

abort

provisional commitprovisional commit

provisional commit

commit
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When we need to distinguish our original form of transaction from nested ones, 
we use the term flat transaction. It is flat because all of its work is done at the same level 
between an openTransaction and a commit or abort, and it is not possible to commit or 
abort parts of it. Nested transactions have the following main advantages:

1. Subtransactions at one level (and their descendants) may run concurrently with 
other subtransactions at the same level in the hierarchy. This can allow additional 
concurrency in a transaction. When subtransactions run in different servers, they 
can work in parallel. For example, consider the branchTotal operation in our 
banking example. It can be implemented by invoking getBalance at every account 
in the branch. Now each of these invocations may be performed as a 
subtransaction, in which case they can be performed concurrently. Since each one 
applies to a different account, there will be no conflicting operations among the 
subtransactions. 

2. Subtransactions can commit or abort independently. In comparison with a single 
transaction, a set of nested subtransactions is potentially more robust. The above 
example of delivering mail shows that this is so – with a flat transaction, one 
transaction failure would cause the whole transaction to be restarted. In fact, a 
parent can decide on different actions according to whether a subtransaction has 
aborted or not.

The rules for committing of nested transactions are rather subtle:

• A transaction may commit or abort only after its child transactions have 
completed.

• When a subtransaction completes, it makes an independent decision either to 
commit provisionally or to abort. Its decision to abort is final.

• When a parent aborts, all of its subtransactions are aborted. For example, if T2
aborts then T21 and T211 must also abort, even though they may have provisionally 
committed.

• When a subtransaction aborts, the parent can decide whether to abort or not. In our 
example, T decides to commit although T2 has aborted.
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• If the top-level transaction commits, then all of the subtransactions that have 
provisionally committed can commit too, provided that none of their ancestors has 
aborted. In our example, T’s commitment allows T1, T11 and T12 to commit, but 
not T21 and T211 since their parent, T2, aborted. Note that the effects of a 
subtransaction are not permanent until the top-level transaction commits. 

In some cases, the top-level transaction may decide to abort because one or more of its 
subtransactions have aborted. As an example, consider the following Transfer

transaction: 

Transfer $100 from B to A
a.deposit(100)
b.withdraw(100)

This can be structured as a pair of subtransactions, one for the withdraw operation and 
the other for deposit. When the two subtransactions both commit, the Transfer

transaction can also commit. Suppose that a withdraw subtransaction aborts whenever 
an account is overdrawn. Now consider the case when the withdraw subtransaction 
aborts and the deposit subtransaction commits – and recall that the commitment of a 
child transaction is conditional on the parent transaction committing. We presume that 
the top-level (Transfer) transaction will decide to abort. The aborting of the parent 
transaction causes the subtransactions to abort – so the deposit transaction is aborted and 
all its effects are undone.

The CORBA Object Transaction Service supports both flat and nested 
transactions. Nested transactions are particularly useful in distributed systems because 
child transactions may be run concurrently in different servers. We return to this issue 
in Chapter 17. This form of nested transactions is due to Moss [1985]. Other variants of 
nested transactions with different serializability properties have been proposed; for 
example, see Weikum [1991]. 

16.4 Locks

Transactions must be scheduled so that their effect on shared data is serially equivalent. 
A server can achieve serial equivalence of transactions by serializing access to the 
objects. Figure 16.7 shows an example of how serial equivalence can be achieved with 
some degree of concurrency – transactions T and U both access account B, but T

completes its access before U starts accessing it.
A simple example of a serializing mechanism is the use of exclusive locks. In this 

locking scheme, the server attempts to lock any object that is about to be used by any 
operation of a client’s transaction. If a client requests access to an object that is already 
locked due to another client’s transaction, the request is suspended and the client must 
wait until the object is unlocked. 

Figure 16.14 illustrates the use of exclusive locks. It shows the same transactions 
as Figure 16.7, but with an extra column for each transaction showing the locking, 
waiting and unlocking. In this example, it is assumed that when transactions T and U
start, the balances of the accounts A, B and C are not yet locked. When transaction T is 
about to use account B, it is locked for T. When transaction U is about to use B it is still 



Figure 16.14  Transactions T and U with exclusive locks

Transaction T: Transaction U:

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

balance = b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction

bal =  b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal =  b.getBalance() waits for T’s 

lock on B

closeTransaction unlock A, B • • •

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B, C

SECTION 16.4 LOCKS 693

locked for T, so transaction U waits. When transaction T is committed, B is unlocked, 
whereupon transaction U is resumed. The use of the lock on B effectively serializes the 
access to B. Note that if, for example, T released the lock on B between its getBalance

and setBalance operations, transaction U’s getBalance operation on B could be 
interleaved between them. 

Serial equivalence requires that all of a transaction’s accesses to a particular object 
be serialized with respect to accesses by other transactions. All pairs of conflicting 
operations of two transactions should be executed in the same order. To ensure this, a 
transaction is not allowed any new locks after it has released a lock. The first phase of 
each transaction is a ‘growing phase’, during which new locks are acquired. In the 
second phase, the locks are released (a ‘shrinking phase’). This is called two-phase 

locking.
We saw in Section 16.2.2 that because transactions may abort, strict executions 

are needed to prevent dirty reads and premature writes. Under a strict execution regime, 
a transaction that needs to read or write an object must be delayed until other 
transactions that wrote the same object have committed or aborted. To enforce this rule, 
any locks applied during the progress of a transaction are held until the transaction 
commits or aborts. This is called strict two-phase locking. The presence of the locks 
prevents other transactions reading or writing the objects. When a transaction commits, 
to ensure recoverability, the locks must be held until all the objects it updated have been 
written to permanent storage. 

A server generally contains a large number of objects, and a typical transaction 
accesses only a few of them and is unlikely to clash with other current transactions. The 
granularity with which concurrency control can be applied to objects is an important 
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issue, since the scope for concurrent access to objects in a server will be limited severely 
if concurrency control (for example, locks) can only be applied to all the objects at once. 
In our banking example, if locks were applied to all customer accounts at a branch, only 
one bank clerk could perform an online banking transaction at any time – hardly an 
acceptable constraint! 

The portion of the objects to which access must be serialized should be as small 
as possible; that is, just that part involved in each operation requested by transactions. 
In our banking example, a branch holds a set of accounts, each of which has a balance. 
Each banking operation affects one or more account balances – deposit and withdraw

affect one account balance, and branchTotal affects all of them. 
The description of concurrency control schemes given below does not assume any 

particular granularity. We discuss concurrency control protocols that are applicable to 
objects whose operations can be modelled in terms of read and write operations on the 
objects. For the protocols to work correctly, it is essential that each read and write

operation is atomic in its effects on objects.
Concurrency control protocols are designed to cope with conflicts between 

operations in different transactions on the same object. In this chapter, we use the notion 
of conflict between operations to explain the protocols. The conflict rules for read and 
write operations are given in Figure 16.9, which shows that pairs of read operations 
from different transactions on the same object do not conflict. Therefore, a simple 
exclusive lock that is used for both read and write operations reduces concurrency more 
than is necessary. 

It is preferable to adopt a locking scheme that controls the access to each object so 
that there can be several concurrent transactions reading an object, or a single 
transaction writing an object, but not both. This is commonly referred to as a ‘many 
readers/single writer’ scheme. Two types of locks are used: read locks and write locks.
Before a transaction’s read operation is performed, a read lock should be set on the 
object. Before a transaction’s write operation is performed, a write lock should be set on 
the object. Whenever it is impossible to set a lock immediately, the transaction (and the 
client) must wait until it is possible to do so – a client’s request is never rejected.

As pairs of read operations from different transactions do not conflict, an attempt 
to set a read lock on an object with a read lock is always successful. All the transactions 
reading the same object share its read lock – for this reason, read locks are sometimes 
called shared locks.

The operation conflict rules tell us that:

1. If a transaction T has already performed a read operation on a particular object, 
then a concurrent transaction U must not write that object until T commits or 
aborts.

2. If a transaction T has already performed a write operation on a particular object, 
then a concurrent transaction U must not read or write that object until T commits 
or aborts.

To enforce condition 1, a request for a write lock on an object is delayed by the presence 
of a read lock belonging to another transaction. To enforce condition 2, a request for 
either a read lock or a write lock on an object is delayed by the presence of a write lock 
belonging to another transaction.
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Figure 16.15

Figure 16.15      Lock compatibility

For one object Lock requested 

read write

Lock already set none OK OK

read OK wait

write wait wait

 shows the compatibility of read locks and write locks on any 
particular object. The entries to the left of the first column in the table show the type of 
lock already set, if any. The entries above the first row show the type of lock requested. 
The entry in each cell shows the effect on a transaction that requests the type of lock 
given above when the object has been locked in another transaction with the type of lock 
on the left.

Inconsistent retrievals and lost updates are caused by conflicts between read

operations in one transaction and write operations in another without the protection of a 
concurrency control scheme such as locking. Inconsistent retrievals are prevented by 
performing the retrieval transaction before or after the update transaction. If the retrieval 
transaction comes first, its read locks delay the update transaction. If it comes second, 
its request for read locks causes it to be delayed until the update transaction has 
completed. 

Lost updates occur when two transactions read a value of an object and then use 
it to calculate a new value. Lost updates are prevented by making later transactions delay 
their reads until the earlier ones have completed. This is achieved by each transaction 
setting a read lock when it reads an object and then promoting it to a write lock when it 
writes the same object – when a subsequent transaction requires a read lock it will be 
delayed until any current transaction has completed. 

A transaction with a read lock that is shared with other transactions cannot 
promote its read lock to a write lock, because the latter would conflict with the read locks 
held by the other transactions. Therefore, such a transaction must request a write lock 
and wait for the other read locks to be released.

Lock promotion refers to the conversion of a lock to a stronger lock – that is, a 
lock that is more exclusive. The lock compatibility table in Figure 16.15 shows the 
relative exclusivity of  locks. The read lock allows other read locks, whereas the write 
lock does not. Neither allows other write locks. Therefore, a write lock is more exclusive 
than a read lock. Locks may be promoted because the result is a more exclusive lock. It 
is not safe to demote a lock held by a transaction before it commits, because the result 
will be more permissive than the previous one and may allow executions by other 
transactions that are inconsistent with serial equivalence.

The rules for the use of locks in a strict two-phase locking implementation are 
summarized in Figure 16.16. To ensure that these rules are adhered to, the client has no 
access to operations for locking or unlocking items of data. Locking is performed when 
the requests for read and write operations are about to be applied to the recoverable 
objects, and unlocking is performed by the commit or abort operations of the transaction 
coordinator. 



Figure 16.16  Use of locks in strict two-phase locking

1.  When an operation accesses an object within a transaction:

(a)If the object is not already locked, it is locked and the operation proceeds.

(b)If the object has a conflicting lock set by another transaction, the transaction
must wait until it is unlocked.

(c)If the object has a non-conflicting lock set by another transaction, the lock is 
shared and the operation proceeds.

(d)If the object has already been locked in the same transaction, the lock will be 
promoted if necessary and the operation proceeds. (Where promotion is
prevented by a conflicting lock, rule b is used.)

2. When a transaction is committed or aborted, the server unlocks all objects it 
locked for the transaction.
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For example, the CORBA Concurrency Control Service [OMG 2000b] can be 
used to apply concurrency control on behalf of transactions or to protect objects without 
using transactions. It provides a means of associating a collection of locks (called a 
lockset) with a resource such as a recoverable object. A lockset allows locks to be 
acquired or released. A lockset’s lock method will acquire a lock or block until the lock 
is free; other methods allow locks to be promoted or released. Transactional locksets 
support the same methods as locksets, but their methods require transaction identifiers 
as arguments. We mentioned earlier that the CORBA transaction service tags all client 
requests in a transaction with the transaction identifier. This enables a suitable lock to 
be acquired before each of the recoverable objects is accessed during a transaction. The 
transaction coordinator is responsible for releasing the locks when a transaction 
commits or aborts.

The rules given in Figure 16.16 ensure strictness, because the locks are held until 
a transaction has either committed or aborted. However, it is not necessary to hold read 
locks to ensure strictness. Read locks need only be held until the request to commit or 
abort arrives. 

Lock implementation   •  The granting of locks will be implemented by a separate object 
in the server that we call the lock manager. The lock manager holds a set of locks, for 
example in a hash table. Each lock is an instance of the class Lock and is associated with 
a particular object. The class Lock is shown in Figure 16.17. Each instance of Lock

maintains the following information in its instance variables:

• the identifier of the locked object;

• the transaction identifiers of the transactions that currently hold the lock (shared 
locks can have several holders);

• a lock type. 
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The methods of Lock are synchronized

Figure 16.17       Lock class

public class Lock {

private Object object;          // the object being protected by the lock
private Vector holders;        // the TIDs of current holders
private LockType lockType;  // the current type

public synchronized void acquire(TransID trans, LockType aLockType ){

while(/*another transaction holds the lock in conflicting mode*/) {
try {

wait();

}catch ( InterruptedException e){/*...*/ }

 }

 if (holders.isEmpty()) { // no TIDs hold lock
 holders.addElement(trans);

lockType  = aLockType;

 } else if (/*another transaction holds the lock, share it*/ ) ){  

 if (/* this transaction not a holder*/) holders.addElement(trans); 

} else if (/* this transaction is a holder but needs a more exclusive lock*/)
 lockType.promote();

 }

}

public synchronized void release(TransID trans ){

holders.removeElement(trans);     // remove this holder
// set locktype to none
notifyAll();

}

}

 so that the threads attempting to acquire or 
release a lock will not interfere with one another. But, in addition, attempts to acquire 
the lock use the waitmethod whenever they have to wait for another thread to release it. 

The acquire method carries out the rules given in Figure 16.15 and Figure 16.16.
Its arguments specify a transaction identifier and the type of lock required by that 
transaction. It tests whether the request can be granted. If another transaction holds the 
lock in a conflicting mode, it invokes wait, which causes the caller’s thread to be 
suspended until a corresponding notify. Note that the wait is enclosed in a while, because 
all waiters are notified and some of them may not be able to proceed. When, eventually, 
the condition is satisfied, the remainder of the method sets the lock appropriately:

• if no other transaction holds the lock, just add the given transaction to the holders 
and set the type;

• else if another transaction holds the lock, share it by adding the given transaction 
to the holders (unless it is already a holder);

• else if this transaction is a holder but is requesting a more exclusive lock, promote 
the lock.
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The release method’s arguments specify the transaction identifier of the transaction that 
is releasing the lock. It removes the transaction identifier from the holders, sets the lock 
type to none and calls notifyAll. The method notifies all waiting threads in case there are 
multiple transactions waiting to acquire read locks –  all of them may be able to proceed.

The class LockManager is shown in Figure 16.18.

Figure 16.18 LockManager class

public class LockManager {

    private Hashtable theLocks;

    public  void setLock(Object object, TransID trans,  LockType lockType){

     Lock foundLock;

    synchronized(this){

// find the lock associated with object
        // if there isn’t one, create it and add it to the hashtable
           }

        foundLock.acquire(trans, lockType);

    }

   // synchronize this one because we want to remove all entries 
    public synchronized void unLock(TransID trans) {

   Enumeration e = theLocks.elements();

   while(e.hasMoreElements()){

            Lock aLock = (Lock)(e.nextElement());

            if(/* trans is a holder of this lock*/ ) aLock.release(trans);

        }

    }

}

 All requests to set locks and to release 
them on behalf of transactions are sent to an instance of LockManager:

• The setLock method’s arguments specify the object that the given transaction 
wants to lock and the type of lock. It finds a lock for that object in its hashtable or, 
if necessary, creates one. It then invokes the acquire method of that lock.

• The unLock method’s argument specifies the transaction that is releasing its locks. 
It finds all of the locks in the hashtable that have the given transaction as a holder. 
For each one, it calls the release method.

Some questions of policy: Note that when several threads wait on the same locked item, 
the semantics of wait ensure that each transaction gets its turn. In the above program, the 
conflict rules allow the holders of a lock to be either multiple readers or one writer. The 
arrival of a request for a read lock is always granted unless the holder has a write lock.

 The reader is invited to consider the following:

What is the consequence for write transactions in the presence of a steady trickle 
of requests for read locks? Think of an alternative implementation.
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When the holder has a write lock, several readers and writers may be waiting. The 
reader should consider the effect of notifyAll and think of an alternative 
implementation. If a holder of a read lock tries to promote the lock when the lock 
is shared, it will be blocked. Is there any solution to this difficulty?

Locking rules for nested transactions  •  The aim of a locking scheme for nested 
transactions is to serialize access to objects so that:

1. Each set of nested transactions is a single entity that must be prevented from 
observing the partial effects of any other set of nested transactions.

2. Each transaction within a set of nested transactions must be prevented from 
observing the partial effects of the other transactions in the set.

The first rule is enforced by arranging that every lock that is acquired by a successful 
subtransaction is inherited by its parent when it completes. Inherited locks are also 
inherited by ancestors. Note that this form of inheritance passes from child to parent! 
The top-level transaction eventually inherits all of the locks that were acquired by 
successful subtransactions at any depth in a nested transaction. This ensures that the 
locks can be held until the top-level transaction has committed or aborted, which 
prevents members of different sets of nested transactions observing one another’s partial 
effects.

The second rule is enforced as follows:

• Parent transactions are not allowed to run concurrently with their child 
transactions. If a parent transaction has a lock on an object, it retains the lock 
during the time that its child transaction is executing. This means that the child 
transaction temporarily acquires the lock from its parent for its duration.

• Subtransactions at the same level are allowed to run concurrently, so when they 
access the same objects, the locking scheme must serialize their access. 

The following rules describe lock acquisition and release:

• For a subtransaction to acquire a read lock on an object, no other active transaction 
can have a write lock on that object, and the only retainers of a write lock are its 
ancestors.

• For a subtransaction to acquire a write lock on an object, no other active 
transaction can have a read or write lock on that object, and the only retainers of 
read and write locks on that object are its ancestors.

• When a subtransaction commits, its locks are inherited by its parent, allowing the 
parent to retain the locks in the same mode as the child.

• When a subtransaction aborts, its locks are discarded. If the parent already retains 
the locks, it can continue to do so.

Note that subtransactions at the same level that access the same object will take turns to 
acquire the locks retained by their parent. This ensures that their access to a common 
object is serialized.

As an example, suppose that subtransactions T1, T2 and T11 in Figure 16.13 all 
access a common object, which is not accessed by the top-level transaction T. Suppose 
that subtransaction T1 is the first to access the object and successfully acquires a lock, 
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which it passes on to T11 for the duration of its execution, getting it back when T11
completes. When T1 completes its execution, the top-level transaction T inherits the 
lock, which it retains until the set of nested transactions completes. The subtransaction 
T2 can acquire the lock from T for the duration of its execution.

16.4.1 Deadlocks

The use of locks can lead to deadlock. Consider the use of locks shown in Figure 16.19

Figure 16.19 Deadlock with write locks

Transaction T Transaction U

Operations Locks Operations Locks 
a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

••• waits for U’s a.withdraw(200); waits for  T’s

lock on B ••• lock on A

••• •••

••• •••

.
Since the deposit and withdraw methods are atomic, we show them acquiring write locks 
– although in practice they read the balance and then write it. Each of them acquires a 
lock on one account and then gets blocked when it tries to access the account that the 
other one has locked. This is a deadlock situation – two transactions are waiting, and 
each is dependent on the other to release a lock so it can resume. 

Deadlock is a particularly common situation when clients are involved in an 
interactive program, for a transaction in an interactive program may last for a long 
period of time. This can result in many objects being locked and remaining so, thus 
preventing other clients using them. 

Note that the locking of subitems in structured objects can be useful for avoiding 
conflicts and possible deadlock situations. For example, a day in a diary could be 
structured as a set of timeslots, each of which can be locked independently for updating. 
Hierarchic locking schemes are useful if the application requires a different granularity 
of locking for different operations, see Section 16.4.2.

Definition of deadlock  •  Deadlock is a state in which each member of a group of 
transactions is waiting for some other member to release a lock. A wait-for graph can 
be used to represent the waiting relationships between current transactions. In a wait-for 
graph the nodes represent transactions and the edges represent wait-for relationships 
between transactions – there is an edge from node T to node U when transaction T is 
waiting for transaction U to release a lock. Figure 16.20 illustrates the wait-for graph 
corresponding to the deadlock situation illustrated in Figure 16.19. Recall that the 
deadlock arose because transactions T and U both attempted to acquire an object held by 
the other. Therefore T waits for U and U waits for T. The dependency between 
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transactions is indirect, via a dependency on objects. The diagram on the right shows the 
objects held by and waited for by transactions T and U. As each transaction can wait for 
only one object, the objects can be omitted from the wait-for graph – leaving the simple 
graph on the left. 

Suppose that, as in Figure 16.21

Figure 16.21 A cycle in a wait-for graph

U

V

T

, a wait-for graph contains a cycle T U …
V T . Each transaction is waiting for the next transaction in the cycle. All of these 

transactions are blocked waiting for locks. None of the locks can ever be released, and 
the transactions are deadlocked. If one of the transactions in a cycle is aborted, then its 
locks are released and that cycle is broken. For example, if transaction T in Figure 16.21
is aborted, it will release a lock on an object that V is waiting for – and V will no longer 
be waiting for T.

Now consider a scenario in which the three transactions T, U and V share a read 
lock on an object C, and transaction W holds a write lock on object B, on which 
transaction V is waiting to obtain a lock (as shown on the right in Figure 16.22). The 
transactions T and W then request write locks on object C, and a deadlock situation arises 
in which T waits for U and V, V waits for W, and W waits for T, U and V, as shown on 
the left in Figure 16.22. This shows that although each transaction can wait for only one 
object at a time, it may be involved in several cycles. For example, transaction V is 
involved in two cycles: V W T V and V W V.

In this example, suppose that transaction V is aborted. This will release V’s lock 
on C and the two cycles involving V will be broken. 

Deadlock prevention  •  One solution is to prevent deadlock. An apparently simple but 
not very good way to overcome the deadlock problem is to lock all of the objects used 
by a transaction when it starts. This would need to be done as a single atomic step so as 
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to avoid deadlock at this stage. Such a transaction cannot run into deadlocks with other 
transactions, but this approach unnecessarily restricts access to shared resources. In 
addition, it is sometimes impossible to predict at the start of a transaction which objects 
will be used. This is generally the case in interactive applications, for the user would 
have to say in advance exactly which objects they were planning to use – this is 
inconceivable in browsing-style applications, which allow users to find objects they do 
not know about in advance. Deadlocks can also be prevented by requesting locks on 
objects in a predefined order, but this can result in premature locking and a reduction in 
concurrency.

Upgrade locks  •  CORBA’s Concurrency Control Service introduces a third type of 
lock, called upgrade, the use of which is intended to avoid deadlocks. Deadlocks are 
often caused by two conflicting transactions first taking read locks and then attempting 
to promote them to write locks. A transaction with an upgrade lock on a data item is 
permitted to read that data item, but this lock conflicts with any upgrade locks set by 
other transactions on the same data item. This type of lock cannot be set implicitly by 
the use of a read operation, but must be requested by the client. 

Deadlock detection  •  Deadlocks may be detected by finding cycles in the wait-for 
graph. Having detected a deadlock, a transaction must be selected for abortion to break 
the cycle.

The software responsible for deadlock detection can be part of the lock manager. 
It must hold a representation of the wait-for graph so that it can check it for cycles from 
time to time. Edges are added to the graph and removed from the graph by the lock 
manager’s setLock and unLock operations. At the point illustrated by Figure 16.22 on 
the left, it will have the following information:

Transaction Waits for transaction

T U, V

V W

W T, U, V

An edge T U is added whenever the lock manager blocks a request by transaction T
for a lock on an object that is already locked on behalf of transaction U. Note that when 
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a lock is shared, several edges may be added. An edge T U is deleted whenever U
releases a lock that T is waiting for and allows T to proceed. See Exercise 16.14 for a 
more detailed discussion of the implementation of deadlock detection. If a transaction 
shares a lock, the lock is not released, but the edges leading to a particular transaction 
are removed. 

The presence of cycles may be checked each time an edge is added, or less 
frequently to avoid unnecessary overhead. When a deadlock is detected, one of the 
transactions in the cycle must be chosen and then be aborted. The corresponding node 
and the edges involving it must be removed from the wait-for graph. This will happen 
when the aborted transaction has its locks removed.

The choice of the transaction to abort is not simple. Some factors that may be 
taken into account are the age of the transaction and the number of cycles in which it is 
involved. 

Figure 16.23 Resolution of the deadlock in Figure 16.19

Transaction T Transaction U 

Operations Locks Operations Locks 

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

••• waits for U’s a.withdraw(200); waits for T’s

lock on B ••• lock on A

                                  (timeout elapses)

         T’s lock on A becomes vulnerable,

                                   unlock A, abort T

•••

a.withdraw(200); write lock A

unlock A, B

Timeouts  •  Lock timeouts are a method for resolution of deadlocks that is commonly 
used. Each lock is given a limited period in which it is invulnerable. After this time, a 
lock becomes vulnerable. Provided that no other transaction is competing for the object 
that is locked, an object with a vulnerable lock remains locked. However, if any other 
transaction is waiting to access the object protected by a vulnerable lock, the lock is 
broken (that is, the object is unlocked) and the waiting transaction resumes. The 
transaction whose lock has been broken is normally aborted.

There are many problems with the use of timeouts as a remedy for deadlocks: the
worst problem is that transactions are sometimes aborted due to their locks becoming 
vulnerable when other transactions are waiting for them, but there is actually no 
deadlock. In an overloaded system, the number of transactions timing out will increase, 
and transactions taking a long time can be penalized. In addition, it is hard to decide on 
an appropriate length for a timeout. In contrast, if deadlock detection is used, 
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transactions are aborted because deadlocks have occurred and a choice can be made as 
to which transaction to abort.

Using lock timeouts, we can resolve the deadlock in Figure 16.19 as shown in 
Figure 16.23, in which the write lock for T on A becomes vulnerable after its timeout 
period. Transaction U is waiting to acquire a write lock on A. Therefore, T is aborted and 
it releases its lock on A, allowing U to resume and complete the transaction.

When transactions access objects located in several different servers, the 
possibility of distributed deadlocks arises. In a distributed deadlock, the wait-for graph 
can involve objects at multiple locations. We return to this subject in Section 17.5.

16.4.2 Increasing concurrency in locking schemes

Even when locking rules are based on the conflicts between read and write operations 
and the granularity at which they are applied is as small as possible, there is still some 
scope for increasing concurrency. We discuss two approaches that have been used to 
deal with this issue. In the first approach (two-version locking), the setting of exclusive 
locks is delayed until a transaction commits. In the second approach (hierarchic locks), 
mixed-granularity locks are used.

Two-version locking

Figure 16.24 Lock compatibility (read, write and commit locks)

For one object Lock to be set 

read write commit

Lock already set none OK OK OK 

read OK OK wait 

write OK wait    –

commit wait wait    –

  •  This is an optimistic scheme that allows one transaction to write 
tentative versions of objects while other transactions read from the committed versions 
of the same objects. read operations only wait if another transaction is currently 
committing the same object. This scheme allows more concurrency than read-write 
locks, but writing transactions risk waiting or even rejection when they attempt to 
commit. Transactions cannot commit their write operations immediately if other 
uncompleted transactions have read the same objects. Therefore, transactions that 
request to commit in such a situation are made to wait until the reading transactions have 
completed. Deadlocks may occur when transactions are waiting to commit. Therefore, 
transactions may need to be aborted when they are waiting to commit, to resolve 
deadlocks.

This variation on strict two-phase locking uses three types of lock: a read lock, a 
write lock and a commit lock. Before a transaction’s read operation is performed, a read 
lock must be set on the object – the attempt to set a read lock is successful unless the 
object has a commit lock, in which case the transaction waits. Before a transaction’s 
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write operation is performed, a write lock must be set on the object – the attempt to set 
a write lock is successful unless the object has a write lock or a commit lock, in which 
case the transaction waits.

 When the transaction coordinator receives a request to commit a transaction, it 
attempts to convert all that transaction’s write locks to commit locks. If any of the 
objects have outstanding read locks, the transaction must wait until the transactions that 
set these locks have completed and the locks are released. The compatibility of read, 
write and commit locks is shown in Figure 16.24.

There are two main differences in performance between the two-version locking 
scheme and an ordinary read-write locking scheme. On the one hand, read operations in 
the two-version locking scheme are delayed only while the transactions are being 
committed, rather than during the entire execution of transactions – in most cases, the 
commit protocol takes only a small fraction of the time required to perform an entire 
transaction. On the other hand, read operations of one transaction can cause delays in 
committing other transactions.

Hierarchic locks  •  In some applications, the granularity suitable for one operation is not 
appropriate for another operation. In our banking example, the majority of the 
operations require locking at the granularity of an account. The branchTotal operation 
is different – it reads the values of all the account balances and would appear to require 
a read lock on all of them. To reduce locking overhead, it would be useful to allow locks 
of mixed granularity to coexist.

Branch

AccountA B C

Figure 16.25 Lock hierarchy for the banking example

Figure 16.26 Lock hierarchy for a diary

Week

Monday Tuesday Wednesday Thursday Friday

9:00–10:00

timeslots

10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00 14:00–15:00 15:00–16:00

Gray [1978] proposed the use of a hierarchy of locks with different granularities. 
At each level, the setting of a parent lock has the same effect as setting all the equivalent 
child locks. This economizes on the number of locks to be set. In our banking example, 
the branch is the parent and the accounts are children (see Figure 16.25).

Mixed-granularity locks could be useful in a diary system in which the data could 
be structured with the diary for a week being composed of a page for each day and the 
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latter subdivided further into a slot for each hour of the day, as shown in Figure 16.26.
The operation to view a week would cause a read lock to be set at the top of this 
hierarchy, whereas the operation to enter an appointment would cause a write lock to be 
set on a given time slot. The effect of a read lock on a week would be to prevent write 
operations on any of the substructures –  for example, the time slots for each day in that 
week.

In Gray’s scheme, each node in the hierarchy can be locked, giving the owner of 
the lock explicit access to the node and giving implicit access to its children. In our 
example, in Figure 16.25 a read-write lock on the branch implicitly read-write locks all 
the accounts. Before a child node is granted a read-write lock, an intention to read-write 
lock is set on the parent node and its ancestors (if any). The intention lock is compatible 
with other intention locks but conflicts with read and write locks according to the usual 
rules. Figure 16.27 gives the compatibility table for hierarchic locks. Gray also proposed 
a third type of intention lock – one that combines the properties of a read lock with an 
intention to write lock.

Figure 16.27 Lock compatibility table for hierarchic locks

For one object Lock to be set

read write I-read I-write

Lock already set none OK OK OK OK

read OK wait OK wait

write wait wait wait wait

I-read OK wait OK OK

I-write wait wait OK OK

In our banking example, the branchTotal operation requests a read lock on the 
branch, which implicitly sets read locks on all the accounts. A deposit operation needs 
to set a write lock on a balance, but first it attempts to set an intention to write lock on 
the branch. These rules prevent these operations running concurrently.

Hierarchic locks have the advantage of reducing the number of locks when mixed-
granularity locking is required. The compatibility tables and the rules for promoting 
locks are more complex. 

The mixed granularity of locks could allow each transaction to lock a portion 
whose size is chosen according to its needs. A long transaction that accesses many 
objects could lock the whole collection, whereas a short transaction can lock at finer 
granularity. 

The CORBA Concurrency Control Service supports variable-granularity locking 
with intention to read and intention to write lock types. These can be used as described 
above to take advantage the opportunity to apply locks at differing granularities in 
hierarchically structured data.
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16.5 Optimistic concurrency control 

Kung and Robinson [1981] identified a number of inherent disadvantages of locking and 
proposed an alternative optimistic approach to the serialization of transactions that 
avoids these drawbacks. We can summarize the drawbacks of locking:

• Lock maintenance represents an overhead that is not present in systems that do not 
support concurrent access to shared data. Even read-only transactions (queries), 
which cannot possibly affect the integrity of the data, must, in general, use locking 
in order to guarantee that the data being read is not modified by other transactions 
at the same time. But locking may be necessary only in the worst case.

For example, consider two client processes that are concurrently incrementing the 
values of n objects. If the client programs start at the same time and run for about 
the same amount of time, accessing the objects in two unrelated sequences and 
using a separate transaction to access and increment each item, the chances that 
the two programs will attempt to access the same object at the same time are just 
1 in n on average, so locking is really needed only once in every n transactions.

• The use of locks can result in deadlock. Deadlock prevention reduces concurrency 
severely, and therefore deadlock situations must be resolved either by the use of 
timeouts or by deadlock detection. Neither of these is wholly satisfactory for use 
in interactive programs.

• To avoid cascading aborts, locks cannot be released until the end of the 
transaction. This may reduce significantly the potential for concurrency.

The alternative approach proposed by Kung and Robinson is ‘optimistic’ because it is 
based on the observation that, in most applications, the likelihood of two clients’ 
transactions accessing the same object is low. Transactions are allowed to proceed as 
though there were no possibility of conflict with other transactions until the client 
completes its task and issues a closeTransaction request. When a conflict arises, some 
transaction is generally aborted and will need to be restarted by the client. Each 
transaction has the following phases:

Working phase: During the working phase, each transaction has a tentative version 
of each of the objects that it updates. This is a copy of the most recently committed 
version of the object. The use of tentative versions allows the transaction to abort 
(with no effect on the objects), either during the working phase or if it fails validation 
due to other conflicting transactions. read operations are performed immediately – if 
a tentative version for that transaction already exists, a read operation accesses it; 
otherwise, it accesses the most recently committed value of the object. write

operations record the new values of the objects as tentative values (which are 
invisible to other transactions). When there are several concurrent transactions, 
several different tentative values of the same object may coexist. In addition, two 
records are kept of the objects accessed within a transaction: a read set containing the 
objects read by the transaction and a write set containing the objects written by the 
transaction. Note that as all read operations are performed on committed versions of 
the objects (or copies of them), dirty reads cannot occur. 
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Validation phase: When the closeTransaction request is received, the transaction is 
validated to establish whether or not its operations on objects conflict with operations 
of other transactions on the same objects. If the validation is successful, then the 
transaction can commit. If the validation fails, then some form of conflict resolution 
must be used and either the current transaction or, in some cases, those with which it 
conflicts will need to be aborted.

Update phase: If a transaction is validated, all of the changes recorded in its tentative 
versions are made permanent. Read-only transactions can commit immediately after 
passing validation. Write transactions are ready to commit once the tentative versions 
of the objects have been recorded in permanent storage. 

Validation of transactions  •  Validation uses the read-write conflict rules to ensure that 
the scheduling of a particular transaction is serially equivalent with respect to all other 
overlapping transactions – that is, any transactions that had not yet committed at the time 
this transaction started. To assist in performing validation, each transaction is assigned 
a transaction number when it enters the validation phase (that is, when the client issues 
a closeTransaction). If the transaction is validated and completes successfully, it retains 
this number; if it fails the validation checks and is aborted, or if the transaction is read 
only, the number is released for reassignment. Transaction numbers are integers 
assigned in ascending sequence; the number of a transaction therefore defines its 
position in time – a transaction always finishes its working phase after all transactions 
with lower numbers. That is, a transaction with the number Ti always precedes a 
transaction with the number Tj  if i < j. (If the transaction number were to be assigned at 
the beginning of the working phase, then a transaction that reached the end of the 
working phase before one with a lower number would have to wait until the earlier one 
had completed before it could be validated.) 

The validation test on transaction Tv is based on conflicts between operations in 
pairs of transactions Ti and Tv. For a transaction Tv to be serializable with respect to an 
overlapping transaction Ti, their operations must conform to the following rules:

Tv Ti Rule

write read 1. Ti must not read objects written by Tv.

read write 2. Tv must not read objects written by Ti.

write write 3. Ti must not write objects written by Tv and

Tv must not write objects written by Ti.

As the validation and update phases of a transaction are generally short in duration 
compared with the working phase, a simplification can be achieved by making the rule 
that only one transaction may be in the validation and update phase at one time. When 
no two transactions may overlap in the update phase, rule 3 is satisfied. Note that this 
restriction on write operations, together with the fact that no dirty reads can occur, 
produces strict executions. To prevent overlapping, the entire validation and update 
phases can be implemented as a critical section so that only one client at a time can 
execute it. In order to increase concurrency, part of the validation and updating may be 
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implemented outside the critical section, but it is essential that the assignment of 
transaction numbers is performed sequentially. We note that at any instant, the current 
transaction number is like a pseudo-clock that ticks whenever a transaction completes 
successfully.

The validation of a transaction must ensure that rules 1 and 2 are obeyed by testing 
for overlaps between the objects of pairs of transactions Tv and Ti. There are two forms 
of validation – backward and forward [Härder 1984]. Backward validation checks the 
transaction undergoing validation with other preceding overlapping transactions – those 
that entered the validation phase before it. Forward validation checks the transaction 
undergoing validation with other later transactions, which are still active.

Backward validation   •  As all the read operations of earlier overlapping transactions 
were performed before the validation of Tv started, they cannot be affected by the writes

of the current transaction (and rule 1 is satisfied). The validation of transaction Tv checks 
whether its read set (the objects affected by the read operations of Tv) overlaps with any 
of the write sets of earlier overlapping transactions, Ti (rule 2). If there is any overlap, 
the validation fails. 

Let startTn be the biggest transaction number assigned (to some other committed 
transaction) at the time when transaction Tv started its working phase and finishTn be the 
biggest transaction number assigned at the time when Tv entered the validation phase. 
The following program describes the algorithm for the validation of Tv:

boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Figure 16.28

Figure 16.28 Validation of transactions

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction
being validated

T2

T3

Later active
transactions

active1

active2

 shows overlapping transactions that might be considered in the validation 
of a transaction Tv. Time increases from left to right. The earlier committed transactions 
are T1, T2 and T3. T1 committed before Tv started. T2 and T3 committed before Tv

finished its working phase. StartTn + 1 = T2 and finishTn = T3. In backward validation, 
the read set of Tv must be compared with the write sets of T2 and T3.
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In backward validation, the read set of the transaction being validated is compared 
with the write sets of other transactions that have already committed. Therefore, the only 
way to resolve any conflicts is to abort the transaction that is undergoing validation. 

In backward validation, transactions that have no read operations (only write

operations) need not be checked.
Optimistic concurrency control with backward validation requires that the write 

sets of old committed versions of objects corresponding to recently committed 
transactions are retained until there are no unvalidated overlapping transactions with 
which they might conflict. Whenever a transaction is successfully validated, its 
transaction number, startTn and write set are recorded in a preceding transactions list that 
is maintained by the transaction service. Note that this list is ordered by transaction 
number. In an environment with long transactions, the retention of old write sets of 
objects may be a problem. For example, in Figure 16.28 the write sets of T1, T2, T3 and 
Tv must be retained until the active transaction active1 completes. Note that the although 
the active transactions have transaction identifiers, they do not yet have transaction 
numbers.

Forward validation  •  In forward validation of the transaction Tv, the write set of Tv is 
compared with the read sets of all overlapping active transactions – those that are still in 
their working phase (rule 1). Rule 2 is automatically fulfilled because the active 
transactions do not write until after Tv has completed. Let the active transactions have 
(consecutive) transaction identifiers active1 to activeN. The following program describes 
the algorithm for the forward validation of Tv:

boolean valid = true;
for (int Tid = active1; Tid <= activeN; Tid++){

if (write set of Tv intersects read set of Tid) valid = false;
}

In Figure 16.28, the write set of transaction Tv must be compared with the read sets of 
the transactions with identifiers active1 and active2. (Forward validation should allow 
for the fact that read sets of active transactions may change during validation and 
writing.) As the read sets of the transaction being validated are not included in the check, 
read-only transactions always pass the validation check. As the transactions being 
compared with the validating transaction are still active, we have a choice of whether to 
abort the validating transaction or to pursue some alternative way of resolving the 
conflict. Härder [1984] suggests several alternative strategies:

• Defer the validation until a later time when the conflicting transactions have 
finished. However, there is no guarantee that the transaction being validated will 
fare any better in the future. There is always the chance that further conflicting 
active transactions may start before the validation is achieved.

• Abort all the conflicting active transactions and commit the transaction being 
validated.

• Abort the transaction being validated. This is the simplest strategy but has the 
disadvantage that future conflicting transactions may be going to abort, in which 
case the transaction under validation has aborted unnecessarily.
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Comparison of forward and backward validation  •  We have already seen that forward 
validation allows flexibility in the resolution of conflicts, whereas backward validation 
allows only one choice – to abort the transaction being validated. In general, the read 
sets of transactions are much larger than the write sets. Therefore, backward validation 
compares a possibly large read set against the old write sets, whereas forward validation 
checks a small write set against the read sets of active transactions. We see that 
backward validation has the overhead of storing old write sets until they are no longer 
needed. On the other hand, forward validation has to allow for new transactions starting 
during the validation process. 

Starvation   •  When a transaction is aborted, it will normally be restarted by the client 
program. But in schemes that rely on aborting and restarting transactions, there is no 
guarantee that a particular transaction will ever pass the validation checks, for it may 
come into conflict with other transactions for the use of objects each time it is restarted. 
The prevention of a transaction ever being able to commit is called starvation.

Occurrences of starvation are likely to be rare, but a server that uses optimistic 
concurrency control must ensure that a client does not have its transaction aborted 
repeatedly. Kung and Robinson suggest that this could be done if the server detects a 
transaction that has been aborted several times. They suggest that when the server 
detects such a transaction it should be given exclusive access by the use of a critical 
section protected by a semaphore.

16.6 Timestamp ordering

In concurrency control schemes based on timestamp ordering, each operation in a 
transaction is validated when it is carried out. If the operation cannot be validated, the 
transaction is aborted immediately and can then be restarted by the client. Each 
transaction is assigned a unique timestamp value when it starts. The timestamp defines 
its position in the time sequence of transactions. Requests from transactions can be 
totally ordered according to their timestamps. The basic timestamp ordering rule is 
based on operation conflicts and is very simple:

A transaction’s request to write an object is valid only if that object was last read and 
written by earlier transactions. A transaction’s request to read an object is valid only 
if that object was last written by an earlier transaction.

This rule assumes that there is only one version of each object and restricts access to one 
transaction at a time. If each transaction has its own tentative version of each object it 
accesses, then multiple concurrent transactions can access the same object. The 
timestamp ordering rule is refined to ensure that each transaction accesses a consistent 
set of versions of the objects. It must also ensure that the tentative versions of each object 
are committed in the order determined by the timestamps of the transactions that made 
them. This is achieved by transactions waiting, when necessary, for earlier transactions 
to complete their writes. The write operations may be performed after the 
closeTransaction operation has returned, without making the client wait. But the client 
must wait when read operations need to wait for earlier transactions to finish. This 
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cannot lead to deadlock, since transactions only wait for earlier ones (and no cycle could 
occur in the wait-for graph).

Timestamps may be assigned from the server’s clock or, as in the previous section, 
a ‘pseudo-time’ may be based on a counter that is incremented whenever a timestamp 
value is issued. We defer until Chapter 17 the problem of generating timestamps when 
the transaction service is distributed and several servers are involved in a transaction.

We will now describe a form of timestamp-based concurrency control following 
the methods adopted in the SDD-1 system [Bernstein et al. 1980] and described by Ceri 
and Pelagatti [1985]. 

As usual, the write operations are recorded in tentative versions of objects and are 
invisible to other transactions until a closeTransaction request is issued and the 
transaction is committed. Every object has a write timestamp and a set of tentative 
versions, each of which has a write timestamp associated with it; each object also has a 
set of read timestamps. The write timestamp of the (committed) object is earlier than that 
of any of its tentative versions, and the set of read timestamps can be represented by its 
maximum member. Whenever a transaction’s write operation on an object is accepted, 
the server creates a new tentative version of the object with its write timestamp set to the 
transaction timestamp. A transaction’s read operation is directed to the version with the 
maximum write timestamp less than the transaction timestamp. Whenever a 
transaction’s read operation on an object is accepted, the timestamp of the transaction is 
added to its set of read timestamps. When a transaction is committed, the values of the 
tentative versions become the values of the objects, and the timestamps of the tentative 
versions become the timestamps of the corresponding objects.

In timestamp ordering, each request by a transaction for a read or write operation 
on an object is checked to see whether it conforms to the operation conflict rules. A 
request by the current transaction Tc can conflict with previous operations done by other 
transactions, Ti, whose timestamps indicate that they should be later than Tc. These rules 
are shown in Figure 16.29

Figure 16.29 Operation conflicts for timestamp ordering

Rule Tc Ti

1. write read Tc must not write an object that has been read by any Ti where Ti > Tc.

This requires that Tc   the maximum read timestamp of the object.

2. write write Tc must not write an object that has been written by any Ti where Ti >Tc.

This requires that Tc > the write timestamp of the committed object.

3. read write Tc must not read an object that has been written by any Ti where Ti > Tc.

This requires that Tc > the write timestamp of the committed object.

, in which Ti > Tc means Ti is later than Tc and Ti < Tc means 
Ti, is earlier than Tc.
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Timestamp ordering write rule: By combining rules 1 and 2 we get the following rule for 
deciding whether to accept a write operation requested by transaction Tc on object D:

if (Tc   maximum read timestamp on D &&

Tc > write timestamp on committed version of D)
perform write operation on tentative version of D with write timestamp Tc

else /* write is too late */
Abort transaction Tc

If a tentative version with write timestamp Tc already exists, the write operation is 
addressed to it; otherwise, a new tentative version is created and given write timestamp 
Tc. Note that any write that ‘arrives too late’ is aborted – it is too late in the sense that a 
transaction with a later timestamp has already read or written the object.

Figure 16.30

Figure 16.30 Write operations and timestamps
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 illustrates the action of a write operation by transaction T3 in cases 
where T3 maximum read timestamp on the object (the read timestamps are not 
shown). In cases (a) to (c), T3 > write timestamp on the committed version of the object 
and a tentative version with write timestamp T3 is inserted at the appropriate place in the 
list of tentative versions ordered by their transaction timestamps. In case (d), 
T3 < write timestamp on the committed version of the object and the transaction is 
aborted.
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Timestamp ordering read rule: By using rule 3 we arrive at the following rule for 
deciding whether to accept immediately, to wait or to reject a read operation requested 
by transaction Tc on object D:

if ( Tc > write timestamp on committed version of D) {
let Dselected be the version of D with the maximum write timestamp ð Tc

if (Dselected is committed)
perform read operation on the version Dselected

else
wait until the transaction that made version Dselected commits or aborts
then reapply the read rule

} else
Abort transaction Tc

Note:

• If transaction Tc has already written its own version of the object, this will be used. 

• A read operation that arrives too early waits for the earlier transaction to complete. 
If the earlier transaction commits, then Tc will read from its committed version. If 
it aborts, then Tc will repeat the read rule (and select the previous version). This 
rule prevents dirty reads. 

• A read operation that ‘arrives too late’ is aborted – it is too late in the sense that a 
transaction with a later timestamp has already written the object.

Figure 16.31 illustrates the timestamp ordering read rule. It includes four cases labelled 
(a) to (d), each of which illustrates the action of a read operation by transaction T3. In 
each case, a version whose write timestamp is less than or equal to T3 is selected. If such 
a version exists, it is indicated with a line. In cases (a) and (b) the read operation is 
directed to a committed version – in (a) it is the only version, whereas in (b) there is a 
tentative version belonging to a later transaction. In case (c) the read operation is 
directed to a tentative version and must wait until the transaction that made it commits 
or aborts. In case (d) there is no suitable version to read and transaction T3 is aborted.

When a coordinator receives a request to commit a transaction, it will always be 
able to do so because all the operations of transactions are checked for consistency with 
those of earlier transactions before being carried out. The committed versions of each 
object must be created in timestamp order. Therefore, a coordinator sometimes needs to 
wait for earlier transactions to complete before writing all the committed versions of the 
objects accessed by a particular transaction, but there is no need for the client to wait. In 
order to make a transaction recoverable after a server crash, the tentative versions of 
objects and the fact that the transaction has committed must be written to permanent 
storage before acknowledging the client’s request to commit the transaction. 

Note that this timestamp ordering algorithm is a strict one – it ensures strict 
executions of transactions (see Section 16.2). The timestamp ordering read rule delays 
a transaction’s read operation on any object until all transactions that had previously 
written that object have committed or aborted. The arrangement to commit versions in 
order ensures that the execution of a transaction’s write operation on any object is 
delayed until all transactions that had previously written that object have committed or 
aborted.
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In Figure 16.32, we return to our illustration concerning the two concurrent 
banking transactions T and U introduced in Figure 16.7. The columns headed A, B and
C refer to information about accounts with those names. Each account has an entry RTS 
that records the maximum read timestamp and an entry WTS that records the write 
timestamp of each version – with timestamps of committed versions in bold. Initially, 
all accounts have committed versions written by transaction S, and the set of read 
timestamps is empty. We assume S < T < U. The example shows that when transaction 
U is ready to get the balance of B it will wait for T to complete so that it can read the 
value set by T if it commits.

The timestamp method just described does avoid deadlocks, but it is quite likely 
to cause restarts. A modification known as the ‘ignore obsolete write’ rule is an 
improvement. This is a modification to the timestamp ordering write rule: 

If a write is too late it can be ignored instead of aborting the transaction, because if it 
had arrived in time its effects would have been overwritten anyway. However, if 
another transaction has read the object, the transaction with the late write fails due to 
the read timestamp on the item.

Multiversion timestamp ordering   •  In this section, we have shown how the 
concurrency provided by basic timestamp ordering is improved by allowing each 
transaction to write its own tentative versions of objects. In multiversion timestamp 
ordering, which was introduced by Reed [1983], a list of old committed versions as well 
as tentative versions is kept for each object. This list represents the history of the values 



Figure 16.32 Timestamps in transactions T and U

Timestamps and versions of objects

 T U A B C

 RTS WTS RTS WTS RTS WTS

{} S {} S {} S

openTransaction

bal = b.getBalance()  {T}

openTransaction

b.setBalance(bal*1.1) S T

bal = b.getBalance()

wait for T

 a.withdraw(bal/10) ••• S T

commit ••• T T

bal = b.getBalance() {U}

b.setBalance(bal*1.1) T U

c.withdraw(bal/10) S U
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of the object. The benefit of using multiple versions is that read operations that arrive 
too late need not be rejected. 

Each version has a read timestamp recording the largest timestamp of any 
transaction that has read from it in addition to a write timestamp. As before, whenever 
a write operation is accepted, it is directed to a tentative version with the write timestamp 
of the transaction. Whenever a read operation is carried out, it is directed to the version 
with the largest write timestamp less than the transaction timestamp. If the transaction 
timestamp is larger than the read timestamp of the version being used, the read 
timestamp of the version is set to the transaction timestamp. 

When a read arrives late, it can be allowed to read from an old committed version, 
so there is no need to abort late read operations. In multiversion timestamp ordering, 
read operations are always permitted, although they may have to wait for earlier 
transactions to complete (either commit or abort), which ensures that executions are 
recoverable. See Exercise 16.22 for a discussion of the possibility of cascading aborts. 
This deals with rule 3 in the conflict rules for timestamp ordering.

There is no conflict between write operations of different transactions, because 
each transaction writes its own committed version of the objects it accesses. This 
removes rule 2 in the conflict rules for timestamp ordering, leaving us with:

Rule 1. Tc must not write objects that have been read by any Ti where Ti > Tc.

This rule will be broken if there is any version of the object with read timestamp > Tc,
but only if this version has a write timestamp less than or equal to Tc. (This write cannot 
have any effect on later versions.)
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Multiversion timestamp ordering write rule: As any potentially conflicting read operation 
will have been directed to the most recent version of an object, the server inspects the 
version DmaxEarlier with the maximum write timestamp less than or equal to Tc. We have 
the following rule for performing a write operation requested by transaction Tc on object 
D:

if (read timestamp of DmaxEarlier Tc)
perform write operation on a tentative version of D with write timestamp Tc

else abort transaction Tc

Figure 16.33 illustrates an example where a write is rejected. The object already has 
committed versions with write timestamps T1 and T2. The object receives the following 
sequence of requests for operations on the object:

T3 read; T3 write; T5 read; T4 write.

1. T3 requests a read operation, which puts a read timestamp T3 on T2’s version. 

2. T3 requests a write operation, which makes a new tentative version with write 
timestamp T3.

3. T5 requests a read operation, which uses the version with write timestamp T3 (the 
highest timestamp that is less than T5).

4. T4 requests a write operation, which is rejected because the read timestamp T5 of 
the version with write timestamp T3 is bigger than T4. (If it were permitted, the 
write timestamp of the new version would be T4. If such a version were allowed, 
then it would invalidate T5’s read operation, which should have used the version 
with timestamp T4.)
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When a transaction is aborted, all the versions that it created are deleted. When a 
transaction is committed, all the versions that it created are retained, but to control the 
use of storage space, old versions must be deleted from time to time. Although it has the 
overhead of storage space, multiversion timestamp ordering does allow considerable 
concurrency, does not suffer from deadlocks and always permits read operations. For 
further information about multiversion timestamp ordering, see Bernstein et al. [1987].

16.7 Comparison of methods for concurrency control

We have described three separate methods for controlling concurrent access to shared 
data: strict two-phase locking, optimistic methods and timestamp ordering. All of the 
methods carry some overheads in the time and space they require, and they all limit to 
some extent the potential for concurrent operation.

The timestamp ordering method is similar to two-phase locking in that both use 
pessimistic approaches in which conflicts between transactions are detected as each 
object is accessed. On the one hand, timestamp ordering decides the serialization order 
statically – when a transaction starts. On the other hand, two-phase locking decides the 
serialization order dynamically – according to the order in which objects are accessed. 
Timestamp ordering, and in particular multiversion timestamp ordering, is better than 
strict two-phase locking for read-only transactions. Two-phase locking is better when 
the operations in transactions are predominantly updates. 

Some work uses the observation that timestamp ordering is beneficial for 
transactions with predominantly read operations and that locking is beneficial for 
transactions with more writes than reads as an argument for allowing hybrid schemes in 
which some transactions use timestamp ordering and others use locking for concurrency 
control. Readers who are interested in the use of mixed methods should read Bernstein 
et al. [1987]. 

The pessimistic methods differ in the strategy used when a conflicting access to 
an object is detected. Timestamp ordering aborts the transaction immediately, whereas 
locking makes the transaction wait – but with a possible later penalty of aborting to 
avoid deadlock.

When optimistic concurrency control is used, all transactions are allowed to 
proceed, but some are aborted when they attempt to commit, or in forward validation 
transactions are aborted earlier. This results in relatively efficient operation when there 
are few conflicts, but a substantial amount of work may have to be repeated when a 
transaction is aborted.

Locking has been in use for many years in database systems, but timestamp 
ordering has been used in the SDD-1 database system. Both methods have been used in 
file servers. However, historically, the predominant method of concurrency control of 
access to data in distributed systems is by locking – for example, as mentioned earlier, 
the CORBA Concurrency Control Service is based entirely on the use of locks. In 
particular, it provides hierarchic locking, which allows for mixed-granularity locking on 
hierarchically structured data. 
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Several research distributed systems, for example Argus [Liskov 1988] and 
Arjuna [Shrivastava et al. 1991], have explored the use of semantic locks, timestamp 
ordering and new approaches to long transactions. 

Ellis et al. [1991] wrote a review of requirements for multi-user applications in 
which all users expect to see common views of objects being updated by any of the 
users. Many of the schemes provided notification of changes made by other users, but 
this is contrary to the idea of isolation.

Barghouti and Kaiser [1991] wrote a review of what are sometimes described as 
‘advanced database applications’ – for example, cooperative CAD/CAM and software 
development systems. In such applications, transactions last for a long time, and users 
work on independent versions of objects that are checked out from a common database 
and checked in when the work is finished. The merging of versions requires cooperation 
between users. 

Simililarly, the above concurrency control mechanisms are not always adequate 
for twenty-first-century applications that enable users to share documents over the 
Internet. Many of the latter use optimistic forms of concurrency control followed by 
conflict resolution instead of aborting one of any pair of conflicting operations. 

The following are some examples.

Dropbox   •  Dropbox [www.dropbox.com] is a cloud service that provides file backup 
and enables users to share files and folders, accessing them from anywhere. Dropbox 
uses an optimistic form of concurrency control, keeping track of consistency and 
preventing clashes between users’ updates – which are at the granularity of whole files. 
Thus if two users make concurrent updates to the same file, the first write will be 
accepted and the second rejected. However, Dropbox provides a version history to 
enable users to merge their updates manually or restore previous versions.

Google apps  •  Google Apps [www.google.com I] are listed in Figure 21.2. They 
include Google Docs, a  cloud service that provides web-based applications (word 
processor,  spreadsheet and presentation) that allow users to collaborate with one 
another by means of shared documents. If several people edit the same document 
simultaneously, they will see each other’s changes. In the case of a word processor 
document, users can see one another’s cursors and updates are shown at the level of 
individual characters as they are typed by any participant. Users are left to resolve any 
conflicts that occur, but conflicts are generally avoided because users are continuously 
aware of each other’s activities. In the case of a spreadsheet document, users’ cursors 
and changes are displayed and updated at the granularity of single cells. If two users 
access the same cell simultaneously, the last update wins.

Wikipedia  •  Concurrency control for editing is optimistic, allowing editors concurrent 
access to web pages in which the first write is accepted and a user making a subsequent 
write is shown an ‘edit conflict’ screen and asked to resolve the conflicts. 

Dynamo  •  Amazon.com’s key-value storage service uses optimistic concurrency 
control with conflict resolution (see the box on the next page).



Dynamo

Dynamo [DeCandia et al. 2007] is one of the storage services used by Amazon.com, 
whose platform serves tens of millions of customers at peak times, using tens of 
thousands of servers. Such a setting makes very strong demands in terms of 
performance, reliability and scalability. Dynamo was designed to support 
applications such as the shopping carts and best-seller lists that require only primary 
key access to a value in a data store. Data is heavily replicated with a view to 
providing the scalability and availability that are key to these services. 

Dynamo uses single get and put operations rather than transactions and does 
not provide the isolation guarantee specified in the ACID properties. So as to 
improve availability, it also provides a weaker form of consistency – which is 
acceptable in the applications it supports.

Optimistic methods are used for concurrency control. In cases where versions 
differ, they must be reconciled.  Application logic can be used to merge versions in 
the case of the shopping cart application. 

Where application logic cannot be used, timestamp-based reconciliation is 
applied.  Dynamo uses the rule that  ‘last write wins’ – the version with the largest 
timestamp becomes the new one. 
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16.8 Summary

Transactions provide a means by which clients can specify sequences of operations that 
are atomic in the presence of other concurrent transactions and server crashes. The first 
aspect of atomicity is achieved by running transactions so that their effects are serially 
equivalent. The effects of committed transactions are recorded in permanent storage so 
that the transaction service can recover from process crashes. To allow transactions the 
ability to abort, without having harmful side effects on other transactions, executions 
must be strict – that is, reads and writes of one transaction must be delayed until other 
transactions that wrote the same objects have either committed or aborted. To allow 
transactions the choice of either committing or aborting, their operations are performed 
in tentative versions that cannot be accessed by other transactions. The tentative 
versions of objects are copied to the real objects and to permanent storage when a 
transaction commits. 

Nested transactions are formed by structuring transactions from other sub-
transactions. Nesting is particularly useful in distributed systems because it allows 
concurrent execution of subtransactions in separate servers. Nesting also has the 
advantage of allowing independent recovery of parts of a transaction.

Operation conflicts form a basis for the derivation of concurrency control 
protocols. Protocols must not only ensure serializability but also allow for recovery by 
using strict executions to avoid problems associated with transactions aborting, such as 
cascading aborts.

Three alternative strategies are possible in scheduling an operation in a 
transaction. They are (1) to execute it immediately, (2) to delay it or (3) to abort it. 
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Strict two-phase locking uses the first two strategies, resorting to abortion only in 
the case of deadlock. It ensures serializability by ordering transactions according to 
when they access common objects. Its main drawback is that deadlocks can occur.

Timestamp ordering uses all three strategies to ensure serializability by ordering 
transactions’ accesses to objects according to the time transactions start. This method 
cannot suffer from deadlocks and is advantageous for read-only transactions. However, 
transactions must be aborted when they arrive too late. Multiversion timestamp ordering 
is particularly effective. 

Optimistic concurrency control allows transactions to proceed without any form 
of checking until they are completed. Transactions are validated before being allowed 
to commit. Backward validation requires the maintenance of multiple write sets of 
committed transactions, whereas forward validation must validate against active 
transactions and has the advantage that it allows alternative strategies for resolving 
conflicts. Starvation can occur due to repeated aborting of a transaction that fails 
validation in optimistic concurrency control and even in timestamp ordering.

EXERCISES

16.1 The TaskBag is a service whose functionality is to provide a repository for ‘task 
descriptions’. It enables clients running in several computers to carry out parts of a 
computation in parallel. A master process places descriptions of subtasks of a 
computation in the TaskBag, and worker processes select tasks from the TaskBag and 
carry them out, returning descriptions of their results to the TaskBag. The master then 
collects the results and combines them to produce the final result. 

The TaskBag service provides the following operations:

setTask allows clients to add task descriptions to the bag; 

takeTask allows clients to take task descriptions out of the bag. 

A client makes the request takeTask, when a task is not available but may be available 
soon. Discuss the advantages and drawbacks of the following alternatives:

i) The server can reply immediately, telling the client to try again later.

ii) The server operation (and therefore the client) must wait until a task 
becomes available.

iii)     Callbacks are used. page 678

16.2 A server manages the objects a1, a2, ..., an. The server provides two operations for its 
clients:

 read (i) returns the value of ai;

 write(i, Value) assigns Value to ai.

The transactions T and U are defined as follows:
T: x = read(j); y = read (i); write(j, 44); write(i, 33);

U: x = read(k); write(i, 55); y = read (j); write(k, 66).

Give three serially equivalent interleavings of the transactions T and U. page 685
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16.3 Give serially equivalent interleavings of T and U in Exercise 16.2 with the following 
properties:

i) that are strict; 

ii) that are not strict but could not produce cascading aborts; 

iii) that could produce cascading aborts. page 689

16.4 The operation create inserts a new bank account at a branch. The transactions T and U
are defined as follows:

T: aBranch.create("Z");
U: z.deposit(10); z.deposit(20). 

Assume that Z does not yet exist. Assume also that the deposit operation does nothing if 
the account given as the argument does not exist. Consider the following interleaving of 
transactions T and U:

T U

z.deposit(10);

aBranch.create(Z);

z.deposit(20); 

State the balance of Z after their execution in this order. Are these consistent with 
serially equivalent executions of T and U? page 685

16.5 A newly created object like Z in Exercise 16.4 is sometimes called a phantom. From the 
point of view of transaction U, Z is not there at first and then appears (like a ghost). 
Explain, with an example, how a phantom could occur when an account is deleted. 

16.6 The ‘transfer’ transactions T and U are defined as:
T: a.withdraw(4); b.deposit(4);
U: c.withdraw(3); b.deposit(3);

Suppose that they are structured as pairs of nested transactions:
T1: a.withdraw(4); T2: b.deposit(4);
U1: c.withdraw(3); U2: b.deposit(3);

Compare the number of serially equivalent interleavings of T1, T2, U1 and U2 with the 
number of serially equivalent interleavings of T and U. Explain why the use of these 
nested transactions generally permits a larger number of serially equivalent 
interleavings than non-nested ones. page 685

16.7 Consider the recovery aspects of the nested transactions defined in Exercise 16.6.
Assume that a withdraw transaction will abort if the account will be overdrawn and that 
in this case the parent transaction will also abort. Describe serially equivalent 
interleavings of T1, T2, U1 and U2 with the following properties: 
i) that are strict;
ii) that are not strict. 
To what extent does the criterion of strictness reduce the potential concurrency gain of 
nested transactions? page 685



EXERCISES 723

16.8 Explain why serial equivalence requires that once a transaction has released a lock on 
an object, it is not allowed to obtain any more locks. 

A server manages the objects a1, a2, ..., an. The server provides two operations for 
its clients:

read(i) returns the value of ai

write(i, Value) assigns Value to ai

The transactions T and U are defined as follows:

T: x = read(i); write(j, 44); 

U: write(i, 55); write(j, 66);

Describe an interleaving of the transactions T and U in which locks are released early 
with the effect that the interleaving is not serially equivalent. page 693

16.9 The transactions T and U at the server in Exercise 16.8 are defined as follows:

T: x = read(i); write(j, 44); 

U: write(i, 55); write(j, 66);

Initial values of ai and aj are 10 and 20, respectively. Which of the following 
interleavings are serially equivalent, and which could occur with two-phase locking?

(a) T U (b) T U

x= read (i); x= read (i); 

write(i, 55); write(j, 44);

write(j, 44); write(i, 55);

write(j, 66); write(j, 66);

(c) T U (d) T U

write(i, 55); write(i, 55);

write(j, 66); x= read (i); 

x= read (i); write(j, 66);

write(j, 44); write(j, 44);

page 693

16.10 Consider a relaxation of two-phase locks in which read-only transactions can release 
read locks early. Would a read-only transaction have consistent retrievals? Would the 
objects become inconsistent? Illustrate your answer with the following transactions T
and U at the server in Exercise 16.8:

T: x = read (i); y= read(j); 

U: write(i, 55); write(j, 66);

in which initial values of ai and aj are 10 and 20. page 690
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16.11 The executions of transactions are strict if read and write operations on an object are 
delayed until all transactions that previously wrote that object have either committed or 
aborted. Explain how the locking rules in Figure 16.16 ensure strict executions.

page 696

16.12 Describe how a non-recoverable situation could arise if write locks are released after the 
last operation of a transaction but before its commitment. page 690

16.13 Explain why executions are always strict, even if read locks are released after the last 
operation of a transaction but before its commitment. Give an improved statement of 
rule 2 in Figure 16.16. page 690

16.14 Consider a deadlock detection scheme for a single server. Describe precisely when 
edges are added to and removed from the wait-for-graph. 

Illustrate your answer with respect to the following transactions T, U  and V at the 
server of Exercise 16.8.

T U V

write(i, 66)

write(i, 55)

write(i, 77)

commit

When U releases its write lock on ai, both T and V are waiting to obtain write locks on 
it. Does your scheme work correctly if T (first come) is granted the lock before V? If your 
answer is ‘No’, then modify your description. page 702

16.15 Consider hierarchic locks as illustrated in Figure 16.26. What locks must be set when an 
appointment is assigned to a time slot in week w, day d, at time t? In what order should 
these locks be set? Does the order in which they are released matter?

What locks must be set when the time slots for every day in week w are viewed? Can 
this be done when the locks for assigning an appointment to a time slot are already set?

page 705

16.16 Consider optimistic concurrency control as applied to the transactions T and U defined 
in Exercise 16.9. Suppose that transactions T and U are active at the same time as one 
another. Describe the outcome in each of the following cases:

i) T’s request to commit comes first and backward validation is used. 

ii) U’s request to commit comes first and backward validation is used. 

iii) T’s request to commit comes first and forward validation is used. 

iv) U’s request to commit comes first and forward validation is used. 

In each case describe the sequence in which the operations of T and U are performed, 
remembering that writes are not carried out until after validation.

page 707
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16.17 Consider the following interleaving of transactions T and U:

T U

openTransaction openTransaction

y = read(k);

write(i, 55);

write(j, 66);

commit

x = read(i);

write(j, 44);

The outcome of optimistic concurrency control with backward validation is that T will 
be aborted because its read operation conflicts with U’s write operation on ai, although 
the interleavings are serially equivalent. Suggest a modification to the algorithm that 
deals with such cases. page 707

16.18 Make a comparison of the sequences of operations of the transactions T and U of 
Exercise 16.8 that are possible under two-phase locking (Exercise 16.9) and under 
optimistic concurrency control (Exercise 16.16). page 707

16.19 Consider the use of timestamp ordering with each of the example interleavings of 
transactions T and U in Exercise 16.9. Initial values of ai and aj are 10 and 20, 
respectively, and initial read and write timestamps are t0. Assume that each transaction 
opens and obtains a timestamp just before its first operation; for example, in (a) T and U
get timestamps t1 and t2, respectively, where t0 < t1 < t2. Describe in order of increasing 
time the effects of each operation of T and U. For each operation, state the following:

i) whether the operation may proceed according to the write or read rule;

ii) when timestamps are assigned to transactions or objects; 

iii) when tentative objects are created and when their values are set.

What are the final values of the objects and their timestamps? page 711    

16.20 Repeat Exercise 16.19 for the following interleavings of transactions T and U:

T U T U

openTransaction openTransaction

openTransaction openTransaction

write(i, 55); write(i, 55);

write(j, 66); write(j, 66);

x = read (i); commit

write(j, 44); x = read (i); 

commit write(j, 44);

page 711
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16.21 Repeat Exercise 16.20 using multiversion timestamp ordering.
page 715

16.22 In multiversion timestamp ordering, read operations can access tentative versions of 
objects. Give an example to show how cascading aborts can happen if all read

operations are allowed to proceed immediately. page 715

16.23 What are the advantages and drawbacks of multiversion timestamp ordering in 
comparison with ordinary timestamp ordering? page 715
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17

DISTRIBUTED TRANSACTIONS

17.1 Introduction
17.2 Flat and nested distributed transactions
17.3 Atomic commit protocols
17.4 Concurrency control in distributed transactions
17.5 Distributed deadlocks
17.6 Transaction recovery
17.7 Summary

This chapter introduces distributed transactions – those that involve more than one 
server. Distributed transactions may be either flat or nested. 

An atomic commit protocol is a cooperative procedure used by a set of servers 
involved in a distributed transaction. It enables the servers to reach a joint decision as to 
whether a transaction can be committed or aborted. This chapter describes the two-phase 
commit protocol, which is the most commonly used atomic commit protocol.

The section on concurrency control in distributed transactions discusses how 
locking, timestamp ordering and optimistic concurrency control may be extended for use 
with distributed transactions. 

The use of locking schemes can lead to distributed deadlocks. Distributed deadlock 
detection algorithms are discussed in Section 17.5.

Servers that provide transactions include a recovery manager whose concern is to 
ensure that the effects of transactions on the objects managed by a server can be 
recovered when it is replaced after a failure. The recovery manager saves the objects in 
permanent storage together with intentions lists and information about the status of each 
transaction.
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17.1 Introduction

In Chapter 16, we discussed flat and nested transactions that accessed objects at a single 
server. In the general case, a transaction, whether flat or nested, will access objects 
located in several different computers. We use the term distributed transaction to refer 
to a flat or nested transaction that accesses objects managed by multiple servers.

When a distributed transaction comes to an end, the atomicity property of 
transactions requires that either all of the servers involved commit the transaction or all 
of them abort the transaction. To achieve this, one of the servers takes on a coordinator

role, which involves ensuring the same outcome at all of the servers. The manner in 
which the coordinator achieves this depends on the protocol chosen. A protocol known 
as the ‘two-phase commit protocol’ is the most commonly used. This protocol allows 
the servers to communicate with one another to reach a joint decision as to whether to 
commit or abort. 

Concurrency control in distributed transactions is based on the methods discussed 
in Chapter 16. Each server applies local concurrency control to its own objects, which 
ensures that transactions are serialized locally. But distributed transactions must also be 
serialized globally. How this is achieved varies depending upon whether locking, 
timestamp ordering or optimistic concurrency control is in use. In some cases, the 
transactions may be serialized at the individual servers, but a cycle of dependencies 
between the different servers may occur and a distributed deadlock arise.

Transaction recovery is concerned with ensuring that all the objects involved in 
transactions are recoverable. In addition to that, it guarantees that the values of the 
objects reflect all the changes made by committed transactions and none of those made 
by aborted ones.

17.2 Flat and nested distributed transactions

A client transaction becomes distributed if it invokes operations in several different 
servers. There are two different ways that distributed transactions can be structured: as 
flat transactions and as nested transactions. 

In a flat transaction, a client makes requests to more than one server. For example, 
in Figure 17.1(a), transaction T is a flat transaction that invokes operations on objects in 
servers X, Y and Z. A flat client transaction completes each of its requests before going 
on to the next one. Therefore, each transaction accesses servers’ objects sequentially. 
When servers use locking, a transaction can only be waiting for one object at a time.

In a nested transaction, the top-level transaction can open subtransactions, and 
each subtransaction can open further subtransactions down to any depth of nesting. 
Figure 17.1(b) shows a client transaction T that opens two subtransactions, T1 and T2,
which access objects at servers X and Y. The subtransactions T1 and T2 open further 
subtransactions T11, T12, T21, and T22, which access objects at servers M, N and P. In the 
nested case, subtransactions at the same level can run concurrently, so T1 and T2 are 
concurrent, and as they invoke objects in different servers, they can run in parallel. The 
four subtransactions T11, T12, T21 and T22 also run concurrently.



Figure 17.1  Distributed transactions
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Consider a distributed transaction in which a client transfers $10 from account A
to C and then transfers $20 from B to D. Accounts A and B are at separate servers X and 
Y and accounts C and D are at server Z. If this transaction is structured as a set of four 
nested transactions, as shown in Figure 17.2

Figure 17.2  Nested banking transaction

a.withdraw(10)

c.deposit(10)

b.withdraw(20)

d.deposit(20)

Client A

B

C

T = openTransaction

      openSubTransaction
a.withdraw(10);

      closeTransaction

      openSubTransaction
b.withdraw(20);

     openSubTransaction
c.deposit(10);

      openSubTransaction
d.deposit(20);

T1

T 2

T 3

T 4

T

D

X

Y

Z

, the four requests (two deposits and two 
withdraws) can run in parallel and the overall effect can be achieved with better 
performance than a simple transaction in which the four operations are invoked 
sequentially. 
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17.2.1 The coordinator of a distributed transaction

Servers that execute requests as part of a distributed transaction need to be able to 
communicate with one another to coordinate their actions when the transaction commits. 
A client starts a transaction by sending an openTransaction request to a coordinator in 
any server, as described in Section 16.2. The coordinator that is contacted carries out the 
openTransaction and returns the resulting transaction identifier (TID) to the client. 
Transaction identifiers for distributed transactions must be unique within a distributed 
system. A simple way to achieve this is for a TID to contain two parts: the identifier (for 
example, an IP address) of the server that created it and a number unique to the server. 

The coordinator that opened the transaction becomes the coordinator for the 
distributed transaction and at the end is responsible for committing or aborting it. Each 
of the servers that manages an object accessed by a transaction is a participant in the 
transaction and provides an object we call the participant. Each participant is 
responsible for keeping track of all of the recoverable objects at that server that are 
involved, in the transaction. The participants are responsible for cooperating with the 
coordinator in carrying out the commit protocol.

During the progress of the transaction, the coordinator records a list of references 
to the participants, and each participant records a reference to the coordinator. 

Figure 17.3  A distributed banking transaction

..

BranchZ

BranchX

T = openTransaction
      a.withdraw(4);
      c.deposit(4);
      b.withdraw(3);
      d.deposit(3);

      closeTransaction

participant
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D

Client
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coordinator

participant    join

    join

    join

T

      a.withdraw(4);

      c.deposit(4);

      b.withdraw(3);

      d.deposit(3);

openTransaction
      closeTransaction

      b.withdraw(T, 3);

      Note: the coordinator is in one of the servers, e.g., BranchX

The interface for Coordinator shown in Figure 13.3 provides an additional 
method, join, which is used whenever a new participant joins the transaction:

join(Trans, reference to participant)

Informs a coordinator that a new participant has joined the transaction Trans.
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The coordinator records the new participant in its participant list. The fact that the 
coordinator knows all the participants and each participant knows the coordinator will 
enable them to collect the information that will be needed at commit time. 

Figure 17.3 shows a client whose (flat) banking transaction involves accounts A,
B, C and D at servers BranchX, BranchY and BranchZ. The client’s transaction, T,

transfers $4 from account A to account C and then transfers $3 from account B to 
account D. The transaction described on the left is expanded to show that 
openTransaction and closeTransaction are directed to the coordinator, which would be 
situated in one of the servers involved in the transaction. Each server is shown with a 
participant, which joins the transaction by invoking the join method in the coordinator. 
When the client invokes one of the methods in the transaction, for example 
b.withdraw(T, 3), the object receiving the invocation (B at BranchY, in this case) 
informs its participant object that the object belongs to the transaction T. If it has not 
already informed the coordinator, the participant object uses the join operation to do so. 
In this example, we show the transaction identifier being passed as an additional 
argument so that the recipient can pass it on to the coordinator. By the time the client 
calls closeTransaction, the coordinator has references to all of the participants.

Note that it is possible for a participant to call abortTransaction in the coordinator 
if for some reason it is unable to continue with the transaction.

17.3 Atomic commit protocols 

Transaction commit protocols were devised in the early 1970s, and the two-phase 
commit protocol appeared in Gray [1978]. The atomicity property of transactions 
requires that when a distributed transaction comes to an end, either all of its operations 
are carried out or none of them. In the case of a distributed transaction, the client has 
requested operations at more than one server. A transaction comes to an end when the 
client requests that it be committed or aborted. A simple way to complete the transaction 
in an atomic manner is for the coordinator to communicate the commit or abort request 
to all of the participants in the transaction and to keep on repeating the request until all 
of them have acknowledged that they have carried it out. This is an example of a one-

phase atomic commit protocol.
This simple one-phase atomic commit protocol is inadequate, though, because it 

does not allow a server to make a unilateral decision to abort a transaction when the 
client requests a commit. Reasons that prevent a server from being able to commit its 
part of a transaction generally relate to issues of concurrency control. For example, if 
locking is in use, the resolution of a deadlock can lead to the aborting of a transaction 
without the client being aware unless it makes another request to the server. Also if 
optimistic concurrency control is in use, the failure of validation at a server would cause 
it to decide to abort the transaction. Finally, the coordinator may not know if a server has 
crashed and been replaced during the progress of a distributed transaction – such a server 
will need to abort the transaction.
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The two-phase commit protocol is designed to allow any participant to abort its 
part of a transaction. Due to the requirement for atomicity, if one part of a transaction is 
aborted, then the whole transaction must be aborted. In the first phase of the protocol, 
each participant votes for the transaction to be committed or aborted. Once a participant 
has voted to commit a transaction, it is not allowed to abort it. Therefore, before a 
participant votes to commit a transaction, it must ensure that it will eventually be able to 
carry out its part of the commit protocol, even if it fails and is replaced in the interim. A 
participant in a transaction is said to be in a prepared state for a transaction if it will 
eventually be able to commit it. To make sure of this, each participant saves in 
permanent storage all of the objects that it has altered in the transaction, together with 
its status – prepared. 

In the second phase of the protocol, every participant in the transaction carries out 
the joint decision. If any one participant votes to abort, then the decision must be to abort 
the transaction. If all the participants vote to commit, then the decision is to commit the 
transaction.

The problem is to ensure that all of the participants vote and that they all reach the 
same decision. This is fairly simple if no errors occur, but the protocol must work 
correctly even when some of the servers fail, messages are lost or servers are temporarily 
unable to communicate with one another.

Failure model for the commit protocols  •  Section 16.1.2 presents a failure model for 
transactions that applies equally to the two-phase (or any other) commit protocol. 
Commit protocols are designed to work in an asynchronous system in which servers 
may crash and messages may be lost. It is assumed that an underlying request-reply 
protocol removes corrupt and duplicated messages. There are no Byzantine faults – 
servers either crash or obey the messages they are sent.

The two-phase commit protocol is an example of a protocol for reaching a 
consensus. Chapter 15 asserts that consensus cannot be reached in an asynchronous 
system if processes sometimes fail. However, the two-phase commit protocol does reach 
consensus under those conditions. This is because crash failures of processes are masked 
by replacing a crashed process with a new process whose state is set from information 
saved in permanent storage and information held by other processes. 

17.3.1 The two-phase commit protocol

During the progress of a transaction, there is no communication between the coordinator 
and the participants apart from the participants informing the coordinator when they join 
the transaction. A client’s request to commit (or abort) a transaction is directed to the 
coordinator. If the client requests abortTransaction, or if the transaction is aborted by 
one of the participants, the coordinator informs all participants immediately. It is when 
the client asks the coordinator to commit the transaction that the two-phase commit 
protocol comes into use.

In the first phase of the two-phase commit protocol the coordinator asks all the 
participants if they are prepared to commit; in the second, it tells them to commit (or 
abort) the transaction. If a participant can commit its part of a transaction, it will agree 
as soon as it has recorded the changes it has made (to the objects) and its status in 



Figure 17.4  Operations for two-phase commit protocol

canCommit?(trans)  Yes / No

Call from coordinator to participant to ask whether it can commit a transaction. 
Participant replies with its vote.

doCommit(trans) 

Call from coordinator to participant to tell participant to commit its part of a 
transaction.

doAbort(trans) 

Call from coordinator to participant to tell participant to abort its part of a transaction.

haveCommitted(trans, participant) 

Call from participant to coordinator to confirm that it has committed the transaction.

getDecision(trans)  Yes / No

Call from participant to coordinator to ask for the decision on a transaction when it 
has voted Yes but has still had no reply after some delay. Used to recover from server 
crash or delayed messages.
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permanent storage and is therefore prepared to commit. The coordinator in a distributed 
transaction communicates with the participants to carry out the two-phase commit 
protocol by means of the operations summarized in Figure 17.4. The methods 
canCommit, doCommit and doAbort are methods in the interface of the participant. The 
methods haveCommitted and getDecision are in the coordinator interface.

The two-phase commit protocol consists of a voting phase and a completion 
phase, as shown in Figure 17.5. By the end of step 2, the coordinator and all the 
participants that voted Yes are prepared to commit. By the end of step 3, the transaction 
is effectively completed. At step 3a the coordinator and the participants are committed, 
so the coordinator can report a decision to commit to the client. At 3b the coordinator 
reports a decision to abort to the client.

At step 4 participants confirm that they have committed so that the coordinator 
knows when the information it has recorded about the transaction is no longer needed. 

This apparently straightforward protocol could fail due to one or more of the 
servers crashing or due to a breakdown in communication between the servers. To deal 
with the possibility of crashing, each server saves information relating to the two-phase 
commit protocol in permanent storage. This information can be retrieved by a new 
process that is started to replace a crashed server. The recovery aspects of distributed 
transactions are discussed in Section 17.6.

The exchange of information between the coordinator and participants can fail 
when one of the servers crashes, or when messages are lost. Timeouts are used to avoid 
processes blocking forever. When a timeout occurs at a process, it must take an 
appropriate action. To allow for this the protocol includes a timeout action for each step 
at which a process may block. These actions are designed to allow for the fact that in an 
asynchronous system, a timeout may not necessarily imply that a server has failed.



Figure 17.5  The two-phase commit protocol

Phase 1 (voting phase): 

1. The coordinator sends a canCommit? request to each of the participants in the 
transaction.

2. When a participant receives a canCommit? request it replies with its vote (Yes or
No) to the coordinator. Before voting Yes, it prepares to commit by saving objects 
in permanent storage. If the vote is No, the participant aborts immediately.

Phase 2 (completion according to outcome of vote):

3. The coordinator collects the votes (including its own). 

(a)If there are no failures and all the votes are Yes, the coordinator decides to
commit the transaction and sends a doCommit request to each of the
participants. 

(b)Otherwise, the coordinator decides to abort the transaction and sends doAbort

requests to all participants that voted Yes.

4.  Participants that voted Yes are waiting for a doCommit or doAbort request from 
the coordinator. When a participant receives one of these messages it acts 
accordingly and, in the case of commit, makes a haveCommitted call as 
confirmation to the coordinator.
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Timeout actions in the two-phase commit protocol   •  There are various stages in the 
protocol at which the coordinator or a participant cannot progress its part of the protocol 
until it receives another request or reply from one of the others. 

Consider first the situation where a participant has voted Yes and is waiting for the 
coordinator to report on the outcome of the vote by telling it to commit or abort the 
transaction (step 2 in Figure 17.6

Figure 17.6  Communication in two-phase commit protocol
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). Such a participant is uncertain of the outcome and 
cannot proceed any further until it gets the outcome of the vote from the coordinator. 
The participant cannot decide unilaterally what to do next, and meanwhile the objects 
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used by its transaction cannot be released for use by other transactions. The participant 
can make a getDecision request to the coordinator to determine the outcome of the 
transaction. When it gets the reply, it continues the protocol at step 4 in Figure 17.5. If 
the coordinator has failed, the participant will not be able to get the decision until the 
coordinator is replaced, which can result in extensive delays for participants in the 
uncertain state. 

Alternative strategies are available for the participants to obtain a decision 
cooperatively instead of contacting the coordinator. These strategies have the advantage 
that they may be used when the coordinator has failed. See Exercise 17.5 and Bernstein 
et al. [1987] for details. However, even with a cooperative protocol, if all the 
participants are in the uncertain state, they will be unable to get a decision until the 
coordinator or a participant with the necessary knowledge is available.

Another point at which a participant may be delayed is when it has carried out all 
its client requests in the transaction but has not yet received a canCommit? call from the 
coordinator. As the client sends the closeTransaction to the coordinator, a participant 
can only detect such a situation if it notices that it has not had a request in a particular 
transaction for a long time – for example, by the time a timeout period on a lock expires. 
As no decision has been made at this stage, the participant can decide to abort

unilaterally.
The coordinator may be delayed when it is waiting for votes from the participants. 

As it has not yet decided the fate of the transaction it may decide to abort the transaction 
after some period of time. It must then announce doAbort to the participants who have 
already sent their votes. Some tardy participants may try to vote Yes after this, but their 
votes will be ignored and they will enter the uncertain state as described above.

Performance of the two-phase commit protocol  •  Provided that all goes well – that is, 
that the coordinator, the participants and the communications between them do not fail 
– the two-phase commit protocol involving N participants can be completed with N

canCommit? messages and replies, followed by N doCommit messages. That is, the cost 
in messages is proportional to 3N, and the cost in time is three rounds of messages. The 
haveCommitted messages are not counted in the estimated cost of the protocol, which 
can function correctly without them – their role is to enable servers to delete stale 
coordinator information. 

In the worst case, there may be arbitrarily many server and communication 
failures during the two-phase commit protocol. However, the protocol is designed to 
tolerate a succession of failures (server crashes or lost messages) and is guaranteed to 
complete eventually, although it is not possible to specify a time limit within which it 
will be completed. 

As noted in the preceding section, the two-phase commit protocol can cause 
considerable delays to participants in the uncertain state. These delays occur when the 
coordinator has failed and cannot reply to getDecision requests from participants. Even 
if a cooperative protocol allows participants to make getDecision requests to other 
participants, delays will occur if all the active participants are uncertain.

Three-phase commit protocols have been designed to alleviate such delays, but 
they are more expensive in terms of the number of messages and the number of rounds 
required for the normal (failure-free) case. For a description of three-phase commit 
protocols, see Exercise 17.2 and Bernstein et al. [1987]. 
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17.3.2 Two-phase commit protocol for nested transactions

The outermost transaction in a set of nested transactions is called the top-level

transaction. Transactions other than the top-level transaction are called subtransactions.
In Figure 17.1(b), T is the top-level transaction and T1, T2, T11, T12, T21 and T22 are 
subtransactions. T1 and T2 are child transactions of T, which is referred to as their parent.
Similarly, T11 and T12 are child transactions of T1, and T21 and T22 are child transactions 
of T2. Each subtransaction starts after its parent and finishes before it. Thus, for example, 
T11 and T12 start after T1 and finish before it.

When a subtransaction completes, it makes an independent decision either to 
commit provisionally or to abort. A provisional commit is different from being prepared 
to commit: nothing is backed up in permanent storage. If the server crashes 
subsequently, its replacement will not be able to commit. After all subtransactions have 
completed, the provisionally committed ones participate in a two-phase commit 
protocol, in which servers of provisionally committed subtransactions express their 
intention to commit and those with an aborted ancestor will abort. Being prepared to 
commit guarantees a subtransaction will be able to commit, whereas a provisional 
commit only means it has finished correctly – and will probably agree to commit when 
it is subsequently asked to.

A coordinator for a subtransaction will provide an operation to open a 
subtransaction, together with an operation enabling that coordinator to enquire whether 
its parent has yet committed or aborted, as shown in Figure 17.7.

Figure 17.7  Operations in coordinator for nested transactions

openSubTransaction(trans)  subTrans

Opens a new subtransaction whose parent is trans and returns a unique 
subtransaction identifier.

getStatus(trans)  committed, aborted, provisional

Asks the coordinator to report on the status of the transaction trans. Returns values 
representing one of the following: committed, aborted or provisional.

A client starts a set of nested transactions by opening a top-level transaction with 
an openTransaction operation, which returns a transaction identifier for the top-level 
transaction. The client starts a subtransaction by invoking the openSubTransaction 

operation, whose argument specifies its parent transaction. The new subtransaction 
automatically joins the parent transaction, and a transaction identifier for a 
subtransaction is returned.

An identifier for a subtransaction must be an extension of its parent’s TID, 
constructed in such a way that the identifier of the parent or top-level transaction of a 
subtransaction can be determined from its own transaction identifier. In addition, all 
subtransaction identifiers should be globally unique. The client makes a set of nested 
transactions come to completion by invoking closeTransaction or abortTransaction on 
the coordinator of the top-level transaction.

Meanwhile, each of the nested transactions carries out its operations. When they 
are finished, the server managing a subtransaction records information as to whether the 
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subtransaction committed provisionally or aborted. Note that if its parent aborts, then the 
subtransaction will be forced to abort too.

Recall from Chapter 16 that a parent transaction – including a top-level transaction 
– can commit even if one of its child subtransactions has aborted. In such cases, the 
parent transaction will be programmed to take different actions according to whether a 
subtransaction has committed or aborted. For example, consider a banking transaction 
that is designed to perform all the ‘standing orders’ at a branch on a particular day. This 
transaction is expressed as several nested Transfer subtransactions, each of which 
consists of nested deposit and withdraw subtransactions. We assume that when an 
account is overdrawn, withdraw aborts and then the corresponding Transfer aborts. But 
there is no need to abort all the standing orders just because one Transfer subtransaction 
aborts. Instead of aborting, the top-level transaction will note the Transfer

subtransactions that aborted and take appropriate actions.
Consider the top-level transaction T and its subtransactions shown in Figure 17.8

Figure 17.8  Transaction T decides whether to commit
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which is based on Figure 17.1(b). Each subtransaction has either provisionally 
committed or aborted. For example, T12 has provisionally committed and T11 has 
aborted, but the fate of T12 depends on its parent T1 and eventually on the top-level 
transaction, T. Although T21 and T22 have both provisionally committed, T2 has aborted 
and this means that T21 and T22 must also abort. Suppose that T decides to commit in 
spite of the fact that T2 has aborted, and that T1 decides to commit in spite of the fact that 
T11 has aborted.

When a top-level transaction completes, its coordinator carries out a two-phase 
commit protocol. The only reason for a participant subtransaction being unable to 
complete is if it has crashed since it completed its provisional commit. Recall that when 
each subtransaction was created, it joined its parent transaction. Therefore, the 
coordinator of each parent transaction has a list of its child subtransactions. When a 
nested transaction provisionally commits, it reports its status and the status of its 
descendants to its parent. When a nested transaction aborts, it just reports abort to its 
parent without giving any information about its descendants. Eventually, the top-level 
transaction receives a list of all the subtransactions in the tree, together with the status 
of each. Descendants of aborted subtransactions are omitted from this list.
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The information held by each coordinator in the example in Figure 17.8 is shown 
in Figure 17.9

Figure 17.9 Information held by coordinators of nested transactions

Coordinator 

of transaction

Child 

transactions

Participant Provisional 

commit list

Abort list

T T1, T2 yes T1, T12 T11, T2

T1 T11, T12 yes T1, T12 T11

T2 T21, T22 no (aborted) T2

T11 no (aborted) T11

T12, T21 T12 but not T21* T21, T12

T22 no (parent aborted) T22

* T21’s parent has aborted

. Note that T12 and T21 share a coordinator as they both run at server N.
When subtransaction T2 aborted, it reported the fact to its parent, T, but without passing 
on any information about its subtransactions T21 and T22. A subtransaction is an orphan

if one of its ancestors aborts, either explicitly or because its coordinator crashes. In our 
example, subtransactions T21 and T22 are orphans because their parent aborted without 
passing information about them to the top-level transaction. Their coordinator can, 
however, make enquiries about the status of their parent by using the getStatus

operation. A provisionally committed subtransaction of an aborted transaction should be 
aborted, irrespective of whether the top-level transaction eventually commits.

 The top-level transaction plays the role of coordinator in the two-phase commit 
protocol, and the participant list consists of the coordinators of all the subtransactions in 
the tree that have provisionally committed but do not have aborted ancestors. By this 
stage, the logic of the program has determined that the top-level transaction should try 
to commit whatever is left, in spite of some aborted subtransactions. In Figure 17.8, the 
coordinators of T, T1 and T12 are participants and will be asked to vote on the outcome. 
If they vote to commit, then they must prepare their transactions by saving the state of 
the objects in permanent storage. This state is recorded as belonging to the top-level 
transaction of which it will form a part. The two-phase commit protocol may be 
performed in either a hierarchic manner or a flat manner. 

The second phase of the two-phase commit protocol is the same as for the non-
nested case. The coordinator collects the votes and then informs the participants as to 
the outcome. When it is complete, coordinator and participants will have committed or 
aborted their transactions.

Hierarchic two-phase commit protocol  •  In this approach, the two-phase commit 
protocol becomes a multi-level nested protocol. The coordinator of the top-level 
transaction communicates with the coordinators of the subtransactions for which it is the 
immediate parent. It sends canCommit? messages to each of the latter, which in turn 
pass them on to the coordinators of their child transactions (and so on down the tree). 
Each participant collects the replies from its descendants before replying to its parent. 
In our example, T sends canCommit? messages to the coordinator of T1 and then T1
sends canCommit? messages to T12 asking about descendants of T1. The protocol does 
not include the coordinators of transactions such as T2, which has aborted. Figure 17.10



Figure 17.10 canCommit?  for hierarchic two-phase commit protocol

canCommit?(trans, subTrans)  Yes / No

Call from coordinator to coordinator of child subtransaction to ask whether it can 
commit a subtransaction subTrans. The first argument, trans, is the transaction 
identifier of the top-level transaction. Participant replies with its vote, Yes / No.
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shows the arguments required for canCommit?. The first argument is the TID of the top-
level transaction, for use when preparing the data. The second argument is the TID of 
the participant making the canCommit? call. The participant receiving the call looks in 
its transaction list for any provisionally committed transaction or subtransaction 
matching the TID in the second argument. For example, the coordinator of T12 is also 
the coordinator of T21, since they run in the same server, but when it receives the 
canCommit? call, the second argument will be T1 and it will deal only with T12.

 If a participant finds any subtransactions that match the second argument, it 
prepares the objects and replies with a Yes vote. If it fails to find any, then it must have 
crashed since it performed the subtransaction and it replies with a No vote.

Flat two-phase commit protocol  •  In this approach, the coordinator of the top-level 
transaction sends canCommit? messages to the coordinators of all of the subtransactions 
in the provisional commit list – in our example, to the coordinators of T1 and T12. During 
the commit protocol, the participants refer to the transaction by its top-level TID. Each 
participant looks in its transaction list for any transaction or subtransaction matching 
that TID. For example, the coordinator of T12 is also the coordinator of T21, since they 
run in the same server (N). 

Unfortunately, this does not provide sufficient information to enable correct 
actions by participants such as the coordinator at server N that have a mix of 
provisionally committed and aborted subtransactions. If N’s coordinator is just asked to 
commit T it will end up by committing both T12 and T21, because, according to its local 
information, both have provisionally committed. This is wrong in the case of T21,
because its parent, T2, has aborted. To allow for such cases, the canCommit? operation 
for the flat commit protocol has a second argument that provides a list of aborted 
subtransactions, as shown in Figure 17.11.

Figure 17.11 canCommit? for flat two-phase commit protocol

canCommit?(trans, abortList)  Yes / No

Call from coordinator to participant to ask whether it can commit a transaction. 
Participant replies with its vote, Yes / No.

 A participant can commit descendants of the 
top-level transaction unless they have aborted ancestors. When a participant receives a 
canCommit? request, it does the following:

• If the participant has any provisionally committed transactions that are 
descendants of the top-level transaction, trans, it:

– checks that they do not have aborted ancestors in the abortList, then prepares 
to commit (by recording the transaction and its objects in permanent storage);
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– aborts those with aborted ancestors;

– sends a Yes vote to the coordinator.

• If the participant does not have a provisionally committed descendent of the top-
level transaction, it must have failed since it performed the subtransaction and it 
sends a No vote to the coordinator.

A comparison of the two approaches  •  The hierarchic protocol has the advantage that at 
each stage, the participant only need look for subtransactions of its immediate parent, 
whereas the flat protocol needs to have the abort list in order to eliminate transactions 
whose parents have aborted. Moss [1985] preferred the flat algorithm because it allows 
the coordinator of the top-level transaction to communicate directly with all of the 
participants, whereas the hierarchic variant involves passing a series of messages down 
and up the tree in stages.

Timeout actions   •  The two-phase commit protocol for nested transactions can cause 
the coordinator or a participant to be delayed at the same three steps as in the non-nested 
version. There is a fourth step at which subtransactions can be delayed. Consider 
provisionally committed child subtransactions of aborted subtransactions: they do not 
necessarily get informed of the outcome of the transaction. In our example, T22 is such 
a subtransaction – it has provisionally committed, but as its parent T2 has aborted, it does 
not become a participant. To deal with such situations, any subtransaction that has not 
received a canCommit? message will make an enquiry after a timeout period. The 
getStatus operation in Figure 17.7 allows a subtransaction to enquire whether its parent 
has committed or aborted. To make such enquiries possible, the coordinators of aborted 
subtransactions need to survive for a period. If an orphaned subtransaction cannot 
contact its parent, it will eventually abort. 

17.4 Concurrency control in distributed transactions 

Each server manages a set of objects and is responsible for ensuring that they remain 
consistent when accessed by concurrent transactions. Therefore, each server is 
responsible for applying concurrency control to its own objects. The members of a 
collection of servers of distributed transactions are jointly responsible for ensuring that 
they are performed in a serially equivalent manner. 

This implies that if transaction T is before transaction U in their conflicting access 
to objects at one of the servers, then they must be in that order at all of the servers whose 
objects are accessed in a conflicting manner by both T and U.

17.4.1 Locking

In a distributed transaction, the locks on an object are held locally (in the same server). 
The local lock manager can decide whether to grant a lock or make the requesting 
transaction wait. However, it cannot release any locks until it knows that the transaction 
has been committed or aborted at all the servers involved in the transaction. When 
locking is used for concurrency control, the objects remain locked and are unavailable 
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for other transactions during the atomic commit protocol, although an aborted 
transaction releases its locks after phase 1 of the protocol.

As lock managers in different servers set their locks independently of one another, 
it is possible that different servers may impose different orderings on transactions. 
Consider the following interleaving of transactions T and U at servers X and Y:

T U

write(A) at X locks A

write(B) at Y locks B

read(B) at Y waits for U

read(A) at X waits for T

The transaction T locks object A at server X, and then transaction U locks object B at 
server Y. After that, T tries to access B at server Y and waits for U’s lock. Similarly, 
transaction U tries to access A at server X and has to wait for T’s lock. Therefore, we 
have T before U in one server and U before T in the other. These different orderings can 
lead to cyclic dependencies between transactions, giving rise to a distributed deadlock 
situation. The detection and resolution of distributed deadlocks is discussed in Section 
17.5. When a deadlock is detected, a transaction is aborted to resolve the deadlock. In 
this case, the coordinator will be informed and will abort the transaction at the
participants involved in the transaction.

17.4.2 Timestamp ordering concurrency control

In a single server transaction, the coordinator issues a unique timestamp to each 
transaction when it starts. Serial equivalence is enforced by committing the versions of 
objects in the order of the timestamps of transactions that accessed them. In distributed 
transactions, we require that each coordinator issue globally unique timestamps. A 
globally unique transaction timestamp is issued to the client by the first coordinator 
accessed by a transaction. The transaction timestamp is passed to the coordinator at each 
server whose objects perform an operation in the transaction.

The servers of distributed transactions are jointly responsible for ensuring that 
they are performed in a serially equivalent manner. For example, if the version of an 
object accessed by transaction U commits after the version accessed by T at one server, 
if T and U access the same object as one another at other servers they must commit them 
in the same order. To achieve the same ordering at all the servers, the coordinators must 
agree as to the ordering of their timestamps. A timestamp consists of a <local 

timestamp, server-id> pair. The agreed ordering of pairs of timestamps is based on a 
comparison in which the server-id part is less significant. 

The same ordering of transactions can be achieved at all the servers even if their 
local clocks are not synchronized. However, for reasons of efficiency it is required that 
the timestamps issued by one coordinator be roughly synchronized with those issued by 
the other coordinators. When this is the case, the ordering of transactions generally 
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corresponds to the order in which they are started in real time. Timestamps can be kept 
roughly synchronized by the use of synchronized local physical clocks (see Chapter 14).

When timestamp ordering is used for concurrency control, conflicts are resolved 
as each operation is performed using the rules given in Section 16.6. If the resolution of 
a conflict requires a transaction to be aborted, the coordinator will be informed and it 
will abort the transaction at all the participants. Therefore any transaction that reaches 
the client request to commit should always be able to commit, and participants in the 
two-phase commit protocol will normally agree to commit. The only situation in which 
a participant will not agree to commit is if it has crashed during the transaction. 

17.4.3 Optimistic concurrency control

Recall that with optimistic concurrency control, each transaction is validated before it is 
allowed to commit. Transaction numbers are assigned at the start of validation and 
transactions are serialized according to the order of the transaction numbers. A 
distributed transaction is validated by a collection of independent servers, each of which 
validates transactions that access its own objects. This validation takes place during the 
first phase of the two-phase commit protocol. 

Consider the following interleavings of transactions T and U, which access objects 
A and B at servers X and Y, respectively:

T U

read(A) at X read(B) at Y

write(A) write(B)

read(B) at Y read(A) at X

write(B) write(A)

The transactions access the objects in the order T before U at server X and in the order 
U before T at server Y. Now suppose that T and U start validation at about the same time, 
but server X validates T first and server Y validates U first. Recall that Section 16.5 
recommends a simplification of the validation protocol that makes a rule that only one 
transaction may perform validation and update phases at a time. Therefore each server 
will be unable to validate the other transaction until the first one has completed. This is 
an example of commitment deadlock.

The validation rules in Section 16.5 assume that validation is fast, which is true 
for single-server transactions. However, in a distributed transaction, the two-phase 
commit protocol may take some time to complete, and other transactions will be 
prevented from entering validation until a decision on the current transaction has been 
obtained. In distributed optimistic transactions, each server applies a parallel validation 
protocol. This is an extension of either backward or forward validation to allow multiple 
transactions to be in the validation phase at the same time. In this extension, rule 3 must 
be checked as well as rule 2 for backward validation. That is, the write set of the 
transaction being validated must be checked for overlaps with the write set of earlier 
overlapping transactions. Kung and Robinson [1981] describe parallel validation. 
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If parallel validation is used, transactions will not suffer from commitment 
deadlock. However, if servers simply perform independent validations, it is possible that 
different servers in a distributed transaction may serialize the same set of transactions in 
different orders – for example, with T before U at server X and U before T at server Y,
in our example. 

The servers of distributed transactions must prevent this happening. One approach 
is that after a local validation by each server, a global validation is carried out [Ceri and 
Owicki 1982]. The global validation checks that the combination of the orderings at the 
individual servers is serializable; that is, that the transaction being validated is not 
involved in a cycle. 

Another approach is that all of the servers of a particular transaction use the same 
globally unique transaction number at the start of the validation [Schlageter 1982]. The 
coordinator of the two-phase commit protocol is responsible for generating the globally 
unique transaction number and passes it to the participants in the canCommit? messages. 
As different servers may coordinate different transactions, the servers must (as in the 
distributed timestamp ordering protocol) have an agreed order for the transaction 
numbers they generate. 

Agrawal et al. [1987] have proposed a variation of Kung and Robinson’s 
algorithm that favours read-only transactions, together with an algorithm called MVGV 
(multi-version generalized validation). MVGV is a form of parallel validation that 
ensures that transaction numbers reflect serial order, but it requires that in some cases, 
other transactions are unable to read their effects immediately after they have 
committed. It also allows the transaction number to be changed so as to permit some 
transactions to validate that otherwise would have failed. The paper also proposes an 
algorithm for committing distributed transactions. It is similar to Schlageter’s proposal 
in that a global transaction number has to be found. At the end of the read phase, the 
coordinator proposes a value for the global transaction number and each participant 
attempts to validate its local transactions using that number. However, if the proposed 
global transaction number is too small, some participants may not be able to validate 
their transactions, and they will have to negotiate with the coordinator for an increased 
number. If no suitable number can be found, then those participants will have to abort 
their transactions. Eventually, if all of the participants can validate their transactions, the 
coordinator will have received proposals for transaction numbers from each of them. If 
common numbers can be found then the transaction will be committed.

17.5 Distributed deadlocks

The discussion of deadlocks in Section 16.4 showed that deadlocks can arise within a 
single server when locking is used for concurrency control. Servers must either prevent 
or detect and resolve deadlocks. Using timeouts to resolve possible deadlocks is a 
clumsy approach – it is difficult to choose an appropriate timeout interval, and 
transactions may be aborted unnecessarily. With deadlock detection schemes, a 
transaction is aborted only when it is involved in a deadlock. Most deadlock detection 
schemes operate by finding cycles in the transaction wait-for graph. In a distributed 
system involving multiple servers being accessed by multiple transactions, a global 
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wait-for graph can in theory be constructed from the local ones. There can be a cycle in 
the global wait-for graph that is not in any single local one – that is, there can be a 
distributed deadlock. Recall that the wait-for graph is a directed graph in which nodes 
represent transactions and objects, and edges represent either an object held by a 
transaction or a transaction waiting for an object. There is a deadlock if and only if there 
is a cycle in the wait-for graph. 

Figure 17.12 shows the interleavings of the transactions U, V and W involving the 
objects A and B managed by servers X and Y and objects C and D managed by server Z.

Figure 17.12  Interleavings of transactions U, V and W

U V W

d.deposit(10) lock D

b.deposit(10) lock B

a.deposit(20) lock A at Y

at X

c.deposit(30) lock C

b.withdraw(30) wait at Y at Z

c.withdraw(20) wait at Z

a.withdraw(20) wait at X

The complete wait-for graph in Figure 17.13(a) shows that a deadlock cycle 
consists of alternate edges, which represent a transaction waiting for an object and an 
object held by a transaction. As any transaction can only be waiting for one object at a 
time, objects can be left out of wait-for graphs, as shown in Figure 17.13(b). 

Detection of a distributed deadlock requires a cycle to be found in the global 
transaction wait-for graph that is distributed among the servers that were involved in the 
transactions. Local wait-for graphs can be built by the lock manager at each server, as 
discussed in Chapter 16. In the above example, the local wait-for graphs of the servers 
are:

server Y: U V (added when U requests b.withdraw(30))
server Z: V W (added when V requests c.withdraw(20))
server X: W U (added when W requests a.withdraw(20))

As the global wait-for graph is held in part by each of the several servers involved, 
communication between these servers is required to find cycles in the graph. 

A simple solution is to use centralized deadlock detection, in which one server 
takes on the role of global deadlock detector. From time to time, each server sends the 
latest copy of its local wait-for graph to the global deadlock detector, which 
amalgamates the information in the local graphs in order to construct a global wait-for 
graph. The global deadlock detector checks for cycles in the global wait-for graph. 



Figure 17.13  Distributed deadlock
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When it finds a cycle, it makes a decision on how to resolve the deadlock and tells the 
servers which transaction to abort.

Centralized deadlock detection is not a good idea, because it depends on a single 
server to carry it out. It suffers from the usual problems associated with centralized 
solutions in distributed systems – poor availability, lack of fault tolerance and no ability 
to scale. In addition, the cost of the frequent transmission of local wait-for graphs is 
high. If the global graph is collected less frequently, deadlocks may take longer to be 
detected.

Phantom deadlocks  •  A deadlock that is ‘detected’ but is not really a deadlock is called 
a phantom deadlock. In distributed deadlock detection, information about wait-for 
relationships between transactions is transmitted from one server to another. If there is 
a deadlock, the necessary information will eventually be collected in one place and a 
cycle will be detected. As this procedure will take some time, there is a chance that one 
of the transactions that holds a lock will meanwhile have released it, in which case the 
deadlock will no longer exist. 

Consider the case of a global deadlock detector that receives local wait-for graphs 
from servers X and Y, as shown in Figure 17.14. Suppose that transaction U then releases
an object at server X and requests the one held by V at server Y. Suppose also that the 
global detector receives server Y’s local graph before server X’s. In this case, it would 
detect a cycle T U V T, although the edge T U no longer exists. This is an 
example of a phantom deadlock. 

The observant reader will have realized that if transactions are using two-phase 
locks, they cannot release objects and then obtain more objects, and phantom deadlock 
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cycles cannot occur in the way suggested above. Consider the situation in which a cycle 
T U V T is detected: either this represents a deadlock or each of the transactions 
T, U and V must eventually commit. It is actually impossible for any of them to commit, 
because each of them is waiting for an object that will never be released.

A phantom deadlock could be detected if a waiting transaction in a deadlock cycle 
aborts during the deadlock detection procedure. For example, if there is a cycle 
T U V T and U aborts after the information concerning U has been collected, 
then the cycle has been broken already and there is no deadlock. 

Edge chasing  •  A distributed approach to deadlock detection uses a technique called 
edge chasing or path pushing. In this approach, the global wait-for graph is not 
constructed, but each of the servers involved has knowledge about some of its edges. 
The servers attempt to find cycles by forwarding messages called probes, which follow 
the edges of the graph throughout the distributed system. A probe message consists of 
transaction wait-for relationships representing a path in the global wait-for graph. 

The question is, when should a server send out a probe? Consider the situation at 
server X in Figure 17.13. This server has just added the edge W U to its local wait-for 
graph, and at this time transaction U is waiting to access object B, which transaction V
holds at server Y. This edge could possibly be part of a cycle such as 
V T1 T2 … W U V involving transactions using objects at other 
servers. This indicates that there is a potential distributed deadlock cycle, which could 
be found by sending out a probe to server Y.

Now consider the situation a little earlier, when server Z added the edge V W

to its local graph. At this point in time W is not waiting, so there is no point in sending 
out a probe.

Each distributed transaction starts at a server (called the coordinator of the 
transaction) and moves to several other servers (called participants in the transaction), 
which can communicate with the coordinator. At any point in time, a transaction can be 
either active or waiting at just one of these servers. The coordinator is responsible for 
recording whether the transaction is active or is waiting for a particular object, and 
participants can get this information from their coordinator. Lock managers inform 
coordinators when transactions start waiting for objects and when transactions acquire 
objects and become active again. When a transaction is aborted to break a deadlock, its 
coordinator will inform the participants and all of its locks will be removed, with the 
effect that all edges involving that transaction will be removed from the local wait-for 
graphs.
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Edge-chasing algorithms have three steps: 

Initiation: When a server notes that a transaction T starts waiting for another 
transaction U, where U is waiting to access an object at another server, it initiates 
detection by sending a probe containing the edge < T U > to the server of the 
object at which transaction U is blocked. If U is sharing a lock, probes are sent to all 
the holders of the lock. Sometimes further transactions may start sharing the lock 
later on, in which case probes can be sent to them too.

Detection: Detection consists of receiving probes and deciding whether a deadlock 
has occurred and whether to forward the probes. 

For example, when a server of an object receives a probe < T U >
(indicating that T is waiting for a transaction U that holds a local object), it checks to 
see whether U is also waiting. If it is, the transaction it waits for (for example, V) is 
added to the probe (making it < T U V and if the new transaction (V) is 
waiting for another object elsewhere, the probe is forwarded.

In this way, paths through the global wait-for graph are built one edge at a time. 
Before forwarding a probe, the server checks to see whether the transaction (for 
example, T) it has just added has caused the probe to contain a cycle (for example, 
< T U V T >). If this is the case, it has found a cycle in the graph and a 
deadlock has been detected.

Figure 17.15 Probes transmitted to detect deadlock
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Resolution: When a cycle is detected, a transaction in the cycle is aborted to break 
the deadlock. 
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In our example, the following steps describe how deadlock detection is initiated and the 
probes that are forwarded during the corresponding detection phase: 

• Server X initiates detection by sending probe < W U > to the server of B (Server 
Y).

• Server Y receives probe < W U >, notes that B is held by V and appends V to 
the probe to produce < W U V >. It notes that V is waiting for C at server Z.
This probe is forwarded to server Z.

• Server Z receives probe < W U V >, notes C is held by W and appends W to 
the probe to produce < W U V W >.

This path contains a cycle. The server detects a deadlock. One of the transactions in the 
cycle must be aborted to break the deadlock. The transaction to be aborted can be chosen 
according to transaction priorities, which are described shortly. 

Figure 17.15 shows the progress of the probe messages from the initiation by the 
server of A to the deadlock detection by the server of C. Probes are shown as heavy 
arrows, objects as ovals (as usual) and transaction coordinators as rectangles. Each 
probe is shown as going directly from one object to another. In reality, before a server 
transmits a probe to another server, it consults the coordinator of the last transaction in 
the path to find out whether the latter is waiting for another object elsewhere. For 
example, before the server of B transmits the probe <W U V> it consults the 
coordinator of V to find out that V is waiting for C. In most of the edge-chasing 
algorithms, the servers of objects send probes to transaction coordinators, which then 
forward them (if the transaction is waiting) to the server of the object for which the 
transaction is waiting. In our example, the server of B transmits the probe 
<W U V> to the coordinator of V, which then forwards it to the server of C. This 
shows that when a probe is forwarded, two messages are required.

The above algorithm should find any deadlock that occurs, provided that waiting 
transactions do not abort and there are no failures such as lost messages or servers 
crashing. To understand this, consider a deadlock cycle in which the last transaction, W,
starts waiting and completes the cycle. When W starts waiting for an object, the server 
initiates a probe that goes to the server of the object held by each transaction for which 
W is waiting. The recipients extend and forward the probes to the servers of objects 
requested by all waiting transactions they find. Thus every transaction that W waits for, 
directly or indirectly, will be added to the probe unless a deadlock is detected. When 
there is a deadlock, W is waiting for itself indirectly. Therefore, the probe will return to 
the object that W holds.

It might appear that large numbers of messages are sent in order to detect 
deadlocks. In the above example, we see two probe messages to detect a cycle involving 
three transactions. Each of the probe messages is in general two messages (from object 
to coordinator and then from coordinator to object).

A probe that detects a cycle involving N transactions will be forwarded by (N – 1) 
transaction coordinators via (N – 1) servers of objects, requiring 2(N – 1) messages. 
Fortunately, the majority of deadlocks involve cycles containing only two transactions, 
and there is no need for undue concern about the number of messages involved. This 
observation has been made from studies of databases. It can also be argued by 
considering the probability of conflicting access to objects (see Bernstein et al. [1987]).
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Transaction priorities   •  In the above algorithm, every transaction involved in a deadlock 
cycle can cause deadlock detection to be initiated. The effect of several transactions in a 
cycle initiating deadlock detection is that detection may happen at several different 
servers in the cycle, with the result that more than one transaction in the cycle is aborted.

In Figure 17.16(a)

Figure 17.16 Two probes initiated 
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, consider transactions T, U, V and W, where U is waiting for W
and V is waiting for T. At about the same time, T requests the object held by U and W
requests the object held by V. Two separate probes, < T U > and < W V >, are 
initiated by the servers of these objects and are circulated until deadlocks are detected 
by each of the servers. In Figure 17.16(b), the cycle is < T U W V T and 
in Figure 17.16 (c),  the cycle is < W V T U W >.

In order to ensure that only one transaction in a cycle is aborted, transactions are 
given priorities in such a way that all transactions are totally ordered. Timestamps, for 
example, may be used as priorities. When a deadlock cycle is found, the transaction with 
the lowest priority is aborted. Even if several different servers detect the same cycle, 
they will all reach the same decision as to which transaction is to be aborted. We write 
T > U to indicate that T has higher priority than U. In the above example, assume 
T > U > V > W. Then the transaction W will be aborted when either of the cycles 
< T U W V T > or < W V T U W > is detected.

It might appear that transaction priorities could also be used to reduce the number 
of situations that cause deadlock detection to be initiated, by using the rule that detection 
is initiated only when a higher-priority transaction starts to wait for a lower-priority one. 
In our example in Figure 17.16, as T > U the initiating probe < T U > would be sent, 
but as W < V the initiating probe < W V > would not be sent. If we assume that when 
a transaction starts waiting for another transaction it is equally likely that the waiting 
transaction has higher or lower priority than the waited-for transaction, then the use of 
this rule is likely to reduce the number of probe messages by about half.

Transaction priorities could also be used to reduce the number of probes that are 
forwarded. The general idea is that probes should travel ‘downhill’ – that is, from 
transactions with higher priorities to transactions with lower priorities. To this end, 
servers use the rule that they do not forward any probe to a holder that has higher priority 
than the initiator. The argument for doing this is that if the holder is waiting for another 
transaction, it must have initiated detection by sending a probe when it started waiting.
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However, there is a pitfall associated with these apparent improvements. In our 
example in Figure 17.15 transactions U, V and W are executed in an order in which U is 
waiting for V and V is waiting for W when W starts waiting for U. Without priority rules, 
detection is initiated when W starts waiting by sending a probe < W U>. Under the 
priority rule, this probe will not be sent because W < U and the deadlock will not be 
detected.

The problem is that the order in which transactions start waiting can determine 
whether or not a deadlock will be detected. The above pitfall can be avoided by using a 
scheme in which coordinators save copies of all the probes received on behalf of each 
transaction in a probe queue. When a transaction starts waiting for an object, it forwards 
the probes in its queue to the server of the object, which propagates the probes on 
downhill routes.

Figure 17.17 Probes travel downhill
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In our example in Figure 17.15, when U starts waiting for V, the coordinator of V
will save the probe < U V > – see Figure 17.17(a). Then when V starts waiting for W,
the coordinator of W will store < V W > and V will forward its probe queue, 
< U V >, to W. (See Figure 17.17(b), in which W’s probe queue has < U V > and 
< V W >.) When W starts waiting for A it will forward its probe queue, 
< U V W >, to the server of A, which notes the new dependency W U and 
combines it with the information in the probe received to determine that 
U V W U. Deadlock is detected.

When an algorithm requires probes to be stored in probe queues, it also requires 
arrangements to pass on probes to new holders and to discard probes that refer to 
transactions that have been committed or aborted. If relevant probes are discarded, 
undetected deadlocks may occur, and if outdated probes are retained, false deadlocks 
may be detected. This adds much to the complexity of any edge-chasing algorithm. 
Readers who are interested in the details of such algorithms should see Sinha and 
Natarajan [1985] and Choudhary et al. [1989], who present algorithms for use with 
exclusive locks. But they will see that Choudhary et al. showed that Sinha and 
Natarajan’s algorithm is incorrect: it fails to detect all deadlocks and may even report 
false deadlocks. Kshemkalyani and Singhal [1991] corrected the algorithm of 
Choudhary et al. and provided a proof of correctness for the corrected algorithm. In a 
subsequent paper, Kshemkalyani and Singhal [1994] argued that distributed deadlocks 
are not very well understood because there is no global state or time in a distributed 
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system. In fact, any cycle that has been collected may contain sections recorded at 
different times. In addition, sites may hear about deadlocks but may not hear that they 
have been resolved until after random delays. The paper describes distributed deadlocks 
in terms of the contents of distributed memory, using causal relationships between 
events at different sites.

17.6 Transaction recovery

The atomic property of transactions requires that all the effects of committed 
transactions and none of the effects of incomplete or aborted transactions are reflected 
in the objects they accessed. This property can be described in terms of two aspects: 
durability and failure atomicity. Durability requires that objects are saved in permanent 
storage and will be available indefinitely thereafter. Therefore an acknowledgement of 
a client’s commit request implies that all the effects of the transaction have been 
recorded in permanent storage as well as in the server’s (volatile) objects. Failure 
atomicity requires that effects of transactions are atomic even when the server crashes. 
Recovery is concerned with ensuring that a server’s objects are durable and that the 
service provides failure atomicity. 

Although file servers and database servers maintain data in permanent storage, 
other kinds of servers of recoverable objects need not do so except for recovery 
purposes. In this chapter, we assume that when a server is running it keeps all of its 
objects in its volatile memory and records its committed objects in a recovery file or 
files. Therefore recovery consists of restoring the server with the latest committed 
versions of its objects from permanent storage. Databases need to deal with large 
volumes of data. They generally hold the objects in stable storage on disk with a cache 
in volatile memory. 

The requirements for durability and  failure atomicity are not really independent 
of one another and can be dealt with by a single mechanism – the recovery manager.
The tasks of a recovery manager are:

• to save objects in permanent storage (in a recovery file) for committed 
transactions;

• to restore the server’s objects after a crash;

• to reorganize the recovery file to improve the performance of recovery;

• to reclaim storage space (in the recovery file). 

In some cases, we require the recovery manager to be resilient to media failures. 
Corruption during a crash, random decay or a permanent failure can lead to failures of 
the recovery file, which can result in some of the data on the disk being lost. In such 
cases we need another copy of the recovery file. Stable storage, which is implemented 
so as to be very unlikely to fail by using mirrored disks or copies at a different location 
may be used for this purpose.

Intentions list   •  Any server that provides transactions needs to keep track of the 
objects accessed by clients’ transactions. Recall from Chapter 16 that when a client 
opens a transaction, the server first contacted provides a new transaction identifier and 
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returns it to the client. Each subsequent client request within a transaction up to and 
including the commit or abort request includes the transaction identifier as an argument. 
During the progress of a transaction, the update operations are applied to a private set of 
tentative versions of the objects belonging to the transaction.

At each server, an intentions list is recorded for all of its currently active 
transactions – an intentions list of a particular transaction contains a list of the references 
and the values of all the objects that are altered by that transaction. When a transaction 
is committed, that transaction’s intentions list is used to identify the objects it affected. 
The committed version of each object is replaced by the tentative version made by that 
transaction, and the new value is written to the server’s recovery file. When a transaction 
aborts, the server uses the intentions list to delete all the tentative versions of objects 
made by that transaction.

Recall also that a distributed transaction must carry out an atomic commit protocol 
before it can be committed or aborted. Our discussion of recovery is based on the two-
phase commit protocol, in which all the participants involved in a transaction first say 
whether they are prepared to commit and later, if all the participants agree, carry out the 
actual commit actions. If the participants cannot agree to commit, they must abort the 
transaction.

Figure 17.18 Types of entry in a recovery file

Type of entry Description of contents of entry

Object A value of an object.

Transaction status 
Transaction identifier, transaction status (prepared, committed,
aborted) and other status values used for the two-phase commit 
protocol. 

Intentions list
Transaction identifier and a sequence of intentions, each of which 
consists of <objectID, Pi>, where Pi is the position in the recovery 
file of the value of the object. 

At the point when a participant says it is prepared to commit a transaction, its 
recovery manager must have saved both its intentions list for that transaction and the 
objects in that intentions list in its recovery file, so that it will be able to carry out the 
commitment later, even if it crashes in the interim. 

When all the participants involved in a transaction agree to commit it, the 
coordinator informs the client and then sends messages to the participants to commit 
their part of the transaction. Once the client has been informed that a transaction has 
committed, the recovery files of the participating servers must contain sufficient 
information to ensure that the transaction is committed by all of the servers, even if some 
of them crash between preparing to commit and committing.

Entries in recovery file  •  To deal with recovery of a server that can be involved in 
distributed transactions, further information in addition to the values of the objects is 
stored in the recovery file. This information concerns the status of each transaction – 
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whether it is committed, aborted or prepared to commit. In addition, each object in the 
recovery file is associated with a particular transaction by saving the intentions list in the 
recovery file. Figure 17.18 shows a summary of the types of entry included in a recovery 
file.

The transaction status values relating to the two-phase commit protocol are 
discussed in Section 17.6.4. We now describe two approaches to the use of recovery 
files: logging and shadow versions.

17.6.1 Logging

In the logging technique, the recovery file represents a log containing the history of all 
the transactions performed by a server. The history consists of values of objects, 
transaction status entries and transaction intentions lists. The order of the entries in the 
log reflects the order in which transactions have prepared, committed and aborted at that 
server. In practice, the recovery file will contain a recent snapshot of the values of all the 
objects in the server followed by a history of transactions postdating the snapshot.

During the normal operation of a server, its recovery manager is called whenever 
a transaction prepares to commit, commits or aborts a transaction. When the server is 
prepared to commit a transaction, the recovery manager appends all the objects in its 
intentions list to the recovery file, followed by the current status of that transaction 
(prepared) together with its intentions list. When a transaction is eventually committed 
or aborted, the recovery manager appends the corresponding status of the transaction to 
its recovery file.

It is assumed that the append operation is atomic in the sense that it writes one or 
more complete entries to the recovery file. If the server fails, only the last write can be 
incomplete. To make efficient use of the disk, several subsequent writes can be buffered 
and then written to disk as a single write. An additional advantage of the logging 
technique is that sequential writes to disk are faster than writes to random locations.

After a crash, any transaction that does not have a committed status in the log is 
aborted. Therefore when a transaction commits, its committed status entry must be 
forced to the log – that is, written to the log together with any other buffered entries.

The recovery manager associates a unique identifier with each object so that the 
successive versions of an object in the recovery file may be associated with the server’s 
objects. For example, a durable form of a remote object reference such as a CORBA 
persistent reference will do as an object identifier.

Figure 17.19 illustrates the log mechanism for the banking service transactions T
and U in Figure 16.7. The log was recently reorganized, and entries to the left of the 
double line represent a snapshot of the values of A, B and C before transactions T and U
started. In this diagram, we use the names A, B and C as unique identifiers for objects. 
We show the situation when transaction T has committed and transaction U has prepared 
but not committed. When transaction T prepares to commit, the values of objects A and 
B are written at positions P1 and P2 in the log, followed by a prepared transaction status 
entry for T with its intentions list (< A, P1 >, < B, P2 >). When transaction T commits, a 
committed transaction status entry for T is put at position P4. Then when transaction U
prepares to commit, the values of objects C and B are written at positions P5 and P6 in 
the log, followed by a prepared transaction status entry for U with its intentions list 
(< C, P5 >, < B, P6 >).
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Each transaction status entry contains a pointer to the position in the recovery file 
of the previous transaction status entry to enable the recovery manager to follow the 
transaction status entries in reverse order through the recovery file. The last pointer in 
the sequence of transaction status entries points to the checkpoint. 

Recovery of objects  •  When a server is replaced after a crash, it first sets default initial 
values for its objects and then hands over to its recovery manager. The recovery manager 
is responsible for restoring the server’s objects so that they include all the effects of the 
committed transactions performed in the correct order and none of the effects of 
incomplete or aborted transactions. 

The most recent information about transactions is at the end of the log. There are 
two approaches to restoring the data from the recovery file. In the first, the recovery 
manager starts at the beginning and restores the values of all of the objects from the most 
recent checkpoint (discussed in the next section). It then reads in the values of each of 
the objects, associates them with their transaction’s intentions lists and for committed 
transactions replaces the values of the objects. In this approach, the transactions are 
replayed in the order in which they were executed and there could be a large number of 
them. In the second approach, the recovery manager will restore a server’s objects by 
‘reading the recovery file backwards’. The recovery file has been structured so that there 
is a backwards pointer from each transaction status entry to the next. The recovery 
manager uses transactions with committed status to restore those objects that have not 
yet been restored. It continues until it has restored all of the server’s objects. This has 
the advantage that each object is restored once only.

Figure 17.19  Log for banking service

P0 P1 P2 P3 P4 P5 P6 P7

Object:A Object:B Object:C Object:A Object:B  Trans:T  Trans:T Object:C  Object:B  Trans:U

100  200 300 80 220 prepared committed 278 242 prepared

<A, P1> <C, P5>

<B, P2> <B, P6>

P0 P3 P4

Checkpoint End
of log

To recover the effects of a transaction, a recovery manager gets the corresponding 
intentions list from its recovery file. The intentions list contains the identifiers and 
positions in the recovery file of values of all the objects affected by the transaction. 

If the server fails at the point reached in Figure 17.19, its recovery manager will 
recover the objects as follows. It starts at the last transaction status entry in the log (at 
P7) and concludes that transaction U has not committed and its effects should be 
ignored. It then moves to the previous transaction status entry in the log (at P4) and 
concludes that transaction T has committed. To recover the objects affected by 
transaction T, it moves to the previous transaction status entry in the log (at P3) and finds 
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the intentions list for T (< A, P1 >, < B, P2 >). It then restores objects A and B from the 
values at P1 and P2. As it has not yet restored C, it moves back to P0, which is a 
checkpoint, and restores C.

To help with subsequent reorganization of the recovery file, the recovery manager 
notes all the prepared transactions it finds during the process of restoring the server’s 
objects. For each prepared transaction, it adds an aborted transaction status to the 
recovery file. This ensures that in the recovery file, every transaction is eventually 
shown as either committed or aborted.

The server could fail again during the recovery procedures. It is essential that 
recovery be idempotent, in the sense that it can be done any number of times with the 
same effect. This is straightforward under our assumption that all the objects are restored 
to volatile memory. In the case of a database, which keeps its objects in permanent 
storage with a cache in volatile memory, some of the objects in permanent storage will 
be out of date when a server is replaced after a crash. Therefore the recovery manager 
has to restore the objects in permanent storage. If it fails during recovery, the partially 
restored objects will still be there. This makes idempotence a little harder to achieve. 

Reorganizing the recovery file  • A recovery manager is responsible for reorganizing its 
recovery file so as to make the process of recovery faster and to reduce its use of space. 
If the recovery file is never reorganized, then the recovery process must search 
backwards through the recovery file until it has found a value for each of its objects. 
Conceptually, the only information required for recovery is a copy of the committed 
version of each object in the server. This would be the most compact form for the 
recovery file. The name checkpointing is used to refer to the process of writing the 
current committed values of a server’s objects to a new recovery file, together with 
transaction status entries and intentions lists of transactions that have not yet been fully 
resolved (including information related to the two-phase commit protocol). The term 
checkpoint is used to refer to the information stored by the checkpointing process. The 
purpose of making checkpoints is to reduce the number of transactions to be dealt with 
during recovery and to reclaim file space.

Checkpointing can be done immediately after recovery but before any new 
transactions are started. However, recovery may not occur very often. Therefore, 
checkpointing may need to be done from time to time during the normal activity of a 
server. The checkpoint is written to a future recovery file, and the current recovery file 
remains in use until the checkpoint is complete. Checkpointing consists of ‘adding a 
mark’ to the recovery file when the checkpointing starts, writing the server’s objects to 
the future recovery file and then copying to that file (1) all entries before the mark that 
relate to as-yet-unresolved transactions and (2) all entries after the mark in the recovery 
file. When the checkpoint is complete, the future recovery file becomes the recovery 
file.

The recovery system can reduce its use of space by discarding the old recovery 
file. When the recovery manager is carrying out the recovery process, it may encounter 
a checkpoint in the recovery file. When this happens, it can immediately restore all 
outstanding objects from the checkpoint. 
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17.6.2 Shadow versions 

The logging technique records transaction status entries, intentions lists and objects all 
in the same file – the log. The shadow versions technique is an alternative way to 
organize a recovery file. It uses a map to locate versions of the server’s objects in a file 
called a version store. The map associates the identifiers of the server’s objects with the 
positions of their current versions in the version store. The versions written by each 
transaction are ‘shadows’ of the previous committed versions. As we shall see, the 
transaction status entries and intentions lists are stored separately. Shadow versions are 
described first.

When a transaction is prepared to commit, any of the objects changed by the
transaction are appended to the version store, leaving the corresponding committed 
versions unchanged. These new as-yet-tentative versions are called shadow versions. 
When a transaction commits, a new map is made by copying the old map and entering 
the positions of the shadow versions. To complete the commit process, the new map 
replaces the old map. 

To restore the objects when a server is replaced after a crash, its recovery manager 
reads the map and uses the information in the map to locate the objects in the version 
store.

Figure 17.20 illustrates this technique with the same example involving 
transactions T and U

Figure 17.20 Shadow versions  

Map at start Map when T commits

A P0 A P1

B P0' B P2

C P0" C P0"

P0 P0' P0" P1 P2 P3 P4

Version store 100 200 300 80 220 278 242

Checkpoint

. The first column in the table shows the map before transactions T
and U, when the balances of the accounts A, B and C are $100, $200 and $300, 
respectively. The second column shows the map after transaction T has committed.

The version store contains a checkpoint, followed by the versions of A and B at P1
and P2 made by transaction T. It also contains the shadow versions of B and C made by 
transaction U, at P3 and P4.

The map must always be written to a well-known place (for example, at the start 
of the version store or a separate file) so that it can be found when the system needs to 
be recovered. 

The switch from the old map to the new map must be performed in a single atomic 
step. To achieve this it is essential that stable storage is used for the map, so that there is 
guaranteed to be a valid map even when a file write operation fails. The shadow versions 
method provides faster recovery than logging because the positions of the current 
committed objects are recorded in the map, whereas recovery from a log requires 



SECTION 17.6 TRANSACTION RECOVERY 757

searching throughout the log for objects. Logging should be faster than shadow versions 
during the normal activity of the system, though. This is because logging requires only 
a sequence of append operations to the same file, whereas shadow versions require an 
additional stable storage write (involving two unrelated disk blocks). 

Shadow versions on their own are not sufficient for a server that handles 
distributed transactions. Transaction status entries and intentions lists are saved in a file 
called the transaction status file. Each intentions list represents the part of the map that 
will be altered by a transaction when it commits. The transaction status file may, for 
example, be organized as a log. 

The figure below shows the map and the transaction status file for our current 
example when T has committed and U is prepared to commit:

Transaction status file (stable storage)

Map T T U

A P1 prepared committed prepared

B P2 A P1 B P3

C P0" B P2 C P4

There is a chance that a server may crash between the time when a committed status is 
written to the transaction status file and the time when the map is updated – in which 
case the client will not have been acknowledged. The recovery manager must allow for 
this possibility when the server is replaced after a crash, for example by checking 
whether the map includes the effects of the last committed transaction in the transaction 
status file. If it does not, then the latter should be marked as aborted.

17.6.3 The need for transaction status and intentions list entries in a recovery file

It is possible to design a simple recovery file that does not include entries for transaction 
status items and intentions lists. This sort of recovery file may be suitable when all 
transactions are directed to a single server. The use of transaction status items and 
intentions lists in the recovery file is essential for a server that is intended to participate 
in distributed transactions. This approach can also be useful for servers of non-
distributed transactions for various reasons, including the following:

• Some recovery managers are designed to write the objects to the recovery file 
early, under the assumption that transactions normally commit. 

• If transactions use a large number of big objects, the need to write them 
contiguously to the recovery file may complicate the design of a server. When 
objects are referenced from intentions lists, they can be found wherever they are.

• In timestamp ordering concurrency control, a server sometimes knows that a 
transaction will eventually be able to commit and acknowledges the client – at this 
time, the objects are written to the recovery file (see Chapter 16) to ensure their 
permanence. However, the transaction may have to wait to commit until earlier 
transactions have committed. In such situations, the corresponding transaction 
status entries in the recovery file will be waiting to commit and then committed to 
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ensure timestamp ordering of committed transactions in the recovery file. On 
recovery, any waiting-to-commit transactions can be allowed to commit, because 
the ones they were waiting for will have either just committed or been aborted due 
to failure of the server.

17.6.4 Recovery of the two-phase commit protocol 

In a distributed transaction, each server keeps its own recovery file. The recovery 
management described in the previous section must be extended to deal with any 
transactions that are performing the two-phase commit protocol at the time when a 
server fails. The recovery managers use two new status values for this purpose: done and 
uncertain. These status values are shown in Figure 17.6. A coordinator uses committed

to indicate that the outcome of the vote is Yes and done to indicate that the two-phase 
commit protocol is complete. A participant uses uncertain to indicate that it has voted 
Yes but does not yet know the outcome of the vote. Two additional types of entry allow 
a coordinator to record a list of participants and a participant to record its coordinator:

Type of entry Description of contents of entry

Coordinator Transaction identifier, list of participants

Participant Transaction identifier, coordinator

In phase 1 of the protocol, when the coordinator is prepared to commit (and has already 
added a prepared status entry to its recovery file), its recovery manager adds a 
coordinator entry to its recovery file. Before a participant can vote Yes, it must have 
already prepared to commit (and must have already added a prepared status entry to its 
recovery file). When it votes Yes, its recovery manager records a participant entry and 
adds an uncertain transaction status to its recovery file as a forced write. When a 
participant votes No, it adds an abort transaction status to its recovery file.

In phase 2 of the protocol, the recovery manager of the coordinator adds either a 
committed or an aborted transaction status to its recovery file, according to the decision. 
This must be a forced write (that is, it is written immediately to the recovery file). 
Recovery managers of participants add a commit or abort transaction status to their 
recovery files according to the message received from the coordinator. When a 
coordinator has received a confirmation from all of its participants, its recovery manager 
adds a done transaction status to its recovery file – this need not be forced. The done

status entry is not part of the protocol but is used when the recovery file is reorganized. 
Figure 17.21 shows the entries in a log for transaction T, in which the server played the 
coordinator role, and for transaction U, in which the server played the participant role. 
For both transactions, the prepared transaction status entry comes first. In the case of a 
coordinator it is followed by a coordinator entry and a committed transaction status 
entry. The done transaction status entry is not shown in Figure 17.21. In the case of a 
participant, the prepared transaction status entry is followed by a participant entry 
whose state is uncertain and then a committed or aborted transaction status entry.



Figure 17.21 Log with entries relating to two-phase commit protocol
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When a server is replaced after a crash, the recovery manager has to deal with the 
two-phase commit protocol in addition to restoring the objects. For any transaction 
where the server has played the coordinator role, it should find a coordinator entry and 
a set of transaction status entries. For any transaction where the server played the 
participant role, it should find a participant entry and a set of transaction status entries. 
In both cases, the most recent transaction status entry – that is, the one nearest the end 
of the log – determines the transaction status at the time of failure. The action of the 
recovery manager with respect to the two-phase commit protocol for any transaction 
depends on whether the server was the coordinator or a participant and on its status at 
the time of failure, as shown in Figure 17.22.

Reorganization of recovery file  • Care must be taken when performing a checkpoint to 
ensure that coordinator entries of transactions without status done are not removed from 
the recovery file. These entries must be retained until all the participants have confirmed 
that they have completed their transactions. Entries with status done may be discarded. 
Participant entries with transaction state uncertain must also be retained. 

Recovery of nested transactions  •  In the simplest case, each subtransaction of a nested 
transaction accesses a different set of objects. As each participant prepares to commit 
during the two-phase commit protocol, it writes its objects and intentions lists to the 
local recovery file, associating them with the transaction identifier of the top-level 
transaction. Although nested transactions use a special variant of the two-phase commit 
protocol, the recovery manager uses the same transaction status values as for flat 
transactions. 

However, abort recovery is complicated by the fact that several subtransactions at 
the same and different levels in the nesting hierarchy can access the same object. Section 
16.4 describes a locking scheme in which parent transactions inherit locks and 
subtransactions acquire locks from their parents. The locking scheme forces parent 
transactions and subtransactions to access common data objects at different times and 
ensures that accesses by concurrent subtransactions to the same objects must be 
serialized.

Objects that are accessed according to the rules of nested transactions are made 
recoverable by providing tentative versions for each subtransaction. The relationship 
between the tentative versions of an object used by the subtransactions of a nested 
transaction is similar to the relationship between the locks. To support recovery from 
aborts, the server of an object shared by transactions at multiple levels provides a stack 
of tentative versions – one for each nested transaction to use.



Figure 17.22  Recovery of the two-phase commit protocol

Role Status Action of recovery manager

Coordinator prepared No decision had been reached before the server failed. It 
sends abortTransaction to all the servers in the participant 
list and adds the transaction status aborted in its recovery 
file. Same action for state aborted. If there is no participant 
list, the participants will eventually time out and abort the 
transaction.

Coordinator committed A decision to commit had been reached before the server 
failed.  It sends a doCommit to all of the participants in its 
participant list (in case it had not done so before) and 
resumes the two-phase protocol at step 4 (see Figure 17.5).

Participant committed The participant sends a haveCommitted message to the 
coordinator (in case this was not done before it failed). 
This will allow the coordinator to discard information 
about this transaction at the next checkpoint.

Participant uncertain The participant failed before it knew the outcome of the 
transaction. It cannot determine the status of the 
transaction until the coordinator informs it of the decision. 
It sends a getDecision to the coordinator to determine the 
status of the transaction. When it receives the reply it will 
commit or abort accordingly.

Participant prepared The participant has not yet voted and can abort the 
transaction.

Coordinator done No action is required. 
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When the first subtransaction in a set of nested transactions accesses an object, it 
is provided with a tentative version that is a copy of the current committed version of the 
object. This is regarded as being at the top of the stack, but unless any of its 
subtransactions access the same object, the stack will not materialize.

When one of its subtransactions does access the same object, it copies the version 
at the top of the stack and pushes it back onto the stack. All of that subtransaction’s 
updates are applied to the tentative version at the top of the stack. When a subtransaction 
provisionally commits, its parent inherits the new version. To achieve this, both the 
subtransaction’s version and its parent’s version are discarded from the stack and then 
the subtransaction’s new version is pushed back onto the stack (effectively replacing its 
parent’s version). When a subtransaction aborts, its version at the top of the stack is 
discarded. Eventually, when the top-level transaction commits, the version at the top of 
the stack (if any) becomes the new committed version. 
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For example, in Figure 17.23

Figure 17.23 Nested transactions
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, suppose that transactions T1, T11, T12 and T2 all 
access the same object, A, in the order T1; T11; T12; T2. Suppose that their tentative 
versions are called A1, A11, A12 and A2. When T1 starts executing, A1 is based on the 
committed version of A and is pushed onto the stack. When T11 starts executing, it bases 
its version A11 on A1 and pushes it onto the stack; when it completes, it replaces its 
parent’s version on the stack. Transactions T12 and T2 act in a similar way, finally 
leaving the result of T2 at the top of the stack.

17.7 Summary

In the most general case, a client’s transaction will request operations on objects in 
several different servers. A distributed transaction is any transaction whose activity 
involves several different servers. A nested transaction structure may be used to allow 
additional concurrency and independent committing by the servers in a distributed 
transaction.

The atomicity property of transactions requires that the servers participating in a 
distributed transaction either all commit it or all abort it. Atomic commit protocols are 
designed to achieve this effect, even if servers crash during their execution. The two-
phase commit protocol allows a server to decide to abort unilaterally. It includes timeout 
actions to deal with delays due to servers crashing. The two-phase commit protocol can 
take an unbounded amount of time to complete but is guaranteed to complete eventually. 

Concurrency control in distributed transactions is modular – each server is 
responsible for the serializability of transactions that access its own objects. However, 
additional protocols are required to ensure that transactions are serializable globally. 
Distributed transactions that use timestamp ordering require a means of generating an 
agreed timestamp ordering between the multiple servers. Those that use optimistic 
concurrency control require global validation or a means of forcing a global ordering on 
committing transactions.

Distributed transactions that use two-phase locking can suffer from distributed 
deadlocks. The aim of distributed deadlock detection is to look for cycles in the global 
wait-for graph. If a cycle is found, one or more transactions must be aborted to resolve 
the deadlock. Edge chasing is a non-centralized approach to the detection of distributed 
deadlocks.
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Transaction-based applications have strong requirements for the long life and 
integrity of the information stored, but they do not usually have requirements for 
immediate response at all times. Atomic commit protocols are the key to distributed 
transactions, but they cannot be guaranteed to complete within a particular time limit. 
Transactions are made durable by performing checkpoints and logging in a recovery 
file, which is used for recovery when a server is replaced after a crash. Users of a 
transaction service will experience some delay during recovery. Although it is assumed 
that the servers of distributed transactions exhibit crash failures and run in an 
asynchronous system, they are able to reach consensus about the outcome of 
transactions because crashed servers are replaced with new processes that can acquire 
all the relevant information from permanent storage or from other servers.

EXERCISES

17.1 In a decentralized variant of the two-phase commit protocol the participants 
communicate directly with one another instead of indirectly via a coordinator. In phase 
1, the coordinator sends its vote to all the participants. In phase 2, if the coordinator’s 
vote is No, the participants just abort the transaction; if it is Yes, each participant sends 
its vote to the coordinator and the other participants, each of which decides on the 
outcome according to the vote and carries it out. Calculate the number of messages and 
the number of rounds it takes. What are its advantages and disadvantages in comparison 
with the centralized variant? page 732

17.2 A three-phase commit protocol has the following parts: 

Phase 1: Is the same as for two-phase commit. 

Phase 2: The coordinator collects the votes and makes a decision. If it is No, it 
aborts and informs participants that voted Yes; if the decision is Yes, it sends a 
preCommit request to all the participants. Participants that voted Yes wait for a 
preCommit or doAbort request. They acknowledge preCommit requests and carry 
out doAbort requests. 

Phase 3: The coordinator collects the acknowledgements. When all are received, 
it commits and sends doCommit requests to the participants. Participants wait for 
a doCommit request. When it arrives, they commit.

Explain how this protocol avoids delay to participants during their ‘uncertain’ period 
due to the failure of the coordinator or other participants. Assume that communication 
does not fail. page 735

17.3 Explain how the two-phase commit protocol for nested transactions ensures that if the 
top-level transaction commits, all the right descendants are committed or aborted. 

page 736

17.4 Give an example of the interleaving, of two transactions that is serially equivalent at 
each server but is not serially equivalent globally. page 740
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17.5 The getDecision procedure defined in Figure 17.4 is provided only by coordinators. 
Define a new version of getDecision to be provided by participants for use by other 
participants that need to obtain a decision when the coordinator is unavailable. 

        Assume that any active participant can make a getDecision request to any other 
active participant. Does this solve the problem of delay during the ‘uncertain’ period? 
Explain your answer. At what point in the two-phase commit protocol would the 
coordinator inform the participants of the other participants’ identities (to enable this 
communication)? page 732

17.6 Extend the definition of two-phase locking to apply to distributed transactions. Explain 
how this is ensured by distributed transactions using strict two-phase locking locally.

page 740, Chapter 16

17.7 Assuming that strict two-phase locking is in use, describe how the actions of the two-
phase commit protocol relate to the concurrency control actions of each individual 
server. How does distributed deadlock detection fit in? pages 732, 740

17.8 A server uses timestamp ordering for local concurrency control. What changes must be 
made to adapt it for use with distributed transactions? Under what conditions could it be 
argued that the two-phase commit protocol is redundant with timestamp ordering?

pages 732, 741

17.9 Consider distributed optimistic concurrency control in which each server performs local 
backward validation sequentially (that is, with only one transaction in the validate and 
update phase at one time), in relation to your answer to Exercise 17.4. Describe the 
possible outcomes when the two transactions attempt to commit. What difference does 
it make if the servers use parallel validation? Chapter 16,  page 742

17.10 A centralized global deadlock detector holds the union of local wait-for graphs. Give an 
example to explain how a phantom deadlock could be detected if a waiting transaction 
in a deadlock cycle aborts during the deadlock detection procedure. page 745

17.11 Consider the edge-chasing algorithm (without priorities). Give examples to show that it 
could detect phantom deadlocks. page 746

17.12 A server manages the objects a1, a2 , ... an. It provides two operations for its clients:

read(i) returns the value of ai
write(i, Value) assigns Value to ai

The transactions T, U and V are defined as follows:

T: x = read(i); write(j, 44); 

U: write(i, 55); write(j, 66);

V: write(k, 77); write(k, 88);

Describe the information written to the log file on behalf of these three transactions if 
strict two-phase locking is in use and U acquires ai and aj before T. Describe how the 
recovery manager would use this information to recover the effects of T, U and V when 
the server is replaced after a crash. What is the significance of the order of the commit 
entries in the log file? pages 753–754

17.13 The appending of an entry to the log file is atomic, but append operations from different 
transactions may be interleaved. How does this affect the answer to Exercise 17.12?

pages 753–754
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17.14 The transactions T, U and V of Exercise 17.12 use strict two-phase locking and their 
requests are interleaved as follows: 

T U V

x = read(i);

write(k, 77);

write(i, 55)

write(j, 44)

write(k,88)

write(j, 66)

Assuming that the recovery manager appends the data entry corresponding to each write

operation to the log file immediately instead of waiting until the end of the transaction, 
describe the information written to the log file on behalf of the transactions T, U and V.
Does early writing affect the correctness of the recovery procedure? What are the 
advantages and disadvantages of early writing? pages 753–754

17.15 Transactions T and U are run with timestamp ordering concurrency control. Describe the 
information written to the log file on behalf of T and U, allowing for the fact that U has 
a later timestamp than T and must wait to commit after T. Why is it essential that the 
commit entries in the log file be ordered by timestamps? Describe the effect of recovery 
if the server crashes  (i) between the two Commits;  (ii) after both of them.  

T U

x= read(i);

write(i, 55);

write(j, 66);

write(j, 44);

Commit

Commit

What are the advantages and disadvantages of early writing with timestamp ordering?
page 757

17.16 The transactions T and U in Exercise 17.15 are run with optimistic concurrency control 
using backward validation and restarting any transactions that fail. Describe the 
information written to the log file on their behalf. Why is it essential that the commit 
entries in the log file be ordered by transaction numbers? How are the write sets of 
committed transactions represented in the log file? pages 753–754

17.17 Suppose that the coordinator of a transaction crashes after it has recorded the intentions 
list entry but before it has recorded the participant list or sent out the canCommit?

requests. Describe how the participants resolve the situation. What will the coordinator 
do when it recovers? Would it be any better to record the participant list before the 
intentions list entry? page 758



                     765

18

REPLICATION

18.1 Introduction

18.2 System model and the role of group communication

18.3 Fault-tolerant services

18.4 Case studies of highly available services: 
The gossip architecture, Bayou and Coda

18.5 Transactions with replicated data

18.6 Summary

Replication is a key to providing high availability and fault tolerance in distributed 
systems. High availability is of increasing interest with the tendency towards mobile 
computing and consequently disconnected operation. Fault tolerance is an abiding 
concern for services provided in safety-critical and other important systems.

The first part of this chapter considers systems that apply a single operation at a 
time to collections of replicated objects. It begins with a description of architectural 
components and a system model for services that employ replication. We describe the 
implementation of group membership management as part of group communication, 
which is particularly important for fault-tolerant services. 

The chapter then describes approaches to achieving fault tolerance. It introduces 
the correctness criteria of linearizability and sequential consistency, then explores two 
approaches: passive (primary-backup) replication, in which clients communicate with a 
distinguished replica; and active replication, in which clients communicate by multicast 
with all replicas.

Case studies of three systems for highly available services are considered. In the 
gossip and Bayou architectures, updates are  propagated lazily between replicas of shared 
data. In Bayou, the technique of operational transformation is used to enforce 
consistency. Coda is an example of a highly available file service.

The chapter ends by considering transactions – sequences of operations – upon 
replicated objects. It considers the architectures of replicated transactional systems and 
how these systems handle server failures and network partitions.
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18.1 Introduction

In this chapter, we study the replication of data: the maintenance of copies of data at 
multiple computers. Replication is a key to the effectiveness of distributed systems in 
that it can provide enhanced performance, high availability and fault tolerance. 
Replication is used widely. For example, the caching of resources from web servers in 
browsers and web proxy servers is a form of replication, since the data held in caches 
and at servers are replicas of one another. The DNS naming service, described in 
Chapter 13, maintains copies of name-to-attribute mappings for computers and is relied 
on for day-to-day access to services across the Internet. 

Replication is a technique for enhancing services. The motivations for replication 
include:

Performance enhancement: The caching of data at clients and servers is by now 
familiar as a means of performance enhancement. For example, Chapter 2 pointed 
out that browsers and proxy servers cache copies of web resources to avoid the 
latency of fetching resources from the originating server. Furthermore, data are 
sometimes replicated transparently between several originating servers in the same 
domain. The workload is shared between the servers by binding all the server IP 
addresses to the site’s DNS name, say www.aWebSite.org. A DNS lookup of 
www.aWebSite.org results in one of the several servers’ IP addresses being returned, 
in a round-robin fashion (see Section 13.2.3). More sophisticated load-balancing 
strategies are required for more complex services based on data replicated between 
thousands of servers. As an example, Dilley et al. [2002] describe the approach to 
DNS name resolution adopted in the Akamai content distribution network.

Replication of immutable data is trivial: it increases performance with little 
cost to the system. Replication of changing data, such as that of the Web, incurs 
overheads in the form of protocols designed to ensure that clients receive up-to-date 
data (see Section 2.3.1). Thus there are limits to the effectiveness of replication as a 
performance-enhancement technique.

Increased availability: Users require services to be highly available. That is, the 
proportion of time for which a service is accessible with reasonable response times 
should be close to 100%. Apart from delays due to pessimistic concurrency control 
conflicts (due to data locking), the factors that are relevant to high availability are:

• server failures;

• network partitions and disconnected operation (communication disconnections 
that are often unplanned and are a side effect of user mobility).

To take the first of these, replication is a technique for automatically maintaining the 
availability of data despite server failures. If data are replicated at two or more 
failure-independent servers, then client software may be able to access data at an 
alternative server should the default server fail or become unreachable. That is, the 
percentage of time during which the service is available can be enhanced by 
replicating server data. If each of n servers has an independent probability p of failing 
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or becoming unreachable, then the availability of an object stored at each of these 
servers is:

1 – probability(all managers failed or unreachable) = 1 p
n

–

For example, if there is a 5% probability of any individual server failing over a given 
time period and if there are two servers, then the availability is 1 – 0.052 = 1 – 0.0025 
= 99.75%. An important difference between caching systems and server replication 
is that caches do not necessarily hold collections of objects such as files in their 
entirety. So caching does not necessarily enhance availability at the application level 
– a user may have one needed file but not another.

Network partitions (see Section 15.1) and disconnected operation are the 
second factor that militate against high availability. Mobile users may deliberately 
disconnect their computers or become unintentionally disconnected from a wireless 
network as they move around. For example, a user on a train with a laptop may have 
no access to networking (wireless networking may be interrupted, or they may have 
no such capability). In order to be able to work in these circumstances – so-called 
disconnected working or disconnected operation – the user will often prepare by 
copying heavily used data, such as the contents of a shared diary, from their usual 
environment to the laptop. But there is often a trade-off to availability during such a 
period of disconnection: when the user consults or updates the diary, they risk 
reading data that someone else has altered in the meantime. For example, they may 
make an appointment in a slot that has since been occupied. Disconnected working 
is only feasible if the user (or the application, on the user’s behalf) can cope with stale 
data and can later resolve any conflicts that arise. 

Fault tolerance: Highly available data is not necessarily strictly correct data. It may
be out of date, for example; or two users on opposite sides of a network partition may 
make updates that conflict and need to be resolved. A fault-tolerant service, by 
contrast, always guarantees strictly correct behaviour despite a certain number and 
type of faults. The correctness concerns the freshness of data supplied to the client 
and the effects of the client’s operations upon the data. Correctness sometimes also 
concerns the timeliness of the service’s responses – such as, for example, in the case 
of a system for air traffic control, where correct data are needed on short timescales. 

The same basic technique used for high availability – that of replicating data 
and functionality between computers – is also applicable for achieving fault 
tolerance. If up to f of f + 1 servers crash, then in principle at least one remains to 
supply the service. And if up to f servers can exhibit Byzantine failures, then in 
principle a group of 2f + 1 servers can provide a correct service, by having the correct 
servers outvote the failed servers (who may supply spurious values). But fault 
tolerance is subtler than this simple description makes it seem. The system must 
manage the coordination of its components precisely to maintain the correctness 
guarantees in the face of failures, which may occur at any time.

A common requirement when data are replicated is for replication transparency. That 
is, clients should not normally have to be aware that multiple physical copies of data 
exist. As far as clients are concerned, data are organized as individual logical objects 
and they identify only one item in each case when they request an operation to be 
performed. Furthermore, clients expect operations to return only one set of values. This 
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is despite the fact that operations may be performed upon more than one physical copy 
in concert.

The other general requirement for replicated data – one that can vary in strength 
between applications – is that of consistency. This concerns whether the operations 
performed upon a collection of replicated objects produce results that meet the 
specification of correctness for those objects.

We saw in the example of the diary that during disconnected operation data may 
be allowed to become inconsistent, at least temporarily. But when clients remain 
connected it is often not acceptable for different clients (using different physical copies 
of data) to obtain inconsistent results when they make requests affecting the same 
logical objects. That is, it is not acceptable if the results break the application’s 
correctness criteria.

We now examine in more detail the design issues raised when we replicate data to 
achieve highly available and fault-tolerant services. We also examine some standard 
solutions and techniques for dealing with those issues. First, Sections 18.2 to 18.4 cover 
the case where clients make individual invocations upon shared data. Section 18.2
presents a general architecture for managing replicated data and introduces group 
communication as an important tool. Group communication is particularly useful for 
achieving fault tolerance, which is the subject of Section 18.3. Section 18.4 describes 
techniques for high availability, including disconnected operation. It includes case 
studies of the gossip architecture, Bayou and the Coda file system. Section 18.5
examines how to support transactions on replicated data. As Chapters 16 and 17
explained, transactions are made up of sequences of operations, rather than single 
operations.

18.2 System model and the role of group communication

The data in our system consist of a collection of items that we shall call objects. An 
‘object’ could be a file, say, or a Java object. But each such logical object is 
implemented by a collection of physical copies called replicas. The replicas are physical 
objects, each stored at a single computer, with data and behaviour that are tied to some 
degree of consistency by the system’s operation. The ‘replicas’ of a given object are not 
necessarily identical, at least not at any particular point in time. Some replicas may have 
received updates that others have not received.

In this section, we provide a general system model for managing replicas and then 
describe the role of group communication systems in achieving fault tolerance through 
replication, highlighting the importance of view-synchronous group communication.

18.2.1 System model

We assume an asynchronous system in which processes may fail only by crashing. Our 
default assumption is that network partitions may not occur, but we shall sometimes 
consider what happens if they do occur. Network partitions make it harder to build 
failure detectors, which we use to achieve reliable and totally ordered multicast.
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For the sake of generality, we describe architectural components by their roles and 
do not mean to imply that they are necessarily implemented by distinct processes (or 
hardware). The model involves replicas held by distinct replica managers (see Figure 
18.1),

Figure 18.1 A basic architectural model for the management of replicated data
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 which are components that contain the replicas on a given computer and perform 
operations upon them directly. This general model may be applied in a client-server 
environment, in which case a replica manager is a server. We shall sometimes simply 
call them servers instead. Equally, it may be applied to an application and application 
processes can in that case act as both clients and replica managers. For example, the 
user’s laptop on a train may contain an application that acts as a replica manager for their 
diary.

We shall always require that a replica manager applies operations to its replicas 
recoverably. This allows us to assume that an operation at a replica manager does not 
leave inconsistent results if it fails part way through. We sometimes require each replica 
manager to be a state machine [Lamport 1978, Schneider 1990]. Such a replica manager 
applies operations to its replicas atomically (indivisibly), so that its execution is 
equivalent to performing operations in some strict sequence. Moreover, the state of its 
replicas is a deterministic function of their initial states and the sequence of operations 
that it applies to them. Other stimuli, such as the reading on a clock or an attached 
sensor, have no bearing on these state values. Without this assumption, consistency 
guarantees between replica managers that accept update operations independently could 
not be made. The system can only determine which operations to apply at all replica 
managers and in what order – it cannot reproduce non-deterministic effects. The 
assumption implies that it may not be possible, depending upon the threading 
architecture, for the servers to be multi-threaded.

Often each replica manager maintains a replica of every object, and we assume 
this is so unless we state otherwise. However, the replicas of different objects may be 
maintained by different sets of replica managers. For example, one object may be 
needed mostly by clients on one network and another by clients on another network. 
There is little to be gained by replicating them at managers on the other network.

The set of replica managers may be static or dynamic. In a dynamic system, new 
replica managers may appear (for example, if a second secretary copies a diary onto their 
laptop); this is not allowed in a static system. In a dynamic system, replica managers 
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may crash, and they are then deemed to have left the system (although they may be 
replaced). In a static system, replica managers do not crash (crashing implies never

executing another step), but they may cease operating for an indefinite period. We return 
to the issue of failure in Section 18.4.2.

 The general model of replica management is shown in Figure 18.1. A collection 
of replica managers provides a service to clients. The clients see a service that gives 
them access to objects (for example, diaries or bank accounts), which in fact are 
replicated at the managers. Each client requests a series of operations – invocations upon 
one or more of the objects. An operation may involve a combination of reads of objects 
and updates to objects. Requested operations that involve no updates are called read-

only requests; requested operations that update an object are called update requests

(these may also involve reads).
Each client’s requests are first handled by a component called a front end. The role 

of the front end is to communicate by message passing with one or more of the replica 
managers, rather than forcing the client to do this itself explicitly. It is the vehicle for 
making replication transparent. A front end may be implemented in the client’s address 
space, or it may be a separate process.

In general, five phases are involved in the performance of a single request upon 
the replicated objects [Wiesmann et al. 2000]. The actions in each phase vary according 
to the type of system, as will become clear in the next two sections. For example, a 
service that supports disconnected operation behaves differently from one that provides 
a fault-tolerant service. The phases are as follows:

Request: The front end issues the request to one or more replica managers: 

– either the front end communicates with a single replica manager, which in turn 
communicates with other replica managers; 

– or the front end multicasts the request to the replica managers.

Coordination: The replica managers coordinate in preparation for executing the 
request consistently. They agree, if necessary at this stage, on whether the request is 
to be applied (it might not be applied at all if failures occur at this stage). They also 
decide on the ordering of this request relative to others. All of the types of ordering 
defined for multicast in Section 15.4.3 also apply to request handling and we define 
those orders again for this context:

FIFO ordering: If a front end issues request r and then request r , any correct 
replica manager that handles r  handles r before it.

Causal ordering: If the issue of request r happened-before the issue of request r ,
then any correct replica manager that handles r  handles r before it.

Total ordering: If a correct replica manager handles r before request r , then any 
correct replica manager that handles r  handles r before it.

Most applications require FIFO ordering. We discuss the requirements for causal and 
total ordering – and the hybrid orderings that are both FIFO and total, or both causal 
and total – in the next two sections.

Execution: The replica managers execute the request – perhaps tentatively: that is, in 
such a way that they can undo its effects later.
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Agreement: The replica managers reach consensus on the effect of the request – if 
any – that will be committed. For example, in a transactional system the replica 
managers may collectively agree to abort or commit the transaction at this stage.

Response: One or more replica managers responds to the front end. In some systems, 
one replica manager sends the response. In others, the front end receives responses 
from a collection of replica managers and selects or synthesizes a single response to 
pass back to the client. For example, it could pass back the first response to arrive, if 
high availability is the goal. If tolerance of Byzantine failures is the goal, then it could 
give the client the response that a majority of the replica managers provides. 

Different systems may make different choices about the ordering of the phases, as well 
as their contents. For example, in a system that supports disconnected operation, it is 
important to give the client (the application on the user’s laptop, say) as early a response 
as possible. The user does not want to wait until the replica manager on the laptop and 
the replica manager back in the office can coordinate. By contrast, in a fault-tolerant 
system the client is not given the response until the end, when the correctness of the 
result can be guaranteed.

18.2.2 The role of group communication

Chapter 6 introduced the concept of group communication and Section 15.4 expanded
on this discussion by covering algorithms for reliability and ordering of message 
delivery in group communication systems. In this chapter, we look at the role of groups 
in managing replicated data. The discussion in Section 15.4 took the membership of 
groups to be statically defined, although group members may crash. In replication, and 
indeed in many other practical circumstances, there is a strong requirement for dynamic 
membership, in which processes join and leave the group as the system executes. In a 
service that manages replicated data, for example, users may add or withdraw a replica 
manager, or a replica manager may crash and thus need to be withdrawn from the 
system’s operation. Group membership management, which was introduced in Section 
6.2.2, is therefore particularly important in this context. 

Systems that can adapt as processes join, leave and crash – fault-tolerant systems, 
in particular – require the more advanced features of failure detection and notification 
of membership changes. A full group membership service maintains group views, which 
are lists of the current group members, identified by their unique process identifiers. The 
list is ordered, for example, according to the sequence in which the members joined the 
group. A new group view is generated each time that a process is added or excluded.

It is important to understand that a group membership service may exclude a 
process from a group because it is Suspected, even though it may not have crashed. A 
communication failure may have made the process unreachable, while it continues to 
execute normally. A membership service is always free to exclude such a process. The 
effect of exclusion is that no messages will be delivered to that process henceforth. 
Moreover, in the case of a closed group, if that process becomes connected again, any 
messages it attempts to send will not be delivered to the group members. That process 
will have to rejoin the group (as a ‘reincarnation’ of itself, with a new identifier), or abort 
its operations.
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A false suspicion of a process and the consequent exclusion of the process from 
the group may reduce the group’s effectiveness. The group has to manage without the 
extra reliability or performance that the withdrawn process could potentially have 
provided. The design challenge, apart from designing failure detectors to be as accurate 
as possible, is to ensure that a system based on group communication does not behave 
incorrectly if a process is falsely suspected.

An important consideration is how a group management service treats network 
partitions. Disconnection or the failure of components such as a router in a network may 
split a group of processes into two or more subgroups, with communication between the 
subgroups impossible. Group management services differ in whether they are primary-

partition or partitionable. In the first case, the management service allows at most one 
subgroup (a majority) to survive a partition; the remaining processes are informed that 
they should suspend operations. This arrangement is appropriate for cases where the 
processes manage important data and the costs of inconsistencies between two or more 
subgroups outweigh any advantage of disconnected working. 

On the other hand, in some circumstances it is acceptable for two or more 
subgroups to continue to operate – a partitionable group membership service allows this. 
For example, in an application in which users hold an audio or video conference to 
discuss some issues, it may be acceptable for two or more subgroups of users to continue 
their discussions independently despite a partition. They can merge their results when 
the partition heals and the subgroups are connected again.

View delivery  •  Consider the task of a programmer writing an application that runs in 
each process in a group and that must cope with new and lost members. The programmer 
needs to know that the system treats each member in a consistent way when the 
membership changes. It would be awkward if the programmer had to query the state of 
all the other members and reach a global decision whenever a membership change 
occurred, rather than being able to make a local decision on how to respond to the 
change. The programmer’s life is made harder or easier according to the guarantees that 
apply when the system delivers views to the group members.

For each group g the group management service delivers to any member process 
p g  a series of views v0 g , v1 g , v2 g , etc. For example, a series of views could 
be v0 g p= , v1 g p p=  and v2 g p=  – p joins an empty group, then p
joins the group, then p  leaves it. Although several membership changes may occur 
concurrently, such as when one process joins the group just as another leaves, the system 
imposes an order on the sequence of views given to each process.

We speak of a member delivering a view when a membership change occurs and 
the application is notified of the new membership, just as we speak of a process 
delivering a multicast message. As with multicast delivery, delivering a view is distinct 
from receiving a view. Group membership protocols keep proposed views on a hold-
back queue until all extant members can agree to their delivery. 

We also speak of an event as occurring in a view v(g) at process p if, at the time 
of the event’s occurrence, p has delivered v(g) but has not yet delivered the next view,
v (g).

Some basic requirements for view delivery are as follows:

Order: If a process p delivers view v(g) and then view v (g), then no other process 
q p delivers v (g) before v(g).
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Integrity: If process p delivers view v(g), then p v(g).

Non-triviality: If process q joins a group and is or becomes indefinitely reachable 
from process p q, then eventually q is always in the views that p delivers. Similarly, 
if the group partitions and remains partitioned, then eventually the views delivered in 
any one partition will exclude any processes in another partition.

The first of these requirements goes some way to giving the programmer a consistency 
guarantee by ensuring that view changes always occur in the same order at different 
processes. The second requirement is a ‘sanity check’. The third guards against trivial 
solutions. For example, a membership service that tells every process, regardless of its 
connectivity, that it is in a group all by itself is not of great interest. The non-triviality 
condition states that if two processes that have each joined the same group can 
eventually communicate indefinitely, then they should each be deemed members of that 
same group. Similarly, it requires that, when a partition occurs, the membership service 
should eventually reflect the partition. The condition does not state how the group 
membership service should behave in the problematic case of intermittent connectivity.

View-synchronous group communication   •  A view-synchronous group communication 
system makes guarantees additional to those above about the delivery ordering of view 
notifications with respect to the delivery of multicast messages. View-synchronous 
communication extends the reliable multicast semantics that we described in Chapter 15
to take account of changing group views. For the sake of simplicity, we restrict our 
discussion to the case where partitions may not occur. The guarantees provided by view-
synchronous group communication are as follows:

Agreement: Correct processes deliver the same sequence of views (starting from the 
view in which they join the group) and the same set of messages in any given view. 
That is, if a correct process delivers message m in view v(g), then all other correct 
processes that deliver m also do so in the view v(g).

Integrity: If a correct process p delivers message m, then it will not deliver m again. 
Furthermore, p group(m) and the process that sent m is in the view in which p
delivers m.

Validity (closed groups): Correct processes always deliver the messages that they 
send. If the system fails to deliver a message to any process q, then it notifies the 
surviving processes by delivering a new view with q excluded, immediately after the 
view in which any of them delivered the message. That is, let p be any correct process 
that delivers message m in view v(g). If some process q v(g) does not deliver m in 
view v(g), then the next view v (g) that p delivers has q  v (g).

Consider a group with three processes, p, q and r (see Figure 18.2). Suppose that p sends 
a message m while in view (p, q, r) but that p crashes soon after sending m, while q and 
r are correct. One possibility is that p crashes before m has reached any other process. 
In this case, q and r each deliver the new view (q, r), but neither ever delivers m (Figure 
18.2a). The other possibility is that m has reached at least one of the two surviving 
processes when p crashes. Then q and r both deliver first m and then the view (q, r)
(Figure 18.2b). It is not allowed for q and r to deliver first the view (q, r) and then m
(Figure 18.2c), since then they would deliver a message from a process that they have 
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been informed has failed; nor can the two deliver the message and the new view in 
opposite orders (Figure 18.2d).

In a view-synchronous system, the delivery of a new view draws a conceptual line 
across the system and every message that is delivered at all is consistently delivered on 
one side or the other of that line. This enables the programmer to draw useful 
conclusions about the set of messages that other correct processes have delivered when 
it delivers a new view, based only on the local ordering of message delivery and view 
delivery events.

An illustration of the usefulness of view-synchronous communication is how it 
can be used to achieve state transfer – the transfer of the working state from a current 
member of a process group to a new member of the group. For example, if the processes 
are replica managers that each hold the state of a diary, then a replica manager that joins 
the group for that diary needs to acquire the diary’s current state when it joins. But the 
diary may be updated concurrently while the state is being captured. It is important that 
the replica manager does not miss any update messages that are not reflected in the state 
it acquires and that it does not reapply update messages that are already reflected in the 
state (unless those updates are idempotent). 

To achieve this state transfer, we can use view-synchronous communication in a 
simple scheme such as the following. Upon delivery of the first view containing the new 
process, some distinct process from amongst the pre-existing members – say, the oldest 
– captures its state, sends it one-to-one to the new member and suspends its execution. 
All other pre-existing processes suspend their execution. Note that precisely the set of 
updates reflected in this state has, by definition, been applied at all other members. Upon 
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receipt of the state, the new process integrates it and multicasts a ‘commence!’ message 
to the group, at which point all proceed once more.

Discussion   •  The notion of view-synchronous group communication that we have 
presented is a formulation of the ‘virtually synchronous’ communication paradigm 
originally developed in the ISIS system [Birman 1993, Birman et al. 1991, Birman and 
Joseph 1987b]. Schiper and Sandoz [1993] describe a protocol for achieving view-
synchronous (or as they call it, view-atomic) communication. Note that a group 
membership service achieves consensus, but it does so without flouting the impossibility 
result of Fischer et al. [1985]. As we discussed in Section 15.5.4, a system can 
circumvent that result by using an appropriate failure detector. 

Schiper and Sandoz also provide a uniform version of view-synchronous 
communication in which the agreement condition covers the case of processes that 
crash. This is similar to uniform agreement for multicast communication, which we 
described in Section 15.4.2. In the uniform version of view-synchronous 
communication, even if a process crashes after it delivers a message, all correct 
processes are forced to deliver the message in the same view. This stronger guarantee is 
sometimes needed in fault-tolerant applications, since a process that has delivered a 
message may have had an effect on the outside world before crashing. For the same 
reason, Hadzilacos and Toueg [1994] consider uniform versions of the reliable and 
ordered multicast protocols described in Chapter 15.

The V system [Cheriton and Zwaenepoel 1985] was the first system to include 
support for process groups. After ISIS, process groups with some type of group 
membership service were developed in several other systems, including Horus [van 
Renesse et al. 1996], Totem [Moser et al. 1996] and Transis [Dolev and Malki 1996]. 

Variations on view synchrony have been proposed for partitionable group 
membership services, including support for partition-aware applications [Babaoglu et

al. 1998] and extended virtual synchrony [Moser et al. 1994]. 
Finally, Cristian [1991] discusses a group membership service for synchronous

distributed systems.

18.3 Fault-tolerant services

In this section, we examine how to provide a service that is correct despite up to f process 
failures, by replicating data and functionality at replica managers. For the sake of 
simplicity, we assume that communication remains reliable and that no partitions occur.

Each replica manager is assumed to behave according to a specification of the 
semantics of the objects it manages, when they have not crashed. For example, a 
specification of bank accounts would include an assurance that funds transferred 
between bank accounts can never disappear, and that only deposits and withdrawals 
affect the balance of any particular account.

Intuitively, a service based on replication is correct if it keeps responding despite 
failures and if clients cannot tell the difference between the service they obtain from an 
implementation with replicated data and one provided by a single correct replica 
manager. Care is needed in meeting these criteria. If precautions are not taken, then 
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anomalies can arise when there are several replica managers – even bearing in mind that 
we are considering the effects of individual operations, not transactions. 

Consider a naive replication system, in which a pair of replica managers at 
computers A and B each maintain replicas of two bank accounts, x and y. Clients read 
and update the accounts at their local replica manager but try another replica manager if 
the local one fails. Replica managers propagate updates to one another in the 
background after responding to the clients. Both accounts initially have a balance of $0.  

Client 1 updates the balance of x at its local replica manager B to be $1 and then 
attempts to update y’s balance to be $2, but discovers that B has failed. Client 1 therefore 
applies the update at A instead. Now client 2 reads the balances at its local replica 
manager A. It  finds first that y has $2 and then that x has $0 – the update to bank account 
x from B has not arrived, since B failed. The situation is shown below, where the 
operations are labelled by the computer at which they first took place and lower 
operations happen later:

Client 1: Client 2:

setBalanceB x 1

setBalanceA y 2

getBalanceA y 2

getBalanceA x 0

This execution does not match a common-sense specification for the behaviour of bank 
accounts: client 2 should have read a balance of $1 for x, given that it read the balance 
of $2 for y, since y’s balance was updated after that of x. The anomalous behaviour in 
the replicated case could not have occurred if the bank accounts had been implemented 
by a single server. We can construct systems that manage replicated objects without the 
anomalous behaviour produced by the naive protocol in our example. First, we need to 
understand what counts as correct behaviour for a replicated system.

Linearizability and sequential consistency  •  There are various correctness criteria for 
replicated objects. The most strictly correct systems are linearizable, and this property 
is called linearizability. In order to understand linearizability, consider a replicated 
service implementation with two clients. Let the sequence of read and update operations 
that client i performs in some execution be oi0 oi1 oi2 . Each operation oij  in these 
sequences is specified by the operation type and the arguments and return values as they 
occurred at runtime. We assume that every operation is synchronous. That is, clients 
wait for one operation to complete before requesting the next.

A single server managing a single copy of the objects would serialize the 
operations of the clients. In the case of an execution with only client 1 and client 2, this 
interleaving of the operations could be o20 o21 o10 o

22
o11 o12 , say. We define 

our correctness criteria for replicated objects by referring to a virtual interleaving of the 
clients’ operations, which does not necessarily physically occur at any particular replica 
manager but that establishes the correctness of the execution.

 A replicated shared object service is said to be linearizable if for any execution

there is some interleaving of the series of operations issued by all the clients that satisfies 
the following two criteria:



SECTION 18.3 FAULT-TOLERANT SERVICES 777

• The interleaved sequence of operations meets the specification of a (single) 
correct copy of the objects. 

• The order of operations in the interleaving is consistent with the real times at 
which the operations occurred in the actual execution.

This definition captures the idea that for any set of client operations there is a virtual 
canonical execution – the interleaved operations that the definition refers to – against a 
virtual single image of the shared objects. And each client sees a view of the shared 
objects that is consistent with that single image: that is, the results of the client’s 
operations make sense as they occur within the interleaving. 

The service that gave rise to the execution of the bank account clients in the 
preceding example is not linearizable. Even ignoring the real time at which the 
operations took place, there is no interleaving of the two clients’ operations that would 
satisfy any correct bank account specification: for auditing purposes, if one account 
update occurred after another, then the first update should be observed if the second has 
been observed.

Note that linearizability concerns only the interleaving of individual operations 
and is not intended to be transactional. A linearizable execution may break application-
specific notions of consistency if concurrency control is not applied.

The real-time requirement in linearizability is desirable in an ideal world, because 
it captures our notion that clients should receive up-to-date information. But, equally, 
the presence of real time in the definition raises the issue of linearizability’s practicality, 
because we cannot always synchronize clocks to the required degree of accuracy. A 
weaker correctness condition is sequential consistency, which captures an essential 
requirement concerning the order in which requests are processed without appealing to 
real time. The definition keeps the first criterion from the definition for linearizability 
but modifies the second.

A replicated shared object service is said to be sequentially consistent if for any 

execution there is some interleaving of the series of operations issued by all the clients 
that satisfies the following two criteria:

• The interleaved sequence of operations meets the specification of a (single) 
correct copy of the objects. 

• The order of operations in the interleaving is consistent with the program order in 
which each individual client executed them.

Note that absolute time does not appear in this definition. Nor does any other total order 
on all operations. The only notion of ordering that is relevant is the order of events at 
each separate client – the program order. The interleaving of operations can shuffle the 
sequence of operations from a set of clients in any order, as long as each client’s order 
is not violated and the result of each operation is consistent, in terms of the objects’ 
specification, with the operations that preceded it. This is similar to shuffling together 
several packs of cards so that they are intermingled in such a way as to preserve the 
original order of each pack.

Every linearizable service is also sequentially consistent, since real-time order 
reflects each client’s program order. The converse does not hold. An example execution 
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for a service that is sequentially consistent but not linearizable follows:

Client 1: Client 2:

setBalanceB x 1

getBalanceA y 0

getBalanceA x 0

setBalanceA y 2

This execution is possible under a naive replication strategy even if neither of the 
computers A or B fails but if the update of x that client 1 made at B has not reached A
when client 2 reads it. The real-time criterion for linearizability is not satisfied, since 
getBalanceA x 0 occurs later than setBalanceB x 1 ; but the following 
interleaving satisfies both criteria for sequential consistency: getBalanceA y 0 ,

getBalanceA x 0 , setBalanceB x 1 , setBalanceA y 2 .
Lamport conceived of both sequential consistency [1979] and linearizability 

[1986] in relation to shared memory registers (although he used the term ‘atomicity’ 
instead of ‘linearizability’). Herlihy and Wing [1990] generalized the idea to cover 
arbitrary shared objects. Distributed shared memory systems also feature weaker 
consistency models, as discussed on the companion website for the book 
[www.cdk5.net/dsm].

18.3.1 Passive (primary-backup) replication

In the passive or primary-backup model of replication for fault tolerance (Figure 18.3),
there is at any one time a single primary replica manager and one or more secondary 
replica managers – ‘backups’ or ‘slaves’. In the pure form of the model, front ends 
communicate only with the primary replica manager to obtain the service. The primary 
replica manager executes the operations and sends copies of the updated data to the 
backups. If the primary fails, one of the backups is promoted to act as the primary.

The sequence of events when a client requests an operation to be performed is as 
follows:

1. Request: The front end issues the request, containing a unique identifier, to the 
primary replica manager.

2. Coordination: The primary takes each request atomically, in the order in which it 
receives it. It checks the unique identifier, in case it has already executed the request,
and if so it simply resends the response.

3. Execution: The primary executes the request and stores the response.

4. Agreement: If the request is an update, then the primary sends the updated state, 
the response and the unique identifier to all the backups. The backups send an 
acknowledgement.

5. Response: The primary responds to the front end, which hands the response back 
to the client. 
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This system obviously implements linearizability if the primary is correct, since the 
primary sequences all the operations upon the shared objects. If the primary fails, then 
the system retains linearizability if a single backup becomes the new primary and if the 
new system configuration takes over exactly where the last left off. That is if:

• The primary is replaced by a unique backup (if two clients began using two 
backups, then the system could perform incorrectly).

• The replica managers that survive agree on which operations had been performed 
at the point when the replacement primary takes over.

Both of these requirements are met if the replica managers (primary and backups) are 
organized as a group and if the primary uses view-synchronous group communication 
to send the updates to the backups. The first of the above two requirements is then easily 
satisfied. When the primary crashes, the communication system eventually delivers a 
new view to the surviving backups, one that excludes the old primary. The backup that 
replaces the primary can be chosen by any function of that view. For example, the 
backups can choose the first member in that view as the replacement. That backup can 
register itself as the primary with a name service that the clients consult when they 
suspect that the primary has failed (or when they require the service in the first place).

The second requirement is also satisfied, by the ordering property of view-
synchrony and the use of stored identifiers to detect repeated requests. The view-
synchronous semantics guarantee that either all the backups or none of them will deliver 
any given update before delivering the new view. Thus the new primary and the 
surviving backups all agree on whether any particular client’s update has or has not been 
processed.

Consider a front end that has not received a response. The front end retransmits 
the request to whichever backup takes over as the primary. The primary may have 
crashed at any point during the operation. If it crashed before the agreement stage (4), 
then the surviving replica managers cannot have processed the request. If it crashed 
during the agreement stage, then they may have processed the request. If it crashed after 
that stage, then they have definitely processed it. But the new primary does not have to 
know what stage the old primary was in when it crashed. When it receives a request, it 
proceeds from stage 2 above. By view-synchrony, no consultation with the backups is 
necessary, because they have all processed the same set of messages.
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Discussion of passive replication  •  The primary-backup model may be used even where 
the primary replica manager behaves in a non-deterministic way, for example due to 
multi-threaded operation. Since the primary communicates the updated state from the 
operations rather than a specification of the operations themselves, the backups slavishly 
record the state determined by the primary’s actions alone.

To survive up to f process crashes, a passive replication system requires f +1
replica managers (such a system cannot tolerate Byzantine failures). The front end 
requires little functionality to achieve fault tolerance. It just needs to be able to look up 
the new primary when the current primary does not respond. 

Passive replication has the disadvantage of providing relatively large overheads. 
View-synchronous communication requires several rounds of communication per 
multicast, and if the primary fails then yet more latency is incurred while the group 
communication system agrees upon and delivers the new view.

In a variation of the model presented here, clients may be able to submit read 
requests to the backups, thus offloading work from the primary. The guarantee of 
linearizability is thereby lost, but the clients receive a sequentially consistent service.

Passive replication is used in the Harp replicated file system [Liskov et al. 1991]. 
The Sun Network Information Service (NIS, formerly Yellow Pages) uses passive 
replication to achieve high availability and good performance, although with weaker 
guarantees than sequential consistency. The weaker consistency guarantees are still 
satisfactory for many purposes, such as storing certain types of system administration 
records. The replicated data is updated at a master server and propagated from there to 
slave servers using one-to-one (rather than group) communication. Clients may 
communicate with either a master or a slave server to retrieve information. In NIS, 
however, clients may not request updates: updates are made to the master’s files. 

18.3.2 Active replication

In the active model of replication for fault tolerance (see Figure 18.4), the replica 
managers are state machines that play equivalent roles and are organized as a group. 
Front ends multicast their requests to the group of replica managers and all the replica 
managers process the request independently but identically and reply. If any replica 
manager crashes, this need have no impact upon the performance of the service, since 
the remaining replica managers continue to respond in the normal way. We shall see that 
active replication can tolerate Byzantine failures, because the front end can collect and 
compare the replies it receives.

Under active replication, the sequence of events when a client requests an 
operation to be performed is as follows:

1. Request: The front end attaches a unique identifier to the request and multicasts it 
to the group of replica managers, using a totally ordered, reliable multicast primitive. 
The front end is assumed to fail by crashing at worst. It does not issue the next request 
until it has received a response.

2. Coordination: The group communication system delivers the request to every 
correct replica manager in the same (total) order.
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3. Execution: Every replica manager executes the request. Since they are state 
machines and since requests are delivered in the same total order, correct replica 
managers all process the request identically. The response contains the client’s 
unique request identifier.

4. Agreement: No agreement phase is needed, because of the multicast delivery 
semantics.

5. Response: Each replica manager sends its response to the front end. The number 
of replies that the front end collects depends upon the failure assumptions and the 
multicast algorithm. If, for example, the goal is to tolerate only crash failures and the 
multicast satisfies uniform agreement and ordering properties, then the front end 
passes the first response to arrive back to the client and discards the rest (it can 
distinguish these from responses to other requests by examining the identifier in the 
response).

This system achieves sequential consistency. All correct replica managers process the 
same sequence of requests. The reliability of the multicast ensures that every correct 
replica manager processes the same set of requests and the total order ensures that they 
process them in the same order. Since they are state machines, they all end up with the 
same state as one another after each request. Each front end’s requests are served in 
FIFO order (because the front end awaits a response before making the next request), 
which is the same as ‘program order’. This ensures sequential consistency.

If clients do not communicate with other clients while waiting for responses to 
their requests, then their requests are processed in happened-before order. If clients are 
multi-threaded and can communicate with one another while awaiting responses from 
the service, then to guarantee request processing in happened-before order we would 
have to replace the multicast with one that is both causally and totally ordered.

The active replication system does not achieve linearizability. This is because the 
total order in which the replica managers process requests is not necessarily the same as 
the real-time order in which the clients made their requests. Schneider [1990] describes 
how, in a synchronous system with approximately synchronized clocks, the total order 
in which the replica managers process requests can be based on the order of physical 
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timestamps that the front ends supply with their requests. This does not guarantee 
linearizability, because the timestamps are not perfectly accurate; but it approximates it.

Discussion of active replication  •  We have assumed a solution to totally ordered and 
reliable multicast. As Chapter 15 pointed out, solving reliable and totally ordered 
multicast is equivalent to solving consensus. Solving consensus in turn requires either 
that the system is synchronous or that a technique such as employing failure detectors is 
used in an asynchronous system, to work around the impossibility result of Fischer et al.

[1985].
Some solutions to consensus, such as that of Canetti and Rabin [1993], work even 

with the assumption of Byzantine failures. Given such a solution, and therefore a 
solution to totally ordered and reliable multicast, the active replication system can mask 
up to f Byzantine failures, as long as the service incorporates at least 2f + 1 replica 
managers. Each front end waits until it has collected f + 1 identical responses and passes 
that response back to the client. It discards other responses to the same request. To be 
strictly sure of which response is really associated with which request (given Byzantine
behaviour), we require that the replica managers digitally sign their responses.

It may be possible to relax the system that we have described. First, we have 
assumed that all updates to the shared replicated objects must occur in the same order. 
However, in practice some operations may commute: that is, the effect of two operations 
performed in the order o1 o2;  may be the same as if they were performed in the reverse 
order, o2 o1; . For example, any two read-only operations (from different clients) 
commute, and any two operations that do not perform reads but update distinct objects 
commute. An active replication system may be able to exploit knowledge of 
commutativity in order to avoid the expense of ordering all the requests. We pointed out 
in Chapter 15 that some have proposed application-specific multicast ordering 
semantics [Cheriton and Skeen 1993, Pedone and Schiper 1999].

Finally, front ends may send read-only requests only to individual replica 
managers. In doing so, they lose the fault tolerance that comes with multicasting 
requests, but the service remains sequentially consistent. Moreover, the front end can 
easily mask the failure of a replica manager in this case, simply by submitting the read-
only request to another replica manager.

18.4 Case studies of highly available services: 
The gossip architecture, Bayou and Coda

In this section, we consider how to apply replication techniques to make services highly 
available. Our emphasis now is on giving clients access to the service – with reasonable 
response times – for as much of the time as possible, even if some results do not conform 
to sequential consistency. For example, the user on the train described at the beginning 
of this chapter may be willing to cope with temporary inconsistencies between copies of 
data such as diaries if they can continue to work while disconnected and fix any 
problems later.

In Section 18.3, we saw that fault-tolerant systems transmit updates to the replica 
managers in an ‘eager’ fashion: all correct replica managers receive the updates as soon 
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as possible and they reach collective agreement before passing control back to the client. 
This behaviour is undesirable for highly available operation. Instead, the system should 
provide an acceptable level of service using a minimal set of replica managers connected 
to the client. And it should minimize how long the client is tied up while replica 
managers coordinate their activities. Weaker degrees of consistency generally require 
less agreement and so allow shared data to be more available. 

We now examine the design of three systems that provide highly available 
services: the gossip architecture, Bayou and Coda.

18.4.1 The gossip architecture

Ladin et al. [1992] developed what we call the gossip architecture as a framework for 
implementing highly available services by replicating data close to the points where 
groups of clients need it. The name reflects the fact that the replica managers exchange 
‘gossip’ messages periodically in order to convey the updates they have each received 
from clients (see Figure 18.5

Figure 18.5 Query and update operations in a gossip service
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). The architecture is based upon earlier work on databases 
by Fischer and Michael [1982] and Wuu and Bernstein [1984]. It may be used, for 
example, to create a highly available electronic bulletin board or diary service.

A gossip service provides two basic types of operation: queries are read-only 
operations and updates modify but do not read the state (the latter is a more restricted 
definition than the one we have been using). A key feature is that front ends send queries 
and updates to any replica manager they choose, provided it  is available and can provide 
reasonable response times. The system makes two guarantees, even though replica 
managers may be temporarily unable to communicate with one another:

Each client obtains a consistent service over time: In answer to a query, replica 
managers only ever provide a client with data that reflects at least the updates that the 
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client has observed so far. This is even though clients may communicate with 
different replica managers at different times, and therefore could in principle 
communicate with a replica manager that is ‘less advanced’ than one they used 
before.

Relaxed consistency between replicas: All replica managers eventually receive all 
updates and they apply updates with ordering guarantees that make the replicas 
sufficiently similar to suit the needs of the application. It is important to realize that 
while the gossip architecture can be used to achieve sequential consistency, it is 
primarily intended to deliver weaker consistency guarantees. Two clients may 
observe different replicas even though the replicas include the same set of updates,
and a client may observe stale data.

To support relaxed consistency, the gossip architecture supports causal update ordering, 
as we defined it in Section 15.2.1. It also supports stronger ordering guarantees in the 
form of forced (total and causal) and immediate ordering. Immediate-ordered updates 
are applied in a consistent order relative to any other update at all replica managers, 
whether the other update ordering is specified as causal, forced or immediate. Immediate 
ordering is provided in addition to forced ordering, because a forced-order update and a 
causal-order update that are not related by the happened-before relation may be applied 
in different orders at different replica managers.

The choice of which ordering to use is left to the application designer and reflects 
a trade-off between consistency and operation costs. Causal updates are considerably 
less costly than the others and are expected to be used whenever possible. Note that 
queries, which can be satisfied by any single replica manager, are always executed in 
causal order with respect to other operations.

Consider an electronic bulletin board application, in which a client program 
(which incorporates the front end) executes on the user’s computer and communicates 
with a local replica manager. The client sends the user’s postings to the local replica 
manager and the replica manager sends new postings in gossip messages to other replica 
managers. Readers of bulletin boards experience slightly out-of-date lists of posted 
items, but this does not usually matter if the delay is on the order of minutes or hours 
rather than days. Causal ordering could be used for posting items. This would mean that 
in general postings could appear in different orders at different replica managers but 
that, for example, a posting whose subject is ‘Re: oranges’ will always be posted after 
the message about ‘oranges’ to which it refers. Forced ordering could be used for adding 
a new subscriber to a bulletin board, so that there is an unambiguous record of the order 
in which users joined. Immediate ordering could be used for removing a user from a 
bulletin board’s subscription list, so that messages could not be retrieved by that user via 
some tardy replica manager once the deletion operation had returned.

The front end for a gossip service handles operations that the client makes using 
an application-specific API and turns them into gossip operations. In general, client 
operations can either read the replicated state, modify it or both. Since in gossip updates 
purely modify the state, the front end converts an operation that both reads and modifies 
the state into a separate query and update.
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In terms of our basic replication model, an outline of how a gossip service 
processes queries and update operations is as follows: 

1. Request: The front end normally sends requests to only a single replica manager 
at a time. However, a front end will communicate with a different replica manager 
when the one it normally uses fails or becomes unreachable, and it may try one or 
more others if the normal manager is heavily loaded. Front ends, and thus clients, 
may be blocked on query operations. The default arrangement for update operations, 
on the other hand, is to return to the client as soon as the operation has been passed 
to the front end; the front end then propagates the operation in the background. 
Alternatively, for increased reliability, clients may be prevented from continuing 
until the update has been delivered to f + 1 replica managers, ensuring that it will be 
delivered everywhere despite up to f failures.

2. Update response: If the request is an update, then the replica manager replies as 
soon as it has received the update.

3. Coordination: The replica manager that receives a request does not process it until 
it can apply the request according to the required ordering constraints. This may 
involve receiving updates from other replica managers, in gossip messages. No other 
coordination between replica managers is involved.

4. Execution: The replica manager executes the request.

5. Query response: If the request is a query, then the replica manager replies at this 
point.

6. Agreement: The replica managers update one another by exchanging gossip 

messages, which contain the most recent updates they have received. They are said 
to update one another in a lazy fashion, in that gossip messages may be exchanged 
only occasionally, after several updates have been collected, or when a replica 
manager finds out that it is missing an update sent to one of its peers that it needs to 
process a request.

We now describe the gossip system in more detail. We begin by considering the 
timestamps and data structures that front ends and replica managers maintain in order to 
maintain update ordering guarantees. Then, in terms of these, we explain how replica 
managers process queries and updates. Much of the processing of vector timestamps 
needed to maintain causal updates is similar to the causal multicast algorithm of Section 
15.4.3.

The front end’s version timestamp  •  In order to control the ordering of operation 
processing, each front end keeps a vector timestamp that reflects the version of the latest 
data values accessed by the front end (and therefore accessed by the client). This 
timestamp, denoted prev in Figure 18.5, contains an entry for every replica manager. 
The front end sends it in every request message to a replica manager, together with a 
description of the query or update operation itself. When a replica manager returns a 
value as a result of a query operation, it supplies a new vector timestamp (new in Figure 
18.5), since the replicas may have been updated since the last operation. Similarly, an 
update operation returns a vector timestamp (Update ID in Figure 18.5) that is unique to 
the update. Each returned timestamp is merged with the front end’s previous timestamp 
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to record the version of the replicated data that has been observed by the client. (See 
Section 14.4 for a definition of vector timestamp merging.)

Clients exchange data by accessing the same gossip service and by 
communicating directly with one another. Since client-to-client communication can also 
lead to causal relationships between operations applied to the service, it also occurs via 
the clients’ front ends. That way, the front ends can piggyback their vector timestamps 
on messages to other clients. The recipients merge them with their own timestamps in 
order that causal relationships can be inferred correctly. The situation is shown in Figure 
18.6.

Replica manager state  •  Regardless of the application, a replica manager contains the 
following main state components (Figure 18.7):

Value: This is the value of the application state as maintained by the replica 
manager. Each replica manager is a state machine, which begins with a specified 
initial value and is thereafter solely the result of applying update operations to that 
state.

Value timestamp: This is the vector timestamp that represents the updates that are 
reflected in the value. It contains one entry for every replica manager. It is updated 
whenever an update operation is applied to the value.

Update log: All update operations are recorded in this log as soon as they are 
received. A replica manager keeps updates in a log for one of two reasons. The first 
is that the replica manager cannot yet apply the update because it is not yet stable. A 
stable update is one that may be applied consistently with its ordering guarantees 
(causal, forced or immediate). An update that is not yet stable must be held back and 
not yet processed. The second reason for keeping an update in the log is that, even 
though the update has become stable and has been applied to the value, the replica 
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manager has not received confirmation that this update has been received at all other 
replica managers. In the meantime, it propagates the update in gossip messages.

Replica timestamp: This vector timestamp represents those updates that have been 
accepted by the replica manager – that is, placed in the manager’s log. It differs from 
the value timestamp in general, of course, because not all updates in the log are stable.

Executed operation table: The same update may arrive at a given replica manager 
from a front end and in gossip messages from other replica managers. To prevent an 
update being applied twice, the ‘executed operation’ table is kept, containing the 
unique front-end-supplied identifiers of updates that have been applied to the value. 
The replica managers check this table before adding an update to the log.

Timestamp table: This table contains a vector timestamp for each other replica 
manager, filled with timestamps that arrive from them in gossip messages. Replica 
managers use the table to establish when an update has been applied at all replica 
managers. 

The replica managers are numbered 0, 1, 2, .., : the ith element of a vector timestamp 
held by replica manager i corresponds to the number of updates received from front ends 
by i, and the jth component (j i) equals the number of updates received by j and 
propagated to i in gossip messages. So, for example, in a three-manager gossip system 
a value timestamp of (2,4,5) at manager 0 would represent the fact that the value there 
reflects the first two updates accepted from front ends at manager 0, the first four at 
manager 1 and the first five at manager 2. The following sections look in more detail at 
how the timestamps are used to enforce the ordering.
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Query operations  •  The simplest operation to consider is that of a query. Recall that a 
query request q contains a description of the operation and a timestamp q.prev sent by 
the front end. The latter reflects the latest version of the value that the front end has read 
or submitted as an update. Therefore the task of the replica manager is to return a value 
that is at least as recent as this. If valueTS is the replica’s value timestamp, then q can be 
applied to the replica’s value if:

q.prev  valueTS

The replica manager keeps q on a list of pending query operations (that is, a hold-back 
queue) until this condition is fulfilled. It can either wait for the missing updates, which 
should eventually arrive in gossip messages, or request the updates from the replica 
managers concerned. For example, if valueTS is (2,5,5) and q.prev is (2,4,6), it can be 
seen that just one update is missing – from replica manager 2. (The front end that 
submitted q must have contacted a different replica manager previously for it to have 
seen this update, which the replica manager has not seen.)

Once the query can be applied, the replica manager returns valueTS to the front 
end as the timestamp new shown in Figure 18.5. The front end then merges this with its 
timestamp: frontEndTS := merge(frontEndTS, new). The update at replica manager 1 
that the front end has not seen before the query in the example just given (q.prev has 4 
where the replica manager has 5) will be reflected in the update to frontEndTS (and 
potentially in the value returned, depending on the query).

Processing update operations in causal order  •  A front end submits an update request to 
one or more replica managers. Each update request u contains a specification of the 
update (its type and parameters) u.op, the front end’s timestamp u.prev, and a unique 
identifier that the front end generates, u.id. If the front end sends the same request u to 
several replica managers, it uses the same identifier in u each time – so that it will not 
be processed as several different but identical requests. 

When replica manager i receives an update request from a front end it checks that 
it has not already processed this request by looking up its operation identifier in the 
executed operation table and in the records in its log. The replica manager discards the 
update if it has already seen it; otherwise, it increments the ith element in its replica 
timestamp by one, to keep count of the number of updates it has received directly from 
front ends. Then the replica manager assigns to the update request u a unique vector 
timestamp whose derivation is given shortly, and a record for the update is placed in the 
replica manager’s log. If ts is the unique timestamp that the replica manager assigns to 
the update, then the update record is constructed and stored in the log as the following 
tuple:

logRecord := <i, ts, u.op, u.prev, u.id>

Replica manager i derives the timestamp ts from u.prev by replacing u.prev’s ith 
element with the ith element of its replica timestamp (which it has just incremented). 
This action makes ts unique, thus ensuring that all system components will correctly 
record whether or not they have observed the update. The remaining elements in ts are 
copied from u.prev, since it is these values sent by the front end that must be used to 
determine when the update is stable. The replica manager then immediately passes ts
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back to the front end, which merges it with its existing timestamp. Note that a front end 
can submit its update to several replica managers and receive different timestamps in 
return, all of which have to be merged into its timestamp.

The stability condition for an update u is similar to that for queries: 

u.prev  valueTS

This condition states that all the updates on which this update depends – that is, all the 
updates that have been observed by the front end that issued the update – have already 
been applied to the value. If this condition is not met at the time the update is submitted, 
it will be checked again when gossip messages arrive. When the stability condition has 
been met for an update record r, the replica manager applies the update to the value and 
updates the value timestamp and the executed operation table, executed:

value := apply(value, r.u.op)
valueTS := merge(valueTS, r.ts)
executed := executed r.u.id

The first of these three statements represents the application of the update to the value. 
In the second statement, the update’s timestamp is merged with that of the value. In the 
third, the update’s operation identifier is added to the set of identifiers of operations that 
have been executed – which is used to check for repeated operation requests.

Forced and immediate update operations  •  Forced and immediate updates require 
special treatment. Recall that forced updates are totally as well as causally ordered. The 
basic method for ordering forced updates is for a unique sequence number to be 
appended to the timestamps associated with them, and to process them in order of this 
sequence number. As Chapter 15 explained, a general method for generating sequence 
numbers is to use a single sequencer process. But reliance upon a single process is 
inadequate in the context of a highly available service. The solution is to designate a so-
called primary replica manager as the sequencer and to ensure that another replica 
manager can be elected to take over consistently as the sequencer should the primary 
fail. What is required is for a majority of replica managers (including the primary) to 
record which update is next in sequence before the operation can be applied. Then, as 
long as a majority of replica managers survive failure, this ordering decision will be 
honoured by a new primary elected from among the surviving replica managers.

Immediate updates are ordered with respect to forced updates by using the primary 
replica manager to order them in this sequence. The primary also determines which 
causal updates are deemed to have preceded an immediate update. It does this by 
communicating and synchronizing with the other replica managers in order to reach 
agreement. Further details are provided in Ladin et al. [1992].

Gossip messages  •  Replica managers send gossip messages containing information 
concerning one or more updates so that other replica managers can bring their state up-
to-date. A replica manager uses the entries in its timestamp table to estimate which 
updates any other replica manager has not yet received (it is an estimate because that 
replica manager may have received more updates by now).
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A gossip message m consists of two items sent by the source replica manager: its 
log, m.log, and its replica timestamp, m.ts (see Figure 18.7). The replica manager that 
receives a gossip message has three main tasks: 

• to merge the arriving log with its own (it may contain updates not seen by the 
receiver before);

• to apply any updates that have become stable and have not been executed before 
(stable updates in the arrived log may in turn make pending updates become 
stable);

• to eliminate records from the log and entries in the executed operation table when 
it is known that the updates have been applied everywhere and for which there is 
no danger of repeats. Clearing redundant entries from the log and from the 
executed operation table is an important task, since they would otherwise grow 
without limit.

Merging the log contained in an arrived gossip message with the receiver’s log is 
straightforward. Let replicaTS denote the recipient’s replica timestamp. A record r in 
m.log is added to the receiver’s log unless r.ts replicaTS – in which case it is already 
in the log or it has been applied to the value and then discarded. 

The replica manager merges the timestamp of the incoming gossip message with 
its own replica timestamp replicaTS, so that it corresponds to the additions to the log:

replicaTS := merge(replicaTS, m.ts)

When new update records have been merged into the log, the replica manager collects 
the set S of any updates in the log that are now stable. These can be applied to the value 
but care must be taken over the order in which they are applied so that the happened-
before relation is observed. The replica manager sorts the updates in the set according 
to the partial order ‘ ’ between vector timestamps. It then applies the updates in this 
order, smallest first. That is, each r S  is applied only when there is no s S  such that 
s.prev < r.prev.

 The replica manager then looks for records in the log that can be discarded. If the 
gossip message was sent by replica manager j and if tableTS is the table of replica 
timestamps of the replica managers, then the replica manager sets

tableTS[j] := m.ts

The replica manager can now discard any record r in the log for an update that has been 
received everywhere. That is, if c is the replica manager that created the record, then we 
require for all replica managers i:

tableTS i c r.ts c

The gossip architecture also defines how replica managers can discard entries in the 
executed operation table. It is important not to discard these entries too early; otherwise,
a much-delayed operation could mistakenly be applied twice. Ladin et al. [1992] 
provide details of the scheme. In essence, front ends issue acknowledgements to the 
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replies to their updates, so replica managers know when a front end will stop sending the 
update. They assume a maximum update propagation delay from that point.

Update propagation  •  The gossip architecture does not specify when replica managers 
exchange gossip messages, or how a replica manager decides where to send its gossip 
messages. A robust update-propagation strategy is needed if all replica managers are to 
receive all updates in an acceptable time.

The time it takes for all replica managers to receive a given update depends upon 
three factors:

• the frequency and duration of network partitions;

• the frequency with which replica managers send gossip messages;

• the policy for choosing a partner with which to exchange gossip.

The first factor is beyond the system’s control, although users can to some extent 
determine how often they work disconnectedly. 

The desired gossip-exchange frequency may be tuned to the application. Consider 
a bulletin board system shared between several sites. It seems unnecessary for every 
item to be dispatched immediately to all sites. But what if gossip is only exchanged after 
long periods, say once a day? If only causal updates are used, then it is quite possible for 
clients at each site to have their own consistent debates over the same bulletin board, 
oblivious to the discussions at the other sites. Then at, say, midnight, all the debates will 
be merged; but debates on the same topic are likely to be incongruous, when it would 
have been preferable for them to take account of one another. A gossip-exchange period 
of minutes or hours seems more appropriate in this case.

There are several types of partner-selection policy. Golding and Long [1993] 
consider random, deterministic and topological policies for their ‘timestamped anti-
entropy protocol’, which uses a gossip-style update propagation scheme.

Random policies choose a partner randomly but with weighted probabilities so as 
to favour some partners over others – for example, near partners over far partners. 
Golding and Long found that such a policy works surprisingly well under simulations. 
Deterministic policies utilize a simple function of the replica manager’s state to make 
the choice of partner. For example, a replica manager could examine its timestamp table 
and choose the replica manager that appears to be the furthest behind in the updates it 
has received.

Topological policies arrange the replica managers into a fixed graph. One 
possibility is a mesh: replica managers send gossip messages to the four replica 
managers to which it is connected. Another is to arrange the replica managers in a circle, 
with each passing on gossip only to its neighbour (in the clockwise direction, say), so 
that updates from any replica manager eventually traverse the circle. There are many 
other possible topologies, including trees.

Different partner-seclection policies such as these trade off the amount of 
communication against higher transmission latencies and the possibility that a single 
failure will affect other replica managers. The choice depends in practice on the relative 
importance of these factors. For example, the circle topology produces relatively little 
communication but is subject to high transmission latencies since gossip generally has 
to traverse several replica managers. Moreover, if one replica manager fails then the 
circle cannot function and needs to be reconfigured. By contrast, the random selection 
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policy is not susceptible to failures but may produce more variable update propagation 
times.

Discussion of the gossip architecture  •  The gossip architecture is aimed at achieving 
high availability for services. In its favour, this architecture ensures that clients can 
continue to obtain a service even when they are partitioned from the rest of the network, 
as long as at least one replica manager continues to function in their partition. But this 
type of availability is achieved at the expense of enforcing only relaxed consistency 
guarantees. For objects such as bank accounts, where sequential consistency is required, 
a gossip architecture can do no better than the fault-tolerant systems studied in Section 
18.3 and supply the service only in a majority partition.

Its lazy approach to update propagation makes a gossip-based system 
inappropriate for updating replicas in near-real time, such as when users take part in a 
‘real-time’ conference and update a shared document. A multicast-based system would 
be more appropriate for that case.

The scalability of a gossip system is another issue. As the number of replica 
managers grows, so does the number of gossip messages that have to be transmitted and 
the size of the timestamps used. If a client makes a query, then this normally takes two 
messages (between front end and replica manager). If a client makes a causal update 
operation and if each of the R replica managers normally collects G updates into a gossip 
message, then the number of messages exchanged is 2 R 1– G+ . The first term 
represents communication between the front end and replica manager and the second is 
the update’s share of a gossip message sent to the other replica managers. Increasing G
improves the number of messages but worsens the delivery latencies, because the replica 
manager waits for more updates to arrive before propagating them.

One approach to making gossip-based services scalable is to make most of the 
replicas read-only. In other words, these replicas are updated by gossip messages but do 
not receive updates directly from front ends. This arrangement is potentially useful 
where the update/query ratio is small. Read-only replicas can be situated close to client 
groups and updates can be serviced by relatively few central replica managers. Gossip 
traffic is reduced since read-only replicas have no gossip to propagate, and vector 
timestamps need only contain entries for the updateable replicas.

18.4.2 Bayou and the operational transformation approach

The Bayou system [Terry et al. 1995, Petersen et al. 1997] provides data replication for 
high availability with weaker guarantees than sequential consistency, like the gossip 
architecture and the timestamped anti-entropy protocol. As in those systems, Bayou 
replica managers cope with variable connectivity by exchanging updates in pairs, in 
what the designers also call an anti-entropy protocol. But Bayou adopts a markedly 
different approach in that it enables domain-specific conflict detection and conflict 
resolution to take place.

Consider the user who needs to update a diary while working disconnectedly. If 
strict consistency is required, in the gossip architecture updates would have to be 
performed using a forced (totally ordered) operation. But then only users in a majority 
partition could update the diary. The users’ access to the diary might thus be limited,
regardless of whether they in fact are making updates that would break the diary’s 
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integrity. Users who want to fill in a non-conflicting appointment are treated the same 
as users who might have unwittingly double-booked a time slot.

In Bayou, by contrast, the users on the train and at work may make any updates 
they like. All the updates are applied and recorded at whatever replica manager they 
reach. When updates received at any two replica managers are merged during an anti-
entropy exchange, however, the replica managers detect and resolve conflicts. Any 
domain-specific criterion for resolving conflicts between operations may be applied. For 
example, if an executive working offsite, and her secretary have added appointments in 
the same time slot, then a Bayou system detects this after the executive has reconnected 
their laptop. Moreover, it resolves the conflict according to a domain-specific policy. In 
this case, it could, for example, confirm the executive’s appointment and remove the 
secretary’s booking in the slot. Such an effect, in which one or more of a set of 
conflicting operations are undone or altered in order to resolve them, is called an 
operational transformation.

The state that Bayou replicates is held in the form of a database, supporting 
queries and updates (that may insert, modify or delete items in the database). Although 
we shall not concentrate on this aspect here, a Bayou update is a special case of a 
transaction. It consists of a single operation, an invocation of a ‘stored procedure’, that
affects several objects within each replica manager but is carried out with the ACID 
guarantees. Bayou may undo and redo updates to the database as execution proceeds.

The Bayou guarantee is that, eventually, every replica manager receives the same 
set of updates and it eventually applies those updates in such a way that the replica 
managers’ databases are identical. In practice, there may be a continuous stream of 
updates and the databases may never become identical; but they would become identical 
if the updates ceased.

Committed and tentative updates  •  Updates are marked as tentative when they are first 
applied to a database. Bayou arranges that tentative updates are eventually placed in a 
canonical order and marked as committed. While updates are tentative, the system may 
undo and reapply them as necessary to produce a consistent state. Once committed, they 
remain applied in their allotted order. In practice, the committed order can be achieved 
by designating some replica manager as the primary replica manager. In the usual way, 
this decides the committed order as that in which it receives the tentative updates and it 
propagates that ordering information to other replica managers. For the primary, users 
can choose, for example, a fast machine that is usually available, or the replica manager 
on an executive’s laptop, if that user’s updates take priority. 

At any one time, the state of a database replica derives from a (possibly empty) 
sequence of committed updates followed by a (possibly empty) sequence of tentative 
updates. If the next committed update arrives, or if one of the tentative updates that has 
been applied becomes the next committed update, then a reordering of the updates must 
take place. In Figure 18.8, ti  has become committed. All tentative updates after cN  need 
to be undone; ti  is then applied after cN  and t0  to ti 1–  and ti 1+  etc. reapplied after ti .

Dependency checks and merge procedures  •  An update may conflict with some other 
operation that has already been applied. Because of this possibility, every Bayou update 
contains a dependency check and a merge procedure in addition to the operation’s 
specification (the operation type and parameters). All these components of an update are 
domain-specific.
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A replica manager calls the dependency check procedure before applying the 
operation. It checks whether a conflict would occur if the update was applied and it may 
examine any part of the database to do that. For example, consider the case of booking 
an appointment in a diary. The dependency check could, most simply, test for a write-

write conflict: that is, whether another client has filled the required slot. But the 
dependency check could also test for a read-write conflict. For example, it could test that 
the desired slot is empty and that the number of appointments on that day is fewer than 
six.

If the dependency check indicates a conflict, then Bayou invokes the operation’s 
merge procedure. That procedure alters the operation that will be applied so that it 
achieves something similar to the intended effect but avoids a conflict. For example, in 
the case of the diary the merge procedure could choose another slot at a nearby time 
instead or, as we mentioned above, it could use a simple priority scheme to decide which 
appointment is more important and impose that one. The merge procedure may fail to 
find a suitable alteration of the operation, in which case the system indicates an error. 
The effect of a merge procedure is deterministic, however – Bayou replica managers are 
state machines.

Discussion  •  Bayou differs from the other replication schemes that we have considered 
in that it makes replication non-transparent to the application. It exploits knowledge of 
the application’s semantics in order to increase the availability of data while maintaining 
a replicated state that is what we might call eventually sequentially consistent.

This approach has a few disadvantages. The first is the increased complexity for 
the application programmer, who must supply dependency checks and merge 
procedures. Both may be complex to produce, given the potentially large number of 
possible conflicts that need to be detected and resolved. The second disadvantage is the 
increased complexity for the user. Users are expected  to deal not only with data that are 
read while they are still tentative but also with the fact that the operations they specify
may turn out to have been altered later. For example, the user may book a slot in a diary, 
only to find later that the booking has ‘jumped’ to a nearby slot. It is very important that 
the user be given a clear indication of which data are tentative and which are committed. 

The operational transformation approach used by Bayou appears particularly in 
systems to support computer-supported cooperative working (CSCW), where 
conflicting updates between geographically separated users may occur [Kindberg et al. 

1996, Sun and Ellis 1998]. The approach is limited, in practice, to applications where 
conflicts are relatively rare, where the underlying data semantics are relatively simple; 
and where users can cope with tentative information.
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18.4.3 The Coda file system

The Coda file system is a descendent of AFS (see Section 12.4) that aims to address 
several requirements that AFS does not meet – particularly the requirement to provide 
high availability despite disconnected operation. It was developed in a research project 
undertaken by Satyanarayanan and his coworkers at Carnegie-Mellon University 
[Satyanarayanan et al. 1990, Kistler and Satyanarayanan 1992]. The design 
requirements for Coda were derived from experience with AFS at CMU and elsewhere 
involving its use in large-scale distributed systems on both local and wide area 
communication networks.

While the performance and ease of administration of AFS were found to be 
satisfactory under the conditions of use at CMU, it was felt that the limited form of 
replication (restricted to read-only volumes) offered by AFS was bound to become a 
limiting factor at some scale, especially for accessing widely shared files such as 
electronic bulletin boards and other system-wide databases. 

In addition, there was room for improvement in the availability of the service 
offered by AFS. The most common difficulties experienced by users of AFS arose from 
the failure (or scheduled interruption) of servers and network components. The scale of 
the system at CMU was such that a few service failures occurred every day and they 
could seriously inconvenience many users for periods ranging from a few minutes to 
many hours.

Finally, a mode of computer use was emerging that AFS did not cater for – the 
mobile use of portable computers. This led to a requirement to make all of the files 
needed for a user to continue their work available while disconnected from the network 
without resorting to manual methods for managing the locations of files.

Coda aims to meet all three of these requirements under the general heading of 
constant data availability. The aim was to provide users with the benefits of a shared file 
repository but to allow them to rely entirely on local resources when the repository is 
partially or totally inaccessible. In addition to these aims, Coda retains the original goals 
of AFS with regard to scalability and the emulation of UNIX file semantics.

In contrast to AFS, where read-write volumes are stored on just one server, the 
design of Coda relies on the replication of file volumes to achieve a higher throughput 
of file access operations and a greater degree of fault tolerance. In addition, Coda relies 
on an extension of the mechanism used in AFS for caching copies of files at client 
computers to enable those computers to operate when they are not connected to the 
network.

Coda is like Bayou in so far as it follows an optimistic strategy. That is, it allows 
clients to update data while the system is partitioned, on the basis that conflicts are 
relatively unlikely and that they can be fixed if they do occur. Like Bayou, it detects 
conflicts, but unlike Bayou it performs these checks without regard to the semantics of 
the data stored in files. Also unlike Bayou, it provides only limited system support for 
resolving conflicting replicas.

The Coda architecture  •  Coda runs what it calls ‘Venus’ processes at the client 
computers and ‘Vice’ processes at file server computers, adopting the AFS terminology. 
The Vice processes are what we have called replica managers. The Venus processes are 
a hybrid of front ends and replica managers. They play the front end’s role of hiding the 
service implementation from local client processes, but since they manage a local cache 
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of files they are also replica managers (although of a different type to the Vice 
processes).

The set of servers holding replicas of a file volume is known as the volume storage 

group (VSG). At any instant, a client wishing to open a file in such a volume can access 
some subset of the VSG, known as the available volume storage group (AVSG). The 
membership of the AVSG varies as servers become accessible or are made inaccessible 
by network or server failures.

Normally, Coda file access proceeds in a similar manner to AFS, with cached 
copies of files being supplied to the client computers by any one of the servers in the 
current AVSG. As in AFS, clients are notified of changes via a callback promise 

mechanism, but this now depends on an additional mechanism for the distribution of 
updates to each replica. On close, copies of modified files are broadcast in parallel to all 
of the servers in the AVSG.

In Coda, disconnected operation is said to occur when the AVSG is empty. This 
may be due to network or server failures, or it may be a consequence of the deliberate 
disconnection of the client computer, as in the case of a laptop. Effective disconnected 
operation relies on the presence in the client computer’s cache of all of the files that are 
required for the user’s work to proceed. To achieve this, the user must cooperate with 
Coda to generate a list of files that should be cached. A tool is provided that records a 
historical list of file usage while connected, and this serves as a basis for predicting 
usage while disconnected.

It is a principle of the design of Coda that the copies of files residing on servers 
are more reliable than those residing in the caches of client computers. Although it might 
be possible logically to construct a file system that relies entirely on cached copies of 
files in client computers, it is unlikely that a satisfactory quality of service would be 
achieved. The Coda servers exist to provide the necessary quality of service. The copies 
of files residing in client computer caches are regarded as useful only as long as their 
currency can be periodically revalidated against the copies residing in servers. In the 
case of disconnected operation, revalidation occurs when disconnected operation ceases 
and the cached files are reintegrated with those in the servers. In the worst case, this may 
require some manual intervention to resolve inconsistencies or conflicts.

The replication strategy  •  Coda’s replication strategy is optimistic – it allows 
modification of files to proceed when the network is partitioned or during disconnected 
operation. It relies on the attachment to each version of a file of a Coda version vector

(CVV). A CVV is a vector timestamp with one element for each server in the relevant 
VSG. Each element of the CVV is an estimate of the number of modifications performed 
on the version of the file that is held at the corresponding server. The purpose of the 
CVVs is to provide sufficient information about the update history of each file replica 
to enable potential conflicts to be detected and submitted for manual intervention and 
for stale replicas to be updated automatically. 

If the CVV at one of the sites is greater than or equal to all the corresponding 
CVVs at the other sites (Section 14.4 defines the meaning of v1 v2 for vector 
timestamps v1  and v2 ), then there is no conflict. Older replicas (with strictly smaller 
timestamps) include all the updates in a newer replica and they can automatically be 
brought up-to-date with it.
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When this is not the case – that is, when neither v1 v2  nor v2 v1  holds for two 
CVVs –  then there is a conflict: each replica reflects at least one update that the other 
does not reflect. Coda does not, in general, resolve conflicts automatically. The file is 
marked as ‘inoperable’ and the owner of the file is informed of the conflict. 

When a modified file is closed, each site in the current AVSG is sent an update 
message by the Venus process at the client, containing the current CVV and the new 
contents for the file. The Vice process at each site checks the CVV and, if it is greater 
than the one currently held, stores the new contents for the file and returns a positive 
acknowledgement. The Venus process then computes a new CVV with modification 
counts increased for the servers that responded positively to the update message and 
distributes the new CVV to the members of the AVSG. 

Since the message is sent only to the members of the AVSG and not the VSG, 
servers that are not in the current AVSG do not receive the new CVV. Any CVV will 
therefore always contain an accurate modification count for the local server, but the 
counts for non-local servers will in general be lower bounds, since they will be updated 
only when the server receives an update message.

Example: Consider a sequence of modifications to a file F in a volume that is 
replicated at three servers, S

1
, S

2
 and S

3
. The VSG for F is {S

1
, S

2
, S

3
}. F is modified 

at about the same time by two clients, C
1

and C
2
. Because of a network fault, C

1
 can 

access only S
1
 and S

2
 (C

1
’s AVSG is {S

1
, S

2
}) and C

2
 can access only S

3
(C

2
’s

AVSG is {S
3
}).

1. Initially, the CVVs for F at all three servers are the same – say, [1,1,1]. 

2. C
1
 runs a process that opens F, modifies it and then closes it. The Venus process 

at C
2
 broadcasts an update message to its AVSG, {S

1
, S

2
}, finally resulting in 

new versions of F and a CVV [2,2,1] at S
1

and S
2
 but no change at S

3
.

3. Meanwhile, C
2
 runs two processes, each of which opens F, modifies it and then 

closes it. The Venus process at C
2
 broadcasts an update message to its AVSG, 

{S
3
}, after each modification, finally resulting in a new version of F and a CVV 

[1,1,3] at S
3
.

4. At some later time, the network fault is repaired, and C
2
 makes a routine check 

to see whether the inaccessible members of the VSG have become accessible 
(the process by which such checks are made is described later) and discovers that 
S

1
and S

2
 are now accessible. It modifies its AVSG to {S

1
, S

2
, S

3
} for the volume 

containing F and requests the CVVs for F from all members of the new AVSG. 
When they arrive, C

2
discovers that S

1
and S

2
 each have CVVs [2,2,1] whereas 

S
3
 has [1,1,3]. This represents a conflict requiring manual intervention to bring 

F up-to-date in a manner that minimizes the loss of update information.

On the other hand, consider a similar but simpler scenario that follows the same 
sequence of events as the one above, but omitting item (3), so that F is not modified 
by C

2
. The CVV at S

3
 therefore remains unchanged as [1,1,1], and when the network 

fault is repaired, C
2
 discovers that the CVVs at S

1
and S

2
 ([2,2,1]) dominate that at 

S
3
. The version of the file at S

1
or S

2
 should replace that at S

3
.

The box below contains an example illustrating the use of CVVs to manage the 
updating of a file replicated at three sites. Further details on the use of CVVs for the 
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management of updates can be found in Satyanarayanan et al. [1990]. CVVs are based 
on the replication techniques used in the Locus system [Popek and Walker 1985].

In normal operation, the behaviour of Coda appears similar to that of AFS. A 
cache miss is transparent to users and only imposes a performance penalty. The 
advantages deriving from the replication of some or all file volumes on multiple servers 
are:

• The files in a replicated volume remain accessible to any client that can access 
at least one of the replicas.

• The performance of the system can be improved by sharing some of the load 
of servicing client requests on a replicated volume between all of the servers 
that hold replicas.

In disconnected operation (when none of the servers for a volume can be accessed by 
the client) a cache miss prevents further progress and the computation is suspended until 
the connection is resumed or the user aborts the process. It is therefore important to load 
the cache before disconnected operation commences so that cache misses can be 
avoided.

In summary, compared with AFS, Coda enhances availability both by the 
replication of files across servers and by the ability of clients to operate entirely out of 
their caches. Both methods depend upon the use of an optimistic strategy for the 
detection of update conflicts in the presence of network partitions. The mechanisms are 
complementary and independent of each other. For example, a user can exploit the 
benefits of disconnected operation even though the required file volumes are stored on 
a single server.

Update semantics  •  The currency guarantees offered by Coda when a client opens a file 
are weaker than for AFS, reflecting the optimistic update strategy. The single server S
referred to in the currency guarantees for AFS is replaced by a set of servers S (the file’s 
VSG) and the client C can access a subset of servers s  (the AVSG for the file seen by C).

Informally, the guarantee offered by a successful open in Coda is that it provides 
the most recent copy of F from the current AVSG, and if no server is accessible, a locally 
cached copy of F is used if one is available. A successful close guarantees that the file 
has been propagated to the currently accessible set of servers, or, if no server is 
available, that the file has been marked for propagation at the earliest opportunity.

A more precise definition of these guarantees, taking into account the effect of lost 
callbacks, can be made using an extension of the notation used for AFS. In each 
definition except the last there are two cases: the first, beginning s  Ø, refers to all 
situations in which the AVSG is not empty, and the second deals with disconnected 
operation:

after a successful open: (s  Ø and (latest(F, s , 0)

   or (latest(F, s , T) and lostCallback(s , T) and

   inCache(F))))

or (s = Ø and inCache(F))

after a failed open: (s  Ø and conflict(F, s ))

or (s = Ø and ¬ inCache(F))
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after a successful close: (s  Ø and updated(F, s ))

or (s  = Ø)

after a failed close: s  Ø and conflict(F, s )

This model assumes a synchronous system: T is the longest time for which a client can 
remain unaware of an update elsewhere to a file that is in its cache; latest(F, s , T)
denotes the fact that the current value of F at C was the latest across all the servers in s
at some instant in the last T seconds and that there were no conflicts among the copies 
of F at that instant; lostCallback(s , T) means that a callback was sent by some member 
of s  in the last T seconds and was not received at C; and conflict(F, s ) means that the 
values of F at some servers in s  are currently in conflict.

Accessing replicas  •  The strategy used on open and close to access the replicas of a file 
is a variant of the read-one/write-all approach described in Section 18.5. On open, if a 
copy of the file is not present in the local cache the client identifies a preferred server 
from the AVSG for the file. The preferred server may be chosen at random, or on the 
basis of performance criteria such as physical proximity or server load. The client 
requests a copy of the file attributes and contents from the preferred server, and on 
receiving it, it checks with all the other members of the AVSG to verify that the copy is 
the latest available version. If not, a member of the AVSG with the latest version is made 
the preferred site, the file contents are refetched and the members of the AVSG are 
notified that some members have stale replicas. When the fetch has been completed, a 
callback promise is established at the preferred server. 

When a file is closed at a client after modification, its contents and attributes are 
transmitted in parallel to all the members of the AVSG using a multicast remote 
procedure calling protocol. This maximizes the probability that every replication site for 
a file has the current version at all times. It doesn’t guarantee it, because the AVSG does 
not necessarily include all the members of the VSG. It minimizes the server load by 
giving clients the responsibility for propagating changes to the replication sites in the 
normal case (servers are involved only when a stale replica is discovered on open). 

Since maintaining callback state in all the members of an AVSG would be 
expensive, the callback promise is maintained only at the preferred server. But this 
introduces a new problem: the preferred server for one client need not be in the AVSG 
of another client. If this is the case, an update by the second client will not cause a 
callback to the first client. The solution adopted to this problem is discussed in the next 
subsection.

Cache coherence  •  The Coda currency guarantees stated above mean that the Venus 
process at each client must detect the following events within T seconds of their 
occurrence:

• enlargement of an AVSG (due to the accessibility of a previously inaccessible 
server);

• shrinking of an AVSG (due to a server becoming inaccessible);

• a lost callback event.

To achieve this, Venus sends a probe message to all the servers in VSGs of the files that 
it has in its cache every T seconds. Responses will be received only from accessible 
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servers. If Venus receives a response from a previously inaccessible server it enlarges 
the corresponding AVSG and drops the callback promises on any files that it holds from 
the relevant volume. This is done because the cached copy may no longer be the latest 
version available in the new AVSG. 

If it fails to receive a response from a previously accessible server Venus shrinks 
the corresponding AVSG. No callback changes are required unless the shrinkage is 
caused by the loss of a preferred server, in which case all callback promises from that 
server must be dropped. If a response indicates that a callback message was sent but not 
received, the callback promise on the corresponding file is dropped.

We are now left with the problem, mentioned above, of updates that are missed by 
a server because it is not in the AVSG of a different client that performs an update. To 
deal with this case, Venus is sent a volume version vector (volume CVV) in response to 
each probe message. The volume CVV contains a summary of the CVVs for all of the 
files in the volume. If Venus detects any mismatch between the volume CVVs then some 
members of the AVSG must have some file versions that are not up-to-date. Although 
the outdated files may not be the ones that are in its local cache, Venus makes a 
pessimistic assumption and drops the callback promises on all of the files that it holds 
from the relevant volume.

Note that Venus only probes servers in the VSGs of files for which it holds cached 
copies and that a single probe message serves to update the AVSGs and check the 
callbacks for all of the files in a volume. This, combined with a relatively large value for 
T (on the order of 10 minutes in the experimental implementation), means that the 
probes are not an obstacle to the scalability of Coda to large numbers of servers and wide
area networks.

Disconnected operation  •  During brief disconnections, such as those that may occur 
because of unexpected service interruptions, the least recently used cache replacement 
policy normally adopted by Venus may be sufficient to avoid cache misses on the 
disconnected volumes. But it is unlikely that a client could operate in disconnected mode 
for extended periods without generating references to files or directories that are not in 
the cache unless a different policy is adopted.

Coda therefore allows users to specify a prioritized list of files and directories that 
Venus should strive to retain in the cache. Objects at the highest level are identified as 
sticky and these must be retained in the cache at all times. If the local disk is large enough 
to accommodate all of them, the user is assured that they will remain accessible. Since 
it is often difficult to know exactly what file accesses are generated by any sequence of 
user actions, a tool is provided that enables the user to bracket a sequence of actions; 
Venus notes the file references generated by the sequence and flags them with a given 
priority.

When disconnected operation ends, a process of reintegration begins. For each 
cached file or directory that has been modified, created or deleted during disconnected 
operation, Venus executes a sequence of update operations to make the AVSG replicas 
identical to the cached copy. Reintegration proceeds top-down from the root of each 
cached volume.

Conflicts may be detected during reintegration due to updates to AVSG replicas 
by other clients. When this occurs, the cached copy is stored in a temporary location on 
the server, and the user that initiated the reintegration is informed. This approach is 
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based on the design philosophy adopted in Coda, which assigns priority to server-based 
replicas over cached copies. The temporary copies are stored in a covolume, which is 
associated with each volume on a server. Covolumes resemble the lost+found

directories found in conventional UNIX systems. They mirror just those parts of the file 
directory structure needed to hold the temporary data. Little additional storage is 
required, because the covolumes are almost empty.

Performance  •  Satyanarayanan et al. [1990] compared the performance of Coda with 
AFS under benchmark loads designed to simulate user populations ranging from 5 to 50
typical AFS users. 

With no replication, there is no significant difference between the performance of 
AFS and that of Coda. With threefold replication, the time taken for Coda to perform a 
benchmark load equivalent to 5 typical users exceeds that of AFS without replication by 
only 5%. However, with threefold replication and a load equivalent to 50 users, the time 
required to complete the benchmark is increased by 70%, whereas that for AFS without 
replication is increased by only 16%. This difference is attributed only in part to the 
overheads associated with replication – differences in the tuning of the implementation 
are said to account for part of the difference in performance.

Discussion  •  We pointed out above that Coda is similar to Bayou in that it also employs 
an optimistic approach to achieving high availability (although they differ in several 
other ways, not least because one manages files and the other databases). We also 
described how Coda uses CVVs to check for conflicts, without regard to the semantics 
of the data stored in files. The approach can detect potential write-write conflicts but not 
read-write conflicts. These are ‘potential’ write-write conflicts because at the level of 
the application semantics there may be no actual conflict: clients may have updated 
different objects in the file compatibly such that a simple automatic merge would be 
possible.

Coda’s overall approach of semantics-free conflict detection and manual 
resolution is sensible in many cases, especially in applications that require human 
judgement or in systems with no knowledge of the data’s semantics. 

Directories are a special case in Coda. Automatically maintaining the integrity of 
these key objects through conflict resolution is sometimes possible, since their 
semantics are relatively simple: the only changes that can be made to directories are the 
insertion or deletion of directory entries. Coda incorporates its own method for resolving 
directories. It has the same effect as Bayou’s approach of operational transformation, but 
Coda merges the state of conflicting directories directly, since it has no record of the 
operations that clients performed.

Replication in Dynamo   •  Section 16.7 introduced Dynamo, the storage service that 
Amazon uses for applications such as shopping carts that require only key/value access. 
In Dynamo [DeCandia et al. 2007], data is partitioned and replicated; all updates reach 
all replicas eventually.

Like Bayou and Coda, Dynamo uses optimistic replication techniques; changes 
are allowed to propagate to replicas in the background and concurrent, disconnected 
work is tolerated.  This approach can lead to conflicting changes that must be detected 
and resolved.

In Dynamo, writes are always accepted and written as immutable versions, so that 
customers can always add and remove items to and from their shopping carts. 
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Vector timestamps are used to determine causal ordering between different 
versions of the same object. The timestamps are compared as described in Section 14.4. 
When the vector timestamp of one version is less than that of another, the earlier version 
is discarded. Otherwise, the two versions conflict and must be resolved. Both versions 
of the data are stored and then given to a client as the results of a read operation.

This client is responsible for resolving the conflict. Dynamo provides both the 
application-level approach of Bayou and the system-level approach of Coda. The former 
approach is used for shopping carts, where all the add item operations in conflicting 
versions are merged and sometimes a deleted item can reappear. When application 
semantics cannot be used, Dynamo uses simple timestamp-based resolution –  the object 
with the largest physical timestamp value is chosen as the correct version. 

18.5 Transactions with replicated data

So far in this chapter we have considered systems in which clients request single 
operations at a time on replicated sets of objects. Chapters 16 and 17 explained that 
transactions are sequences of one or more operations, applied in such a way as to enforce 
the ACID properties. As with the systems in Section 18.4, objects in transactional 
systems may be replicated to increase both availability and performance. 

From a client’s viewpoint, a transaction on replicated objects should appear the 
same as one with non-replicated objects. In a non-replicated system, transactions appear 
to be performed one at a time in some order. This is achieved by ensuring a serially 
equivalent interleaving of clients’ transactions. The effect of transactions performed by 
clients on replicated objects should be the same as if they had been performed one at a 
time on a single set of objects. This property is called one-copy serializability. It is 
similar to, but not to be confused with, sequential consistency. Sequential consistency 
considers valid executions without any notion of aggregating the client operations into 
transactions.

Each replica manager provides concurrency control and recovery of its own 
objects. In this section, we assume that two-phase locking is used for concurrency 
control. 

Recovery is complicated by the fact that a failed replica manager is a member of 
a collection and that the other members continue to provide a service during the time that 
it is unavailable. When a replica manager recovers from a failure, it uses information 
obtained from the other replica mangers to restore its objects to their current values, 
taking into account all the changes that have occurred during the time it was unavailable.

This section first introduces the architecture for transactions with replicated data. 
Architectural questions are whether a client request can be addressed to any of the 
replica managers; how many replica managers are required for the successful 
completion of an operation; whether the replica manager contacted by a client can defer 
the forwarding of requests until a transaction is committed; and how to carry out a two-
phase commit protocol.

The implementation of one-copy serializability is illustrated by read-one/write-all

– a simple replication scheme in which read operations are performed by a single replica 
manager and write operations are performed by all of them. 
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The section then discusses the problems of implementing replication schemes in 
the presence of server crashes and recovery. It introduces available copies replication, 
a variant of the read-one/write-all replication scheme in which read operations are 
performed by any single replica manager and write operations are performed by all of 
those that are available.

Finally, the section presents three replication schemes that work correctly when 
the collection of replica managers is divided into subgroups by a network partition:

• Available copies with validation: Available copies replication is applied in each 
partition. When a partition is repaired, a validation procedure is applied and any 
inconsistencies are dealt with.

• Quorum consensus: A subgroup must have a quorum (meaning that it has 
sufficient members) in order to be allowed to continue providing a service in the 
presence of a partition. When a partition is repaired (and when a replica manager 
restarts after a failure), replica managers get their objects up-to-date by means of 
recovery procedures.

• Virtual partition: A combination of quorum consensus and available copies. If a 
virtual partition has a quorum, it can use available copies replication. 

18.5.1 Architectures for replicated transactions 

As with the range of systems we have already considered in previous sections, a front 
end may either multicast client requests to groups of replica managers or send each 
request to a single replica manager, which is then responsible for processing the request 
and responding to the client. Wiesmann et al. [2000] and Schiper and Raynal [1996] 
consider the case of multicast requests, and we shall not deal with it here. Henceforth, 
we assume that a front end sends client requests to one of the group of replica managers 
of a logical object. In the primary copy approach, all front ends communicate with a 
distinguished ‘primary’ replica manager to perform an operation, and that replica 
manager keeps the backups up-to-date. Alternatively, front ends may communicate with 
any replica manager to perform an operation – but coordination between the replica 
managers is consequently more complex.

The replica manager that receives a request to perform an operation on a particular 
object is responsible for getting the cooperation of the other replica managers in the 
group that have copies of that object. Different replication schemes have different rules 
as to how many of the replica managers in a group are required for the successful 
completion of an operation. For example, in the read-one/write-all scheme, a read

request can be performed by a single replica manager, whereas a write request must be 
performed by all the replica managers in the group, as shown in Figure 18.9 (there can 
be different numbers of replicas of the various objects). Quorum consensus schemes are 
designed to reduce the number of replica managers that must perform update operations, 
but at the expense of increasing the number of replica managers required to perform
read-only operations.

Another issue is whether the replica manager contacted by a front end should defer 
the forwarding of update requests to other replica managers in the group until after a 
transaction commits – the so-called lazy approach to update propagation – or, 
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conversely, whether replica managers should forward each update request to all the 
necessary replica managers within the transaction and before it commits – the eager

approach. The lazy approach is an attractive alternative because it reduces the amount 
of communication between the replica managers that takes place before responding to 
the updating client. However, concurrency control must also be considered. The lazy 
approach is sometimes used in primary copy replication (see below), where a single 
primary replica manager serializes the transactions. But if several different transactions 
may attempt to access the same objects at different replica managers in a group, to 
ensure that the transactions are correctly serialized at all the replica managers in the 
group, each replica manager needs to know about the requests performed by the others. 
The eager approach is the only one available in that case.

The two-phase commit protocol  •  The two-phase commit protocol becomes a two-level 
nested two-phase commit protocol. As before, the coordinator of a transaction 
communicates with the workers. But if either the coordinator or a worker is a replica 
manager, it will communicate with the other replica managers to which it passed 
requests during the transaction. 

That is, in the first phase, the coordinator sends canCommit? requests to the 
workers, which pass them on to the other replica managers and collect their replies 
before replying to the coordinator. In the second phase, the coordinator sends the 
doCommit or doAbort request, which is passed on to the members of the groups of 
replica managers.

Primary copy replication  •  Primary copy replication may be used in the context of 
transactions. In this scheme, all client requests (whether or not they are read-only) are 
directed to a single primary replica manager (see Figure 18.3). For primary copy 
replication, concurrency control is applied at the primary. To commit a transaction, the 
primary communicates with the backup replica managers and then, in the eager 
approach, replies to the client. This form of replication allows a backup replica manager 
to take over consistently if the primary fails. In the lazy alternative, the primary responds 
to front ends before it has updated its backups. In that case, a backup that replaces a 
failed front end will not necessarily have the latest state of the database.
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Read-one/write-all  •  We use this simple replication scheme to illustrate how two-phase 
locking at each replica manager can be used to achieve one-copy serializability, where 
front ends may communicate with any replica manager. Every write operation must be 
performed at all of the replica managers, each of which sets a write lock on the object 
affected by the operation. Each read operation is performed by a single replica manager, 
which sets a read lock on the object affected by the operation.

Consider pairs of operations of different transactions on the same object: any pair 
of write operations will require conflicting locks at all of the replica managers, while a 
read operation and a write operation will require conflicting locks at a single replica 
manager. Thus one-copy serializability is achieved. 

18.5.2 Available copies replication 

Simple read-one/write-all replication is not a realistic scheme, because it cannot be 
carried out if some of the replica managers are unavailable, either because they have 
crashed or because of a communication failure. The available copies scheme is designed 
to allow for some replica managers being temporarily unavailable. The strategy is that a 
client’s read request on a logical object may be performed by any available replica 
manager but that a client’s update request must be performed by all available replica 
managers in the group with copies of the object. The idea of the ‘available members of 
a group of replica managers’ is similar to Coda’s available volume storage group,
described in Section 18.4.3.

In the normal case, client requests are received and performed by a functioning 
replica manager. read requests can be performed by the replica manager that receives 
them. write requests are performed by the receiving replica manager and all the other 
available replica managers in the group. For example, in Figure 18.10, the getBalance

operation of transaction T is performed by X, whereas its deposit operation is performed 
by M, N and P. Concurrency control at each replica manager affects the operations 
performed locally. For example, at X, transaction T has read A and therefore transaction 
U is not allowed to update A with the deposit operation until transaction T has 
completed. So long as the set of available replica managers does not change, local 
concurrency control achieves one-copy serializability in the same way as in read-
one/write-all replication. Unfortunately, this is not the case if a replica manager fails or 
recovers during the progress of the conflicting transactions.

Replica manager failure  •  We assume that replica managers fail benignly by crashing. 
However, a crashed replica manager is replaced by a new process, which recovers the 
committed state of the objects from a recovery file. Front ends use timeouts to decide 
that a replica manager is not currently available. When a client makes a request to a 
replica manager that has crashed, the front end times out and retries the request at 
another replica manager in the group. If the request is received by a replica manager at 
which the object is out of date because the replica manager has not completely recovered 
from failure, the replica manager rejects the request and the front end retries the request 
at another replica manager in the group.

One-copy serializability requires that crashes and recoveries be serialized with 
respect to transactions. According to whether it can access an object or not, a transaction 
observes that a failure occurs after it has finished or before it started. One-copy 
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serializability is not achieved when different transactions make conflicting failure 
observations.

Consider the case in Figure 18.10 where the replica manager X fails just after T
has performed getBalance and replica manager N fails just after U has performed 
getBalance. Assume that both of these replica managers fail before T and U have 
performed their deposit operations. This implies that T’s deposit will be performed at 
replica managers M and P and U’s deposit will be performed at replica manager Y.
Unfortunately, the concurrency control on A at replica manager X does not prevent 
transaction U from updating A at replica manager Y. Neither does the concurrency 
control on B at replica manager N prevent transaction T updating B at replica managers 
M and P.

Figure 18.10 Available copies
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This is contrary to the requirement for one-copy serializability. If these operations 
were to be performed on single copies of the objects, they would be serialized either with 
transaction T before U or with transaction U before T. This ensures that one of the 
transactions will read the value set by the other. Local concurrency control on copies of 
objects is not sufficient to ensure one-copy serializability in the available copies 
replication scheme. 

As write operations are directed to all available copies, local concurrency control 
does ensure that conflicting writes on an object are serialized. In contrast, a read by one 
transaction and a write by another do not necessarily affect the same copy of an object. 
Therefore, the scheme requires additional concurrency control to prevent the 
dependencies between a read operation of one transaction and a write operation of 
another transaction forming a cycle. Such dependencies cannot arise if the failures and 
recoveries of replicas of objects are serialized with respect to transactions.

Local validation  •  We refer to the additional concurrency control procedure as local 
validation. The local validation procedure is designed to ensure that any failure or 
recovery event does not appear to happen during the progress of a transaction. In our 
example, as T has read from an object at X, X’s failure must be after T. Similarly, as T
observes the failure of N when it attempts to update the object, N’s failure must be before 
T. That is:
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N fails T reads object A at X; T writes object B at M and P T commits X fails

It can also be argued for transaction U that: 

X fails U reads object B at N; U writes object A at Y U commits N fails

The local validation procedure ensures that two such incompatible sequences cannot 
both occur. Before a transaction commits it checks for any failures (and recoveries) of 
replica managers of objects it has accessed. In the example, transaction T would check 
that N is still unavailable and X, M and P are still available. If this is the case, T can 
commit. This implies that X fails after T validated and before U validated. In other 
words, U’s validation is after T’s validation. U’s validation fails because N has already 
failed.

Whenever a transaction has observed a failure, the local validation procedure 
attempts to communicate with the failed replica managers to ensure that they have not 
yet recovered. The other part of the local validation, which is testing that replica 
managers have not failed since objects were accessed, can be combined with the two-
phase commit protocol.

Available copies algorithms cannot be used in environments in which functioning 
replica managers are unable to communicate with one another.

18.5.3 Network partitions 

Replication schemes need to take into account the possibility of network partitions. A 
network partition separates a group of replica managers into two or more subgroups in 
such a way that the members of one subgroup can communicate with one another but 
members of different subgroups cannot communicate with one another. For example, in 
Figure 18.11

Figure 18.11 Network partition

Client + front end

B

withdraw(B, 4)

Client + front end

Replica managers

deposit(B,3);

UT
Network
partition

B

B B

, the replica managers receiving the deposit request cannot send it to the 
replica managers receiving the withdraw request. 

Replication schemes are designed with the assumption that partitions will 
eventually be repaired. Therefore, the replica managers within a single partition must 
ensure that any requests that they execute during a partition will not make the set of 
replicas inconsistent when the partition is repaired. 
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Davidson et al. [1985] discuss many different approaches, which they categorize 
as being either optimistic or pessimistic with regard to whether inconsistencies are likely 
to occur. The optimistic schemes do not limit availability during a partition, whereas 
pessimistic schemes do.

The optimistic approaches allow updates in all partitions – this can lead to 
inconsistencies between partitions, which must be resolved when the partition is 
repaired. An example of this approach is a variant of the available copies algorithm in 
which updates are allowed in partitions and, after the partition has been repaired, the 
updates are validated – any updates that break the one-copy serializability criterion are 
aborted.

The pessimistic approach limits availability even when there are no partitions, but 
it prevents any inconsistencies occurring during partitions. When a partition is repaired, 
all that needs to be done is to update the copies of the objects. The quorum consensus 
approach is pessimistic. It allows updates in the partition that has the majority of replica 
managers and propagates the updates to the other replica managers when the partition is 
repaired.

18.5.4 Available copies with validation

The available copies algorithm is applied within each partition. This optimistic approach 
maintains the normal level of availability for read operations, even during partitions. 
When a partition is repaired, the possibly conflicting transactions that have taken place 
in the separate partitions are validated. If the validation fails, then some steps must be 
taken to overcome the inconsistencies. If there had been no partition, one of a pair of 
transactions with conflicting operations would have been delayed or aborted. 
Unfortunately, as there has been a partition, pairs of conflicting transactions have been 
allowed to commit in different partitions. The only choice after the event is to abort one 
of them. This requires making changes in the objects and in some cases, compensating 
effects in the real world, such as dealing with overdrawn bank accounts. The optimistic 
approach is only feasible with applications where such compensating actions can be 
taken.

Version vectors can be used to validate conflicts between pairs of write

operations. These are used in the Coda file system and are described in Section 18.4.3.
This approach cannot detect read-write conflicts but works well in file systems where 
transactions tend to access a single file and read-write conflicts are unimportant. It is not 
suitable for applications such as our banking example where read-write conflicts are 
important.

Davidson [1984] used precedence graphs to detect inconsistencies between 
partitions. Each partition maintains a log of the objects affected by the read and write

operations of transactions. This log is used to construct a precedence graph whose nodes 
are transactions and whose edges represent conflicts between the read and write

operations of transactions. Such a graph will not contain any cycles, since concurrency 
control has been applied within the partition. The validation procedure takes the 
precedence graphs from the partitions and adds edges, representing conflicts, between 
transactions in different partitions. If the resulting graph contains cycles, then the 
validation fails.
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18.5.5 Quorum consensus methods

One way of preventing transactions in different partitions from producing inconsistent 
results is to make a rule that operations can be carried out within only one of the 
partitions. As the replica managers in different partitions cannot communicate with one 
another, the subgroup of replica managers within each partition must be able to decide 
independently whether they are allowed to carry out operations. A quorum is a subgroup 
of replica managers whose size gives it the right to carry out operations. For example, if 
having a majority is the criterion, a subgroup that has the majority of the members of a 
group would form a quorum because no other subgroup could have a majority.

In quorum consensus replication schemes an update operation on a logical object 
may be completed successfully by a subgroup of its group of replica managers. The 
other members of the group will therefore have out-of-date copies of the object. Version 
numbers or timestamps may be used to determine whether copies are up-to-date. If 
versions are used, the initial state of an object is the first version, and after each change 
we have a new version. Each copy of an object has a version number, but only the copies 
that are up-to-date have the current version number, whereas out-of-date copies have 
earlier version numbers. Operations should be applied only to copies with the current 
version number. 

Gifford [1979] developed a file replication scheme in which a number of ‘votes’ 
are assigned to each physical copy at a replica manager of a single logical file. A vote 
can be regarded as a weighting related to the desirability of using a particular copy. Each 
read operation must first obtain a read quorum of R votes before it can proceed to read 
from any up-to-date copy, and each write operation must obtain a write quorum of W
votes before it can proceed with an update operation. R and W are set for a group of 
replica managers such that 

W > half the total votes

R + W > total number of votes for the group

This ensures that any pair consisting of a read quorum and a write quorum or two write 
quora must contain common copies. Therefore if there is a partition, it is not possible to 
perform conflicting operations on the same copy, but in different partitions.

To perform a read operation, a read quorum is collected by making sufficient 
version number enquiries to find a set of copies, the sum of whose votes is not less than 
R. Not all of these copies need be up-to-date. Since each read quorum overlaps with 
every write quorum, every read quorum is certain to include at least one current copy. 
The read operation may be applied to any up-to-date copy. 

To perform a write operation, a write quorum is collected by making sufficient 
version number enquiries to find a set of replica managers with up-to-date copies, the 
sum of whose votes is not less than W. If there are insufficient up-to-date copies, then a 
non-current file is replaced with a copy of the current file, to enable the quorum to be 
established. The updates specified in the write operation are then applied by each replica 
manager in the write quorum, the version number is incremented and completion of the 
write is reported to the client. 

The files at the remaining available replica managers are then updated by 
performing the write operation as a background task. Any replica manager whose copy 
of the file has an older version number than the one used by the write quorum updates it 



810 CHAPTER 18  REPLICATION

by replacing the entire file with a copy obtained from a replica manager that is up-to-
date.

Two-phase read-write locking may be used for concurrency control in Gifford’s 
replication scheme. The preliminary version number enquiry to obtain the read quorum, 
R, causes read locks to be set at each replica manager contacted. When a write operation 
is applied to the write quorum, W, a write lock is set at each replica manager involved. 
(Locks are applied with the same granularity as version numbers.) The locks ensure one-
copy serializability, as any read quorum overlaps with any write quorum and any two 
write quora overlap. 

Configurability of groups of replica managers  •  An important property of the weighted 
voting algorithm is that groups of replica managers can be configured to provide 
different performance or reliability characteristics. Once the general reliability and 
performance of a group of replica managers is established by its voting configuration, 
the reliability and performance of write operations may be increased by decreasing W
and similarly for reads by decreasing R.

The algorithm can also allow for the use of copies of files on local disks at client 
computers as well as those at file servers. The copies of files in client computers are 
regarded as weak representatives and are always allocated zero votes. This ensures that 
they are not included in any quorum. A read operation may be performed at any up-to-
date copy, once a read quorum has been obtained. Therefore a read operation may be 
carried out on the local copy of the file if it is up-to-date. Weak representatives can be 
used to speed up read operations. 

An example from Gifford  •  Gifford gives three examples showing the range of 
properties that can be achieved by allocating weights to the various replica managers in 
a group and assigning R and W appropriately. We now reproduce Gifford’s examples, 
which are based on the table below.

Example 1 Example 2 Example 3

Latency Replica 1 75 75 75

(milliseconds) Replica 2 65 100 750

Replica 3 65 750 750

Voting Replica 1 1 2 1

configuration Replica 2 0 1 1

Replica 3 0 1 1

Quorum R 1 2 1

sizes W 1 3 3

Derived performance of file suite:

Read Latency 65 75 75
Blocking probability 0.01 0.0002 0.000001

Write Latency 75 100 750
Blocking probability 0.01 0.0101 0.03

 The blocking probabilities give an indication of the 
probability that a quorum cannot be obtained when a read or write request is made. They 
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are calculated assuming that there is a 0.01 probability that any single replica manager 
will be unavailable at the time of a request.

Example 1 is configured for a file with a high read-to-write ratio in an application 
with several weak representatives and a single replica manager. Replication is used to 
enhance the performance of the system, not the reliability. There is one replica manager 
on the local network that can be accessed in 75 milliseconds. Two clients have chosen 
to make weak representatives on their local disks, which they can access in 65 
milliseconds, resulting in lower latency and less network traffic.

Example 2 is configured for a file with a moderate read-to-write ratio, which is 
accessed primarily from one local network. The replica manager on the local network is 
assigned two votes and the replica managers on the remote networks are assigned one 
vote apiece. Reads can be satisfied from the local replica manager, but writes must 
access the local replica manager and one remote replica manager. The file will remain 
available in read-only mode if the local replica manager fails. Clients could create local 
weak representatives for lower read latency.

Example 3 is configured for a file with a very high read-to-write ratio, such as a 
system directory in a three-replica-manager environment. Clients can read from any 
replica manager, and the probability that the file will be unavailable is small. Updates 
must be applied to all copies. Once again, clients could create weak representatives on 
their local machines for lower read latency.

The main disadvantage of quorum consensus is that the performance of read

operations is degraded by the need to collect a read quorum from R replica managers. 
Herlihy [1986] proposed an extension of the quorum consensus method for 

abstract data types. This method allows the semantics of operations to be taken into 
account, to increase the availability of objects. Herlihy’s method uses timestamps 
instead of version numbers. This has the advantage that there is no need to make version 
number enquiries in order to get a new version number before performing a write 
operation. The main advantage claimed by Herlihy is that the use of semantic knowledge 
can increase the number of choices for a quorum. 

Quorum consensus in Dynamo  •  Dynamo uses a quorum-like approach for maintaining 
consistency amongst the replicas. As with Gifford’s scheme, read and write operations 
must use R and W nodes respectively and  R + W > N. In Dynamo, N is the number of 
nodes with replicas. The values of W and R affect availability, durability and 
consistency. DeCandia et al. [2007] state that a common configuration in Dynamo has 
[N,R,W] = [3,2,2].

In the case of partition, Gifford’s quorum can operate only in a ‘majority’
partition. But Dynamo uses a ‘sloppy quorum’ that involves N nodes, where replicas 
may be stored at substitute nodes that will pass on the values when the intended node 
recovers.

18.5.6 Virtual partition algorithm

This algorithm, which was proposed by El Abbadi et al. [1985], combines the quorum 
consensus approach with the available copies algorithm. Quorum consensus works 
correctly in the presence of partitions but the available copies algorithm is less 
expensive for read operations. A virtual partition is an abstraction of a real partition and 
contains a set of replica managers. Note that the term ‘network partition’ refers to the 
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barrier that divides replica managers into several parts, whereas the term ‘virtual 
partition’ refers to the parts themselves. Although they are not connected with multicast 
communication, virtual partitions are similar to group views, which we introduced in 
Section 18.2.2. A transaction can operate in a virtual partition if it contains sufficient 
replica managers to have a read quorum and a write quorum for the objects accessed. In 
this case, the transaction uses the available copies algorithm. This has the advantage that 
read operations need only ever access a single copy of an object and may enhance 
performance by choosing the ‘nearest’ copy. If a replica manager fails and the virtual 
partition changes during a transaction, then the transaction is aborted. This ensures one-
copy serializability of transactions because all transactions that survive see the failures 
and recoveries of replica managers in the same order.

Whenever a member of a virtual partition detects that it cannot access one of the 
other members – for example, when a write operation is not acknowledged – it attempts 
to create a new virtual partition with a view to obtaining a virtual partition with read and 
write quora.

Suppose, for example, that we have four replica managers, V, X, Y and Z, each of 
which has one vote, and that the read and write quora are R = 2 and W = 3. Initially, all 
the managers can contact one another. So long as they remain in contact, they can use 
the available copies algorithm. For example, a transaction T consisting of a read

followed by a write operation will perform the read at a single replica manager (for 
example, V) and the write operation at all four of them.

Suppose that transaction T starts by performing its read at V at a time when V is 
still in contact with X, Y and Z. Now suppose that a network partition occurs as in Figure 
18.12

Replica managers

Network partition

VX Y Z

TTransaction

Figure 18.12 Two network partitions

, in which V and X are in one part and Y and Z are in different ones. Then when 
transaction T attempts to apply its write, V will notice that it cannot contact Y and Z.

When a replica manager cannot contact managers that it could previously contact, 
it keeps on trying until it can create a new virtual partition. For example, V will keep on 
trying to contact Y and Z until one or both of them replies – as, for example, in Figure 
18.13, when Y can be accessed. The group of replica managers V, X and Y comprise a 
virtual partition because they are sufficient to form read and write quora. 

When a new virtual partition is created during a transaction that has performed an 
operation at one of the replica managers (such as transaction T), the transaction must be 
aborted. In addition, the replicas within a new virtual partition must be brought up-to-
date by copying them from other replicas. Version numbers can be used as in Gifford’s 
algorithm to determine which copies are up-to-date. It is essential that all replicas be up-
to-date, because read operations are performed on any single replica.
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Implementation of virtual partitions  • A virtual partition has a creation time, a set of 
potential members and a set of actual members. Creation times are logical timestamps. 
The actual members of a particular virtual partition have the same idea as to its creation 
time and membership (a shared view of the replica managers with which they can 
communicate). For example, in Figure 18.13 the potential members are V, X, Y, and Z

and the actual members are V, X and Y.
The creation of a new virtual partition is achieved by a cooperative protocol 

carried out by those of the potential members that can be accessed by the replica 
managers that initiated it. Several replica managers may attempt to create a new virtual 
partition simultaneously. For example, suppose that the replica managers Y and Z shown 
in Figure 18.12 keep making attempts to contact the others, and after a while the network 
partition is partially repaired so that Y cannot communicate with Z but the two groups V,
X, Y and V, X, Z can communicate among themselves. Then there is a danger that two 
overlapping virtual partitions, such as V1 and V2 shown in Figure 18.14

Figure 18.14 Two overlapping virtual partitions

Virtual partition V1 Virtual partition V2

Y X V Z

, might both be 
created.

Consider the effect of executing different transactions in the two virtual partitions. 
The read operation of the transaction in V, X, Y might be applied at the replica manager 
Y, in which case its read lock will not conflict with write locks set by a write operation 
of a transaction in the other virtual partition. Overlapping virtual partitions are contrary 
to one-copy serializability.

The aim of the protocol is to create new virtual partitions consistently, even if real 
partitions occur during the protocol. The protocol for creating a new virtual partition has 
two phases, as shown in Figure 18.15.

A replica manager that replies Yes in phase 1 does not belong to a virtual partition 
until it receives the corresponding Confirmation message in phase 2. 



Figure 18.15  Creating a virtual partition

Phase 1: 
• The initiator sends a Join request to each potential member. The argument of Join

is a proposed logical timestamp for the new virtual partition.

• When a replica manager receives a Join request, it compares the proposed logical
timestamp with that of its current virtual partition.

– If the proposed logical timestamp is greater it agrees to join and replies Yes;

– If it is less, it refuses to join and replies No.

Phase 2:
• If the initiator has received sufficient Yes replies to have read and write quora, it
may complete the creation of the new virtual partition by sending a Confirmation

message to the sites that agreed to join. The creation timestamp and list of actual
members are sent as arguments.

• Replica managers receiving the Confirmation message join the new virtual 
partition and record its creation timestamp and list of actual members.
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In our example above, the replica managers Y and Z shown in Figure 18.12 each 
attempt to create a virtual partition, and whichever one has the higher logical timestamp 
will be the one that is used in the end. 

This is an effective method when partitions are not a common occurrence. Each 
transaction uses the available copies algorithm within a virtual partition. 

18.6 Summary

Replicating objects is an important means of achieving services with good performance, 
high availability and fault tolerance in a distributed system. We described architectures 
for services in which replica managers hold replicas of objects, and in which front ends 
make this replication transparent. Clients, front ends and replica managers may be 
separate processes or exist in the same address space.

The chapter began by describing a system model in which each logical object is 
implemented by a set of physical replicas. Often, updates to these replicas can be made 
conveniently by group communication. We expanded our account of group 
communication to include group views and view-synchronous communication.

We defined linearizability and sequential consistency as correctness criteria for 
fault-tolerant services. These criteria express how the services must provide the 
equivalent of a single image of the set of logical objects, even though those objects are 
replicated. The most practically significant of the criteria is sequential consistency.

In passive (primary-backup) replication, fault tolerance is achieved by directing 
all requests through a distinguished replica manager and having a backup replica 
manager take over if this fails. In active replication, all replica managers process all 
requests independently. Both forms of replication can be conveniently implemented 
using group communication.
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Next we considered highly available services. Gossip and Bayou both allow 
clients to make updates to local replicas while partitioned. In each system, replica 
managers exchange updates with one another when they become reconnected. Gossip 
provides its highest availability at the expense of relaxed, causal consistency. Bayou 
provides stronger eventual consistency guarantees, employing automatic conflict 
detection and the technique of operational transformation to resolve conflicts. Coda is a 
highly available file system that uses version vectors to detect potentially conflicting 
updates.

Finally, we considered the performance of transactions against replicated data. 
Both primary-backup architectures and architectures in which front ends may 
communicate with any replica manager exist for this case. We discussed how 
transactional systems allow for replica manager failures and network partitions. The 
techniques of available copies, quorum consensus and virtual partitions enable 
operations within transactions to make progress even in some circumstances where not 
all replicas are reachable.

EXERCISES

18.1 Three computers together provide a replicated service. The manufacturers claim that 
each computer has a mean time between failure of five days; a failure typically takes 
four hours to fix. What is the availability of the replicated service? page 766

18.2 Explain why a multi-threaded server might not qualify as a state machine. page 768

18.3 In a multi-user game, the players  move figures around a common scene. The state of the 
game is replicated at the players’ workstations and at a server, which contains services 
controlling the game as a whole, such as collision detection. Updates are multicast to all 
replicas. Consider the following conditions:

i) The figures may throw projectiles at one another, and a hit debilitates the 
unfortunate recipient for a limited time. What type of update ordering is required 
here? Hint: consider the ‘throw’, ‘collide’ and ‘revive’ events.

ii) The game incorporates magic devices that may be picked up by a player to assist 
them. What type of ordering should be applied to the ‘pick-up-device’ operation?

page 770

18.4 A router separating process p from two others, q and r, fails immediately after p initiates 
the multicasting of message m. If the group communication system is view-
synchronous, explain what happens to p next. page 773

18.5 You are given a group communication system with a totally ordered multicast operation
and a failure detector. Is it possible to construct view-synchronous group 
communication from these components alone? page 773

18.6 A sync-ordered multicast operation is one whose delivery ordering semantics are the 
same as those for delivering views in a view-synchronous group communication system. 
In a thingumajig service, operations upon thingumajigs are causally ordered. The 
service supports lists of users able to perform operations on each particular thingumajig. 
Explain why removing a user from a list should be a sync-ordered operation. page 773

18.7 What is the consistency issue raised by state transfer? page 774
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18.8 An operation X upon an object o causes o to invoke an operation upon another object o .
It is now proposed to replicate o but not o . Explain the difficulty that this raises 
concerning invocations upon o , and suggest a solution. page 773

18.9 Explain the difference between linearizability and sequential consistency, and why the 
latter is more practical to implement, in general. page 777

18.10 Explain why allowing backups to process read operations leads to sequentially 
consistent rather than linearizable executions in a passive replication system. page 780

18.11 Could the gossip architecture be used for a distributed computer game like the one 
described in Exercise 18.3? page 783

18.12 In the gossip architecture, why does a replica manager need to keep both a ‘replica’ 
timestamp and a ‘value’ timestamp? page 786

18.13 In a gossip system, a front end has the vector timestamp (3, 5, 7) representing the data it 
has received from members of a group of three replica managers. The three replica 
managers have vector timestamps (5, 2, 8), (4, 5, 6) and (4, 5, 8), respectively. Which 
replica manager(s) could immediately satisfy a query from the front end, and what 
would the resultant timestamp of the front end be? Which could incorporate an update 
from the front end immediately? page 788

18.14 Explain why making some replica managers read-only may improve the performance of 
a gossip system. page 792

18.15 Write pseudo-code for dependency checks and merge procedures (as used in Bayou) 
suitable for a simple room-booking application. page 793

18.16 In the Coda file system, why is it sometimes necessary for users to intervene manually 
in the process of updating the copies of a file at multiple servers? page 800

18.17 Devise a scheme for integrating two replicas of a file system directory that underwent 
separate updates during disconnected operation. Either use Bayou’s operational 
transformation approach, or supply a solution for Coda. page 801

18.18 Available copies replication is applied to data items A and B with replicas Ax, Ay and 
Bm, Bn. The transactions T and U are defined as: 

T: Read(A); Write(B, 44). U: Read(B); Write(A, 55).

Show an interleaving of T and U, assuming that two-phase locks are applied to the 
replicas. Explain why locks alone cannot ensure one-copy serializability if one of the 
replicas fails during the progress of T and U. Explain with reference to this example how 
local validation ensures one-copy serializability. page 805

18.19 Gifford’s quorum consensus replication is in use at servers X, Y and Z, which all hold 
replicas of data items A and B. The initial values of all replicas of A and B are 100 and 
the votes for A and B are 1 at each of X, Y and Z. Also, R = W = 2 for both A and B. A 
client reads the value of A and then writes it to B.

i) At the time the client performs these operations, a partition separates servers X and 
Y from server Z. Describe the quora obtained and the operations that take place if 
the client can access servers X and Y.

ii) Describe the quora obtained and the operations that take place if the client can 
access only server Z.

iii) The partition is repaired and then another partition occurs so that X and Z are 
separated from Y. Describe the quora obtained and the operations that take place 
if the client can access servers X and Z.         page 810
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19.8 Summary

This chapter surveys the fields of mobile and ubiquitous computing, which have come 
about due to advances in device miniaturization and wireless connectivity. Broadly 
speaking, mobile computing is concerned with exploiting the connectedness of portable 
devices; ubiquitous computing is about exploiting the increasing integration of computing 
devices with our everyday physical world.

The chapter introduces a common system model that stresses the volatility of 
mobile and ubiquitous systems – i.e., that the set of users, devices and software 
components in any given environment is liable to change frequently. The chapter then 
surveys some of the chief areas of research that come about because of this volatility and 
the physical bases for it. We explore topics including: how software components come to 
associate and interoperate with one another as entities move, fail or spontaneously 
appear; how systems become integrated with the physical world through sensing and 
context awareness; the security and privacy issues that arise in volatile, physically 
integrated systems; and techniques for adapting to small devices’ lack of computational 
and I/O resources. The chapter ends with a case study of the Cooltown project, a 
human-oriented, web-based architecture for mobile and ubiquitous computing. 
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19.1 Introduction

Mobile and ubiquitous computing have come about due to device miniaturization and 
wireless connectivity. Broadly speaking, mobile computing is concerned with 
exploiting the connectedness of devices that move around in the everyday physical 
world; ubiquitous computing is about exploiting the increasing integration of computing 
devices with our everyday physical world. As devices become smaller, we are better 
able to carry them around with us or wear them, and we can embed them into many parts 
of the physical world – not just the familiar desktop or a server rack. And as wireless 
connectivity becomes more prevalent, we are better able to connect these new small 
devices to one another, and to conventional personal and server computers. 

This chapter surveys aspects of mobile computing (a subject already touched upon 
in Chapter 18’s treatment of disconnected operation) and ubiquitous computing. The 
chapter concentrates on their common properties, and on the differences they share from 
more conventional distributed systems. Given progress to date, the focus is more on 
open issues than solutions. 

The chapter first outlines the beginnings of mobile and ubiquitous computing, and 
introduces the subfields known as wearable, handheld and context-aware computing. It 
then describes a system model that encompasses all of those fields and subfields through 
their volatility – that is, the fact that the set of users, devices and software components 
in any given environment is liable to change frequently. We survey the system 
components that have emerged to deal with volatility and the physical bases for 
volatility, including how software components come to associate and interoperate with 
one another as entities move, fail or spontaneously appear in environments; how 
systems become integrated with the physical world through sensing and context 
awareness; the security and privacy issues that arise in systems integrated in the physical 
world; and techniques for adapting to small devices’ limited computational and 
input/output resources. The chapter ends with a case study of the Cooltown project, a 
human-oriented, web-based architecture for mobile and ubiquitous computing.

Mobile and hand-held computing  •  Mobile computing arose as a paradigm in which 
users could carry their personal computers and retain some connectivity to other 
machines. In about 1980 it became possible to build personal computers that were just 
about light enough to carry, and that could be connected to other computers over 
telephone lines via a modem. Technological evolution has led to more or less the same 
idea but with far better functionality and performance: the present-day equivalent is a 
laptop, netbook or tablet computer, each with several forms of wireless connectivity 
including cellular networks, WiFi and Bluetooth. 

A different path of technological evolution has led to handheld computing: the use 
of devices that fit in the hand, including ‘smart’ mobile phones (smart phones), personal 
digital assistants (PDAs) and other, more specialized hand-operated devices. Smart 
phones and PDAs are capable of running many different types of applications, but 
compared to laptops they trade off their smaller size and better battery running time 
against correspondingly limited processing power, a smaller screen and other resource 
restrictions. Manufacturers are increasingly equipping handheld devices with the same 
range of wireless connectivity as laptops and their somewhat smaller equivalents.



SECTION 19.1 INTRODUCTION 819

An interesting trend in handheld computing has been the blurring of distinctions 
between PDAs, mobile phones and purpose-built handheld devices such as cameras and 
GPS-based navigation units. Smart phones have PDA-like computing functionality by 
virtue of running operating systems such as Symbian from Nokia and other 
manufacturers, Google’s Android, Apple’s iOS or Windows Phone 7 from Microsoft. 
They have cameras built in and either incorporate or can be equipped with other types 
of specialized attachment, making them an alternative to purpose-built handheld 
devices. For example, a user can read a barcode via a smart phone’s camera  to obtain 
price-comparison information. Smart phones also often have built-in GPS units for 
navigation and other location-specific purposes.

Stojmenovic [2002] covers principles and protocols for wireless communication, 
including coverage of two major network-layer problems that need to be solved for the 
systems studied in this chapter. The first problem is how to provide continuous 
connectivity for mobile devices that pass in and out of range of base stations, which are 
infrastructure components that provide regions of wireless coverage. The second 
problem is how to enable collections of devices to wirelessly communicate with one 
another in places where there is no infrastructure (see the brief treatment of ad hoc 
networks in Section 19.4.2). Both problems arise because direct wireless connectivity is 
often not available between two given devices. Communication then has to be achieved 
over several wireless or wired network segments. Two main factors lead to this 
subdivided wireless coverage. First, the greater the range of a wireless network is, the 
more devices will compete for its limited bandwidth. Second, energy considerations 
apply: the energy needed to transmit a wireless signal is proportional to the square of its 
range, but many of the devices we shall consider have limited energy capacity.   

Ubiquitous computing  •  Mark Weiser coined the term ubiquitous computing in 1988 
[Weiser 1991]. Ubiquitous computing is also sometimes known as pervasive computing,
and  the two terms are usually taken to be synonymous. ‘Ubiquitous’ means ‘to be found 
everywhere’. Weiser saw the increasing prevalence of computing devices as leading to 
revolutionary shifts in the way we would use computers. 

First, he predicted that each person in the world would utilize many computers. 
We can compare this to the personal computing revolution before it, which pursued the 
goal of one computer to each person. Although it sounds simple, that change had a 
dramatic effect on the way we use computers compared to the mainframe era before it, 
when there was one computer to many people. Weiser’s idea of ‘one person, many 
computers’ means something very different to the common situation in which we each 
have several computers that are more or less alike – one at work, one at home, a laptop 
and perhaps a smart phone we carry with us. Rather, in ubiquitous computing, 
computers multiply in form and function, not just in number, to suit different tasks. 

For example, suppose that all the inert display and writing surfaces in a room – 
whiteboards, books, pieces of paper, Post-it notes, etc. – were replaced by tens or 
hundreds of individual computers with electronic displays. Books already appear in an 
electronic form, viewable on devices that allow readers to read and search their text, 
look up the meaning of words, search for related ideas on the Web and experience linked 
multimedia content. Now suppose we embed computing functionality in all the writing 
implements. For example, pens and markers become able to store what the user has 
written and drawn, and to collect, copy and move multimedia content between the many 
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computers lying around. That scenario raises usability and economic issues, and it 
touches on only one small part of our lives; but it gives us an idea of what ‘computing 
everywhere’ might be like. 

The second shift that Weiser predicted was that computers would ‘disappear’ – 
that they would ‘weave themselves into the fabric of everyday life until they are 
indistinguishable from it’. This is largely a psychological notion, comparable to how 
people take furniture for granted and barely notice it. It reflects the idea that computing 
will become embedded in what we think of as everyday items – ones we don’t normally 
think of as having computational capabilities, any more than we think of washing 
machines or vehicles as ‘computing devices’, even though embedded microprocessors 
control them (about 100 microprocessors, in the case of some cars).

While the invisibility of certain devices is appropriate – for example, in cases such 
as the computer systems embedded in a car – that is not the case for all the devices we 
shall consider, particularly the devices that mobile users typically carry. For example, 
mobile phones are some of the most pervasive devices at the time of writing, but their 
computational ability is hardly invisible and neither, arguably, should it be.

Figure 19.1 A room responding to a user wearing an active badge

2. Infrared sensor detects user’s ID

Hello Roy 1. User enters room wearing
    active badge

User’s ID

3. Display responds 
    to user

Infrared

Wearable computing  •  Users carry wearable computing devices on their person, either 
attached to or within the fabric of their clothes, or worn like watches, jewellery or 
spectacles on their body. Unlike the handheld devices we mentioned above, these 
devices often operate without the user having to manipulate them. They typically have 
specialized functionality. An early example is the ‘active badge’, a small computing 
device clipped to the user’s clothing that regularly broadcasts its identity (which is 
associated with a user) via an infrared transmitter [Want et al. 1992, Harter and Hopper 
1994]. Devices in the environment respond to the badge’s transmissions, and so respond 
to the presence of a user; the infrared transmissions have a limited range, so they will be 
picked up only if the user is nearby. For example, an electronic display could adapt to 
the presence of a user by customizing its behaviour according to that user’s preferences, 
perhaps altering the default drawing colour and line thickness (Figure 19.1). Similarly, 
a room could adapt the air conditioning and lighting settings according to the recorded 
preferences of the person within it.

Context-aware computing  •  The active badge – or rather, other devices’ reactions to its 
presence – exemplifies context-aware computing, which is an important subfield of 
mobile and ubiquitous computing. This is where computer systems automatically adapt 
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their behaviour according to physical circumstances. Those circumstances can in 
principle be anything physically measurable or detectable, such as the presence of a user, 
the time of day or atmospheric conditions. Some of the dependent conditions are 
relatively straightforward to determine, such as whether it is nighttime (discernable from 
the time, day of the year and geographic position). But others require sophisticated 
processing to detect. For example, consider a context-aware mobile phone that is to ring 
only when it is appropriate. In particular, it should automatically switch itself to 
‘vibrate’ instead of ‘ring’ when it is in the cinema. But detecting that the user is watching 
a film inside a cinema, as opposed to standing in the cinema lobby, is non-trivial given 
the inaccuracies in position sensor measurements. Section 19.4 examines context in 
more detail.

19.1.1 Volatile systems

From the point of view of distributed systems, there is no essential difference between 
mobile and ubiquitous computing or the subfields we have introduced (or indeed the 
subfields we have left out, such as tangible computing [Ishii and Ullmer 1997] and 
augmented reality, as exemplified by Wellner’s digital desk [Wellner 1991]). In this 
section we give a model of what we shall call volatile systems that encompasses the 
essential distributed systems features of all of them. 

We call the systems described in this chapter ‘volatile’ because, unlike most of the 
systems described elsewhere in this book, certain changes are common rather than 
exceptional. The set of users, hardware and software in mobile and ubiquitous systems 
is highly dynamic and changes unpredictably. Another word we shall sometimes use for 
these systems is spontaneous, which appears in the literature in the phrase spontaneous 

networking. The relevant forms of volatility include:

• failures of devices and communication links; 

• changes in the characteristics of communication such as bandwidth; 

• the creation and destruction of associations – logical communication relationships 
– between software components resident on the devices. 

Here the term ‘component’ encompasses any software unit, such as objects or processes, 
regardless of whether it interoperates as a client or server or peer.

Chapter 18 has already provided ways of dealing with some of those changes, 
namely processing failures and disconnected operation. But the solutions considered 
there were predicated on processing and communication failures being the exception 
rather than the rule, and on the existence of redundant processing resources. Volatile 
systems not only break those assumptions but also add yet more change phenomena, 
notably the frequent changes in associations between components.

 It is worth clearing up a possible misunderstanding before we go further. 
Volatility is not a defining property of mobile and ubiquitous systems: there are other 
types of system that demonstrate one or more forms of volatility but are neither mobile 
nor ubiquitous. A good example is peer-to-peer computing, such as file-sharing 
applications (Chapter 10), in which the set of participating processes and the 
associations between them are subject to high rates of change. What is different about 
mobile and ubiquitous computing is that they exhibit all of the above forms of volatility, 
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due to the way they are integrated with the physical world. We shall have much to say 
about this physical integration and how it causes volatility. But physical integration is 
not itself a distributed systems property, whereas volatility is. Hence, that is the term we 
adopt.

In the remainder of this section we describe smart spaces, which are environments 
within which volatile systems subsist, and we characterize mobile and ubiquitous 
devices, their physical and logical connectivity, and the consequences in terms of 
lowered trust and privacy.

Smart spaces  •  Physical spaces are important in that they form the background to 
mobile and ubiquitous computing. Mobility takes place between physical spaces; 
ubiquitous computing is embedded in physical spaces. A smart space is any physical 
place with embedded services – that is, services provided only or principally within that 
physical space. It is possible to introduce computing devices into the wild, where no 
infrastructure exists, to perform an application such as environmental monitoring. But 
more typically mobile devices and ubiquitous systems exist at any one time in a 
computationally enhanced part of a built or vehicular environment such as a room, 
building, town square or train carriage. In those cases, the smart space typically contains 
a relatively stable computing infrastructure, which may include conventional server 
computers; devices such as printers, displays, sensors and a wireless networking 
infrastructure, including a connection to the Internet.

There are several types of movement or ‘appearance and disappearance’ that can 
occur in smart spaces. First, there is physical mobility. Smart spaces act as environments 
for devices that visit and leave them. Users bring in and depart with devices they carry 
or wear; robotic devices may even move themselves into and out of the space. Second, 
there is logical mobility. A mobile process or agent may move into or out of a smart 
space, or to or from a user’s personal device. Also, a device’s physical movement may 
cause the logical movement of components within it. However, whether or not a 
component moves due to its device’s physical movement, logical mobility has not 
occurred in any interesting sense unless the component changes some of its associations 
with other components as a result. Third, users may add relatively static devices such as 
media players as longer-term additions to the space, and correspondingly withdraw 
older devices from it. Consider, for example, the evolution of a smart home whose 
occupants vary the set of devices within it [Edwards and Grinter 2001] in a relatively 
unplanned way over time. Fourth and finally, devices may fail and thus ‘disappear’ from 
a space. 

Some of those phenomena seem similar from the distributed systems perspective. 
In each case, either a software component appears in a pre-existing smart space and, if 
anything of interest is to result, becomes integrated (at least temporarily) into that space; 
or a component disappears from the space, either through mobility or because it is 
simply switched off or fails. It may or may not be possible for any particular component 
to distinguish ‘infrastructure’ devices from ‘visiting’ devices. 

However, there are significant distinctions to be drawn when designing a system. 
An important difference that may arise between volatile systems is the rate of change. 
Algorithms that have to cope with a handful of appearing or disappearing components a 
day (e.g., in a smart home) may be very differently designed from those for which there 
is at least one such change occurring at any one time (e.g., a system implemented using 
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Bluetooth communication between mobile phones in a crowded city). Moreover, while 
all the above appearance and disappearance phenomena appear similar to a first 
approximation, there are of course important differences. For example, from the security 
point of view, it is one thing for a user’s device to enter a smart space and another for an 
outside software component to move to an infrastructure device belonging to the space. 

Device model  •  With the rise of mobile and ubiquitous computing, a new class of 
computing device is becoming a part of distributed systems. This device is limited in its 
energy supply and computing resources, and it may have ways of interfacing with the 
physical world: sensors such as light detectors, and/or actuators such as a programmable 
means of movement. Our device model must therefore take into accout the following 
characteristics:

Limited energy: A device that is portable or embedded in the physical world 
typically has to run on batteries, and the smaller and lighter the device needs to be, 
the lower its battery capacity will be. Replacing or recharging those batteries is liable 
to be inconvenient in terms of time (there may be hundreds of such devices per user) 
and physical access. Computation and access to memory and other forms of storage 
all consume precious energy. Wireless communication is particularly 
energy-intensive. Moreover, the energy consumed by receiving a message can 
amount to a substantial fraction of that required to transmit it; even when in ‘standby’ 
mode, in which a network interface is ready to receive a message, can require 
appreciable power consumption [Shih et al. 2002]. So, if a device is to last as long as 
possible on a given level of battery charge, algorithms need to be sensitive to the 
energy they consume, especially in terms of their message complexity. But 
ultimately, the probability of device failure is increased because of battery discharge. 

Resource constraints: Mobile and ubiquitous devices have limited computational 
resources in terms of processor speed, storage capacity and network bandwidth. This 
is in part because energy consumption increases as we improve those characteristics. 
But also, making devices portable or embedding them into everyday physical objects 
entails making them physically small, which, given limitations imposed by 
manufacturing processes, restricts the number of transistors in the nodes. Two issues 
spring from this: how to design algorithms that can execute on the node in reasonable 
time despite the resource limitations; and how to augment the node’s meagre 
resources using resources in its environment.

Sensors and actuators: To enable their integration with the physical world – in 
particular, to make them context-aware – devices are equipped with sensors and 
actuators. Sensors are devices that measure physical parameters and supply their 
values to software. Conversely, actuators are software-controllable devices that 
affect the physical world. A wide variety of each type of component exists. On the 
sensor side, for example, there are sensors that measure position, orientation, load, 
and light and sound levels. Actuators include programmable air-conditioning 
controllers and motors. An important issue for sensors is accuracy, which is quite 
limited and so can lead to spurious behaviour, such as an inappropriate response to 
what turns out to be the wrong location. Inaccuracy is likely to remain a characteristic 
of devices that are cheap enough to deploy ubiquitously. 
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The devices described above may sound somewhat exotic. However, not only are they 
commercially available, but they are even mass-produced. Two examples are motes and 
smart phones.

Motes: Motes [Hill et al. 2000, www.xbow.com] are small devices intended for 
autonomous operation in applications such as environmental sensing. They are 
designed to be embedded in an environment, programmed so that they wirelessly 
discover one another and transfer sensed values amongst themselves. If, for example, 
there is a forest fire, then one or more motes scattered around the forest could sense 
abnormally high temperatures and communicate those, via their peers, to a more 
powerful device capable of communicating the situation to the emergency services. 
The most basic form of mote has a low-power processor (a microcontroller) that runs 
the TinyOS operating system [Culler et al. 2001] on internal flash memory, memory 
for data-logging and a short-range, two-way ‘Industrial, Scientific and Medical’ 
(ISM) band radio transceiver. A variety of sensor modules may be added. Motes are 
also known as ‘smart dust’, reflecting the tiny size ultimately intended for these 
devices, although their size at the time of writing is around 6 3 1 cm, excluding 
battery pack and sensors. Smart-its provide similar functionality to motes in a similar 
form-factor [www.smart-its.org]. Section 19.4.2 discusses the uses of mote-like 
devices in wireless sensor networks.

Smart phones: Smart phones are a quite different example of a device in the systems 
we are considering. Their principal functions are human communication and 
imaging. But, running an operating system such as Symbian, Android or iOS, they 
are programmable for quite a wide variety of applications. In addition to their wide 
area data connectivity, they often have infrared (IrDA) or Bluetooth short-range 
wireless network interfaces that enable them to connect to one another, to PCs and to 
auxiliary devices. They often contain sensing devices, such as GPS sensors for 
determining their location, magnetometers to sense their orientation, and 
accelerometers to sense their state of motion. Moreover, they may run software to 
recognize symbols such as barcodes from their camera images, making them sensors 
of ‘coded values’ on physical objects such as products, which can be used to access 
associated services. For example, a user could use their camera phone to discover the 
specifications of a product in a shop from the barcode on its box [Kindberg 2002].

Volatile connectivity  •  The devices of interest in this chapter all have some form of 
wireless connectivity, and may have several. The connection technologies (Bluetooth, 
WiFi, 3G, etc.) vary in their nominal bandwidth and latency, in their energy costs and in 
whether there are financial costs to communication. But the volatility of connectivity – 
the variability at runtime of the state of connection or disconnection between devices, 
and the quality of service between them – also has a strong impact on system properties. 
Connectivity issues include:

Disconnection: Wireless disconnections are far more likely than wired 
disconnections. Many of the devices we have described are mobile, and so may 
exceed their operating distance from other devices or encounter radio occlusions 
between them, e.g. from buildings. Even when the devices are static, there may be 
moving users and vehicles that cause disconnection by occlusion. There is also the 
question of multi-hop wireless routing between devices. In ad hoc routing, a 
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collection of devices communicate with one another without reliance on any other 
device: they collaborate to route all packets between themselves. Taking our example 
of motes in a forest, a mote might continue to be able to communicate with all other 
motes in immediate radio range, but fail to be able to communicate its 
high-temperature reading to the emergency services because of the failure of more 
distant motes through which all packets had to pass. 

Variable bandwidth and latency: The factors that can lead to complete disconnec-
tion can also lead to highly varying bandwidth and latency, because they entail 
changing error rates. As the error rate increases, more and more packets are dropped. 
That leads intrinsically to low throughput rates. But the situation may be exacerbated 
by timeouts in higher-layer protocols. Timeout values are difficult to adapt to dramat-
ically changing conditions. If they are too big compared to current error conditions, 
latency and throughput suffer. If they are too small, they may increase congestion and 
waste energy.

Figure 19.2 Examples of preconfigured versus spontaneous association

Preconfigured Spontaneous

Service-driven: 
      email client and server

Human-driven: 
      web browser and web servers

Data-driven:
      P2P file-sharing applications

Physically driven: 
      mobile and ubiquitous systems

Spontaneous interoperation  •   In a volatile system, components routinely change the set 
of components they communicate with, as they move or as other components appear in 
their environment. We use the term association for the logical relationship formed when 
at least one of a given pair of components communicates with the other over some 
well-defined period of time, and interoperation for their interactions during their 
association. Note that association is distinct from connectivity: two components (e.g., an 
email client on a laptop and an email server) may be currently disconnected while they 
remain associated. 

In a smart space, associations change because components take advantage of 
opportunities to interact with local components. A simple example of such an 
opportunity is for a device to use a local printer wherever the device happens to be. 
Similarly, a device may want to offer services to clients in its local environment – such 
as a ‘personal server’ [Want et al. 2002] that the user wears (for example, on a belt), 
which supplies data about the user or belonging to the user to nearby devices. Of course, 
certain static associations still make sense even in a volatile system; we have given the 
example of a laptop computer that travels with its owner around the world but only ever 
communicates with a fixed email server.   
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To place this type of association into a bigger picture of services on the Internet, 
Figure 19.2 shows examples of three types of spontaneous association (on the right), as 
compared with pre-configured associations (on the left). 

Preconfigured associations are service-driven: that is, clients having a long-term 
need to use a specific service are preconfigured to be associated with it. The effort of 
configuring the clients (including setting them up with the address of the required 
service) is small compared to the long-term value of using that particular service. 

On the righthand side of the figure are types of association that vary routinely, 
driven by a human operator, by the need for specific data or by changing physical 
circumstances. We can regard associations between a web browser and web services as 
spontaneous and human-driven: the user makes dynamic and (from the system’s point 
of view) unpredictable choices of link to click on and thus service instance to access. 
The Web is a truly volatile system, and important to its success is the fact that changing 
the associations typically involves negligible effort – the authors of web pages have 
done the configuration work. 

Peer-to-peer applications on the Internet, such as file-sharing programs, are also 
volatile systems, but they are primarily data-driven. That data often originates from the 
human (e.g., the name of the content to be sought), but it is the value of the data provided 
to it that causes a peer to make associations with a peer it may never have associated 
with before and whose address it has not formerly stored, via a data-based distributed 
discovery algorithm.

The mobile and ubiquitous systems described in this chapter are distinguished by 
exhibiting largely physically driven spontaneity of associations. The associations are 
made and broken – sometimes by humans – according to the current physical 
circumstances of the components, and in particular their proximity.

Lowered trust and privacy  •   As Chapter 11 explained, security in distributed systems is 
ultimately based on trusted hardware and software – the trusted computing base. But 
trust in volatile systems is problematic because of spontaneous interoperation: what 
basis of trust can there be between components that are able to associate spontaneously? 
Components moving between smart spaces may belong to disparate individuals or 
organizations and have little or no prior knowledge of one another or of a trusted third 
party.

Privacy is a major issue for users, who may distrust systems because of their 
sensing capabilities. The presence of sensors in smart spaces means that it becomes 
possible to track users electronically on a potentially massive scale not seen before. In 
benefiting from context-aware services – as in the example of rooms that set the air 
conditioning according to the preferences of users within them – users may enable 
others to learn where they have been and what they were doing there. To make matters 
worse, they may not always be aware that they are being sensed. Even if the user does 
not disclose their identity, it may be possible for others to learn it and so find out what 
a particular individual does – for example, by observing regular journeys between a 
home and a place of work, and correlating those with the use of a credit card somewhere 
in between.
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19.2 Association

As explained above, devices are liable to appear in and disappear from smart spaces 
unpredictably. Despite this, volatile components need to interoperate – preferably 
without user intervention. In other words, a device that appears in a smart space needs 
to be able to bootstrap itself onto the local network to enable communication with other 
devices, and associate appropriately in the smart space:

Network bootstrapping: Typically, communication takes place over a local network. 
The device must first acquire an address on the local network (or register a 
pre-existing address such as a mobile IP address); it may also acquire or register a 
name.

Association: Components on the device either associate to services in the smart 
space, provide services to components elsewhere in the smart space, or both.

Network bootstrapping  •  There are well-established solutions to the problem of 
integrating a device into a network. Some of those solutions rely on servers accessible 
within the smart space. For example, a DHCP server (see Section 3.4.3) can supply an 
IP address and other networking and DNS parameters, which the device obtains by 
issuing a query to a well-known broadcast address. Servers in the smart space may also 
assign a unique domain name to the device; or if there is access to the open Internet the 
device can use a dynamic DNS update service to register its new IP address against a 
static domain name. 

A more interesting case is to assign networking parameters in the absence of any 
service infrastructure in the smart space or beyond it. That is desirable both to simplify 
the smart space and to avoid dependencies on services that might fail. The IPv6 standard 
includes a protocol for serverless address assignment. The Zero Configuration 
Networking working group of the IETF [www.zeroconf.org] is developing standards for 
serverless address assignment, domain name lookup, multicast address assignment and 
discovery of services (see the next subsection). Apple’s Bonjour [www.apple.com I] is 
a commercial implementation of much of that functionality. As with DHCP access, all 
such methods utilize broadcasts or multicasts over the local network, using a 
well-known address. Any device can listen on or transmit to such an address. 

The association problem and the boundary principle  •  Once a device can communicate 
in the smart space, it is faced with the association problem: how to associate 
appropriately within it. Solutions to the association problem must address two main 
aspects: scale and scope. First, there may be many devices within the smart space, and 
perhaps orders of magnitude more software components on those devices. With which 
of these, if any, should components on the appearing device interoperate, and how can 
the choice be made efficiently? 

Second, how can we constrain the scope when solving that problem, so as to 
consider only components from the smart space – and all the components in the smart 
space – rather than the potential trillions of components that lie beyond? Scoping is 
partly but not only a type of scaling issue. A smart space typically has administrative and 
territorial boundaries, which can make a large difference to users and administrators. For 
example, if a device is to discover a service such as a printer in a hotel room, it must find 
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a printer in its user’s room, and not the room next door. Equally, if there is an appropriate 
printer in the user’s room, then a solution should include it as a candidate for association.

The boundary principle states that smart spaces need to have system boundaries 
that correspond accurately to meaningful spaces as they are normally defined 
territorially and administratively [Kindberg and Fox 2001]. Those ‘system boundaries’ 
are system-defined criteria that scope but do not necessarily constrain association.

One attempt at a solution to the association problem is to use a discovery service, 
described next. Discovery services are normally based on subnet multicast, which has 
the disadvantage that the subnet’s reach may not coincide with the services that are 
available in a smart space – i.e., that they break the boundary principle – as we shall 
explain. Section 19.2.2 then describes some solutions that provide more accurately 
scoped associations by relying on physical parameters and human input.

19.2.1 Discovery services

Clients find out about the services provided in a smart space using a discovery service.
A discovery service is a directory service (see Section 13.3) in which services in a smart 
space are registered and looked up by their attributes, but one whose implementation 
takes account of volatile system properties. First, the directory data required by a 
particular client – i.e., the set of service attributes against which queries are to be run – 
is determined at runtime. The directory data is dynamically determined as a function of 
the client’s context – in this case, the particular smart space where the queries take place. 
Second, there may be no infrastructure in the smart space to host a directory server. 
Third, services registered in the directory may spontaneously disappear. Fourth, the 
protocols used for accessing the directory need to be sensitive to the energy and 
bandwidth they consume. 

Both device discovery and service discovery services exist; Bluetooth includes 
both. With device discovery, clients discover the names and addresses of co-present 
devices. Typically, they then choose an individual device on the basis of out-of-band 
information (such as selection by a human) and query it for the services it offers. On the 
other hand, a service discovery service is used where clients are not concerned with 
which device provides the service they need, but with the attributes of the service alone. 
This description will concentrate on service discovery services, and unless stated 
otherwise, that is what we mean by ‘discovery services’ henceforth.

A discovery service has an interface for automatically registering and 
deregistering the services that are available for association, as well as an interface for 
clients to look up services from those that are currently available, so as to go on to 
associate with an appropriate service. Figure 19.3 gives a fictitious, simplified example 
of those interfaces. First, there are calls to register a service’s availability with a given 
address and attributes, and to manage its registration subsequently. Then there is a call 
to look up the services that match a specification of required attributes. Zero or more 
services may match the specification; each is returned with its address and attributes. 
Note that a discovery service does not enable association by itself: service selection – 
the choice of one service from the returned set – is also required. That may occur 
programatically, or by listing the matching services from which the user may choose. 

Developments in discovery services include the Jini discovery service (discussed 
in the next section), the service location protocol [Guttman 1999], the Intentional 



Figure 19.3 The interface to a discovery service

Methods for 
service registration and deregistration

Explanation

lease := register(address, attributes) Register the service at the given address 
with the given attributes; a lease is 
returned

refresh(lease) Refresh the lease returned at registration

deregister(lease) Remove the service record registered 
under the given lease

Method to look up a service

serviceSet := query(attributeSpecification) Return a set of registered services whose 
attributes match the given specification
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Naming System [Adjie-Winoto et al. 1999], the simple service discovery protocol 
(which is at the heart of the Universal Plug and Play initiative [www.upnp.org]) and the 
Secure Service Discovery Service [Czerwinski et al. 1999]. There are also link-layer 
discovery services, such as that of Bluetooth.

The issues to be dealt with in the design of a discovery service are as follows:

Low-effort, appropriate association: Ideally, appropriate associations would be 
made without any human effort. First, the set of services returned by the query

operation (Figure 19.3) would be appropriate – they would be precisely the services 
existing in the smart space that matched the query. Second, service selection could 
be made programatically or with minimal human input so as to meet the users’ needs. 

Service description and query language: The overall goal is to match services to 
clients’ requests for services. That presupposes a language for describing available 
services, and one for expressing service requirements. The query and description 
languages have to agree (or be translatable), and their expressiveness has to keep 
pace with the development of new devices and services. 

Smart-space-specific discovery: We require a mechanism for devices to access an 
instance (or scope) of the discovery service that is appropriate to their current 
physical circumstances – a mechanism that doesn’t rely on the device knowing the 
particular name or address for that service a priori. In practice, discovery services are 
related to a particular smart space only through the limited reach of multicast over a 
subnet that intersects with it, as we shall explain. 

Directory implementation: Logically, each instance of a discovery service involves 
a queryable directory of available services. There are several ways of implementing 
such a directory, with varying implications for network bandwidth, timeliness of 
service discovery and energy consumption.

Service volatility: Any service in a volatile system has to efficiently and gracefully
handle the disappearance of a client. A discovery service has services as clients, and 
it needs to handle service disappearance appropriately.
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As an example of association by discovery, consider an occasional or first-time visitor 
to a host organization or a hotel, who needs to print a document from a laptop. The user 
cannot reasonably be expected to have the names of particular local printers configured 
in their laptop, or to guess their names (such as \\myrtle\titus, or \\lionel\frederick).
Rather than forcing the user to configure their machine while they visit, it would be 
preferable for the laptop to use the query call of a discovery service to find the set of 
available network printers that match the user’s needs. A particular printer can be 
selected via interaction with the user or by consulting a record of the user’s preferences. 

The required attributes of the printing service may, for example, specify whether 
it is ‘laser’ or ‘inkjet’, whether or not it provides colour printing and its physical location 
with respect to the user (for example, the room number).

Correspondingly, services provide their address and attributes to the discovery 
service with the register call. For example, a printer (or a service that manages it) may 
register its address and attributes with the discovery service as follows: 

serviceAddress=http://www.hotelDuLac.com/services/printer57; resource-

Class=printer, type=laser, colour=yes, resolution=600dpi, location=room101 

The usual way to bootstrap access to the local discovery service at runtime without 
manual configuration is to use the reach of the local subnet; specifically, to multicast (or 
broadcast) queries to a well-known IP multicast address over the local subnet. The 
well-known IP multicast address is known a priori by all devices that need to access the 
discovery service. Discovery services based only on network reach are sometimes 
explicitly known as network discovery services.

 Note that some networks, such as Bluetooth, use frequency hopping and cannot 
communicate with all neighbouring devices simultaneously at a physical level. 
Bluetooth achieves discovery using a counterpart to one ‘well-known address’: a 
well-known frequency-hopping sequence. Discoverable devices cycle through the 
frequencies more slowly than devices attempting to discover them, so that senders 
(discoverers) and receivers eventually coincide in frequency and establish 
communication.

There are several design choices to be made when implementing a discovery 
service, which can have a considerable effect on the ways it can be used. 

The first is whether the discovery service should be implemented by a directory 

server, or be serverless. A directory server holds a set of descriptions of services that 
have registered with it, and responds to clients issuing queries for services. Any 
component (server or client) wanting to use the local directory service issues a multicast 
request to locate it, and the directory server responds with its unicast address. The 
component then communicates with it point-to-point, saving the interruption of 
uninvolved devices that occurs with multicast communication. This works well in smart 
spaces that provide infrastructure. The directory service can often be run from mains 
power on a robust machine. But in simpler smart spaces such as basic meeting rooms, 
there may be no facilities for a directory server. In principle it would be possible to elect 
a server from whatever devices happened to be present (Section 15.3), but any such 
server might disappear spontaneously. This would lead to complexity in the 
implementation of clients of the discovery service, which would then have to adapt to a 
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changing registry server. Moreover, the overheads due to re-election may be great in a 
highly volatile system.

An alternative is serverless discovery, where the participating devices collaborate 
to implement a distributed discovery service, in lieu of a directory server. As with any 
distributed directory, there are two main implementation variants. In the push model, 
services multicast (‘advertise’) their descriptions regularly. Clients listen for the 
multicasts and run their queries against them, possibly caching descriptions in case they 
are needed later. In the pull model, clients multicast their queries. Devices providing 
services run the queries against their descriptions, and only respond with any 
descriptions that match. Clients repeat their queries at intervals if there is no response.

Both push and pull models have implications for bandwidth and energy usage. 
Every time a device issues a multicast message, bandwidth is consumed and all listening 
devices expend energy receiving the message. In a pure push model, devices need to 
advertise their services regularly so that appearing clients can discover them. But this is 
wasteful of bandwidth and energy if there are no clients needing to discover a particular 
service. And the time that an appearing client waits to hear about services has to be 
traded off against the bandwidth and energy costs, which increase with the frequency of 
advertisements.

In a pure pull model, a client can discover available services as soon as it appears, 
and there are no wasted multicasts if there are no discovery needs in a given interval. 
But the client may receive several responses when a single response would do. Also, no 
advantage is taken, by default, of requests bearing the same query (for frequently 
required services). 

It is possible to design hybrid protocols that address the above shortcomings, and 
Exercise 19.2 deals with this.

A service may invoke the deregister call (Figure 19.3) before it disappears, but 
equally it may disappear spontaneously. Service volatility is handled in different ways 
according to the architecture of the directory implementation. A directory server needs 
to become aware as soon as possible after a registered service disappears, so that it does 
not give out its description misleadingly. That is normally accomplished using a general 
mechanism called leases. A lease is a temporary allocation of some resource by a server 
to a client, which can only be renewed by a further request from the client before the 
lease’s deadline has expired. If the client fails to renew it (for example, with the refresh

call of Figure 19.3), the server withdraws (and may reallocate) the resource. We 
introduced leases as part of our discussion of Jini in Section 5.4.3; DHCP servers also 
use leases when allocating IP addresses. A directory server maintains a service’s 
registration only if the service periodically communicates with the directory server to 
renew its lease on the entry. Here we see a similar trade-off of timeliness against 
bandwidth and energy consumption – the shorter the lease period, the faster a service’s 
disappearance will be noticed, but the more networking and energy resources will be 
required. In a serverless architecture, no steps need be taken (except to clear stale entries 
in devices that cache services), since a service that has disappeared will no longer 
advertise itself and a client using a pull-based protocol can only discover present 
services.
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Jini  •  Jini [Waldo 1999, Arnold et al. 1999] is a system designed to be used for mobile 
and ubiquitous systems. It is entirely Java-based – it assumes that Java virtual machines 
run in all of the computers, allowing them to communicate with one another by means 
of RMI or events (see Chapters 5 and 6) and to download code as necessary. Here we 
describe Jini’s discovery system.

The discovery-related components in a Jini system are lookup services, Jini 
services and Jini clients (see Figure 19.4

Figure 19.4 Service discovery in Jini
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). The lookup service implements what we have 
termed a discovery service, although Jini uses the term ‘discovery’ only for discovering 
the lookup service itself. The lookup service allows Jini services to register the services 
they offer and Jini clients to request services that match their requirements. A Jini 
service, such as a printing service, may be registered with one or more lookup services. 
A Jini service provides, and the lookup services store, an object that provides the service, 
as well as the attributes of the service. Jini clients query lookup services to find Jini 
services that match their requirements; if a match is found, they download an object that 
provides access to the service from the lookup service. The matching of service offers 
to clients’ requests can be based on attributes or on Java typing, for example allowing a 
client to request a colour printer for which it has the corresponding Java interface.

When a Jini client or service starts up, it sends a request to a well-known IP 
multicast address. Any lookup service that receives the request and can respond to it 
sends its address, enabling the requester to perform a remote invocation to look up or 
register a service with it (registration is called joining in Jini). Lookup services also 
announce their existence in datagrams sent to the same multicast address. Jini clients and 
services may listen on the multicast address to learn about new lookup services.

There may be several instances of the lookup service reachable by multicast 
communication from a given Jini client or service. Every such service instance is 
configured with one or more group names, such as ‘admin’, ‘finance’ and ‘sales’, which 
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act as scoping labels. Figure 19.4 shows a Jini client discovering and using a printing 
service. The client requires a lookup service in the ‘finance’ group, so it multicasts a 
request bearing that group name (message 1 in the figure). Only one lookup service is 
bound to the ‘finance’ group (the service that is also bound to the ‘admin’ group), and 
that service responds (2). The lookup service’s response includes its address, and the 
client communicates directly with it by RMI to locate all services of type ‘printing’ (3). 
Only one printing service has registered itself with that lookup service under the 
‘finance’ group, and an object to access that particular service is returned. The client 
then uses the printing service directly, using the returned object (4). The figure also 
shows another printing service, one that is in the ‘admin’ group. There is also a corporate 
information service that is not bound to any particular group (and that may be registered 
with all lookup services).

Discussion of network discovery services  •  The discovery services based only on 
network reach that we have just described – network discovery services – go some way 
towards solving the association problem. Efficient directory implementations exist, 
including ones that do not rely on infrastructure. In many cases, the number of clients 
and services that can be reached over a subnet is manageable in terms of computation 
and network costs, so scale is often not a problem. We have described measures to cope 
with system volatility.

But network discovery services raise two difficulties when looked at from the 
perspective of the boundary principle: the use of a subnet, and inadequacies in the way 
services are described.   

 The subnet may be a poor approximation to a smart space. First, network 
discovery may mistakenly include services that are not in the smart space. Consider a 
hotel room, for example. Transmissions based on radio frequency (RF) signals such as 
802.11 or Bluetooth will typically penetrate the walls to other guests’ rooms. Following 
the Jini example, services could be logically partitioned by groups – one group per hotel 
room. But that begs the question of how the user’s hotel room is to become a parameter 
for the discovery service. Second, network discovery may mistakenly discount services 
that are ‘in’ the smart space in the sense of being eligible for discovery there, but are 
hosted beyond its subnet. The Cooltown case study illustrates how non-electronic 
entities such as printed documents in a smart space may be associated with services 
hosted outside the smart space (see Section 19.7.1).

Moreover, network discovery services do not always lead to appropriate 
associations because the language used to describe services may be inadequate in two 
respects. First, discovery may be brittle: even slight variations in the service-description 
vocabulary used by disparate organizations could cause it to fail (for example, the hotel 
room has a service called ‘Print’ whereas the guest’s laptop searches for ‘Printing’). 
Variations in which human language is used for the vocabulary tend to exacerbate that 
problem. Second, there may be lost opportunities for service access. For example, 
suppose there is a ‘digital picture frame’ on the hotel room’s wall, which will display 
holiday snaps in JPEG format. The guest’s camera has a wireless connection and 
produces images in that format, but it has no description for the service – it has not been 
upgraded with that relatively recent development. So the camera is incapable of taking 
advantage of it.
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19.2.2 Physical association

The shortcomings of network discovery systems can be solved to some extent using 
physical means, although the solutions often require a greater degree of human 
involvement. The following techniques have been developed.

Human input to scope discovery  •  This case is where a human provides input to the 
device to set the scope of discovery. A simple example of this would be to type in or 
select the smart space’s identifier, such as the room number in the case of the hotel guest. 
The device can then use the identifier as an extra service ‘group’ attribute (as in Jini). 

Sensing and physically constrained channels to scope discovery  •  A less laborious 
possibility is for the user to employ a sensor on their device. For example, the smart 
space might have an identifier presented in identifier-encoding symbols called glyphs on 
documents and surfaces in the space – e.g., displayed on the TV screen in the guest’s 
hotel room. The guest uses a camera phone or other imaging device to decode such a 
symbol, and the device uses the resultant identifier in the way we described for direct 
human input. Another possibility, for use with outdoor smart spaces where satellite 
navigation signals are available, is to use a sensor to obtain the position of the smart 
space in latitude and longitude coordinates, and to send those coordinates to a 
well-known wide area service that returns the address of the local discovery service. 
However, given the inaccuracies in satellite navigation, that method may be less precise 
in identifying the smart space if there are other spaces close by. 

Another technique that avoids human input is to use a physically constrained 

channel (see also Section 19.5.2) – a communication channel that, to some degree of 
approximation, permeates only the physical span of the smart space. For example, in the 
guest room the TV could be playing background music at low volume, with a digital 
encoding of the room’s identifier superimposed as an inaudible perturbation of the 
signal [Madhavapeddy et al. 2003], or there could be an infrared transmitter (a beacon) 
in the room that propagates the identifier [Kindberg et al. 2002a]. Both of those channels 
are significantly attenuated by the materials at the boundaries of the room (assuming the 
doors and windows are closed). 

Direct association  •  The final set of techniques we shall consider here is for the human 
to use a physical mechanism to directly associate two devices, without using a discovery 
service. Typically, this is where the devices involved offer just one or a small set of 
human-selectable services. In each of the following techniques, the human enables the 
device they are carrying to learn the network address (e.g., Bluetooth or IP address) of 
a ‘target’ device.

Address-sensing: One device can be used to sense the network address of the target 
device directly. Possibilities include reading a barcode on the device that encodes its 
network address, or bringing one device very close to the other and using a short-range 
wireless channel to read its address. Two examples of such short-range channels are 
Near Field Communication [www.nfc-forum.org] – a standard for bidirectional radio 
communication that spans several short ranges but has a variant for only up to about 3 
centimetres – and very short range infrared transmissions.

Physical stimulus: A physical stimulus can be used to cause the target device to send its 
address. An example here is to shine a digitally modulated laser beam (another 
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physically constrained channel) onto the target device [Patel and Abowd 2003], thus 
transmitting its address to the target, which responds with its address. 

Temporal or physical correlation: Temporally or physically correlated stimuli can be used 
to associate devices. The SWAP-CA specification [SWAP-CA 2002] for wireless 
networking in a home environment introduced a protocol, sometimes referred to as the 
two-button protocol, for humans to associate two wireless devices with each other. Each 
device listens on a well-known multicast address. The users press buttons on their 
respective devices more or less simultaneously, at which point the devices send their 
network addresses to the multicast address. It is unlikely that another round of this 
protocol will occur at the same time in the same subnet. The devices therefore associate 
using any address that arrives within a small interval of the button press. There is an 
interesting, if rarely practical, physical counterpart to this approach in which a user 
holds two devices in the same hand and shakes them together [Holmquist et al. 2001]. 
Each device has an accelerometer for sensing its state of motion. The device records the 
shaking pattern, computes an identifier from it, and multicasts that identifier together 
with its unicast address to a well-known multicast address. Only the two devices 
experiencing exactly that acceleration pattern – and within direct communication range 
– will recognize each other’s identifier and hence learn each other’s address.

19.2.3 Summary and perspective

This section has described the association problem for components in volatile systems 
and some attempts at solving that problem, ranging from network discovery to more 
human-supervised techniques. Mobile and ubiquitous systems raise unique difficulties 
because they are integrated with our everyday, messy physical world of spaces such as 
domestic rooms and offices, making it hard to scope the solutions. Humans tend to have 
strong territorial and administrative considerations in mind when they consider what is 
in a particular smart space and what is outside it. The boundary principle says that 
solutions to the association problem need to match the underlying physical spaces to a 
degree that is acceptable to humans. We have seen that some degree of human 
supervision is often entailed, because of the deficiencies of network discovery systems. 
The Cooltown case study (Section 19.7) describes a particular model of human 
involvement.

We have largely ignored scale as a factor in solutions to the association problem, 
on the basis that the world is broken up into smart spaces that are, typically, of 
manageable size. However, there is research into scalable discovery services – after all, 
some applications might consider the entire planet to be a smart space. An example is 
INS/Twine [Balazinska et al. 2002], which divides directory data between a collection 
of peer resolvers.

19.3 Interoperation

We have described ways in which two or more components in a volatile system come to 
be associated; now we turn to the question of how they interoperate. Components 
associate on the basis of certain attributes or data that one or both of them possesses. But 
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that leaves the questions of what protocol they use to communicate and, at a higher level, 
what programming model is best suited for interaction between them. This section deals 
with those questions.

Chapters 4, 5 and 6 describe models for interoperation including various forms of 
interprocess communication, method invocation and procedure invocation. An implicit 
assumption underlying some of those models is that the interoperating components are 
designed to work together in a specific system or application, and that changes to the set 
of interoperating components are either a long-term configuration issue or a runtime 
error condition to be handled occasionally. But those assumptions are invalid in mobile 
and ubiquitous systems. Fortunately, as we explain in this section, some of the methods 
for interoperation from Chapters 4, 5 and 6, in addition to some new methods, are better 
suited to these volatile systems.

Ideally, a component in a mobile or ubiquitous system could associate with 
varying classes of services, and not just a varying set of instances of the same service 
class. That is, it is best to avoid the ‘lost opportunity’ problem described in the previous 
section where, for example, a digital camera is unable to send its images to a digital 
picture frame because it cannot interoperate with the frame’s picture-consuming service. 

Put another way, one goal for ubiquitous and mobile computing is that a 
component should have a reasonable chance of interoperating with a functionally 
compatible component, even if the latter is in a different type of smart space from the 
one for which it was originally developed. That entails some global agreement between 
software developers. Given the effort needed to reach agreement, it is best to minimize 
what needs to be agreed upon. 

The main difficulty that stands in the way of volatile interoperation is software 
interface incompatibility. If, for example, a digital camera expects to invoke an 
operation pushImage and there is no such operation in the digital picture frame’s 
interface, then they cannot interoperate – at least, not directly. 

There are two main approaches to this problem. The first is to allow interfaces to 
be heterogeneous, but to adapt interfaces to one another. For example, if the digital 
picture frame were to have an operation sendImage with the same parameters and 
semantics as pushImage, then it would be straightforward to construct a component that 
acted as a proxy for the digital picture frame, converting the camera’s pushImage 

invocation into a sendImage invocation for the picture frame. 
However, it is very hard to realize this approach. Often the semantics of operations 

may vary as well as the syntax, and overcoming semantic incompatibility is in general 
difficult and error-prone. Then there is the scale of the problem: if there are N interfaces, 
then potentially N2 adaptors have to be written, and more and more interfaces will be 
created over time. Moreover, there is the question of how components are to acquire 
suitable interface adaptors as they reassociate in a volatile system. Components (or the 
devices that host them) cannot come preloaded with all possible N2 adaptors, so the 
correct adaptor has to be determined and loaded at runtime. Despite all of these 
difficulties, there is research into how to make interface adaptation practical. See, for 
example, Ponnekanti and Fox [2004].

Another approach to interoperability is to constrain interfaces to be identical in 
syntax across as wide a class of components as possible. That may sound unrealistic at 
first, but in fact it has been widely and successfully practised for several decades. The 
simplest example is pipes in UNIX. A pipe has only two operations, read and write, for 



SECTION 19.3 INTEROPERATION 837

the transport of data between components (processes) at its two ends. Over the years, 
UNIX programmers have created many programs that can read data from a pipe and/or 
write data to a pipe. Because of their standardized interfaces and generic text-processing 
functionalities, the output of any of those programs can be fed into the input of another. 
Users and programmers have found many useful ways of combining programs in that 
way – programs that were written independently, without knowledge of the specific 
functionality of the other programs. 

A yet more successful example of a system that achieves a high degree of 
interoperability through a fixed interface is the Web. The set of methods defined by the 
HTTP specification (see Section 5.2) is small and fixed; typically, a web client uses only 
the GET and POST operations to access a web server. The consequence of the fixed 
interface is that a relatively stable piece of software – often the browser – is able to 
interoperate with an evolving set of services. What changes between services is the type 
and values of the content that is exchanged, and the server’s processing semantics. Every 
interaction is still a GET or POST operation.

19.3.1 Data-oriented programming for volatile systems

We call systems that use an unvarying service interface, such as UNIX pipes and the 
Web, data-oriented (or, equivalently, content-oriented). The term is chosen in 
distinction to object-oriented. A component in a data-oriented system can be invoked by 
any other component that knows the fixed interface. An object or collection of 
procedures, on the other hand, has one of a widely varying set of possible interfaces and 
can only be invoked by those components that know its particular interface. Distributing 
and exploiting an indefinite number of specialized interface definitions is a much more 
problematic proposition than publishing and using one interface specification, such as 
the HTTP specification. That helps explain why the most widely used, heterogeneous 
distributed system we have known is the Web, rather than a similarly scaled collection 
of, say, CORBA objects. 

But the flexibility of data-oriented systems is traded off against robustness. It does 
not always make sense for two particular components to interoperate, and yet there is 
little basis for programs to check for compatibility. In an object- or procedure-oriented 
system, programs can at least check that their particular interface signatures match. But 
a data-oriented component can enforce compatibility only by verifying the type of data 
that is sent to it. It must either do that through standardized data-type descriptors 
supplied as metadata (such as MIME types for web content), or by checking the data 
values passed to it; for example, JPEG data begins with recognizable header 
information.

We now examine some programming models that have been used for volatile 
systems because of their data-oriented interoperability features. We begin with two 
models for interoperation between indirectly associated components: event systems and 
tuple spaces. We go on to describe two designs for interoperation between directly 
associated devices: JetSend and Speakeasy.

Event systems  •  We introduced event systems [Bates et al. 1996] in Section 6.3. Event 
systems provide instances of event services. Each system offers a fixed, generic 
interface by which components called publishers publish structured data known as 
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events and, correspondingly, components called subscribers receive events. Each event 
service is associated with some physical or logical scope of event delivery. Subscribers 
only receive (‘handle’) events that (1) are published at the same event service and (2) 
match their registered specifications of which events interest them. 

Events are a natural programming paradigm for announcing and handling the 
changes experienced by components while they are in a volatile system or when they 
move between volatile systems. Events can be constructed to specify new states of 
affairs, such as changes in a device’s location. A recent example of a system that uses 
events for ubiquitous computing is one.world [Grimm 2004], but events have been used 
in ubiquitous systems from early in their development. In the Active Badge system 
[Harter and Hopper 1994], applications could subscribe to location-change events that 
occur when users move around. Location events also present the issue of detecting 
patterns of events that occur together or in close succession, also known as composite

events. For example, consider the problem of detecting when two users are co-located, 
when all that is known is when individual users enter or leave a particular location. A 
location system does not detect such occurrences by itself: there is a need for rules that 
specify, in terms of primitive events such as ‘Arrive(user, location, time)’ and 
‘Leave(user, location, time)’, when composite events such as co-location occur. 

Although the publishing, subscription and handling interface for events is a given 
(with relatively minor variations between event systems), publishers and subscribers can 
interoperate correctly only if they agree on the event service they use (there may be 
many instances) and the types and attributes of events – that is, their syntax and 
semantics. Thus event systems shift rather than solve the problem of ubiquitous 
interoperability. For a given component to interoperate in a wide variety of smart spaces 
would require standards for event types, and events would ideally be described in a 
programming language–independent markup language such as XML or JSON. 

On the other hand, event producers and consumers do not need to identify one 
another. That can be an advantage in a volatile system, where keeping track of which 
other components are present can be difficult. Two components come to communicate 
by virtue of publishing and subscribing to matching events, and by agreement on the 
scope of event delivery – in other words, they associate indirectly.

The scope of event delivery is itself an interesting topic in mobile and ubiquitous 
systems. As with service discovery, the question arises of how the scope of an event 
service is related to the physical extent of the smart space. This point is the topic of 
Exercise 19.7.

Tuple spaces  •  Like event systems, tuple spaces are a mature programming paradigm 
that has found application in volatile systems. The tuple space paradigm was introduced 
in Section 6.5.2 as an indirect communication paradigm that supports the addition and 
retrieval of structured data, called tuples, to and from a tuple space. Tuple space systems 
allow application-specific tuples to be exchanged, and the basis for association and 
interoperation is the components’ agreement about structures for tuples and values 
contained within them. 

As an example of the support they can offer ubiquitous computing, a digital 
camera could discover the tuple space for the local smart space – a hotel room, say – and 
place its images in the tuple space using a tuple such as:
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< 'The leaning tower', 'image/jpeg', <jpeg data>>

The designers of the camera software have a model only of a tuple space into 
which images may be placed in a certain format, and no model of the particular forms 
of processing to which those images will be subject. 

Correspondingly, an image-consuming device such as a digital picture frame 
could be programmed to discover its local tuple space and to attempt to retrieve from it 
tuples with the form of the following template, in which ‘*’ represents a wildcard value:

<*, 'image/jpeg', *>

The camera’s tuple matches the template required by the picture frame – it has 
three fields and its second field contains the required MIME type string. The picture 
frame will thus retrieve the camera’s tuple and can display the image and associated title. 
As another example, the user could have activated a printer to consume the image from 
the tuple space and print it. 

Several programming systems based on tuple spaces have been developed 
specifically for mobile and ubiquitous systems, as discussed below.

The event heap: Despite its name, the event heap [Johanson and Fox 2004] is a 
tuple-based programming system developed for a type of smart space known as the 
‘iRoom’, which contains multiple large displays and other infrastructure devices. For 
each iRoom there is a corresponding event heap, which components in the iRoom – 
including those on mobile devices brought into the room – can discover or can be 
configured to use. Components interoperate by exchanging tuples via the event heap, 
and it provides a level of indirection that facilitates dynamic association between the 
devices. An example is where a remote control device kept in the iRoom can be 
associated dynamically to different displays, and a video can be presented on any of 
these displays. When a user presses the ‘pause’ button on the remote control, the control 
places a ‘pause’ tuple in the event heap. Whatever device is displaying the video is 
programmed to look for and retrieve ‘pause’ tuples, and thus respond. The remote 
control could be made to work with an audio output device in exactly the same way, 
without reprogramming it. 

LIME: The LIME system (Linda in a Mobile Environment) [Murphy et al. 2001] was 
developed as a programming model for mobile systems. In LIME, participating devices 
host tuple spaces and there is no reliance on infrastructure. Each device hosts its own 
tuple space. LIME shares the individual tuple spaces when their host devices become 
associated, forming the union of the sets of tuples in the aggregate of shared spaces. This 
could be used for service discovery, for example. A component that requires a service 
could be programmed to attempt to retrieve a tuple describing an instance of the service 
it requires; a device implementing a corresponding service would be programmed to 
place a descriptive tuple in its local tuple space. When the two became connected, LIME 
would establish the match and the would-be client would obtain the service’s details. 

While the LIME model is simple to state, it is non-trivial to implement suitable 
consistency semantics in the face of arbitrary connections and disconnections. LIME’s 
implementors made arguably unrealistic assumptions to simplify their design, including 
that multicast connectivity holds uniformly between the devices whose tuple spaces are 
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aggregated and that connections and disconnections to and from an aggregated set are 
serialized and orderly. 

TOTA: The TOTA (Tuples On The Air) Project [Mamei and Zambonelli 2009]  provides 
a rather interesting twist to the standard implementation of tuple spaces. In this 
approach, tuples are injected into the network by placing them on a local node and then 
allowing the tuples to be cloned and propagated throughout the network in a manner 
similar to gossip protocols (see Section 18.4.1). The end result is a tuple field

representing a spatial dissemination of a given tuple. A process can then read the tuple 
in the usual manner using associative matching. To support this style of programming, 
a tuple T is defined as T=(C,P,M), where C is the content of the tuple, P is the 
propagation rule for that tuple and M is a maintenance rule that defines how the tuple 
should react to events from the environment or to the passing of time. For example, 
Mamei and Zambonelli [2009] describe an art museum application where different 
rooms in the museum have fixed wireless devices and visitors have wireless-enabled 
smart phones, which together form an ad hoc network. The smart phone of a visitor 
interested in a particular piece of art places a query tuple into the system whose content 
is a description of the piece of art together with a distance field. The propagation rule is 
to propagate the tuple to all nodes in the vicinity, increasing the distance by one each 
time; the maintenance rule is to delete the tuple after a time-to-live period. Once this 
tuple arrives at a particular room where the piece of art resides, an answer tuple is 
injected into the system containing a description of the artwork, the location of the 
artwork and a distance field; the propagation rule this time is to follow the path 
backwards to the visitor, increasing the distance each time, and the maintenance rule 
again is to implement a time-to-live policy. The end result is a highly flexible 
programming model that is particularly useful for operation in spatially connected ad 
hoc environments and in ubiquitous computing more generally.

L2imbo: L2imbo is a replicated tuple space implementation designed to operate in a 
mobile environment [Davies et al. 1998]. Whereas the most common motivation for 
replication is to achieve high availability and fault tolerance, L2imbo exploits 
replication to deal with device disconnection. L2imbo adopts a fully replicated approach 
where every node maintains a replica. The goal is then to ensure the consistency of this 
set of replicas. To this end, L2imbo adopts the approach of reliable multicast over IP 

multicast, as discussed in Section 15.4.2, specifically using the scalable reliable 
multicast approach featured in that section [Floyd et al. 1997]. L2imbo supports the 
creation of multiple tuple spaces, and each tuple space maps uniquely onto an IP 
multicast address. The implementations of read and write are relatively straightforward, 
with read often being satisfied locally and write mapping onto a (reliable) multicast 
operation. The implementation of take is more complex given the requirement for global 
withdrawal. The approach builds on a concept of ownership in L2imbo, with only the 
owner being able to remove the tuple. The owner is normally the creator of the tuple, but 
ownership can subsequently be transferred to other processes.

Comparing event systems and tuple spaces  •  If we identify ‘event’ with ‘tuple’ and 
‘specification of interest’ with ‘tuple-matching template’, there is a correspondence 
between the two models of interoperation. Both provide a level of indirection that is 
useful for volatile systems, since the identities of the components that produce and 
consume events or tuples are hidden from one another by default. The set of components 
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can thus change transparently. However, there are important differences. First, the event 
model is exclusively asynchronous, whereas tuple space systems supply a synchronous 
operation to retrieve a matching tuple. It can be easier to program with synchronous 
operations. On the other hand, it is a bad idea to expect that a particular component (for 
example, an image-producing device that has been dynamically encountered) will 
eventually supply a matching tuple, since disconnection may occur at any time. 

The second important difference is the lifetime of events and tuples. By default, 
an event does not outlast its propagation between publishers and subscribers. A tuple in 
a tuple space, however, may outlast the component that placed it there – and any 
component that reads (as opposed to destructively consumes) it. That persistence can be 
an advantage; for example, the batteries in a user’s camera might fail after they have 
uploaded pictures to a hotel room’s tuple space but before they have assigned them to 
another device. At the same time, persistence can be a disadvantage: what if an 
uncontrollable set of devices places tuples in a space, but they are never consumed 
because the components expected to consume them have become disconnected? The set 
of tuples in such a space might grow uncontrollably. Without global knowledge of a 
volatile set of components, it would be impossible to determine which tuples were 
garbage.

The designers of the event heap recognized the persistence problem for iRooms. 
They chose to allow tuples to expire (that is, to be garbage-collected) after being in an 
event heap for a specified time, which is usually chosen to correspond with a human 
interaction timespan. That prevents, for example, an unconsumed pause event from a 
remote control to cause a nuisance when a user tries to play a video the next day.

Direct device interoperation  •  The previous programming models were for interopera-
tion between indirectly associated components. JetSend and Speakeasy are systems de-
signed for interoperation between two devices that a human has brought into direct 
association.

JetSend: The JetSend protocol [Williams 1998] was designed for interaction between 
appliances such as cameras, printers, scanners and TVs. JetSend was explicitly designed 
to be data-oriented, so that no appliance had to be loaded with specialized drivers 
according to the specific devices with which it would interact. For example, a JetSend 
camera can send an image to a JetSend image-consuming device such as a printer or TV, 
regardless of the specific functionality of the consumer. The central generic operation 
between connected JetSend devices is to synchronize the state that one presents to the 
other. That means transferring the state, in a format negotiated by the devices. For 
example, an image-producing device such as a scanner could synchronize with an 
image-consuming device such as a digital picture frame by consuming an image from 
the producer in JPEG format, chosen from several image formats that the producer could 
provide. The same scanner might equally synchronize with a TV, perhaps using a 
different image format.

JetSend’s designers recognized that their synchronization operation benefited 
only simple interoperation – essentially, data transfer – between heterogeneous devices. 
That begs the question of how to achieve more complex interactions between specific 
devices. For example, how should a choice be made between monochrome and colour 
when transferring an image to be printed? By assumption, the source device has no 
driver for a specific printer. And it is not possible for that device to be programmed a
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priori with the semantics of any arbitrary device (including devices yet to be invented) 
with which it might connect. The JetSend answer to that problem was to rely on a human 
to select the specific functions of the target device (say, a printer), using a user interface 
specified by the target device but rendered on their source device (say, a camera). That 
is how interoperation happens routinely on the Web, as users interact with highly 
heterogeneous services via their browser: each service they interact with sends its 
interface in the form of markup script to the browser, which renders it to the user as a 
generic set of widgets, without knowledge of the service’s specific semantics. Web 
services (see Chapter 9) are an attempt to replace the human by programs even for 
complex interactions.

Speakeasy: The Speakeasy project [Edwards et al. 2002] later applied the same design 
principles as JetSend to device-device interoperation, but with one difference: they 
utilize mobile code. There are two motivations for using mobile code. The first is that a 
device such as a printer can send any user interface to a user of another device such as a 
smart phone. A mobile code implementation of a user interface can perform local 
processing such as input validation, and it can provide interaction modes not available 
in user interfaces that have to be specified in a markup language. However, against this 
advantage has to be set the implications for security of executing mobile code, which 
requires sophisticated protection mechanisms against Trojan horses, and the resource 
implications of running mobile code on a virtual machine as opposed to processing 
much more restricted markup script.

The second motivation for mobile code in device interoperation is optimization of 
data transfer. While Speakeasy’s mobile code has to work within the constraints of the 
host device’s API, it may perform arbitrary interactions with the remote device that sent 
it. Thus, for example, the mobile code can implement an optimized protocol for 
transferring content that is specific to the type of content – e.g., video could be 
compressed on the fly before transmission. By contrast, JetSend can use only predefined 
content transfer protocols.

19.3.2 Indirect associations and soft state

When a service (such as an infrastructure service) is resourced well enough to be highly 
available, then it makes sense for components to associate with it explicitly – that is, to 
learn its address. When components later use that address to interoperate with the 
service – say, 10 minutes after association – then they can reasonably expect it to be 
reachable still and to respond. However, in general, system volatility makes it 
undesirable to rely on a service provided by a particular component since that 
component could leave or fail at any time. One lesson from that distinction is that it is 
useful for programmers to be told which services are highly available, and which are 
volatile. In addition, to cope with volatility, they need to be provided with programming 
techniques that do not involve reliance on a specific component.

Some of the above examples of data-oriented programming systems involved 
indirect, anonymous associations. Specifically, components that interoperate via an 
event system or tuple space do not necessarily know one another’s names or addresses. 
As long as the event service or the tuple space persists, the individual components can 
come and go and be replaced. Care is needed to maintain the correct operation of the 
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system overall, but at least the programmers of the components do not have to manage 
individual associations with routinely disappearing peers.

 An example of a client-server system that uses indirect association is the 
Intentional Name System (INS) [Adjie-Winoto et al. 1999]. Components issue requests 
that specify the attributes of the required service, the operation to be invoked and its 
parameters. The components do not need to specify the name or address of an instance 
of the required service, because the INS automatically routes the operation and 
parameters to an appropriate – e.g. local – service instance that matches the required 
attributes. Since successive operations directed to the same attribute specification could 
be handled by different server components, the INS assumes that those servers either are 
stateless or replicate their state using one of the techniques described in Chapter 18.

That leads to a general question: how are programmers supposed to manage state 
in a volatile system? The replication techniques from Chapter 18 assume a redundancy 
of resources, which may not be available in a volatile system – at least, not continuously. 
The replication techniques also entail extra communication that may not be practical 
because of the associated energy consumption and performance degradation.

Lamport’s ‘Paxos’ or ‘Part-time Parliament’ algorithm [1998] provides a way of 
reaching distributed agreement despite volatility – the participating processes are 
assumed to disappear and reappear regularly and independently. However, the algorithm 
depends on each process having access to its own persistent store. 

By contrast, some implementations use soft state to provide more relaxed but still 
useful consistency guarantees, even in the absence of continuously available persistent 
storage. Clark [1988] introduced the notion of soft state as a way of managing the 
configuration of Internet routers despite failures. The collection of routers is a volatile 
system that has to continue to function even though no routers in the system can be 
assumed always to be available. The definition of soft state has been the subject of 
debate [Raman and McCanne 1999], but broadly speaking it is data that provides a hint 
(that is, it might be stale and should not be relied upon for its strict currency), and, most 
importantly, the sources of soft state automatically update it. Some discovery systems 
(see Section 19.2) exemplify the use of soft state to manage the collection of service 
registration entries. The entries are only hints – there may be an entry for a service that 
has disappeared – and the entries are automatically updated by multicasts from services, 
to add new entries and keep existing entries current. 

19.3.3 Summary and perspective

This section has described models of interoperation between components in volatile 
systems. If each smart space was to develop its own programming interface, then the 
benefits of mobility would be limited. If a component did not originate in a given smart 
space but moved there, the only way it could interoperate with services within the smart 
space would be via a way of adapting its interface spontaneously to that of its new 
surroundings. Achieving that would require very sophisticated runtime support, which 
is as yet unrealized outside a few examples in the laboratory.

A different approach, described through several examples above, is data-oriented 
programming. On the one hand, the Web has shown the extensibility and mass 
applicability of that paradigm. On the other hand, there is no ‘silver bullet’ that will 
solve all of the problems of interoperation for volatile systems. Data-oriented systems 
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trade agreement on the set of functions in an interface against agreement on the types of 
data that are passed as arguments to those functions. While XML (see Section 4.3.3) is 
sometimes touted as a way of facilitating data interoperation by enabling data to be 
‘self-describing’, in fact it merely provides a framework for expressing structure and 
vocabulary. In itself, XML has nothing to contribute to what is a semantic problem. 
Some authors consider the ‘Semantic Web’ [www.w3.org XX] to be the way to achieve 
interoperability between machines, without human interpretation.

19.4 Sensing and context awareness

The foregoing sections have concentrated on aspects of the volatility of mobile and 
ubiquitous systems. This section will concentrate on the other chief characterization of 
those systems: that of being integrated with the physical world. Specifically, it will 
consider architectures for processing data collected from sensors, and context-aware 
systems that can respond to their (sensed) physical circumstances. The sensing of 
location, an important physical parameter, will be examined in more detail. 

Since users and the devices we are considering are often mobile, and since the 
physical world presents different opportunities for rich interactions across locations and 
times, their physical circumstances are often relevant as a determinant of system 
behaviour. The context-aware braking system of a car could adjust its behaviour 
according to whether the road conditions are icy. A personal device could automatically 
harness resources detected in its environment, such as a large display. The Active Badge 
system provides a historical example: the location of a user – that is, the location of the 
badge they wore – was used to identify which phone their calls should be routed to 
[Want et al. 1992], in the days before mobile phones. 

The context of an entity (person, place or thing, whether electronic or otherwise) 
is an aspect of its physical circumstances of relevance to system behaviour. The context 
includes relatively simple values such as the location, time and temperature,  the identity 
of an associated user – e.g., one operating a device – or other users nearby; and the 
presence and state of an object such as another device, e.g., a display. Context can be 
codified and acted upon through rules, such as ‘If the user is Fred and he is in an IQ Labs 
meeting room, and if there is a display within 1 m, then show information from the 
device on the display – unless a non-IQ Labs employee is also present’. Context is also 
taken to include more complex attributes such as the user’s activity. For example, a 
context-aware phone that has to decide whether to ring requires answers to questions 
such as ‘Is the user in a cinema watching a film or are they chatting to their friends before 
the screening?’

19.4.1 Sensors

The determination of a contextual value begins with sensors, which are combinations of 
hardware and/or software used to measure contextual values. Some examples are: 

Location, velocity and orientation sensors: Satellite navigation (GPS) units for 
providing global coordinates and velocities; accelerometers to detect movement; 
magnetometers and gyroscopes to provide orientation data.
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Ambient condition sensors: Thermometers; sensors that measure light intensity; mi-
crophones for sound intensity. 

Presence sensors: Sensors that measure physical load, e.g. to detect the presence of 
a person sitting on a chair or walking across a floor; devices that read electronic 
identifiers on tags brought near to them, such as RFID (Radio Frequency 
IDentification, a subset of NFC) readers [Want 2004], or infrared readers such as 
those used to sense active badges; software used to detect key presses on a computer.

The above categories are meant only as examples of sensors used for particular 
purposes. A given sensor may be put to various purposes. For example, the presence of 
humans could be detected using microphones in a meeting room and an object’s location 
could be determined by detecting the presence of its active badge in a known place.

An important aspect of a sensor is its error model. All sensors produce values with 
some degree of error. Some sensors, e.g. thermometers, can be manufactured so that the 
errors fall within the bounds of a fairly well known tolerance, and with a known (e.g., 
Gaussian) distribution. Others, such as satellite navigation units, have complicated error 
modes that depend on their current circumstances. First, they may fail to produce a value 
at all in certain circumstances. Satellite navigation units are dependent on the set of 
satellites currently visible. They typically do not work at all inside buildings, whose 
walls attenuate the satellite signals too much for the units to operate. Second, the 
calculation of the unit’s location depends on dynamic factors including satellite 
positions, the existence of nearby occlusions and ionospheric conditions. Even outside 
buildings, a unit will typically provide different values at different times for the same 
location, with only a best-effort estimate of the current accuracy. Near to buildings or 
other tall objects that occlude or reflect radio signals, just enough satellites may be 
visible to produce a reading, but the accuracy may be low and the reading may even be 
spurious. 

A useful way to state a sensor’s error behaviour is to quote an accuracy that it 
reaches for a specified proportion of measurements, for example: ‘Within the given area, 
the satellite navigation unit was found to be accurate to within 10 m for 90% of 
measurements’. Another approach is to state a confidence value for a particular 
measurement – a number (usually between 0 and 1) chosen according to uncertainties 
encountered in deriving the measurement.

19.4.2 Sensing architectures

Salber et al. [1999] identify four functional challenges to be overcome in designing 
context-aware systems:

Integration of idiosyncratic sensors: Some of the sensors needed for context-aware 
computing are unusual in their construction and programming interfaces. Specialized 
knowledge may be needed to correctly deploy them in the physical scenario of 
interest (e.g., where should accelerometers be attached to measure the user’s arm 
gestures?), and there may be system issues such as the availability of drivers for 
standard operating systems.

Abstracting from sensor data: Applications require abstractions of contextual 
attributes, to avoid concern with the peculiarities of individual sensors. The problem 
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is that even sensors that can be put to similar purposes typically provide different raw 
data. For example, a given location may either be sensed as a latitude/longitude pair 
by a satellite navigation sensor, or sensed as the string ‘Joe’s Café’ read from a 
nearby infrared source. Either, both or neither might be what the application needs to 
function. There needs to be agreement on the meaning of contextual attributes, and 
software to infer those attributes from raw sensor values. 

Sensor outputs may need to be combined: Reliably sensing a phenomenon may 
entail combining values from several error-prone sources. For example, detecting the 
presence of a person might require a microphone (to detect voice – but nearby sounds 
might interfere), floor pressure sensors (to detect human movement – but different 
users’ patterns are hard to distinguish) and video (to detect human forms – but facial 
features are hard to distinguish). Combining sensor sources to reduce errors is known 
as sensor fusion. Equally, an application may require output from sensors of different 
types in order to gather several contextual attributes that it needs to operate. For 
example, a context-aware smart phone that decides whether to present data on a 
nearby display requires data from different sensor sources, including ones to detect 
who and which devices are present, and one or more to sense the location.

Context is dynamic: A context-aware application typically needs to respond to 
changes in context, and not simply to read a snapshot of it. For example, the 
context-aware smart phone needs to blank its data from the room’s display if a non- 
employee enters, or if Fred (the device’s owner) leaves the room.

Researchers have devised various software architectures to support context-aware 
applications while dealing with some or all of the above issues. We give examples of 
architectures for situations in which the set of available sensors is more or less known 
and static, and architectures for determining contextual attributes from volatile 
collections of sensors (where non-functional requirements such as energy-saving also 
become prominent).

Sensing in the infrastructure  •  Active badge sensors were originally deployed in the 
laboratory of Olivetti Research in Cambridge, England, at known, fixed locations in the 
building. One of the original context-aware applications was as an aid for a telephone 
receptionist. If someone called for, say, Roy Want, the receptionist would look for Roy’s 
room location on the screen, so they could put the call through to an appropriate 
extension. The system determined Roy’s location from information about where the 
badge he wore was last sensed, and displayed that information to the receptionist. 
Systems for processing active badge data and other contextual data were refined at 
Olivetti Research Labs and at Xerox PARC. Harter and Hopper [1994] describe an 
entire system for processing location events. Schilit et al. [1994] also describe a system 
that can process active badge sensing events, through what they call context-triggered 

actions. For example, the specification:

Coffee   Kitchen   arriving   'play -v 50 /sounds/rooster.au'

would cause a sound to be played whenever a badge was sensed arriving at the 
sensor mounted by the coffee machine in the kitchen. 



Figure 19.5 The IdentityPresence widget class of the Context Toolkit

Attributes (accessible by polling) Explanation

Location Location the widget is monitoring

Identity ID of the last user sensed

Timestamp Time of the last arrival

Callbacks

PersonArrives(location, identity, timestamp) Triggered when a user arrives

PersonLeaves(location, identity, timestamp) Triggered when a user leaves
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The Context Toolkit [Salber et al. 1999] is an example of a system architecture for 
more general context-aware applications than those based around a specific technology 
such as active badges. It was the designers of the Context Toolkit who stated the four 
challenges for context-aware systems listed above. Their architecture follows the model 
of how graphical user interfaces are constructed from reusable widget libraries, which 
hide most of the concerns of dealing with the underlying hardware – and much of the 
interaction management – from the application developer. The Context Tzoolkit defines 
context widgets. Those reusable software components present an abstraction of some 
type of context attribute while hiding the complexity of the actual sensors used. For 
example, Figure 19.5 shows the interface to an IdentityPresence widget. It provides 
contextual attributes to software polling the widget, and it raises callbacks when the 
contextual information changes (i.e., a user arrives or leaves). As indicated above, the 
presence information could be derived from any of several combinations of sensors in a 
given implementation; the abstraction enables the application writer to ignore those 
details. 

Widgets are constructed from distributed components. Generators acquire raw 
data from sensors such as floor pressure sensors, and provide that data to widgets. 
Widgets use the services of interpreters, which abstract contextual attributes from the 
generator’s low-level data, deriving higher-level values such as the identity of a person 
who is present from their distinctive footsteps. Finally, widgets called servers provide 
further levels of abstraction by collecting, storing and interpreting contextual attributes 
from other widgets. For example, a PersonFinder widget for a building could be 
constructed from the IdentityPresence widgets for each room in the building (Figure 
19.6), which in turn could be implemented using footstep interpretation from floor 
pressure readings or face recognition from video capture. The PersonFinder widget 
encapsulates the complexity of a building for the application writer.

Looked at in relation to the four challenges that the Context Toolkit’s designers 
stated, their architecture does accommodate a variety of sensor types; it is geared 
towards the production of abstract contextual attributes from raw sensor data; and, 
through polling or callbacks, a context-aware application can learn about changes in its 
context. However, the toolkit goes only a limited way towards a practical solution. It 
does not of itself help users and programmers to integrate idiosyncratic sensors; neither 



Figure 19.6 A PersonFinder widget constructed using IdentityPresence widgets

IdentityPresenceRoom A IdentityPresence Room B

PersonFinder

Floor pressure (generators) Video (generator)

Face recognition
Footstep recognition

(interpreter)
(interpreter)

Widgets

848 CHAPTER 19  MOBILE AND UBIQUITOUS COMPUTING

does it solve any of the hard problems inherent in the processes of interpretation and 
combination for a specific case.

Wireless sensor networks  •   We have discussed architectures for applications in which 
the set of sensors is relatively stable – for example, where the sensors are installed in 
rooms in a building, often with external power and wired network connections. We now 
turn to cases where the set of sensors forms a volatile system. A wireless sensor network

consists of a (typically large) number of small, low-cost devices or nodes, each with 
facilities for sensing, computing and wireless communication [Culler et al. 2004]. It is 
a special case of an ad hoc network: the nodes are physically arranged more or less 
randomly, but they can communicate over multiple wireless hops between their peers. 
An important design goal for these networks is to function without any global control; 
each node bootstraps itself by discovering its wireless neighbours and communicating 
via them alone. Section 3.5.2 describes ad hoc configurations of 802.11 networks, but 
lower-power technologies such as ZigBee (IEEE 802.15.4) are more relevant here.

One reason why nodes communicate not in a single hop to all other nodes but only 
with nodes located nearby is that wireless communication is costly in terms of power 
consumption, which increases as the square of radio range. The other main reason for 
restricting the range of individual radios is to reduce network contention.

 Wireless sensor networks are designed to be added to an existing natural or built 
environment and to function independently of it – i.e., without reliance on infrastructure. 
Given their limited radio and sensing range, the nodes are installed at a sufficient density 
to make it probable both that multihop communication will be possible between any pair 
of nodes, and that significant phenomena can be sensed.

For example, consider devices placed throughout a forest whose job is to monitor 
for fires and perhaps other environmental conditions, such as the presence of animals. 
These nodes are very much the devices introduced in Section 19.1.1. They each have 
sensors attached, e.g. for temperature, sound and light; they run on batteries; and they 
communicate with other devices in a peer-to-peer fashion via short-range radio 
communication. The volatility stems from the fact that these devices can fail due to 
battery exhaustion or accidents such as fires; and their connectivity may change due to 
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node failures (nodes relay packets between other nodes) or environmental conditions 
affecting radio propagation.

Another example is where the nodes are attached to vehicles to monitor traffic and 
road conditions. A node that has observed a poor condition can relay information about 
it via nodes on passing vehicles. With sufficient overall connectivity, this system can 
warn other nearby drivers headed in the direction of the problem. Here the volatility 
arises principally because of the nodes’ movement, which rapidly changes each node’s 
state of connectivity with other nodes. This is an example of a mobile ad hoc network.

In general, wireless sensor networks are dedicated to an application-specific
purpose that amounts to detecting certain alarms – conditions of interest such as fires or 
poor road conditions. At least one more powerful device, a root node, is usually included 
in the network, for longer-range communication with a conventional system that reacts 
to the alarms – for example, by calling the emergency services when there is a fire. 

One approach to software architectures for sensor networks is to treat them 
similarly to conventional networks by separating the network layer from higher layers. 
In particular, it is possible to adapt existing routing algorithms to the graph of nodes as 
they dynamically discover themselves to be connected by their direct radio links, with 
each node able to act as a router for communications from other nodes. Adaptive 
routing, which attempts to accommodate the volatility of the network, has been the 
subject of much study, and Milanovic et al. [2004] provide an overview of some 
techniques. 

However, limiting concern to the network layer raises issues. First, adaptive 
routing algorithms are not necessarily tuned to low energy (and bandwidth) 
consumption. Second, volatility undermines some of the assumptions in traditional 
layers above the network layer. An alternative, first-principles approach to software 
architectures for wireless sensor networks is driven by two main requirements: energy 
conservation and continuous operation despite volatility. Those two factors lead to three 
main architectural features: in-network processing, disruption-tolerant networking and 
data-oriented programming models.

In-network processing: Not only is wireless communication absolutely costly in energy 
consumption, but it is relatively expensive compared to processing. Pottie and Kaiser 
[2000] calculated energy consumption and found that a general-purpose processor could 
execute 3 million instructions for the same amount of energy (3J) used to transmit 1 kbit 
of data 100 m by radio. So, in general, processing is preferable to communication: it is 
better to spend some processor cycles determining whether communication is (yet) 
necessary, than to blindly transmit sensed data. Indeed, that is why the nodes in sensor 
networks have a processing capability – otherwise, they could have consisted simply of 
sensing modules and communication modules that would send sensed values to root 
nodes for processing. 

The phrase in-network processing refers to processing within the sensor network; 
that is, on the network nodes. The nodes in a sensor network perform tasks such as 
aggregating or averaging values from nearby nodes so as to examine values for an area 
rather than a single sensor filtering out data of no interest or repeated data, examining 
data to detect alarms and switching sensors on or off according to the values being 
sensed. For example, if low-power light sensors indicate the possible presence of 
animals (due to the casting of shadows), then the nodes near to where the shadows were 
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cast could switch on their higher-power sensors, such as microphones, to try to detect 
animal sounds. That scheme enables the microphones to be turned off otherwise, to 
conserve energy.

Disruption-tolerant networking: The end-to-end argument (Section 2.3.3) has been an 
important architectural principle for distributed systems. However, in volatile systems 
such as sensor networks, it may be that no end-to-end path exists continuously for long 
enough to achieve an operation such as the movement of data in bulk across a system. 
The terms disruption tolerant networking and delay tolerant networking are used for 
protocols to achieve higher-layer transfers across volatile (and typically heterogeneous) 
networks [www.dtnrg.org]. The techniques are intended not only for sensor networks 
but also other volatile networks, such as interplanetary communication systems needed 
for space research [www.ipnsig.org]. Rather than relying on continuous connectivity 
between two fixed endpoints, communication becomes opportunistic: data are 
transferred as and when they can be, and nodes take on successive responsibilities to 
move data in a store-and-forward fashion until an end-to-end goal such as bulk transport 
has been attained. The unit of transfer between nodes is known as a bundle [Fall 2003], 
which contains a source’s application data and data describing how to manage and 
process it both at the endpoint and at intermediate nodes. For example, a bundle might 
be transferred with hop-by-hop reliable transports; once a bundle has been handed over, 
the recipient node assumes responsibility for its subsequent delivery over the next hop, 
and so on. This procedure does not rely on any continuous route; also, resource-poor 
nodes are relieved from storing the data as soon as they have transferred it to the next 
hop. To guard against failure, data can be forwarded redundantly to several 
neighbouring nodes. 

Data-oriented programming models: Turning to interoperation in the application layers, 
data-oriented techniques including directed diffusion and distributed query processing,
described shortly, have been developed for applications of sensor networks. These 
techniques recognize the need for in-network processing by incorporating methods for 
distributing the processing across the nodes. Moreover, the techniques recognize the 
volatility of sensor networks by eliminating node identities – and any other names for 
components such as processes or objects associated with a node. As we discussed in 
Section 19.3.2, any program that relies on the continuous existence of a node or a 
component will not work robustly in a volatile system, since there is a significant chance 
that communication with that node or component will become impossible. 

In directed diffusion [Heidemann et al. 2001], the programmer specifies interests,
which are declarations of tasks injected into the system at certain nodes called sinks. For 
example, a node might express an interest in the presence of animals. Each interest 
contains attribute-value pairs, which are the ‘names’ of the nodes that will perform the 
task. Thus nodes are referred to not through their identity but through characteristics 
required to perform the required task, such as values in a certain range that are being 
sensed there. 

The runtime system propagates interests from a sink through the network in a 
process called diffusion (Figure 19.7a). The sink forwards the interest to neighbouring 
nodes. Any node that receives an interest stores a record of it, along with information 
needed to pass data back to the sink node, before propagating it further in the search for 
nodes that match the interest. A source node is one that matches an interest by virtue of 
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characteristics that match the attribute-value pairs specified in the interest – for example, 
it may be equipped with appropriate sensors. There may be several source nodes for a 
given interest (just as there may be several sinks at which the interest was injected). 
When the runtime system finds a matching source node, it passes the interest to the 
application, which turns on its sensors as required and generates the data needed by the 
sink node. The runtime system ferries that data back to the sink along a reverse path 
made up of nodes that forwarded the interest from the sink. 

Figure 19.7 Directed diffusion
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Since, in general, no node has a priori knowledge of which other node can act as 
a source, directed diffusion may involve considerable redundant communication. At
worst, the entire network may be flooded with an interest. However, sometimes the 
interest concerns only a certain physical region, such as a specific area in a forest. If 
sensor nodes know their locations, then the interest need be propagated only to the target 
area. In principle, nodes could be equipped with satellite navigation receivers for that 
purpose, although natural coverage such as dense trees may obstruct readings.

The flow of data back from source to sink is controlled by gradients, which are 
(direction, value) pairs between nodes that are set up for each particular interest as it 
diffuses through the network (Figure 19.7b). The direction is that in which the data is to 
flow, and the value is application-specific but can be used to control the rate of flow. For 
example, the sink might require data about animal sightings only a certain number of 
times per hour. There may be several paths from a given source to a given sink. The 
system can apply various strategies for choosing among them, including using paths 
redundantly in case of failure, or applying heuristics to find a path of minimum length 
(Figure 19.7c).

The application programmer can also supply software called filters that run on 
each of the nodes to intercept the flow of matching data passing through the node. For 
example, a filter could suppress duplicate animal-detection alarms that derive from 
different nodes sensing the same animal (possibly the node between the sources and sink 
in Figure 19.7c).

Another data-oriented approach to programming sensor networks is distributed 
query processing [Gehrke and Madden 2004]. In this case, however, an SQL-like 
language is used to declare queries that will be executed collectively by the nodes. The 
optimum plan for executing a query is typically processed on the user’s PC or base

station outside the network, taking into account any known costs associated with the use 
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of particular sensor nodes. The base station distributes the optimized query to the nodes 
in the network along dynamically discovered routes, taking into account the 
communication patterns that processing the query entails, such as sending data to 
collection points for averaging. As with directed diffusion, data can be aggregated in the 
network to amortize communication costs. The results flow back to the base station for 
further processing.

19.4.3 Location sensing

Of all the types of sensing used in ubiquitous computing, location sensing has received 
the most attention. Location is an obvious parameter for mobile, context-aware 
computing. It seems natural to make applications and devices behave in a way that 
depends on where the user is, as in our example of the context-aware phone. But location 
sensing has many other uses, from assisting users in navigating through urban or rural 
areas to determining network routes by geography [Imielinski and Navas 1999]. 

Location-sensing systems are designed to obtain data about the position of 
entities, including objects and humans, within some type of region of interest. Here we 
concentrate on entities’ locations, but some technologies also derive values for their 
orientation and higher-order values such as their velocities. 

An important distinction, especially when it comes to privacy, is whether an object 
or user determines its own location, or whether something else determines its location. 
The latter case is known as tracking.

Figure 19.8 (based on a similar figure in Hightower and Borriello [2001]) shows 
some types of location technologies, and some of their principal characteristics. One 
characteristic is the mechanism used to derive a location. That mechanism sometimes 
imposes limitations on where the technology can be deployed, such as whether the 
technology works indoors or outdoors, and what installations are required in the local 
infrastructure. The mechanism is also associated with an accuracy, given in Figure 19.8
to an order of magnitude. Next, different technologies yield different types of data about 
an object’s location. Finally, technologies differ in what information, if any, is supplied 
about the entity being located, which is relevant to users’ concerns about privacy. 
Additional technologies are surveyed in Hightower and Borriello.

The US Global Positioning System (GPS) is the most well-known instance of a 
satellite navigation system – a system for determining the approximate position of a 
receiver or unit from satellite signals. Other satellite navigation systems are the Russian 
GLONASS system and the planned European Galileo system. GPS, which functions 
only outdoors because of signal attenuation inside buildings, is used routinely in 
vehicles and in handheld navigation devices, and increasingly for less conventional 
applications such as the delivery of location-dependent media to people in urban areas 
[Hull et al. 2004]. The receiver’s position is calculated with respect to a subset of 24 
satellites that are orbiting the Earth in six planes, 4 satellites per plane. Each satellite 
orbits the Earth about twice per day, broadcasting the current time from an on-board 
atomic clock and information about its locations over a range of times (as judged by 
observations from ground stations). The receiver whose location is to be determined 
calculates its distance from each of several visible satellites using the difference between 
the time of arrival of the signal and the time it was broadcast – that is, the time encoded 
in the signal – and an estimate of the speed of radio propagation from the satellite to 



Figure 19.8 Some location-sensing technologies

Type Mechanism Limitations Accuracy Type of location data Privacy

GPS Multilateration 
from satellite radio 
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1–10 m Absolute geographic 
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Radio
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Areas with 
wireless 
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entity (usually 
semantic)
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Active Bat Multilateration 
from radio and 
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Ceiling- 
mounted
sensors

10 cm Relative (room) 
coordinates

Bat
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disclosed
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Band
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radio pulses 

Receiver
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15 cm Relative (room) 
coordinates

Tag 
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Active
Badge

Infrared sensing Sunlight or 
fluorescent
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RFID, Near Field 
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Reader
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Camera
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coordinates

No
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Earth. The receiver then calculates its position using a trigonometric calculation known 
as multilateration. At least three satellites must be visible from the receiver to obtain a 
position. The receiver can calculate only its latitude and longitude if just three satellites 
are visible; with more satellites visible, altitude can also be calculated.

Another positioning method that potentially works over a wide area, at least in 
highly populated regions, is to identify nearby beacons in the form of fixed wireless 
nodes with a limited transmission range. Devices can compare signal strengths as a 
measure of which beacon is nearest. Cellular base stations for mobile phones (also 
known as cell towers) each have a cell ID; 802.11 access points have a Basic Service Set 
Identifier (BSSID). Some beacons broadcast identifying information; others are 
discovered. For example, many 802.11 access points broadcast their identifiers, while a 
Bluetooth device provides its identifier upon discovery by another device. 

Radio beaconing does not determine an entity’s position per se, only its proximity 
to another entity. If the beacon’s position is known, then the target entity’s position is 
known to within the beacon’s radio range. Absolute positioning requires looking up the 
beaconed identifier in a database of locations. Telecommunication providers disclose 
positioning information using the locations of their cell towers, either directly or via 
third parties. Some companies, such as Google, use vehicles to systematically trawl 
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areas for 802.11 access points, which they map using GPS positioning. A smart phone’s 
location can be determined to within tens of metres when in range of such a mapped 
access point (assuming that the access point has not been relocated, which sometimes 
occurs).

Proximity can be a useful property in itself. For example, using proximity it is 
possible to create location-aware applications that are triggered by the return to a 
previously visited location – a user waiting at a train station could create an alert 
reminding them to buy a new monthly train ticket when they enter the proximity of the 
train station (that is, when their device receives the same beaconed identifier) on the first 
of the month. Bluetooth, an alternative radio technology, has the interesting property 
that some radio beacons – for example, ones integrated with mobile phones – are 
themselves mobile. This can be useful too. For example, train commuters could receive 
data from people they frequently travel with – ‘familiar strangers’ – provided via their 
mobile phones. 

Figure 19.9 Locating an active bat within a room
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    to ultrasound receivers from 
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Turning back to more definite forms of positioning, GPS derives an object’s 
absolute (that is, global) coordinates outdoors. By contrast, the Active Bat system 
[Harter et al. 2002] was designed to determine an object’s or human’s location indoors, 
in relative coordinates – that is, with respect to the room in which the object or user is 
located (Figure 19.9). The Active Bat system is accurate to about 10 cm. Relatively 
accurate indoor location information is useful for applications such as detecting which 
screen a user is nearest to and ‘teleporting’ their PC’s desktop to that screen using the 
VNC protocol (see ‘Thin client implementations’ in Section 2.3.2). A bat is a device that 
is attached to the user or object whose location is to be found, and that receives radio 
signals and emits ultrasound signals. The system relies on a grid of ultrasound receivers 
at known locations in the ceiling, wired to a base station. To locate a bat, the base station 
simultaneously emits a radio signal to the bat containing its identifier, and a wired signal 
to the ceiling-mounted ultrasound receivers. When the bat with the given identifier 
receives the base station’s signal, it emits a short ultrasound pulse. When a receiver in 
the ceiling receives the base station’s signal, it starts a timer. Since the speed of 
electromagnetic propagation is so much greater than the speed of sound, the emission of 
the ultrasound pulse and the start of the timer are effectively simultaneous. When a 
ceiling receiver receives the corresponding ultrasound pulse (from the bat), it reads the 
elapsed time and forwards it to the base station, which uses an estimate of the speed of 
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sound to deduce the receiver’s distance from the bat. If the base station receives 
distances from at least three non-colinear ultrasound receivers, it can compute the bat’s 
position in 3D space.

Ultra Wide Band (UWB) is a wireless communication technology for propagating 
data at high bit rates (100 Mbps or more) over short ranges (up to 10 m). The bits are 
propagated at very low power but over a very wide frequency spectrum, using thin 
pulses – on the order of 1 ns in width. Given the size and shape of the pulse, it is possible 
to measure times of flight with great accuracy. By arranging receivers in the 
environment and using multilateration it is possible to determine a UWB tag’s 
coordinates to an accuracy of about 15cm. Unlike the above technologies, UWB signals 
propagate through walls and other typical objects found in the built environment. Its low 
power consumption is another advantage.

Some researchers have experimented with the use of existing wireless nodes such 
as 802.11 wireless access points to go beyond simple beaconing, and to attempt to infer 
the location of a wireless client by measuring signal strength with respect to several 
access points. In practice, the presence of other entities in the environment that 
attenuate, reflect or refract the signal means that signal strength is not a simple function 
of distance from the transmitter. One approach to dealing with that issue is 
fingerprinting, which probabilistically determines locations from signal strength 
characteristics as measured throughout the space. As part of the Place Lab project, 
Cheng et al. [2005] consider some techniques for determining locations from signal 
strengths, the accuracy that can be obtained and the amount of calibration that is 
involved.

The preceding technologies provide data about an object’s physical location: its 
coordinates in a physical region. One advantage of knowing a physical location is that, 
through databases including geographical information systems (GIS) and world models

of built spaces, a single location can be related to many types of information about the 
object or its relationship to other objects. However, considerable effort is required to 
produce and maintain those databases, which can be subject to high rates of change. 

By contrast, the Active Badge system (Section 19.1) produces an object’s 
semantic location: the location’s name or description. For example, if a badge is sensed 
by the infrared receiver in room ‘101’, then the location of that badge is determined to 
be ‘Room 101’. (Unlike with most radio signals, building materials strongly attenuate 
infrared signals so the badge is unlikely to be outside the room.) That data tells us 
nothing explicitly about the location in space, but it does provide users with information 
that relates to their knowledge of the world they live in. By contrast, the latitude and 
longitude of the same place, such as 51° 27.010 N, 002° 37.107 W, is useful for, say, 
calculating distances to other places; but it is difficult for humans to work with. Note 
that radio beacons – which invert Active Badge technologies by placing the receiver on 
the target to be located rather than in the infrastructure – can be used to provide either 
semantic or physical locations. 

Active Badges are a specialized form of automatic identification tags:
electronically readable identifiers designed typically for mass industrial applications. 
Automatic identification tags include RFID [Want 2004], Near Field Communication 
(NFC) tags [www.nfc-forum.org] and glyphs or other visual symbols such as barcodes 
– especially those designed to be readable at a distance by cameras [de Ipiña et al. 2002]. 
These tags are attached to the object whose location is to be determined. When they are 
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read by a reader with a limited range and at a known location, the target object’s location 
becomes known.

Finally, computer vision techniques may be used to locate an object such as a 
human viewed by one or more cameras. The Easy Living project [Krumm et al. 2000] 
used vision algorithms on feeds from several cameras. A target object can be located if 
it can be recognized by a camera at a known location. With several cameras at known 
locations, in principle the differences between the object’s appearances in their images 
can be used to determine the object’s location more acurately. More specialized devices 
combine visible light imaging with infrared range-finding to determine the presence of 
humans and the placement of their hands and limbs as gestural inputs, for example to 
games.

As demonstrated in the Cooltown case study (Section 19.7.2), some of the above 
location technologies – especially automatic identification tags and infrared beacons – 
can also be used to provide access to information and services concerning the entity to 
which they are attached, through the identifiers they make available.

How do the above technologies compare with respect to privacy? The GPS 
solution provides absolute privacy: at no point in the GPS’s operation is information 
about the receiving device transmitted elsewhere. Radio beaconing can also provide 
absolute privacy but it depends on how it is used. If a device simply listens for beacons 
and never otherwise communicates with the infrastructure, then it maintains privacy. By 
contrast, the other technologies are tracking technologies. Active Bats, UWB, Active 
Badges and automatic identification methods each yield an identifier to the 
infrastructure indicating presence in a known location at a known time. Even if the 
associated user does not disclose their identity, it might be possible to infer it. Finally, 
Easy Living’s vision techniques rely on recognizing users in order to locate them, so the 
user’s identity is much more directly disclosed.

Architectures for location-sensing  •  Two of the key characteristics required for location 
systems are: generality with respect to the types of sensor used for location-sensing, and 
scalability with respect to the number of objects to be located and the rate of location 
update events occurring when mobile objects such as people and vehicles change their 
locations. Researchers and developers have produced architectures for location sensing 
in the small – in individual smart spaces such as rooms, buildings, or natural 
environments covered by sensor networks – and for highly scalable geographic 
information systems intended to cover large areas and include the locations of very 
many objects.

The location stack [Hightower et al. 2002, Graumann et al. 2003] is aimed at 
meeting the requirement for generality. It divides location-sensing systems for 
individual smart spaces into layers. The sensor layer contains drivers for extracting raw 
data from a variety of location sensors. The measurements layer then turns that raw data 
into common measurement types including distance, angle and velocity. The fusion 

layer is the lowest layer available to applications. It combines the measurements from 
different sensors (typically of different types) to infer the location of an object and 
provide it through a uniform interface. Since sensors produce uncertain data, the 
inferences of the fusion layer are probabilistic. Fox et al. [2003] survey some of the 
Bayesian techniques available. The arrangements layer deduces relationships between 
objects, such as whether they are co-located. Above those are layers for combining 
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location data with data from other types of sensors to determine more complex 
contextual attributes, such as whether a group of people located in a house are all asleep.

Scalability is a major concern in geographic information systems.
Spatio-temporal queries such as ‘Who has been in this building in the last 60 days?’, ‘Is 
someone following me?’ or ‘Which moving objects in this region are most in danger of 
colliding?’ illustrate the need for scalability. The number of objects – in particular, the 
number of mobile objects – to be located and the number of concurrent queries may be 
large. Moreover, in the last of those example queries, real-time responsiveness is 
required. The obvious approach to making location systems scalable is to divide the 
region of interest recursively into subregions, using data structures such as quadtrees. 
Such indexing of spatial and temporal databases is an active area of research.

19.4.4 Summary and perspective

This section has described some of the infrastructures that have been devised for 
context-aware computing. We have concentrated primarily on the ways in which sensors 
are harnessed to produce the contextual attributes on which applications depend for their 
behaviour. We looked at architectures for relatively static collections of sensors, and 
architectures for highly volatile sensor networks. Finally, we described some 
technologies for the particularly important case of location sensing, some of which are 
in widespread use. The World Wide Web Consortium’s (W3C) geolocation API 
[www.w3.org XXIV] includes support for presenting location-specific web content to a 
user by automatically sensing their location with a mobile device using GPS or 
proximity of a cell tower or 802.11 access point, as discussed above. 

 Through context awareness, we integrate the everyday physical world with com-
puter systems. A key problem remaining is that, compared to the subtle understanding 
that humans have of their physical world, the systems we have described are quite crude. 
Not only are sensors (at least, those cheap enough to deploy widely) inevitably inaccu-
rate, but the final stage of producing semantically rich information accurately from raw 
sensor data is extremely difficult. The world of robotics (which involves actuation, a 
topic we have ignored, in addition to sensing) has been tackling this difficulty for many 
years. In tightly restricted domains such as domestic vacuum cleaning or industrial pro-
duction, robots can perform reasonably well. But generalization from those domains re-
mains elusive.

19.5 Security and privacy 

Volatile systems raise many new issues for both security and privacy. First, users and 
administrators of volatile systems require security for their data and resources 
(confidentiality, integrity and availability). However, as we pointed out when describing 
the model of volatile systems in Section 19.1, trust – the basis for all security – is often 
lowered in volatile systems, because the principals whose components interact 
spontaneously may have little, if any, prior knowledge of one another, and may not have 
a trusted third party in common. Second, many users are concerned about their privacy

– roughly speaking, their ability to control the accessibility of information about 
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themselves. But privacy is potentially more threatened than ever before due to sensing 
in the smart spaces users pass through. 

Despite these challenges, measures to ensure people’s security and privacy must 
be lightweight – partly to preserve the spontaneity of interactions, and partly because of 
the restricted user interfaces of many devices. People will not want, for example, to ‘log 
in’ to a smart pen before they use it in their host’s office! 

In this section we outline some of the main security and privacy problems for 
volatile systems. Stajano [2002] gives a more detailed treatment of some of these issues. 
Langheinrich [2001] examines the topic of privacy in ubiquitous computing, starting 
from its historical and legal context.

19.5.1 Background

Security and privacy are complicated in volatile systems by hardware-related issues 
such as resource poverty, and because their spontaneity leads to new types of resource 
sharing. 

Hardware-related issues  •  Conventional security protocols tend to make assumptions 
about devices and connectivity that often do not hold in volatile systems. First, portable 
devices such as smart phones and sensor nodes can, in general, be more easily stolen and 
tampered with than devices such as PCs in locked rooms. A security design for volatile 
systems should not rely on the integrity of any subset of devices that could feasibly be 
compromised. For example, if a smart space spans a large enough physical area, then 
one way to help protect the system’s overall integrity is to make it necessary for an 
attacker to visit many locations within it at more or less the same time if their attack is 
to succeed [Anderson et al. 2004].

Second, devices in volatile systems sometimes do not have sufficient computing 
resources for asymmetric (public-key) cryptography – even when using elliptic curve 
cryptography (Section 11.3.2). SPINS [Perrig et al. 2002] provides security guarantees 
for the data that low-power nodes in wireless sensor networks exchange in a potentially 
hostile environment. Their protocols use only symmetric-key cryptography, which, 
unlike asymmetric-key cryptography, is feasible on such low-power devices. However, 
that begs the question of which nodes in a wireless sensor network should share the same 
symmetric key. At one extreme, if all nodes share the same key, then a successful attack 
on one node will compromise the entire system. At the other extreme, if each node 
shares a distinct key with every other node, then there may be too many keys for nodes 
with limited memory to store. A compromise position is for nodes to share keys only 
with their nearest neighbours, and to rely on chains of mutually trusting nodes that 
encrypt messages hop-by-hop, rather than using end-to-end encryption. 

Third, as always, energy is an issue. Not only must security protocols be designed 
to minimize communication overheads to preserve battery life, but in addition limited 
energy is the basis for a new type of denial of service attack. Stajano and Anderson 
[1999] describe the ‘sleep deprivation torture attack’ on battery-powered nodes: an 
attacker can deny service by sending spurious messages to run down devices’ batteries 
as they waste energy receiving them. Martin et al. [2004] describe other ‘sleep 
deprivation’ attacks, including more covertly providing devices with code or data that 
causes them to waste energy through processing. For example, an attacker could provide 
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an animated GIF image that appears static to the user but actually causes constant 
re-rendering.

Finally, disconnected operation means that it is preferable to avoid security 
protocols that rely on continuous online access to a server. For example, suppose that 
vending machines at rest stops are to dispense certain refreshments for free, but only to 
bona fide passengers of a specific bus company. Rather than assuming that such a 
machine is always connected to the company headquarters to verify authorization, it is 
better to design a protocol whereby the user’s device (such as a phone) is given a 
certificate enabling the vending machine to verify authorization using only Bluetooth or 
other short-range communication [Zhang and Kindberg 2002]. Unfortunately, the 
absence of an online server also means that a certificate cannot be revoked and can only 
be constructed to expire by a given time – begging the question of how offline devices 
are to keep securely accurate time.

New types of resource-sharing: example problems   •  Volatile systems give rise to new 
types of resource sharing that require new security designs, such as the following 
examples:

• The administrators of a smart space expose a service accessible to visitors over a 
wireless network – such as sending slides to the projection service in a seminar 
room or using a printer in a café. 

• Two employees of the same company who encounter one another at a conference 
wirelessly exchange a document between their mobile phones or other portable 
devices. 

• A nurse takes a wireless heart-rate monitor from a box of similar devices, attaches 
it to a patient and associates it to the clinical data-logging service for that patient.

Each of these cases is an example of spontaneous interoperation; each raises security 
and/or privacy issues. None is quite like the resource-sharing patterns normally 
encountered within firewall-protected intranets or on the open Internet. 

The projection and printing services are intended only for visitors, but the wireless 
network might extend beyond the building’s boundaries, from where attackers could 
eavesdrop, disrupt presentations or send bogus print jobs. So the services require 
protection, similarly to a web server intended only for members of a club. But logging 
in – typing a username and password – and the registration procedure that preceded it 
would require too much effort, and users might object on privacy grounds. 

The document exchange between two employees is similar in some ways to 
sending an email within a corporate intranet, yet the interaction takes place over a public 
wireless network in a place filled mostly with unknown people. A trusted third party 
(their company) exists in principle, but in practice it may not be reachable (they may not 
be able to obtain a good enough wireless telecommunications signal for their phones in 
the conference hall) or it may not be configured in all the users’ devices.

What the nurse does is in some ways similar to the first example: she appropriates 
a trusted device temporarily but securely, as a visitor might appropriate a projector or 
printer. But this example is intended to show more emphatically the issue of reuse. There 
may be a confusing number of wireless sensors used for different patients at different 
times, and it is essential to securely make and break associations between the devices 
and the respective patient logs.
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19.5.2 Some solutions

We now examine some attempts to solve the problems of providing security and privacy 
in volatile systems: secure spontaneous device association, location-based 
authentication and privacy protection. The security techniques we describe depart 
markedly from standard approaches in distributed systems. They exploit the fact that the 
systems we are considering are integrated into our everyday physical world, by using 
physical evidence rather than cryptographic evidence to bootstrap security properties.

Secure spontaneous device association  •  An important question raised by the examples 
in the preceding section is how to secure a spontaneous association between two devices 
connected via wireless radio network, W. This is the secure spontaneous device 

association problem, also known as the secure transient association problem. The goal 
is to create a secure channel between two devices by securely exchanging a session key 
between those two devices and using it to encrypt their communication over W. The 
starting assumptions are that, since the association is spontaneous, neither device 

Figure 19.10 Secure device association using physical contact

1. Fresh secret key K exchanged by physical contact 2. Devices communicate using secure channel 

W

    constructed over W using K

K

(or its 
user) shares a secret with the other, that neither possesses the other’s public key and that 
the devices do not have access to a trusted third party. An attacker can attempt to 
eavesdrop on W and to replay and synthesize messages. In particular, an attacker may 
attempt to launch a man-in-the-middle attack (described in Section 11.1.1). 

 A solution to this problem would enable a visitor to make a secure connection to 
a projector or printer service, participants at a conference to securely exchange a 
document between their portable devices and a nurse to securely connect a wireless 
heart-rate monitor to a data-logging unit by the patient’s bed.

No amount of communication over W will enable secure key exchange by itself, 
so out-of-band communication is required. In particular, the standard method for 
establishing a link-level key between two devices connected by Bluetooth relies on the 
out-of-band actions of one or more users. A digit string chosen on one device must be 
entered by a user at the other device. But this method is often not carried out securely, 
since simple, short digit strings such as ‘0000’ tend to be used, which attackers can learn 
by exhaustive search. 

Another approach to solving the secure association problem is to use a side 
channel with certain physical properties. Specifically, the propagation of signals over 
this side channel is constrained in angle, range or timing (or a combination of those). To 
a first degree of approximation, we can infer properties about the sender or receiver of 
messages on such channels that enable us to establish secure association with a 
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physically demonstrable device, as we show shortly. Kindberg et al. [2002b] call them 
physically constrained channels, the term we shall use here; Balfanz et al. [2002] refer 
to location-limited channels. Stajano and Anderson [1999] first exploited such a side 
channel in the form of physical contact. We introduced some examples of these channels 
for the purposes of physical device association in Section 19.2.2.

In one scenario, one of the devices generates a fresh session key and sends it to the 
other over a receive-constrained channel that provides a degree of secrecy – that is, it 
constrains which devices can receive the key. Some examples of technologies for 
receive-constrained channels are:

Physical contact: Each device has terminals for direct electrical connection [Stajano 
and Anderson 1999]. See Figure 19.10.

Infrared: Infrared beams can be made directional to within about 60 degrees and are 
largely attenuated by walls and windows. A user can ‘beam’ a key to the required 
receiver device over a distance of up to about a metre [Balfanz et al. 2002].

Audio: Data can be transmitted as modulations of an audio signal, such as music 
playing softly throughout a room, but with little reach beyond it [Madhavapeddy et

al. 2003]

Laser: One user points their device’s narrow data-carrying laser beam onto a 
receiver on the other device [Kindberg and Zhang 2003a]. This method allows for 
more precision than the other long-range techniques.

Barcode and camera: One device displays the secret key as a barcode (or other 
decodable image) on its display, which another device, that is, one equipped with a 
camera – such as a camera phone – reads and decodes. This method’s precision is 
inversely related to the distance between the devices.

In general, physically constrained channels provide only a limited degree of security. An 
attacker with a sufficiently sensitive receiver can eavesdrop on infrared or audio signals; 
an attacker with a powerful camera may be able to read a barcode even on a small 
display. Laser light is subject to atmospheric scattering, although quantum modulation 
techniques can make the scattered signal useless to an eavesdropper [Gibson et al.
2004]. However, when the technologies are deployed in appropriate circumstances, the 
attacks entail considerable effort and the security obtained may be good enough for 
everyday purposes.

A second approach for securely exchanging a session key is to use a constrained 
channel to physically authenticate one device’s public key, which it sends to the other 
device. The devices then engage in a standard protocol to exchange a session key using 
the authenticated public key. Of course, this method assumes that the devices are 
powerful enough to perform public-key cryptography.

The simplest way of authenticating the public key is for the device to send it over 
a send-constrained channel, which enables a user to authenticate the key as deriving 
from that physical device. There are several ways to implement suitable 
send-constrained channels. For example, physical contact provides a send-constrained 
channel since only a directly connected device can send on the channel. Exercise 19.14
invites the reader to consider which of the other techniques for receive-constrained 
channels described above also provide send-constrained channels. Moreover, it is 
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possible to implement a send-constrained channel using a receive-constrained channel, 
or vice versa (see Exercise 19.15).

A third approach utilizing physically constrained channels is for the devices to 
exchange a session key optimistically but insecurely, and then to use a physically 
constrained channel to validate the key – that is, to verify that the key is possessed solely 
by the required physical source.

First we consider how to exchange a session key spontaneously but possibly with 
the wrong principal, and then we go on to examine some technologies for validating the 
exchange. If validation fails, then the process can be repeated. 

In Section 19.2.2 we described physical and human-mediated techniques for 
associating two devices, such as the two-button protocol in which devices exchange 
their network addresses when humans press buttons on them more or less 
simultaneously. It is straightforward to adapt that protocol so that the devices also 

Figure 19.11 Detecting a man in the middle
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exchange session keys using the Diffie–Hellman protocol [Diffie and Hellman 1976]. 
But, as it stands, that method is not secure: it is still possible for separate groups of users 
to accidentally misassociate devices by running the protocol concurrently, and for 
malicious parties to launch man-in-the-middle attacks. 

It is a property of the Diffie–Hellman protocol that a man in the middle cannot 
(except with negligible probability) exchange the same key with each device, so we can 
validate the association by comparing the secure hashes of the keys obtained by the two 
devices after running the Diffie–Hellman protocol (Figure 19.11). The following 
techniques enable us to validate a key before using it. They involve send-constrained 
channels, although receive-constrained channels could also be used (see Exercise
19.15):

Displayed hashes: Stajano and Anderson [1999] pointed out that each device could 
display the hash of its public key as hexadecimal characters or in some other form 
that humans can compare. However, they argued that this type of human involvement 
is too error-prone. The barcode method mentioned above would be more reliable. 
That method is another example of using a send-constrained channel: the optical path 
between the display of one device and the camera of the other brought close to it 
securely propagates the secure hash from the required device.
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Ultrasound: An ultrasound signal, in combination with a radio signal, can be used to 
infer the distance and direction of the device that sent a hash, using techniques similar 
to those used for the Active Bat system described in Section 19.4.3 [Kindberg and 
Zhang 2003b].

The above methods vary in the degree of security they provide because of the properties 
of constrained channels, but all are suitable for spontaneous association. None requires 
online access to any other component, and none requires users to authenticate 
themselves or to find out electronic names or identifiers for the devices – instead, the 
users are provided with physical evidence about which devices have been securely 
associated. By assumption, the users have established trust in those devices (and their 
users). Of course, the security that has been achieved is only as good as the 
trustworthiness of the devices involved: it is possible to ‘securely associate’ a device 
with another that in fact launches an attack. 

Stajano and Anderson [1999, Stajano 2002] used physically constrained channels 
in the context of the ‘resurrecting duckling’ protocol. That protocol is relevant to the 
example of the wireless heart-rate monitor, where several identical devices are to be 
associated and reassociated securely between patients. The name of the protocol refers 
to the fact that (actual) ducklings begin life in the imprintable state and come under the 
control of whatever entity they first recognize (ideally, their biological mothers!) – a 
process known as imprinting. In our case, the ‘duckling’ device comes under the control 
of the first device associated with it and then refuses requests from any other entity – 
that is, any principal that does not know the secret key that the ‘duckling’ exchanged 
with its ‘mother’ at the point of imprinting. Reassociation can only occur by first ‘killing 
the duckling’s soul’ – for example, when the ‘mother’ instructs the ‘duckling’ to 
reassume the imprintable state, in at which point its memory is securely wiped. From 
that point, the ‘duckling’ is prepared to be controlled by the next device that associates 
with it. 

Location-based authentication   •  The examples of a visitor using a seminar room’s 
projection service and a user printing documents in a café can be looked at from both the 
visitors’ and the administrators’ perspectives. From the visitors’ point of view, they can 
securely associate their devices to the projector or printer using one of the 
aforementioned physically constrained channels, so as to protect the privacy and 
integrity of their data (although printing a sensitive document in a café may be unwise).

But the administrators of each of those smart spaces has an additional 
requirement: as well as wanting their visitors to enjoy security, they need to implement 
access control. Only people physically in their spaces (speakers in their seminar room, 
people drinking the café’s coffee) should be able to use their services. And yet, as we 
have explained, authenticating users’ identities may be inappropriate because of the 
visitors’ requirements for privacy and the administrators’ need to integrate a stream of 
users and devices that spontaneously appear and disappear.

An approach to authorization that meets those requirements is to base access 
control on the location of the services’ clients, rather than their identity. Kindberg et al.
[2002b] describe a protocol for authenticating the clients’ locations using a physically 
constrained channel that pervades the smart space but does not reach beyond it. For 
example, that channel could be constructed using music playing in a café or infrared in 
a meeting room. There is also a location authentication proxy embedded in the 



864 CHAPTER 19  MOBILE AND UBIQUITOUS COMPUTING

corresponding smart space – that is, directly connected to the same constrained channel 
– which the location-specific services trust. For example, the Acme café company might 
want to reward customers throughout its chain with free media downloads, but wants to 
ensure that no one outside an Acme café can access the media, even though the 
download service is centralized and connected to the Internet. The protocol assumes that 
users access services through a web browser and uses web redirection so that the 
visitors’ devices transparently obtain proof from the location authentication proxy that 
they are where they claim to be, and forwards this proof to the target service.

Sastry et al. [2003] use temporally constrained channels implemented using 
ultrasound to verify location claims. The basis of their protocol is that, since the speed 
of sound is physically constrained, only a device that is where it claims to be can 
transmit a message quickly enough by ultrasound to a destination at the location, when 
echoing a nonce contained in a request packet. 

As with secure device association, location authentication only secures a system 
to a limited extent. Even though a service has verified a client to be in a bona fide

location, that client could nonetheless be malicious and act as a proxy for clients at other 
locations. 

Privacy protection  •  Location-based authentication demonstrates a trade-off that makes 
it difficult to protect privacy in volatile systems: even though the user withholds their 
identity, they disclose a location that may be unwittingly associated with other types of 
potentially identifying information. Safeguards are needed on all channels through 
which information about the user may flow. For example, even if a user accesses an 
electronic service anonymously in a café, their privacy may be destroyed if a camera 
captures them. And if a user needs to pay for a service, they will have to supply 
electronic payment details, even if they do so via a third party. They may also buy goods 
that have to be physically delivered to their home or work address.

At the system level, the basic threat is that, wittingly or unwittingly, users provide 
identifiers of various kinds to smart spaces when they visit them and access services 
there. First, they may provide names and addresses in service accesses. Second, the 
Bluetooth or IEEE 802.11 network interfaces on their personal devices each maintain a 
constant MAC-level address that is visible to other devices such as access points. Third, 
if users carry tags such as RFID tags (for example, ones embedded in their clothes so 
that their smart washing machines can automatically choose an appropriate washing 
cycle), then smart spaces could potentially sense those tags at doorways and other 
‘pinch-points’. The RFIDs are globally unique and may be used both to identify what 
the user has with them (e.g., as the type of clothes they are wearing) and for tracking 
purposes.

Whatever their source, identifiers can become associated with a location and an 
activity at a given time, and thus may potentially be linked to the user’s personal 
information. Users in a smart space may eavesdrop and gather the identifiers. If smart 
spaces (or services embedded in smart spaces) collude, they could track identifiers 
across locations and infer movements, all potentially leading to loss of privacy.

Research is underway into how to make what are currently hard-wired identifiers 
(such as wireless MAC addresses and RFIDs) into ‘soft’ addresses that may be replaced 
from time to time to inhibit tracking. The difficulty with MAC addresses (as well as 
higher-level network addresses such as IP addresses) is that changing them causes 
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disruptions to communication, which must be traded off against privacy [Gruteser and 
Grunwald 2003]. The difficulty with RFIDs is that, while an RFID-bearing user does not 
want to be tracked by the ‘wrong’ sensors, in general the user does want the tags to be 
read by certain ‘right’ sensors (such as the one in their washing machine). A technique 
to address that problem is for the tag to use (one-way) hash functions both to replace the 
stored identifier and to generate the emitted identifier each time it is read [Ohkubo et al.
2003]. Only a trusted party that knows the tag’s original unique identifier can use an 
emitted identifier to verify which tag was read. Moreover, since tags pass their stored 
identifier through a one-way hash function before emitting them, attackers are unable 
(unless they can tamper with the tag) to learn the stored identifier and thus spoof the tag 
– for example, with the intention of falsely claiming that a tagged user was present at the 
scene of a crime. 

Turning to the software identifiers that clients provide to services, an obvious 
approach to help safeguard privacy is to substitute either an anonymous identifier – one 
randomly chosen for every service request – or a pseudonym: a false identifier that is 
nonetheless used consistently for the same client principal for some period of time. The 
advantage of a pseudonym over an anonymous identifier is that it enables a client to 
build a relationship of trust or a good reputation with a given service, but without 
necessarily disclosing a true identity. 

It would be far too laborious for a user to manage anonymous or pseudonymous 
identifiers, so that is normally done by a system component called a privacy proxy. The 
privacy proxy is a component that the user trusts to forward all service requests 
anonymously. Each of the user’s devices has a secure, private channel to the privacy 
proxy. That proxy substitutes anonymous identifiers or pseudonyms for all of the true 
identifiers in service requests. 

One problem with a privacy proxy is that it is a central point of vulnerability: if 
the proxy is successfully attacked then all of the client’s service usage becomes 
disclosed. Another problem is that proxies do not hide which services the user accesses. 
An eavesdropper or a colluding set of eavesdroppers could employ traffic analysis: that 
is, they could observe correlations in traffic between messages flowing to or from a 
particular user’s device and messages flowing to or from a particular service – 
examining such factors as the timing and sizes of the messages.

Mixing is a statistical technique for combining communications from many users 
in such a way that attackers cannot easily disentangle one user’s actions from another, 
and thus helping to safeguard the users’ privacy. One application of mixing is to 
construct an overlay network of proxies that encrypt, aggregate, reorder and forward 
messages between themselves for several hops after they have entered the network, in a 
way that makes it hard to correlate any message entering the network from a client or 
service with any message leaving it, to a particular service or client [Chaum 1981]. Each 
proxy trusts and shares keys only with its neighbours. It would be difficult to 
compromise the network without the collusion of all proxies. Al-Muhtadi et al. [2002] 
describe an architecture for anonymously routing messages from a client in a smart 
space to services.

Another application of mixing is to obscure users’ locations by exploiting the 
presence of many users in each location. Beresford and Stajano [2003] describe a system 
for obscuring users’ locations through the use of mix zones, which are regions where 
users do not access location-aware services, such as hallways between smart rooms. The 
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idea is that users change their pseudonymous identities in mix zones, where no user’s 
location is known. If mix zones are sufficiently small and if enough people pass through 
them, they can play a role akin to a mix network of anonymizing proxies. Exercise 19.16
considers mix zones in more depth.

19.5.3 Summary and perspective

This section has provided an introduction to the problems of providing security and 
privacy in volatile systems, and a brief look at some attempts at solutions, including 
secure spontaneous association, location-based authentication and various techniques 
aimed at privacy protection. Widespread sensing, hardware-related issues such as 
resource poverty, and spontaneous association are at the root of the difficulties. Sensing 
heightens users’ privacy concerns, since not only can their service accesses be 
monitored but such basic information as their locations can, too; and hardware-related 
issues and spontaneity challenge our ability to provide security solutions. This is an 
important area of research: security and, especially, privacy may turn out to be barriers 
to the use of volatile systems.

19.6 Adaptation

The devices in the volatile systems studied in this chapter are much more heterogeneous 
than PCs in terms of processing power, input/output capabilities such as screen size, 
network bandwidth, memory and energy capacity. Heterogeneity is unlikely to ease 
significantly because of the multiple purposes we have for devices. The demands of 
carrying and embedding devices mean that the devices that are poorest and richest in 
resources such as energy and screen size are likely to continue to differ by orders of 
magnitude. (The only overall positive trend in resources is in increasingly dense but 
affordable persistent storage [Want and Pering 2003].) And what is certain not to alter, 
looking forward, is the presence of runtime change itself: runtime conditions such as the 
available bandwidth and energy are prone dramatic changes. 

This section introduces adaptive systems: ones that are based on a model of 
varying resources and that adapt their runtime behaviour to the current resource 
availability. The aim of adaptive systems is to accommodate heterogeneity by allowing 
software reuse across contexts that vary in factors such as device capabilities and user 
preferences, and to accommodate changing runtime resource conditions by adapting 
application behaviour without sacrificing crucial application properties. But achieving 
those goals can be extremely difficult. This section gives a flavour of both those areas 
of adaptation. 

19.6.1 Context-aware adaptation of content

In Section 19.3.1 we saw that some devices in volatile systems supply multimedia 
content to one another. Multimedia applications (see Chapter 20) operate by exchanging 
or streaming multimedia data such as images, audio and video.   
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A simple approach to exchanging content would be for content producers to send 
the same content regardless of the content-consuming device, and for that device to 
render the content appropriately for its needs and limitations. Indeed, that approach 
sometimes works, as long as the content can be specified sufficiently abstractly that the 
recipient device can always find a concrete representation to fit its needs. 

However, it turns out that factors such as bandwidth limitations and device 
heterogeneity make that approach impractical in general. The capabilities of devices in 
volatile systems to receive, process, store and display multimedia content vary widely, 
unlike those of PCs. Their screen sizes vary – some do not even have screens – so 
sending fixed-size images and text in a fixed font size, all in a fixed layout, will often 
lead to unsatisfactory results. The devices may or may not have all of the other forms of 
I/O that are taken for granted on PCs: keyboards, microphones, audio output, etc. Even 
if a device has I/O hardware to render a form of content such as video, it may not have 
the software needed for a given encoding (for example, MPEG or QuickTime), or it may 
have insufficient memory or processing resources to render media at full fidelity, such 
as video at full resolution or frame rate. Finally, a device may have all the resources to 
render given content, but if the bandwidth to the device is too low, then it cannot be sent 
to it unless it is suitably compressed.

More generally, the content that a service needs to deliver to a given device is a 
function of the context: the media producer should take account not only of the 
consuming device’s capabilities, but also of such factors as the preferences of the 
device’s user and the nature of the user’s task. For example, one user might prefer text 
to images on a small screen; another might prefer audio output to visual output. 
Moreover, the items that the service delivers within a piece of content may need to be a 
function of the user’s task. For example, the features required in a map of a given region 
will depend on whether the user is a tourist looking for attractions or a worker looking 
for infrastructure access points [Chalmers et al. 2004]. On a screen-limited device, the 
map is more likely to be legible if it contains just one type of feature. 

It would be too much effort for multimedia content authors to hand-craft 
individual solutions for many different contexts. The alternative is to adapt the original 
data programatically into a suitable form, by selecting from it, generating content from 
it or transforming it – or any combination of those three processes. Sometimes the 
original data is expressed independently of how it should be presented – for example, 
data might be held in XML form, and scripts in the eXtensible Style Language 
Transformations (XSLT) used to create renderable forms for a given context. In other 
cases, the original data is already a type of multimedia data, such as images; in that case, 
the process of adapting it is known as transcoding. Adaptation can occur within media 
types (for example, selecting from map data or reducing the resolution of an image) and 
across media types (for example, converting text to speech or vice versa, according to 
the user’s preferences or whether the consuming device has a display or supports audio 
output).

The problem of content adaptation has received a lot of attention for client-server 
systems on the Internet, and especially the Web. The web model is for adaptation to take 
place in the resource-rich infrastructure – either in the service itself or in a proxy – and 
not in the resource-poor client. The HTTP protocol allows a type of content negotiation 
(see Section 5.2): a client specifies preferences for the MIME types of the content it can 
accept in its request headers, and the server can try to match those preferences in the 
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content it returns. But that mechanism is too limited for context-aware adaptation – for 
example, the client can specify acceptable image encodings but not the device’s screen 
size. The W3C, through its Device Independence working group [www.w3.org XIX],
and the Open Mobile Alliance (OMA) [www.openmobilealliance.org] are developing 
standards whereby device capabilities and configurations can be expressed in some 
detail. The W3C produced the Composite Capabilities/Preferences Profile (CC/PP) to 
enable devices of different classes to specify their capabilities and configurations such 
as screen size and bandwidth. The OMA’s user agent profile specification provides a 
CC/PP vocabulary for mobile phones. It can be so detailed for a given device as to 
extend to over 10 kbytes. Such a profile would be too expensive in bandwidth and 
energy to send along with requests, so a mobile phone sends only the URI of its profile 
in a request header. The server retrieves the specification to provide matching content, 
and caches the specification for future use. 

An important type of adaptation for bandwidth-limited devices is type-specific 
compression. Fox et al. [1998] describe an architecture in which proxies perform 
compression on the fly between services (which may or may not be part of the Web) and 
clients. They argue for three main features in their architecture:

• To accommodate limited bandwidth, compression should be lossy but specific to 
the media type, so that semantic information can be used to decide which media 
features it is important to retain. For example, an image can be compressed by 
throwing away colour information. 

• Transcoding should be performed on the fly because statically pre-prepared 
content forms will not provide sufficient flexibility to cope with dynamic data and 
an increasing set of permutations of clients and services. 

• Transcoding should be performed in proxy servers so that both clients and services 
are transparently separated from transcoding concerns. No code has to be 
rewritten, and the compute-intensive transcoding activity can be run on suitably 
scalable hardware such as clusters of rack-mounted computers, to keep latencies 
within acceptable bounds. 

When it comes to volatile systems such as smart spaces, we have to revisit some of the 
assumptions made for web and other Internet-scale adaptation. Volatile systems are 
more demanding in that they may require adaptation between any pair of dynamically 
associated devices, so adaptation is not restricted to clients of particular services in the 
infrastructure. There are now potentially many more providers whose content needs to 
be adapted. Moreover, those providers may be too resource-poor to perform certain 
types of adaptation themselves. 

One implication is for smart spaces to provide proxies in their infrastructure for 
adapting content between the volatile components they host [Kiciman and Fox 2000, 
Ponnekanti et al. 2001]. The second implication is the need to look more closely at 
which types of content adaptation can and should be performed on small devices – in 
particular, compression is an important example.

Even if there is a powerful adaptation proxy in the infrastructure, a device still has 
to send its data to that proxy. We discussed above how communication is expensive 
compared to processing. In principle, it may be most energy-efficient to compress data 
prior to transmission. However, the pattern of memory accesses made during 
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compression has a strong effect on energy consumption. Barr and Asanovic [2003] show 
that it may cost more energy to first compress data using default implementations, but 
that careful optimization of compression and decompression algorithms, especially with 
respect to memory accesses patterns, can lead to overall energy savings compared to 
transmission of uncompressed data. 

19.6.2 Adapting to changing system resources

While hardware resources such as screen size are heterogeneous across devices, they are 
at least stable and well known. By contrast, applications also rely on resources that are 
subject to change at runtime and that may be hard to predict, such as available energy 
and network bandwidth. In this subsection we discuss techniques for dealing with those 
changes to resource levels at runtime. We discuss operating system support for 
applications running in volatile systems, and support in the smart space infrastructure 
for enhancing the resources available to applications.

OS support for adaptation to volatile resources  •  Satyanarayanan [2001] describes three 
approaches to adaptation. One approach is for applications to request and obtain 
resource reservations. While resource reservation can be convenient for applications 
(Chapter 20), satisfactory QoS guarantees are sometimes difficult to achieve in volatile 
systems and are impossible in cases such as energy depletion. A second approach is to 
notify the user of changed levels of resource availability so they can react appropriately. 
For example, if bandwidth becomes low, the user of a video player could operate a slider 
in the application to switch the frame rate or resolution. The third approach is for the OS 
to notify the application of changing resource conditions, and for the application to adapt 
according to its particular needs. 

Odyssey [Noble and Satyanarayanan 1999] provides operating system support for 
applications that adapt to changes in the available levels of resources such as network 
bandwidth. For example, if the bandwidth drops, a video player could switch to a video 
stream with fewer colours, or adjust the resolution or frame rate. In the Odyssey 
architecture, applications manage data types such as video or images, and as resource 
conditions change they adjust the fidelity – the type-specific quality – with which those 
data are rendered. A system component called the viceroy divides the device’s total 
resources between each of several applications running on it. At any time, each 
application runs with a window of tolerance to changes in resource conditions. The 
window of tolerance is an interval of resource levels that is chosen to be wide enough to 
be realistic in terms of actual resource variations, but narrow enough for the application 
to behave more or less consistently within those limits. When the viceroy has to change 
resource levels to a value outside the window of tolerance, it makes an upcall into the 
application, which then reacts accordingly. For example, a video player might change to 
black and white if bandwidth hits a very low level; above that, it might smoothly adjust 
the frame rate and/or resolution.

Taking advantage of smart space resources  •  Cyber foraging [Satyanarayanan 2001, 
Goyal and Carter 2004, Balan et al. 2003] is where a processing-limited device 
discovers a compute server in a smart space and offloads some of its processing load to 
it. For example, converting the user’s speech to text is a processing-intensive activity, 
and one that few portable devices are able to carry out satisfactorily. One aim is to 
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increase application responsiveness for the user – a computer in the infrastructure can 
have many times the processing power of a portable device. But this is also an example 
of energy-aware adaptation: the other aim is to save the portable device’s batteries by 
allocating work to the mains-powered compute server.

There are challenging requirements associated with cyber foraging. The 
application needs to be decomposed in such a way that part of it can be processed 
efficiently on a compute server, but the application should still function correctly (albeit 
more slowly or with reduced fidelity) if no compute server is available. The compute 
server should run a part of the application that involves relatively little communication 
with the portable device – otherwise, the time taken by communication over a 
low-bandwidth connection could outweigh the processing gains. Moreover, the overall 
energy consumption for the portable device must be satisfactory. Since communication 
is energy-intensive, it does not automatically follow that energy will be saved by using 
a compute server; it may be that the energy costs of communication with the compute 
server outweigh the energy savings from offloading processing. 

Balan et al. [2003] discuss the problem of partitioning an application to meet the 
foregoing challenges and describe a system for monitoring resource levels (such as 
compute server availability, bandwidth and energy) and consequently adapting the 
application’s partitioning between the portable device and compute servers using one of 
a small set of decomposition options. For example, consider a situation in which a user 
speaks into a mobile device to dictate text, which is then translated into a foreign 
language (that of the country they are visiting). There are various ways of splitting this 
application between the mobile device and compute servers, with different implications 
for resource utilization. If several compute servers are available, then the various stages 
of recognition and translation could be split between them; if only one compute server 
is available, then they could be run together at that machine or split between the mobile 
device and the compute server. 

Goyal and Carter [2004] take a more static approach to dividing up the 
application, which is assumed to have been decomposed into separate communicating 
programs. For example, a mobile device could perform speech recognition in two ways. 
In the first mode, the application runs entirely – and very slowly – on the mobile device. 
In the second mode, the mobile device runs only the user interface, which ships the 
digital audio of the user’s voice to a program running on a compute server; that program 
sends the recognized text back for the mobile device to display. It would be very costly 
in energy for the mobile device to send the recognition program to a computer server, so 
the device sends the URL of the program instead, which the compute server downloads 
from an external source and runs.

19.6.3 Summary and perspective

This section has described two main categories of adaptation in volatile systems, which 
are motivated by their heterogeneity and the volatility of their runtime conditions: there 
is adaptation of multimedia data to the context of the media consumer, such as the 
characteristics of the device and the task of the device’s user, and there is adaptation to 
the dynamic levels of system resources such as energy and bandwidth.

We argued that, in principle, it would be better to produce adaptive software that 
can accommodate varying conditions according to a well-understood model of 
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variation, rather than to evolve software and hardware in an ad hoc fashion as the need 
presses. However, making such adaptive software is difficult, and there is no general 
agreement on how to do so. First, the models of variation themselves – of how 
resourcing levels change and of how to react when they change – can be hard to derive 
with any generality. Second, there are software engineering challenges. Finding suitable 
points of adaptation in existing software requires intimate knowledge of its workings, 
and attempts may not always be successful. However, when creating new adaptive 
software from scratch, there are techniques from the software engineering community, 
such as aspect-oriented programming [Elrad et al. 2001], that can help programmers 
manage adaptation. 

19.7 Case study: Cooltown

The goal of Hewlett-Packard’s Cooltown project [Kindberg et al. 2002a, Kindberg and 
Barton 2001] was to provide infrastructure for nomadic computing [Kleinrock 1997], a 
term the project used for human-oriented mobile and ubiquitous computing. ‘Nomadic’ 
refers to humans moving between places such as their homes, work-places and shops as 
they go about their everyday lives. ‘Computing’ refers here to services provided to those 
nomadic users – not just services such as email that can be provided anywhere there is 
connectivity, but more particularly services integrated with entities in the everyday 
physical world through which the users move. To access those services, humans are 
assumed to carry or wear wirelessly connected sensor-equipped devices. This 
description often refers to the most prevalent form of those devices at the time of the 
project: PDAs. However, smart phones and more experimental devices such as smart 
watches were also considered.

More specifically, the project’s aim was to apply lessons learned from the success 
of the Web to nomadic computing, via two objectives. First, since the Web provides a 
rich and extensible set of resources in the virtual world, much can potentially be gained 
by extending the Web’s architecture and existing resources to the physical world. One 
objective for the Cooltown design was expressed in the maxim ‘everything has a web 
page’: each entity in our physical world, whether electronic or not, is to have an 
associated web resource called a web presence, which the user is to be able to access 
conveniently when in the presence of that entity. A web presence could simply be a web 
page containing information about the entity, or it could be any service provided in 
association with the entity. For example, the web presence of a physical product could 
be a service for obtaining replacement parts. 

The second objective was to achieve the Web’s high degree of interoperability for 
interactions with devices. Nomadic users may need to interact in places they have never 
visited before, with web presences they have never encountered before. It would not be 
acceptable for users to have to load new software or reconfigure existing software on 
their portable devices in order to benefit from those services. 

The aspects of the Cooltown architecture that we concentrate on (Figure 19.12)
are: web presences; physical hyperlinks, which are links from physical entities to web 
presences and thus to the hyperlinked resources of the Web; and eSquirt, a protocol for 
interoperation with web-present devices.
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19.7.1 Web presences

Cooltown considers physical entities to be divided into three categories: people, places 
and things. The web presence of a person, place or thing is potentially any web resource 
chosen to suit a specific application; but Cooltown adopts certain roles for the web 
presences of people and places. The web presences of things and people are collected in 
the web presences of places, so the description follows that order. 

Things: A ‘thing’ is either a device or a non-electronic physical entity. Things 
become web-present by having web servers embedded in them or by hosting their 
web presence within a web server. If the thing is a device, then its URL is that of the 
service it implements. For example, an ‘Internet radio’ is a music-playing device that 
hosts its own web presence. A user who has discovered the URL of an Internet radio 
retrieves a web page with controls that enables them to ‘tune’ it to an Internet 
broadcasting source, adjust its settings (such as the volume) and perhaps upload the 
user’s own sound file. But even non-electronic things may have a web presence – i.e., 
a web resource associated with the thing but hosted by a web server somewhere else. 
For example, a printed document’s web presence could be its electronic document 
counterpart: instead of having to photocopy the printed document (with a consequent 
reduction in quality), a user can discover its web presence from the physical artefact 
– as we explain in Section 19.7.2 – and request a new print. The web presence of a 
music CD could be some associated digital content such as extra music clips and 
photographs, hosted in its owner’s personal media collection. 

People: People become web-present by offering global web home pages with 
services to facilitate communications with them and by offering information about 
their current context. For example, users without mobile phones could make their 
local phone number available via their web presence – a value that their web presence 
automatically updates as they move around. They might also choose for their web 
presence to register their current location explicitly, through a link to the web 
presence of the place in which they are physically present. 

Places: Places are smart spaces, to use the terminology of this chapter. Places 
become web-present by registering the web presences of people and things within 



SECTION 19.7 CASE STUDY: COOLTOWN 873

them – and even the web presences of nested or otherwise related places – with a 
place-specific directory service (Section 13.3). A place’s directory also contains 
relatively static information such as a description of the place’s physical properties 
and function. The directory service enables components to discover and thus interact 
with the dynamic set of web presences within the place. It is also used as a source of 
information about the place and its contents to be presented to humans, in the form 
of web pages.

The directory entries for the web presences within a place can be established in 
two main ways. First, a network discovery service (Section 19.2.1) can be used to 
automatically register any web presences that are implemented by devices within the 
place’s subnet – devices that have wirelessly connected within the place, or the place’s 
infrastructure servers. However, while network discovery services are useful, they 
suffer from the problem that not all web presences are hosted by devices in the place’s 
subnet. The web presences of non-electronic physical entities such as humans, printed 
documents and music CDs that move into the place or are brought into it may be hosted 
anywhere. Those web presences have to be registered there manually or via sensing 
mechanisms, in a process called physical registration [Barton et al. 2002] – for example, 
by sensing their RFID tags. 

A service called a web presence manager [Debaty and Caswell 2001] manages 
web-present places – for example, for all the rooms within a building – and it can also 
manage the web presences of people and things. Places are a particular instance of the 
Cooltown abstraction of a context: a set of related web-present entities linked together 
for purposes such as browsing. The web presence manager relates each web-present 
entity to the web presences of entities in its context. For example, if the entity is a thing, 
its related entities could be the person who carries it and the place where it is located. If 
the entity is a person, its related entities could be the things carried by the person, the 
place where the person is currently located and possibly the directly surrounding 
persons.

19.7.2 Physical hyperlinks

Web presences are web resources like any other, so web pages can contain text or image 
links to web presences like any other links. But in that standard web-linking model the 
user comes across the web presence of a person, place or thing via an information

source: the web page. The Cooltown design enables humans additionally to go directly 
to web presences from their physical sources: namely, the specific physical people, 
places or things that they have encountered in their everyday movements through the 
physical world. 

A physical hyperlink is any means by which a user can retrieve the URL of an 
entity’s web presence from the physical entity itself or its immediate surroundings. We 
now consider ways of implementing physical hyperlinks. First, consider the HTML 
markup for a typical link in a web page, say: 

<a href=“http://cdk4.net/ChopSuey.html”>Hopper’s painting Chop Suey</a>

That links the text ‘Hopper’s painting Chop Suey’ in a web page to a page at 
http://cdk4.net/Hopper.html about the referenced Edward Hopper painting, Chop Suey.
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Now, consider the question of how a visitor to a museum who encounters the painting 
there could ‘click on’ the painting to obtain information about it in the browser on their 
mobile phone, PDA or other portable device. That would require a way of discovering 
the URL from the physical configuration of the painting itself or its physical 
surroundings. One way would be to write the URL on the wall by the painting so that 
the user could type it into their device’s browser. But that would be inelegant and 
laborious. 

Instead, Cooltown utilizes the fact that users have sensors integrated with their 
mobile devices. The project investigated two main approaches to discovering the URLs 
of entities via those sensors: direct sensing and indirect sensing.

Direct sensing: In this model, the user’s device senses a URL directly from a tag (an 
‘automatic identification’ tag) or beacon attached to the entity of interest or positioned 
next to it (see Section 19.4.3). A relatively large entity such as a room could have several 
tags or beacons located in highly visible places. A tag is a passive device or artefact that 
presents the URL when the user places their device’s sensor near it. For example, a 
camera phone could in principle perform optical character recognition against the URL 
written on a sign, or it could read the URL encoded in a two-dimensional barcode. A 
beacon, on the other hand, regularly emits the entity’s URL, typically over (directional) 
infrared rather than radio, which is typically omnidirectional and thus can lead to 
ambiguity as to which URL belongs to which entity. 

In particular, the Cooltown project developed beacons in the form of small devices 
(a few centimetres across) that emit a string every few seconds over infrared using a 
one-shot, connectionless protocol (Figure 19.13a). The emitted string is an XML-like 
document consisting of the URL of the entity’s web presence and a short title. Many 
portable devices available at the time of the project, such as mobile phones and PDAs, 
had integrated infrared transceivers and so were capable of receiving those strings. 
When a client program receives the string, it can, for example, either cause the device’s 
browser to go to the received URL directly or create a hyperlink from the received title 
to the received URL and add that hyperlink to a list of received hyperlinks, which the 
user can click on when they choose.

Indirect sensing: Indirect sensing is where the user’s device obtains an identifier from a 
tag or beacon, which is looked up to obtain a URL. The sensing device knows the URL 
of a resolver – a name server that maintains a collection of bindings from identifiers to 
URLs (a naming context, in the terminology of Chapter 13) and returns the URL bound 
to the given identifier [Kindberg 2002]. Ideally, the namespace used for entity identifiers 
would be sufficiently large to enable every physical entity to have a unique identifier, 
removing the possibility of ambiguity. However, in principle, local identifiers could be 
used as long as they were only ever looked up using a local resolver – otherwise, 
spurious results might be obtained since someone else might have used the same 
identifier for a different entity. 

Indirect sensing is sometimes used because constraints in the tag technology mean 
that direct URL sensing is impossible. For example, linear barcodes do not have 
sufficient capacity to store an arbitrary URL, and cheap RFID tags store only a 
fixed-length binary identifier. In each case, the stored identifier has to be looked up to 
obtain the web presence’s URL.
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But there is also a positive reason to use indirect sensing: it allows a given physical 
entity to have a set of web presences instead of just one. Just as the phrase ‘Hopper’s 
painting Chop Suey’ could appear in several web pages with each instance linked to a 
different web page or respurce, so a given physical painting could lead to different web 
presences according to the choice of resolver. For example, one web presence of the 
painting could be a link to a service that prints a copy on a nearby printer in the museum; 
another web presence for the same painting could be a page providing information about 
the painting from an independent third party with no connection to the museum.

The implementation of resolution follows the web architecture in that each 
resolver is an independent web site. The client software is a browser augmented by a 
simple plug-in. Resolvers provide web forms that contain a field that the client fills in 
as a side-effect of sensing, rather than presenting the field to the user for manual entry. 
When the user, say, scans a barcode, the resultant identifier is automatically filled into 
the form and the client posts the form to the resolver. The resolver returns the 
corresponding URL, if one exists. 

Since resolvers are themselves web resources, the user navigates to them as they 
would any other web page [Kindberg 2002] and updates the client with which resolver 
it is to use. In particular, the user may pick up the URL of a local resolver using a local 
physical hyperlink. For example, the museum’s administrators could set up Cooltown 
beacons emitting the local resolver’s URL, so that the visitors could use that resolver to 
obtain locally relevant web presences for the paintings within the museum. Equally, if 
the identifiers of the paintings are well known and globally established, then the visitors 
could utilize other resolvers anywhere on the Web – for example, a Spanish visitor might 
utilize the bookmarked resolver of a Spanish art commentary site while visiting a 
museum in North America. 

Finally, although we have pointed out some advantages of indirect sensing over 
direct sensing, it does have a disadvantage: the client must make an extra round-trip to 
a resolver, which has consequences in terms of latency and energy consumption. 

19.7.3 Interoperation and the ‘eSquirt’ protocol

One method for interoperation between a web-present target device and the user’s 
portable device is to use standard web protocols. The user’s portable device issues an 
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HTTP GET or POST operation and the target device responds with a user interface in 
the form of a web page, which the portable device renders for the user. Returning to a 
previous example, a web-present Internet radio can present the URL of its web service 
via a beacon facing out to its users. The user walks in front of the radio and points the 
infrared receiver on their portable device – say, their PDA – at it; the client on their PDA 
receives the URL from the radio and passes the URL to its browser. The result is that the 
radio’s ‘home’ page appears on the PDA, with controls to adjust its volume, upload and 
play sound files on the PDA, etc. 

A web-present printer in a museum could behave similarly. The user obtains the 
printer’s home page via its beacon, and thus can upload content to the printer and specify 
the printer’s settings via the web page. Of course, devices such as printers may have 
physical user interfaces; but simpler appliances such as digital picture frames may not, 
and a virtual user interface is then essential.

 The above form of interoperation is data-oriented and thus device-independent, 
like the Web in general. Since the target device provides its own user interface, a user 
can control the device through their browser without requiring target-specific software. 
For example, a user with an image file on their PDA can render it on an arbitrary 
image-rendering device, whether it be a printer or a digital picture frame, say; and a user 
with a sound file on their PDA can hear it on an arbitrary audio-consuming device, 
whether it be, for example, an Internet radio or a ‘smart’ HiFi system. 

A problem with those scenarios is that the user’s relatively resource-poor portable 
device, which may have a low-bandwidth wireless connection, is in the content pathway 
between the content’s source and sink. Suppose that the user has obtained an image of a 
painting in a Cooltown-enhanced museum, or has obtained an audio clip of someone 
talking about the painting. In each case, the adaptation techniques discussed in Section 
19.6 may have been applied because of limited resources such as screen size and 
bandwidth, resulting in somewhat low fidelity versions of the image or sound clip on the 
portable device. When the user passes the image to a printer in the museum, or the sound 
clip to the Internet radio in their hotel room, they will be presented with low-quality 
versions even though those devices are capable of high-quality rendering and may have 
a high-bandwidth wired network connection.   

Cooltown’s eSquirt protocol for interoperation between devices removes the 
low-fidelity problem – and avoids precious bandwidth and energy consumption – by 
passing the URL of the content from one device to another, instead of the content itself. 
In fact, the protocol is identical to the one used to send a URL (and title) from a 
Cooltown beacon to a device over infrared (Figure 19.13b). The devices pass that small 
amount of data over the low-energy infrared medium, and that is the only network 
operation in which each device is involved during the eSquirt protocol itself. However, 
the recipient device can then act as a web client to retrieve the content using the URL, 
and perform an operation such as rendering the resultant data.   

For example, a user who has obtained the URL of an image of a Hopper painting 
from a beacon beside the painting sends that URL to a printer using their eSquirt-capable 
PDA. The protocol that eSquirt uses is unreliable but, as with a TV remote control, if 
transmission fails the user can simply press the ‘squirt’ button again until feedback at 
the printer confirms success. The printer (rather, the printing service, which may be 
implemented in the infrastructure) then acts as a web client to retrieve the content from 
the URL – in its full-fidelity form – and prints it. 
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The user’s portable device thus can act like a device-independent clipboard for 
URLs, similar to an application-independent clipboard for data in copy-and-paste 
operations on a desktop user interface. The user employs the device to ‘copy and paste’ 
URLs between sources and sinks to transfer content between them. 

Device independence is the most important advantage of the eSquirt paradigm. 
The eSquirt protocol always works the same way; what differs is the processing of the 
URL by the recipient. However, the user has to have a reasonable idea of what 
combinations of squirted URLs and receiving devices make sense. The receiving 
device’s designer must also expect some mistakes: a user may mistakenly squirt a URL 
of an audio file into a printer. However, it is inadvisable to design away such mistakes 
in advance. The prevention measures, such as type-checking, may lead to the 
phenomena of lost opportunities and brittle interoperation that we identified in Section 
19.2.2.

While simplicity is a strength of the eSquirt protocol, a disadvantage is that it 
relies on using default settings in the recipient device, or using physical controls to input 
its settings. That is, eSquirt does not enable the interoperation paradigm with which we 
began this subsection, in which a client device obtains a virtual user interface for 
controlling the settings of a target device. For example, after squirting the URL of a 
sound file or a streaming radio station to an Internet radio, how does the user control the 
volume from their portable device? Exercise 19.19 explores this issue.

19.7.4 Summary and perspective

We have outlined the main features of the Cooltown architecture. The goal of that 
project was to benefit nomadic users by extending the Web, a virtual collection of 
hyperlinked content, to entities in the physical world, regardless of whether those 
entities have electronic functionality of their own. The architecture considered physical 
entities, including people, places and things, to be associated with web presences. Next 
are the physical hyperlinks – the mechanisms for sensing the web presence’s URL from 
a physical entity. The project implemented physical hyperlinks using infrared beacons, 
tags such as barcodes and RFID tags, and resolvers to turn identifiers into URLs. 
Support for infrared has declined with the move from PDAs to smart phones, but support 
for reading 2D and 1D barcodes and, in some countries, NFC and its subset RFID, has 
increased. Finally, eSquirt is a device-independent interoperation protocol, which 
relieves low-powered portable devices from the need to be in the content pathway 
between sources and sinks of content.

Cooltown largely achieved its objectives, but only on the assumption that the 
human is very much ‘in the loop’. Humans physically discover the services associated 
with the entities they encounter, via physical hyperlinks. Humans may also have to 
physically register the web presences of tagged non-electronic entities such as music 
CDs when they are placed in the context of a web-present place such as a house, so that 
they become electronically discoverable there. Finally, humans not only associate their 
portable devices to web-present entities by ‘clicking’ on physical hyperlinks but, via the 
eSquirt protocol, they bring about device-independent interoperation. The involvement 
of the human makes for great flexibility, and eliminates the problem of lost opportunities 
for interaction. However, the simple eSquirt interoperation model does not give users 
control over what a recipient device does with a URL that they have squirted into it.
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An alternative development would be for automated association and 
interoperation of web-present entities. Each physical entity could have an instance of a 
uniform type of web presence, which would record details of that entity’s semantics 
(perhaps using semantic web technologies), including relationships between that entity 
and others – in particular, the relationship between a web-present person or thing and 
the web presence of the place that contains them. Thus all web presences within a given 
place could discover one another and interoperate. For example, the web presence of the 
secretary in a meeting could discover documents within a meeting room that needed to 
be printed, discover which members were present, discover a nearby printer and cause 
the requisite number of a copies to be printed. Cooltown’s web presence manager 
[Debaty and Caswell 2001] made a start at realizing that vision, through uniform 
management not just of places but of web-present things and people that have links to 
related entities such as the web-present place they are in. For example, when an entity 
enters a new place and is registered there, the entity is automatically updated with a link 
to the web presence of its new host place. Ideally, entity relationships would all be 
programatically established, instead of the limited support available today. But the 
complicated semantics of our everyday world make it likely that realizing an application 
such as automated meeting support in a practically useful rather than error-prone way is 
still a long way off. In the meantime, involving humans in the loop enables progress to 
be made.

19.8 Summary

This chapter has presented the main challenges raised by mobile and ubiquitous 
computer systems, and rather fewer solutions since not many are available. Most of the 
challenges stem from the fact that those systems are volatile, which in turn is largely due 
to the fact that they are integrated with our everyday physical world. The systems are 
volatile in that the set of users, hardware and software components in a given smart 
space is subject to unpredictable change. Components tend to make and break 
associations routinely, either as they move from smart space to smart space or because 
of failure. Connection bandwidth can vary widely over time. Components can fail as 
batteries die or for other reasons. Sections 19.1 to 19.3 discussed those aspects of 
volatility in full, and some techniques for associating components and enabling them to 
interoperate despite the difficulties of ‘constant change’.

 The integration of devices with our physical world involves sensing and context 
awareness (Section 19.4), and we described some architectures for processing sensed 
data. But there remains a challenge that we might describe as physical fidelity: how 
accurately can a system with sensing and computation behave in accordance with the 
subtle semantics we humans associate with the physical world in which we live? Does 
a ‘context aware phone’ really behave as we would want in inhibiting rings 
appropriately as we move between places? Does the web presence of a place such as a 
hotel room in Cooltown actually record all the web-present entities that a human would 
say were in that place – and not, for example, some in an adjacent room?

Security and privacy (Section 19.5) feature strongly in research on mobile and 
ubiquitous systems. Volatility complicates security because it begs the question of what 
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basis there can be for trust between components that wish to establish a secure channel. 
Fortunately, the existence of physically constrained channels goes some way to enabling 
secure channels where there is a human present. Physical integration has implications 
for privacy: if the user is being tracked to provide them with context-aware services, 
then there may be a severe loss of privacy. We described some approaches to identifier 
management and outlined statistical techniques aimed at reducing that problem.

Physical integration also means new degrees of constraint in terms of such factors 
as device energy capacity, wireless bandwidth and user interfaces – a node in a sensor 
network has little of the first two and none of the last; a mobile phone has more of all 
three, but still much less than a desktop machine. Section 19.6 discussed some of the 
architectures by which components can adapt to resource constraints.

Section 19.7 described the architecture of the Cooltown project as a case study. 
The architecture is distinctive in that it applies lessons learned from the Web to 
ubiquitous computing. The advantage is a high degree of interoperability. But as a result, 
the Cooltown design applies mainly to situations in which humans supervise 
interactions.

Finally, this chapter has concentrated on the differences between mobile and 
ubiquitous systems and the more conventional distributed systems that appear elsewhere 
in this book – largely to do with aspects of volatility and physical integration. Exercise
19.20 invites the reader to list some of the similarities, and to consider the extent to 
which conventional distributed systems solutions apply to mobile and ubiquitous 
systems.

EXERCISES

19.1 What is a volatile system? List the main types of changes that occur in a ubiquitous 
system.  page 821

19.2 Discuss whether it is possible to improve upon the ‘pull’ model of service discovery by 
multicasting (or broadcasting) and caching replies to queries. page 831

19.3 Explain the use of leases in a discovery service to cope with the problem of service 
volatility. page 831

19.4 The Jini lookup service matches service offers to client requests based on attributes or 
on Java typing. Explain with examples the difference between these two methods of 
matching. What is the advantage of allowing both sorts of matching? page 832

19.5 Describe the use of IP multicast and group names in the Jini ‘discovery’ service, which 
allows clients and servers to locate lookup servers. page 832

19.6 What is data-oriented programming and how does it differ from object-oriented 
programming? page 837

19.7 Discuss the issue of how the scope of an event system can and should be related to the 
physical extent of a smart space in which it is used. page 838

19.8 Compare and contrast the persistence requirements associated with event systems and 
tuple spaces in the infrastructure of smart spaces. page 840
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19.9 Describe three ways of sensing the presence of a user beside a display and thus motivate 
some features required in an architecture for context-aware systems. page 844

19.10 Explain and motivate in-network processing for wireless sensor networks.     page 849

19.11 In the Active Bat location system, only three ultrasound receivers are used by default to 
obtain a 3D position, whereas four satellites are required to obtain a 3D position in 
satellite navigation. Why is there a difference? page 854

19.12 In some location systems, tracked objects give up their identifiers to the infrastructure. 
Explain how this may give rise to concerns about privacy, even if the identifiers are 
anonymous. page 856

19.13 Many sensor nodes are to be scattered throughout a region. The nodes are to 
communicate securely. Explain the problem of key distribution and outline a 
probabilistic strategy for distributing keys.  page 858

19.14 We described several technologies that provide receive-constrained channels for use in 
secure spontaneous device association. Which of those technologies also provide 
send-constrained channels? page 861

19.15 Show how to construct a send-constrained channel from a receive-constrained channel, 
and vice versa. Hint: use a trusted node connected to the given channel. page 861

19.16 A group of smart spaces are connected only by a space between them. such as a hallway 
or square. Discuss the factors that determine whether that intervening space can act as a 
mix zone. page 865

19.17 Explain the contextual factors to be taken into account when adapting multimedia 
content. page 866

19.18 Assume that a device can execute 3 million instructions for the same amount of energy 
(3J) used to transmit or receive 1kbit of data a distance of 100 m by radio. The device 
has the option of sending a 100-kbyte binary program to a compute server 100 m away, 
which when run will execute 60 billion instructions and exchange 10,000 x 1 kbit 
messages with the device. If energy is the only consideration, should the device offload 
the computation or execute it itself? Assume computation on the device is negligible in 
the offloaded case. page 869

19.19 A Cooltown user squirts the URL of a sound file or a streaming radio station to an 
Internet radio. Suggest a modification to the eSquirt protocol that would enable the user 
to control the volume from their portable device. Hint: consider what extra data the 
squirting device should provide. page 877

19.20 Discuss the applicability to mobile and ubiquitous systems of techniques drawn from the 
areas of:

i) peer-to-peer systems (Chapter 10); 

ii) coordination and agreement protocols (Chapter 15); 

iii) replication (Chapter 18). page 879
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DISTRIBUTED

MULTIMEDIA SYSTEMS

20.1 Introduction
20.2 Characteristics of multimedia data
20.3 Quality of service management
20.4 Resource management
20.5 Stream adaptation
20.6 Case studies: Tiger, BitTorrent and End System Multicast
20.7 Summary

Multimedia applications generate and consume continuous streams of data in real time. 
They contain large quantities of audio, video and other time-based data elements, and the 
timely processing and delivery of the individual data elements (audio samples, video 
frames) is essential. Elements delivered late are of no value and are normally dropped.

A flow specification for a multimedia stream is expressed in terms of acceptable 
values for the rate at which data passes from a source to a destination (the bandwidth), 
the delivery delay for each element (latency) and the rate at which elements are lost or 
dropped. The latency is particularly important in interactive applications. Some small 
degree of data loss from multimedia streams is often acceptable provided that the 
application can resynchronize the elements following those that are lost. 

The planned allocation and scheduling of resources to meet the needs of multimedia 
and other applications is referred to as quality of service management. The allocation of 
processing capacity, network bandwidth and memory (for the buffering of data elements 
that are delivered early) are all important. They are allocated in response to quality of 
service requests from applications. A successful QoS request delivers a QoS guarantee to 
the application and results in the reservation and subsequent scheduling of the resources 
requested.

This chapter draws substantially on a tutorial paper by Ralf Herrtwich [1995] and we are grateful to him for 
permission to use his material.



882 CHAPTER 20  DISTRIBUTED MULTIMEDIA SYSTEMS

20.1 Introduction

Modern computers can handle streams of continuous, time-based data such as digital 
audio and video. This capability has led to the development of distributed multimedia 
applications such as networked video libraries, Internet telephony and video 
conferencing. Such applications are viable with current general-purpose networks and 
systems, although the quality of the resulting audio and video is often less than 
satisfactory. More demanding applications such as large-scale video conferencing, 
digital TV production, interactive TV and video surveillance systems are beyond the 
capabilities of current networking and distributed system technologies.

Multimedia applications demand the timely delivery of streams of multimedia 
data to end users. Audio and video streams are generated and consumed in real time, and 
the timely delivery of the individual elements (audio samples, video frames) is essential 
to the integrity of the application. In short, multimedia systems are real-time systems: 
they must perform tasks and deliver results according to a schedule that is externally 
determined. The degree to which this is achieved by the underlying system is known as 
the quality of service (QoS) enjoyed by an application.

Although the problems of real-time system design had been studied before the 
advent of multimedia systems, and many successful real-time systems were developed 
(see, for example, Kopetz and Verissimo [1993]), they have not generally been 
integrated into more general-purpose operating systems and networks. The nature of the 
tasks performed by these existing real-time systems, such as avionics, air traffic control, 
manufacturing process control and telephone switching, differs from those performed in 
multimedia applications. The former generally deal with relatively small quantities of 
data and have relatively infrequent hard deadlines, but failure to meet any deadline can 
have serious or even disastrous consequences. In such cases, the solution adopted has 
been to over-specify the computing resources and to allocate them on a fixed schedule 
that ensures that worst-case requirements are always met. This type of solution is not 
available for most Internet multimedia streaming applications on desktop computers, 
resulting in a ‘best-effort’ quality of service using the available resources.

The planned allocation and scheduling of resources to meet the needs of 
multimedia and other applications is referred to as quality of service management. Most 
current operating systems and networks do not include the QoS management facilities 
needed for a guaranteed quality of service for multimedia applications.

The consequences of failure to meet deadlines in multimedia applications can be 
serious, especially in commercial environments such as video-on-demand services, 
business conferencing applications and remote medicine, but the requirements differ 
significantly from those of other real-time applications:

• Multimedia applications are often highly distributed and operate within general-
purpose distributed computing environments. They therefore compete with other 
distributed applications for network bandwidth and for computing resources at 
users’ workstations and servers.

• The resource requirements of multimedia applications are dynamic. A video 
conference will require more or less network bandwidth as the number of 
participants grows or shrinks. Its use of computing resources at each user’s 
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workstation will also vary, since, for example, the number of video streams that 
have to be displayed varies. Multimedia applications may involve other variable 
or intermittent loads as well. For example, a networked multimedia lecture might 
include a processor-intensive simulation activity.

• Users often wish to balance the resource costs of a multimedia application with 
other activities. Thus they may be willing to reduce their demands for video 
bandwidth in a conferencing application in order to allow a separate voice 
conversation to proceed, or they may wish a program development or word-
processing activity to proceed while they are participating in a conference.

Figure 20.1 A distributed multimedia system

Wide area gateway Video
server

Digital
TV/radio
server

Video camera
and mike

Local network Local network

QoS management systems are intended to meet all of these needs, managing the 
available resources dynamically and varying the allocations in response to changing 
demands and user priorities. A QoS management system must manage all of the 
computing and communication resources needed to acquire, process and transmit 
multimedia data streams, especially where the resources are shared between 
applications. 

Figure 20.1 illustrates a typical distributed multimedia system capable of 
supporting a variety of applications, such as desktop conferencing or providing access 
to stored video sequences, broadcast digital TV and radio. The resources for which QoS 
management is required include network bandwidth, processor cycles and memory 
capacity. Disk bandwidth at the video server may also be included. We shall adopt the 
generic term resource bandwidth to refer to the capacity of any hardware resource 
(network, central processor, disk subsystem) to transmit or process multimedia data.
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In an open distributed system, multimedia applications can be started up and used 
without prior arrangement. Several applications may coexist in the same network and 
even on the same workstation. The need for QoS management therefore arises 
regardless of the total quantity of resource bandwidth or memory capacity in the system. 
QoS management is needed in order to guarantee that applications will be able to obtain 
the necessary quantity of resources at the required times, even when other applications 
are competing for the resources.

Some multimedia applications have been deployed even in today’s QoS-less, best-
efforts computing and network environments. These include:

Web-based multimedia: These are applications that provide best-efforts quality of 
service for access to streams of audio and video data published via the Web. They 
have been successful when there is little or no need for the synchronization of the data 
streams at different locations. Their performance varies with the bandwidth and 
latencies in networks and is hampered by the inability of current operating systems 
to support real-time resource scheduling. Nevertheless, applications such as 
YouTube, Hulu and BBC  iPlayer provide an effective and popular demonstration of 
the feasibility of streamed multimedia playback on lightly loaded personal 
computers. They exploit extensive buffering at the destination to smooth out the 
variations in bandwidth and latency and they achieve continuous smooth playback of 
high quality audio and medium-resolution video sequences, although with a source-
to-destination delay that may reach several seconds. 

Video-on-demand services: These services supply video information in digital form, 
retrieving the data from large online storage systems and delivering them to the end 
user’s display. They are successful where sufficient dedicated network bandwidth is 
available and where the video server and the receiving stations are dedicated. They 
also employ considerable buffering at the destination. 

Highly interactive applications pose much greater problems. Many multimedia 
applications are cooperative (involving several users) and synchronous (requiring the 
users’ activities to be closely coordinated). They span a wide spectrum of application 
contexts and scenarios. For example:

• Internet telephony. See the box on the next page.

• A simple video conference involving two or more users, each using a workstation 
equipped with a digital video camera, microphone, sound output and video 
display capability. Application software to support simple teleconferencing 
emerged more than a decade ago ( CU-SeeMe [Dorcey 1995]) and is now widely 
deployed (for example: Skype, NetMeeting [www.microsoft.com III], iChat AV

[www.apple.com II]).

• A music rehearsal and performance 
facility enabling musicians at different 
locations to perform in an ensemble 
[Konstantas et al. 1997]. This is a 
particularly demanding multimedia 
application because the synchronization 
constraints are so tight. 



Internet telephony – VoIP

The Internet was not designed for real-time interactive applications such as 
telephony, but it has become possible to use it for that purpose as a result of the 
increases in the capacity and performance of the Internet’s core components – its 
backbone of network links run at 10–40 Gbps and the routers that interconnect them 
have comparable performance. These components typically run at low load factors 
(< 10% bandwidth utilization) and IP traffic is therefore seldom delayed or dropped 
as a result of contention for resources.

This has resulted in the feasibility of building telephony applications over the 
public Internet by transmitting streams of digitized voice samples from source to 
destination as UDP packets with no special provision for quality of service. Voice 
over IP (VoIP) applications such as Skype and Vonage rely on this technique, as do 
the voice features of instant-messaging applications such as AOL Instant Messaging, 
Apple iChat AV and Microsoft NetMeeting.

Of course, these are real-time interactive applications, and latency remains an 
issue. As discussed in Chapter 3, the routing of IP packets incurs an inevitable delay 
at each router they pass through. For long routes these delays can easily total in 
excess of 150 ms, and users will observe this in the form of delays in conversational 
interaction. For this reason, long-distance (especially intercontinental) Internet 
telephone calls suffer from delays to a much greater extent than those using the 
conventional telephone network.

Nevertheless, much voice traffic is carried on the Internet and integration with 
the conventional telephone network is underway. The Session Initiation Protocol 
(SIP, defined in RFC 2543 [Handley et al. 1999]) is an application-level protocol for 
the establishment of voice calls (as well as other services such as instant messaging) 
over the Internet. Gateways to the conventional telephone network exist in many 
locations throughout the world, enabling calls to be initiated from Internet-connected 
devices that are routed over the Internet and terminate at conventional telephones or 
personal computers.
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Applications such as these require:

Low-latency communication: Round-trip delays should not exceed 100–300 ms, so 
that interaction between users appears to be synchronous.

Synchronous distributed state: If one user stops a video on a given frame, the other 
users should see it stopped at the same frame. 

Media synchronization: All participants in a music performance should hear the 
performance at approximately the same time (Konstantas et al. [1997] identified a 
requirement for synchronization within 50 ms). Separate soundtrack and video 
streams should maintain ‘lip sync’, e.g., for a user commenting live on a video 
playback or a distributed karaoke session.

External synchronization:  In conferencing and other cooperative applications, there 
may be active data in other formats, such as computer-generated animations, CAD 
data, electronic whiteboards and shared documents. Updates to these must be 
distributed and acted upon in a manner that appears at least approximately 
synchronized with the time-based multimedia streams.
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In Section 20.2 we review the characteristics of multimedia data. Section 20.3 describes 
approaches to the allocation of scarce resources in order to achieve QoS, and Section 
20.4 discusses methods for scheduling them. Section 20.5 discusses methods for 
optimizing the flow of data in multimedia systems. Section 20.6 describes three case 
studies of multimedia systems: the Tiger video file server, a low-cost scalable system 
for the delivery of stored video streams to large numbers of clients concurrently; 
BitTorrent as an example of a peer-to-peer file-sharing application supporting the 
downloading of large multimedia files; and CMU’s End System Multicast as an example 
of a system supporting broadcasting of video content over the Internet.

20.2 Characteristics of multimedia data

Figure 20.2 Characteristics of typical multimedia streams

Data rate

(approximate)

          Sample or frame

    size frequency

Telephone speech 64 kbps 8 bits 8000/sec

CD-quality sound 1.4 Mbps 16 bits 44,000/sec

Standard TV video (uncompressed) 120 Mbps up to 640  480 
pixels  16 bits

24/sec

Standard TV video (MPEG-1 compression) 1.5 Mbps variable 24/sec

HDTV video (uncompressed) 1000–3000 Mbps up to 1920  1080 
pixels  24 bits

24–60/sec

HDTV video
(MPEG-2/MPEG-4 compression)

6–20 Mbps variable 24–60/sec

We have referred to video and audio data as continuous and time-based. How can we 
define these characteristics more precisely? The term ‘continuous’ refers to the user’s 
view of the data. Internally, continuous media are represented as sequences of discrete 
values that replace each other over time. For example, the value of an image array is 
replaced 25 times per second to give the impression of a TV-quality view of a moving 
scene; a sound amplitude value is replaced 8000 times per second to convey telephone-
quality speech.

Multimedia streams are said to be time-based (or isochronous) because timed data 
elements in audio and video streams define the semantics or ‘content’ of the stream. The 
times at which the values are played or recorded affect the validity of the data. Hence 
systems that support multimedia applications need to preserve the timing when they 
handle continuous data.
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Multimedia streams are often bulky. Hence systems that support multimedia 
applications need to move data with greater throughput than conventional systems. 
Figure 20.2 shows some typical data rates and frame/sample frequencies. We note that 
the resource bandwidth requirements for some are very large. This is especially so for 
video of reasonable quality. For example, an uncompressed standard TV video stream 
requires more than 120 Mbps, which exceeds the capacity of a 100-Mbps Ethernet 
network. A program that copies or applies a simple data transformation to each frame of 
a standard TV video stream requires less than 10% of the CPU capacity of a  PC. The 
figures for high-definition television streams are higher, and we should note that in 
many applications, such as video conferencing, there is a need to handle multiple video 
and audio streams concurrently. The use of compressed representations to overcome 
these problems is therefore essential, although transformations such as video mixing and 
editing are difficult to accomplish with compressed streams.

Compression can reduce bandwidth requirements by factors of between 10 and 
100, but the timing requirements of continuous data are unaffected. There is intensive 
research and standardization activity aimed at producing efficient, general-purpose 
representations and compression methods for multimedia data streams. This work has 
resulted in various compressed data formats, such as GIF, TIFF and JPEG for still 
images and MPEG-1, MPEG-2 and MPEG-4 for video sequences.

Although the use of compressed video and audio data reduces bandwidth 
requirements in communication networks, it imposes substantial additional loads on 
processing resources at the source and destination. This need has often been met through 
the use of special-purpose hardware to process and dispatch video and audio 
information, i.e., the video and audio coders/decoders (codecs) found on video cards 
manufactured for personal computers. But the increasing power of personal computers 
and multiprocessor architectures now enable them to perform much of this work in 
software using software coding and decoding filters. This approach offers greater 
flexibility, with better support for application-specific data formats, special-purpose 
application logic and the simultaneous handling of multiple media streams.

The compression method used for the MPEG video formats is asymmetric, with a 
complex compression algorithm and simpler decompression. This tends to help its use 
in desktop conferencing, where compression is often performed by a hardware codec but 
decompression of the several streams arriving at each user’s computer is performed in 
software, enabling the number of conference participants to vary without regard to the 
number of codecs in each user’s computer.

20.3 Quality of service management

When multimedia applications run in networks of personal computers, they compete for 
resources at the workstations running the applications (processor cycles, bus cycles, 
buffer capacity) and in the networks (physical transmission links, switches, gateways). 
Workstations and networks may have to support several multimedia and conventional 
applications. There is competition between the multimedia and conventional 
applications, between different multimedia applications and even between the media 
streams within individual applications. 



Figure 20.3 Typical infrastructure components for multimedia applications
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The concurrent use of physical resources for a variety of tasks has long been 
possible with multitasking operating systems and shared networks. In multitasking 
operating systems, the central processor is allocated to individual tasks (or processes) in 
a round-robin or other scheduling scheme that shares the processing resources on a best-
effort basis among all of the tasks currently competing for the central processor. 

Networks are designed to enable messages from different sources to be 
interleaved, allowing many virtual communication channels to exist on the same 
physical channels. The predominant local area network technology, Ethernet, manages 
a shared transmission medium in a best-effort manner. Any node may use the medium 
when it is quiet, but packet collisions can occur, and when they do sending nodes wait 
for random backoff periods in order to prevent repeated collisions. Collisions are likely 
to occur when the network is heavily loaded, and this scheme cannot provide any 
guarantees regarding the bandwidth or latency in such situations.

The key feature of these resource-sallocation schemes is that they handle increases 
in demand by spreading the available resources more thinly between the competing 
tasks. Round-robin and other best-efforts methods for sharing processor cycles and 
network bandwidth cannot meet the needs of multimedia applications. As we have seen, 
the timely processing and transmission of multimedia streams is crucial for them. Late 
delivery is valueless. In order to achieve timely delivery, applications need guarantees 
that the necessary resources will be allocated and scheduled at the required times. 

The management and allocation of resources to provide such guarantees is 
referred to as quality of service management. Figure 20.3 shows the infrastructure 
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components for a simple multimedia conferencing application running on two personal 
computers, using software data compression and format conversion. The white boxes 
represent software components whose resource requirements may affect the quality of 
service of the application. 

The figure shows the most commonly used abstract architecture for multimedia 
software, in which continuously flowing streams of media data elements (video frames, 
audio samples) are processed by a collection of processes and transferred between the 
processes by interprocess connections. The processes produce, transform and consume 
continuous streams of multimedia data. The connections link the processes in a 
sequence from a source of media elements to a target, at which it is rendered or 
consumed. The connections between the processes may be implemented by networked 
connections or by in-memory transfers when processes reside on the same machine. For 
the elements of multimedia data to arrive at their target on time, each process must be 
allocated adequate CPU time, memory capacity and network bandwidth to perform its 
designated task and must be scheduled to use the resources sufficiently frequently to 
enable it to deliver the data elements in its stream to the next process on time.

In Figure 20.4,

Figure 20.4 QoS specifications for components of the application shown in Figure 20.3

Component Bandwidth Latency Loss rate Resources required

Camera Out: 10 frames/sec, raw video
640x480x16 bits

– Zero –

A Codec In:

Out:

10 frames/sec, raw video

MPEG-1 stream

Interactive Low 10 ms CPU each 100 ms;

10 Mbytes RAM

B Mixer In:

Out:
2  44 kbps audio

1  44 kbps audio

Interactive Very low 1 ms CPU each 100 ms;

1 Mbytes RAM

H Window
 system

In:

Out:

Various

50 frame/sec framebuffer

Interactive Low 5 ms CPU each 100 ms; 

5 Mbytes RAM

K Network
connection

In/Out: MPEG-1 stream, 
approx. 1.5 Mbps

Interactive Low 1.5 Mbps, low-loss
stream protocol

L Network
connection

In/Out: Audio 44 kbps Interactive Very low 44 kbps, very low-loss
stream protocol

 we set out resource requirements for the main software components
and network connections in Figure 20.3 (note the corresponding letters against 
components in these two figures). Clearly, the required resources can be guaranteed only 
if there is a system component responsible for the allocation and scheduling of those 
resources. We shall refer to that component as the quality of service manager.

Figure 20.5 shows the QoS manager’s responsibilities in the form of a flowchart. 
In the next two subsections we describe the QoS manager’s two main subtasks:

Quality of service negotiation: The application indicates its resource requirements 
to the QoS manager. The QoS manager evaluates the feasibility of meeting the 
requirements against a database of the available resources and current resource 
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commitments and gives a positive or negative response. If it is negative, the 
application may be reconfigured to use reduced resources, and the process is repeated.

Admission control: If the result of the resource evaluation is positive, the requested 
resources are reserved and the application is given a resource contract, stating the 
resources that have been reserved. The contract includes a time limit. The application 
is then free to run. If it changes its resource requirements it must notify the QoS 
manager. If the requirements decrease, the resources released are returned to the 
database as available resources. If they increase, a new round of negotiation and 
admission control is initiated.

In the remainder of this section we describe techniques for performing these subtasks in 
further detail. Of course, while an application is running, there is a need for fine-grained 
scheduling of resources such as processor time and network bandwidth to ensure that 
real-time processes receive their allocated resources on time. Techniques for this are 
discussed in Section 20.4.

20.3.1 Quality of service negotiation

To negotiate QoS between an application and its underlying system, the application 
must specify its QoS requirements to the QoS manager. This is done by the transmission 
of a set of parameters. Three parameters are of primary interest when it comes to 
processing and transporting multimedia streams:  

Bandwidth: The bandwidth of a multimedia stream or component is the rate at which 
data flows through it.

Latency: Latency is the time required for an individual data element to move through 
a stream from the source to the destination.This may vary depending on the volume 
of other data in the system and other characteristics of the system load. This variation 
is termed jitter – formally, jitter is the first derivative of the latency.

Loss rate: Since the late delivery of multimedia data is of no value, data elements 
will be dropped when it is impossible to deliver them before their scheduled delivery 
time. In a perfectly managed QoS environment, this should never happen, but as yet 
few such environments exist, for reasons outlined earlier. Furthermore, the resource 
cost of guaranteeing on-time delivery for every media element is often unacceptable 
– it is likely to involve the reservation of resources far exceeding the average 
requirement in order to deal with occasional peaks. The alternative that is adopted is 
to accept a certain rate of data loss – i.e., dropped video frames or audio samples. The 
acceptable ratios are usually kept low – seldom more than 1% and much lower for 
quality-critical applications.

The three parameters can be used:

1. To describe the characteristics of a multimedia stream in a particular environment. 
For example, a video stream may require an average bandwidth of 1.5 Mbps, and 
because it is used in a conferencing application it needs to be transferred with at 
most 150 ms delay to avoid conversation gaps. The decompression algorithm used 
at the target may still yield acceptable pictures with a loss rate of one frame out 
of 100. 
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2. To describe the capabilities of resources to transport a stream. For example, a 
network may provide connections of 64 kbps bandwidth, its queuing algorithms 
may guarantee delays of less than 10 ms and the transmission system may 
guarantee a loss rate smaller than 1 in 106.

The parameters are interdependent. For example:

• Loss rate in modern systems rarely depends on actual bit errors due to noise or 
malfunction; it results from buffer overflow and from time-dependent data 
arriving too late. Hence, the larger bandwidth and the lower delay can be, the more 
likely is a low loss rate. 

• The smaller the overall bandwidth of a resource is compared with its load, the 
more messages will accumulate in front of it and the larger the buffers for this 
accumulation will need to be to avoid loss. The larger the buffers become, the 
more likely it is that messages will need to wait for other messages in front of them 
to be serviced – that is, the larger the delay will become. 

Specifying the QoS parameters for streams  •  The values of QoS parameters can be 
stated explicitly (e.g., for the camera output stream in Figure 20.3 we might require 
bandwidth: 50 Mbps, delay: 150 ms, loss: < 1 frame in 103) or implicitly (e.g., the 
bandwidth of the input stream to the network connection K is the result of applying 
MPEG-1 compression to the camera output). 
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But the more usual case is that we need to specify a value and a range of 
permissible variation. Here we consider this requirement for each of the parameters:

Bandwidth: Most video compression techniques produce a stream of frames of differing 
sizes depending on the original content of the raw video. For MPEG, the average 
compression ratio is between 1:50 and 1:100, but this will vary dynamically depending 
on content; for example, the required bandwidth will be highest when the content is 
changing most rapidly. Because of this, it is often useful to quote QoS parameters as 
maximum, minimum or average values, depending on the type of QoS management 
regime that will be used. 

Another problem that arises in the specification of the bandwidth is the 
characterization of burstiness. Consider three streams of 1 Mbps. One stream transfers 
a single frame of 1 Mbit every second, the second is an asynchronous stream of 
computer-generated animation elements with an average bandwidth of 1 Mbps and the 
third sends a 100-bit sound sample every microsecond. Whereas all three streams 
require the same bandwidth, their traffic patterns are very different.

One way to take care of irregularities is to define a burst parameter in addition to 
rate and frame size. The burst parameter specifies the maximum number of media 
elements that may arrive early – that is, before they should arrive according to the 
regular arrival rate. The model of linear-bounded arrival processes (LBAP) used in 
Anderson [1993] defines the maximum number of messages in a stream during any time 
interval t as Rt + B, where R is the rate and B is the maximum size of burst. The 
advantage of using this model is that it nicely reflects the characteristics of multimedia 
sources: multimedia data read from disks are usually delivered in large blocks, and data 
received from networks often arrive in the form of sequences of smaller packets. In this 
case, the burst parameter defines the amount of buffer space required to avoid loss.

Latency: Some timing requirements in multimedia result from the stream itself: if a 
frame of a stream does not get processed with the same rate at which frames arrive, a 
backlog builds up and buffer capacity may be exceeded. If this is to be avoided, a frame 
must on average not remain in a buffer for longer than 1/R, where R is the frame rate of 
a stream. If backlogs do occur, the number and size of the backlogs will affect the 
maximum end-to-end delay of a stream, in addition to the processing and propagation 
times.

Other latency requirements arise from the application environment. In 
conferencing applications, the need for apparently instantaneous interaction between the 
participants makes it necessary to achieve absolute end-to-end delays of no more than 
150 ms to avoid problems in the human perception of the conversation, whereas for the 
replay of stored video, to ensure a proper system response to commands such as Pause

and Stop, the maximum latency should be on the order of 500 ms.
A third consideration for the delivery time of multimedia messages is jitter – 

variation in the period between the delivery of two adjacent frames. Whereas most 
multimedia devices make sure that they present data at its regular rate without variation, 
software presentations (for example, in a software decoder for video frames) need to 
take extra care to avoid jitter. Jitter is essentially solved by buffering, but the scope for 
jitter removal is limited, because total end-to-end delay is constrained by the 
consideration mentioned above. Thus the playback of media sequences also requires 
media elements to arrive before fixed deadlines.
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Loss rate: Loss rate is the most difficult QoS parameter to specify. Typical loss rate 
values result from probability calculations about overflowing buffers and delayed 
messages. These calculations are based either on worst-case assumptions or on standard 
distributions. Neither of these is necessarily a good match for practical situations. 
However, loss rate specifications are necessary to qualify the bandwidth and latency 
parameters: two applications may have the same bandwidth and latency characteristics; 
but they will look dramatically different if one application loses every fifth media 
element and the other loses only one in a million.

As with bandwidth specifications, where not just the volume of data sent in a time 
interval but its distribution over the time interval is important, a loss rate specification 
needs to determine the time interval during which to expect a certain level of loss. In 
particular, loss rates given for infinite timespans are not useful, as any loss over a short 
time may exceed the long-term rate significantly.

Traffic shaping  •  Traffic shaping is the term used to describe the use of output buffering 
to smooth the flow of data elements. The bandwidth parameter of a multimedia stream 
typically provides an idealistic approximation of the actual traffic pattern that will occur 
when the stream is transmitted. The closer the actual traffic pattern matches the 
description, the better a system will be able to handle the traffic, in particular when it 
uses scheduling methods that are designed for periodic requests.

The LBAP model of bandwidth variations calls for regulation of the burstiness of 
multimedia streams. Any stream can be regulated by inserting a buffer at the source and 
by defining a method by which data elements leave the buffer. A good illustration of this 
method is the image of a leaky bucket (Figure 20.6a): the bucket can be filled arbitrarily 
with water until it is full; through a leak at the bottom of the bucket water will flow 
continuously. The leaky bucket algorithm ensures that a stream will never flow with a 
rate higher than R. The size of the buffer B defines the maximum burst a stream can incur 
without losing elements. B also bounds the time for which an element will remain in the 
bucket.

Figure 20.6 Traffic shaping algorithms

Token generator

(a) Leaky bucket (b) Token bucket

The leaky bucket algorithm completely eliminates bursts. Such elimination is not 
always necessary as long as bandwidth is bounded over any time interval. The token 
bucket algorithm achieves this while allowing larger bursts to occur when a stream has 
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been idle for a while (Figure 20.6b). It is a variation of the leaky bucket algorithm in 
which tokens to send data are generated at a fixed rate, R. They are collected in a bucket 
of size B. Data of size S can be sent only if at least S tokens are in the bucket. The send 
process then removes these S tokens. The token bucket algorithm ensures that over any 
interval t the amount of data sent is not larger than Rt + B. It is, hence, an implementation 
of the LBAP model. 

High peaks of size B can only occur in a token bucket system when a stream has 
been idle for a while. To avoid these bursts, a simple leaky bucket can be placed behind 
the token bucket. The flow rate F of this bucket needs to be significantly larger than R
for this scheme to make sense. Its only purpose is to break up really large bursts.

Flow specifications  •  A collection of QoS parameters is typically known as a flow 
specification, or flow spec for short. Several examples of flow specs exist and all are 
similar. In Internet RFC 1363 [Partridge 1992], a flow spec is defined as 11 16-bit 
numeric values (Figure 20.7), which reflect the QoS parameters discussed above in the 
following way:

• The maximum transmission unit and maximum transmission rate determine the 
maximum bandwidth required by the stream. 

• The token bucket size and rate determine the burstiness of the stream.

• The delay characteristics are specified by the minimum delay that an application 
can notice (since we wish to avoid overoptimization for short delays) and the 
maximum jitter it can accept.

• The loss characteristics are defined by the total number of losses acceptable over 
a certain interval and the maximum number of consecutive losses acceptable.

Figure 20.7 The RFC 1363 flow spec
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There are many alternatives for expressing each parameter group. In SRP [Anderson et

al. 1990], the burstiness of a stream is given by a maximum workahead parameter, 
which defines the number of messages a stream may be ahead of its regular arrival rate 
at any point in time. In Ferrari and Verma [1990], a worst-case delay bound is given: if 
the system cannot guarantee to transport data within this timespan, the data transport 
will be useless for the application. In RFC 1190, the specification of the ST-II protocol 
[Topolcic 1990], loss is represented as the probability of each packet being dropped.

All the above examples provide a continuous spectrum of QoS values. If the set 
of applications and streams to be supported is limited, it may be sufficient to define a 
discrete set of QoS classes: for example, telephone-quality and high-fidelity audio, live 
and playback video, etc. The requirements of all classes must be implicitly known by all 
system components; the system may even be configured for a certain traffic mix.

Negotiation procedures  •  For distributed multimedia applications, the components of a 
stream are likely to be located in several nodes. There will be a QoS manager at each 
node. A straightforward approach to QoS negotiation is to follow the flow of data along 
each stream from the source to the target. A source component initiates the negotiation 
by sending out a flow spec to its local QoS manager. The manager can check against its 
database of available resources whether the requested QoS can be provided. If other 
systems are involved in the application, the flow spec is forwarded to the next node 
where resources are required. The flow spec traverses all the nodes until the final target 
is reached. Then the information on whether the desired QoS can be provided by the 
system is passed back to the source. This simple approach to negotiation is satisfactory 
for many purposes, but it does not consider the possibilities for conflict between 
concurrent QoS negotiations starting at different nodes. A distributed transactional QoS 
negotiation procedure would be required for a full solution to this problem.

Applications rarely have fixed QoS requirements. Instead of returning a boolean 
value indicating whether a certain QoS can be provided or not, it is more appropriate for 
the system to determine what kind of QoS it can provide and let the application decide 
whether it is acceptable. In order to avoid over-optimized QoS or to abort the negotiation 
when it becomes clear that the desired quality is not achievable, it is common to specify 
a desired and worst-case value for each QoS parameter. That is, an application may 
specify that it desires a bandwidth of 1.5 Mbps but would also be able to handle 1 Mbps, 
or that delay should be 200 ms, but 300 ms would be the worst case that is still 
acceptable. As only one parameter can be optimized at a time, systems such as HeiRAT 
[Vogt et al. 1993] expect the user to define values for only two parameters and leave it 
to the system to optimize the third.

If a stream has multiple sinks, the negotiation path forks according to the data 
flow. As a straightforward extension to the above scheme, intermediate nodes can 
aggregate QoS feedback messages from the targets to produce worst-case values for the 
QoS parameters. The available bandwidth then becomes the smallest available 
bandwidth of all targets, the delay becomes the longest of all targets, and the loss rate 
becomes the largest of all targets. This is the procedure practised by sender-initiated 
negotiation protocols such as SRP, ST-II and RCAP [Banerjea and Mah 1991].

In situations with heterogeneous targets, it is usually inappropriate to assign a 
common worst-case QoS to all targets. Instead, each target should receive the best 
possible QoS. This calls for a receiver-initiated negotiation process rather then a sender-
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oriented one. RSVP [Zhang et al. 1993] is an alternative QoS negotiation protocol in 
which targets connect to streams. Sources communicate the existence of streams and 
their inherent characteristics to all targets. Targets can then connect to the closest node 
through which the stream passes and derive data from there. In order for them to obtain 
data with the appropriate QoS, they may need to use techniques such as filtering 
(discussed in Section 20.5).

20.3.2 Admission control

Admission control regulates access to resources to avoid resource overload and to 
protect resources from requests that they cannot fulfil. It involves turning down service 
requests should the resource requirements of a new multimedia stream violate existing 
QoS guarantees.

An admission control scheme is based on some knowledge of both the overall 
system capacity and the load generated by each application. The bandwidth requirement 
specification for an application may reflect the maximum amount of bandwidth that an 
application will ever require, the minimum bandwidth it will need to function, or some 
average value in between. Correspondingly, an admission control scheme may base its 
resource allocation on any of these values.

For resources that have a single allocator, admission control is straightforward. 
Resources that have distributed access points, such as many local area networks, require 
either a centralized admission control entity or some distributed admission control 
algorithm that avoids conflicting concurrent admissions. Bus arbitration within 
workstations falls into this category; however, even multimedia systems that perform 
bandwidth allocation extensively do not control bus admission, as bus bandwidth is not 
considered to be in the window of scarcity.

Bandwidth reservation  •  A common way to ensure a certain QoS level for a multimedia 
stream is to reserve some portion of resource bandwidth for its exclusive use. In order 
to fulfil the requirements of a stream at all times, a reservation needs to be made for its 
maximum bandwidth. This is the only possible way to provide guaranteed QoS to an 
application – at least, as long as no catastrophic system failures occur. It is used for 
applications that cannot adapt to different QoS levels or become useless when quality 
drops occur. Examples include some medical applications (a symptom may appear in an 
x-ray video just at the time when video frames are dropped) and video recording (where 
dropped frames will result in a flaw in the recording that is visible every time the video 
is played).

Reservation based on maximum requirements can be straightforward: when 
controlling access to a network of a certain bandwidth B, multimedia streams s of a 
bandwidth bs can be admitted as long as bs <= B. Thus a token ring of 16 Mbps may 
support up to 10 digital video streams of 1.5 Mbps each. 

Unfortunately, capacity calculations are not always as simple as in the network 
case. Allocating CPU bandwidth in the same way requires the execution profile of each 
application process to be known. Execution times, however, depend on the processor 
used and often cannot be determined precisely. While several proposals for automatic 
execution time calculation exist [Mok 1985, Kopetz et al. 1989], none of them has 



SECTION 20.4 RESOURCE MANAGEMENT 897

achieved widespread use. Execution times are usually determined through measure-
ments that often have wide error margins and limited portability.

For typical media encodings such as MPEG, the actual bandwidth consumed by 
an application may be significantly lower than its maximum bandwidth. Reservations 
based on maximum requirements may then lead to wasted resource bandwidth: requests 
for new admissions are turned down although they could be satisfied with the bandwidth 
that is reserved for, but not actually used by existing applications. 

Statistical multiplexing  •  Because of the potential under-utilization that can occur, it is 
common to overbook resources. The resulting guarantees, often called statistical or soft 
guarantees to distinguish them from the deterministic or hard guarantees introduced 
before, are only valid with some (usually very high) probability. Statistical guarantees 
tend to provide better resource utilization as they do not consider the worst case. But just 
as when resource allocation is based on minimum or average requirements, 
simultaneous peak loads can cause drops in service quality; applications have to be able 
to handle these drops.

Statistical multiplexing is based on the hypothesis that for a large number of 
streams the aggregate bandwidth required remains nearly constant regardless of the 
bandwidth of individual streams. It assumes that when one stream sends a large quantity 
of data, there will also be another stream that sends a small quantity, and overall the 
requirements will balance out. This, however, is only the case for uncorrelated streams.

As experiments show [Leland et al. 1993], multimedia traffic in typical 
environments does not obey this hypothesis. Given a larger number of bursty streams, 
the aggregate traffic still remains bursty. The term self-similar has been applied to this 
phenomenon, meaning that the aggregate traffic shows similarity to the individual 
streams of which it is composed.

20.4 Resource management

To provide a certain QoS level to an application, not only does a system need to have 
sufficient resources (performance), but it also needs to make these resources available 
to an application when they are needed (scheduling).

20.4.1 Resource scheduling

Processes need to have resources assigned to them according to their priority. A resource 
scheduler determines the priority of processes based on certain criteria. Traditional CPU 
schedulers in time-sharing systems often base their priority assignments on 
responsiveness and fairness: I/O-intensive tasks get high priority to guarantee fast 
response to user requests, CPU-bound tasks get lower priorities, and overall, processes 
in the same class are treated equally. 

Both criteria remain valid for multimedia systems, but the existence of deadlines 
for the delivery of individual multimedia data elements changes the nature of the 
scheduling problem. Real-time scheduling algorithms can be applied to this problem, as 
discussed below. As multimedia systems have to handle both discrete and continuous 
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media, it becomes a challenge to provide sufficient service to time-dependent streams 
without causing starvation of discrete-media access and other interactive applications.

Scheduling methods need to be applied to (and coordinated for) all resources that 
affect the performance of a multimedia application. In a typical scenario, a multimedia 
stream would be retrieved from disk and then sent through a network to a target station, 
where it is synchronized with a stream coming from another source and finally 
displayed. The resources required in this example include disk, network and CPU 
resources as well as memory and bus bandwidth on all systems involved.

Fair scheduling  •  If several streams compete for the same resource, it becomes 
necessary to consider fairness and to prevent ill-behaved streams taking too much 
bandwidth. A straightforward approach ensuring fairness is to apply round-robin 
scheduling to all streams in the same class. Whereas in Nagle [1987] such a method was 
introduced on a packet-by-packet basis, in Demers et al. [1989] the method is used on a 
bit-by-bit basis, which provides more fairness with respect to varying packet sizes and 
packet arrival times. These methods are known as fair queuing.

Packets cannot actually be sent on a bit-by-bit basis, but given a certain frame rate 
it is possible to calculate for each packet when it should have been sent completely. If 
packet transmissions are ordered based on this calculation, one achieves almost the same 
behaviour as with actual bit-by-bit round robin, except that when a large packet is sent, 
it may block the transmission of a smaller packet, which would have been preferred 
under the bit-by-bit scheme. However, no packet is delayed for longer than the 
maximum packet transmission time.

All basic round-robin schemes assign the same bandwidth to each stream. To take 
the individual bandwidth of streams into account, the bit-by-bit scheme can be extended 
so that for certain streams a larger number of bits can be transmitted per cycle. This 
method is called weighted fair queuing.

Real-time scheduling  •  Several real-time scheduling algorithms have been developed 
to meet the CPU scheduling needs of applications such as avionics industrial process 
control. Assuming that the CPU resources have not been overallocated (which is the task 
of the QoS manager), they assign CPU timeslots to a set of processes in a manner that 
ensures that they complete their tasks on time. 

Traditional real-time scheduling methods suit the model of regular continuous 
multimedia streams very well. Earliest-deadline-first (EDF) scheduling has almost 
become a synonym for these methods. An EDF scheduler uses a deadline that is 
associated with each of its work items to determine the next item to be processed: the 
item with the earliest deadline goes first. In multimedia applications, we identify each 
media element arriving at a process as a work item. EDF scheduling is proven to be 
optimal for allocating a single resource based on timing criteria: if there is a schedule 
that fulfils all timing requirements, EDF scheduling will find it [Dertouzos 1974].

EDF scheduling requires one scheduling decision per message (i.e., per 
multimedia element). It would be more efficient to base scheduling on elements that 
exist for a longer time. Rate-monotonic (RM) scheduling is a prominent technique for 
real-time scheduling of periodic processes that achieves just this. Streams are assigned 
priorities according to their rate: the higher the rate of work items on a stream, the higher 
the priority of a stream. RM scheduling has been shown to be optimal for situations that 
utilize a given bandwidth by less than 69% [Liu and Layland 1973]. Using such an 
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allocation scheme, the remaining bandwidth could be given to non-real-time 
applications.

To cope with bursty real-time traffic, the basic real-time scheduling methods 
should be adjusted to distinguish between time-critical and non-critical continuous-
media work items. In Govindan and Anderson [1991], deadline/workahead scheduling 
is introduced. It allows messages in a continuous stream to arrive ahead of time in bursts 
but applies EDF scheduling to a message only at its regular arrival time.

20.5 Stream adaptation

Whenever a certain QoS cannot be guaranteed or can be guaranteed only with a certain 
probability, an application needs to adapt to changing QoS levels, adjusting its 
performance accordingly. For continuous-media streams, the adjustment translates into 
different levels of media presentation quality.

The simplest form of adjustment is to drop pieces of information. This is easily 
done in audio streams, where samples are independent of each other, but it may be 
noticed immediately by the listener. Dropouts in a video stream encoded in Motion 
JPEG, where each frame is freestanding, are more tolerable. Encoding mechanisms such 
as MPEG, where the interpretation of a frame depends on the values of several adjacent 
frames, are less robust against omissions: it takes a longer time to recover from errors, 
and the encoding mechanism may in fact amplify errors.

If there is insufficient bandwidth and data is not dropped, the delay of a stream will 
increase over time. For non-interactive applications this may be acceptable, although it 
can eventually lead to buffer overflows as data is accumulated between the source and 
sink. For conferencing and other interactive applications, increasing delays are not 
acceptable, or must exist only for a short period. If a stream is behind its assigned 
playout time, its playout rate should be increased until it gets back on schedule: while a 
stream is delayed, frames should be output as soon as they are available.

20.5.1 Scaling

If adaptation is performed at the target of a stream, the load on any bottleneck in the 
system is not decreased and the overload situation persists. It is useful to adapt a stream 
to the bandwidth available in the system before it enters a bottleneck resource in order 
to resolve contention. This is known as scaling.

Scaling is best applied when live streams are sampled. For stored streams, how 
easy it is to generate a downgraded stream depends on the encoding method. Scaling 
may be too cumbersome if the entire stream has to be decompressed and encoded again 
just for scaling purposes. Scaling algorithms are media-dependent, although the overall 
scaling approach is the same: to subsample a given signal. For audio information, such 
subsampling can be achieved by reducing the rate of audio sampling. It can also be 
achieved by dropping a channel in a stereo transmission. As this example shows, 
different scaling methods can work at different granularities.
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For video, the following scaling methods are appropriate:

Temporal scaling: Reduces the resolution of the video stream in the time domain by 
decreasing the number of video frames transmitted within an interval. Temporal 
scaling is best suited to video streams in which individual frames are self-contained 
and can be accessed independently. Delta compression techniques are more difficult 
to handle as not all frames can easily be dropped. Hence, temporal scaling is more 
suitable for Motion JPEG than for MPEG streams.

Spatial scaling: Reduces the number of pixels of each image in a video stream. For 
spatial scaling, hierarchical arrangement is ideal because the compressed video is 
immediately available in various resolutions. Therefore the video can be transferred 
over the network using different resolutions without recoding each picture before 
finally transmitting it. JPEG and MPEG-2 support different spatial resolutions of 
images and are well suited to this kind of scaling.

Figure 20.8 Filtering
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Frequency scaling: Modifies the compression algorithm applied to an image. This 
results in some loss of quality, but in a typical picture compression can be increased 
significantly before a reduction of image quality becomes visible.

Amplitudinal scaling: Reduces the colour depths for each image pixel. This scaling 
method is in fact used in H.261 encodings to arrive at a constant throughput as image 
content varies.

Colour-space scaling: Reduces the number of entries in the colour space. One way 
to realize colour-space scaling is to switch from colour to greyscale presentation.

Combinations of these scaling methods can be used if necessary.
A system to perform scaling consists of a monitor process at the target and a scaler 

process at the source. The monitor keeps track of the arrival times of messages in a 
stream. Delayed messages are an indication of a bottleneck in the system. The monitor 
then sends a scale-down message to the source and the source reduces the bandwidth of 
the stream. After some period of time, the source scales the stream up again. Should the 
bottleneck still exist, the monitor will again detect a delay and scale the stream down 
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[Delgrossi et al. 1993]. A problem for the scaling system is to avoid unnecessary scale-

up operations and to prevent the system from oscillating.

20.5.2 Filtering

As scaling modifies a stream at the source, it is not always suitable for applications that 
involve several receivers: when a bottleneck occurs on the route to one target, this target 
sends a scale-down message to the source and all targets receive the degraded quality, 
although some would have no problem in handling the original stream.

Filtering is a method that provides the best possible QoS to each target by applying 
scaling at each relevant node on the path from the source to the target (Figure 20.8).
RSVP [Zhang et al. 1993] is an example of a QoS negotiation protocol that supports 
filtering. Filtering requires that a stream be partitioned into a set of hierarchical 
substreams, each adding a higher level of quality. The capacity of nodes on a path 
determines the number of substreams a target receives. All other substreams are filtered 
out as close to the source as possible (perhaps even at the source) to avoid transfer of 
data that is later thrown away. A substream is not filtered at an intermediate node if 
somewhere downstream a path exists that can carry the entire substream.

20.6 Case studies: Tiger, BitTorrent and End System Multicast

As discussed in Chapter 1, multimedia is a key trend in modern distributed systems. 
Rather than an area in its own right, multimedia is best considered as pervading all 
distributed systems and hence offering challenges that have to be taken into account in 
the design of all aspects of distributed systems. In this section, we present case studies 
that illustrate how multimedia influences three key areas of distributed system 
development:

• the design of a distributed file system to support video files (the Tiger video file 

server);

• the design of a peer-to-peer download system designed to support very large 
multimedia files (BitTorrent);

• the design of a real-time multicast streaming service (End System Multicast).

Note that we have already seen one other example of a multimedia service when we 
examined the overlay network structure adopted by Skype (see Section 4.5.2).

20.6.1 The Tiger video file server

A video storage system that supplies multiple real-time video streams simultaneously is 
seen as an important system component to support consumer-oriented multimedia 
applications. Several prototype systems of this type have been developed, and some 
have evolved into products (see [Cheng 1998]). One of the most advanced of these is the 
Tiger video file server developed at the Microsoft Research Labs [Bolosky et al. 1996].
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Design goals  •  The following were the main design goals for the system:

Video-on-demand for a large number of users The typical application is a service 
that supplies movies to paying clients. The movies are selected from a large stored 
digital movie library. Clients should receive the first frames of their selected movies 
within a few seconds of issuing a request, and they should be able to perform pause, 
rewind and fast-forward operations at will. Although the library of available movies 
is large, a few movies may be very popular and they will be the subject of multiple 
unsynchronized requests, resulting in several concurrent but time-shifted playings of 
them.

Figure 20.9 Tiger video file server hardware configuration
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Quality of service: Video streams must be supplied at a constant rate with a 
maximum jitter that is determined by the (assumed small) amount of buffering 
available at the clients and a very low loss rate. 

Scalable and distributed: The aim was to design a system with an architecture that 
is extensible (by the addition of computers) to support up to 10,000 clients 
simultaneously. 

Low-cost hardware: The system was to be built using low-cost hardware 
(‘commodity’ PCs with standard disk drives).

Fault tolerant: The system should continue to operate without noticeable
degradation after the failure of any single server computer or disk drive.

Taken together, these requirements demand a radical approach to the storage and 
retrieval of video data and an effective scheduling algorithm that balances the workload 
across a large number of similar servers. The primary task is the transfer of high-
bandwidth streams of video data from disk storage to a network, and it is this load that 
has to be shared between the servers.

Architecture  •  The Tiger hardware architecture is shown in Figure 20.9. All of the 
components are off-the-shelf products. The cub computers shown in the figure are 
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identical PCs with the same number of standard hard disk drives (typically between two 
and four) attached to each. They are also equipped with Ethernet and ATM network 
cards (see Chapter 3). The controller is another PC. It is not involved in the handling of 
multimedia data and is responsible only for the handling of client requests and the 
management of the work schedules of the cubs.

Storage organization  •  The key design issue is the distribution of the video data among 
the disks attached to cubs in order to enable them to share the load. Since the load may 
involve the supply of multiple streams from the same movie as well as the supply of 
streams from many different movies, any solution based on the use of a single disk to 
store each movie is unlikely to achieve this goal. Instead, movies are stored in a striped 
representation across all disks. This leads to a failure model in which the loss of a disk 
or a cub results in a gap in the sequence of every movie. This is dealt with by a storage 
mirroring scheme that replicates the data and the fault-tolerance mechanism, described 
below. 

Striping: A movie is divided into blocks (chunks of video of equal play time, typically 
around 1 second, occupying about 0.5 Mbytes), and the set of blocks that make up a 
movie (typically about 7000 of them for a two-hour movie) is stored on disks attached 
to different cubs in a sequence indicated by the disk numbers shown in Figure 20.9. A 
movie can start on any disk. Whenever the highest-numbered disk is reached, the movie 
is ‘wrapped around’ so that the next block is stored on disk 0 and the process continues.

Mirroring: The mirroring scheme divides each block into several portions, called 
secondaries. This ensures that when a cub fails, the extra workload of supplying data for 
blocks on the failed cub falls on several of the remaining cubs and not just one of them. 
The number of secondaries per block is determined by a decluster factor, d, with typical 
values in the range 4 to 8. The secondaries for a block stored on disk i are stored on disks
i+1 to i+d. Note that, provided that there are more than d cubs, none of these disks is 
attached to the same cub as disk i. With a decluster factor of 8, approximately 7/8 of the 
processing capacity and disk bandwidth of cubs can be allocated to fault-free tasks. The 
remaining 1/8 of its resources should be enough to serve secondaries when needed.

Distributed schedule  •  The heart of Tiger’s design is the scheduling of the workload for 
the cubs. The schedule is organized as a list of slots, where each slot represents the work 
that must be done to play one block of a movie – that is, to read it from the relevant disk 
and transfer it to the ATM network. There is exactly one slot for each potential client 
receiving a movie (called a viewer), and each occupied slot represents one viewer 
receiving a real-time video data stream. The viewer state is represented in the schedule 
by:

• the address of the client computer;

• the identity of the file being played;

• the viewer’s position in the file (the next block to be delivered in the stream); 

• the viewer’s play sequence number (from which a delivery time for the next block 
can be calculated); 

• some bookkeeping information.



904 CHAPTER 20  DISTRIBUTED MULTIMEDIA SYSTEMS

The schedule is illustrated in Figure 20.10

Figure 20.10 Tiger schedule
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. The block play time, T, is the time that will 
be required for a viewer to display a block on the client computer – this is typically about 
1 second and is assumed to be the same for all the stored movies. Tiger must therefore 
maintain a time interval T between the delivery times of the blocks in each stream, with 
a small allowable jitter that is determined by the available buffering at the client 
computers.

Each cub maintains a pointer into the schedule for each disk that it controls. 
During each block play time it must process all of the slots with block numbers that fall 
on the disks it controls and delivery times that fall within the current block play time. 
The cub steps through the schedule in real-time processing slots as follows:

1. Read the next block into buffer storage at the cub.

2. Packetize the block and deliver it to the cub’s ATM network controller with the 
address of the client computer.

3. Update viewer state in the schedule to show the new next block and play sequence 
number and pass the updated slot to the next cub.

These actions are assumed to occupy a maximum time t, which is known as the block

service time. As can be seen in Figure 20.10, t is substantially less than the block play 
time. The value of t is determined by the disk bandwidth or the network bandwidth, 
whichever is smaller. (The processing resources in a cub are adequate to perform the 
scheduled work for all the attached disks.) When a cub has completed the schedule tasks 
for the current block play time it is available for unscheduled tasks until the start of the 
next play time. In practice, disks do not provide blocks with a fixed delay, and to 
accommodate their uneven delivery the disk read is initiated at least one block service 
time before the block is needed for packetizing and delivery.

A disk can handle the work to service T/t streams, and the values of T and t

typically result in a value > 4 for this ratio. This and the number of disks in the entire 
system determines the number of viewers that a Tiger system can service. For example, 
a Tiger system with five cubs and three disks attached to each can deliver approximately 
70 video streams simultaneously.

Fault tolerance  •  Because of the striping of all the movie files across all of the disks in 
a Tiger system, failure of any component (a disk drive or a cub) would result in a 
disruption of service to all clients. The Tiger design remedies this by retrieving data 
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from the mirrored secondary copies when a primary block is unavailable because of the 
failure of a cub or a disk drive. Recall that secondary blocks are smaller than primary 
blocks in the ratio of the decluster factor d and that the secondaries are distributed so that 
they fall on several disks that are attached to different cubs. 

When a cub or a disk fails, the schedule is modified by an adjacent cub to show 
several mirror viewer states, representing workload for the d disks that hold the 
secondaries for those movies. A mirror viewer state is similar to a normal viewer state 
but with different block numbers and timing requirements. Because this extra workload 
is shared among d disks and d cubs, it can be accommodated without disrupting the tasks 
in other slots, provided that there is a small amount of spare capacity in the schedule. 
The failure of a cub is equivalent to the failure of all of the disks attached to it and is 
handled in a similar manner.

Network support  •  The blocks of each movie are simply passed to the ATM network by 
the cubs that hold them, together with the address of the relevant client. The QoS 
guarantees of ATM network protocols are relied upon to deliver blocks to client 
computers in sequence and in time. The client needs sufficient buffer storage to hold two 
primary blocks; the one that is currently playing on the client’s screen and one that is 
arriving from the network. When primary blocks are being served, the client need only 
check the sequence number of each arriving block and pass it to the display handler. 
When secondaries are being served, the d cubs responsible for a declustered block 
deliver their secondaries to the network in sequence, and it is the client’s responsibility 
to collect and assemble them in its buffer storage.

Other functions  •  We have described the time-critical activities of a Tiger server. The 
design requirements called for the provision of fast-forward and rewind functions. These 
functions call for the delivery of some fraction of the blocks in the movie to the client in 
order to give the visual feedback typically provided by video recorders. This is done on 
a best-effort basis by the cubs in unscheduled time. 

The remaining tasks include managing and distributing the schedule, and 
managing the database of movies, deleting old and writing new movies onto the disks 
and maintaining an index of movies.

In the initial Tiger implementation, schedule management and distribution were 
handled by the controller computer. Because this constitutes a single point of failure and 
a potential performance bottleneck, schedule management was subsequently redesigned 
as a distributed algorithm [Bolosky et al. 1997]. Management of the movie database is 
performed by cubs in unscheduled time in response to commands from the controller.

Performance and scalability  •  The initial prototype was developed in 1994 and used 
five 133-MHz Pentium PCs, each equipped with 48 Mbytes of RAM, three 2-Gbyte 
SCSI disk drives and an ATM network controller, running over Windows NT. This 
configuration was measured under a simulated client load. When serving movies to 68 
clients with no faults in the Tiger system, the delivery of the data was perfect – no blocks 
were lost or delivered to clients late. With one cub failed (and hence three disks) the 
service was maintained with a data loss rate of only 0.02%, well within the design goal.

Another measurement that was taken was the startup latency to deliver the first 
block of a movie after receipt of a client request. This will be highly dependent on the 
number and the position of free slots in the schedule. The algorithm used for this initially 
would place a client request in the nearest free slot to the disk holding block 0 of the 
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requested movie. This resulted in measured values for the startup latency in the range of 
2 to 12 seconds. Recent work has resulted in a slot allocation algorithm that reduces 
clustering of occupied slots in the schedule, leaving free slots distributed more evenly in 
the schedule and improving average startup latency [Douceur and Bolosky 1999].

Although the initial experiments were made with a small configuration, later 
measurements were made with a 14-cub, 56-disk configuration and the distributed 
scheduling scheme described by Bolosky et al. [1997]. The load that could be serviced 
by this system scaled successfully to deliver 602 simultaneous 2-Mbps data streams with 
a loss rate of less than one block in 180,000 when all cubs were functioning. With one 
cub failed, less than 1 in 40,000 blocks was lost. These results are impressive and appear 
to bear out the claim that a Tiger system could be configured with up to 1000 cubs 
servicing up to 30,000–40,000 simultaneous viewers.

20.6.2 BitTorrent

BitTorrent [www.bittorrent.com] is a popular peer-to-peer file-sharing application 
designed particularly for downloading large files (including video files). It is not 
intended for the real-time streaming of content but rather for the initial downloading of 
files to be played back later. BitTorrent was mentioned briefly in Chapter 10 as an 
example of a peer-to-peer file-sharing protocol. In this chapter, we look in more detail 
at the design of BitTorrent with emphasis on the support provided for downloading 
video files.

The principal design feature in BitTorrent is the splitting of files into fixed-sized 
chunks and the subsequent availability of chunks at various sites across the peer-to-peer 
network. Clients can then download a number of chunks in parallel from different sites, 
reducing the burden on any one particular site to service the download (remembering 
that BitTorrent relies on the capabilities of ordinary user machines and also that there 
may be many simultaneous requests for popular files). This compares favourably to 
more centralized strategies where a client would download a file from a server using, for 
example, HTTP.

In more detail, the BitTorrent protocol operates as follows. When a file is made 
available in BitTorrent, a .torrent file is created that holds metadata associated with that 
file including:

• the name and length of the file;

• the location of a tracker (specified as a URL), which is a centralized server that 
manages downloads of that particular file;

• a checksum associated with each chunk, generated using the SHA-1 hashing 
algorithm, that enables content to be verified following download.

The use of trackers is a compromise against pure peer-to-peer principles, but this allows 
the system to easily maintain the above information in a centralized manner.

Trackers are responsible for keeping track of the download status associated with 
a particular file. To understand the information held by the tracker, it is necessary to 
stand back and consider the lifecycle of a given file.

Any peer with a complete version of a file (in terms of all its chunks) is known as 
a seeder in BitTorrent terminology. For example, the peer that initially creates the file 
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will provide the initial seed for the file distribution. Peers that want to download a file 
are known as leechers, and a given leecher at any given time will contain a number of 
chunks associated with that file. Once a leecher downloads all the chunks associated 
with a file, it can become a seeder for subsequent downloads. In this way, files spread 
virally through the network, with the spread stimulated by demand. Based on this, the 
tracker maintains information about the current state of downloads of a given file in 
terms of the associated seeders and leechers. The tracker together with the associated 
seeders and leechers in BitTorrent are referred to as the torrent (or swarm) for that file. 
(A summary of BitTorrent terminology can be found in Figure 20.11

Figure 20.11 BitTorrent terminology 

Term Meaning

.torrent file A file that maintains metadata about an available file

tracker A server containing information about the downloads in progress

chunk A fixed size portion of a given file

seeder A peer that holds a complete copy of a file (consisting of all its chunks)

leecher A peer involved in downloading a file that currently holds only a portion of 
its chunks

torrent (or swarm) A set of sites involved with downloading a file including the tracker, seeders 
and leechers

tit-for-tat An incentive mechanism that governs the scheduling of downloads in 
BitTorrent

optimistic unchoking A mechanism to allow new peers to establish their credentials

rarest first A scheduling scheme whereby BitTorrent prioritizes frames that are rare 
within its set of connected peers

.)
When a peer wants to download a file, it first contacts the tracker and is given a 

partial view of the torrent in terms of a set of peers that can support the download. After 
that, the job of the tracker is done – it does not get involved in subsequent scheduling of 
downloads. This is a matter for the various peers involved and hence this part of the 
protocol is decentralized. Chunks are then requested and transmitted to the requesting 
peer in any order (compare this to CoolStreaming, as featured in the box on page 910).

BitTorrent, along with many peer-to-peer protocols, relies on peers to behave as 
good citizens, contributing to as well as taking from the system. Crucially, the system 
has an inbuilt incentive mechanism to reward such cooperation, known as the tit-for-tat

mechanism [Cohen 2003]. Informally, this approach gives preference to downloading 
peers who have previously or who are currently uploading to that site. As well as acting 
as an incentive mechanism, tit-for-tat also encourages patterns of communication where 
downloading and uploading proceed concurrently, making optimum use of bandwidth.

In more detail, a given peer supports downloading from n simultaneous peers by 
unchoking these peers. Decisions of which peers to unchoke are based on rolling 
calculations of download rates from these peers with this decision revisited every 10 
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seconds. The algorithm also applies optimistic unchoking on a random peer every 30 
seconds in order to allow new peers to participate and establish their credentials. Note 
that the incentive scheme has been the subject of significant research, with alternative 
schemes also proposed – for example, see Sirivianos et al. [2007]. BitTorrent couples 
this with a rarest first policy for scheduling downloads whereby a peer will prioritize the 
chunk that is rarest amongst its set of connected peers, ensuring that chunks that are not 
yet readily available will spread rapidly.

20.6.3 End System Multicast (ESM)

One of the biggest technical challenges in distributed multimedia systems is to support 
the real-time broadcasting of video over the Internet. Such systems are demanding for a 
variety of reasons [Liu et al. 2008]:

• Systems must scale to potentially very large numbers of users.

• They are particularly demanding in terms of resource usage, imposing significant 
bandwidth, storage and processing constraints on the system.

• Stringent real-time requirements must be met for the user experience to be 
satisfactory.

• Systems must be resilient and able to adapt to changing conditions in the network.

Despite these challenges, significant advances have been made and a number of 
commercial-strength services are now available, including the BBC iPlayer, BoxeeTV 
[boxee.tv] and Hulu [hulu.com]. In this section, we feature one example of an influential 
system in this area: End System Multicast [Liu et al. 2008], developed at CMU and now 
commercialized by Conviva [www.conviva.com]. Before examining the technical 
approach advocated by ESM, it is helpful to place this work in context.

ESM in context  •  The earliest experiments in video streaming over the Internet were 
constructed directly on top of IP multicast, as described in Section 4.4.1. This approach 
has the advantage that support for multicast can be directly offered at a low layer in the 
system, hence contributing to overall performance. However, the approach suffers from 
a number of drawbacks, including the lack of support for IP multicast in many routers 
and the need to maintain soft state in routers to support multicast. More fundamentally, 
this also contravenes the end-to-end principle discussed in Section 2.3.3, which 
advocates that support for communication functions (in this case, multimedia streaming) 
can only be completely and reliably implemented with the knowledge and help of the 
application standing at the endpoints of the communication system.

As a result, most systems now advocate end-system approaches to video 
streaming, where control and intelligence reside at the edges of the network and not in 
the network itself. This approach is also referred to as application-level multicast and 
implies the formation of an overlay network to support the associated multimedia traffic 
(see Section 4.5 for a discussion of overlay networks).

Taking this a step further, there is considerable interest in peer-to-peer approaches 
to supporting multimedia broadcasting in the Internet, and ESM is a leading example of 
such a system. More specifically, ESM employs structured peer-to-peer techniques 
whereby the peers form themselves into a tree structure for subsequent real-time 
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delivery of the media. As an alternative to the structured approach advocated by ESM, 
CoolStreaming offers an unstructured approach building on the insights of BitTorrent as 
discussed in Section 20.6.2 (see the box on page 910 for details).

A number of systems adopt the end-system methodology but, instead of a peer-to-
peer approach, offer a fixed infrastructure to maintain multiple copies of multimedia (or 
other) content located at nodes throughout the Internet, thus supporting faster delivery. 
These systems are referred to as content distribution networks (CDN); leading examples 
being Akamai [www.akamai.com], Coral [www.coralcdn.org] and Kontiki 
[www.kontiki.com]. Such systems support a variety of styles of content delivery 
including web acceleration (improved performance in accessing web content) and video 
streaming – for example, Kontiki was used in the original version of the BBC iPlayer.

The range of techniques to support real-time multimedia streaming is summarized 
in Figure 20.12.

ESM architecture  •  ESM is a structured peer-to-peer solution for the real-time 
multicasting of video over the Internet. The approach was initially developed at 
Carnegie Mellon University as part of research investigating the properties of the end-

system approach to multicast, and the initial prototype was used to stream videos in real 
time from a variety of leading conferences, including SIGCOMM, INFOCOM and 
NOSSDAV [esm.cs.cmu.edu]. As mentioned above, the approach has now been 
commercialized by Conviva [www.conviva.com], who recently agreed a deal with NBC 
Universal to use the Conviva platform (called C3) to deliver its content over the Internet.



CoolStreaming: An unstructured P2P approach to video streaming

Many approaches to video streaming are based on a structured peer-to-peer approach, 
constructing a tree, as in ESM, or an alternative overlay structure such as a forest (a 
disjoint union of trees) or a mesh. CoolStreaming [Zhang et al. 2005b] takes a 
radically different, unstructured approach to video streaming referred to by its 
creators as a data-centric approach. In CoolStreaming, nodes maintain a partial view 
of membership that is updated periodically using a gossip protocol (as in ESM). 
When a new peer joins, it first contacts the source node of the desired video stream 
(which is assumed to be advertised), and this node picks one node at random from its 
set of known members to act as a deputy (thus balancing the load across all the 
members). The new node then obtains an initial set of partners from the deputy, 
bootstrapping them into the system. It should be stressed that, unlike in a tree-based 
approach, this set of partners does not imply any parent-child relationships for 
download; rather, the download schedule is determined dynamically and driven by 
the availability of data, as explained below.

In CoolStreaming, a video file is broken into a number of fixed-sized segments,
as in BitTorrent. Each peer creates a buffer map to indicate the local availability of a 
segment or segments of a file and then exchanges this information with its known 
partners. This information is then used to obtain all the necessary segments of a given 
video source. So far, this looks very similar to BitTorrent, but with two key 
differences driven by the need for real-time streaming. First, whereas BitTorrent can 
download chunks in any order, CoolStreaming must meet the desired real-time 
constraints for the video playback. Second, at any given time, CoolStreaming is only 
interested in a sliding window of time from the present to a period in the near future 
(in practice, a sliding window of 120 1-second segments) rather than the whole file. 
The calculation of the associated schedule is critical to the operation of 
CoolStreaming, and although finding an optimal solution is known to be an NP-hard

problem, CoolStreaming has adopted a successful set of heuristics based on factors 
including the number of potential suppliers of a segment, the bandwidth to the 
suppliers and the available time to process the request.

The end result is an distributed systems architecture that can meet the real-time 
requirements of video streaming and that is more naturally resilient to node failure 
and changes in network performance or availability.
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As well as investigating the end-system approach, the other key goal of ESM is to 
seek resilience to change through self-organization. In particular, the underlying 
protocols are designed to deal gracefully with dynamic joining and leaving by nodes, 
failure of nodes and changes in the configuration and performance of the underlying 
network. They promote, in particular, performance-aware adaptation, whereby the 
overlay structures associated with the peer-to-peer system are frequently re-evaluated to 
maximize overall performance. We discuss how this is achieved below.

ESM works by constructing a tree for each video stream, rooted in the source of 
that particular stream. The key algorithmic elements to support this are:

• how to maintain membership information;

• how to deal with new peers joining the tree;
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• how to deal with peers leaving the tree (whether gracefully or through failure);

• how to adapt the tree structures for performance (performance-aware adaptation 
as mentioned above).

We deal with each of these elements below. In each of the descriptions, we refer to the 
example tree structure in Figure 20.13

Figure 20.13 An example tree in ESM

S
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 which is transmitting a live streaming 
performance from our aforementioned musicians (Section 20.1).

Membership management  •  Each node maintains a partial view of membership of the 
tree, with this view periodically updated using a gossip protocol (a popular method of 
maintaining group membership in peer-to-peer structures, described in Section 18.4). 
This operates by each member periodically picking a group member and sending this 
member a subset of its view of group membership, annotated with information about 
when it last heard from each member (in the form of a timestamp). There is therefore no 
attempt to have a consistent global view of group membership information, but this 
partial view is sufficient for the operation of the protocol, as will become apparent 
below.

Joining a tree  •  It is assumed that the source node (the root of the tree) is advertised and 
hence known to the system. A new node that wants to join contacts the source and is 
given a randomly selected set of nodes taken from the group view maintained by the 
source. These are effectively candidate parents for the new node, which must select an 
appropriate parent from this set of possibilities.

The parent selection protocol is crucial to the operation of ESM, with the overall 
goal being to optimize the tree for performance (in particular, as we shall see, for 
throughput, with latency being a secondary consideration).

The first phase of parent selection is to probe the set of members provided by the 
source and to collect the following information on each candidate:
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• the performance that node is currently receiving in terms of the throughput and 
latency from the source;

• the saturation of that node in terms of the number of children it already supports.

From a parameter obtained by probing, it is also possible to determine the round-trip 
latency between the new node and the various candidate nodes. 

The new node eliminates candidates that it deems saturated (defined by a built-in 
constant) and then calculates the service it can expect from each of the other candidates 
in terms of throughput and delay. Throughput is estimated as the minimum of the 
reported throughput achieved by that node and historical data from the new node to that 
candidate (this data may be available if, for example, the new node has previously 
connected to this particular candidate). Delay can be estimated based on the summation 
of the reported delay from the source and the latency experienced by the probe. Node 
selection is based on the best available bandwidth to the new node; if bandwidth 
information is not available, the selection is made on the basis of latency figures.

Returning to the example tree in Figure 20.13, suppose a new node G wants to join 
this video stream. G contacts the source node S and is (randomly) given the following 
set of nodes: {A, C, E and F}. A is immediately eliminated because it is deemed saturated 
(supposing the definition of saturation is having three children), and C reports poor 
throughput characteristics, perhaps because A is saturated. This leaves a choice between 
nodes E and F. E is chosen as reporting the best available throughput figures (perhaps 
the link between E and F is over a relatively low-bandwidth connection), and also G has 
previously connected to E and experienced good throughput characteristics.

Dealing with nodes leaving  •  Members can leave a tree either through an explicit leave 
request or through failure. In the former case, to avoid disruption, the leaving member 
notifies children that it is leaving and is then expected to keep forwarding data for a 
period to avoid disruption of service further down the tree. In the latter case, members 
periodically send alive messages to their children and failure is detected when these 
messages are not received.

In both cases, all the children must invoke the parent selection procedure as 
defined above, with extra checks carried out to ensure candidates are not already 
descendants of the given nodes.

Suppose shortly after G joins the tree, node E fails. In this case, both F and G must 
run the parent selection algorithm to re-establish connectivity.

Performance-aware adaptation  •  Each node continually monitors the service it is 
getting from its parent node (and, as mentioned above, keeps this historical information 
for future reference). Adaptation is triggered if the detected rate drops significantly 
below the expected rate from the source. To avoid thrashing, a node must wait for a 
particular period, known as the detection time, before electing to adapt.

Once a decision is made to adapt, the node will invoke the parent selection 
algorithm to determine a new, more optimal parent. In this way, the tree construction is 
constantly re-evaluated and will self-organize to optimize overall performance.

For example, after a period of time, C may decide that the throughput received via 
A is unsatisfactory and run the parent selection algorithm, resulting in C becoming a 
child of E instead.
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20.7 Summary

Multimedia applications require new system mechanisms to enable them to handle large 
volumes of time-dependent data. The most important of these mechanisms are 
concerned with quality of service management. They must allocate bandwidth and other 
resources in a manner that ensures that application resource requirements can be met, 
and they must schedule the use of the resources so that the many fine-grained deadlines 
of multimedia applications are met. 

Quality of service management handles QoS requests from applications, 
specifying the bandwidth, latency and loss rates acceptable for multimedia streams, and 
it performs admission control, determining whether sufficient unreserved resources are 
available to meet each new request and negotiating with the application if necessary. 
Once a QoS request is accepted, the resources are reserved and a guarantee is issued to 
the application.

The processor capacity and network bandwidth allocated to an application must 
then be scheduled to meet the application’s needs. A real-time processor scheduling 
algorithm such as earliest-deadline-first or rate-monotonic is required to ensure that 
each stream element is processed in time.

Traffic shaping is the name given to algorithms that buffer real-time data to 
smooth out the timing irregularities that inevitably arise. Streams can be adapted to 
utilize fewer resources by reducing the bandwidth of the source (scaling) or at points 
along the way (filtering).

The Tiger video file server is an excellent example of a scalable system that 
provides stream delivery on a potentially very large scale with strong quality of service 
guarantees. Its resource scheduling is highly specialized, and it offers an excellent 
example of the changed design approach that is often required for such systems. The 
other two case studies, BitTorrent and ESM, also provide strong examples of how to 
support the downloading and real-time streaming of video data, respectively, again 
highlighting the impact that multimedia has on systems design. 

EXERCISES

20.1 Outline a system to support a distributed music rehearsal facility. Suggest suitable QoS 
requirements and a hardware and software configuration that might be used.

pages 884, 889

20.2 The Internet does not currently offer any resource reservation or quality of service 
management facilities. How do the existing Internet-based audio and video streaming 
applications achieve acceptable quality? What limitations do the solutions they adopt 
place on multimedia applications? pages 884, 893, 899

20.3 Explain the distinctions between the three forms of synchronization (synchronous 
distributed state, media synchronization and external synchronization) that may be 
required in distributed multimedia applications. Suggest mechanisms by which each of 
them could be achieved, for example in a video conferencing application. page 885
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20.4 Outline the design of a QoS manager to enable desktop computers connected by an 
ATM network to support several concurrent multimedia applications. Define an API for 
your QoS manager, giving the main operations with their parameters and results.

pages 889–891

20.5 In order to specify the resource requirements of software components that process 
multimedia data, we need estimates of their processing loads. How can this information 
be obtained without undue effort? pages 889–891

20.6 How does the Tiger system cope with a large number of clients all requesting the same 
movie at random times? pages 901–906

20.7 The Tiger schedule is potentially a large data structure that changes frequently, but each 
cub needs an up-to-date representation of the portions it is currently handling. Suggest 
a mechanism for the distribution of the schedule to the cubs. pages 901–906

20.8 When Tiger is operating with a failed disk or cub, secondary data blocks are used in 
place of missing primaries. Secondary blocks are n times smaller than primaries (where 
n is the decluster factor). How does the system accommodate this variability in block 
size? page 905

20.9 Discuss the relative merits of the rarest-first download policy in BitTorrent in 
comparison to the more traditional sequential download approach. pages 906–908

20.10 In addition to Tiger (see Exercise 20.6), both ESM and CoolStreaming also support 
streaming access to the same movie by potentially large numbers of users. Discuss the 
strategies adopted by both ESM and CoolStreaming for managing such simultaneous 
access and compare the approaches to those advocated by Tiger.

pages 901–906, 908–912
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DESIGNING DISTRIBUTED SYSTEMS:

GOOGLE CASE STUDY

21.1 Introduction

21.2 Introducing the case study: Google

21.3 Overall architecture and design philosophy

21.4 Underlying communication paradigms

21.5 Data storage and coordination services

21.6 Distributed computation services

21.7 Summary

The ability to create an effective design is an important skill in distributed systems, 
requiring an awareness of the different technological choices featured throughout this 
book and a thorough understanding of the requirements of the relevant application 
domain. The eventual goal is to come up with a consistent distributed system architecture 
incorporating a consistent and complete set of design choices able to address the overall 
requirements. This is a demanding task and one that requires considerable experience 
with distributed systems development.

We illustrate distributed design through a substantial case study, examining in 
detail the design of the Google infrastructure, a platform and associated middleware that 
supports both Google search and a set of associated web services and applications 
including Google Apps. This includes the study of key underlying components including 
the physical infrastructure underpinning Google, the communication paradigms offered 
by the Google infrastructure and the associated core services for storage and 
computation.

Emphasis is placed on the key design principles behind the Google infrastructure 
and how they pervade the overall system architecture, resulting in a consistent and 
effective design.
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21.1 Introduction

This book has focused on the key concepts that underpin the development of distributed 
systems, with an emphasis on addressing the main challenges of distributed systems, 
including heterogeneity, openness, security, scalability, failure handling, concurrency, 
transparency and quality of service. The subsequent treatment focuses inevitably on the 
constituent parts of a distributed system, including: communication paradigms such as 
remote invocation and its indirect alternatives; the programming abstractions offered by 
objects, components or web services; specific distributed systems services for security, 
naming and file system support; and algorithmic solutions such as coordination and 
agreement. It is equally important, however, to consider the overall design of distributed 
systems and how the constituent parts come together, addressing the inevitable trade-
offs between the different challenges to derive an overall system architecture that meets 
the requirements of a large-scale application domain and operating environment. A 
fuller treatment of distributed systems design methods would necessarily take us into the 
field of software engineering methodologies for distributed systems. That is beyond the 
scope of this book; those interested should see the box below for some relevant topics 
and sources.

Software engineering for distributed systems

We refer the reader to the significant advances that have been made in areas such as:

• object-oriented design, including the use modelling notations such as UML 
[Booch et al. 2005];

• component-based software engineering (CBSE) and its relationship to 
enterprise architectures [Szyperski 2002];

• architectural patterns targeting distributed systems [Bushmann et al. 2007];

• model-driven engineering that seeks to generate complex systems (including 
distributed systems from higher-level abstractions (models) [France and 
Rumpe 2007].

 Instead, we elect to provide insight into this area by presenting a case study 
of a complex distributed system, highlighting the key decisions and trade-offs involved 
in this design.

To motivate the studies in the book, Chapter 1 outlined three examples of key 
application domains that represent many of the major challenges in distributed systems: 
web search, massively multiplayer online games and financial trading. We could have 
picked any one of these areas and presented an enticing and illuminating case study, but 
we have chosen to focus on the first: web search (and indeed, we look beyond web 
search to more general support for web-based cloud services). In particular, in this 
chapter we present a case study on the distributed systems infrastructure that underpins 
Google (hereafter referred to as the Google infrastructure). Google is one of the largest 
distributed systems in use today, and the Google infrastructure has successfully dealt 
with a variety of demanding requirements, as discussed below. The underlying 
architecture and choice of concepts are also very interesting, picking up on many of the 
core topics presented in this book. A study of the Google  infrastructure therefore 



SECTION 21.2 INTRODUCING THE CASE STUDY: GOOGLE 917

provides a perfect way to round off our study of distributed systems. Note that, as well 
as providing an example of how to support web search, the Google infrastructure has 
emerged as a leading example of cloud computing, as will become apparent in the 
descriptions that follow.

Section 21.2 introduces the case study, providing background information on 
Google. Section 21.3 then presents the overall design of the Google infrastructure, 
considering both the underlying physical model and the associated system architecture. 
Section 21.4 examines the lowest level of the system architecture, the communication 
paradigms supported by the Google infrastructure; the subsequent two sections, 
Sections 21.5 and 21.6, discuss the core services provided by the Google infrastructure, 
featuring the services for storage and processing of massive quantities of data. Sections 
21.3 to 21.6 together describe a complete middleware solution for web search and cloud 
computing. Finally, Section 21.7 summarizes the key points emerging from our 
discussion of the Google infrastructure. Throughout the presentation, an emphasis will 
be placed on identifying and justifying the core design decisions and the associated 
trade-offs that are inherent in the design. 

21.2 Introducing the case study: Google

Google [www.google.com III] is a US-based corporation with its headquarters in 
Mountain View, California (the Googleplex), offering Internet search and broader web 
applications and earning revenue largely from advertising associated with such services. 
The name is a play on the word googol, the number 10100 (or 1 followed by a hundred 
zeros), emphasizing the sheer scale of information available in the Internet today. 
Google’s mission is to tame this huge body of information: ‘to organize the world’s 
information and make it universally accessible and useful’ [www.google.com III].

Google was born out of a research project at Stanford University, with the 
company launched in 1998. Since then, it has grown to have a dominant share of the 
Internet search market, largely due to the effectiveness of the underlying ranking 
algorithm used in its search engine (discussed further below). Significantly, Google has 
diversified, and as well as providing a search engine is now a major player in cloud 
computing.

 From a distributed systems perspective, Google provides a fascinating case study 
with extremely demanding requirements, particularly in terms of scalability, reliability, 
performance and openness (see the discussion of these challenges in Section 1.5). For 
example, in terms of search, it is noteworthy that the underlying system has successfully 
scaled with the growth of the company from its initial production system in 1998 to 
dealing with over 88 billion queries a month by the end of 2010, that the main search 
engine has never experienced an outage in all that time and that users can expect query 
results in around 0.2 seconds [googleblog.blogspot.com I]. The case study we present 
here will examine the strategies and design decisions behind that success, and provide 
insight into design of complex distributed systems.

Before proceeding to the case study, though, it is instructive to look in more detail 
at the search engine and also at Google as a cloud provider.
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The Google search engine  •  The role of the Google search engine is, as for any web 
search engine, to take a given query and return an ordered list of the most relevant results 
that match that query by searching the content of the Web. The challenges stem from the 
size of the Web and its rate of change, as well as the requirement to provide the most 
relevant results from the perspective of its users.

We provide a brief overview of the operation of Google search below; a fuller 
description of the operation of the Google search engine can be found in Langville and 
Meyer [2006]. As a running example, we consider how the search engine responds to 
the query ‘distributed systems book’.

The underlying search engine consists of a set of services for crawling the Web 
and indexing and ranking the discovered pages, as discussed below.

Crawling: The task of the crawler is to locate and retrieve the contents of the Web and 
pass the contents onto the indexing subsystem. This is performed by a software service 
called Googlebot, which recursively reads a given web page, harvesting all the links 
from that web page and then scheduling further crawling operations for the harvested 
links (a technique known as deep searching that is highly effective in reaching 
practically all pages in the Web).

In the past, because of the size of the Web, crawling was generally performed once 
every few weeks. However, for certain web pages this was insufficient. For example, it 
is important for search engines to be able to report accurately on breaking news or 
changing share prices. Googlebot therefore took note of the change history of web pages 
and revisited frequently changing pages with a period roughly proportional to how often 
the pages change. With the introduction of Caffeine in 2010 [googleblog.blogspot.com 
II], Google has moved from a batch approach to a more continuous process of crawling 
intended to offer more freshness in terms of search results. Caffeine is built using a new 
infrastructure service called Percolator that supports the incremental updating of large 
datasets [Peng and Dabek 2010].

Indexing: While crawling is an important function in terms of being aware of the content 
of the Web, it does not really help us with our search for occurrences of ‘distributed 
systems book’. To understand how this is processed, we need to have a closer look at 
indexing.

The role of indexing is to produce an index for the contents of the Web that is 
similar to an index at the back of a book, but on a much larger scale. More precisely, 
indexing produces what is known as an inverted index mapping words appearing in web 
pages and other textual web resources (including documents in .pdf, .doc and other 
formats) onto the positions where they occur in documents, including the precise 
position in the document and other relevant information such as the font size and 
capitalization (which is used to determine importance, as will be seen below). The index 
is also sorted to support efficient queries for words against locations.

As well as maintaining an index of words, the Google search engine also 
maintains an index of links, keeping track of which pages link to a given site. This is 
used by the PageRank algorithm, as discussed below.

Let us return to our example query. This inverted index will allow us to discover 
web pages that include the search terms ‘distributed’, ‘systems’ and ‘book’ and, by 
careful analysis, we will be able to discover pages that include all of these terms. For 
example, the search engine will be able to identify that the three terms can all be found 
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in amazon.com, www.cdk5.net and indeed many other web sites. Using the index, it is 
therefore possible to narrow down the set of candidate web pages from billions to 
perhaps tens of thousands, depending on the level of discrimination in the keywords 
chosen.

Ranking: The problem with indexing on its own is that it provides no information about 
the relative importance of the web pages containing a particular set of keywords – yet 
this is crucial in determining the potential relevance of a given page. All modern search 
engines therefore place significant emphasis on a system of ranking whereby a higher 
rank is an indication of the importance of a page and it is used to ensure that important 
pages are returned nearer to the top of the list of results than lower-ranked pages. As 
mentioned above, much of the success of Google can be traced back to the effectiveness 
of its ranking algorithm, PageRank [Langville and Meyer 2006].

PageRank is inspired by the system of ranking academic papers based on citation 
analysis. In the academic world, a paper is viewed as important if it has a lot of citations 
by other academics in the field. Similarly, in PageRank, a page will be viewed as 
important if it is linked to by a large number of other pages (using the link data 
mentioned above). PageRank also goes beyond simple ‘citation’ analysis by looking at 
the importance of the sites that contain links to a given page. For example, a link from 
bbc.co.uk will be viewed as more important than a link from Gordon Blair’s personal 
web page.

Ranking in Google also takes a number of other factors into account, including the 
proximity of keywords on a page and whether they are in a large font or are capitalized 
(based on the information stored in the inverted index).

Returning to our example, after performing an index lookup for each of the three 
words in the query, the search function ranks all the resulting page references according 
to perceived importance. For example, the ranking will pick out certain page references 
under amazon.com and www.cdk5.net because of the large number of links to those 
pages from other ‘important’ sites. The ranking will also prioritize pages where the 
terms ‘distributed’, ‘systems’ and ‘book’ appear in close proximity. Similarly, the 
ranking should pull out pages where the words appear near the start of the page or in 
capitals, perhaps indicating a list of distributed systems textbooks. The end result should 
be a ranked list of results where the entries at the top are the most important results.

Anatomy of a search engine: The founders of Google, Sergey Brin and Larry Page, wrote 
a seminal paper on the ‘anatomy’ of the Google search engine in 1998 [Brin and Page 
1998], providing interesting insights into how their search engine was implemented. The 
overall architecture described in this paper is illustrated in Figure 21.1, redrawn from the 
original. In this diagram, we distinguish between services directly supporting web 
search, drawn as ovals, and the underlying storage infrastructure components, illustrated 
as rectangles.

While it is not the purpose of this chapter to present this architecture in detail, a 
brief overview will aid comparison with the more sophisticated Google infrastructure 
available today. The core function of crawling was described above. This takes as input 
lists of URLs to be fetched, provided by the URL server, with the resultant fetched pages 
placed into the store server. This data is then compressed and placed in the repository

for further analysis, in particular creating the index for searching. The indexing function 
is performed in two stages. Firstly, the indexer uncompresses the data in the repository 



Figure 21.1 Outline architecture of the original Google search engine [Brin and Page 1998]
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and produces a set of hits, where a hit is represented by the document ID, the word, the 
position in the document and other information such as word size and capitalization. 
This data is then stored in a set of barrels, a key storage element in the initial 
architecture. This information is sorted by the document ID. The sorter then takes this 
data and sorts it by word ID to produce the necessary inverted index (as discussed 
above). The indexer also performs two other crucial functions as it parses the data:  it 
extracts information about links in documents storing this information in an anchors

file, and it produces a lexicon for the analyzed data (which at the time the initial 
architecture was used,consisted of 14 million words). The anchors file is processed by a 
URL resolver, which performs a number of functions on this data including resolving 
relative URLs into absolute URLs before producing a links database, as an important 
input into PageRank calculations. The URL resolver also create a doc index, which 
provides input to the URL server in terms of further pages to crawl. Finally, the searcher

implements the core Google search capability, taking input from the doc index, 
PageRank, the inverted index held in the barrels and also the lexicon.

One thing that is striking about this architecture is that, while specific details of 
the architecture have changed, the key services supporting web search – that is, 
crawling, indexing (including sorting) and ranking (through PageRank) – remain the 
same.
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Equally striking is that, as will become apparent below, the infrastructure has 
changed dramatically from the early attempts to identify an architecture for web search 
to the sophisticated distributed systems support provided today, both in terms of 
identifying more reusable building blocks for communication, storage and processing 
and in terms of generalizing the architecture beyond search.

Google as a cloud provider  •  Google has diversified significantly beyond search and 
now offers a wide range of web-based applications, including the set of applications 
promoted as Google Apps [www.google.com I]. More generally, Google is now a major 
player in the area of cloud computing. Recall that cloud computing was introduced in 
Chapter 1 and defined as ‘a set of Internet-based application, storage and computing 
services sufficient to support most users’ needs, thus enabling them to largely or totally 
dispense with local data storage and application software’. This is exactly what Google 
now strives to offer, in particular with significant offerings in the software as a service

and platform as a service areas (as introduced in Section 7.7.1). We look at each area in 
turn below.

Software as a service: This area is concerned with offering application-level software 
over the Internet as web applications. A prime example is Google Apps, a set of web-
based applications including Gmail, Google Docs, Google Sites, Google Talk and 
Google Calendar. Google’s aim is to replace traditional office suites with applications 
supporting shared document preparation, online calendars, and a range of collaboration 
tools supporting email, wikis, Voice over IP and instant messaging.

Several other innovative web-based applications have recently been developed;
these and the original Google Apps are summarized in Figure 21.2

Figure 21.2 Example Google applications

Application Description

Gmail Mail system with messages hosted by Google but desktop-like message management.

Google Docs Web-based office suite supporting shared editing of documents held on Google servers.

Google Sites Wiki-like web sites with shared editing facilities.

Google Talk Supports instant text messaging and Voice over IP.

Google Calendar Web-based calendar with all data hosted on Google servers.

Google Wave Collaboration tool integrating email, instant messaging, wikis and social networks.

Google News Fully automated news aggregator site.

Google Maps Scalable web-based world map including high-resolution imagery and unlimited user-
generated overlays.

Google Earth Scalable near-3D view of the globe with unlimited user-generated overlays.

Google App 
Engine

Google distributed infrastructure made available to outside parties as a service (platform as 
a service).

. One of the key 
observations for the purposes of this chapter is that Google encourages an open approach 
to innovation within the organization, and hence new applications are emerging all the 
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time. This places particular demands on the underlying distributed systems 
infrastructure, a point that is revisited in Section 21.3.2.

Platform as a service: This area is concerned with offering distributed system APIs as 
services across the Internet, with these APIs used to support the development and 
hosting of web applications (note that the use of the term ‘platform’ in this context is 
unfortunately inconsistent with the way it is used elsewhere in this book, where it refers 
to the hardware and operating system level). With the launch of the Google App Engine, 
Google went beyond software as a service and now offers its distributed systems 
infrastructure as discussed throughout this chapter as a cloud service. More specifically, 
the Google business is already predicated on using this cloud infrastructure internally to 
support all its applications and services, including its web search engine. The Google 
App Engine now provides external access to a part of this infrastructure, allowing other 
organizations to run their own web applications on the Google platform.

We will see further details of the Google infrastructure as this chapter unfolds; 
refer to the Google web site for further details of the Google App Engine 
[code.google.com IV].

21.3 Overall architecture and design philosophy

This section looks at the overall architecture of the Google system, examining:

• the physical architecture adopted by Google;

• the associated system architecture that offers common services to the Internet 
search engine and the many web applications offered by Google.

21.3.1 Physical model

The key philosophy of Google in terms of physical infrastructure is to use very large 
numbers of commodity PCs to produce a cost-effective environment for distributed 
storage and computation. Purchasing decisions are based on obtaining the best 
performance per dollar rather than absolute performance with a typical spend on a single 
PC unit of around $1,000. A given PC will typically have around 2 terabytes of disk 
storage and around 16 gigabytes of DRAM (dynamic random access memory) and run 
a cut-down version of the Linux kernel. (This philosophy of building systems from 
commodity PCs reflects the early days of the original research project, when Sergey 
Brin and Larry Page built the first Google search engine from spare hardware scavenged 
from around the lab at Stanford University.)

In electing to go down the route of commodity PCs, Google has recognized that 
parts of its infrastructure will fail and hence, as we will see below, has designed the 
infrastructure using a range of strategies to tolerate such failures. Hennessy and 
Patterson [2006] report the following failure characteristics for Google:

• By far the most common source of failure is due to software, with about 20 
machines needing to be rebooted per day due to software failures. (Interestingly, 
the rebooting process is entirely manual.)
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• Hardware failures represent about 1/10 of the failures due to software with around 
2–3% of PCs failing per annum due to hardware faults. Of these, 95%  are due to 
faults in disks or DRAM.

This vindicates the decision to procure commodity PCs; given that the vast majority of 
failures are due to software, it is not worthwhile to invest in more expensive, more 
reliable hardware. A further paper by Pinheiro et al. [2007] also reports on the failure 
characteristics of commodity disks as used in the Google physical infrastructure, 
providing an interesting insight into failure patterns of disk storage in large-scale 
deployments. 

The physical architecture is constructed as follows [Hennessy and Patterson 
2006]:

• Commodity PCs are organized in racks with between 40 and 80 PCs in a given 
rack. The racks are double-sided with half the PCs on each side. Each rack has an 
Ethernet switch that provides connectivity across the rack and also to the external 
world (see below). This switch is modular, organized as a number of blades with 
each blade supporting either 8 100-Mbps network interfaces or a single 1-Gbps 
interface. For 40 PCs, five blades each containing eight network interfaces are 
sufficient to ensure connectivity within the rack. Two further blades, each 
supporting a 1-Gbps network interface, are used for connection to the outside 
world.

• Racks are organized into clusters (as discussed in Section 1.3.4), which are a key 
unit of management, determining for example the placement and replication of 
services. A cluster typically consists of 30 or more racks and two high-bandwidth 
switches providing connectivity to the outside world (the Internet and other 
Google centres). Each rack is connected to both switches for redundancy; in 
addition, for further redundancy, each switch has redundant links to the outside 
world.

• Clusters are housed in Google data centres that are spread around the world. In 
2000, Google relied on key data centres in Silicon Valley (two centres) and in 
Virginia. At the time of writing, the number of data centres has grown 
significantly and there are now centres in many geographical locations across the 
US and in Dublin (Ireland), Saint-Ghislain (Belgium), Zurich (Switzerland), 
Tokyo (Japan) and Beijing (China). (A map of known data centres as of 2008 can 
be found here [royal.pingdom.com].)

A simplified view of this overall organization is provided in Figure 21.3. This physical 
infrastructure provides Google with enormous storage and computational capabilities, 
together with the necessary redundancy to build fault-tolerant, large-scale systems (note 
that, to avoid clutter, this figure only shows the Ethernet connections from one of the 
clusters to the external links).

Storage capacity: Let us consider the storage capacity available to Google. If each 
PC offers 2 terabytes of storage, then a rack of 80 PCs will provide 160 terabytes, 
with a cluster of 30 racks offering 4.8 petabytes. It is not known exactly how many 
machines Google has in total as the company maintains strict secrecy over this aspect 
of its business, but we can assume Google has on the order of 200 clusters, offering 
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total storage capacity of 960 petabytes or just under 1 exabyte of storage (1018 bytes). 
This is likely to be a conservative figure, as Google VP Marissa Mayer is already 
talking about the data explosion taking us well into the exascale range 
[www.parc.com].

We shall see how Google uses this extensive storage and computational capability 
and the associated redundancy to offer core services in the remainder of this chapter.

21.3.2 Overall system architecture

Before examining the overall system architecture, it is helpful to examine the key 
requirements in more detail:

Scalability: The first and most obvious requirement for the underlying Google 
infrastructure is to master scalability and, in particular, to have approaches that scale 
to what is an Ultra-Large Scale (ULS) distributed system as featured in Chapter 2. 
For the search engine, Google views the scalability problem in terms of three 
dimensions: i) being able to deal with more data (for example, as the amount of 
information in the Web grows through initiatives such as the digitizing of libraries), 
ii) being able to deal with more queries (as the number of people using Google in their 
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homes and workplaces grows) and iii) seeking better results (particularly important 
as this is a key determining factor in uptake of a web search engine). This view of the 
scalability problem is illustrated in Figure 21.4

Figure 21.4 The scalability problem in Google

More data

More queries

Better results

.
Scalability demands the use of (sophisticated) distributed systems strategies. 

Let us illustrate this with a simple analysis taken from Jeff Dean’s keynote at 
PACT’06 [Dean 2006]. He assumed that the Web consists of around 20 billion web 
pages at 20 kilobytes each. This implies a total size of around 400 terabytes.  To crawl 
this amount of data it would take a single computer over 4 months assuming that the 
computer can read 30 megabytes per second. In contrast, 1,000 machines can read 
this amount of data in less than 3 hours. In addition, as we saw in Section 21.2,
searching is not only about crawling. The other functions, including indexing, 
ranking and searching, all require highly distributed solutions in order to be able to 
scale.

Reliability: Google has stringent reliability requirements, especially with regard to 
availability of services. This is particularly important for the search functionality, 
where there is a need to provide 24/7 availability (noting, however that it is 
intrinsically easy to mask failures in search as the user has no way of knowing if all 
search results are returned). This requirement also applies to other web applications, 
and it is interesting to note that Google offers a 99.9% service level agreement 
(effectively, a system guarantee) to paying customers of Google Apps covering 
Gmail, Google Calendar, Google Docs, Google Sites and Google Talk. The company 
has an excellent overall record in terms of availability of services, but the well-
reported outage of Gmail on 1 September 2009 acts as a reminder of the continuing 
challenges in this area. (This outage, which lasted 100 minutes, was caused by a 
cascading problem of overloading servers during a period of routine maintenance). 
Note that the reliability requirement must be met in the context of the design choices 
in the physical architecture, which imply that (software and hardware) failures are 
anticipated with reasonable frequency. This demands both detecting failures and 
adopting strategies to mask or tolerate such failures. Such strategies rely heavily on 
the redundancy in the underlying physical architecture. We shall see examples of 
such strategies as the details of the system architecture emerge.
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Performance: The overall performance of the system is critical for Google, 
especially in achieving low latency of user interactions. The better the performance, 
the more likely it is that a user will return with more queries that, in turn, increase 
their exposure to ads hence potentially increasing revenue. The importance of 
performance is exemplified by the target of completing web search operations in 0.2 
seconds (as mentioned above) and achieving the required throughput to respond to 
all incoming requests while dealing with very large datasets. This applies to a wide 
range of functions associated with the operation of Google, including web crawling, 
indexing and sorting. It is also important to note that performance is an end-to-end 
property requiring all associated underlying resources to work together, including 
network, storage and computational resources.

Openness: The above requirements are in many ways the obvious ones for Google 
to support its core services and applications. There is also a strong requirement for 
openness, particularly to support further development in the range of web 
applications on offer. It is well known that Google as an organization encourages and 
nurtures innovation, and this is most evident in the development of new web 
applications. This is only possible with an infrastructure that is extensible and 
provides support for the development of new applications.

Figure 21.5 The overall Google systems architecture

Google applications and services

Google platform 
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Google has responded to these needs by developing the overall system 
architecture shown in Figure 21.5. This figure shows the underlying computing 
platform at the bottom (that is, the physical architecture as described above) and the 
well-known Google services and applications at the top. The middle layer defines a 
common distributed infrastructure providing middleware support for search and 
cloud computing. This is crucial to the success of Google. The infrastructure provides 
the common distributed system services for developers of Google services and 
applications and encapsulates key strategies for dealing with scalability, reliability 
and performance. The provision of a well-designed common infrastructure such as 
this can bootstrap the development of new applications and services through reuse of 
the underlying system services and, more subtly, provides an overall coherence to the 
growing Google code base by enforcing common strategies and design principles.



SECTION 21.3 OVERALL ARCHITECTURE AND DESIGN PHILOSOPHY 927

Google infrastructure  •  The system is constructed as a set of distributed services 
offering core functionality to developers (see Figure 21.6). This set of services naturally 
partitions into the following subsets

Figure 21.6 Google infrastructure
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:

• the underlying communication paradigms, including services for both remote 
invocation and indirect communication:

– the protocol buffers component offers a common serialization format for 
Google, including the serialization of requests and replies in remote invocation.

– the Google publish-subscribe service supports the efficient dissemination of 
events to potentially large numbers of subscribers. 

• data and coordination services providing unstructured and semi-structured 
abstractions for the storage of data coupled with services to support coordinated 
access to the data:

– GFS offers a distributed file system optimized for the particular requirements 
of Google applications and services (including the storage of very large files).

– Chubby supports coordination services and the ability to store small volumes 
of data.

– Bigtable provides a distributed database offering access to semi-structured
data.

• distributed computation services providing means for carrying out parallel and 
distributed computation over the physical infrastructure:

– MapReduce supports distributed computation over potentially very large 
datasets (for example, stored in Bigtable).
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– Sawzall provides a higher-level language for the execution of such distributed 
computations.

We step through each of these components in turn in Sections 21.4 through 21.6. First, 
however, it is instructive to reflect on key design principles associated with the 
architecture as a whole.

Associated design principles  •  To fully understand the design of Google infrastructure, 
it is important to also have an understanding of key design philosophies that pervade the 
organization:

• The most important design principle behind Google software is that of simplicity:
software should do one thing and do it well, avoiding feature-rich designs 
wherever possible. For example, Bloch [2006] discusses how this principle 
applies to API design implying that API designs should be as small as possible and 
no smaller (an example of the application of Occam’s Razor).

• Another key design principle is a strong emphasis on performance in the 
development of systems software, captured in the phrase ‘every millisecond 
counts’ [www.google.com IV]. In a keynote at LADIS’09, Jeff Dean (a member 
of the Google Systems Infrastructure Group) emphasized the importance of being 
able to estimate the performance of a system design through awareness of 
performance costs of primitive operations such as accessing memory and disk, 
sending packets over a network, locking and unlocking a mutex and so on, 
coupled with what he referred to as ‘back of the envelope’ calculations 
[www.cs.cornell.edu].

• A final principle is advocating stringent testing regimes on software, captured by 
the slogan ‘if it ain’t broke, you are not trying hard enough’ 
[googletesting.blogspot.com]. This is complemented by a strong emphasis on 
logging and tracing to detect and resolve faults in the system.

With this background, we are now ready to examine the various constituent parts of the 
Google infrastructure, starting with the underlying communication paradigms. For each 
area, we present the overall design and highlight the key design decisions and associated 
trade-offs.

21.4 Underlying communication paradigms

Looking back at Chapters 3 to 6, it is clear that the choice of underlying communication 
paradigm(s) is crucial to the success of an overall system design. Options include:

• using an underlying interprocess communication service directly, such as that 
offered by socket abstractions (described in Chapter 4 and supported by all 
modern operating systems);

• using a remote invocation service (such as a request-reply protocol, remote 
procedure calls or remote method invocation, as discussed in Chapter 5) offering 
support for client-server interactions;
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• using an indirect communication paradigm such as group communication, 
distributed event-based approaches, tuple spaces or distributed shared memory 
approaches (as discussed in Chapter 6).

In keeping with the design principles identified in Section 21.3, Google adopts a simple, 
minimal and efficient remote invocation service that is a variant of a remote procedure 
call approach. 

 Readers will recall that remote procedure call communication requires a 
serialization component to convert the procedure invocation data (procedure name and 
parameters, possibly structured) from their internal binary representation to a flattened

or serialized processor-neutral format ready for transmission to the remote partner. 
Serialization for Java RPC is described in Section 4.3.2. XML has emerged more 
recently as a ‘universal’ serialized data format, but its generality brings substantial 
overheads. Google has therefore developed a simplified and high-performance 
serialization component known as protocol buffers that is used for a substantial majority 
of interactions within the infrastructure. This can be used over any underlying 
communication mechanism to provide an RPC capability. An open source version of 
protocol buffers is available [code.google.com I].

A separate publish-subscribe service is also used, recognizing the key role that 
this paradigm can offer in many areas of distributed system design, including the 
efficient and real-time dissemination of events to multiple participants. In common with 
many other distributed system platforms, the Google infrastructure therefore offers a 
hybrid solution allowing developers to select the best communication paradigm for their 
requirements. Publish-susbcribe is not an alternative to protocol buffers in the Google 
infrastructure, but rather an augmentation offering an added-value service for where it 
is most appropriate.

We examine the design of these two approaches below, with emphasis on protocol
buffers (full details of the publish-subscribe protocol are not yet publicly available).

21.4.1 Remote invocation

Protocol buffers place emphasis on the description and subsequent serialization of data, 
and hence the concept is best compared to direct alternatives such as XML. The goal is 
to provide a language- and platform-neutral way to specify and serialize data in a 
manner that is simple, highly efficient and extensible; the serialized data can then be 
used for subsequent storage of data or transmission using an underlying 
communications protocol, or indeed for any other purpose that demands a serialization 
format for structured data. We will see later how this can be used as the basis for RPC-
style exchange.

In protocol buffers, a language is provide for the specification of messages. We 
introduce the key features of this (simple) language by example, with Figure 21.7
showing how a book message might be specified.

As can be seen, the overall Book message consists of a series of uniquely 
numbered fields, each represented by a field name and the type of the associated value. 
The type can be one of:

• a primitive data type (including integer, floating-point, boolean, string or raw 
bytes);



Figure 21.7 Protocol buffers example

message Book {

required string title = 1;

repeated string author = 2;

enum Status {

IN_PRESS = 0;

 PUBLISHED = 1;

 OUT_OF_PRINT = 2;

}

message BookStats {

required int32 sales = 1;

optional int32 citations = 2;

optional Status bookstatus = 3 [default = PUBLISHED];

}

optional BookStats statistics = 3;

repeated string keyword = 4;

}
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• an enumerated type;

• a nested message allowing a hierarchical structuring of data.

We can see examples of each in Figure 21.7.
Fields are annotated with one of three labels:

• required fields must be present in the message;

• optional fields may be present in the message;

• repeated fields can exist zero or more times in the message (the developers of 
protocol buffers view this as a type of dynamically sized array).

Again, we can see uses of each annotation in the Book message format illustrated in 
Figure 21.7.

The unique number (=1, =2 and so on) represents the tag that a particular field has 
in the binary encoding of the message.

This specification is contained in a .proto file and compiled by a protoc tool. The 
output of this tool is generated code that allows programmers to manipulate the 
particular message type, in particular assigning/extracting values to/from messages. In 
more detail, the protoc tool generates a builder class that provides getter and setter

methods for each field together with additional methods to test if a method has been set 
and to clear a field to the associated null value. For example, the following methods 
would be generated for the title field:

public boolean hasTitle();

public java.lang.String getTitle();

public Builder setTitle(String value);

public Builder clearTitle();
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The importance of the builder class is that while messages are immutable in protocol 
buffers, builders are mutable and are used to construct and manipulate new messages.

For repeated fields the generated code is slightly more complicated, with methods 
provided to return a count of the number of elements in the associated list, to get or set

specific fields in the list, to append a new element to a list and to add a set of elements 
to a list (the addAll method). We illustrate this by example by listing the methods 
generated for the keyword field:

public List<string> getKeywordList();

public int getKeywordCount();

public string getKeyword(int index);

public Builder setKeyword(int index, string value);

public Builder addKeyword(string value);

public Builder addAllKeyword(Iterable<string> value);

public Builder clearKeyword();

The generated code also provides a range of other methods to manipulate messages, 
including methods such as toString to provide a readable representation of the message 
(often used for debugging for example) and also a series of methods to parse incoming 
messages.

As can be seen, this is a very simple format compared to XML (for example, 
contrast the specification above with equivalent specifications in XML as shown in 
Section 4.3.3), and one that its developers claim is 3 to 10 times smaller than XML 
equivalents and 10 to 100 times faster in operation. The associated programming 
interface providing access to the data is also considerably simpler than equivalents for 
XML.

Note that this is a somewhat unfair comparison, for two reasons. Firstly, the 
Google infrastructure is a relatively closed system and hence, unlike, XML, it does not 
address interoperability across open systems. Secondly, XML is significantly richer in 
that it generates self-describing messages that contain the data and associated metadata 
describing the structure of the messages (see Section 4.3.3). Protocol buffers do not 
provide this facility directly (although it is possible to achieve this effect, as described 
in the relevant web pages in a section on techniques [code.google.com II]). In outline, 
this is achieved by asking the protoc compiler to generate a FileDescriptorSet that 
contains self-descriptions of messages, and then including this explicitly in message 
descriptions. The developers of protocol buffers, though, emphasize that this is not seen 
as a particularly useful feature and that it is rarely used in the Google infrastructure code. 

Supporting RPC  •  As mentioned above, protocol buffers are a general mechanism that 
can be used for storage or communication. The most common use of protocol buffers, 
however, is to specify RPC exchanges across the network, and this is accommodated 
with extra syntax in the language. Again, we illustrate the syntax by example:

service SearchService {

rpc Search (RequestType) returns (ResponseType);

}

This code fragment specifies a service interface called SearchService containing one 
remote operation, Search, which takes one parameter of type RequestType and returns 
one parameter of type ResponseType. For example, the types could correspond to a list 
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of keywords and a list of Books matching this set of keywords, respectively. The protoc

compiler takes this specification and produces both an abstract interface SearchService

and a stub that supports type-safe RPC-style calls to the remote service using protocol 
buffers.

As well as being language- and platform-neutral, protocol buffers are also 
agnostic with respect to the underlying RPC protocol. In particular, the stub assumes 
that implementations exist for two abstract interfaces RpcChannel and RpcController, 

the former offering a common interface to underlying RPC implementations and the 
latter offering a common control interface, for example, to manipulate settings 
associated with that implementation. A programmer must provide implementations of 
these abstract interfaces, effectively selecting the desired RPC implementation. For 
example, this could pass serialized messages using HTTP or TCP or could map onto one 
of a number of third-party RPC implementations available and linked from the protocol 
buffers site [code.google.com III].

Note that a service interface can support multiple remote operations, but each 
operation must adhere to the pattern of taking a single parameter and returning a single 
result (with both being protocol buffer messages). This is unusual compared to the 
designs of RPC and RMI systems – as we saw in Chapter 5 – remote invocations can 
have an arbitrary number of parameters, and in the case of RMI the parameters or results 
can be objects or indeed object references (although note that Sun RPC, as documented 
in Section 5.3.3, adopts a similar approach to protocol buffers). The rationale for having 
one request and one reply is to support extensibility and software evolution; whereas the 
more general styles of interface may change significantly over time, this more 
constrained style of interface is likely to remain more constant. This approach also 
pushes the complexity towards the data in a manner that is reminiscent of the REST 
philosophy, with its constrained set of operations and emphasis on manipulating 
resources (see Section 9.2).

21.4.2 Publish-subscribe

Protocol buffers are used extensively but not exclusively as the communication 
paradigm in the Google infrastructure. To complement protocol buffers, the 
infrastructure also supports a publish-subscribe system intended to be used where 
distributed events need to be disseminated in real time and with reliability guarantees to 
potentially large numbers of recipients. As mentioned above, the publish-subscribe 
service is an augmentation to protocol buffers and indeed uses protocol buffers for its 
underlying communication. 

One key use for the publish-subscribe system, for example, is to underpin the 
Google Ads system, recognizing that advertisments in Google are world-wide and that 
advertisement serving systems anywhere in the network need to know in a fraction of a 
second the eligibility of certain advertisements that can be shown in response to a query.

The RPC system described above would clearly be inappropriate and highly 
inefficient for this style of interaction, especially given the potentially large numbers of 
subscribers and the guarantees required by the associated applications. In particular, the 
sender would need to know the identity of all the other advertisment serving systems, 
which could be very large. RPCs would need to be sent to all the individual serving 
systems, consuming many connections and a great deal of associated buffer space at the 
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sender, not to mention the bandwidth requirements of sending the data across wide area 
network links. A publish-subsribe solution, in contrast, with its inherent time and space 
uncoupling, overcomes these difficulties and also offers natural support for failure and 
recovery of subscribers (see Section 6.1).

Google has not made details of the publish-subscribe system publicly available. 
We therefore restrict our discussion to some high-level features of the system.

Google adopts a topic-based publish-subscribe system, providing a number of 
channels for event streams with channels corresponding to particular topics. A topic-
based system was chosen for its ease of implementation and its relative predictability in 
terms of performance compared to content-based approaches – that is, the infrastructure 
can be set up and tailored to deliver events related to a given topic. The downside is a 
lack of expressive power in specifying events of interest. As a compromise, the Google 
publish-subscribe system allows enhanced subscriptions defined not just by selecting a 
channel but also by selecting subsets of events from within that channel. In particular, a 
given event consists of a header, an associated set of keywords and a payload, which is 
opaque to the programmer. Subscription requests specify the channel together with a 
filter defined over the set of keywords. Channels are intended to be used for relatively 
static and coarse-grained data streams requiring high throughputs of events (at least 1-
Mbps), so the added capability for expressing refined subscriptions using filters helps 
greatly. For example, if a topic generates less than this volume of data, it will be 
subsumed within another topic but identifiable by keyword.

The publish-subscribe system is implemented as a broker overlay in the form of a 
set of trees, where each tree represents a topic. The root of the tree is the publisher and 
the leaf nodes represent subscribers. When filters are introduced, they are pushed as far 
back in the tree as possible to minimize unnecessary traffic.

Unlike the publish-subscribe systems discussed in Chapter 6, there is a strong 
emphasis on both reliable and timely delivery:

• In terms of reliability, the system maintains redundant trees; in particular, two 
separate tree overlays are maintained per logical channel (topic).

• In terms of timely delivery, the system implements a quality of service 
management technique to control message flows. In particular, a simple rate 
control scheme is introduced based on an imposed rate limit enforced on  a per 
user/ per topic basis. This replaces a more complex approach and manages the 
anticipated resource usage across the tree in terms of memory, CPU and message 
and byte rates.

Trees are initially constructed and constantly re-evaluated according to a shortest path 
algorithm (see Chapter 3).

21.4.3 Summary of key design choices for communication

The overall design choices relating to communication paradigms in the Google 
infrastructure are summarized in Figure 21.8. This table highlights the most important 
decisions associated with the overall design and the constituent elements (protocol 
buffers and the publish-subscribe system) and summarizes the rationale and the 
particular trade-offs associated with each choice.



Figure 21.8 Summary of design choices related to communication paradigms

Element Design choice Rationale Trade-offs

Protocol buffers The use of a 
language for 
specifying data 
formats

Flexible in that 
the same 
language can be 
used for 
serializing data 
for storage or 
communication

-

Simplicity of the 
language

Efficient
implementation

Lack of 
expressiveness when 
compared, for 
example, with XML

Support for a 
style of RPC 
(taking a single 
message as a 
parameter and 
returning a single 
message as 
result)

More efficient, 
extensible and 
supports service 
evolution

Lack of 
expressiveness when 
compared with other 
RPC or RMI packages

Protocol-agnostic 
design

Different RPC 
implementation
s can be used

No common semantics 
for RPC exchanges

Publish-subscribe Topic-based 
approach

Supports 
efficient 
implementation

Less expressive than 
content-based 
approaches (mitigated 
by the additional 
filtering capabilities)

Real-time and 
reliability 
guarantees

Supports 
maintenance of 
consistent views 
in a timely 
manner

Additional 
algorithmic support 
required with 
associated overhead
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Overall, we see a hybrid approach offering two distinct communication paradigms 
designed to support different styles of interaction within the architecture. This allows 
developers to select the best paradigm for each particular problem domain.

We shall repeat this style of analysis at the end of each of the following sections, 
thus providing an overall perspective of key design decisions relating to the Google 
infrastructure. 
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21.5 Data storage and coordination services

We now present the three services that together provide data and coordination services 
to higher-level applications and services: the Google File System, Chubby and Bigtable. 
These are complementary services in the Google infrastructure:

• The Google File System is a distributed file system offering a similar service to 
NFS and AFS, as discussed in Chapter 12. It offers  access to unstructured data in 
the form of files, but optimized to the styles of data and data access required by 
Google (very large files, for example).

• Chubby is a multi-faceted service supporting, for example, coarse-grained 
distributed locking for coordination in the distributed environment and the storage 
of very small quantities of data, complementing the large-scale storage offered by 
the Google File System.

• Bigtable offers access to more structured data in the form of tables that can be 
indexed in various ways including by row or column. Bigtable is therefore a style 
of distributed database, but unlike many databases it does not support full 
relational operators (these are viewed by Google as unnecessarily complex and 
unscalable ).

These three services are also interdependent. For example, Bigtable uses the Google File 
System for storage and Chubby for coordination.

We look at each service in detail below.

21.5.1 The Google File System (GFS)

Chapter 12 presented a detailed study of the topic of distributed file systems, analyzing 
their requirements and their overall architecture and examining two case studies in 
detail, namely NFS and AFS. These file systems are general-purpose distributed file 
systems offering file and directory abstractions to a wide variety of applications in and 
across organizations. The Google File System (GFS) is also a distributed file system; it 
offers similar abstractions but is specialized for the very particular requirements that 
Google has in terms of storage and access to very large quantities of data [Ghemawat et

al. 2003]. These requirements led to very different design decisions from those made in 
NFS and AFS (and indeed other distributed file systems), as we will see below. We start 
our discussion of GFS by examining the particular requirements identified by Google.

GFS requirements  •  The overall goal of GFS is to meet the demanding and rapidly 
growing needs of Google’s search engine and the range of other web applications 
offered by the company. From an understanding of this particular domain of operation, 
Google identified the following requirements for GFS (see Ghemawat et al. [2003]):

• The first requirement is that GFS must run reliably on the physical architecture 
discussed in Section 21.3.1 – that is a very large system built from commodity 
hardware. The designers of GFS started with the assumption that components will 
fail (not just hardware components but also software components) and that the 
design must be sufficiently tolerant of such failures to enable application-level 
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services to continue their operation in the face of any likely combination of failure 
conditions.

• GFS is optimized for the patterns of usage within Google, both in terms of the 
types of files stored and the patterns of access to those files. The number of files 
stored in GFS is not huge in comparison with other systems, but the files tend to 
be massive. For example, Ghemawat et al. [2003] report the need for perhaps one 
million files averaging 100 megabytes in size, but with some files in the gigabyte 
range. The patterns of access are also atypical of file systems in general. Accesses 
are dominated by sequential reads through large files and sequential writes that 
append data to files, and GFS is very much tailored towards this style of access. 
Small, random reads and writes do occur (the latter very rarely) and are supported, 
but the system is not optimized for such cases. These file patterns are influenced, 
for example, by the storage of many web pages sequentially in single files that are 
scanned by a variety of data analysis programs. The level of concurrent access is 
also high in Google, with large numbers of concurrent appends being particularly 
prevalent, often accompanied by concurrent reads.

• GFS must meet all the requirements for the Google infrastructure as a whole; that 
is, it must scale (particularly in terms of volume of data and number of clients), it 
must be reliable in spite of the assumption about failures noted above, it must 
perform well and it must be open in that it should support the development of new 
web applications. In terms of performance and given the types of data file stored, 
the system is optimized for high and sustained throughput in reading data, and this 
is prioritized over latency. This is not to say that latency is unimportant, rather, 
that this particular component (GFS) needs to be optimized for high-performance
reading and appending of large volumes of data for the correct operation of the 
system as a whole.

These requirements are markedly different from those for NFS and AFS (for example), 
which must store large numbers of often small files and where random reads and writes 
are commonplace. These distinctions lead to the very particular design decisions 
discussed below.

GFS interface  •  GFS provides a conventional file system interface offering a 
hierarchical namespace with individual files identified by pathnames. Although the file 
system does not provide full POSIX compatibility, many of the operations will be 
familiar to users of such file systems (see, for example, Figure 12.4):

create – create a new instance of a file;

delete – delete an instance of a file;

open – open a named file and return a handle;

close – close a given file specified by a handle;

read – read data from a specified file;

write – write data to a specified file.

It can be seen that main GFS operations are very similar to those for the flat file service 
described in Chapter 12 (see Figure 12.6). We should assume that the GFS read and 
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write operations take a parameter specifying a starting offset within the file, as is the 
case for the flat file service.

The API also offers two more specialized operations, snapshot and record

append. The former operation provides an efficient mechanism to make a copy of a 
particular file or directory tree structure. The latter supports the common access pattern 
mentioned above whereby multiple clients carry out concurrent appends to a given file.

GFS architecture  •  The most influential design choice in GFS is the storage of files in 
fixed-size chunks, where each chunk is 64 megabytes in size. This is quite large 
compared to other file system designs. At one level this simply reflects the size of the 
files stored in GFS. At another level, this decision is crucial to providing highly efficient 
sequential reads and appends of large amounts of data. We return to this point below, 
once we have discussed more details of the GFS architecture.

Given this design choice, the job of GFS is to provide a mapping from files to 
chunks and then to support standard operations on files, mapping down to operations on 
individual chunks. This is achieved with the architecture shown in Figure 21.9

Figure 21.9 Overall architecture of GFS

GFS client GFS master

GFS chunkserver .....

control flow

data flow

library

Client

metadata

data chunks

GFS chunkserver

data chunks

, which 
shows an instance of a GFS file system as it maps onto a given physical cluster. Each 
GFS cluster has a single master and multiple chunkservers (typically on the order of 
hundreds), which together provide a file service to large numbers of clients concurrently 
accessing the data.

The role of the master is to manage metadata about the file system defining the 
namespace for files, access control information and the mapping of each particular file 
to the associated set of chunks. In addition, all chunks are replicated (by default on three 
independent chunkservers, but the level of replication can be specified by the 
programmer). The location of the replicas is maintained in the master. Replication is 
important in GFS to provide the necessary reliability in the event of (expected) hardware 
and software failures. This is in contrast to NFS and AFS, which do not provide 
replication with updates (see Chapter 12).

The key metadata is stored persistently in an operation log that supports recovery 
in the event of crashes (again enhancing reliability). In particular, all the information 
mentioned above is logged apart from the location of replicas (the latter is recovered by 
polling chunkservers and asking them what replicas they currently store).
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Although the master is centralized, and hence a single point of failure, the 
operations log is replicated on several remote machines, so the master can be readily 
restored on failure. The benefit of having such a single, centralized master is that it has 
a global view of the file system and hence it can make optimum management decisions, 
for example related to chunk placement. This scheme is also simpler to implement, 
allowing Google to develop GFS in a relatively short period of time. McKusick and 
Quinlan [2010] present the rationale for this rather unusual design choice.

When clients need to access data starting from a particular byte offset within a file, 
the GFS client library will first translate this to a file name and chunk index pair (easily 
computed given the fixed size of chunks). This is then sent to the master in the form of 
an RPC request (using protocol buffers). The master replies with the appropriate chunk 
identifier and location of the replicas, and this information is cached in the client and 
used subsequently to access the data by direct RPC invocation to one of the replicated 
chunkservers. In this way, the master is involved at the start and is then completely out 
of the loop, implementing a separation of control and data flows – a separation that is 
crucial to maintaining high performance of file accesses. Combined with the large chunk 
size, this implies that, once a chunk has been identified and located, the 64 megabytes 
can then be read as fast as the file server and network will allow without any other 
interactions with the master until another chunk needs to be accessed. Hence 
interactions with the master are minimized and throughput optimized. The same 
argument applies to sequential appends.

Note that one further repercussion of the large chunk size is that GFS maintains 
proportionally less metadata (if a chunk size of 64 kilobytes was adopted, for example, 
the volume of metadata would increase by a factor of 1,000). This in turn implies that 
GFS masters can generally maintain all their metadata in main memory (but see below), 
thus significantly decreasing the latency for control operations.

As the system has grown in usage, problems have emerged with the centralized 
master scheme:

• Despite the separation of control and data flow and the performance optimization 
of the master, it is emerging as a bottleneck in the design.

• Despite the reduced amount of metadata stemming from the large chunk size, the 
amount of metadata stored by each master is increasing to a level where it is 
difficult to actually keep all metadata in main memory.

For these reasons, Google is now working on a new design featuring a distributed master 
solution. 

Caching: As we saw in Chapter 12, caching often plays a crucial role in the performance 
and scalability of a file system (see also the more general discussion on caching in 
Section 2.3.1). Interestingly, GFS does not make heavy use of caching. As mentioned 
above, information about the locations of chunks is cached at clients when first 
accessed, to minimize interactions with the master. Apart from that, no other client 
caching is used. In particular, GFS clients do not cache file data. Given the fact that most 
accesses involve sequential streaming, for example reading through web content to 
produce the required inverted index, such caches would contribute little to the 
performance of the system. Furthermore, by limiting caching at clients, GFS also avoids 
the need for cache coherency protocols.
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GFS also does not provide any particular strategy for server-side caching (that is, 
on chunkservers) rather relying on the buffer cache in Linux to maintain frequently 
accessed data in memory.

Logging: GFS is a key example of the use of logging in Google to support debugging 
and performance analysis. In particular, GFS servers all maintain extensive diagnostic 
logs that store significant server events and all RPC requests and replies. These logs are 
monitored continually and used in the event of system problems to identify the 
underlying causes. 

Managing consistency in GFS  •   Given that chunks are replicated in GFS, it is important 
to maintain the consistency of replicas in the face of operations that alter the data – that 
is, the write and record append operations. GFS provides an approach for consistency 
management that:

• maintains the previously mentioned separation between control and data and 
hence allows high-performance updates to data with minimal involvement of 
masters;

• provides a relaxed form of consistency recognizing, for example, the particular 
semantics offered by record append.

The approach proceeds as follows.
When a mutation (i.e., a write, append or delete operation) is requested for a 

chunk, the master grants a chunk lease to one of the replicas, which is then designated 
as the primary. This primary is responsible for providing a serial order for all the 
currently pending concurrent mutations to that chunk. A global ordering is thus provided 
by the ordering of the chunk leases combined with the order determined by that primary. 
In particular, the lease permits the primary to make mutations on its local copies and to 
control the order of the mutations at the secondary copies; another primary will then be 
granted the lease, and so on.

The steps involved in mutations are therefore as follows (slightly simplified):

• On receiving a request from a client, the master grants a lease to one of the replicas 
(the primary) and returns the identity of the primary and other (secondary) replicas 
to the client.

• The client sends all data to the replicas, and this is stored temporarily in a buffer 
cache and not written until further instruction (again, maintaining a separation of 
control flow from data flow coupled with a lightweight control regime based on 
leases).

• Once all the replicas have acknowledged receipt of this data, the client sends a 
write request to the primary; the primary then determines a serial order for 
concurrent requests and applies updates in this order at the primary site.

• The primary requests that the same mutations in the same order are carried out at 
secondary replicas and the secondary replicas send back an acknowledgement 
when the mutations have succeeded’

• If all acknowledgements are received, the primary reports success back to the 
client; otherwise, a failure is reported indicating that the mutation succeeded at the 
primary and at some but not all of the replicas. This is treated as a failure and 
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leaves the replicas in an inconsistent state. GFS attempts to overcome this failure 
by retrying the failed mutations. In the worst case, this will not succeed and 
therefore consistency is not guaranteed by the approach.

It is interesting to relate this scheme to the techniques for replication discussed in 
Chapter 18. GFS adopts a passive replication architecture with an important twist. In 
passive replication, updates are sent to the primary and the primary is then responsible 
for sending out subsequent updates to the backup servers and ensuring they are 
coordinated. In GFS, the client sends data to all the replicas but the request goes to the 
primary, which is then responsible for scheduling the actual mutations (the separation 
between data flow and control flow mentioned above). This allows the transmission of 
large quantities of data to be optimized independently of the control flow.

In mutations, there is an important distinction between write and record append

operations. writes specify an offset at which mutations should occur, whereas record

appends do not (the mutations are applied at the end of the file wherever this might be 
at a given point in time). In the former case the location is predetermined, whereas in the 
latter case the system decides. Concurrent writes to the same location are not serializable 
and may result in corrupted regions of the file. With record append operations, GFS 
guarantees the append will happen at least once and atomically (that is, as a contiguous 
sequence of bytes); the system does not guarantee, though, that all copies of the chunk 
will be identical (some may have duplicate data). Again, it is helpful to relate this to the 
material in Chapter 18. The replication strategies in Chapter 18 are all general-purpose, 
whereas this strategy is domain-specific and weakens the consistency guarantees, 
knowing the resultant semantics can be tolerated by Google applications and services (a 
further example of domain-specific replication  – the replication algorithm by Xu and 
Liskov [1989] for tuple spaces can be found in Section 6.5.2). 

21.5.2 Chubby

Chubby [Burrows 2006] is a crucial service at the heart of the Google infrastructure 
offering storage and coordination services for other infrastructure services, including 
GFS and Bigtable. Chubby is a multi-faceted service offering four distinct capabilities:

• It provides coarse-grained distributed locks to synchronize distributed activities in 
what is a large-scale, asynchronous environment.

• It provides a file system offering the reliable storage of small files 
(complementing the service offered by GFS).

• It can be used to support the election of a primary in a set of replicas (as needed 
for example by GFS, as discussed in Section 21.5.1 above).

• It is used as a name service within Google.

At first sight, this might appear to contradict the overall design principle of simplicity 
(doing one thing and doing it well). As we unfold the design of Chubby, however, we 
will see that its heart is one core service that is offering a solution to distributed 

consensus and that the other facets emerge from this core service, which is optimized for 
the style of usage within Google.
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We begin our study of Chubby by examining the interface it offers; then we look 
in detail at the architecture of a Chubby system and how this maps onto the physical 
architecture. We conclude the examination by looking in detail at the implementation of 
the consensus algorithm at the heart of Chubby, Paxos.

Chubby interface  •  Chubby provides an abstraction based on a file system, taking the 
view first promoted in Plan 9 [Pike et al. 1993] that every data object is a file. Files are 
organized into a hierarchical namespace using directory structures with names having 
the form of:

/ls/chubby_cell/directory_name/.../file_name

where /ls refers to the lock service, designating that this is part of the Chubby system, 
and chubby_cell is the name of a particular instance of a Chubby system (the term cell

is used in Chubby to denote an instance of the system). This is followed by a series of 
directory names culminating in a file_name. A special name, /ls/local will be resolved 
to the most local cell relative to the calling application or service.

Chubby started off life as a lock service, and the intention was that everything 
would be a lock in the system. However, it quickly became apparent that it would be 
useful to associate (typically small) quantities of data with Chubby entities – we see an 
example of this below when we look at how Chubby is used in primary elections. Thus 
entities in Chubby share the functionality of locks and files; they can be used solely for 
locking, to store small quantities of data or to associate small quantities of data 
(effectively metadata) with locking operations.

A slightly simplified version of the API offered by Chubby is shown in Figure 
21.10. Open and Close are standard operations, with Open taking a named file or 
directory and returning a Chubby handle to that entity. The client can specify various 
parameters associated with the Open, including declaring the intended usage (for 
example, for reading, writing or locking), and permissions checks are carried out at this 
stage using access control lists. Close simply relinquishes use of the handle. Delete is 
used to remove the file or directory (this operation fails if applied to a directory with 
children).

In the role of a file system, Chubby offers a small set of operations for whole-file

reading and writing; these are single operations that return the complete data of the file 
and write the complete data of the file. This whole-file approach is adopted to discourage 
the creation of large files, as this is not the intended use of Chubby. The first operation, 
GetContentsAndStat, returns both the contents of the file and any metadata associated 
with the file (an associated operation, GetStat, just returns the metadata; a ReadDir

operation is also provided to read names and metadata associated with children of a 
directory. SetContents writes the contents of a file and SetACL provides a means to set 
access control list data. The reading and writing of whole files are atomic operations.

In the role of a lock-management tool, the main operations provided are Acquire,
TryAcquire and Release. Acquire and Release correspond to the operations of the same 
name as introduced in Section 16.4; TryAcquire is a non-blocking variant of Acquire.
Note that although locks are advisory in Chubby an application or service must go 
through the proper protocol of acquiring and releasing locks. The developers of Chubby 
did consider an alternative of mandatory locks, whereby locked data is inaccessible to 
all other users and this is enforced by the system, but the extra flexibility and resilience 



Figure 21.10 Chubby API

Role Operation Effect

General Open Opens a given named file or directory and 
returns a handle

Close Closes the file associated with the handle

Delete Deletes the file or directory

File GetContentsAndStat Returns (atomically) the whole file contents 
and metadata associated with the file

GetStat Returns just the metadata

ReadDir Returns the contents of a directory – that is, the 
names and metadata of any children

SetContents Writes the whole contents of a file (atomically)

SetACL Writes new access control list information

Lock Acquire Acquires a lock on a file

TryAquire Tries to acquire a lock on a file

Release Releases a lock
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of advisory locks was preferred, leaving the responsibility of checking for conflicts to 
the programmer [Burrows 2006]. 

Should an application need to protect a file from concurrent access, it can use both 
the roles together, storing data in the file and acquiring locks before accessing this data.

Chubby can also be used to support a primary election in distributed systems – 
that is, the election of one replica as the primary in passive replication management 
(refer back to Sections 15.3 and 18.3.1 for discussions of election algorithms and passive 
replication respectively). First, all candidate primaries attempt to acquire a lock 
associated with the election. Only one will succeed. This candidate becomes the 
primary,S with all other candidates then being secondaries. The primary records its 
victory by writing its identity to the associated file, and other processes can then 
determine the identity of the primary by reading this data. As mentioned above, this is a 
key example of combining the roles of lock and file together for a useful purpose in a 
distributed system. This also shows how primary election can be implemented on top of 
a consensus service as an alternative to the algorithms such as the ring-based approach 
or the bully algorithm introduced in Section 15.3.

Finally, Chubby supports a simple event mechanism enabling clients to register 
when opening a file to receive event messages concerning the file. More specifically, the 
client can subscribe to a range of events as an option in the Open call. The associated 
events are then delivered asynchronously via callbacks. Examples of events include that 
the file contents have been modified, a handle has become invalid, and so on.
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Chubby is very much a cut-down file system programming interface compared to, 
for example, POSIX. Not only does Chubby require read and update operations to apply 
to whole files, but it does not support operations to move files between directories, nor 
does it support symbolic or hard links. Also Chubby maintains only limited metadata 
(related to access control, versioning and a checksum to protect data integrity).

Chubby architecture  •  As mentioned above, a single instance of a Chubby system is 
known as a cell; each cell consists of a relatively small number of replicas (typically 
five) with one designated as the master. Client applications access this set of replicas via 
a Chubby library, which communicates with the remote servers using the RPC service 
described in Section 21.4.1. The replicas are placed at failure-independent sites to 
minimize the potential for correlated failures –  for example, they will not be contained 
within the same rack. All replicas are typically contained within a given physical cluster, 
although this is not required for the correct operation of the protocol and experimental 
cells have been created that span Google data centres.

Each replica maintains a small database whose elements are entities in the Chubby 
namespace – that is, directories and files/locks. The consistency of the replicated 
database is achieved using an underlying consensus protocol (an implementation of 
Lamport’s Paxos algorithm [Lamport 1989, Lamport 1998]) that is based around 
maintaining operation logs (we look at the implementation of this protocol below). As 
logs can become very large over time, Chubby also supports the creation of snapshots –
complete views of system state at a given point of time. Once a snapshot is taken, 
previous logs can be deleted with the consistent state of the system at any point 
determined by the previous snapshot together with the applications of the set of 
operations in the log. This overall structure is shown in Figure 21.11.

A Chubby session is a relationship between a client and a Chubby cell. This is 
maintained using KeepAlive handshakes between the two entities. To improve 
performance, the Chubby library implements client caching, storing file data, metadata 
and information on open handles. In contrast to GFS (with its large, sequential reads and 
appends), client caching is effective in Chubby with its small files that are likely to be 
accessed repeatedly. Because of this caching, the system must maintain consistency 
between a file and a cache as well as between the different replicas of the file. The 
required cache consistency in Chubby is achieved as follows. Whenever a mutation is to 
occur, the associated operation (for example, SetContents) is blocked until all associated 
caches are invalidated (for efficiency, the invalidation requests are piggybacked onto 
KeepAlive replies from the master with the replies sent immediately when an 
invalidation occurs). Cached data is also never updated directly.

The end result is a very simple protocol for cache consistency that delivers 
deterministic semantics to Chubby clients. Contrast this with the client caching regime 
in NFS, for example, where mutations do not result in the immediate updating of cached 
copies, resulting in potentially different versions of files on different client nodes. It is 
also interesting to compare this with the cache consistency protocol in AFS, but we leave 
that as an exercise to the reader (see Exercise 21.7).

This determinism is important for many of the client applications and services that 
use Chubby (for example, Bigtable, as discussed in Section 21.5.3) to store access 
control lists. Bigtable requires consistent update of access control lists, across all 
replicas and in terms of cached copies. Note that it is this determinism that led to the use 



Figure 21.11 Overall architecture of Chubby
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of Chubby as a name server within Google. We mentioned in Section 13.2.3 that the 
DNS allows naming data to become inconsistent. While this is tolerable in the Internet, 
the developers of the Google infrastructure preferred the more consistent view offered 
by Chubby, using Chubby files to maintain name to address mappings.  Burrows [2006] 
discusses this use of Chubby as a name service in more detail. 

Implementing Paxos  •  Paxos is a family of protocols providing distributed consensus 
(see Section 15.5 for a wider discussion of distributed consensus protocols). Consensus 
protocols operate over a set of replicas with the goal of reaching agreement between the 
servers managing the replicas to update to a common value. This is achieved in an 
environment where:

• Replica servers may operate at an arbitrary speed and may fail (and subsequently 
recover).

• Replica servers have access to stable, persistent storage that survives crashes.

• Messages may be lost, reordered or duplicated. They are delivered without 
corruption but may take an arbitrarily long time to be delivered.

Paxos is therefore fundamentally a distributed consensus protocol for asynchronous

systems (see Section 2.4.1) and indeed is the dominant offering in this space. The 
developers of Chubby stress that the above assumptions reflect the true nature of 
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Internet-based systems such as Google and caution practitioners about consensus 
algorithms that make stronger assumptions (for example, algorithms for synchronous 
systems) [Burrows 2006].

Recall from Chapter 15 that it is impossible to guarantee consistency in 
asynchronous systems but that various techniques have been proposed to work around 
this result. Paxos works by ensuring correctness but not liveness –  that is, Paxos is not 
guaranteed to terminate (we return to this issue below once we have looked at the details 
of the algorithm). 

The algorithm was first introduced by Leslie Lamport in 1989 in a paper called 
The Part-Time Parliament, [Lamport 1989, Lamport 1998]. Inspired by his description 
of Byzantine Generals (as discussed in Section 15.5.1), he again presented the algorithm 
with reference to an analogy, this time referring to behaviour of a mythical parliament 
on the Greek island of Paxos. Lamport writes amusingly about the reaction to this 
presentation on his web site [research.microsoft.com].

In the algorithm, any replica can submit a value with the goal of achieving 
consensus on a final value. In Chubby, agreement equates to all replicas having this 
value as the next entry in their update logs, thus achieving a consistent view of the logs 
across all sites. The algorithm is guaranteed to eventually achieve consensus if a 
majority of the replicas run for long enough with sufficient network stability. More 
formally, Kirsch and Amir [2008] present the following liveness properties for Paxos: 

Paxos-L1 (Progress): If there exists a stable majority set of servers, then if a server 
in the set initiates an update, some member of the set eventually executes the update.

Paxos-L2 (Eventual Replication): If server s executes an update and there exists a 
set of servers containing s and r, and a time after which the set does not experience 
any communication or process failures, then r eventually executes the update.

The intuition here is that the algorithm cannot guarantee to reach consistency when the 
network behaves asynchronously but will eventually reach consistency when more 
synchronous (or stable) conditions are experienced.

The Paxos algorithm: The Paxos algorithm proceeds as follows:

Step 1: The algorithm relies on an ability to elect a coordinator for a given consensus 
decision. Recognizing that coordinators can fail, a flexible election process is 
adopted that can result in multiple coordinators coexisting, old and new, with the goal 
of recognizing and rejecting messages from old coordinators. To identify the right 
coordinator, an ordering is given to coordinators through the attachment of a 
sequence number. Each replica maintains the highest sequence number seen so far 
and, if bidding to be a coordinator, will pick a higher unique number and broadcast 
this to all replicas in a propose message. 

It is clearly important that the sequence number picked by a potential 
coordinator is indeed unique,  two (or more) coordinators must not be able to pick the 
same value. Let us assume we have n replicas. A unique sequence number can be 
guaranteed if every replica is assigned a unique identifier, ir, between 0 and n–1, and 
then selects the smallest sequence number s that is larger than any sequence numbers 
seen so far, so that s mod n = ir (for example, if the number of replicas is 5, we look 
at the replica with unique identifier 3 and the last sequence number seen was 20, then 
this replica will pick a sequence number of 23 for its next bid). 
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If other replicas have not seen a higher bidder, they either reply with a promise

message indicating that they promise to not deal with other (that is, older) 
coordinators with lower sequence numbers, or they send a negative 
acknowledgement indicating they will not vote for this coordinator. Each promise

message also contains the most recent value the sender has heard as a proposal for 
consensus; this value may be null if no other proposals have been observed. If a 
majority of promise messages are received, the receiving replica is elected as a 
coordinator, with the majority of replicas supporting this coordinator known as the 
quorum.

Step 2: The elected coordinator must select a value and subsequently send an accept

message with this value to the associated quorum. If any of the promise messages 
contained a value, then the coordinator must pick a value (any value) from the set of 
values it has received; otherwise, the coordinator is free to select its own value. Any 
member of the quorum that receives the accept message must accept the value and 
then acknowledge the acceptance. The coordinator waits, possibly indefinitely in the 
algorithm, for a majority of replicas to acknowledge the accept message.

Step 3: If a majority of replicas do acknowledge, then a consensus has effectively 
been achieved. The coordinator then broadcasts a commit message to notify replicas 
of this agreement. If not, then the coordinator abandons the proposal and starts again.

Note that the terminology above is that used by Google, for example in Chandra et al.
[2007]. In the literature, descriptions of the protocol may use other terminology, for 
example based around the roles of proposers, acceptors, learners and so on.

In the absence of failure, consensus is therefore achieved with the message 
exchanges shown in Figure 21.12. The algorithm is also safe in the presence of failures 
– for example, the failure of a coordinator or of another replica or problems with lost, 
reordered or duplicated or delayed messages, as discussed above. A proof of correctness 
is beyond the scope of this book but relies heavily on the ordering imposed by step 1 
coupled with the fact that, because of the quorum mechanism, if two majorities have 
agreed on a proposed value there must be at least one replica in common that agreed to 
both. The quorum mechanism also ensures correct behaviour if the network partitions, 
since only at most one partition is able to construct a majority.

Returning to the issue of termination, it is possible for Paxos to fail to terminate if 
two proposers compete against each other and indefinitely outbid each other in terms of 
higher and higher sequence numbers. This is consistent with the impossibility result of 
Fischer et al. [1985] concerning absolute guarantees of consensus in asynchronous 
systems. 

Additional implementation issues: In Chubby, it is not sufficient to reach agreement on a 
single value; there is a need to reach agreement on a sequence of values. In practice the 
algorithm must therefore repeat to agree a set of entries in the log. This is referred to as 
Multi-Paxos by Chandra et al. [2007]. In Multi-Paxos certain optimizations are possible, 
including the election of a coordinator for a (potentially long) period of time thus 
avoiding repeated executions of step 1.

The paper by Chandra et al. also discusses the engineering challenges of 
implementing Paxos in a real-world setting, and in particular in the complex distributed 
system setting offered by the Google infrastructure. In this entertaining and instructive 



Figure 21.12 Message exchanges in Paxos (in absence of failures)
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paper, they discuss the challenges of moving from algorithmic description and formal 
proof to making the algorithm operate effectively as part of the Chubby system, 
including dealing with disk corruptions and other contextual events such as system 
upgrades. The paper emphasizes the importance of a stringent testing regime, especially 
for such key building blocks of fault-tolerant systems, resonating with the overall 
Google principle of extensive testing mentioned in Section 21.3.
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21.5.3 Bigtable

GFS offers a system for storing and accessing large ‘flat’ files whose content is accessed 
relative to byte offsets within a file, allowing programs to store large quantities of data 
and perform read and write (especially append) operations optimized for the typical use 
within the organization. While this is an important building block, it is not sufficient to 
meet all of Google’s data needs. There is a strong need for a distributed storage system 
that provides access to data that is indexed in more sophisticated ways related to its 
content and structure. Web search and nearly all of the other Google applications, 
including the crawl infrastructure, Google Earth/Maps, Google Analytics and 
personalized search, use structured data access. Google Analytics, for example, stores 
information on raw clicks associated with users visiting a web site in one table and 
summarizes the analyzed information in a second table. The former is around 200 
terabytes in size and the latter 20 terabytes. (The analysis is carried out using 
MapReduce, described in Section 21.6 below.)

One choice for Google would be to implement (or reuse) a distributed database, 
for example a relational database with a full set of relational operators provided (for 
example, union, selection, projection, intersection and join). But the achievement of 
good performance and scalability in such distributed databases is recognized as a 
difficult problem and, crucially, the styles of application offered by Google do not 
demand this full functionality. Google therefore has introduced Bigtable [Chang et al.
2008], which retains the table model offered by relational databases but with a much 
simpler interface suitable for the style of application and service offered by Google and 
also designed to support the efficient storage and retrieval of quite massive structured 
datasets. We describe this interface in some detail below before looking at the internal 
architecture of Bigtable, highlighting how these properties are achieved.

Bigtable interface  •  Bigtable is a distributed storage system that supports the storage of 
potentially vast volumes of structured data. The name is strongly indicative of what it 
offers, providing storage for what are very big tables (often in the terabyte range). More 
precisely, Bigtable supports the fault-tolerant storage, creation and deletion of tables 
where a given table is a three-dimensional structure containing cells indexed by a row 
key, a column key and a timestamp:

Rows: Each row in a table has an associated row key that is an arbitrary string of up 
to 64 kilobytes in size, although most keys are significantly smaller. A row key is 
mapped by Bigtable to the address of a row. A given row contains potentially large 
amounts of data about a given entity such as a web page. Given that it is common 
within Google to process information about web pages, it is quite common, for 
example, for row keys to be URLs with the row then containing information about 
the resources referenced by the URLs. Bigtable maintains a lexicographic ordering 
of a given table by row key, and this has some interesting repercussions. In particular, 
as we will see below when we examine the underlying architecture, subsequences of 
rows map onto tablets, which are the unit of distribution and placement. Hence it is 
beneficial to manage locality by assigning row keys that will be close or even 
adjacent in the lexicographic order. This implies that URLs may make bad key 
choices, but URLs with the domain portion reversed will provide much stronger 
locality for data accesses because common domains will be sorted together, 
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supporting domain analyses. To illustrate this, consider information stored on the 
BBC web site related to sport. If such information is stored under URLs such as 
www.bbc.co.uk/sports and www.bbc.co.uk/football, then the resultant sort will be 
rather random and dominated by the lexicographic order of early fields. If, however, 
it is stored under uk.co.bbc.www/sport and uk.co.bbc.www/football, the related 
information is likely to be stored in the same tablet. It should be stressed that this key 
assignment is left entirely to the programmer so they must be aware of this (ordering) 
property to exploit the system optimally. To deal with concurrency issues, all 
accesses to rows are atomic (echoing similar design decisions in GFS and Chubby).

Columns: The naming of columns is more structured than that of rows. Columns are 
organized into a number of column families – logical groupings where the data under 
a family tends to be of the same type, with individual columns designated by 
qualifiers within families. In other words, a given column is referred to using the 
syntax family:qualifier, where family is a printable string and qualifier is an arbitrary 
string. The intended use is to have a relatively small number of families for a given 
table but a potentially large number of columns (designated by distinct qualifiers) 
within a family. Using the example from Chang et al. [2008], this can be used to 
structure data associated with web pages, with valid families being the contents, any 
anchors associated with the page and the language that is used in the web page. If a 
family name refers to just one column it is possible to omit the qualifier. For example, 
a web page will have one contents field, and this can be referred to using the key 
name contents:.

Timestamps: Any given cell within Bigtable can also have multiple versions indexed 
by timestamp, where the timestamp is either related to real time or can be an arbitrary 
value assigned by the programmer (for example, a logical time, as discussed in 
Section 14.4, or a version identifier). The various versions are sorted by reverse 
timestamp with the most recent version available first. This facility can be used, for 
example, to store different versions of the same data, including the content of web 
pages, allowing analyses to be carried out over historical data as well as the current 
data. Tables can be set up to apply garbage collection on older versions 
automatically, therefore reducing the burden on the programmer to manage the large 
datasets and associated versions. This three-dimensional table abstraction is 
illustrated in Figure 21.13.

Bigtable supports an API that provides a wide range of operations, including:

• the creation and deletion of tables;

• the creation and deletion of column families within tables;

• accessing data from given rows;

• writing or deleting cell values;

• carrying out atomic row mutations including data accesses and associated write 
and delete operations (more global, cross-row transactions are not supported);

• iterating over different column families, including the use of regular expressions 
to identify column ranges;

• associating metadata such as access control information with tables and column 
families.



Figure 21.13 The table abstraction in Bigtable
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As can be seen, Bigtable is considerably simpler than a relational database but well 
suited to the styles of application within Google. Chang et al.discuss how this interface 
supports the storage of tables of data on web pages (where the rows represent individual 
web pages and the columns represent data and metadata associated with that given web 
page), the storage of both raw and processed data for Google Earth (with rows 
representing geographical segments and columns being different images available for 
that segment), and also data to support Google Analytics (for example, maintaining a 
raw click table where rows represent an end user session and columns the associated 
activity).

The overall architecture of the underlying system is presented below.

Bigtable architecture  •  A Bigtable is broken up into tablets, with a given tablet being 
approximately 100–200 megabytes in size. The main tasks of the Bigtable infrastructure 
are therefore to manage tablets and to support the operations described above for 
accessing and changing the associated structured data. The implementation also has the 
task of mapping the tablet structure onto the underlying file system (GFS) and ensuring 
effective load balancing across the system. As we shall see below, Bigtable makes heavy 
use of both GFS and Chubby for the storage of data and distributed coordination.

A single instance of a Bigtable implementation is known as a cluster, and each 
cluster can store a number of tables. The architecture of a Bigtable cluster is similar to 
that of GFS, consisting of three major components (as shown in Figure 21.14):

• a library component on the client side;

• a master server;

• a potentially large number of tablet servers.



Figure 21.14 Overall architecture of Bigtable
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In terms of scale, Chang et al. report that, as of 2008, 388 production clusters ran across 
multiple Google machine clusters, with an average of around 63 tablet servers per 
cluster but with many being significantly larger (some with more than 500 tablet servers 
per cluster). The number of tablet servers per cluster is also dynamic, and it is common 
to add new tablet servers to the system at runtime to increase throughput.

Two of the key design decisions in Bigtable are identical to those made for GFS. 
Firstly, Bigtable adopts a single master approach, for exactly the same reasons – that is, 
to maintain a centralized view of the state of the system thus supporting optimal 
placement and load-balancing decisions and because of the inherent simplicity in 
implementing this approach. Secondly, the implementation maintains a strict separation 

between control and data with a lightweight control regime maintained by the master 
and data access entirely through appropriate tablet servers, with the master not involved 
at this stage (to ensure maximum throughput when accessing large datasets by 
interacting directly with the tablet servers). In particular, the control tasks associated 
with the master are as follows:

• monitoring the status of tablet servers and reacting to both the availability of new 
tablet servers and the failure of existing ones;

• assigning tablets to tablet servers and ensuring effective load balancing;

• garbage collection of the underlying files stored in GFS.

Bigtable goes further than GFS in that the master is not involved in the core task of 
mapping tablets onto the underlying persistent data (which is, as mentioned above, 
stored in GFS). This means that Bigtable clients do not have to communicate with the 
master at all (compare this with the open operation in GFS, which does involve the 
master), a design decision that significantly reduces the load on the master and the 
possibility of the master becoming a bottleneck. 

We now look at how Bigtable uses GFS for storing its data and uses Chubby in 
rather innovative ways for implementing monitoring and load balancing.
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Data storage in Bigtable: The mapping of tables in Bigtable onto GFS involves several 
stages, as summarized below:

• A table is split into multiple tablets by dividing the table up by row, taking a row 
range up to a size of around 100–200 megabytes and mapping this onto a tablet. 
A given table will therefore consist of multiple tablets depending on its size. As 
tables grow, extra tablets will be added.

• Each tablet is represented by a storage structure that consists of set of files that 
store data in a particular format (the SSTable) together with other storage 
structures implementing logging.

• The mapping from tablets to SSTables is provided by a hierarchical index scheme 
inspired by B+-trees.

We look at the storage representation and mapping in more detail below.
The precise storage representation of a tablet in Bigtable is shown in Figure 21.15

Figure 21.15 The storage architecture in Bigtable
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The main unit of storage in Bigtable is the SSTable (a file format that is also used 
elsewhere in the Google infrastructure). An SSTable is organized as an ordered and 
immutable map from keys to values, with both being arbitrary strings. Operations are 
provided to efficiently read the value associated with a given key and to iterate over a 
set of values in a given key range. The index of an SSTable is written at the end of the 
SSTable file and read into memory when an SSTable is accessed. This means that a 
given entry can be read with a single disk read. An entire SSTable can optionally be 
stored in main memory.

A given tablet is represented by a number of SSTables. Rather than performing 
mutations directly on SSTables, writes are first committed to a log to support recovery 
(see Chapter 17), with the log also held in GFS. The log entries are written through to 
the memtable held in main memory. The SSTables therefore act as a snapshot of the state 
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of a tablet and, on failure, recovery is implemented by replaying the most recent log 
entries since the last snapshot. Reads are serviced by providing a merged view of the 
data from the SSTables combined with the memtable. Different levels of compaction are 
performed on this data structure to maintain efficient operation, as reported in Chang et

al. [2008]. Note that SSTables can also be compressed to reduce the storage 
requirements of particular tables in Bigtable. Users can specify whether tables are to be 
compressed and also the compression algorithm to be used.

As mentioned above, the master is not involved in the mapping from tables to 
stored data. Rather, this is managed by traversing an index based on the concept of B+-
trees (a form of B-tree where all the actual data is held in leaf nodes, with other nodes 
containing indexing data and metadata).

A Bigtable client seeking the location of a tablet starts the search by looking up a 
particular file in Chubby that is known to hold the location of a root tablet – that is, a 
tablet containing the root index of the tree structure. This root tablet contains metadata 
about other tablets – specifically about other metadata tablets, which in turn contain the 
location of the actual data tablets. The root tablet together with the other metadata tablets 
form a metadata table, with the only distinction being that the entries in the root tablet 
contain metadata about metadata tablets, which in turn contain metadata about the actual 
data tablets. With this scheme, the depth of the tree is limited to three. The entries in the 
metadata table map portions of tablets onto location information, including information 
about the storage representation for this tablet (including the set of SSTables and the 
associated log).

This overall structure is represented in Figure 21.16. To shortcut this three-level 
hierarchy, clients cache location information and also prefetched metadata associated 
with other tables when accessing the data structure.

Monitoring: Bigtable uses Chubby in a rather interesting way to monitor tablet servers. 
Bigtable maintains a directory in Chubby containing files representing each of the 
available tablet servers. When a new tablet server comes along, it creates a new file in 
this directory and, crucially, obtains an exclusive lock on this file. The existence of this 
file acts as the flag that the tablet server is fully operational and ready to be assigned 
tablets by the master, with the lock providing a means of communication between the 
two parties:

From the tablet server side: every tablet server monitors its exclusive lock and, if this 
is lost, it stops serving its tablets. This is most likely due to a network partition that 
compromises the Chubby session. The tablet server will attempt to reacquire the 
exclusive lock if the file still exists (see below), and if the file disappears, the server 
terminates itself. If a server terminates for another reason, for example because it is 
informed that its machine is needed for another purpose, the tablet server can 
surrender its exclusive lock, thus triggering a reassignment. 

From the master side: the master periodically requests the status of the lock. If the 
lock is lost or if a tablet server does not respond, then clearly there is a problem either 
with the tablet server or with Chubby. The master attempts to acquire the lock, and if 
it succeeds it can infer that Chubby is alive and that the problem rests with the tablet 
server. The master then deletes the file from the directory, which will result in the 
tablet server terminating itself if it has not already failed. The master then must 
reassign all of that server’s tablets to alternative tablet servers.



Figure 21.16 The hierarchical indexing scheme adopted by Bigtable
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The rationale is to reuse Chubby, which is a well-tested and reliable service, to achieve 
the extra level of monitoring rather than providing a specific monitoring service 
specifically for this purpose.

Load balancing: To assign tablets, the master must map the available tablets in the cluster 
to appropriate tablet servers. From the algorithm above, the master has an accurate list 
of tablet servers that are ready and willing to host tablets and a list of all the tablets 
associated with the cluster. The master also maintains the current mapping information 
together with a list of unassigned tablets (which is populated, for example, when a tablet 
server is removed from the system). By having this global view of the system, the master 
ensures unassigned tablets are assigned to appropriate tablet servers based on responses 
to load requests, updating the mapping information accordingly. 

Note that a master also has an exclusive lock of its own (the master lock), and if 
this is lost due to the Chubby session being compromised, the master must terminate 
itself (again, reusing Chubby to implement additional functionality). This does not stop 
access to data but rather prevents control operations from proceeding. Bigtable is 
therefore still available at this stage. When the master restarts, it must retrieve the 
current status. It does this by first creating a new file and obtaining the exclusive lock 
ensuring it is the only master in the cluster, and then working through the directory to 
find tablet servers, requesting information on tablet assignments from the tablet servers 
and also building a list of all tablets under its responsibility to infer unassigned tablets. 
The master then proceeds with its normal operation.
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21.5.4 Summary of key design choices

The overall design choices relating to data storage and coordination services are 
summarized in Figure 21.17

Figure 21.17 Summary of design choices related to data storage and coordination

Element Design choice Rationale Trade-offs

GFS The use of a large 
chunk size (64 
megabytes)

Suited to the size of files in GFS; 
efficient for large sequential 
reads and appends; minimizes the 
amount of metadata

Would be very inefficient 
for random access to small 
parts of files

The use of a 
centralized master

The master maintains a global 
view that informs management 
decisions; simpler to implement

Single point of failure 
(mitigated by maintaining 
replicas of operations logs)

Separation of control 
and data flows

High-performance file access 
with minimal master 
involvement

Complicates the client 
library as it must deal with 
both the master and 
chunkservers

Relaxed consistency 
model

High performance, exploiting 
semantics of the GFS operations

Data may be inconsistent, 
in particular duplicated

Chubby Combined lock and 
file abstraction

Multipurpose, for example 
supporting elections

Need to understand and 
differentiate between 
different facets 

Whole-file reading 
and writing

Very efficient for small files Inappropriate for large 
files

Client caching with 
strict consistency

Deterministic semantics Overhead of maintaining 
strict consistency

Bigtable The use of a table 
abstraction

Supports structured data 
efficiently

Less expressive than a 
relational database

The use of a 
centralized master

As above, master has a global 
view; simpler to implement

Single point of failure; 
possible bottleneck

Separation of control 
and data flows

High-performance data access 
with minimal master 
involvement

-

Emphasis on 
monitoring and load 
balancing

Ability to support very large 
numbers of parallel clients

Overhead associated with 
maintaining global states

.

The most striking feature emerging from this analysis is the design choice of 
providing three separate services that individually are relatively simple and targeted 
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towards a given style of usage but together provide excellent coverage for the needs of 
Google applications and services. This is most evident from the complementary styles 
offered by GFS and Chubby, with Bigtable then providing structured data building on 
the services offered by both the underlying services. This design choice also echoes the 
approach adopted for communication paradigms (see Section 21.4.3) whereby multiple 
techniques are offered, each optimized for the intended style of application.

21.6 Distributed computation services

To complement the storage and coordination services, it is also important to support 
high-performance distributed computation over the large datasets stored in GFS and 
Bigtable. The Google infrastructure supports distributed computation through the 
MapReduce service and also the higher-level Sawzall language. We look at MapReduce 
in detail and then briefly examine the key features of the Sawzall language.

21.6.1 MapReduce

Given the huge datasets in use at Google, it is a strong requirement to be able to carry 
out distributed computation by breaking up the data into smaller fragments and carrying 
out analyses of such fragments in parallel, making use of the computational resources 
offered by the physical architecture described in Section 21.3.1. Such analyses include 
common tasks such as sorting, searching and constructing inverted indexes (indexes that 
contain a mapping from words to locations in different files, this being key in 
implementing search functions). MapReduce [Dean and Ghemawat 2008] is a simple 
programming model to support the development of such applications, hiding underlying 
detail from the programmer including details related to the parallelization of the 
computation, monitoring and recovery from failure, data management and load 
balancing onto the underlying physical infrastructure.

We look at details of the programming model offered by MapReduce before 
examining how the system is implemented. 

MapReduce interface  •  The key principle behind MapReduce is the recognition that 
many parallel computations share the same overall pattern – that is:

• break the input data into a number of chunks;

• carry out initial processing on these chunks of data to produce intermediary 
results;

•  combine the intermediary results to produce the final output.

The specification of the associated algorithm can then be expressed in terms of two 
functions, one to carry out the initial processing and the second to produce the final 
results from the intermediary values. It is then possible to support multiple styles of 
computation by providing different implementations of these two functions. Crucially, 
by factoring out these two functions, the rest of the functionality can be shared across 
the different computations, thus achieving huge reductions in complexity in 
constructing such applications.
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More specifically, MapReduce specifies a distributed computation in terms of two 
functions, map and reduce (an approach partially influenced by the design of functional 
programming languages such as Lisp, which provide functions of the same name, 
although in functional programming the motivation is not parallel computation):

• map takes a set of key-value pairs as input and produces a set of intermediary key-
value pairs as output.

• The intermediary pairs are then sorted by key value so that all intermediary results 
are ordered by intermediary key. This is broken up into groups and passed to 
reduce instances, which carry out their processing to produce a list of values for 
each group (for some computations, this could be a single value).

To illustrate the operation of MapReduce, let us consider a simple example. In section 
21.2, we illustrated the various aspects of a web search for ‘distributed systems book’
Let us simplify this further by just searching for this complete string – that is, a search 
for the phrase ‘distributed systems book’ as it appears in a large body of content such as 
the crawled contents of the Web. In this example, the map and reduce functions would 
perform the following tasks:

• Assuming it is supplied with a web page name and its contents as input, the map

function searches linearly through the contents, emitting a key-value pair 
consisting of (say) the phrase followed by the name of the web document 
containing this phrase wherever it finds the strings ‘distributed’ followed by 
‘system’ followed by ‘book’ (the example can be extended to also emit a position 
within the document).

• The reduce function is in this case is trivial, simply emitting the intermediary 
results ready to be collated together into a complete index.

The MapReduce implementation is responsible for breaking the data into chunks, 
creating multiple instances of the map and reduce functions, allocating and activating 
them on available machines in the physical infrastructure, monitoring the computations 
for any failures and implementing appropriate recovery strategies, despatching 
intermediary results and ensuring optimal performance of the whole system.

With this approach, it is possible to make significant savings in terms of lines of 
code by reusing the underlying MapReduce framework. For example, Google 
reimplemented the main production indexing system in 2003 and reduced the number of 
lines of C++ code in MapReduce from 3,800 to 700 – a significant reduction, albeit in a 
relatively small system. This also results in other key benefits, including making it easier 
to update algorithms as there is a clean separation of concerns between what is 
effectively the application logic and the associated management of the distributed 
computation (a similar principle to the separation of concerns intrinsic to container-
based systems, as reported in Section 8.4). In addition, improvements to the underlying 
MapReduce implementation immediately benefit all MapReduce applications. The 
downside is a more prescriptive framework, albeit one that can be customized by 
specifying the map and reduce and indeed other functions, as will become apparent 
below.



958 CHAPTER 21  DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

To further illustrate the use of MapReduce, we provide in Figure 21.18

Figure 21.18 Examples of the use of MapReduce

Function Initial step Map phase Intermediate step Reduce phase

Word count

Partition data 

into fixed-size 

chunks for 

processing

For each occurrence of 
word in data partition, 
emit <word, 1>

Merge/sort all 

key-value keys 

according to their 

intermediary key

For each word in 
the intermediary 
set, count the 
number of 1s

Grep Output a line if it 
matches a given pattern

Null

Sort
N.B. This 

relies heavily 

on the 

intermediate 

step

For each entry in the 
input data, output the 
key-value pairs to be 
sorted

Null

Inverted 

index

Parse the associated 
documents and output 
a <word, document 
ID> pair wherever that 
word exists

For each word, 
produce a list of 
(sorted) 
document IDs

 a set of 
examples of common functions and how they would be implemented using map and
reduce functions. The shared steps in the computation performed by the MapReduce 
framework are also shown for completeness. Further details of these examples can be 
found in Dean and Ghemawat [2004].

MapReduce architecture  •  MapReduce is implemented by a library that, as mentioned 
above, hides the details associated with parallelization and distribution and allows the 
programmer to focus on specifying the map and reduce functions. This library is built 
on top of other aspects of the Google infrastructure, in particular using RPC for 
communication and GFS for the storage of intermediary values. It is also common for 
MapReduce to take its input data from Bigtable and produce a table as a result, for 
example as with the Google Analytics example mentioned above (Section 21.5.3). 

The overall execution of a MapReduce program is captured in Figure 21.19 which 
shows the key phases involved in execution:

• The first stage is to split the input file into M pieces, with each piece being 
typically 16–64 megabytes in size (therefore no bigger than a single chunk in 
GFS). The actual size is tunable by the programmer and therefore the programmer 
is able to optimize this for the particular parallel processing to follow. The key 
space associated with the intermediary results is also partitioned into R pieces 
using a (programmable) partition function. The overall computation therefore 
involves M map executions and R reduce executions.



Figure 21.19 The overall execution of a MapReduce program
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• The MapReduce library then starts a set of worker machines (workers) from the 
pool available in the cluster, with one being designated as the master and others 
being used for executing map or reduce steps. The number of workers is normally 
much less than M+R. For example, Dean and Ghemawat [2008] report on typical 
figures of M=200,000, R=5000  with 2000 worker machines allocated to the task. 
The goal of the master is to monitor the state of workers and allocate idle workers 
to tasks, the execution of map or reduce functions. More precisely, the master 
keeps track of the status of map and reduce tasks in terms of being idle, in-

progress or completed and also maintains information on the location of 
intermediary results for passing to workers allocated a reduce task.

• A worker that has been assigned a map task will first read the contents of the input 
file allocated to that map task, extract the key-value pairs and supply them as input 
to the map function. The output of the map function is a processed set of key/value 
pairs that are held in an intermediary buffer. As the input data is stored in GFS, 
the file will be replicated on (say) three machines. The master attempts to allocate 
a worker on one of these three machines to ensure locality and minimize the use 
of network bandwidth. If this is not possible, a machine near the data will be 
selected.

• The intermediary buffers are periodically written to a file local to the map 
computation. At this stage, the data are partitioned according to the partition 
function, resulting in R regions. This partition function, which is crucial to the 
operation of MapReduce, can be specified by the programmer, but the default is 
to perform a hash function on the key and then apply modulo R to the hashed value 
to produce R partitions, with the end result that intermediary results are grouped 
according to the hash value. Dean and Ghemawat [2004] provide the alternative 
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example where keys are URLs and the programmer wants to group intermediary 
results by the associated host: hash(Hostname(key)) mod R. The master is notified 
when partitioning has completed and is then able to request the execution of 
associated reduce functions.

• When a worker is assigned to carry out a reduce function, it reads its 
corresponding partition from the local disk of the map workers using RPC. This 
data is sorted by the MapReduce library ready for processing by the reduce

function. Once sorting is completed, the reduce worker steps through the key-
value pairs in the partition applying the reduce function to produce an 
accumulated result set, which is then written to an output file. This continues until 
all keys in the partition are processed.

Achieving fault tolerance: The MapReduce implementation provides a strong level of 
fault tolerance, in particular guaranteeing that if the map and reduce operations are 
deterministic with respect to their inputs (that is they always produce the same outputs 
for a given set of inputs), then the overall MapReduce task will produce the same output 
as a sequential execution of the program, even in the face of failures.

To deal with failure, the master sends a ping message periodically to check that a 
worker is alive and carrying out its intended operation. If no response is received, it is 
assumed that the worker has failed and this is recorded by the master. The subsequent 
action then depends on whether the task executing was a map or a reduce task:

• If the worker was executing a map task, this task is marked as idle, implying it will 
then be rescheduled. This happens irrespective of whether the associated task is in 
progress or completed. Remember that results are stored on local disks, and hence 
if the machine has failed the results will be inaccessible.

• If the worker was executing a reduce task, this task is marked as idle only if it was 
still in progress; if it is completed, the results will be available as they are written 
to the global (and replicated) file system.

Note that to achieve the desired semantics, it is important that the outputs from map and 
reduce tasks are written atomically, a property ensured by the MapReduce library in 
cooperation with the underlying file system. Details of how this is achieved can be found 
in Dean and Ghemawat [2008].

MapReduce also implements a strategy to deal with workers that may be taking a 
long time to complete (known as stragglers). Google has observed that it is relatively 
common for some workers to run slowly, for example because of a faulty disk that may 
perform badly due to a number of error-correction steps involved in data transfers. To 
deal with this, when a program execution is close to completion, the master routinely 
starts backup workers for all remaining in-progress tasks. The associated tasks are 
marked as completed when either the original or the new worker completes. This is 
reported as having a significant impact on completion times, again circumventing the 
problem of working with commodity machines that can and do fail.

As mentioned above, MapReduce is designed to operate together with Bigtable in 
processing large volumes of structured data. Indeed, within Google it is common to find 
applications that use a mix of all the infrastructural elements. In the box on page 961,
we describe the support provided to the Google Maps and Google Earth applications by 
MapReduce, Bigtable and GFS.



Supporting Google Maps and Google Earth

Client programs for Google Maps [maps.google.com] and Google Earth 
[earth.google.com] rely on the availability of huge sets of image tiles for loading by 
the clients from Google servers. Image tiles are square arrays of pixel values 
containing rendered images of geographic features and are organized in layers 
holding different types of geographic features. A base layer of tiles showing a street 
map is built from an up-to-date geographic database and another layer is built from 
scaled satellite and aerial images showing physical characteristics of the Earth’s 
surface. Other partially transparent layers are also held and can be called up to show 
public transport networks and other infrastructure features, elevation contours and 
even real-time traffic flows. The tile sets for each layer cover the Earth’s entire land 
surface and are replicated to show different levels of detail at up to 20 zoom levels 
(i.e., scales). 

Much of the basic geographic data changes only slowly, but data defining new 
and changed roads and other physical infrastructure becomes available all the time 
and the consequent regeneration of tile sets calls for a high-performance distributed 
application running on Google servers that converts geographic vectors, points and 
raw image data to tiles. The implementation makes heavy use of Bigtable to store the 
underlying data. The basic geographic data is stored in an XML format known as 
Keyhole Markup Language or KML ( Keyhole being the name of the company that 
first developed the software, acquired by Google in 2004). Raw vector and image 
data are received in many formats and resolutions from a variety of sources, 
including satellite and airborne imagery, and are stored with KML metadata in a 
single table where the rows represent particular geographical locations and the 
columns represent different geographic features and raw images, organized in 
families of columns. The naming scheme for rows ensures that physical features that 
are close together are stored in adjacent rows so that the data needed to generate each 
tile will lie in one tablet, or not more than a small number of them. This table is 
around 70 terabytes in size and has nine billion cells. It is relatively sparse as there 
are normally few features or images per geographical location.

Data are continually added to the table as more geographic data and imagery 
become available. At selected time points, the addition of data is suspended and a tile 
update begins. A set of concurrent Map processes (as in MapReduce) work on the 
raw data to transform and correct all the georeferencing coordinates for the flat 
presentation of the data and to blend the images together. This Map stage generates 
a table structure containing locally sorted geographic data that is passed to a set of 
concurrent Reduce processes that render tiles as raster images. The entire 
MapReduce task takes around 8 hours to generate a complete set of tiles processing 
raw data at around 1 megabyte per second [Chang et al. 2008].

The resultant image tiles are stored in GFS, with an associated index stored in 
another table in Bigtable. This table is heavily replicated across hundreds of tablet 
servers on clusters at several data centres, thus enabling it to serve the very large 
numbers of concurrent users of Google Maps and Google Earth. The index is around 
500 gigabytes in size and significant portions are held in main memory, reducing the 
latency associated with reads.
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21.6.2 Sawzall

Sawzall [Pike et al. 2005] is an interpreted programming language for performing 
parallel data analysis over very large datasets in highly distributed environments such as 
that provided by the physical The Google infrastructure. Although MapReduce readily 
supports the construction of such highly parallel and distributed programs, the goal of 
Sawzall is to simplify the construction of such programs. This is borne out in practice, 
with Sawzall programs often being 10 to 20 times smaller than the equivalent programs 
written for MapReduce [Pike et al. 2005]. The implementation of the Sawzall language 
builds on much of the existing The Google infrastructure, making use of MapReduce to 
create and manage the underlying parallel executions, of GFS to store data associated 
with the computation and of protocol buffers to provide a common data format for stored 
records.

Like MapReduce, Sawzall assumes that parallel computations follow a given 
pattern, which we have summarized in Figure 21.20

Figure 21.20 The overall execution of a Sawzall program

Filter

Filter

Filter

Raw data

Aggregator

Emitted data

Results

. Sawzall assumes that the input to 
a computation consists of raw data, which in turn consists of a set of records to be 
processed. Computations then proceed by executing filters, which process each record 
in parallel, producing emitted results. Aggregators take the emitted data and produce the 
overall results of the computation.

Sawzall also makes two assumptions about the execution of filters and 
aggregators:

• The execution of filters and aggregators should be commutative across all records; 
that is, filters can be executed in any order and the result will be the same.

• The aggregator operations should be associative. That is the (implicit) parentheses 
in execution do not matter, allowing more degrees of freedom in execution.

As might be expected from examining MapReduce, Sawzall programs that express the 
filter operations and data emissions run in the map phase of MapReduce, with 
aggregators corresponding to the reduce phase. A set of predefined aggregators are 
provided by the language, including aggregators that carry out a summation of all the 
emitted values (sum) or build a collection of all the emitted values (collection). Other 
aggregators are more statistical, for example constructing a cumulative probability 
distribution (quantile) or estimating the values that are most common (top). It is also 



SECTION 21.6 DISTRIBUTED COMPUTATION SERVICES 963

possible for a programmer to develop new aggregators, although this is expected to be 
relatively rare.

We illustrate the use of Sawzall by a single, simple example from Pike et al.
[2005] illustrating the above features:

count:  table  sum  of  int;

total:  table  sum  of  float;

x:  float  =  input;

emit  count  <-  1; 

emit  total  <-  x;

Figure 21.21 Summary of design choices related to distributed computation)

Element Design choice Rationale Trade-offs

MapReduce The use of a 
common 
framework

Hides details of parallelization and 
distribution from the programmer; 
improvements to the infrastructure 
immediately exploited by all 
MapReduce applications

Design choices within 
the framework may not 
be appropriate for all 
styles of distributed 
computation

Programming of 
system via two 
operations, map

and reduce

Very simple programming model 
allowing rapid development of 
complex distributed computations

Again, may not be 
appropriate for all 
problem domains

Inherent support 
for fault-tolerant 
distributed 
computations

Programmer does not need to worry 
about dealing with faults 
(particularly important for long-
running tasks running over a physical 
infrastructure where failures are 
expected)

Overhead associated 
with fault-recovery 
strategies

Sawzall Provision of a 
specialized
programming 
language for 
distributed 
computation

Again, support for rapid 
development of often complex 
distributed computations with 
complexity hidden from the 
programmer (even more so than with 
MapReduce)

Assumes that programs 
can be written in the 
style supported (in 
terms of filters and 
aggregators)

This program takes as input simple records of type float (a stream of values accessed 
through the local variable x). The program also defines two aggregators introduced with 
the keyword table, with the added keyword sum indicating that these are summation 
aggregators (this keyword could equally have been one of collection, quantile or top, for 
example). The calls of emit produce a stream of values that are processed by the 
aggregators producing the desired results (in this case, a count of all the values in the 
input stream together with a sum of all these values).

A full description of the Sawzall language and further examples can be found in 
Pike et al.
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21.6.3 Summary of key design choices

The overall design choices relating to MapReduce and Sawzall are summarized in 
Figure 21.21.

The overall benefits in both approaches stem from encouraging a particular style 
of distributed computation and then providing common infrastructure to enable efficient 
implementation of systems developed using this style. This approach has been 
demonstrated to be effective right across Google applications and services, including 
support of the core search functionality and in the demanding area of supporting cloud 
applications such as Google Earth.

This work has sparked an interesting debate in the data management community 
as to whether such abstractions are sufficient for all classes of application. For an insight 
into this debate, refer to papers by Dean and Ghemawat [2010] and Stonebraker at al.
[2010] in Communications of the ACM.

21.7 Summary

This chapter concludes the book by addressing the key issue of how one very large 
Internet enterprise has approached the design of a distributed system to support a 
demanding set of real-world applications. This is a very challenging topic and one that 
requires a thorough understanding of the technological choices available to distributed 
systems developers at all levels of system development, including communication 
paradigms, available services and associated distributed algorithms. The inevitable 
trade-offs associated with the design choices demand a thorough understanding of the 
application domain.

The approach taken in this chapter is to highlight the art of distributed systems 
design through a substantial case study – that is, the examination of the design of the 
underlying Google infrastructure, the platform and middleware used by Google to 
support its search engine and expanding set of applications and services. This is a 
compelling case study as it addresses what is the most complex and large-scale 
distributed system ever constructed, and one that has demonstrably met its design 
requirements.

This case study examined the overall architecture of the system together with in-
depth studies of the key underlying services – specifically, protocol buffers, the publish-
subscribe service, GFS, Chubby, Bigtable, MapReduce and Sawzall – which all work 
together to support complex distributed applications and services including the core 
search engine and Google Earth. One key lesson to be taken from this case study is the 
importance of really understanding your application domain, deriving a core set of 
underlying design principles and applying them consistently. In the case of Google, this 
manifests itself in a strong advocacy of simplicity and low-overhead approaches 
coupled with an emphasis on testing, logging and tracing. The end result is an 
architecture that is highly scalable, reliable, high performance and open in terms of 
supporting new applications and services.

The Google infrastructure is one of a number of middleware solutions for cloud 
computing that have emerged in recent years (albeit only fully available within Google). 
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Other solutions include the Amazon Web Services (AWS) [aws.amazon.com],
Microsoft’s Azure [www.microsoft.com IV] and open source solutions including 
Hadoop (which includes an implementation of MapReduce) [hadoop.apache.org],
Eucalyptus [open.eucalyptus.com], the Google App Engine (available externally and 
providing a window on some but not all of the functionality offered by the Google 
infrastructure) [code.google.com IV] and Sector/Sphere [sector.sourceforge.net].
OpenStreetMap [www.openstreetmap.org], an open alternative to Google Maps that 
operates in a similar manner using voluntarily developed software and non-commercial 
servers, has also been developed. Details of these implementations are generally 
available and the reader is encouraged to study a selection of these architectures, 
comparing the design choices with those presented in the above case study.

Beyond that, there is a real paucity of published case studies related to distributed 
systems design, and this is a pity given the potential educational value of studying 
overall distributed systems architectures and their associated design principles. The 
main contribution of this chapter is therefore to provide a first in-depth case study 
illustrating the complexities of designing and implementing a complete distributed 
system solution.
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EXERCISES

21.1 To what extent is Google now a cloud provider company? Refer to the definition from 
Chapter 1, repeated in Section 21.2 above. Chapter 1, page 921

21.2 The key requirements for the Google infrastructure are scalability, reliability, 
performance and openness. Provide three example of where these requirements might 
be in conflict and discuss how Google deals with these potential conflicts. page 924

21.3 A specification of a Person structure in XML was presented in Chapter 4 (Figure 4.12). 
Rewrite this specification using protocol buffers. Chapter 4, page 929

21.4 Discuss the extent to which the RPC style supported by protocol buffers enhances 
extensibility (especially the design decision to have one argument and one result).

page 931

21.5 Explain why the Google infrastructure supports three separate data storage facilities. 
Why does Google not just adopt a commercial distributed database instead of utilizing 
the three separate services? page 935

21.6 Both GFS and Bigtable make the same core design choice – to have a single master. 
What are the repercussions of a failure of this single master in each case?

pages 937-938, 950-952

21.7 In Section 21.5.2, we compared the cache consistency approach in Chubby with NFS, 
concluding that NFS offers much weaker semantics in terms of seeing different versions 
of files on different nodes. Perform a similar comparison between the cache consistency 
approaches adopted in Chubby and AFS. Section 12.1.3, pages 943–944

21.8 As described in Section 21.5.2, the implementation of Paxos depends on the generation 
of increasing and globally unique sequence numbers. This section also described a 
possible implementation. Describe an alternative approach to implementing such 
sequence numbers. pages 945–946

21.9 Figure 21.18 lists a number of possible applications of MapReduce. Describe one other 
possible application and sketch out how this would be implemented in MapReduce, 
providing in particular outline implementations of the map and reduce functions.

page 958

21.10 Provide an example of a distributed computation that would be difficult to implement in 
MapReduce, giving full reasons for your answer. page 958
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