

This page intentionally left blank

DISTRIBUTED SYSTEMS
Concepts and Design
Fifth Edition

This page intentionally left blank

DISTRIBUTED SYSTEMS
Concepts and Design
Fifth Edition

George Coulouris

Cambridge University

Jean Dollimore
formerly of Queen Mary,

University of London

Tim Kindberg

matter 2 media

Gordon Blair

Lancaster University

Editorial Director: Marcia Horton

Editor-in-Chief: Michael Hirsch

Executive Editor: Matt Goldstein

Editorial Assistant: Chelsea Bell

Vice President, Marketing: Patrice Jones

Marketing Manager: Yezan Alayan

Marketing Coordinator: Kathryn Ferranti

Vice President, Production: Vince O’Brien

Managing Editor: Jeff Holcomb

Senior Production Project Manager: Marilyn Lloyd

Senior Operations Supervisor: Alan Fischer

Manufacturing Buyer: Lisa McDowell

Art Director: Jayne Conte

Cover Designer: Suzanne Duda

Cover Image: Sky: © amygdala_imagery; Kite: © Alamy;

Mobile phone: © yasinguneysu/iStock

Media Editor: Daniel Sandin

Media Project Manager: Wanda Rockwell

Printer/Binder: Edwards Brothers

Cover Printer: Lehigh-Phoenix Color

Typesetting and layout by the authors using FrameMaker

ISBN 10: 0-13-214301-1

ISBN 13: 978-0-13-214301-1

Copyright © 2012, 2005, 2001, 1994, 1988 Pearson Education, Inc., publishing as Addison-Wesley. All

rights reserved. Manufactured in the United States of America. This publication is protected by Copyright,

and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a

retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,

recording, or likewise. To obtain permission(s) to use material from this work, please submit a written

request to Pearson Education, Inc., Permissions Department, 501 Boylston Street, Suite 900, Boston,

Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trade-

marks. Where those designations appear in this book, and the publisher was aware of a trademark claim,

the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request

Impression 1

10 9 8 7 6 5 4 3 2 1—EB—15 14 13 12 11

 V

CONTENTS

PREFACE XI

1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS 1

1.1 Introduction 2

1.2 Examples of distributed systems 3

1.3 Trends in distributed systems 8

1.4 Focus on resource sharing 14

1.5 Challenges 16

1.6 Case study: The World Wide Web 26

1.7 Summary 33

2 SYSTEM MODELS 37

2.1 Introduction 38

2.2 Physical models 39

2.3 Architectural models 40

2.4 Fundamental models 61

2.5 Summary 76

3 NETWORKING AND INTERNETWORKING 81

3.1 Introduction 82

3.2 Types of network 86

3.3 Network principles 89

3.4 Internet protocols 106

3.5 Case studies: Ethernet, WiFi and Bluetooth 128

3.6 Summary 141

VI CONTENTS

4 INTERPROCESS COMMUNICATION 145

4.1 Introduction 146

4.2 The API for the Internet protocols 147

4.3 External data representation and marshalling 158

4.4 Multicast communication 169

4.5 Network virtualization: Overlay networks 174

4.6 Case study: MPI 178

4.7 Summary 181

5 REMOTE INVOCATION 185

5.1 Introduction 186

5.2 Request-reply protocols 187

5.3 Remote procedure call 195

5.4 Remote method invocation 204

5.5 Case study: Java RMI 217

5.6 Summary 225

6 INDIRECT COMMUNICATION 229

6.1 Introduction 230

6.2 Group communication 232

6.3 Publish-subscribe systems 242

6.4 Message queues 254

6.5 Shared memory approaches 262

6.6 Summary 274

7 OPERATING SYSTEM SUPPORT 279

7.1 Introduction 280

7.2 The operating system layer 281

7.3 Protection 284

7.4 Processes and threads 286

7.5 Communication and invocation 303

7.6 Operating system architecture 314

7.7 Virtualization at the operating system level 318

7.8 Summary 331

CONTENTS VII

8 DISTRIBUTED OBJECTS AND COMPONENTS 335

8.1 Introduction 336

8.2 Distributed objects 337

8.3 Case study: CORBA 340

8.4 From objects to components 358

8.5 Case studies: Enterprise JavaBeans and Fractal 364

8.6 Summary 378

9 WEB SERVICES 381

9.1 Introduction 382

9.2 Web services 384

9.3 Service descriptions and IDL for web services 400

9.4 A directory service for use with web services 404

9.5 XML security 406

9.6 Coordination of web services 411

9.7 Applications of web services 413

9.8 Summary 419

10 PEER-TO-PEER SYSTEMS 423

10.1 Introduction 424

10.2 Napster and its legacy 428

10.3 Peer-to-peer middleware 430

10.4 Routing overlays 433

10.5 Overlay case studies: Pastry, Tapestry 436

10.6 Application case studies: Squirrel, OceanStore, Ivy 449

10.7 Summary 458

11 SECURITY 463

11.1 Introduction 464

11.2 Overview of security techniques 472

11.3 Cryptographic algorithms 484

11.4 Digital signatures 493

11.5 Cryptography pragmatics 500

11.6 Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi 503

11.7 Summary 518

VIII CONTENTS

12 DISTRIBUTED FILE SYSTEMS 521

12.1 Introduction 522

12.2 File service architecture 530

12.3 Case study: Sun Network File System 536

12.4 Case study: The Andrew File System 548

12.5 Enhancements and further developments 557

12.6 Summary 563

13 NAME SERVICES 565

13.1 Introduction 566

13.2 Name services and the Domain Name System 569

13.3 Directory services 584

13.4 Case study: The Global Name Service 585

13.5 Case study: The X.500 Directory Service 588

13.6 Summary 592

14 TIME AND GLOBAL STATES 595

14.1 Introduction 596

14.2 Clocks, events and process states 597

14.3 Synchronizing physical clocks 599

14.4 Logical time and logical clocks 607

14.5 Global states 610

14.6 Distributed debugging 619

14.7 Summary 626

15 COORDINATION AND AGREEMENT 629

15.1 Introduction 630

15.2 Distributed mutual exclusion 633

15.3 Elections 641

15.4 Coordination and agreement in group communication 646

15.5 Consensus and related problems 659

15.6 Summary 671

CONTENTS IX

16 TRANSACTIONS AND CONCURRENCY CONTROL 675

16.1 Introduction 676

16.2 Transactions 679

16.3 Nested transactions 690

16.4 Locks 692

16.5 Optimistic concurrency control 707

16.6 Timestamp ordering 711

16.7 Comparison of methods for concurrency control 718

16.8 Summary 720

17 DISTRIBUTED TRANSACTIONS 727

17.1 Introduction 728

17.2 Flat and nested distributed transactions 728

17.3 Atomic commit protocols 731

17.4 Concurrency control in distributed transactions 740

17.5 Distributed deadlocks 743

17.6 Transaction recovery 751

17.7 Summary 761

18 REPLICATION 765

18.1 Introduction 766

18.2 System model and the role of group communication 768

18.3 Fault-tolerant services 775

18.4 Case studies of highly available services:

The gossip architecture, Bayou and Coda 782

18.5 Transactions with replicated data 802

18.6 Summary 814

19 MOBILE AND UBIQUITOUS COMPUTING 817

19.1 Introduction 818

19.2 Association 827

19.3 Interoperation 835

19.4 Sensing and context awareness 844

19.5 Security and privacy 857

19.6 Adaptation 866

19.7 Case study: Cooltown 871

19.8 Summary 878

X CONTENTS

20 DISTRIBUTED MULTIMEDIA SYSTEMS 881

20.1 Introduction 882

20.2 Characteristics of multimedia data 886

20.3 Quality of service management 887

20.4 Resource management 897

20.5 Stream adaptation 899

20.6 Case studies: Tiger, BitTorrent and End System Multicast 901

20.7 Summary 913

21 DESIGNING DISTRIBUTED SYSTEMS:
GOOGLE CASE STUDY 915

21.1 Introduction 916

21.2 Introducing the case study: Google 917

21.3 Overall architecture and design philosophy 922

21.4 Underlying communication paradigms 928

21.5 Data storage and coordination services 935

21.6 Distributed computation services 956

21.7 Summary 964

REFERENCES 967

INDEX 1025

 XI

PREFACE

New to the fifth edition

New chapters:

Indirect Communication: Covering group communication, publish-subscribe and
case studies on JavaSpaces, JMS, WebSphere and Message Queues.

Distributed Objects and Components: Covering component-based middleware and
case studies on Enterprise JavaBeans, Fractal and CORBA.

Designing Distributed Systems: Devoted to a major new case study on the Google
infrastructure.

Topics added to other chapters: Cloud computing, network virtualization, operating
system virtualization, message passing interface, unstructured peer-to-peer, tuple
spaces, loose coupling in relation to web services.

Other new case studies: Skype, Gnutella, TOTA, L2imbo, BitTorrent, End System
Multicast.

See the table on page XV for further details of the changes.

This fifth edition of our textbook appears at a time when the Internet and the Web
continue to grow and have an impact on every aspect of our society. For example, the
introductory chapter of the book notes their impact on application areas as diverse as
finance and commerce, arts and entertainment and the emergence of the information
society more generally. It also highlights the very demanding requirements of
application domains such as web search and multiplayer online games. From a
distributed systems perspective, these developments are placing substantial new
demands on the underlying system infrastructure in terms of the range of applications
and the workloads and system sizes supported by many modern systems. Important
trends include the increasing diversity and ubiquity of networking technologies
(including the increasing importance of wireless networks), the inherent integration of
mobile and ubiquitous computing elements into the distributed systems infrastructure

XII PREFACE

(leading to radically different physical architectures), the need to support multimedia
services and the emergence of the cloud computing paradigm, which challenges our
perspective of distributed systems services.

The book aims to provide an understanding of the principles on which the Internet
and other distributed systems are based; their architecture, algorithms and design; and
how they meet the demands of contemporary distributed applications. We begin with a
set of seven chapters that together cover the building blocks for a study of distributed
systems. The first two chapters provide a conceptual overview of the subject, outlining
the characteristics of distributed systems and the challenges that must be addressed in
their design: scalability, heterogeneity, security and failure handling being the most
significant. These chapters also develop abstract models for understanding process
interaction, failure and security. They are followed by other foundational chapters
devoted to the study of networking, interprocess communication, remote invocation,
indirect communication and operating system support.

The next set of chapters covers the important topic of middleware, examining
different approaches to supporting distributed applications including distributed objects
and components, web services and alternative peer-to-peer solutions. We then cover the
well-established topics of security, distributed file systems and distributed naming
before moving on to important data-related aspects including distributed transactions
and data replication. Algorithms associated with all these topics are covered as they arise
and also in separate chapters devoted to timing, coordination and agreement.

The book culminates in chapters that address the emerging areas of mobile and
ubiquitous computing and distributed multimedia systems before presenting a
substantial case study focusing on the design and implementation of the distributed
systems infrastructure that supports Google both in terms of core search functionality
and the increasing range of additional services offered by Google (for example, Gmail
and Google Earth). This last chapter has an important role in illustrating how all the
architectural concepts, algorithms and technologies introduced in the book can come
together in a coherent overall design for a given application domain.

Purposes and readership

The book is intended for use in undergraduate and introductory postgraduate courses. It
can equally be used for self-study. We take a top-down approach, addressing the issues
to be resolved in the design of distributed systems and describing successful approaches
in the form of abstract models, algorithms and detailed case studies of widely used
systems. We cover the field in sufficient depth and breadth to enable readers to go on to
study most research papers in the literature on distributed systems.

We aim to make the subject accessible to students who have a basic knowledge of
object-oriented programming, operating systems and elementary computer architecture.
The book includes coverage of those aspects of computer networks relevant to
distributed systems, including the underlying technologies for the Internet and for wide
area, local area and wireless networks. Algorithms and interfaces are presented
throughout the book in Java or, in a few cases, ANSI C. For brevity and clarity of
presentation, a form of pseudo-code derived from Java/C is also used.

PREFACE XIII

Organization of the book

The diagram shows the book’s chapters under seven main topic areas. It is intended to
provide a guide to the book’s structure and to indicate recommended navigation routes
for instructors wishing to provide, or readers wishing to achieve, understanding of the
various subfields of distributed system design.

16 Transactions and Concurrency Control
17 Distributed Transactions
18 Replication

11 Security
12 Distributed File Systems
13 Name Services

System services

 1 Characterization of
 Distributed Systems

 2 System Models
 3 Networking and Internetworking
 4 Interprocess Communication
 5 Remote Invocation
 6 Indirect Communication
 7 Operating System Support

Foundations

14 Time and Global States
15 Coordination and Agreement

Distributed algorithms

Middleware

 8 Dist. Objects and Components
 9 Web Services
10 Peer-to-Peer Systems

19 Mobile and Ubiquitous Computing
20 Distributed Multimedia Systems

New challenges

Shared data

21 Designing Distributed Systems:
Google Case Study

Substantial case study

References

The existence of the World Wide Web has changed the way in which a book such as this
can be linked to source material, including research papers, technical specifications and
standards. Many of the source documents are now available on the Web; some are
available only there. For reasons of brevity and readability, we employ a special form of
reference to web material that loosely resembles a URL: references such as
[www.omg.org] and [www.rsasecurity.com I] refer to documentation that is available

XIV PREFACE

only on the Web. They can be looked up in the reference list at the end of the book, but
the full URLs are given only in an online version of the reference list at the book’s web
site, www.cdk5.net/refs where they take the form of clickable links. Both versions of the
reference list include a more detailed explanation of this scheme.

Changes relative to the fourth edition

Before embarking on the writing of this new edition, we carried out a survey of teachers
who used the fourth edition. From the results, we identified the new material required
and a number of changes to be made. In addition, we recognized the increasing diversity
of distributed systems, particularly in terms of the range of architectural approaches
available to distributed systems developers today. This required significant changes to
the book, especially in the earlier (foundational) chapters.

Overall, this led to our writing three entirely new chapters, making substantial
changes to a number of other chapters and making numerous insertions throughout the
book to fold in new material. Many of the chapters have been changed to reflect new
information that has become available about the systems described. These changes are
summarized in the table below. To help teachers who have used the fourth edition,
wherever possible we have preserved the structure adopted from the previous edition.
Where material has been removed, we have placed this on our companion web site
together with material removed from previous editions. This includes the case studies
on ATM, interprocess communication in UNIX, CORBA (a shortened version of which
remains in Chapter 8), the Jini distributed events specification and Grid middleware
(featuring OGSA and the Globus toolkit), as well as the chapter on distributed shared
memory (a brief summary of which is now included in Chapter 6).

Some of the chapters in the book, such as the new chapter on indirect
communication (Chapter 6), cover a lot of material. Teachers may elect to cover the
broad spectrum before choosing two or three techniques to examine in more detail (for
example, group communication, given its foundational role, and publish-subscribe or
message queues, given their prevalence in commercial distributed systems).

The chapter ordering has been changed to accommodate the new material and to
reflect changes in the relative importance of certain topics. For a full understanding of
some topics readers may find it necessary to follow a forward reference. For example,
there is material in Chapter 9 on XML security techniques that will make better sense
once the sections that it references in Chapter 11 Security have been absorbed.

Acknowledgements

We are very grateful to the following teachers who participated in our survey: Guohong
Cao, Jose Fortes, Bahram Khalili, George Blank, Jinsong Ouyang, JoAnne Holliday,
George K. Thiruvathukal, Joel Wein, Tao Xie and Xiaobo Zhou.

We would like to thank the following people who reviewed the new chapters or
provided other substantial help: Rob Allen, Roberto Baldoni, John Bates, Tom Berson,
Lynne Blair, Geoff Coulson, Paul Grace, Andrew Herbert, David Hutchison, Laurent
Mathy, Rajiv Ramdhany, Richard Sharp, Jean-Bernard Stefani, Rip Sohan, Francois

New chapters:

6 Indirect Communication Includes events and notification from 4th edition.

8 Distributed Objects and
Components

Includes a precised version of the CORBA case
study from the 4th edition.

21 Designing Distributed Systems Includes a major new case study on Google

Chapters which have undergone substantial changes:

1 Characterization of DS Significant restructuring of material

New Section 1.2: Examples of distributed systems
Section 1.3.4: Cloud computing introduced

2 System Models Significant restructuring of material

New Section 2.2: Physical models
Section 2.3: Major rewrite to reflect new book
content and associated architectural perspectives

4 Interprocess Communication Several updates

Client-server communication moved to Chapter 5
New Section 4.5: Network virtualization (includes
case study on Skype)
New Section 4.6: Case study on MPI
Case study on IPC in UNIX removed

5 Remote Invocation Significant restructuring of material

Client-server communication moved to here
Progression introduced from client-server
communication through RPC to RMI
Events and notification moved to Chapter 6

Chapters to which new material has been added/removed, but without structural changes:

3 Networking and Internetworking Several updates

Section 3.5: material on ATM removed

7 Operating System Support New Section 7.7: OS virtualization

9 Web Services Section 9.2: Discussion added on loose coupling

10 Peer-to-Peer Systems New Section 10.5.3: Unstructured peer-to-peer
(including a new case study on Gnutella)

15 Coordination and Agreement Material on group communication moved to Ch. 6

18 Replication Material on group communication moved to Ch. 6

19 Mobile and Ubiquitous Computing Section 19.3.1: New material on tuple spaces
(TOTA and L2imbo)

20 Distributed Multimedia Systems Section 20.6: New case studies added on
BitTorrent and End System Multicast

The remaining chapters have received only minor modifications.

PREFACE XV

XVI PREFACE

Taiani, Peter Triantafillou, Gareth Tyson and the late Sir Maurice Wilkes. We would
also like to thank the staff at Google who provided insights into the design rationale for
Google Infrastructure, namely: Mike Burrows, Tushar Chandra, Walfredo Cirne, Jeff
Dean, Sanjay Ghemawat, Andrea Kirmse and John Reumann.

Our copy editor, Rachel Head also provided outstanding support.

Web site

As before, we continue to maintain a web site with a wide range of material designed to
assist teachers and readers. This web site can be accessed via the URL:

www.cdk5.net

The web site includes:

Instructor’s Guide: We provide supporting material for teachers comprising:

• complete artwork of the book available as PowerPoint files;

• chapter-by-chapter teaching hints;

• solutions to the exercises, protected by a password available only to teachers.

Reference list: The list of references that can be found at the end of the book is replicated
at the web site. The web version of the reference list includes active links for material
that is available online.

Errata list: A list of known errors in the book is maintained, with corrections. The errors
will be corrected when new impressions are printed and a separate errata list will be
provided for each impression. (Readers are encouraged to report any apparent errors
they encounter to the email address below.)

Supplementary material: We maintain a set of supplementary material for each chapter.
This consists of source code for the programs in the book and relevant reading material
that was present in previous editions of the book but was removed for reasons of space.
References to this supplementary material appear in the book with links such as
www.cdk5.net/ipc (the URL for supplementary material relating to the Interprocess
Communication chapter). Two entire chapters from the 4th edition are not present in this
one; they can be accessed at the URLs:

CORBA Case Study www.cdk5.net/corba

Distributed Shared Memory www.cdk5.net/dsm

George Coulouris

Jean Dollimore

Tim Kindberg

Gordon Blair

London, Bristol and Lancaster, 2011
authors@cdk5.net

 1

1

CHARACTERIZATION OF

DISTRIBUTED SYSTEMS

1.1 Introduction
1.2 Examples of distributed systems
1.3 Trends in distributed systems
1.4 Focus on resource sharing
1.5 Challenges
1.6 Case study: The World Wide Web
1.7 Summary

A distributed system is one in which components located at networked computers
communicate and coordinate their actions only by passing messages. This definition
leads to the following especially significant characteristics of distributed systems:
concurrency of components, lack of a global clock and independent failures of
components.

We look at several examples of modern distributed applications, including web
search, multiplayer online games and financial trading systems, and also examine the key
underlying trends driving distributed systems today: the pervasive nature of modern
networking, the emergence of mobile and ubiquitous computing, the increasing
importance of distributed multimedia systems, and the trend towards viewing distributed
systems as a utility. The chapter then highlights resource sharing as a main motivation for
constructing distributed systems. Resources may be managed by servers and accessed
by clients or they may be encapsulated as objects and accessed by other client objects.

The challenges arising from the construction of distributed systems are the
heterogeneity of their components, openness (which allows components to be added or
replaced), security, scalability – the ability to work well when the load or the number of
users increases – failure handling, concurrency of components, transparency and
providing quality of service. Finally, the Web is discussed as an example of a large-scale
distributed system and its main features are introduced.

2 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

1.1 Introduction

Networks of computers are everywhere. The Internet is one, as are the many networks
of which it is composed. Mobile phone networks, corporate networks, factory networks,
campus networks, home networks, in-car networks – all of these, both separately and in
combination, share the essential characteristics that make them relevant subjects for
study under the heading distributed systems. In this book we aim to explain the
characteristics of networked computers that impact system designers and implementors
and to present the main concepts and techniques that have been developed to help in the
tasks of designing and implementing systems that are based on them.

We define a distributed system as one in which hardware or software components
located at networked computers communicate and coordinate their actions only by
passing messages. This simple definition covers the entire range of systems in which
networked computers can usefully be deployed.

Computers that are connected by a network may be spatially separated by any
distance. They may be on separate continents, in the same building or in the same room.
Our definition of distributed systems has the following significant consequences:

Concurrency: In a network of computers, concurrent program execution is the norm.
I can do my work on my computer while you do your work on yours, sharing
resources such as web pages or files when necessary. The capacity of the system to
handle shared resources can be increased by adding more resources (for example.
computers) to the network. We will describe ways in which this extra capacity can be
usefully deployed at many points in this book. The coordination of concurrently
executing programs that share resources is also an important and recurring topic.

No global clock: When programs need to cooperate they coordinate their actions by
exchanging messages. Close coordination often depends on a shared idea of the time
at which the programs’ actions occur. But it turns out that there are limits to the
accuracy with which the computers in a network can synchronize their clocks – there
is no single global notion of the correct time. This is a direct consequence of the fact
that the only communication is by sending messages through a network. Examples of
these timing problems and solutions to them will be described in Chapter 14.

Independent failures: All computer systems can fail, and it is the responsibility of
system designers to plan for the consequences of possible failures. Distributed systems
can fail in new ways. Faults in the network result in the isolation of the computers that
are connected to it, but that doesn’t mean that they stop running. In fact, the programs
on them may not be able to detect whether the network has failed or has become
unusually slow. Similarly, the failure of a computer, or the unexpected termination of
a program somewhere in the system (a crash), is not immediately made known to the
other components with which it communicates. Each component of the system can fail
independently, leaving the others still running. The consequences of this characteristic
of distributed systems will be a recurring theme throughout the book.

The prime motivation for constructing and using distributed systems stems from a desire
to share resources. The term ‘resource’ is a rather abstract one, but it best characterizes
the range of things that can usefully be shared in a networked computer system. It

SECTION 1.2 EXAMPLES OF DISTRIBUTED SYSTEMS 3

extends from hardware components such as disks and printers to software-defined
entities such as files, databases and data objects of all kinds. It includes the stream of
video frames that emerges from a digital video camera and the audio connection that a
mobile phone call represents.

The purpose of this chapter is to convey a clear view of the nature of distributed
systems and the challenges that must be addressed in order to ensure that they are
successful. Section 1.2 gives some illustrative examples of distributed systems, with
Section 1.3 covering the key underlying trends driving recent developments. Section 1.4
focuses on the design of resource-sharing systems, while Section 1.5 describes the key
challenges faced by the designers of distributed systems: heterogeneity, openness,
security, scalability, failure handling, concurrency, transparency and quality of service.
Section 1.6 presents a detailed case study of one very well known distributed system, the
World Wide Web, illustrating how its design supports resource sharing.

1.2 Examples of distributed systems

The goal of this section is to provide motivational examples of contemporary distributed
systems illustrating both the pervasive role of distributed systems and the great diversity
of the associated applications.

As mentioned in the introduction, networks are everywhere and underpin many
everyday services that we now take for granted: the Internet and the associated World
Wide Web, web search, online gaming, email, social networks, eCommerce, etc. To
illustrate this point further, consider Figure 1.1, which describes a selected range of key
commercial or social application sectors highlighting some of the associated established
or emerging uses of distributed systems technology.

As can be seen, distributed systems encompass many of the most significant
technological developments of recent years and hence an understanding of the
underlying technology is absolutely central to a knowledge of modern computing. The
figure also provides an initial insight into the wide range of applications in use today,
from relatively localized systems (as found, for example, in a car or aircraft) to global-
scale systems involving millions of nodes, from data-centric services to processor-
intensive tasks, from systems built from very small and relatively primitive sensors to
those incorporating powerful computational elements, from embedded systems to ones
that support a sophisticated interactive user experience, and so on.

We now look at more specific examples of distributed systems to further illustrate
the diversity and indeed complexity of distributed systems provision today.

1.2.1 Web search

Web search has emerged as a major growth industry in the last decade, with recent
figures indicating that the global number of searches has risen to over 10 billion per
calendar month. The task of a web search engine is to index the entire contents of the
World Wide Web, encompassing a wide range of information styles including web
pages, multimedia sources and (scanned) books. This is a very complex task, as current
estimates state that the Web consists of over 63 billion pages and one trillion unique web

Figure 1.1 Selected application domains and associated networked applications

Finance and commerce The growth of eCommerce as exemplified by companies such as
Amazon and eBay, and underlying payments technologies such as
PayPal; the associated emergence of online banking and trading and
also complex information dissemination systems for financial markets.

The information society The growth of the World Wide Web as a repository of information and
knowledge; the development of web search engines such as Google
and Yahoo to search this vast repository; the emergence of digital
libraries and the large-scale digitization of legacy information sources
such as books (for example, Google Books); the increasing
significance of user-generated content through sites such as YouTube,
Wikipedia and Flickr; the emergence of social networking through
services such as Facebook and MySpace.

Creative industries and

entertainment

The emergence of online gaming as a novel and highly interactive form
of entertainment; the availability of music and film in the home
through networked media centres and more widely in the Internet via
downloadable or streaming content; the role of user-generated content
(as mentioned above) as a new form of creativity, for example via
services such as YouTube; the creation of new forms of art and enter-
tainment enabled by emergent (including networked) technologies.

Healthcare The growth of health informatics as a discipline with its emphasis on
online electronic patient records and related issues of privacy; the
increasing role of telemedicine in supporting remote diagnosis or more
advanced services such as remote surgery (including collaborative
working between healthcare teams); the increasing application of
networking and embedded systems technology in assisted living, for
example for monitoring the elderly in their own homes.

Education The emergence of e-learning through for example web-based tools
such as virtual learning environments; associated support for distance
learning; support for collaborative or community-based learning.

Transport and logistics The use of location technologies such as GPS in route finding systems
and more general traffic management systems; the modern car itself as
an example of a complex distributed system (also applies to other
forms of transport such as aircraft); the development of web-based map
services such as MapQuest, Google Maps and Google Earth.

Science The emergence of the Grid as a fundamental technology for eScience,
including the use of complex networks of computers to support the
storage, analysis and processing of (often very large quantities of)
scientific data; the associated use of the Grid as an enabling technology
for worldwide collaboration between groups of scientists.

Environmental management The use of (networked) sensor technology to both monitor and manage
the natural environment, for example to provide early warning of
natural disasters such as earthquakes, floods or tsunamis and to co-
ordinate emergency response; the collation and analysis of global
environmental parameters to better understand complex natural
phenomena such as climate change.

4 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

SECTION 1.2 EXAMPLES OF DISTRIBUTED SYSTEMS 5

addresses. Given that most search engines analyze the entire web content and then carry
out sophisticated processing on this enormous database, this task itself represents a
major challenge for distributed systems design.

Google, the market leader in web search technology, has put significant effort into
the design of a sophisticated distributed system infrastructure to support search (and
indeed other Google applications and services such as Google Earth). This represents
one of the largest and most complex distributed systems installations in the history of
computing and hence demands close examination. Highlights of this infrastructure
include:

• an underlying physical infrastructure consisting of very large numbers of
networked computers located at data centres all around the world;

• a distributed file system designed to support very large files and heavily optimized
for the style of usage required by search and other Google applications (especially
reading from files at high and sustained rates);

• an associated structured distributed storage system that offers fast access to very
large datasets;

• a lock service that offers distributed system functions such as distributed locking
and agreement;

• a programming model that supports the management of very large parallel and
distributed computations across the underlying physical infrastructure.

Further details on Google’s distributed systems services and underlying communica-
tions support can be found in Chapter 21, a compelling case study of a modern distrib-
uted system in action.

1.2.2 Massively multiplayer online games (MMOGs)

Massively multiplayer online games offer an immersive experience whereby very large
numbers of users interact through the Internet with a persistent virtual world. Leading
examples of such games include Sony’s EverQuest II and EVE Online from the Finnish
company CCP Games. Such worlds have increased significantly in sophistication and
now include, complex playing arenas (for example EVE, Online consists of a universe
with over 5,000 star systems) and multifarious social and economic systems. The
number of players is also rising, with systems able to support over 50,000 simultaneous
online players (and the total number of players perhaps ten times this figure).

The engineering of MMOGs represents a major challenge for distributed systems
technologies, particularly because of the need for fast response times to preserve the user
experience of the game. Other challenges include the real-time propagation of events to
the many players and maintaining a consistent view of the shared world. This therefore
provides an excellent example of the challenges facing modern distributed systems
designers.

A number of solutions have been proposed for the design of massively multiplayer
online games:

• Perhaps surprisingly, the largest online game, EVE Online, utilises a client-server

architecture where a single copy of the state of the world is maintained on a

6 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

centralized server and accessed by client programs running on players’ consoles
or other devices. To support large numbers of clients, the server is a complex
entity in its own right consisting of a cluster architecture featuring hundreds of
computer nodes (this client-server approach is discussed in more detail in Section
1.4 and cluster approaches are discussed in Section 1.3.4). The centralized
architecture helps significantly in terms of the management of the virtual world
and the single copy also eases consistency concerns. The goal is then to ensure fast
response through optimizing network protocols and ensuring a rapid response to
incoming events. To support this, the load is partitioned by allocating individual
‘star systems’ to particular computers within the cluster, with highly loaded star
systems having their own dedicated computer and others sharing a computer.
Incoming events are directed to the right computers within the cluster by keeping
track of movement of players between star systems.

• Other MMOGs adopt more distributed architectures where the universe is
partitioned across a (potentially very large) number of servers that may also be
geographically distributed. Users are then dynamically allocated a particular
server based on current usage patterns and also the network delays to the server
(based on geographical proximity for example). This style of architecture, which
is adopted by EverQuest, is naturally extensible by adding new servers.

• Most commercial systems adopt one of the two models presented above, but
researchers are also now looking at more radical architectures that are not based
on client-server principles but rather adopt completely decentralized approaches
based on peer-to-peer technology where every participant contributes resources
(storage and processing) to accommodate the game. Further consideration of peer-
to-peer solutions is deferred until Chapters 2 and 10).

1.2.3 Financial trading

As a final example, we look at distributed systems support for financial trading markets.
The financial industry has long been at the cutting edge of distributed systems
technology with its need, in particular, for real-time access to a wide range of
information sources (for example, current share prices and trends, economic and
political developments). The industry employs automated monitoring and trading
applications (see below).

Note that the emphasis in such systems is on the communication and processing
of items of interest, known as events in distributed systems, with the need also to deliver
events reliably and in a timely manner to potentially very large numbers of clients who
have a stated interest in such information items. Examples of such events include a drop
in a share price, the release of the latest unemployment figures, and so on. This requires
a very different style of underlying architecture from the styles mentioned above (for
example client-server), and such systems typically employ what are known as
distributed event-based systems. We present an illustration of a typical use of such
systems below and return to this important topic in more depth in Chapter 6.

Figure 1.2 illustrates a typical financial trading system. This shows a series of
event feeds coming into a given financial institution. Such event feeds share the

Figure 1.2 An example financial trading system

FIX
Gateway

Complex
Event Processing

Engine

FIX
Adapter

Reuters
Adapter

Reuters
Gateway

FIX events Reuters events

Trading strategies

SECTION 1.2 EXAMPLES OF DISTRIBUTED SYSTEMS 7

following characteristics. Firstly, the sources are typically in a variety of formats, such
as Reuters market data events and FIX events (events following the specific format of
the Financial Information eXchange protocol), and indeed from different event
technologies, thus illustrating the problem of heterogeneity as encountered in most
distributed systems (see also Section 1.5.1). The figure shows the use of adapters which
translate heterogeneous formats into a common internal format. Secondly, the trading
system must deal with a variety of event streams, all arriving at rapid rates, and often
requiring real-time processing to detect patterns that indicate trading opportunities. This
used to be a manual process but competitive pressures have led to increasing automation
in terms of what is known as Complex Event Processing (CEP), which offers a way of
composing event occurrences together into logical, temporal or spatial patterns.

This approach is primarily used to develop customized algorithmic trading
strategies covering both buying and selling of stocks and shares, in particular looking
for patterns that indicate a trading opportunity and then automatically responding by
placing and managing orders. As an example, consider the following script:

WHEN

MSFT price moves outside 2% of MSFT Moving Average

FOLLOWED-BY (

MyBasket moves up by 0.5%

AND

HPQ’s price moves up by 5%

OR

MSFT’s price moves down by 2%

)

)

ALL WITHIN

any 2 minute time period

THEN

BUY MSFT

SELL HPQ

8 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

This script is based on the functionality provided by Apama [www.progress.com], a
commercial product in the financial world originally developed out of research carried
out at the University of Cambridge. The script detects a complex temporal sequence
based on the share prices of Microsoft, HP and a basket of other share prices, resulting
in decisions to buy or sell particular shares.

This style of technology is increasingly being used in other areas of financial
systems including the monitoring of trading activity to manage risk (in particular,
tracking exposure), to ensure compliance with regulations and to monitor for patterns of
activity that might indicate fraudulent transactions. In such systems, events are typically
intercepted and passed through what is equivalent to a compliance and risk firewall
before being processed (see also the discussion of firewalls in Section 1.3.1 below).

1.3 Trends in distributed systems

Distributed systems are undergoing a period of significant change and this can be traced
back to a number of influential trends:

• the emergence of pervasive networking technology;

• the emergence of ubiquitous computing coupled with the desire to support user
mobility in distributed systems;

• the increasing demand for multimedia services;

• the view of distributed systems as a utility.

1.3.1 Pervasive networking and the modern Internet

The modern Internet is a vast interconnected collection of computer networks of many
different types, with the range of types increasing all the time and now including, for
example, a wide range of wireless communication technologies such as WiFi, WiMAX,
Bluetooth (see Chapter 3) and third-generation mobile phone networks. The net result is
that networking has become a pervasive resource and devices can be connected (if
desired) at any time and in any place.

Figure 1.3 illustrates a typical portion of the Internet. Programs running on the
computers connected to it interact by passing messages, employing a common means of
communication. The design and construction of the Internet communication
mechanisms (the Internet protocols) is a major technical achievement, enabling a
program running anywhere to address messages to programs anywhere else and
abstracting over the myriad of technologies mentioned above.

The Internet is also a very large distributed system. It enables users, wherever they
are, to make use of services such as the World Wide Web, email and file transfer.
(Indeed, the Web is sometimes incorrectly equated with the Internet.) The set of services
is open-ended – it can be extended by the addition of server computers and new types of
service. The figure shows a collection of intranets – subnetworks operated by companies
and other organizations and typically protected by firewalls. The role of a firewall is to
protect an intranet by preventing unauthorized messages from leaving or entering. A

Figure 1.3 A typical portion of the Internet

intranet

ISP

desktop computer:

ba
ck

bo
ne

bac
kb

on
e

satellite
link

server:

backbone

network link:

SECTION 1.3 TRENDS IN DISTRIBUTED SYSTEMS 9

firewall is implemented by filtering incoming and outgoing messages. Filtering might
be done by source or destination, or a firewall might allow only those messages related
to email and web access to pass into or out of the intranet that it protects. Internet Service
Providers (ISPs) are companies that provide broadband links and other types of
connection to individual users and small organizations, enabling them to access services
anywhere in the Internet as well as providing local services such as email and web
hosting. The intranets are linked together by backbones. A backbone is a network link
with a high transmission capacity, employing satellite connections, fibre optic cables
and other high-bandwidth circuits.

Note that some organizations may not wish to connect their internal networks to
the Internet at all. For example, police and other security and law enforcement agencies
are likely to have at least some internal intranets that are isolated from the outside world
(the most effective firewall possible – the absence of any physical connections to the
Internet). Firewalls can also be problematic in distributed systems by impeding
legitimate access to services when resource sharing between internal and external users
is required. Hence, firewalls must often be complemented by more fine-grained
mechanisms and policies, as discussed in Chapter 11.

The implementation of the Internet and the services that it supports has entailed
the development of practical solutions to many distributed system issues (including
most of those defined in Section 1.5). We shall highlight those solutions throughout the
book, pointing out their scope and their limitations where appropriate.

10 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

1.3.2 Mobile and ubiquitous computing

Technological advances in device miniaturization and wireless networking have led
increasingly to the integration of small and portable computing devices into distributed
systems. These devices include:

• Laptop computers.

• Handheld devices, including mobile phones, smart phones, GPS-enabled devices,
pagers, personal digital assistants (PDAs), video cameras and digital cameras.

• Wearable devices, such as smart watches with functionality similar to a PDA.

• Devices embedded in appliances such as washing machines, hi-fi systems, cars
and refrigerators.

The portability of many of these devices, together with their ability to connect
conveniently to networks in different places, makes mobile computing possible. Mobile
computing is the performance of computing tasks while the user is on the move, or
visiting places other than their usual environment. In mobile computing, users who are
away from their ‘home’ intranet (the intranet at work, or their residence) are still
provided with access to resources via the devices they carry with them. They can
continue to access the Internet; they can continue to access resources in their home
intranet; and there is increasing provision for users to utilize resources such as printers
or even sales points that are conveniently nearby as they move around. The latter is also
known as location-aware or context-aware computing. Mobility introduces a number of
challenges for distributed systems, including the need to deal with variable connectivity
and indeed disconnection, and the need to maintain operation in the face of device
mobility (see the discussion on mobility transparency in Section 1.5.7).

Ubiquitous computing is the harnessing of many small, cheap computational
devices that are present in users’ physical environments, including the home, office and
even natural settings. The term ‘ubiquitous’ is intended to suggest that small computing
devices will eventually become so pervasive in everyday objects that they are scarcely
noticed. That is, their computational behaviour will be transparently and intimately tied
up with their physical function.

The presence of computers everywhere only becomes useful when they can
communicate with one another. For example, it may be convenient for users to control
their washing machine or their entertainment system from their phone or a ‘universal
remote control’ device in the home. Equally, the washing machine could notify the user
via a smart badge or phone when the washing is done.

Ubiquitous and mobile computing overlap, since the mobile user can in principle
benefit from computers that are everywhere. But they are distinct, in general. Ubiquitous
computing could benefit users while they remain in a single environment such as the
home or a hospital. Similarly, mobile computing has advantages even if it involves only
conventional, discrete computers and devices such as laptops and printers.

Figure 1.4 shows a user who is visiting a host organization. The figure shows the
user’s home intranet and the host intranet at the site that the user is visiting. Both
intranets are connected to the rest of the Internet.

The user has access to three forms of wireless connection. Their laptop has a
means of connecting to the host’s wireless LAN. This network provides coverage of a

Figure 1.4 Portable and handheld devices in a distributed system

Laptop

Mobile

Printer
Camera

Internet

Host intranet Home intranet
Wireless LAN

phone

Host site

3G phone network

GPS satellite signal

SECTION 1.3 TRENDS IN DISTRIBUTED SYSTEMS 11

few hundred metres (a floor of a building, say). It connects to the rest of the host intranet
via a gateway or access point. The user also has a mobile (cellular) telephone, which is
connected to the Internet. The phone gives access to the Web and other Internet services,
constrained only by what can be presented on its small display, and may also provide
location information via built-in GPS functionality. Finally, the user carries a digital
camera, which can communicate over a personal area wireless network (with range up
to about 10m) with a device such as a printer.

 With a suitable system infrastructure, the user can perform some simple tasks in
the host site using the devices they carry. While journeying to the host site, the user can
fetch the latest stock prices from a web server using the mobile phone and can also use
the built-in GPS and route finding software to get directions to the site location. During
the meeting with their hosts, the user can show them a recent photograph by sending it
from the digital camera directly to a suitably enabled (local) printer or projector in the
meeting room (discovered using a location service). This requires only the wireless link
between the camera and printer or projector. And they can in principle send a document
from their laptop to the same printer, utilizing the wireless LAN and wired Ethernet links
to the printer.

This scenario demonstrates the need to support spontaneous interoperation,

whereby associations between devices are routinely created and destroyed – for example
by locating and using the host’s devices, such as printers. The main challenge applying
to such situations is to make interoperation fast and convenient (that is, spontaneous)
even though the user is in an environment they may never have visited before. That
means enabling the visitor’s device to communicate on the host network, and
associating the device with suitable local services – a process called service discovery.

Mobile and ubiquitous computing represent lively areas of research, and the
various dimensions mentioned above are discussed in depth in Chapter 19.

12 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

1.3.3 Distributed multimedia systems

Another important trend is the requirement to support multimedia services in distributed
systems. Multimedia support can usefully be defined as the ability to support a range of
media types in an integrated manner. One can expect a distributed system to support the
storage, transmission and presentation of what are often referred to as discrete media
types, such as pictures or text messages. A distributed multimedia system should be able
to perform the same functions for continuous media types such as audio and video; that
is, it should be able to store and locate audio or video files, to transmit them across the
network (possibly in real time as the streams emerge from a video camera), to support
the presentation of the media types to the user and optionally also to share the media
types across a group of users.

The crucial characteristic of continuous media types is that they include a
temporal dimension, and indeed, the integrity of the media type is fundamentally
dependent on preserving real-time relationships between elements of a media type. For
example, in a video presentation it is necessary to preserve a given throughput in terms
of frames per second and, for real-time streams, a given maximum delay or latency for
the delivery of frames (this is one example of quality of service, discussed in more detail
in Section 1.5.8).

The benefits of distributed multimedia computing are considerable in that a wide
range of new (multimedia) services and applications can be provided on the desktop,
including access to live or pre-recorded television broadcasts, access to film libraries
offering video-on-demand services, access to music libraries, the provision of audio and
video conferencing facilities and integrated telephony features including IP telephony
or related technologies such as Skype, a peer-to-peer alternative to IP telephony (the
distributed system infrastructure underpinning Skype is discussed in Section 4.5.2).
Note that this technology is revolutionary in challenging manufacturers to rethink many
consumer devices. For example, what is the core home entertainment device of the
future – the computer, the television, or the games console?

Webcasting is an application of distributed multimedia technology. Webcasting is
the ability to broadcast continuous media, typically audio or video, over the Internet. It
is now commonplace for major sporting or music events to be broadcast in this way,
often attracting large numbers of viewers (for example, the Live8 concert in 2005
attracted around 170,000 simultaneous users at its peak).

Distributed multimedia applications such as webcasting place considerable
demands on the underlying distributed infrastructure in terms of:

• providing support for an (extensible) range of encoding and encryption formats,
such as the MPEG series of standards (including for example the popular MP3
standard otherwise known as MPEG-1, Audio Layer 3) and HDTV;

• providing a range of mechanisms to ensure that the desired quality of service can
be met;

• providing associated resource management strategies, including appropriate
scheduling policies to support the desired quality of service;

• providing adaptation strategies to deal with the inevitable situation in open
systems where quality of service cannot be met or sustained.

Further discussion of such mechanisms can be found in Chapter 20.

SECTION 1.3 TRENDS IN DISTRIBUTED SYSTEMS 13

1.3.4 Distributed computing as a utility

With the increasing maturity of distributed systems infrastructure, a number of
companies are promoting the view of distributed resources as a commodity or utility,
drawing the analogy between distributed resources and other utilities such as water or
electricity. With this model, resources are provided by appropriate service suppliers and
effectively rented rather than owned by the end user. This model applies to both physical
resources and more logical services:

• Physical resources such as storage and processing can be made available to
networked computers, removing the need to own such resources on their own. At
one end of the spectrum, a user may opt for a remote storage facility for file
storage requirements (for example, for multimedia data such as photographs,
music or video) and/or for backups. Similarly, this approach would enable a user
to rent one or more computational nodes, either to meet their basic computing
needs or indeed to perform distributed computation. At the other end of the
spectrum, users can access sophisticated data centres (networked facilities
offering access to repositories of often large volumes of data to users or
organizations) or indeed computational infrastructure using the sort of services
now provided by companies such as Amazon and Google. Operating system
virtualization is a key enabling technology for this approach, implying that users
may actually be provided with services by a virtual rather than a physical node.
This offers greater flexibility to the service supplier in terms of resource
management (operating system virtualization is discussed in more detail in
Chapter 7).

• Software services (as defined in Section 1.4) can also be made available across the
global Internet using this approach. Indeed, many companies now offer a
comprehensive range of services for effective rental, including services such as
email and distributed calendars. Google, for example, bundles a range of business
services under the banner Google Apps [www.google.com I]. This development
is enabled by agreed standards for software services, for example as provided by
web services (see Chapter 9).

The term cloud computing is used to capture this vision of computing as a utility. A
cloud is defined as a set of Internet-based application, storage and computing services
sufficient to support most users’ needs, thus enabling them to largely or totally dispense
with local data storage and application software (see Figure 1.5). The term also
promotes a view of everything as a service, from physical or virtual infrastructure
through to software, often paid for on a per-usage basis rather than purchased. Note that
cloud computing reduces requirements on users’ devices, allowing very simple desktop
or portable devices to access a potentially wide range of resources and services.

Clouds are generally implemented on cluster computers to provide the necessary
scale and performance required by such services. A cluster computer is a set of
interconnected computers that cooperate closely to provide a single, integrated high-
performance computing capability. Building on projects such as the NOW (Network of
Workstations) Project at Berkeley [Anderson et al. 1995, now.cs.berkeley.edu] and
Beowulf at NASA [www.beowulf.org], the trend is towards utilizing commodity
hardware both for the computers and for the interconnecting networks. Most clusters

14 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

consist of commodity PCs running a standard (sometimes cut-down) version of an
operating system such as Linux, interconnected by a local area network. Companies
such as HP, Sun and IBM offer blade solutions. Blade servers are minimal
computational elements containing for example processing and (main memory) storage
capabilities. A blade system consists of a potentially large number of blade servers
contained within a blade enclosure. Other elements such as power, cooling, persistent
storage (disks), networking and displays, are provided either by the enclosure or through
virtualized solutions (discussed in Chapter 7). Through this solution, individual blade
servers can be much smaller and also cheaper to produce than commodity PCs.

The overall goal of cluster computers is to provide a range of cloud services,
including high-performance computing capabilities, mass storage (for example through
data centres), and richer application services such as web search (Google, for example
relies on a massive cluster computer architecture to implement its search engine and
other services, as discussed in Chapter 21).

Grid computing (as discussed in Chapter 9, Section 9.7.2) can also be viewed as
a form of cloud computing. The terms are largely synonymous and at times ill-defined,
but Grid computing can generally be viewed as a precursor to the more general paradigm
of cloud computing with a bias towards support for scientific applications.

Figure 1.5 Cloud computing

Internet

Application services

Storage services

Computational services

Clients

1.4 Focus on resource sharing

Users are so accustomed to the benefits of resource sharing that they may easily
overlook their significance. We routinely share hardware resources such as printers, data
resources such as files, and resources with more specific functionality such as search
engines.

SECTION 1.4 FOCUS ON RESOURCE SHARING 15

Looked at from the point of view of hardware provision, we share equipment such
as printers and disks to reduce costs. But of far greater significance to users is the sharing
of the higher-level resources that play a part in their applications and in their everyday
work and social activities. For example, users are concerned with sharing data in the
form of a shared database or a set of web pages – not the disks and processors on which
they are implemented. Similarly, users think in terms of shared resources such as a
search engine or a currency converter, without regard for the server or servers that
provide these.

 In practice, patterns of resource sharing vary widely in their scope and in how
closely users work together. At one extreme, a search engine on the Web provides a
facility to users throughout the world, users who need never come into contact with one
another directly. At the other extreme, in computer-supported cooperative working

(CSCW), a group of users who cooperate directly share resources such as documents in
a small, closed group. The pattern of sharing and the geographic distribution of
particular users determines what mechanisms the system must supply to coordinate
users’ actions.

We use the term service for a distinct part of a computer system that manages a
collection of related resources and presents their functionality to users and applications.
For example, we access shared files through a file service; we send documents to
printers through a printing service; we buy goods through an electronic payment service.
The only access we have to the service is via the set of operations that it exports. For
example, a file service provides read, write and delete operations on files.

The fact that services restrict resource access to a well-defined set of operations is
in part standard software engineering practice. But it also reflects the physical
organization of distributed systems. Resources in a distributed system are physically
encapsulated within computers and can only be accessed from other computers by
means of communication. For effective sharing, each resource must be managed by a
program that offers a communication interface enabling the resource to be accessed and
updated reliably and consistently.

The term server is probably familiar to most readers. It refers to a running program
(a process) on a networked computer that accepts requests from programs running on
other computers to perform a service and responds appropriately. The requesting
processes are referred to as clients, and the overall approach is known as client-server

computing. In this approach, requests are sent in messages from clients to a server and
replies are sent in messages from the server to the clients. When the client sends a
request for an operation to be carried out, we say that the client invokes an operation

upon the server. A complete interaction between a client and a server, from the point
when the client sends its request to when it receives the server’s response, is called a
remote invocation.

The same process may be both a client and a server, since servers sometimes
invoke operations on other servers. The terms ‘client’ and ‘server’ apply only to the roles
played in a single request. Clients are active (making requests) and servers are passive
(only waking up when they receive requests); servers run continuously, whereas clients
last only as long as the applications of which they form a part.

 Note that while by default the terms ‘client’ and ‘server’ refer to processes rather
than the computers that they execute upon, in everyday parlance those terms also refer
to the computers themselves. Another distinction, which we shall discuss in Chapter 5,

16 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

is that in a distributed system written in an object-oriented language, resources may be
encapsulated as objects and accessed by client objects, in which case we speak of a client

object invoking a method upon a server object.
Many, but certainly not all, distributed systems can be constructed entirely in the

form of interacting clients and servers. The World Wide Web, email and networked
printers all fit this model. We discuss alternatives to client-server systems in Chapter 2.

An executing web browser is an example of a client. The web browser
communicates with a web server, to request web pages from it. We consider the Web
and its associated client-server architecture in more detail in Section 1.6.

1.5 Challenges

The examples in Section 1.2 are intended to illustrate the scope of distributed systems
and to suggest the issues that arise in their design. In many of them, significant
challenges were encountered and overcome. As the scope and scale of distributed
systems and applications is extended the same and other challenges are likely to be
encountered. In this section we describe the main challenges.

1.5.1 Heterogeneity

The Internet enables users to access services and run applications over a heterogeneous
collection of computers and networks. Heterogeneity (that is, variety and difference)
applies to all of the following:

• networks;

• computer hardware;

• operating systems;

• programming languages;

• implementations by different developers.

Although the Internet consists of many different sorts of network (illustrated in Figure
1.3), their differences are masked by the fact that all of the computers attached to them
use the Internet protocols to communicate with one another. For example, a computer
attached to an Ethernet has an implementation of the Internet protocols over the
Ethernet, whereas a computer on a different sort of network will need an implementation
of the Internet protocols for that network. Chapter 3 explains how the Internet protocols
are implemented over a variety of different networks.

Data types such as integers may be represented in different ways on different sorts
of hardware – for example, there are two alternatives for the byte ordering of integers.
These differences in representation must be dealt with if messages are to be exchanged
between programs running on different hardware.

Although the operating systems of all computers on the Internet need to include
an implementation of the Internet protocols, they do not necessarily all provide the same
application programming interface to these protocols. For example, the calls for
exchanging messages in UNIX are different from the calls in Windows.

SECTION 1.5 CHALLENGES 17

Different programming languages use different representations for characters and
data structures such as arrays and records. These differences must be addressed if
programs written in different languages are to be able to communicate with one another.

Programs written by different developers cannot communicate with one another
unless they use common standards, for example, for network communication and the
representation of primitive data items and data structures in messages. For this to
happen, standards need to be agreed and adopted – as have the Internet protocols.

Middleware • The term middleware applies to a software layer that provides a
programming abstraction as well as masking the heterogeneity of the underlying
networks, hardware, operating systems and programming languages. The Common
Object Request Broker (CORBA), which is described in Chapters 4, 5 and 8, is an
example. Some middleware, such as Java Remote Method Invocation (RMI) (see
Chapter 5), supports only a single programming language. Most middleware is
implemented over the Internet protocols, which themselves mask the differences of the
underlying networks, but all middleware deals with the differences in operating systems
and hardware – how this is done is the main topic of Chapter 4.

In addition to solving the problems of heterogeneity, middleware provides a
uniform computational model for use by the programmers of servers and distributed
applications. Possible models include remote object invocation, remote event
notification, remote SQL access and distributed transaction processing. For example,
CORBA provides remote object invocation, which allows an object in a program
running on one computer to invoke a method of an object in a program running on
another computer. Its implementation hides the fact that messages are passed over a
network in order to send the invocation request and its reply.

Heterogeneity and mobile code • The term mobile code is used to refer to program code
that can be transferred from one computer to another and run at the destination – Java
applets are an example. Code suitable for running on one computer is not necessarily
suitable for running on another because executable programs are normally specific both
to the instruction set and to the host operating system.

The virtual machine approach provides a way of making code executable on a
variety of host computers: the compiler for a particular language generates code for a
virtual machine instead of a particular hardware order code. For example, the Java
compiler produces code for a Java virtual machine, which executes it by interpretation.
The Java virtual machine needs to be implemented once for each type of computer to
enable Java programs to run.

Today, the most commonly used form of mobile code is the inclusion Javascript
programs in some web pages loaded into client browsers. This extension of Web
technology is discussed further in Section 1.6.

1.5.2 Openness

The openness of a computer system is the characteristic that determines whether the
system can be extended and reimplemented in various ways. The openness of distributed
systems is determined primarily by the degree to which new resource-sharing services
can be added and be made available for use by a variety of client programs.

18 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

Openness cannot be achieved unless the specification and documentation of the
key software interfaces of the components of a system are made available to software
developers. In a word, the key interfaces are published. This process is akin to the
standardization of interfaces, but it often bypasses official standardization procedures,
which are usually cumbersome and slow-moving.

However, the publication of interfaces is only the starting point for adding and
extending services in a distributed system. The challenge to designers is to tackle the
complexity of distributed systems consisting of many components engineered by
different people.

The designers of the Internet protocols introduced a series of documents called
‘Requests For Comments’, or RFCs, each of which is known by a number. The
specifications of the Internet communication protocols were published in this series in
the early 1980s, followed by specifications for applications that run over them, such as
file transfer, email and telnet by the mid-1980s. This practice has continued and forms
the basis of the technical documentation of the Internet. This series includes discussions
as well as the specifications of protocols. Copies can be obtained from [www.ietf.org].
Thus the publication of the original Internet communication protocols has enabled a
variety of Internet systems and applications including the Web to be built. RFCs are not
the only means of publication. For example, the World Wide Web Consortium (W3C)
develops and publishes standards related to the working of the Web [www.w3.org].

Systems that are designed to support resource sharing in this way are termed open

distributed systems to emphasize the fact that they are extensible. They may be extended
at the hardware level by the addition of computers to the network and at the software
level by the introduction of new services and the reimplementation of old ones, enabling
application programs to share resources. A further benefit that is often cited for open
systems is their independence from individual vendors.

 To summarize:

• Open systems are characterized by the fact that their key interfaces are published.

• Open distributed systems are based on the provision of a uniform communication
mechanism and published interfaces for access to shared resources.

• Open distributed systems can be constructed from heterogeneous hardware and
software, possibly from different vendors. But the conformance of each
component to the published standard must be carefully tested and verified if the
system is to work correctly.

1.5.3 Security

Many of the information resources that are made available and maintained in distributed
systems have a high intrinsic value to their users. Their security is therefore of
considerable importance. Security for information resources has three components:
confidentiality (protection against disclosure to unauthorized individuals), integrity
(protection against alteration or corruption), and availability (protection against
interference with the means to access the resources).

Section 1.1 pointed out that although the Internet allows a program in one
computer to communicate with a program in another computer irrespective of its

SECTION 1.5 CHALLENGES 19

location, security risks are associated with allowing free access to all of the resources in
an intranet. Although a firewall can be used to form a barrier around an intranet,
restricting the traffic that can enter and leave, this does not deal with ensuring the
appropriate use of resources by users within an intranet, or with the appropriate use of
resources in the Internet, that are not protected by firewalls.

In a distributed system, clients send requests to access data managed by servers,
which involves sending information in messages over a network. For example:

1. A doctor might request access to hospital patient data or send additions to that data.

2. In electronic commerce and banking, users send their credit card numbers across
the Internet.

In both examples, the challenge is to send sensitive information in a message over a
network in a secure manner. But security is not just a matter of concealing the contents
of messages – it also involves knowing for sure the identity of the user or other agent on
whose behalf a message was sent. In the first example, the server needs to know that the
user is really a doctor, and in the second example, the user needs to be sure of the identity
of the shop or bank with which they are dealing. The second challenge here is to identify
a remote user or other agent correctly. Both of these challenges can be met by the use of
encryption techniques developed for this purpose. They are used widely in the Internet
and are discussed in Chapter 11.

However, the following two security challenges have not yet been fully met:

Denial of service attacks: Another security problem is that a user may wish to
disrupt a service for some reason. This can be achieved by bombarding the service
with such a large number of pointless requests that the serious users are unable to use
it. This is called a denial of service attack. There have been several denial of service
attacks on well-known web services. Currently such attacks are countered by
attempting to catch and punish the perpetrators after the event, but that is not a
general solution to the problem. Countermeasures based on improvements in the
management of networks are under development, and these will be touched on in
Chapter 3.

Security of mobile code: Mobile code needs to be handled with care. Consider
someone who receives an executable program as an electronic mail attachment: the
possible effects of running the program are unpredictable; for example, it may seem
to display an interesting picture but in reality it may access local resources, or perhaps
be part of a denial of service attack. Some measures for securing mobile code are
outlined in Chapter 11.

1.5.4 Scalability

Distributed systems operate effectively and efficiently at many different scales, ranging
from a small intranet to the Internet. A system is described as scalable if it will remain
effective when there is a significant increase in the number of resources and the number
of users. The number of computers and servers in the Internet has increased
dramatically. Figure 1.6 shows the increasing number of computers and web servers
during the 12-year history of the Web up to 2005 [zakon.org]. It is interesting to note the
significant growth in both computers and web servers in this period, but also that the

Figure 1.6 Growth of the Internet (computers and web servers)

Date Computers Web servers Percentage

1993, July 1,776,000 130 0.008

1995, July 6,642,000 23,500 0.4

1997, July 19,540,000 1,203,096 6

1999, July 56,218,000 6,598,697 12

2001, July 125,888,197 31,299,592 25

2003, July ~200,000,000 42,298,371 21

2005, July 353,284,187 67,571,581 19

20 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

relative percentage is flattening out – a trend that is explained by the growth of fixed and
mobile personal computing. One web server may also increasingly be hosted on
multiple computers.

The design of scalable distributed systems presents the following challenges:

Controlling the cost of physical resources: As the demand for a resource grows, it
should be possible to extend the system, at reasonable cost, to meet it. For example,
the frequency with which files are accessed in an intranet is likely to grow as the
number of users and computers increases. It must be possible to add server computers
to avoid the performance bottleneck that would arise if a single file server had to
handle all file access requests. In general, for a system with n users to be scalable, the
quantity of physical resources required to support them should be at most O(n) – that
is, proportional to n. For example, if a single file server can support 20 users, then
two such servers should be able to support 40 users. Although that sounds an obvious
goal, it is not necessarily easy to achieve in practice, as we show in Chapter 12.

Controlling the performance loss: Consider the management of a set of data whose
size is proportional to the number of users or resources in the system – for example,
the table with the correspondence between the domain names of computers and their
Internet addresses held by the Domain Name System, which is used mainly to look
up DNS names such as www.amazon.com. Algorithms that use hierarchic structures
scale better than those that use linear structures. But even with hierarchic structures
an increase in size will result in some loss in performance: the time taken to access
hierarchically structured data is O(log n), where n is the size of the set of data. For a
system to be scalable, the maximum performance loss should be no worse than this.

Preventing software resources running out: An example of lack of scalability is
shown by the numbers used as Internet (IP) addresses (computer addresses in the
Internet). In the late 1970s, it was decided to use 32 bits for this purpose, but as will
be explained in Chapter 3, the supply of available Internet addresses is running out.
For this reason, a new version of the protocol with 128-bit Internet addresses is being
adopted, and this will require modifications to many software components. To be fair

SECTION 1.5 CHALLENGES 21

to the early designers of the Internet, there is no correct solution to this problem. It is
difficult to predict the demand that will be put on a system years ahead. Moreover,
overcompensating for future growth may be worse than adapting to a change when
we are forced to – larger Internet addresses will occupy extra space in messages and
in computer storage.

Avoiding performance bottlenecks: In general, algorithms should be decentralized
to avoid having performance bottlenecks. We illustrate this point with reference to
the predecessor of the Domain Name System, in which the name table was kept in a
single master file that could be downloaded to any computers that needed it. That was
fine when there were only a few hundred computers in the Internet, but it soon
became a serious performance and administrative bottleneck. The Domain Name
System removed this bottleneck by partitioning the name table between servers
located throughout the Internet and administered locally – see Chapters 3 and 13.

Some shared resources are accessed very frequently; for example, many users
may access the same web page, causing a decline in performance. We shall see in
Chapter 2 that caching and replication may be used to improve the performance of
resources that are very heavily used.

Ideally, the system and application software should not need to change when the scale
of the system increases, but this is difficult to achieve. The issue of scale is a dominant
theme in the development of distributed systems. The techniques that have been
successful are discussed extensively in this book. They include the use of replicated data
(Chapter 18), the associated technique of caching (Chapters 2 and 12) and the
deployment of multiple servers to handle commonly performed tasks, enabling several
similar tasks to be performed concurrently.

1.5.5 Failure handling

Computer systems sometimes fail. When faults occur in hardware or software, programs
may produce incorrect results or may stop before they have completed the intended
computation. We shall discuss and classify a range of possible failure types that can
occur in the processes and networks that comprise a distributed system in Chapter 2.

Failures in a distributed system are partial – that is, some components fail while
others continue to function. Therefore the handling of failures is particularly difficult.
The following techniques for dealing with failures are discussed throughout the book:

Detecting failures: Some failures can be detected. For example, checksums can be
used to detect corrupted data in a message or a file. Chapter 2 explains that it is
difficult or even impossible to detect some other failures, such as a remote crashed
server in the Internet. The challenge is to manage in the presence of failures that
cannot be detected but may be suspected.

Masking failures: Some failures that have been detected can be hidden or made less
severe. Two examples of hiding failures:

1. Messages can be retransmitted when they fail to arrive.

2. File data can be written to a pair of disks so that if one is corrupted, the other may
still be correct.

22 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

Just dropping a message that is corrupted is an example of making a fault less severe
– it could be retransmitted. The reader will probably realize that the techniques
described for hiding failures are not guaranteed to work in the worst cases; for
example, the data on the second disk may be corrupted too, or the message may not
get through in a reasonable time however often it is retransmitted.

Tolerating failures: Most of the services in the Internet do exhibit failures – it would
not be practical for them to attempt to detect and hide all of the failures that might
occur in such a large network with so many components. Their clients can be
designed to tolerate failures, which generally involves the users tolerating them as
well. For example, when a web browser cannot contact a web server, it does not make
the user wait for ever while it keeps on trying – it informs the user about the problem,
leaving them free to try again later. Services that tolerate failures are discussed in the
paragraph on redundancy below.

Recovery from failures: Recovery involves the design of software so that the state of
permanent data can be recovered or ‘rolled back’ after a server has crashed. In
general, the computations performed by some programs will be incomplete when a
fault occurs, and the permanent data that they update (files and other material stored
in permanent storage) may not be in a consistent state. Recovery is described in
Chapter 17.

Redundancy: Services can be made to tolerate failures by the use of redundant
components. Consider the following examples:

1. There should always be at least two different routes between any two routers in
the Internet.

2. In the Domain Name System, every name table is replicated in at least two
different servers.

3. A database may be replicated in several servers to ensure that the data remains
accessible after the failure of any single server; the servers can be designed to
detect faults in their peers; when a fault is detected in one server, clients are
redirected to the remaining servers.

The design of effective techniques for keeping replicas of rapidly changing data up-
to-date without excessive loss of performance is a challenge. Approaches are
discussed in Chapter 18.

Distributed systems provide a high degree of availability in the face of hardware faults.
The availability of a system is a measure of the proportion of time that it is available for
use. When one of the components in a distributed system fails, only the work that was
using the failed component is affected. A user may move to another computer if the one
that they were using fails; a server process can be started on another computer.

1.5.6 Concurrency

Both services and applications provide resources that can be shared by clients in a
distributed system. There is therefore a possibility that several clients will attempt to

SECTION 1.5 CHALLENGES 23

access a shared resource at the same time. For example, a data structure that records bids
for an auction may be accessed very frequently when it gets close to the deadline time.

The process that manages a shared resource could take one client request at a time.
But that approach limits throughput. Therefore services and applications generally allow
multiple client requests to be processed concurrently. To make this more concrete,
suppose that each resource is encapsulated as an object and that invocations are executed
in concurrent threads. In this case it is possible that several threads may be executing
concurrently within an object, in which case their operations on the object may conflict
with one another and produce inconsistent results. For example, if two concurrent bids
at an auction are ‘Smith: $122’ and ‘Jones: $111’, and the corresponding operations are
interleaved without any control, then they might get stored as ‘Smith: $111’ and ‘Jones:
$122’.

 The moral of this story is that any object that represents a shared resource in a
distributed system must be responsible for ensuring that it operates correctly in a
concurrent environment. This applies not only to servers but also to objects in
applications. Therefore any programmer who takes an implementation of an object that
was not intended for use in a distributed system must do whatever is necessary to make
it safe in a concurrent environment.

For an object to be safe in a concurrent environment, its operations must be
synchronized in such a way that its data remains consistent. This can be achieved by
standard techniques such as semaphores, which are used in most operating systems. This
topic and its extension to collections of distributed shared objects are discussed in
Chapters 7 and 17.

1.5.7 Transparency

Transparency is defined as the concealment from the user and the application
programmer of the separation of components in a distributed system, so that the system
is perceived as a whole rather than as a collection of independent components. The
implications of transparency are a major influence on the design of the system software.

The ANSA Reference Manual [ANSA 1989] and the International Organization
for Standardization’s Reference Model for Open Distributed Processing (RM-ODP)
[ISO 1992] identify eight forms of transparency. We have paraphrased the original
ANSA definitions, replacing their migration transparency with our own mobility
transparency, whose scope is broader:

Access transparency enables local and remote resources to be accessed using
identical operations.

Location transparency enables resources to be accessed without knowledge of their
physical or network location (for example, which building or IP address).

Concurrency transparency enables several processes to operate concurrently using
shared resources without interference between them.

24 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

Replication transparency enables multiple instances of resources to be used to
increase reliability and performance without knowledge of the replicas by users or
application programmers.

Failure transparency enables the concealment of faults, allowing users and
application programs to complete their tasks despite the failure of hardware or
software components.

Mobility transparency allows the movement of resources and clients within a system
without affecting the operation of users or programs.

Performance transparency allows the system to be reconfigured to improve
performance as loads vary.

Scaling transparency allows the system and applications to expand in scale without
change to the system structure or the application algorithms.

The two most important transparencies are access and location transparency; their
presence or absence most strongly affects the utilization of distributed resources. They
are sometimes referred to together as network transparency.

As an illustration of access transparency, consider a graphical user interface with
folders, which is the same whether the files inside the folder are local or remote. Another
example is an API for files that uses the same operations to access both local and remote
files (see Chapter 12). As an example of a lack of access transparency, consider a
distributed system that does not allow you to access files on a remote computer unless
you make use of the ftp program to do so.

Web resource names or URLs are location-transparent because the part of the
URL that identifies a web server domain name refers to a computer name in a domain,
rather than to an Internet address. However, URLs are not mobility-transparent, because
someone’s personal web page cannot move to their new place of work in a different
domain – all of the links in other pages will still point to the original page.

In general, identifiers such as URLs that include the domain names of computers
prevent replication transparency. Although the DNS allows a domain name to refer to
several computers, it picks just one of them when it looks up a name. Since a replication
scheme generally needs to be able to access all of the participating computers, it would
need to access each of the DNS entries by name.

As an illustration of the presence of network transparency, consider the use of an
electronic mail address such as Fred.Flintstone@stoneit.com. The address consists of a
user’s name and a domain name. Sending mail to such a user does not involve knowing
their physical or network location. Nor does the procedure to send an email message
depend upon the location of the recipient. Thus electronic mail within the Internet
provides both location and access transparency (that is, network transparency).

Failure transparency can also be illustrated in the context of electronic mail, which
is eventually delivered, even when servers or communication links fail. The faults are
masked by attempting to retransmit messages until they are successfully delivered, even
if it takes several days. Middleware generally converts the failures of networks and
processes into programming-level exceptions (see Chapter 5 for an explanation).

To illustrate mobility transparency, consider the case of mobile phones. Suppose
that both caller and callee are travelling by train in different parts of a country, moving

SECTION 1.5 CHALLENGES 25

from one environment (cell) to another. We regard the caller’s phone as the client and
the callee’s phone as a resource. The two phone users making the call are unaware of the
mobility of the phones (the client and the resource) between cells.

Transparency hides and renders anonymous the resources that are not of direct
relevance to the task in hand for users and application programmers. For example, it is
generally desirable for similar hardware resources to be allocated interchangeably to
perform a task – the identity of a processor used to execute a process is generally hidden
from the user and remains anonymous. As pointed out in Section 1.3.2, this may not
always be what is required: for example, a traveller who attaches a laptop computer to
the local network in each office visited should make use of local services such as the
send mail service, using different servers at each location. Even within a building, it is
normal to arrange for a document to be printed at a particular, named printer: usually one
that is near to the user.

1.5.8 Quality of service

Once users are provided with the functionality that they require of a service, such as the
file service in a distributed system, we can go on to ask about the quality of the service
provided. The main nonfunctional properties of systems that affect the quality of the
service experienced by clients and users are reliability, security and performance.
Adaptability to meet changing system configurations and resource availability has been
recognized as a further important aspect of service quality.

Reliability and security issues are critical in the design of most computer systems.
The performance aspect of quality of service was originally defined in terms of
responsiveness and computational throughput, but it has been redefined in terms of
ability to meet timeliness guarantees, as discussed in the following paragraphs.

Some applications, including multimedia applications, handle time-critical data –
streams of data that are required to be processed or transferred from one process to
another at a fixed rate. For example, a movie service might consist of a client program
that is retrieving a film from a video server and presenting it on the user’s screen. For a
satisfactory result the successive frames of video need to be displayed to the user within
some specified time limits.

In fact, the abbreviation QoS has effectively been commandeered to refer to the
ability of systems to meet such deadlines. Its achievement depends upon the availability
of the necessary computing and network resources at the appropriate times. This implies
a requirement for the system to provide guaranteed computing and communication
resources that are sufficient to enable applications to complete each task on time (for
example, the task of displaying a frame of video).

The networks commonly used today have high performance – for example, BBC
iPlayer generally performs acceptably – but when networks are heavily loaded their
performance can deteriorate, and no guarantees are provided. QoS applies to operating
systems as well as networks. Each critical resource must be reserved by the applications
that require QoS, and there must be resource managers that provide guarantees.
Reservation requests that cannot be met are rejected. These issues will be addressed
further in Chapter 20.

26 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

1.6 Case study: The World Wide Web

The World Wide Web [www.w3.org I, Berners-Lee 1991] is an evolving system for
publishing and accessing resources and services across the Internet. Through commonly
available web browsers, users retrieve and view documents of many types, listen to
audio streams and view video streams, and interact with an unlimited set of services.

The Web began life at the European centre for nuclear research (CERN),
Switzerland, in 1989 as a vehicle for exchanging documents between a community of
physicists connected by the Internet [Berners-Lee 1999]. A key feature of the Web is that
it provides a hypertext structure among the documents that it stores, reflecting the users’
requirement to organize their knowledge. This means that documents contain links (or
hyperlinks) – references to other documents and resources that are also stored in the Web.

It is fundamental to the user’s experience of the Web that when they encounter a given
image or piece of text within a document, this will frequently be accompanied by links to
related documents and other resources. The structure of links can be arbitrarily complex and
the set of resources that can be added is unlimited – the ‘web’ of links is indeed world-wide.
Bush [1945] conceived of hypertextual structures over 50 years ago; it was with the
development of the Internet that this idea could be manifested on a world-wide scale.

The Web is an open system: it can be extended and implemented in new ways
without disturbing its existing functionality (see Section 1.5.2). First, its operation is
based on communication standards and document or content standards that are freely
published and widely implemented. For example, there are many types of browser, each
in many cases implemented on several platforms; and there are many implementations
of web servers. Any conformant browser can retrieve resources from any conformant
server. So users have access to browsers on the majority of the devices that they use,
from mobile phones to desktop computers.

Second, the Web is open with respect to the types of resource that can be published
and shared on it. At its simplest, a resource on the Web is a web page or some other type
of content that can be presented to the user, such as media files and documents in
Portable Document Format. If somebody invents, say, a new image-storage format, then
images in this format can immediately be published on the Web. Users require a means
of viewing images in this new format, but browsers are designed to accommodate new
content-presentation functionality in the form of ‘helper’ applications and ‘plug-ins’.

The Web has moved beyond these simple data resources to encompass services,
such as electronic purchasing of goods. It has evolved without changing its basic
architecture. The Web is based on three main standard technological components:

• the HyperText Markup Language (HTML), a language for specifying the contents
and layout of pages as they are displayed by web browsers;

• Uniform Resource Locators (URLs), also known as Uniform Resource Identifiers
(URIs), which identify documents and other resources stored as part of the Web;

• a client-server system architecture, with standard rules for interaction (the
HyperText Transfer Protocol – HTTP) by which browsers and other clients fetch
documents and other resources from web servers. Figure 1.7 shows some web
servers, and browsers making requests to them. It is an important feature that users
may locate and manage their own web servers anywhere on the Internet.

Figure 1.7 Web servers and web browsers

Internet

BrowsersWeb servers

www.google.com

www.cdk5.net

www.w3c.org

standards

faq.html

http://www.google.com/search?q=obama

GET http://www.cdk5.net

File system of
www.w3c.org

http://www.w3.org/standards/faq.html#conformance

SECTION 1.6 CASE STUDY: THE WORLD WIDE WEB 27

We now discuss these components in turn, and in so doing explain the operation of
browsers and web servers when a user fetches web pages and clicks on the links within
them.

HTML • The HyperText Markup Language [www.w3.org II] is used to specify the text
and images that make up the contents of a web page, and to specify how they are laid
out and formatted for presentation to the user. A web page contains such structured items
as headings, paragraphs, tables and images. HTML is also used to specify links and
which resources are associated with them.

Users may produce HTML by hand, using a standard text editor, but they more
commonly use an HTML-aware ‘wysiwyg’ editor that generates HTML from a layout
that they create graphically. A typical piece of HTML text follows:

 1

<P> 2

Welcome to Earth! Visitors may also be interested in taking a look at the 3

Moon. 4

</P> 5

This HTML text is stored in a file that a web server can access – let us say the file
earth.html. A browser retrieves the contents of this file from a web server – in this case
a server on a computer called www.cdk5.net. The browser reads the content returned by
the server and renders it into formatted text and images laid out on a web page in the
familiar fashion. Only the browser – not the server – interprets the HTML text. But the
server does inform the browser of the type of content it is returning, to distinguish it
from, say, a document in Portable Document Format. The server can infer the content
type from the filename extension ‘.html’.

Note that the HTML directives, known as tags, are enclosed by angle brackets,
such as <P>. Line 1 of the example identifies a file containing an image for
presentation. Its URL is http://www.cdk5.net/WebExample/Images/earth.jpg. Lines 2
and 5 are directives to begin and end a paragraph, respectively. Lines 3 and 4 contain
text to be displayed on the web page in the standard paragraph format.

28 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

Line 4 specifies a link in the web page. It contains the word ‘Moon’ surrounded
by two related HTML tags, <A HREF...> and . The text between these tags is what
appears in the link as it is presented on the web page. Most browsers are configured to
show the text of links underlined by default, so what the user will see in that paragraph
is:

Welcome to Earth! Visitors may also be interested in taking a look at the Moon.

The browser records the association between the link’s displayed text and the URL
contained in the <A HREF...> tag – in this case:

 http://www.cdk5.net/WebExample/moon.html

When the user clicks on the text, the browser retrieves the resource identified by the
corresponding URL and presents it to the user. In the example, the resource is an HTML
file specifying a web page about the Moon.

URLs • The purpose of a Uniform Resource Locator [www.w3.org III] is to identify a
resource. Indeed, the term used in web architecture documents is Uniform Resource
Identifier (URI), but in this book the better-known term URL will be used when no
confusion can arise. Browsers examine URLs in order to access the corresponding
resources. Sometimes the user types a URL into the browser. More commonly, the
browser looks up the corresponding URL when the user clicks on a link or selects one
of their ‘bookmarks’; or when the browser fetches a resource embedded in a web page,
such as an image.

Every URL, in its full, absolute form, has two top-level components:

scheme : scheme-specific-identifier

The first component, the ‘scheme’, declares which type of URL this is. URLs are
required to identify a variety of resources. For example, mailto:joe@anISP.net

identifies a user’s email address; ftp://ftp.downloadIt.com/software/aProg.exe identifies
a file that is to be retrieved using the File Transfer Protocol (FTP) rather than the more
commonly used protocol HTTP. Other examples of schemes are ‘tel’ (used to specify a
telephone number to dial, which is particularly useful when browsing on a mobile
phone) and ‘tag’ (used to identify an arbitrary entity).

The Web is open with respect to the types of resources it can be used to access, by
virtue of the scheme designators in URLs. If somebody invents a useful new type of
‘widget’ resource – perhaps with its own addressing scheme for locating widgets and its
own protocol for accessing them – then the world can start using URLs of the form
widget:.... Of course, browsers must be given the capability to use the new ‘widget’
protocol, but this can be done by adding a plug-in.

HTTP URLs are the most widely used, for accessing resources using the standard
HTTP protocol. An HTTP URL has two main jobs: to identify which web server
maintains the resource, and to identify which of the resources at that server is required.
Figure 1.7 shows three browsers issuing requests for resources managed by three web
servers. The topmost browser is issuing a query to a search engine. The middle browser
requires the default page of another web site. The bottommost browser requires a web
page that is specified in full, including a path name relative to the server. The files for a
given web server are maintained in one or more subtrees (directories) of the server’s file
system, and each resource is identified by a path name relative to the server.

SECTION 1.6 CASE STUDY: THE WORLD WIDE WEB 29

In general, HTTP URLs are of the following form:

http:// servername [:port] [/pathName] [?query] [#fragment]

where items in square brackets are optional. A full HTTP URL always begins with the
string ‘http://’ followed by a server name, expressed as a Domain Name System (DNS)
name (see Section 13.2). The server’s DNS name is optionally followed by the number
of the ‘port’ on which the server listens for requests (see Chapter 4), which is 80 by
default. Then comes an optional path name of the server’s resource. If this is absent then
the server’s default web page is required. Finally, the URL optionally ends in a query
component – for example, when a user submits the entries in a form such as a search
engine’s query page – and/or a fragment identifier, which identifies a component of the
resource.

Consider the URLs:

http://www.cdk5.net

http://www.w3.org/standards/faq.html#conformance

http://www.google.com/search?q=obama

These can be broken down as follows:

Server DNS name Path name Query Fragment

www.cdk5.net (default) (none) (none)

www.w3.org standards/faq.html (none) intro

www.google.com search q=obama (none)

The first URL designates the default page supplied by www.cdk5.net. The next identifies
a fragment of an HTML file whose path name is standards/faq.html relative to the server
www.w3.org. The fragment’s identifier (specified after the ‘#’ character in the URL) is
intro, and a browser will search for that fragment identifier within the HTML text after
it has downloaded the whole file. The third URL specifies a query to a search engine.
The path identifies a program called ‘search’, and the string after the ‘?’ character
encodes a query string supplied as arguments to this program. We discuss URLs that
identify programmatic resources in more detail when we consider more advanced
features below.

Publishing a resource: While the Web has a clearly defined model for accessing a
resource from its URL, the exact methods for publishing resources on the Web are
dependent upon the web server implementation. In terms of low-level mechanisms, the
simplest method of publishing a resource on the Web is to place the corresponding file
in a directory that the web server can access. Knowing the name of the server S and a
path name for the file P that the server can recognize, the user then constructs the URL
as http://S/P. The user puts this URL in a link from an existing document or distributes
the URL to other users, for example by email.

It is common for such concerns to be hidden from users when they generate
content. For example, ‘bloggers’ typically use software tools, themselves implemented
as web pages, to create organized collections of journal pages. Product pages for a
company’s web site are typically created using a content management system, again by

30 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

directly interacting with the web site through administrative web pages. The database or
file system on which the product pages are based is transparent.

Finally, Huang et al. [2000] provide a model for inserting content into the Web
with minimal human intervention. This is particularly relevant where users need to
extract content from a variety of devices, such as cameras, for publication in web pages.

HTTP • The HyperText Transfer Protocol [www.w3.org IV] defines the ways in which
browsers and other types of client interact with web servers. Chapter 5 will consider
HTTP in more detail, but here we outline its main features (restricting our discussion to
the retrieval of resources in files):

Request-reply interactions: HTTP is a ‘request-reply’ protocol. The client sends a
request message to the server containing the URL of the required resource. The
server looks up the path name and, if it exists, sends back the resource’s content in a
reply message to the client. Otherwise, it sends back an error response such as the
familiar ‘404 Not Found’. HTTP defines a small set of operations or methods that can
be performed on a resource. The most common are GET, to retrieve data from the
resource, and POST, to provide data to the resource.

Content types: Browsers are not necessarily capable of handling every type of
content. When a browser makes a request, it includes a list of the types of content it
prefers – for example, in principle it may be able to display images in ‘GIF’ format
but not ‘JPEG’ format. The server may be able to take this into account when it
returns content to the browser. The server includes the content type in the reply
message so that the browser will know how to process it. The strings that denote the
type of content are called MIME types, and they are standardized in RFC 1521 [Freed
and Borenstein 1996]. For example, if the content is of type ‘text/html’ then a
browser will interpret the text as HTML and display it; if the content is of type
‘image/GIF’ then the browser will render it as an image in ‘GIF’ format; if the
content type is ‘application/zip’ then it is data compressed in ‘zip’ format, and the
browser will launch an external helper application to decompress it. The set of
actions that a browser will take for a given type of content is configurable, and
readers may care to check these settings for their own browsers.

One resource per request: Clients specify one resource per HTTP request. If a web
page contains nine images, say, then the browser will issue a total of ten separate
requests to obtain the entire contents of the page. Browsers typically make several
requests concurrently, to reduce the overall delay to the user.

Simple access control: By default, any user with network connectivity to a web
server can access any of its published resources. If users wish to restrict access to a
resource, then they can configure the server to issue a ‘challenge’ to any client that
requests it. The corresponding user then has to prove that they have the right to access
the resource, for example, by typing in a password.

Dynamic pages • So far we have described how users can publish web pages and other
content stored in files on the Web. However, much of the users’ experience of the Web
is that of interacting with services rather than retrieving data. For example, when
purchasing an item at an online store, the user often fills out a web form to provide
personal details or to specify exactly what they wish to purchase. A web form is a web

SECTION 1.6 CASE STUDY: THE WORLD WIDE WEB 31

page containing instructions for the user and input widgets such as text fields and check
boxes. When the user submits the form (usually by pressing a button or the ‘return’ key),
the browser sends an HTTP request to a web server, containing the values that the user
has entered.

Since the result of the request depends upon the user’s input, the server has to
process the user’s input. Therefore the URL or its initial component designates a
program on the server, not a file. If the user’s input is a reasonably small set of
parameters it is often sent as the query component of the URL, using the GET
method; alternatively, it is sent as additional data in the request using the POST
method. For example, a request containing the following URL invokes a program
called ‘search’ at www.google.com and specifies a query string of ‘obama’:
http://www.google.com/search?q=obama.

That ‘search’ program produces HTML text as its output, and the user will see a
listing of pages that contain the word ‘obama’. (The reader may care to enter a query
into their favourite search engine and notice the URL that the browser displays when the
result is returned.) The server returns the HTML text that the program generates just as
though it had retrieved it from a file. In other words, the difference between static
content fetched from a file and content that is dynamically generated is transparent to
the browser.

A program that web servers run to generate content for their clients is referred to
as a Common Gateway Interface (CGI) program. A CGI program may have any
application-specific functionality, as long as it can parse the arguments that the client
provides to it and produce content of the required type (usually HTML text). The
program will often consult or update a database in processing the request.

Downloaded code: A CGI program runs at the server. Sometimes the designers of web
services require some service-related code to run inside the browser, at the user’s
computer. In particular, code written in Javascript [www.netscape.com] is often
downloaded with a web page containing a form, in order to provide better-quality
interaction with the user than that supported by HTML’s standard widgets. A Javascript-
enhanced page can give the user immediate feedback on invalid entries, instead of
forcing the user to check the values at the server, which would take much longer.

Javascript can also be used to update parts of a web page’s contents without
fetching an entirely new version of the page and re-rendering it. These dynamic updates
occur either due to a user action (such as clicking on a link or a radio button), or when
the browser acquires new data from the server that supplied the web page. In the latter
case, since the timing of the data’s arrival is unconnected with any user action at the
browser itself, it is termed asynchronous. A technique known as AJAX (Asynchronous
Javascript And XML) is used in such cases. AJAX is described more fully in Section
2.3.2.

An alternative to a Javascript program is an applet: an application written in the
Java language [Flanagan 2002], which the browser automatically downloads and runs
when it fetches a corresponding web page. Applets may access the network and provide
customized user interfaces. For example, ‘chat’ applications are sometimes
implemented as applets that run on the users’ browsers, together with a server program.
The applets send the users’ text to the server, which in turn distributes it to all the applets
for presentation to the user. We discuss applets in more detail in Section 2.3.1.

32 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

Web services • So far we have discussed the Web largely from the point of view of a
user operating a browser. But programs other than browsers can be clients of the Web,
too; indeed, programmatic access to web resources is commonplace.

However, HTML is inadequate for programmatic interoperation. There is an
increasing need to exchange many types of structured data on the Web, but HTML is
limited in that it is not extensible to applications beyond information browsing. HTML
has a static set of structures such as paragraphs, and they are bound up with the way that
the data is to be presented to users. The Extensible Markup Language (XML) (see
Section 4.3.3) has been designed as a way of representing data in standard, structured,
application-specific forms. In principle, data expressed in XML is portable between
applications since it is self-describing: it contains the names, types and structure of the
data elements within it. For example, XML may be used to describe products or
information about users, for many different services or applications. In the HTTP
protocol, XML data can be transmitted by the POST and GET operations. In AJAX it
can be used to provide data to Javascript programs in browsers.

Web resources provide service-specific operations. For example, in the store at
amazon.com, web service operations include one to order a book and another to check
the current status of an order. As we have mentioned, HTTP provides a small set of
operations that are applicable to any resource. These include principally the GET and
POST methods on existing resources, and the PUT and DELETE operations,
respectively. for creating and deleting web resources. Any operation on a resource can
be invoked using one of the GET or POST methods, with structured content used to
specify the operation’s parameters, results and error responses. The so-called REST
(REpresentational State Transfer) architecture for web services [Fielding 2000] adopts
this approach on the basis of its extensibility: every resource on the Web has a URL and
responds to the same set of operations, although the processing of the operations can
vary widely from resource to resource. The flip-side of that extensibility can be a lack
of robustness in how software operates. Chapter 9 further describes REST and takes an
in-depth look at the web services framework, which enables the designers of web
services to describe to programmers more specifically what service-specific operations
are available and how clients must access them.

Discussion of the Web • The Web’s phenomenal success rests upon the relative ease
with which many individual and organizational sources can publish resources, the
suitability of its hypertext structure for organizing many types of information, and the
openness of its system architecture. The standards upon which its architecture is based
are simple and they were widely published at an early stage. They have enabled many
new types of resources and services to be integrated.

The Web’s success belies some design problems. First, its hypertext model is
lacking in some respects. If a resource is deleted or moved, so-called ‘dangling’ links to
that resource may still remain, causing frustration for users. And there is the familiar
problem of users getting ‘lost in hyperspace’. Users often find themselves confused,
following many disparate links, referencing pages from a disparate collection of
sources, and of dubious reliability in some cases.

Search engines are a highly popular alternative to following links as a means of
finding information on the Web, but these are imperfect at producing what the user
specifically intends. One approach to this problem, exemplified in the Resource

SECTION 1.7 SUMMARY 33

Description Framework [www.w3.org V], is to produce standard vocabularies, syntax
and semantics for expressing metadata about the things in our world, and to encapsulate
that metadata in corresponding web resources for programmatic access. Rather than
searching for words that occur in web pages, programs can then, in principle, perform
searches against the metadata to compile lists of related links based on semantic
matching. Collectively, the web of linked metadata resources is what is meant by the
semantic web.

As a system architecture the Web faces problems of scale. Popular web servers
may experience many ‘hits’ per second, and as a result the response to users can be slow.
Chapter 2 describes the use of caching in browsers and proxy servers to increase
responsiveness, and the division of the server’s load across clusters of computers.

1.7 Summary

Distributed systems are everywhere. The Internet enables users throughout the world to
access its services wherever they may be located. Each organization manages an
intranet, which provides local services and Internet services for local users and generally
provides services to other users in the Internet. Small distributed systems can be
constructed from mobile computers and other small computational devices that are
attached to a wireless network.

Resource sharing is the main motivating factor for constructing distributed
systems. Resources such as printers, files, web pages or database records are managed
by servers of the appropriate type. For example, web servers manage web pages and
other web resources. Resources are accessed by clients – for example, the clients of web
servers are generally called browsers.

The construction of distributed systems produces many challenges:

Heterogeneity: They must be constructed from a variety of different networks,
operating systems, computer hardware and programming languages. The Internet
communication protocols mask the difference in networks, and middleware can deal
with the other differences.

Openness: Distributed systems should be extensible – the first step is to publish the
interfaces of the components, but the integration of components written by different
programmers is a real challenge.

Security: Encryption can be used to provide adequate protection of shared resources
and to keep sensitive information secret when it is transmitted in messages over a
network. Denial of service attacks are still a problem.

Scalability: A distributed system is scalable if the cost of adding a user is a constant
amount in terms of the resources that must be added. The algorithms used to access
shared data should avoid performance bottlenecks and data should be structured
hierarchically to get the best access times. Frequently accessed data can be replicated.

Failure handling: Any process, computer or network may fail independently of the
others. Therefore each component needs to be aware of the possible ways in which

34 CHAPTER 1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS

the components it depends on may fail and be designed to deal with each of those
failures appropriately.

Concurrency: The presence of multiple users in a distributed system is a source of
concurrent requests to its resources. Each resource must be designed to be safe in a
concurrent environment.

Transparency: The aim is to make certain aspects of distribution invisible to the
application programmer so that they need only be concerned with the design of their
particular application. For example, they need not be concerned with its location or
the details of how its operations are accessed by other components, or whether it will
be replicated or migrated. Even failures of networks and processes can be presented
to application programmers in the form of exceptions – but they must be handled.

Quality of service. It is not sufficient to provide access to services in distributed
systems. In particular, it is also important to provide guarantees regarding the
qualities associated with such service access. Examples of such qualities include
parameters related to performance, security and reliability.

EXERCISES

1.1 Give five types of hardware resource and five types of data or software resource that can
usefully be shared. Give examples of their sharing as it occurs in practice in distributed
systems. pages 2, 14

1.2 How might the clocks in two computers that are linked by a local network be
synchronized without reference to an external time source? What factors limit the
accuracy of the procedure you have described? How could the clocks in a large number
of computers connected by the Internet be synchronized? Discuss the accuracy of that
procedure. page 2

1.3 Consider the implementation strategies for massively multiplayer online games as
discussed in Section 1.2.2. In particular, what advantages do you see in adopting a single
server approach for representing the state of the multiplayer game? What problems can
you identify and how might they be resolved? page 5

1.4 A user arrives at a railway station that they has never visited before, carrying a PDA that
is capable of wireless networking. Suggest how the user could be provided with
information about the local services and amenities at that station, without entering the
station’s name or attributes. What technical challenges must be overcome? page 13

1.5 Compare and contrast cloud computing with more traditional client-server computing?
What is novel about cloud computing as a concept? pages 13, 14

1.6 Use the World Wide Web as an example to illustrate the concept of resource sharing,
client and server. What are the advantages and disadvantages of HTML, URLs and
HTTP as core technologies for information browsing? Are any of these technologies
suitable as a basis for client-server computing in general? pages 14, 26

EXERCISES 35

1.7 A server program written in one language (for example, C++) provides the
implementation of a BLOB object that is intended to be accessed by clients that may be
written in a different language (for example, Java). The client and server computers may
have different hardware, but all of them are attached to an internet. Describe the
problems due to each of the five aspects of heterogeneity that need to be solved to make
it possible for a client object to invoke a method on the server object. page 16

1.8 An open distributed system allows new resource-sharing services such as the BLOB
object in Exercise 1.7 to be added and accessed by a variety of client programs. Discuss
in the context of this example, to what extent the needs of openness differ from those of
heterogeneity. page 17

1.9 Suppose that the operations of the BLOB object are separated into two categories –
public operations that are available to all users and protected operations that are
available only to certain named users. State all of the problems involved in ensuring that
only the named users can use a protected operation. Supposing that access to a protected
operation provides information that should not be revealed to all users, what further
problems arise? page 18

1.10 The INFO service manages a potentially very large set of resources, each of which can
be accessed by users throughout the Internet by means of a key (a string name). Discuss
an approach to the design of the names of the resources that achieves the minimum loss
of performance as the number of resources in the service increases. Suggest how the
INFO service can be implemented so as to avoid performance bottlenecks when the
number of users becomes very large. page 19

1.11 List the three main software components that may fail when a client process invokes a
method in a server object, giving an example of a failure in each case. Suggest how the
components can be made to tolerate one another’s failures. page 21

1.12 A server process maintains a shared information object such as the BLOB object of
Exercise 1.7. Give arguments for and against allowing the client requests to be executed
concurrently by the server. In the case that they are executed concurrently, give an
example of possible ‘interference’ that can occur between the operations of different
clients. Suggest how such interference may be prevented. page 22

1.13 A service is implemented by several servers. Explain why resources might be
transferred between them. Would it be satisfactory for clients to multicast all requests to
the group of servers as a way of achieving mobility transparency for clients? page 23

1.14 Resources in the World Wide Web and other services are named by URLs. What do the
initials URL denote? Give examples of three different sorts of web resources that can be
named by URLs. page 26

1.15 Give an example of an HTTP URL. List the main components of an HTTP URL, stating
how their boundaries are denoted and illustrating each one from your example. To what
extent is an HTTP URL location-transparent? page 26

This page intentionally left blank

 37

2

SYSTEM MODELS

2.1 Introduction
2.2 Physical models
2.3 Architectural models
2.4 Fundamental models
2.5 Summary

This chapter provides an explanation of three important and complementary ways in
which the design of distributed systems can usefully be described and discussed:

Physical models consider the types of computers and devices that constitute a system
and their interconnectivity, without details of specific technologies.

Architectural models describe a system in terms of the computational and
communication tasks performed by its computational elements; the computational
elements being individual computers or aggregates of them supported by appropriate
network interconnections. Client-server and peer-to-peer are two of the most
commonly used forms of architectural model for distributed systems.

Fundamental models take an abstract perspective in order to describe solutions to
individual issues faced by most distributed systems.

There is no global time in a distributed system, so the clocks on different computers do
not necessarily give the same time as one another. All communication between processes
is achieved by means of messages. Message communication over a computer network
can be affected by delays, can suffer from a variety of failures and is vulnerable to security
attacks. These issues are addressed by three models:

• The interaction model deals with performance and with the difficulty of setting time
limits in a distributed system, for example for message delivery.

• The failure model attempts to give a precise specification of the faults that can be
exhibited by processes and communication channels. It defines reliable
communication and correct processes.

• The security model discusses the possible threats to processes and communication
channels. It introduces the concept of a secure channel, which is secure against
those threats.

38 CHAPTER 2 SYSTEM MODELS

2.1 Introduction

Systems that are intended for use in real-world environments should be designed to
function correctly in the widest possible range of circumstances and in the face of many
possible difficulties and threats (for some examples, see the box at the bottom of this
page).

Difficulties and threats for distributed systems • Here are some of the problems that
the designers of distributed systems face.

Widely varying modes of use: The component parts of systems are subject to wide
variations in workload – for example, some web pages are accessed several million
times a day. Some parts of a system may be disconnected, or poorly connected some
of the time – for example, when mobile computers are included in a system. Some
applications have special requirements for high communication bandwidth and low
latency – for example, multimedia applications.

Wide range of system environments: A distributed system must accommodate
heterogeneous hardware, operating systems and networks. The networks may differ
widely in performance – wireless networks operate at a fraction of the speed of local
networks. Systems of widely differing scales, ranging from tens of computers to
millions of computers, must be supported.

Internal problems: Non-synchronized clocks, conflicting data updates and many
modes of hardware and software failure involving the individual system components.

External threats: Attacks on data integrity and secrecy, denial of service attacks.

 The discussion and examples of Chapter 1 suggest that distributed systems of
different types share important underlying properties and give rise to common design
problems. In this chapter we show how the properties and design issues of distributed
systems can be captured and discussed through the use of descriptive models. Each type
of model is intended to provide an abstract, simplified but consistent description of a
relevant aspect of distributed system design:

Physical models are the most explicit way in which to describe a system; they
capture the hardware composition of a system in terms of the computers (and other
devices, such as mobile phones) and their interconnecting networks.

Architectural models describe a system in terms of the computational and
communication tasks performed by its computational elements; the computational
elements being individual computers or aggregates of them supported by appropriate
network interconnections.

Fundamental models take an abstract perspective in order to examine individual
aspects of a distributed system. In this chapter we introduce fundamental models that
examine three important aspects of distributed systems: interaction models, which
consider the structure and sequencing of the communication between the elements of
the system; failure models, which consider the ways in which a system may fail to
operate correctly and; security models, which consider how the system is protected
against attempts to interfere with its correct operation or to steal its data.

SECTION 2.2 PHYSICAL MODELS 39

2.2 Physical models

A physical model is a representation of the underlying hardware elements of a
distributed system that abstracts away from specific details of the computer and
networking technologies employed.

Baseline physical model: A distributed system was defined in Chapter 1 as one in which
hardware or software components located at networked computers communicate and
coordinate their actions only by passing messages. This leads to a minimal physical
model of a distributed system as an extensible set of computer nodes interconnected by
a computer network for the required passing of messages.

Beyond this baseline model, we can usefully identify three generations of distributed
systems.

Early distributed systems: Such systems emerged in the late 1970s and early 1980s in
response to the emergence of local area networking technology, usually Ethernet (see
Section 3.5). These systems typically consisted of between 10 and 100 nodes
interconnected by a local area network, with limited Internet connectivity and supported
a small range of services such as shared local printers and file servers as well as email
and file transfer across the Internet. Individual systems were largely homogeneous and
openness was not a primary concern. Providing quality of service was still very much in
its infancy and was a focal point for much of the research around such early systems.

Internet-scale distributed systems: Building on this foundation, larger-scale distributed
systems started to emerge in the 1990s in response to the dramatic growth of the Internet
during this time (for example, the Google search engine was first launched in 1996). In
such systems, the underlying physical infrastructure consists of a physical model as
illustrated in Chapter 1, Figure 1.3; that is, an extensible set of nodes interconnected by
a network of networks (the Internet). Such systems exploit the infrastructure offered by
the Internet to become truly global. They incorporate large numbers of nodes and
provide distributed system services for global organizations and across organizational
boundaries. The level of heterogeneity in such systems is significant in terms of
networks, computer architecture, operating systems, languages employed and the
development teams involved. This has led to an increasing emphasis on open standards
and associated middleware technologies such as CORBA and more recently, web
services. Additional services were employed to provide end-to-end quality of service
properties in such global systems.

Contemporary distributed systems: In the above systems, nodes were typically desktop
computers and therefore relatively static (that is, remaining in one physical location for
extended periods), discrete (not embedded within other physical entities) and
autonomous (to a large extent independent of other computers in terms of their physical
infrastructure). The key trends identified in Section 1.3 have resulted in significant
further developments in physical models:

• The emergence of mobile computing has led to physical models where nodes such
as laptops or smart phones may move from location to location in a distributed
system, leading to the need for added capabilities such as service discovery and
support for spontaneous interoperation.

40 CHAPTER 2 SYSTEM MODELS

• The emergence of ubiquitous computing has led to a move from discrete nodes to
architectures where computers are embedded in everyday objects and in the
surrounding environment (for example, in washing machines or in smart homes
more generally).

• The emergence of cloud computing and, in particular, cluster architectures has led
to a move from autonomous nodes performing a given role to pools of nodes that
together provide a given service (for example, a search service as offered by
Google).

The end result is a physical architecture with a significant increase in the level of
heterogeneity embracing, for example, the tiniest embedded devices utilized in
ubiquitous computing through to complex computational elements found in Grid
computing. These systems deploy an increasingly varied set of networking technologies
and offer a wide variety of applications and services. Such systems potentially involve
up to hundreds of thousands of nodes.

Distributed systems of systems • A recent report discusses the emergence of ultra-
large-scale (ULS) distributed systems [www.sei.cmu.edu]. The report captures the
complexity of modern distributed systems by referring to such (physical) architectures
as systems of systems (mirroring the view of the Internet as a network of networks). A
system of systems can be defined as a complex system consisting of a series of
subsystems that are systems in their own right and that come together to perform a
particular task or tasks.

As an example of a system of systems, consider an environmental management
system for flood prediction. In such a scenario, there will be sensor networks deployed
to monitor the state of various environmental parameters relating to rivers, flood plains,
tidal effects and so on. This can then be coupled with systems that are responsible for
predicting the likelihood of floods, by running (often complex) simulations on, for
example, cluster computers (as discussed in Chapter 1). Other systems may be
established to maintain and analyze historical data or to provide early warning systems
to key stakeholders via mobile phones.

Summary • The overall historical development captured in this section is summarized
in Figure 2.1, with the table highlighting the significant challenges associated with
contemporary distributed systems in terms of managing the levels of heterogeneity and
providing key properties such as openness and quality of service.

2.3 Architectural models

The architecture of a system is its structure in terms of separately specified components
and their interrelationships. The overall goal is to ensure that the structure will meet
present and likely future demands on it. Major concerns are to make the system reliable,
manageable, adaptable and cost-effective. The architectural design of a building has
similar aspects – it determines not only its appearance but also its general structure and
architectural style (gothic, neo-classical, modern) and provides a consistent frame of
reference for the design.

Figure 2.1 Generations of distributed systems

Distributed systems: Early Internet-scale Contemporary

Scale Small Large Ultra-large

Heterogeneity Limited (typically
relatively homogenous
configurations)

Significant in terms of
platforms, languages
and middleware

Added dimensions
introduced including
radically different styles of
architecture

Openness

Not a priority
Significant priority
with range of standards
introduced

Major research challenge
with existing standards not
yet able to embrace
complex systems

Quality of service

In its infancy
Significant priority
with range of services
introduced

Major research challenge
with existing services not
yet able to embrace
complex systems

SECTION 2.3 ARCHITECTURAL MODELS 41

In this section we describe the main architectural models employed in distributed
systems – the architectural styles of distributed systems. In particular, we lay the
groundwork for a thorough understanding of approaches such as client-server models,
peer-to-peer approaches, distributed objects, distributed components, distributed event-
based systems and the key differences between these styles.

The section adopts a three-stage approach:

• looking at the core underlying architectural elements that underpin modern
distributed systems, highlighting the diversity of approaches that now exist;

• examining composite architectural patterns that can be used in isolation or, more
commonly, in combination, in developing more sophisticated distributed systems
solutions;

• and finally, considering middleware platforms that are available to support the
various styles of programming that emerge from the above architectural styles.

Note that there are many trade-offs associated with the choices identified in this chapter
in terms of the architectural elements employed, the patterns adopted and (where
appropriate) the middleware used, for example affecting the performance and
effectiveness of the resulting system. Understanding such trade-offs is arguably the key
skill in distributed systems design.

2.3.1 Architectural elements

To understand the fundamental building blocks of a distributed system, it is necessary
to consider four key questions:

• What are the entities that are communicating in the distributed system?

42 CHAPTER 2 SYSTEM MODELS

• How do they communicate, or, more specifically, what communication paradigm

is used?

• What (potentially changing) roles and responsibilities do they have in the overall
architecture?

• How are they mapped on to the physical distributed infrastructure (what is their
placement)?

Communicating entities • The first two questions above are absolutely central to an
understanding of distributed systems; what is communicating and how those entities
communicate together define a rich design space for the distributed systems developer
to consider. It is helpful to address the first question from a system-oriented and a
problem-oriented perspective.

From a system perspective, the answer is normally very clear in that the entities
that communicate in a distributed system are typically processes, leading to the
prevailing view of a distributed system as processes coupled with appropriate
interprocess communication paradigms (as discussed, for example, in Chapter 4), with
two caveats:

• In some primitive environments, such as sensor networks, the underlying
operating systems may not support process abstractions (or indeed any form of
isolation), and hence the entities that communicate in such systems are nodes.

• In most distributed system environments, processes are supplemented by threads,
so, strictly speaking, it is threads that are the endpoints of communication.

At one level, this is sufficient to model a distributed system and indeed the fundamental
models considered in Section 2.4 adopt this view. From a programming perspective,
however, this is not enough, and more problem-oriented abstractions have been
proposed:

Objects: Objects have been introduced to enable and encourage the use of object-
oriented approaches in distributed systems (including both object-oriented design
and object-oriented programming languages). In distributed object-based
approaches, a computation consists of a number of interacting objects representing
natural units of decomposition for the given problem domain. Objects are accessed
via interfaces, with an associated interface definition language (or IDL) providing a
specification of the methods defined on an object. Distributed objects have become
a major area of study in distributed systems, and further consideration is given to this
topic in Chapters 5 and 8.

Components: Since their introduction a number of significant problems have been
identified with distributed objects, and the use of component technology has emerged
as a direct response to such weaknesses. Components resemble objects in that they
offer problem-oriented abstractions for building distributed systems and are also
accessed through interfaces. The key difference is that components specify not only
their (provided) interfaces but also the assumptions they make in terms of other
components/interfaces that must be present for a component to fulfil its function – in
other words, making all dependencies explicit and providing a more complete
contract for system construction. This more contractual approach encourages and

SECTION 2.3 ARCHITECTURAL MODELS 43

enables third-party development of components and also promotes a purer
compositional approach to constructing distributed systems by removing hidden
dependencies. Component-based middleware often provides additional support for
key areas such as deployment and support for server-side programming [Heineman
and Councill 2001]. Further details of component-based approaches can be found in
Chapter 8.

Web services: Web services represent the third important paradigm for the
development of distributed systems [Alonso et al. 2004]. Web services are closely
related to objects and components, again taking an approach based on encapsulation
of behaviour and access through interfaces. In contrast, however, web services are
intrinsically integrated into the World Wide Web, using web standards to represent
and discover services. The World Wide Web consortium (W3C) defines a web
service as:

... a software application identified by a URI, whose interfaces and
bindings are capable of being defined, described and discovered as XML
artefacts. A Web service supports direct interactions with other software
agents using XML-based message exchanges via Internet-based
protocols.

In other words, web services are partially defined by the web-based technologies they
adopt. A further important distinction stems from the style of use of the technology.
Whereas objects and components are often used within an organization to develop
tightly coupled applications, web services are generally viewed as complete services
in their own right that can be combined to achieve value-added services, often
crossing organizational boundaries and hence achieving business to business
integration. Web services may be implemented by different providers and using
different underlying technologies. Web services are considered further in Chapter 9.

Communication paradigms • We now turn our attention to how entities communicate in
a distributed system, and consider three types of communication paradigm:

• interprocess communication;

• remote invocation;

• indirect communication.

Interprocess communication refers to the relatively low-level support for
communication between processes in distributed systems, including message-passing
primitives, direct access to the API offered by Internet protocols (socket programming)
and support for multicast communication. Such services are discussed in detail in
Chapter 4.

Remote invocation represents the most common communication paradigm in
distributed systems, covering a range of techniques based on a two-way exchange
between communicating entities in a distributed system and resulting in the calling of a
remote operation, procedure or method, as defined further below (and considered fully
in Chapter 5):

Request-reply protocols: Request-reply protocols are effectively a pattern imposed
on an underlying message-passing service to support client-server computing. In

44 CHAPTER 2 SYSTEM MODELS

particular, such protocols typically involve a pairwise exchange of messages from
client to server and then from server back to client, with the first message containing
an encoding of the operation to be executed at the server and also an array of bytes
holding associated arguments and the second message containing any results of the
operation, again encoded as an array of bytes. This paradigm is rather primitive and
only really used in embedded systems where performance is paramount. The
approach is also used in the HTTP protocol described in Section 5.2. Most distributed
systems will elect to use remote procedure calls or remote method invocation, as
discussed below, but note that both approaches are supported by underlying request-
reply exchanges.

Remote procedure calls: The concept of a remote procedure call (RPC), initially
attributed to Birrell and Nelson [1984], represents a major intellectual breakthrough
in distributed computing. In RPC, procedures in processes on remote computers can
be called as if they are procedures in the local address space. The underlying RPC
system then hides important aspects of distribution, including the encoding and
decoding of parameters and results, the passing of messages and the preserving of the
required semantics for the procedure call. This approach directly and elegantly
supports client-server computing with servers offering a set of operations through a
service interface and clients calling these operations directly as if they were available
locally. RPC systems therefore offer (at a minimum) access and location
transparency.

Remote method invocation: Remote method invocation (RMI) strongly resembles
remote procedure calls but in a world of distributed objects. With this approach, a
calling object can invoke a method in a remote object. As with RPC, the underlying
details are generally hidden from the user. RMI implementations may, though, go
further by supporting object identity and the associated ability to pass object
identifiers as parameters in remote calls. They also benefit more generally from
tighter integration into object-oriented languages as discussed in Chapter 5.

The above set of techniques all have one thing in common: communication represents a
two-way relationship between a sender and a receiver with senders explicitly directing
messages/invocations to the associated receivers. Receivers are also generally aware of
the identity of senders, and in most cases both parties must exist at the same time. In
contrast, a number of techniques have emerged whereby communication is indirect,
through a third entity, allowing a strong degree of decoupling between senders and
receivers. In particular:

• Senders do not need to know who they are sending to (space uncoupling).

• Senders and receivers do not need to exist at the same time (time uncoupling).

Indirect communication is discussed in more detail in Chapter 6.
Key techniques for indirect communication include:

Group communication: Group communication is concerned with the delivery of
messages to a set of recipients and hence is a multiparty communication paradigm
supporting one-to-many communication. Group communication relies on the
abstraction of a group which is represented in the system by a group identifier.

SECTION 2.3 ARCHITECTURAL MODELS 45

Recipients elect to receive messages sent to a group by joining the group. Senders
then send messages to the group via the group identifier, and hence do not need to
know the recipients of the message. Groups typically also maintain group
membership and include mechanisms to deal with failure of group members.

Publish-subscribe systems: Many systems, such as the financial trading example in
Chapter 1, can be classified as information-dissemination systems wherein a large
number of producers (or publishers) distribute information items of interest (events)
to a similarly large number of consumers (or subscribers). It would be complicated
and inefficient to employ any of the core communication paradigms discussed above
for this purpose and hence publish-subscribe systems (sometimes also called
distributed event-based systems) have emerged to meet this important need [Muhl et

al. 2006]. Publish-subscribe systems all share the crucial feature of providing an
intermediary service that efficiently ensures information generated by producers is
routed to consumers who desire this information.

Message queues: Whereas publish-subscribe systems offer a one-to-many style of
communication, message queues offer a point-to-point service whereby producer
processes can send messages to a specified queue and consumer processes can
receive messages from the queue or be notified of the arrival of new messages in the
queue. Queues therefore offer an indirection between the producer and consumer
processes.

Tuple spaces: Tuple spaces offer a further indirect communication service by
supporting a model whereby processes can place arbitrary items of structured data,
called tuples, in a persistent tuple space and other processes can either read or remove
such tuples from the tuple space by specifying patterns of interest. Since the tuple
space is persistent, readers and writers do not need to exist at the same time. This style
of programming, otherwise known as generative communication, was introduced by
Gelernter [1985] as a paradigm for parallel programming. A number of distributed
implementations have also been developed, adopting either a client-server-style
implementation or a more decentralized peer-to-peer approach.

Distributed shared memory: Distributed shared memory (DSM) systems provide an
abstraction for sharing data between processes that do not share physical memory.
Programmers are nevertheless presented with a familiar abstraction of reading or
writing (shared) data structures as if they were in their own local address spaces, thus
presenting a high level of distribution transparency. The underlying infrastructure
must ensure a copy is provided in a timely manner and also deal with issues relating
to synchronization and consistency of data. An overview of distributed shared
memory can be found in Chapter 6.

The architectural choices discussed so far are summarized in Figure 2.2.

Roles and responsibilities • In a distributed system processes – or indeed objects,
components or services, including web services (but for the sake of simplicity we use
the term process throughout this section) – interact with each other to perform a useful
activity, for example, to support a chat session. In doing so, the processes take on given
roles, and these roles are fundamental in establishing the overall architecture to be

Figure 2.2 Communicating entities and communication paradigms

Communicating entities

(what is communicating)

Communication paradigms

(how they communicate)

System-oriented

entities

Problem-

oriented entities

Interprocess

communication

Remote

invocation

Indirect

communication

Nodes

Processes

Objects

Components

Web services

Message
passing

Sockets

Multicast

Request-
reply

RPC

RMI

Group
communication

Publish-subscribe

Message queues

Tuple spaces

DSM

46 CHAPTER 2 SYSTEM MODELS

adopted. In this section, we examine two architectural styles stemming from the role of
individual processes: client-server and peer-to-peer.

Client-server: This is the architecture that is most often cited when distributed systems
are discussed. It is historically the most important and remains the most widely
employed. Figure 2.3 illustrates the simple structure in which processes take on the roles
of being clients or servers. In particular, client processes interact with individual server
processes in potentially separate host computers in order to access the shared resources
that they manage.

Servers may in turn be clients of other servers, as the figure indicates. For
example, a web server is often a client of a local file server that manages the files in
which the web pages are stored. Web servers and most other Internet services are clients
of the DNS service, which translates Internet domain names to network addresses.
Another web-related example concerns search engines, which enable users to look up
summaries of information available on web pages at sites throughout the Internet. These
summaries are made by programs called web crawlers, which run in the background at
a search engine site using HTTP requests to access web servers throughout the Internet.
Thus a search engine is both a server and a client: it responds to queries from browser
clients and it runs web crawlers that act as clients of other web servers. In this example,
the server tasks (responding to user queries) and the crawler tasks (making requests to
other web servers) are entirely independent; there is little need to synchronize them and
they may run concurrently. In fact, a typical search engine would normally include many
concurrent threads of execution, some serving its clients and others running web
crawlers. In Exercise 2.5, the reader is invited to consider the only synchronization issue
that does arise for a concurrent search engine of the type outlined here.

SECTION 2.3 ARCHITECTURAL MODELS 47

Peer-to-peer: In this architecture all of the processes involved in a task or activity play
similar roles, interacting cooperatively as peers without any distinction between client
and server processes or the computers on which they run. In practical terms, all
participating processes run the same program and offer the same set of interfaces to each
other. While the client-server model offers a direct and relatively simple approach to the
sharing of data and other resources, it scales poorly. The centralization of service
provision and management implied by placing a service at a single address does not
scale well beyond the capacity of the computer that hosts the service and the bandwidth
of its network connections.

Figure 2.3 Clients invoke individual servers

invocation

result

invocation

result

Process:
Key:

Computer:

Client

Client

Server

Server

A number of placement strategies have evolved in response to this problem (see
the discussion of placement below), but none of them addresses the fundamental issue
– the need to distribute shared resources much more widely in order to share the
computing and communication loads incurred in accessing them amongst a much larger
number of computers and network links. The key insight that led to the development of
peer-to-peer systems is that the network and computing resources owned by the users of
a service could also be put to use to support that service. This has the useful consequence
that the resources available to run the service grow with the number of users.

 The hardware capacity and operating system functionality of today’s desktop
computers exceeds that of yesterday’s servers, and the majority are equipped with
always-on broadband network connections. The aim of the peer-to-peer architecture is
to exploit the resources (both data and hardware) in a large number of participating
computers for the fulfilment of a given task or activity. Peer-to-peer applications and
systems have been successfully constructed that enable tens or hundreds of thousands of
computers to provide access to data and other resources that they collectively store and
manage. One of the earliest instances was the Napster application for sharing digital
music files. Although Napster was not a pure peer-to-peer architecture (and also gained
notoriety for reasons beyond its architecture), its demonstration of feasibility has
resulted in the development of the architectural model in many valuable directions. A
more recent and widely used instance is the BitTorrent file-sharing system (discussed in
more depth in Section 20.6.2).

48 CHAPTER 2 SYSTEM MODELS

Figure 2.4a illustrates the form of a peer-to-peer application. Applications are

composed of large numbers of peer processes running on separate computers and the

pattern of communication between them depends entirely on application requirements.

A large number of data objects are shared, an individual computer holds only a small

part of the application database, and the storage, processing and communication loads

for access to objects are distributed across many computers and network links. Each

object is replicated in several computers to further distribute the load and to provide

resilience in the event of disconnection of individual computers (as is inevitable in the

large, heterogeneous networks at which peer-to-peer systems are aimed). The need to

place individual objects and retrieve them and to maintain replicas amongst many

computers renders this architecture substantially more complex than the client-server

architecture.

Figure 2.4a Peer-to-peer architecture Figure 2.4b A service provided by multiple servers

Peers 4 N

Sharable
objects

App
App

App

Peer 1
Peer 2

Peer 3

Service

Client

Client

Server

Server

Server

The development of peer-to-peer applications and middleware to support them is

described in depth in Chapter 10.

Placement • The final issue to be considered is how entities such as objects or services

map on to the underlying physical distributed infrastructure which will consist of a

potentially large number of machines interconnected by a network of arbitrary

complexity. Placement is crucial in terms of determining the properties of the distributed

system, most obviously with regard to performance but also to other aspects, such as

reliability and security.

The question of where to place a given client or server in terms of machines and

processes within machines is a matter of careful design. Placement needs to take into

account the patterns of communication between entities, the reliability of given

machines and their current loading, the quality of communication between different

machines and so on. Placement must be determined with strong application knowledge,

and there are few universal guidelines to obtaining an optimal solution. We therefore

focus mainly on the following placement strategies, which can significantly alter the

characteristics of a given design (although we return to the key issue of mapping to

physical infrastructure in Section 2.3.2, where we look at tiered architecture):

SECTION 2.3 ARCHITECTURAL MODELS 49

• mapping of services to multiple servers;

• caching;

• mobile code;

• mobile agents.

Mapping of services to multiple servers: Services may be implemented as several server

processes in separate host computers interacting as necessary to provide a service to

client processes (Figure 2.4b). The servers may partition the set of objects on which the

service is based and distribute those objects between themselves, or they may maintain

replicated copies of them on several hosts. These two options are illustrated by the

following examples.

The Web provides a common example of partitioned data in which each web

server manages its own set of resources. A user can employ a browser to access a

resource at any one of the servers.

An example of a service based on replicated data is the Sun Network Information

Service (NIS), which is used to enable all the computers on a LAN to access the same

user authentication data when users log in. Each NIS server has its own replica of a

common password file containing a list of users’ login names and encrypted passwords.

Chapter 18 discusses techniques for replication in detail.

Client

Proxy

Web

Figure 2.5 Web proxy server

server

Web

server

server
Client

A more closely coupled type of multiple-server architecture is the cluster, as

introduced in Chapter 1. A cluster is constructed from up to thousands of commodity

processing boards, and service processing can be partitioned or replicated between

them.

Caching: A cache is a store of recently used data objects that is closer to one client or a

particular set of clients than the objects themselves. When a new object is received from

a server it is added to the local cache store, replacing some existing objects if necessary.

When an object is needed by a client process, the caching service first checks the cache

and supplies the object from there if an up-to-date copy is available. If not, an up-to-date

copy is fetched. Caches may be co-located with each client or they may be located in a

proxy server that can be shared by several clients.

Caches are used extensively in practice. Web browsers maintain a cache of

recently visited web pages and other web resources in the client’s local file system, using

a special HTTP request to check with the original server that cached pages are up-to-

date before displaying them. Web proxy servers (Figure 2.5) provide a shared cache of

50 CHAPTER 2 SYSTEM MODELS

web resources for the client machines at a site or across several sites. The purpose of
proxy servers is to increase the availability and performance of the service by reducing
the load on the wide area network and web servers. Proxy servers can take on other roles;
for example, they may be used to access remote web servers through a firewall.

Mobile code: Chapter 1 introduced mobile code. Applets are a well-known and widely
used example of mobile code – the user running a browser selects a link to an applet
whose code is stored on a web server; the code is downloaded to the browser and runs
there, as shown in Figure 2.6. An advantage of running the downloaded code locally is
that it can give good interactive response since it does not suffer from the delays or
variability of bandwidth associated with network communication.

a) client request results in the downloading of applet code

Web

Figure 2.6 Web applets

server

Client
Web
serverApplet

Applet code

Client

b) client interacts with the applet

Accessing services means running code that can invoke their operations. Some
services are likely to be so standardized that we can access them with an existing and
well-known application – the Web is the most common example of this, but even there,
some web sites use functionality not found in standard browsers and require the
downloading of additional code. The additional code may, for example, communicate
with the server. Consider an application that requires that users be kept up-to-date with
changes as they occur at an information source in the server. This cannot be achieved by
normal interactions with the web server, which are always initiated by the client. The
solution is to use additional software that operates in a manner often referred to as a push

model – one in which the server instead of the client initiates interactions. For example,
a stockbroker might provide a customized service to notify customers of changes in the
prices of shares; to use the service, each customer would have to download a special
applet that receives updates from the broker’s server, displays them to the user and
perhaps performs automatic buy and sell operations triggered by conditions set up by the
customer and stored locally in the customer’s computer.

Mobile code is a potential security threat to the local resources in the destination
computer. Therefore browsers give applets limited access to local resources, using a
scheme discussed in Section 11.1.1.

Mobile agents: A mobile agent is a running program (including both code and data) that
travels from one computer to another in a network carrying out a task on someone’s
behalf, such as collecting information, and eventually returning with the results. A
mobile agent may make many invocations to local resources at each site it visits – for

SECTION 2.3 ARCHITECTURAL MODELS 51

example, accessing individual database entries. If we compare this architecture with a
static client making remote invocations to some resources, possibly transferring large
amounts of data, there is a reduction in communication cost and time through the
replacement of remote invocations with local ones.

Mobile agents might be used to install and maintain software on the computers
within an organization or to compare the prices of products from a number of vendors
by visiting each vendor’s site and performing a series of database operations. An early
example of a similar idea is the so-called worm program developed at Xerox PARC
[Shoch and Hupp 1982], which was designed to make use of idle computers in order to
carry out intensive computations.

Mobile agents (like mobile code) are a potential security threat to the resources in
computers that they visit. The environment receiving a mobile agent should decide
which of the local resources it should be allowed to use, based on the identity of the user
on whose behalf the agent is acting – their identity must be included in a secure way with
the code and data of the mobile agent. In addition, mobile agents can themselves be
vulnerable – they may not be able to complete their task if they are refused access to the
information they need. The tasks performed by mobile agents can be performed by other
means. For example, web crawlers that need to access resources at web servers
throughout the Internet work quite successfully by making remote invocations to server
processes. For these reasons, the applicability of mobile agents may be limited.

2.3.2 Architectural patterns

Architectural patterns build on the more primitive architectural elements discussed
above and provide composite recurring structures that have been shown to work well in
given circumstances. They are not themselves necessarily complete solutions but rather
offer partial insights that, when combined with other patterns, lead the designer to a
solution for a given problem domain.

This is a large topic, and many architectural patterns have been identified for
distributed systems. In this section, we present several key architectural patterns in
distributed systems, including layering and tiered architectures and the related concept
of thin clients (including the specific mechanism of virtual network computing). We
also examine web services as an architectural pattern and give pointers to others that
may be applicable in distributed systems.

Layering • The concept of layering is a familiar one and is closely related to abstraction.
In a layered approach, a complex system is partitioned into a number of layers, with a
given layer making use of the services offered by the layer below. A given layer
therefore offers a software abstraction, with higher layers being unaware of
implementation details, or indeed of any other layers beneath them.

In terms of distributed systems, this equates to a vertical organization of services
into service layers. A distributed service can be provided by one or more server
processes, interacting with each other and with client processes in order to maintain a
consistent system-wide view of the service’s resources. For example, a network time
service is implemented on the Internet based on the Network Time Protocol (NTP) by
server processes running on hosts throughout the Internet that supply the current time to
any client that requests it and adjust their version of the current time as a result of

52 CHAPTER 2 SYSTEM MODELS

interactions with each other. Given the complexity of distributed systems, it is often
helpful to organize such services into layers. We present a common view of a layered
architecture in Figure 2.7 and develop this view in increasing detail in Chapters 3 to 6.

Figure 2.7 introduces the important terms platform and middleware, which we
define as follows:

• A platform for distributed systems and applications consists of the lowest-level
hardware and software layers. These low-level layers provide services to the
layers above them, which are implemented independently in each computer,
bringing the system’s programming interface up to a level that facilitates
communication and coordination between processes.

Figure 2.7 Software and hardware service layers in distributed systems

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

 Intel x86/Windows, Intel
x86/Solaris, Intel x86/Mac OS X, Intel x86/Linux and ARM/Symbian are major
examples.

• Middleware was defined in Section 1.5.1 as a layer of software whose purpose is
to mask heterogeneity and to provide a convenient programming model to
application programmers. Middleware is represented by processes or objects in a
set of computers that interact with each other to implement communication and
resource-sharing support for distributed applications. It is concerned with
providing useful building blocks for the construction of software components that
can work with one another in a distributed system. In particular, it raises the level
of the communication activities of application programs through the support of
abstractions such as remote method invocation; communication between a group
of processes; notification of events; the partitioning, placement and retrieval of
shared data objects amongst cooperating computers; the replication of shared data
objects; and the transmission of multimedia data in real time. We return to this
important topic in Section 2.3.3 below.

Tiered architecture • Tiered architectures are complementary to layering. Whereas
layering deals with the vertical organization of services into layers of abstraction, tiering
is a technique to organize functionality of a given layer and place this functionality into

SECTION 2.3 ARCHITECTURAL MODELS 53

appropriate servers and, as a secondary consideration, on to physical nodes. This
technique is most commonly associated with the organization of applications and
services as in Figure 2.7 above, but it also applies to all layers of a distributed systems
architecture.

Let us first examine the concepts of two- and three-tiered architecture. To
illustrate this, consider the functional decomposition of a given application, as follows:

• the presentation logic, which is concerned with handling user interaction and
updating the view of the application as presented to the user;

• the application logic, which is concerned with the detailed application-specific
processing associated with the application (also referred to as the business logic,
although the concept is not limited only to business applications);

• the data logic, which is concerned with the persistent storage of the application,
typically in a database management system.

Now, let us consider the implementation of such an application using client-server
technology. The associated two-tier and three-tier solutions are presented together for
comparison in Figure 2.8 (a) and (b), respectively.

In the two-tier solution, the three aspects mentioned above must be partitioned
into two processes, the client and the server. This is most commonly done by splitting
the application logic, with some residing in the client and the remainder in the server
(although other solutions are also possible). The advantage of this scheme is low latency
in terms of interaction, with only one exchange of messages to invoke an operation. The
disadvantage is the splitting of application logic across a process boundary, with the
consequent restriction on which parts of the logic can be directly invoked from which
other part.

In the three-tier solution, there is a one-to-one mapping from logical elements to
physical servers and hence, for example, the application logic is held in one place, which
in turn can enhance maintainability of the software. Each tier also has a well-defined
role; for example, the third tier is simply a database offering a (potentially standardized)
relational service interface. The first tier can also be a simple user interface allowing
intrinsic support for thin clients (as discussed below). The drawbacks are the added
complexity of managing three servers and also the added network traffic and latency
associated with each operation.

Note that this approach generalizes to n-tiered (or multi-tier) solutions where a
given application domain is partitioned into n logical elements, each mapped to a given
server element. As an example, Wikipedia, the web-based publicly editable
encyclopedia, adopts a multi-tier architecture to deal with the high volume of web
requests (up to 60,000 page requests per second).

The role of AJAX: In Section 1.6 we introduced AJAX (Asynchronous Javascript And
XML) as an extension to the standard client-server style of interaction used in the World
Wide Web. AJAX meets the need for fine-grained communication between a Javascript
front-end program running in a web browser and a server-based back-end program
holding data describing the state of the application. To recapitulate, in the standard web
style of interaction a browser sends an HTTP request to a server for a page, image or
other resource with a given URL. The server replies by sending an entire page that is
either read from a file on the server or generated by a program, depending on which type

Figure 2.8 Two-tier and three-tier architectures

Application
and data management

Personal computers
Server

b)

User view,
controls and

or mobile devices

Tier 1 Tier 2

User
view and Application

logic

Personal computers Application server

controls

User
view and
controls

or mobile devices

Database server

Application
logic

Database
manager

Tier 1 Tier 2 Tier 3

a)

data manipulation

Application
and data management

User view,
controls and

data manipulation

54 CHAPTER 2 SYSTEM MODELS

of resource is identified in the URL. When the resultant content is received at the client,
the browser presents it according to the relevant display method for its MIME type
(text/html, image/jpg, etc.). Although a web page may be composed of several items of
content of different types, the entire page is composed and presented by the browser in
the manner specified in its HTML page definition.

This standard style of interaction constrains the development of web applications
in several significant ways:

• Once the browser has issued an HTTP request for a new web page, the user is
unable to interact with the page until the new HTML content is received and
presented by the browser. This time interval is indeterminate, because it is subject
to network and server delays.

• In order to update even a small part of the current page with additional data from
the server, an entire new page must be requested and displayed. This results in a
delayed response to the user, additional processing at both the client and the server
and redundant network traffic.

SECTION 2.3 ARCHITECTURAL MODELS 55

• The contents of a page displayed at a client cannot be updated in response to
changes in the application data held at the server.

The introduction of Javascript, a cross-platform and cross-browser programming
language that is downloaded and executed in the browser, constituted a first step towards
the removal of those constraints. Javascript is a general-purpose language enabling both
user interface and application logic to be programmed and executed in the context of a
browser window.

AJAX is the second innovative step that was needed to enable major interactive
web applications to be developed and deployed. It enables Javascript front-end
programs to request new data directly from server programs. Any data items can be
requested and the current page updated selectively to show the new values. Indeed, the
front end can react to the new data in any way that is useful for the application.

Many web applications allow users to access and update substantial shared
datasets that may be subject to change in response to input from other clients or data
feeds received by a server. They require a responsive front-end component running in
each client browser to perform user interface actions such as menu selection, but they
also require access to a dataset that must be held at server to enable sharing. Such
datasets are generally too large and too dynamic to allow the use of any architecture
based on the downloading of a copy of the entire application state to the client at the start
of a user’s session for manipulation by the client.

AJAX is the ‘glue’ that supports the construction of such applications; it provides
a communication mechanism enabling front-end components running in a browser to
issue requests and receive results from back-end components running on a server.
Clients issue requests through the Javascript XmlHttpRequest object, which manages an
HTTP exchange (see Section 1.6) with a server process. Because XmlHttpRequest has a
complex API that is also somewhat browser-dependent, it is usually accessed through
one of the many Javascript libraries that are available to support the development of web
applications.

Figure 2.9 AJAX example: soccer score updates

 new Ajax.Request('scores.php?game=Arsenal:Liverpool’,

{onSuccess: updateScore});

function updateScore(request) {

.....

(request contains the state of the Ajax request including the returned result.
The result is parsed to obtain some text giving the score, which is used
to update the relevant portion of the current page.)

.....

}

In Figure 2.9 we illustrate its use in the Prototype.js Javascript library
[www.prototypejs.org].

The example is an excerpt from a web application that displays a page listing up-
to-date scores for soccer matches. Users may request updates of scores for individual
games by clicking on the relevant line of the page, which executes the first line of the

56 CHAPTER 2 SYSTEM MODELS

example. The Ajax.Request object sends an HTTP request to a scores.php program
located at the same server as the web page. The Ajax.Request object then returns control,
allowing the browser to continue to respond to other user actions in the same window or
other windows. When the scores.php program has obtained the latest score it returns it
in an HTTP response. The Ajax.Request object is then reactivated; it invokes the
updateScore function (because it is the onSuccess action), which parses the result and
inserts the score at the relevant position in the current page. The remainder of the page
remains unaffected and is not reloaded.

This illustrates the type of communication used between Tier 1 and Tier 2
components. Although Ajax.Request (and the underlying XmlHttpRequest object) offers
both synchronous and asynchronous communication, the asynchronous version is
almost always used because the effect on the user interface of delayed server responses
is unacceptable.

Our simple example illustrates the use of AJAX in a two-tier application. In a
three-tier application the server component (scores.php in our example) would send a
request to a data manager component (typically an SQL query to a database server) for
the required data. That request would be synchronous, since there is no reason to return
control to the server component until the request is satisfied.

The AJAX mechanism constitutes an effective technique for the construction of
responsive web applications in the context of the indeterminate latency of the Internet,
and it has been very widely deployed. The Google Maps application [www.google.com
II] is an outstanding example. Maps are displayed as an array of contiguous 256 x 256
pixel images (called tiles). When the map is moved the visible tiles are repositioned by
Javascript code in the browser and additional tiles needed to fill the visible area are
requested with an AJAX call to a Google server. They are displayed as soon as they are
received, but the browser continues to respond to user interaction while they are awaited.

Thin clients • The trend in distributed computing is towards moving complexity away
from the end-user device towards services in the Internet. This is most apparent in the
move towards cloud computing (discussed in Chapter 1) but can also be seen in tiered
architectures, as discussed above. This trend has given rise to interest in the concept of
a thin client, enabling access to sophisticated networked services, provided for example
by a cloud solution, with few assumptions or demands on the client device. More
specifically, the term thin client refers to a software layer that supports a window-based
user interface that is local to the user while executing application programs or, more
generally, accessing services on a remote computer. For example, Figure 2.10

Figure 2.10 Thin clients and computer servers

Thin
Client

Application
Process

Networked device Compute server

Network

 illustrates
a thin client accessing a compute server over the Internet. The advantage of this
approach is that potentially simple local devices (including, for example, smart phones

SECTION 2.3 ARCHITECTURAL MODELS 57

and other resource-constrained devices) can be significantly enhanced with a plethora of
networked services and capabilities. The main drawback of the thin client architecture
is in highly interactive graphical activities such as CAD and image processing, where
the delays experienced by users are increased to unacceptable levels by the need to
transfer image and vector information between the thin client and the application
process, due to both network and operating system latencies.

This concept has led to the emergence of virtual network computing (VNC). This
technology was first introduced by researchers at the Olivetti and Oracle Research
Laboratory [Richardson et al. 1998]; the initial concept has now evolved into
implementations such as RealVNC [www.realvnc.com], which is a software solution,
and Adventiq [www.adventiq.com], which is a hardware-based solution supporting the
transmission of keyboard, video and mouse events over IP (KVM-over-IP). Other VNC
implementationss include Apple Remote Desktop, TightVNC and Aqua Connect.

The concept is straightforward, providing remote access to graphical user
interfaces. In this solution, a VNC client (or viewer) interacts with a VNC server through
a VNC protocol. The protocol operates at a primitive level in terms of graphics support,
based on framebuffers and featuring one operation: the placement of a rectangle of pixel
data at a given position on the screen (some solutions, such as XenApp from Citrix
operate at a higher level in terms of window operations [www.citrix.com]). This low-
level approach ensures the protocol will work with any operating system or application.
Although it is straightforward, the implication is that users are able to access their
computer facilities from anywhere on a wide range of devices, representing a significant
step forward in mobile computing.

Virtual network computing has superseded network computers, a previous
attempt to realise thin client solutions through simple and inexpensive hardware devices
that are completely reliant on networked services, downloading their operating system
and any application software needed by the user from a remote file server. Since all the
application data and code is stored by a file server, the users may migrate from one
network computer to another. In practice, virtual network computing has proved to be a
more flexible solution and now dominates the marketplace.

Other commonly occurring patterns • As mentioned above, a large number of
architectural patterns have now been identified and documented. Here are a few key
examples:

• The proxy pattern is a commonly recurring pattern in distributed systems designed
particularly to support location transparency in remote procedure calls or remote
method invocation. With this approach, a proxy is created in the local address
space to represent the remote object. This proxy offers exactly the same interface
as the remote object, and the programmer makes calls on this proxy object and
hence does not need to be aware of the distributed nature of the interaction. The
role of proxies in supporting such location transparency in RPC and RMI is
discussed further in Chapter 5. Note that proxies can also be used to encapsulate
other functionality, such as the placement policies of replication or caching.

• The use of brokerage in web services can usefully be viewed as an architectural
pattern supporting interoperability in potentially complex distributed
infrastructures. In particular, this pattern consists of the trio of service provider,

58 CHAPTER 2 SYSTEM MODELS

service requester and service broker (a service that matches services provided to
those requested), as shown in Figure 2.11

Figure 2.11 The web service architectural pattern

Service
Provider

Service
Broker

Service
Requester

. This brokerage pattern is replicated in
many areas of distributed systems, for example with the registry in Java RMI and
the naming service in CORBA (as discussed in Chapters 5 and 8, respectively).

• Reflection is a pattern that is increasingly being used in distributed systems as a
means of supporting both introspection (the dynamic discovery of properties of
the system) and intercession (the ability to dynamically modify structure or
behaviour). For example, the introspection capabilities of Java are used
effectively in the implementation of RMI to provide generic dispatching (as
discussed in Section 5.4.2). In a reflective system, standard service interfaces are
available at the base level, but a meta-level interface is also available providing
access to the components and their parameters involved in the realization of the
services. A variety of techniques are generally available at the meta-level,
including the ability to intercept incoming messages or invocations, to
dynamically discover the interface offered by a given object and to discover and
adapt the underlying architecture of the system. Reflection has been applied in a
variety of areas in distributed systems, particularly within the field of reflective
middleware, for example to support more configurable and reconfigurable
middleware architectures [Kon et al. 2002].

Further examples of architectural patterns related to distributed systems can be found in
Bushmann et al. [2007].

2.3.3 Associated middleware solutions

Middleware has already been introduced in Chapter 1 and revisited in the discussion of
layering in Section 2.3.2 above. The task of middleware is to provide a higher-level
programming abstraction for the development of distributed systems and, through
layering, to abstract over heterogeneity in the underlying infrastructure to promote
interoperability and portability. Middleware solutions are based on the architectural
models introduced in Section 2.3.1 and also support more complex architectural

SECTION 2.3 ARCHITECTURAL MODELS 59

patterns. In this section, we briefly review the major classes of middleware that exist
today and prepare the ground for further study of these solutions in the rest of the book.

Categories of middleware • Remote procedure calling packages such as Sun RPC
(Chapter 5) and group communication systems such as ISIS (Chapters 6 and 18) were
amongst the earliest instances of middleware. Since then a wide range of styles of
middleware have emerged, based largely on the architectural models introduced above.
We present a taxonomy of such middleware platforms in Figure 2.12

Figure 2.12 Categories of middleware

Major categories: Subcategory Example systems

Distributed objects (Chapters 5, 8) Standard RM-ODP

Platform CORBA

Platform Java RMI

Distributed components (Chapter 8) Lightweight components Fractal

Lightweight components OpenCOM

Application servers SUN EJB

Application servers CORBA Component Model

Application servers JBoss

Publish-subscribe systems (Chapter 6) - CORBA Event Service

- Scribe

- JMS

Message queues (Chapter 6) - Websphere MQ

- JMS

Web services (Chapter 9) Web services Apache Axis

Grid services The Globus Toolkit

Peer-to-peer (Chapter 10) Routing overlays Pastry

Routing overlays Tapestry

Application-specific Squirrel

Application-specific OceanStore

Application-specific Ivy

Application-specific Gnutella

, including cross-
references to other chapters that cover the various categories in more detail. It must be
stressed that the categorizations are not exact and that modern middleware platforms
tend to offer hybrid solutions. For example, many distributed object platforms offer
distributed event services to complement the more traditional support for remote method
invocation. Similarly, many component-based platforms (and indeed other categories of
platform) also support web service interfaces and standards, for reasons of
interoperability. It should also be stressed that this taxonomy is not intended to be
complete in terms of the set of middleware standards and technologies available today,

60 CHAPTER 2 SYSTEM MODELS

but rather is intended to be indicative of the major classes of middleware. Other
solutions (not shown) tend to be more specific, for example offering particular
communication paradigms such as message passing, remote procedure calls, distributed
shared memory, tuple spaces or group communication.

The top-level categorization of middleware in Figure 2.12 is driven by the choice
of communicating entities and associated communication paradigms, and follows five
of the main architectural models: distributed objects, distributed components, publish-
subscribe systems, message queues and web services. These are supplemented by peer-
to-peer systems, a rather separate branch of middleware based on the cooperative
approach discussed in Section 2.3.1. The subcategory of distributed components shown
as application servers also provides direct support for three-tier architectures. In
particular, application servers provide structure to support a separation between
application logic and data storage, along with support for other properties such as
security and reliability. Further detail is deferred until Chapter 8.

In addition to programming abstractions, middleware can also provide
infrastructural distributed system services for use by application programs or other
services. These infrastructural services are tightly bound to the distributed programming
model that the middleware provides. For example, CORBA (Chapter 8) provides
applications with a range of CORBA services, including support for making
applications secure and reliable. As mentioned above and discussed further in Chapter
8, application servers also provide intrinsic support for such services.

Limitations of middleware • Many distributed applications rely entirely on the services
provided by middleware to support their needs for communication and data sharing. For
example, an application that is suited to the client-server model such as a database of
names and addresses, can rely on middleware that provides only remote method
invocation.

Much has been achieved in simplifying the programming of distributed systems
through the development of middleware support, but some aspects of the dependability
of systems require support at the application level.

Consider the transfer of large electronic mail messages from the mail host of the
sender to that of the recipient. At first sight this a simple application of the TCP data
transmission protocol (discussed in Chapter 3). But consider the problem of a user who
attempts to transfer a very large file over a potentially unreliable network. TCP provides
some error detection and correction, but it cannot recover from major network
interruptions. Therefore the mail transfer service adds another level of fault tolerance,
maintaining a record of progress and resuming transmission using a new TCP
connection if the original one breaks.

A classic paper by Saltzer, Reed and Clarke [Saltzer et al. 1984] makes a similar
and valuable point about the design of distributed systems, which they call the ‘the end-
to-end argument’. To paraphrase their statement:

Some communication-related functions can be completely and reliably
implemented only with the knowledge and help of the application standing at the
end points of the communication system. Therefore, providing that function as a
feature of the communication system itself is not always sensible. (Although an
incomplete version of the function provided by the communication system may
sometimes be useful as a performance enhancement).

SECTION 2.4 FUNDAMENTAL MODELS 61

It can be seen that their argument runs counter to the view that all communication
activities can be abstracted away from the programming of applications by the
introduction of appropriate middleware layers.

The nub of their argument is that correct behaviour in distributed programs
depends upon checks, error-correction mechanisms and security measures at many
levels, some of which require access to data within the application’s address space. Any
attempt to perform the checks within the communication system alone will guarantee
only part of the required correctness. The same work is therefore likely to be duplicated
in application programs, wasting programming effort and, more importantly, adding
unnecessary complexity and redundant computations.

There is not space to detail their arguments further here, but reading the cited
paper is strongly recommended – it is replete with illuminating examples. One of the
original authors has recently pointed out that the substantial benefits that the use of the
argument brought to the design of the Internet are placed at risk by recent moves towards
the specialization of network services to meet current application requirements
[www.reed.com].

This argument poses a real dilemma for middleware designers, and indeed the
difficulties are increasing given the wide range of applications (and associated
environmental conditions) in contemporary distributed systems (see Chapter 1). In
essence, the right underlying middleware behaviour is a function of the requirements of
a given application or set of applications and the associated environmental context, such
as the state and style of the underlying network. This perception is driving interest in
context-aware and adaptive solutions to middleware, as discussed in Kon et al [2002].

2.4 Fundamental models

All the above, quite different, models of systems share some fundamental properties. In
particular, all of them are composed of processes that communicate with one another by
sending messages over a computer network. All of the models share the design
requirements of achieving the performance and reliability characteristics of processes
and networks and ensuring the security of the resources in the system. In this section, we
present models based on the fundamental properties that allow us to be more specific
about their characteristics and the failures and security risks they might exhibit.

In general, such a fundamental model should contain only the essential ingredients
that we need to consider in order to understand and reason about some aspects of a
system’s behaviour. The purpose of such a model is:

• To make explicit all the relevant assumptions about the systems we are modelling.

• To make generalizations concerning what is possible or impossible, given those
assumptions. The generalizations may take the form of general-purpose
algorithms or desirable properties that are guaranteed. The guarantees are
dependent on logical analysis and, where appropriate, mathematical proof.

There is much to be gained by knowing what our designs do, and do not, depend upon.
It allows us to decide whether a design will work if we try to implement it in a particular
system: we need only ask whether our assumptions hold in that system. Also, by making

62 CHAPTER 2 SYSTEM MODELS

our assumptions clear and explicit, we can hope to prove system properties using math-
ematical techniques. These properties will then hold for any system meeting our as-
sumptions. Finally, by abstracting only the essential system entities and characteristics
away from details such as hardware, we can clarify our understanding of our systems.

The aspects of distributed systems that we wish to capture in our fundamental
models are intended to help us to discuss and reason about:

Interaction: Computation occurs within processes; the processes interact by passing
messages, resulting in communication (information flow) and coordination
(synchronization and ordering of activities) between processes. In the analysis and
design of distributed systems we are concerned especially with these interactions.
The interaction model must reflect the facts that communication takes place with
delays that are often of considerable duration, and that the accuracy with which
independent processes can be coordinated is limited by these delays and by the
difficulty of maintaining the same notion of time across all the computers in a
distributed system.

Failure: The correct operation of a distributed system is threatened whenever a fault
occurs in any of the computers on which it runs (including software faults) or in the
network that connects them. Our model defines and classifies the faults. This
provides a basis for the analysis of their potential effects and for the design of systems
that are able to tolerate faults of each type while continuing to run correctly.

Security: The modular nature of distributed systems and their openness exposes
them to attack by both external and internal agents. Our security model defines and
classifies the forms that such attacks may take, providing a basis for the analysis of
threats to a system and for the design of systems that are able to resist them.

As aids to discussion and reasoning, the models introduced in this chapter are
necessarily simplified, omitting much of the detail of real-world systems. Their
relationship to real-world systems, and the solution in that context of the problems that
the models help to bring out, is the main subject of this book.

2.4.1 Interaction model

The discussion of system architectures in Section 2.3 indicates that fundamentally
distributed systems are composed of many processes, interacting in complex ways. For
example:

• Multiple server processes may cooperate with one another to provide a service; the
examples mentioned above were the Domain Name System, which partitions and
replicates its data at servers throughout the Internet, and Sun’s Network
Information Service, which keeps replicated copies of password files at several
servers in a local area network.

• A set of peer processes may cooperate with one another to achieve a common
goal: for example, a voice conferencing system that distributes streams of audio
data in a similar manner, but with strict real-time constraints.

Most programmers will be familiar with the concept of an algorithm – a sequence of
steps to be taken in order to perform a desired computation. Simple programs are

SECTION 2.4 FUNDAMENTAL MODELS 63

controlled by algorithms in which the steps are strictly sequential. The behaviour of the
program and the state of the program’s variables is determined by them. Such a program
is executed as a single process. Distributed systems composed of multiple processes
such as those outlined above are more complex. Their behaviour and state can be
described by a distributed algorithm – a definition of the steps to be taken by each of the
processes of which the system is composed, including the transmission of messages

between them. Messages are transmitted between processes to transfer information
between them and to coordinate their activity.

The rate at which each process proceeds and the timing of the transmission of
messages between them cannot in general be predicted. It is also difficult to describe all
the states of a distributed algorithm, because it must deal with the failures of one or more
of the processes involved or the failure of message transmissions.

Interacting processes perform all of the activity in a distributed system. Each
process has its own state, consisting of the set of data that it can access and update,
including the variables in its program. The state belonging to each process is completely
private – that is, it cannot be accessed or updated by any other process.

In this section, we discuss two significant factors affecting interacting processes
in a distributed system:

• Communication performance is often a limiting characteristic.

• It is impossible to maintain a single global notion of time.

Performance of communication channels • The communication channels in our model
are realized in a variety of ways in distributed systems – for example, by an
implementation of streams or by simple message passing over a computer network.
Communication over a computer network has the following performance characteristics
relating to latency, bandwidth and jitter:

• The delay between the start of a message’s transmission from one process and the
beginning of its receipt by another is referred to as latency. The latency includes:

– The time taken for the first of a string of bits transmitted through a network to
reach its destination. For example, the latency for the transmission of a
message through a satellite link is the time for a radio signal to travel to the
satellite and back.

– The delay in accessing the network, which increases significantly when the
network is heavily loaded. For example, for Ethernet transmission the sending
station waits for the network to be free of traffic.

– The time taken by the operating system communication services at both the
sending and the receiving processes, which varies according to the current load
on the operating systems.

• The bandwidth of a computer network is the total amount of information that can
be transmitted over it in a given time. When a large number of communication
channels are using the same network, they have to share the available bandwidth.

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is
relevant to multimedia data. For example, if consecutive samples of audio data are
played with differing time intervals, the sound will be badly distorted.

64 CHAPTER 2 SYSTEM MODELS

Computer clocks and timing events • Each computer in a distributed system has its own
internal clock, which can be used by local processes to obtain the value of the current
time. Therefore two processes running on different computers can each associate
timestamps with their events. However, even if the two processes read their clocks at the
same time, their local clocks may supply different time values. This is because computer
clocks drift from perfect time and, more importantly, their drift rates differ from one
another. The term clock drift rate refers to the rate at which a computer clock deviates
from a perfect reference clock. Even if the clocks on all the computers in a distributed
system are set to the same time initially, their clocks will eventually vary quite
significantly unless corrections are applied.

There are several approaches to correcting the times on computer clocks. For
example, computers may use radio receivers to get time readings from the Global
Positioning System with an accuracy of about 1 microsecond. But GPS receivers do not
operate inside buildings, nor can the cost be justified for every computer. Instead, a
computer that has an accurate time source such as GPS can send timing messages to
other computers in its network. The resulting agreement between the times on the local
clocks is, of course, affected by variable message delays. For a more detailed discussion
of clock drift and clock synchronization, see Chapter 14.

Two variants of the interaction model • In a distributed system it is hard to set limits on
the time that can be taken for process execution, message delivery or clock drift. Two
opposing extreme positions provide a pair of simple models – the first has a strong
assumption of time and the second makes no assumptions about time:

Synchronous distributed systems: Hadzilacos and Toueg [1994] define a
synchronous distributed system to be one in which the following bounds are defined:

• The time to execute each step of a process has known lower and upper bounds.

• Each message transmitted over a channel is received within a known bounded
time.

• Each process has a local clock whose drift rate from real time has a known
bound.

It is possible to suggest likely upper and lower bounds for process execution time,
message delay and clock drift rates in a distributed system, but it is difficult to arrive
at realistic values and to provide guarantees of the chosen values. Unless the values
of the bounds can be guaranteed, any design based on the chosen values will not be
reliable. However, modelling an algorithm as a synchronous system may be useful
for giving some idea of how it will behave in a real distributed system. In a
synchronous system it is possible to use timeouts, for example, to detect the failure
of a process, as shown in Section 2.4.2 below.

Synchronous distributed systems can be built. What is required is for the
processes to perform tasks with known resource requirements for which they can be
guaranteed sufficient processor cycles and network capacity, and for processes to be
supplied with clocks with bounded drift rates.

Agreement in Pepperland • Two divisions of the Pepperland army, ‘Apple’ and
‘Orange’, are encamped at the top of two nearby hills. Further along the valley below
are the invading Blue Meanies. The Pepperland divisions are safe as long as they
remain in their encampments, and they can send out messengers reliably through the
valley to communicate. The Pepperland divisions need to agree on which of them
will lead the charge against the Blue Meanies and when the charge will take place.
Even in an asynchronous Pepperland, it is possible to agree on who will lead the
charge. For example, each division can send the number of its remaining members,
and the one with most will lead (if a tie, division Apple wins over Orange). But when
should they charge? Unfortunately, in asynchronous Pepperland, the messengers are
very variable in their speed. If, say, Apple sends a messenger with the message
‘Charge!’, Orange might not receive the message for, say, three hours; or it may take,
say, five minutes to arrive. In a synchronous Pepperland, there is still a coordination
problem, but the divisions know some useful constraints: every message takes at least
min minutes and at most max minutes to arrive. If the division that will lead the
charge sends a message ‘Charge!’, it waits for min minutes; then it charges. The other
division waits for 1 minute after receipt of the message, then charges. Its charge is
guaranteed to be after the leading division’s, but no more than (max – min + 1)
minutes after it.

SECTION 2.4 FUNDAMENTAL MODELS 65

Asynchronous distributed systems: Many distributed systems, such as the Internet,
are very useful without being able to qualify as synchronous systems. Therefore we
need an alternative model. An asynchronous distributed system is one in which there
are no bounds on:

• Process execution speeds – for example, one process step may take only a
picosecond and another a century; all that can be said is that each step may take
an arbitrarily long time.

• Message transmission delays – for example, one message from process A to
process B may be delivered in negligible time and another may take several
years. In other words, a message may be received after an arbitrarily long time.

• Clock drift rates – again, the drift rate of a clock is arbitrary.

The asynchronous model allows no assumptions about the time intervals involved in
any execution. This exactly models the Internet, in which there is no intrinsic bound
on server or network load and therefore on how long it takes, for example, to transfer
a file using FTP. Sometimes an email message can take days to arrive. The box on
this page illustrates the difficulty of reaching an agreement in an asynchronous
distributed system.

But some design problems can be solved even with these assumptions. For
example, although the Web cannot always provide a particular response within a
reasonable time limit, browsers have been designed to allow users to do other things
while they are waiting. Any solution that is valid for an asynchronous distributed
system is also valid for a synchronous one.

Actual distributed systems are very often asynchronous because of the need for
processes to share the processors and for communication channels to share the

66 CHAPTER 2 SYSTEM MODELS

network. For example, if too many processes of unknown character are sharing a
processor, then the resulting performance of any one of them cannot be guaranteed.
But there are many design problems that cannot be solved for an asynchronous
system that can be solved when some aspects of time are used. The need for each
element of a multimedia data stream to be delivered before a deadline is such a
problem. For problems such as these, a synchronous model is required.

Event ordering • In many cases, we are interested in knowing whether an event
(sending or receiving a message) at one process occurred before, after or concurrently
with another event at another process. The execution of a system can be described in
terms of events and their ordering despite the lack of accurate clocks.

For example, consider the following set of exchanges between a group of email
users, X, Y, Z and A, on a mailing list:

1. User X sends a message with the subject Meeting.

2. Users Y and Z reply by sending a message with the subject Re: Meeting.

In real time, X’s message is sent first, and Y reads it and replies; Z then reads both X’s
message and Y’s reply and sends another reply, which references both X’s and Y’s
messages. But due to the independent delays in message delivery, the messages may be
delivered as shown in Figure 2.13

Figure 2.13 Real-time ordering of events

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive

m2

m1

, and some users may view these two messages in the
wrong order. For example, user A might see

Inbox:

Item From Subject

23
24
25

Z
X
Y

Re: Meeting
Meeting
Re: Meeting

:

SECTION 2.4 FUNDAMENTAL MODELS 67

If the clocks on X’s, Y’s and Z’s computers could be synchronized, then each message
could carry the time on the local computer’s clock when it was sent. For example,
messages m1, m2 and m3 would carry times t1, t2 and t3 where t1<t2<t3. The messages
received will be displayed to users according to their time ordering. If the clocks are
roughly synchronized, then these timestamps will often be in the correct order.

Since clocks cannot be synchronized perfectly across a distributed system,
Lamport [1978] proposed a model of logical time that can be used to provide an ordering
among the events at processes running in different computers in a distributed system.
Logical time allows the order in which the messages are presented to be inferred without
recourse to clocks. It is presented in detail in Chapter 14, but we suggest here how some
aspects of logical ordering can be applied to our email ordering problem.

Logically, we know that a message is received after it was sent. Therefore we can
state a logical ordering for pairs of events shown in Figure 2.13, for example,
considering only the events concerning X and Y:

X sends m1 before Y receives m1; Y sends m2 before X receives m2.

We also know that replies are sent after receiving messages, so we have the following
logical ordering for Y:

Y receives m1 before sending m2.

Logical time takes this idea further by assigning a number to each event corresponding
to its logical ordering, so that later events have higher numbers than earlier ones. For
example, Figure 2.13 shows the numbers 1 to 4 on the events at X and Y.

2.4.2 Failure model

In a distributed system both processes and communication channels may fail – that is,
they may depart from what is considered to be correct or desirable behaviour. The failure
model defines the ways in which failure may occur in order to provide an understanding
of the effects of failures. Hadzilacos and Toueg [1994] provide a taxonomy that
distinguishes between the failures of processes and communication channels. These are
presented under the headings omission failures, arbitrary failures and timing failures.

The failure model will be used throughout the book. For example:

• In Chapter 4, we present the Java interfaces to datagram and stream
communication, which provide different degrees of reliability.

• Chapter 5 presents the request-reply protocol, which supports RMI. Its failure
characteristics depend on the failure characteristics of both processes and
communication channels. The protocol can be built from either datagram or
stream communication. The choice may be decided according to a consideration
of simplicity of implementation, performance and reliability.

• Chapter 17 presents the two-phase commit protocol for transactions. It is designed
to complete in the face of well-defined failures of processes and communication
channels.

Omission failures • The faults classified as omission failures refer to cases when a
process or communication channel fails to perform actions that it is supposed to do.

68 CHAPTER 2 SYSTEM MODELS

Process omission failures: The chief omission failure of a process is to crash. When we
say that a process has crashed we mean that it has halted and will not execute any further
steps of its program ever. The design of services that can survive in the presence of faults
can be simplified if it can be assumed that the services on which they depend crash
cleanly – that is, their processes either function correctly or else stop. Other processes
may be able to detect such a crash by the fact that the process repeatedly fails to respond
to invocation messages. However, this method of crash detection relies on the use of
timeouts – that is, a method in which one process allows a fixed period of time for
something to occur. In an asynchronous system a timeout can indicate only that a
process is not responding – it may have crashed or may be slow, or the messages may
not have arrived.

A process crash is called fail-stop if other processes can detect certainly that the
process has crashed. Fail-stop behaviour can be produced in a synchronous system if the
processes use timeouts to detect when other processes fail to respond and messages are
guaranteed to be delivered. For example, if processes p and q are programmed for q to
reply to a message from p, and if process p has received no reply from process q in a
maximum time measured on p’s local clock, then process p may conclude that process
q has failed. The box opposite illustrates the difficulty of detecting failures in an
asynchronous system or of reaching agreement in the presence of failures.

Communication omission failures: Consider the communication primitives send and
receive. A process p performs a send by inserting the message m in its outgoing message
buffer. The communication channel transports m to q’s incoming message buffer.
Process q performs a receive by taking m from its incoming message buffer and
delivering it (see Figure 2.14). The outgoing and incoming message buffers are typically
provided by the operating system.

The communication channel produces an omission failure if it does not transport
a message from p’s outgoing message buffer to q’s incoming message buffer. This is
known as ‘dropping messages’ and is generally caused by lack of buffer space at the
receiver or at an intervening gateway, or by a network transmission error, detected by a
checksum carried with the message data. Hadzilacos and Toueg [1994] refer to the loss
of messages between the sending process and the outgoing message buffer as send-

omission failures, to loss of messages between the incoming message buffer and the
receiving process as receive-omission failures, and to loss of messages in between as
channel omission failures. The omission failures are classified together with arbitrary
failures in Figure 2.15.

Failures can be categorized according to their severity. All of the failures we have
described so far are benign failures. Most failures in distributed systems are benign.
Benign failures include failures of omission as well as timing failures and performance
failures.

Arbitrary failures • The term arbitrary or Byzantine failure is used to describe the worst
possible failure semantics, in which any type of error may occur. For example, a process
may set wrong values in its data items, or it may return a wrong value in response to an
invocation.

An arbitrary failure of a process is one in which it arbitrarily omits intended
processing steps or takes unintended processing steps. Arbitrary failures in processes

Failure detection • In the case of the Pepperland divisions encamped at the tops of
hills (see page 65), suppose that the Blue Meanies are after all sufficient in strength
to attack and defeat either division while encamped – that is, that either can fail.
Suppose further that, while undefeated, the divisions regularly send messengers to
report their status. In an asynchronous system, neither division can distinguish
whether the other has been defeated or the time it is taking for the messengers to cross
the intervening valley is just very long. In a synchronous Pepperland, a division can
tell for sure if the other has been defeated by the absence of a regular messenger.
However, the other division may have been defeated just after it sent the latest
messenger.

Impossibility of reaching timely agreement in the presence of communication

failures • We have been assuming that the Pepperland messengers always manage
to cross the valley eventually; but now suppose that the Blue Meanies can capture any
messenger and prevent them from arriving. (We shall assume it is impossible for the
Blue Meanies to brainwash the messengers to give the wrong message – the Meanies
are not aware of their treacherous Byzantine precursors.) Can the Apple and Orange
divisions send messages so that they both consistently decide to charge at the
Meanies or both decide to surrender? Unfortunately, as the Pepperland theoretician
Ringo the Great proved, in these circumstances the divisions cannot guarantee to
decide consistently what to do. To see this, assume to the contrary that the divisions
run a Pepperland protocol that achieves agreement. Each proposes ‘Charge!’ or
‘Surrender!’, and the protocol results in them both agreeing on one or the other course
of action. Now consider the last message sent in any run of the protocol. The
messenger that carries it could be captured by the Blue Meanies, so the end result
must be the same whether the message arrives or not. We can dispense with it. Now
we can apply the same argument to the final message that remains. But this argument
applies again to that message and will continue to apply, so we shall end up with no
messages sent at all! This shows that no protocol that guarantees agreement between
the Pepperland divisions can exist if messengers can be captured.

Figure 2.14 Processes and channels

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

SECTION 2.4 FUNDAMENTAL MODELS 69

cannot be detected by seeing whether the process responds to invocations, because it
might arbitrarily omit to reply.

Communication channels can suffer from arbitrary failures; for example, message
contents may be corrupted, nonexistent messages may be delivered or real messages
may be delivered more than once. Arbitrary failures of communication channels are rare

70 CHAPTER 2 SYSTEM MODELS

because the communication software is able to recognize them and reject the faulty
messages. For example, checksums are used to detect corrupted messages, and message
sequence numbers can be used to detect nonexistent and duplicated messages.

Figure 2.15 Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer
never arrives at the other end’s incoming message
buffer.

Send-omission Process A process completes a send operation but the message
is not put in its outgoing message buffer.

Receive-
omission

Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process
or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times or
commit omissions; a process may stop or take an
incorrect step.

Timing failures • Timing failures are applicable in synchronous distributed systems
where time limits are set on process execution time, message delivery time and clock
drift rate. Timing failures are listed in Figure 2.16. Any one of these failures may result
in responses being unavailable to clients within a specified time interval.

In an asynchronous distributed system, an overloaded server may respond too
slowly, but we cannot say that it has a timing failure since no guarantee has been offered.

Real-time operating systems are designed with a view to providing timing
guarantees, but they are more complex to design and may require redundant hardware.
Most general-purpose operating systems such as UNIX do not have to meet real-time
constraints.

Timing is particularly relevant to multimedia computers with audio and video
channels. Video information can require a very large amount of data to be transferred.
Delivering such information without timing failures can make very special demands on
both the operating system and the communication system.

Masking failures • Each component in a distributed system is generally constructed
from a collection of other components. It is possible to construct reliable services from
components that exhibit failures. For example, multiple servers that hold replicas of data
can continue to provide a service when one of them crashes. A knowledge of the failure
characteristics of a component can enable a new service to be designed to mask the

SECTION 2.4 FUNDAMENTAL MODELS 71

failure of the components on which it depends. A service masks a failure either by hiding
it altogether or by converting it into a more acceptable type of failure. For an example
of the latter, checksums are used to mask corrupted messages, effectively converting an
arbitrary failure into an omission failure. We shall see in Chapters 3 and 4 that omission
failures can be hidden by using a protocol that retransmits messages that do not arrive at
their destination. Chapter 18 presents masking by means of replication. Even process
crashes may be masked, by replacing the process and restoring its memory from
information stored on disk by its predecessor.

Figure 2.16 Timing failures

Class of failure Affects Description

Clock Process Process’s local clock exceeds the bounds on
its rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than
the stated bound.

Reliability of one-to-one communication • Although a basic communication channel
can exhibit the omission failures described above, it is possible to use it to build a
communication service that masks some of those failures.

The term reliable communication is defined in terms of validity and integrity as
follows:

Validity: Any message in the outgoing message buffer is eventually delivered to the
incoming message buffer.

Integrity: The message received is identical to one sent, and no messages are
delivered twice.

The threats to integrity come from two independent sources:

• Any protocol that retransmits messages but does not reject a message that arrives
twice. Protocols can attach sequence numbers to messages so as to detect those
that are delivered twice.

• Malicious users that may inject spurious messages, replay old messages or tamper
with messages. Security measures can be taken to maintain the integrity property
in the face of such attacks.

2.4.3 Security model

In Chapter 1 we identified the sharing of resources as a motivating factor for distributed
systems, and in Section 2.3 we described their architecture in terms of processes,
potentially encapsulating higher-level abstractions such as objects, components or

72 CHAPTER 2 SYSTEM MODELS

services, and providing access to them through interactions with other processes. That
architectural model provides the basis for our security model:

the security of a distributed system can be achieved by securing the processes and the
channels used for their interactions and by protecting the objects that they
encapsulate against unauthorized access.

Protection is described in terms of objects, although the concepts apply equally well to
resources of all types.

Protecting objects • Figure 2.17 shows a server that manages a collection of objects on
behalf of some users. The users can run client programs that send invocations to the
server to perform operations on the objects. The server carries out the operation
specified in each invocation and sends the result to the client.

Objects are intended to be used in different ways by different users. For example,
some objects may hold a user’s private data, such as their mailbox, and other objects
may hold shared data such as web pages. To support this, access rights specify who is
allowed to perform the operations of an object – for example, who is allowed to read or
to write its state.

Thus we must include users in our model as the beneficiaries of access rights. We
do so by associating with each invocation and each result the authority on which it is
issued. Such an authority is called a principal. A principal may be a user or a process.
In our illustration, the invocation comes from a user and the result from a server.

Figure 2.17 Objects and principals

Network

invocation

result

Client
Server

Principal (user) Principal (server)

ObjectAccess rights

The server is responsible for verifying the identity of the principal behind each
invocation and checking that they have sufficient access rights to perform the requested
operation on the particular object invoked, rejecting those that do not. The client may
check the identity of the principal behind the server to ensure that the result comes from
the required server.

Securing processes and their interactions • Processes interact by sending messages.
The messages are exposed to attack because the network and the communication service
that they use are open, to enable any pair of processes to interact. Servers and peer
processes expose their interfaces, enabling invocations to be sent to them by any other
process.

Distributed systems are often deployed and used in tasks that are likely to be
subject to external attacks by hostile users. This is especially true for applications that

SECTION 2.4 FUNDAMENTAL MODELS 73

handle financial transactions, confidential or classified information or any other
information whose secrecy or integrity is crucial. Integrity is threatened by security
violations as well as communication failures. So we know that there are likely to be
threats to the processes of which such applications are composed and to the messages
travelling between the processes. But how can we analyze these threats in order to
identify and defeat them? The following discussion introduces a model for the analysis
of security threats.

The enemy • To model security threats, we postulate an enemy (sometimes also known
as the adversary) that is capable of sending any message to any process and reading or
copying any message sent between a pair of processes, as shown in Figure 2.18. Such
attacks can be made simply by using a computer connected to a network to run a
program that reads network messages addressed to other computers on the network, or
a program that generates messages that make false requests to services, purporting to
come from authorized users. The attack may come from a computer that is legitimately
connected to the network or from one that is connected in an unauthorized manner.

The threats from a potential enemy include threats to processes and threats to

communication channels.

Threats to processes: A process that is designed to handle incoming requests may
receive a message from any other process in the distributed system, and it cannot
necessarily determine the identity of the sender. Communication protocols such as IP do
include the address of the source computer in each message, but it is not difficult for an
enemy to generate a message with a forged source address. This lack of reliable
knowledge of the source of a message is a threat to the correct functioning of both
servers and clients, as explained below:

Figure 2.18 The enemy

Communication channel

Copy of m

Process p Process qm
m'

The enemy

Servers: Since a server can receive invocations from many different clients, it cannot
necessarily determine the identity of the principal behind any particular invocation.
Even if a server requires the inclusion of the principal’s identity in each invocation,
an enemy might generate an invocation with a false identity. Without reliable
knowledge of the sender’s identity, a server cannot tell whether to perform the
operation or to reject it. For example, a mail server would not know whether the user
behind an invocation that requests a mail item from a particular mailbox is allowed
to do so or whether it was a request from an enemy.

Clients: When a client receives the result of an invocation from a server, it cannot
necessarily tell whether the source of the result message is from the intended server

74 CHAPTER 2 SYSTEM MODELS

or from an enemy, perhaps ‘spoofing’ the mail server. Thus the client could receive
a result that was unrelated to the original invocation, such as a false mail item (one
that is not in the user’s mailbox).

Threats to communication channels: An enemy can copy, alter or inject messages as they
travel across the network and its intervening gateways. Such attacks present a threat to
the privacy and integrity of information as it travels over the network and to the integrity
of the system. For example, a result message containing a user’s mail item might be
revealed to another user or it might be altered to say something quite different.

Another form of attack is the attempt to save copies of messages and to replay
them at a later time, making it possible to reuse the same message over and over again.
For example, someone could benefit by resending an invocation message requesting a
transfer of a sum of money from one bank account to another.

All these threats can be defeated by the use of secure channels, which are
described below and are based on cryptography and authentication.

Defeating security threats • Here we introduce the main techniques on which secure
systems are based. Chapter 11 discusses the design and implementation of secure
distributed systems in much more detail.

Cryptography and shared secrets: Suppose that a pair of processes (for example, a
particular client and a particular server) share a secret; that is, they both know the secret
but no other process in the distributed system knows it. Then if a message exchanged by
that pair of processes includes information that proves the sender’s knowledge of the
shared secret, the recipient knows for sure that the sender was the other process in the
pair. Of course, care must be taken to ensure that the shared secret is not revealed to an
enemy.

Cryptography is the science of keeping messages secure, and encryption is the
process of scrambling a message in such a way as to hide its contents. Modern
cryptography is based on encryption algorithms that use secret keys – large numbers that
are difficult to guess – to transform data in a manner that can only be reversed with
knowledge of the corresponding decryption key.

Authentication: The use of shared secrets and encryption provides the basis for the
authentication of messages – proving the identities supplied by their senders. The basic
authentication technique is to include in a message an encrypted portion that contains
enough of the contents of the message to guarantee its authenticity. The authentication
portion of a request to a file server to read part of a file, for example, might include a
representation of the requesting principal’s identity, the identity of the file and the date
and time of the request, all encrypted with a secret key shared between the file server
and the requesting process. The server would decrypt this and check that it corresponds
to the unencrypted details specified in the request.

Secure channels: Encryption and authentication are used to build secure channels as a
service layer on top of existing communication services. A secure channel is a
communication channel connecting a pair of processes, each of which acts on behalf of
a principal, as shown in Figure 2.19. A secure channel has the following properties:

• Each of the processes knows reliably the identity of the principal on whose behalf
the other process is executing. Therefore if a client and server communicate via a
secure channel, the server knows the identity of the principal behind the

Figure 2.19 Secure channels

Principal A

Secure channelProcess p Process q

Principal B

SECTION 2.4 FUNDAMENTAL MODELS 75

invocations and can check their access rights before performing an operation. This
enables the server to protect its objects correctly and allows the client to be sure
that it is receiving results from a bona fide server.

• A secure channel ensures the privacy and integrity (protection against tampering)
of the data transmitted across it.

• Each message includes a physical or logical timestamp to prevent messages from
being replayed or reordered.

The construction of secure channels is discussed in detail in Chapter 11. Secure channels
have become an important practical tool for securing electronic commerce and the
protection of communication. Virtual private networks (VPNs, discussed in Chapter 3)
and the Secure Sockets Layer (SSL) protocol (discussed in Chapter 11) are instances.

Other possible threats from an enemy • Section 1.5.3 introduced very briefly two
further security threats – denial of service attacks and the deployment of mobile code.
We reiterate these as possible opportunities for the enemy to disrupt the activities of
processes:

Denial of service: This is a form of attack in which the enemy interferes with the
activities of authorized users by making excessive and pointless invocations on
services or message transmissions in a network, resulting in overloading of physical
resources (network bandwidth, server processing capacity). Such attacks are usually
made with the intention of delaying or preventing actions by other users. For
example, the operation of electronic door locks in a building might be disabled by an
attack that saturates the computer controlling the electronic locks with invalid
requests.

Mobile code: Mobile code raises new and interesting security problems for any
process that receives and executes program code from elsewhere, such as the email
attachment mentioned in Section 1.5.3. Such code may easily play a Trojan horse
role, purporting to fulfil an innocent purpose but in fact including code that accesses
or modifies resources that are legitimately available to the host process but not to the
originator of the code. The methods by which such attacks might be carried out are
many and varied, and the host environment must be very carefully constructed in
order to avoid them. Many of these issues have been addressed in Java and other
mobile code systems, but the recent history of this topic has included the exposure of

76 CHAPTER 2 SYSTEM MODELS

some embarrassing weaknesses. This illustrates well the need for rigorous analysis in
the design of all secure systems.

The uses of security models • It might be thought that the achievement of security in
distributed systems would be a straightforward matter involving the control of access to
objects according to predefined access rights and the use of secure channels for
communication. Unfortunately, this is not generally the case. The use of security
techniques such as encryption and access control incurs substantial processing and
management costs. The security model outlined above provides the basis for the analysis
and design of secure systems in which these costs are kept to a minimum, but threats to
a distributed system arise at many points, and a careful analysis of the threats that might
arise from all possible sources in the system’s network environment, physical
environment and human environment is needed. This analysis involves the construction
of a threat model listing all the forms of attack to which the system is exposed and an
evaluation of the risks and consequences of each. The effectiveness and the cost of the
security techniques needed can then be balanced against the threats.

2.5 Summary

As illustrated in Section 2.2, distributed systems are increasingly complex in terms of
their underlying physical characteristics; for example, in terms of the scale of systems,
the level of heterogeneity inherent in such systems and the real demands to provide end-
to-end solutions in terms of properties such as security. This places increasing
importance on being able to understand and reason about distributed systems in terms of
models. This chapter followed up consideration of the underlying physical models with
an in-depth examination of the architectural and fundamental models that underpin
distributed systems.

This chapter has presented an approach to describing distributed systems in terms
of an encompassing architectural model that makes sense of this design space examining
the core issues of what is communicating and how these entities communicate,
supplemented by consideration of the roles each element may play together with the
appropriate placement strategies given the physical distributed infrastructure. The
chapter also introduced the key role of architectural patterns in enabling more complex
designs to be constructed from the underlying core elements, such as the client-server
model highlighted above, and highlighted major styles of supportive middleware
solutions, including solutions based on distributed objects, components, web services
and distributed events.

In terms of architectural models, the client-server approach is prevalent – the Web
and other Internet services such as FTP, news and mail as well as web services and the
DNS are based on this model, as are filing and other local services. Services such as the
DNS that have large numbers of users and manage a great deal of information are based
on multiple servers and use data partition and replication to enhance availability and
fault tolerance. Caching by clients and proxy servers is widely used to enhance the
performance of a service. However, there is now a wide variety of approaches to
modelling distributed systems including alternative philosophies such as peer-to-peer

EXERCISES 77

computing and support for more problem-oriented abstractions such as objects,
components or services.

The architectural model is complemented by fundamental models, which aid in
reasoning about properties of the distributed system in terms of, for example,
performance, reliability and security. In particular, we presented models of interaction,
failure and security. They identify the common characteristics of the basic components
from which distributed systems are constructed. The interaction model is concerned
with the performance of processes and communication channels and the absence of a
global clock. It identifies a synchronous system as one in which known bounds may be
placed on process execution time, message delivery time and clock drift. It identifies an
asynchronous system as one in which no bounds may be placed on process execution
time, message delivery time and clock drift – which is a description of the behaviour of
the Internet.

The failure model classifies the failures of processes and basic communication
channels in a distributed system. Masking is a technique by which a more reliable
service is built from a less reliable one by masking some of the failures it exhibits. In
particular, a reliable communication service can be built from a basic communication
channel by masking its failures. For example, its omission failures may be masked by
retransmitting lost messages. Integrity is a property of reliable communication – it
requires that a message received be identical to one that was sent and that no message
be sent twice. Validity is another property – it requires that any message put in the
outgoing buffer be delivered eventually to the incoming message buffer.

The security model identifies the possible threats to processes and communication
channels in an open distributed system. Some of those threats relate to integrity:
malicious users may tamper with messages or replay them. Others threaten their privacy.
Another security issue is the authentication of the principal (user or server) on whose
behalf a message was sent. Secure channels use cryptographic techniques to ensure the
integrity and privacy of messages and to authenticate pairs of communicating principals.

EXERCISES

2.1 Provide three specific and contrasting examples of the increasing levels of heterogeneity
experienced in contemporary distributed systems as defined in Section 2.2. page 39

2.2 What problems do you foresee in the direct coupling between communicating entities
that is implicit in remote invocation approaches? Consequently, what advantages do you
anticipate from a level of decoupling as offered by space and time uncoupling? Note:
you might want to revisit this answer after reading Chapters 5 and 6. page 43

2.3 Describe and illustrate the client-server architecture of one or more major Internet
applications (for example, the Web, email or netnews). page 46

2.4 For the applications discussed in Exercise 2.1, what placement strategies are employed
in implementing the associated services? page 48

78 CHAPTER 2 SYSTEM MODELS

2.5 A search engine is a web server that responds to client requests to search in its stored
indexes and (concurrently) runs several web crawler tasks to build and update the
indexes. What are the requirements for synchronization between these concurrent
activities? page 46

2.6 The host computers used in peer-to-peer systems are often simply desktop computers in
users’ offices or homes. What are the implications of this for the availability and security
of any shared data objects that they hold and to what extent can any weaknesses be
overcome through the use of replication? pages 47, 48

2.7 List the types of local resource that are vulnerable to an attack by an untrusted program
that is downloaded from a remote site and run in a local computer. page 50

2.8 Give examples of applications where the use of mobile code is beneficial. page 50

2.9 Consider a hypothetical car hire company and sketch out a three-tier solution to the
provision of their underlying distributed car hire service. Use this to illustrate the
benefits and drawbacks of a three-tier solution considering issues such as performance,
scalability, dealing with failure and also maintaining the software over time. page 52

2.10 Provide a concrete example of the dilemma offered by Saltzer’s end-to-end argument in
the context of the provision of middleware support for distributed applications (you may
want to focus on one aspect of providing dependable distributed systems, for example
related to fault tolerance or security). page 60

2.11 Consider a simple server that carries out client requests without accessing other servers.
Explain why it is generally not possible to set a limit on the time taken by such a server
to respond to a client request. What would need to be done to make the server able to
execute requests within a bounded time? Is this a practical option? page 62

2.12 For each of the factors that contribute to the time taken to transmit a message between
two processes over a communication channel, state what measures would be needed to
set a bound on its contribution to the total time. Why are these measures not provided in
current general-purpose distributed systems? page 63

2.13 The Network Time Protocol service can be used to synchronize computer clocks.
Explain why, even with this service, no guaranteed bound is given for the difference
between two clocks. page 64

2.14 Consider two communication services for use in asynchronous distributed systems. In
service A, messages may be lost, duplicated or delayed and checksums apply only to
headers. In service B, messages may be lost, delayed or delivered too fast for the
recipient to handle them, but those that are delivered arrive with the correct contents.

Describe the classes of failure exhibited by each service. Classify their failures
according to their effects on the properties of validity and integrity. Can service B be
described as a reliable communication service? page 67, page 71

2.15 Consider a pair of processes X and Y that use the communication service B from
Exercise 2.14 to communicate with one another. Suppose that X is a client and Y a
server and that an invocation consists of a request message from X to Y, followed by Y
carrying out the request, followed by a reply message from Y to X. Describe the classes
of failure that may be exhibited by an invocation. page 67

EXERCISES 79

2.16 Suppose that a basic disk read can sometimes read values that are different from those
written. State the type of failure exhibited by a basic disk read. Suggest how this failure
may be masked in order to produce a different benign form of failure. Now suggest how
to mask the benign failure. page 70

2.17 Define the integrity property of reliable communication and list all the possible threats
to integrity from users and from system components. What measures can be taken to
ensure the integrity property in the face of each of these sources of threats.

pages 71, 74

2.18 Describe possible occurrences of each of the main types of security threat (threats to
processes, threats to communication channels, denial of service) that might occur in the
Internet. pages 74, 75

This page intentionally left blank

 81

3

NETWORKING AND

INTERNETWORKING

3.1 Introduction
3.2 Types of network
3.3 Network principles
3.4 Internet protocols
3.5 Case studies: Ethernet, WiFi and Bluetooth
3.6 Summary

Distributed systems use local area networks, wide area networks and internetworks for
communication. The performance, reliability, scalability, mobility and quality of service
characteristics of the underlying networks impact the behaviour of distributed systems
and hence affect their design. Changes in user requirements have resulted in the
emergence of wireless networks and of high-performance networks with quality of service
guarantees.

The principles on which computer networks are based include protocol layering,
packet switching, routing and data streaming. Internetworking techniques enable
heterogeneous networks to be integrated. The Internet is the major example; its protocols
are almost universally used in distributed systems. The addressing and routing schemes
used in the Internet have withstood the impact of its enormous growth. They are now
undergoing revision to accommodate future growth and to meet new application
requirements for mobility, security and quality of service.

The design of specific network technologies is illustrated in three case studies:
Ethernet, IEEE 802.11 (WiFi) and Bluetooth wireless networking.

82 CHAPTER 3 NETWORKING AND INTERNETWORKING

3.1 Introduction

The networks used in distributed systems are built from a variety of transmission media,
including wire, cable, fibre and wireless channels; hardware devices, including routers,
switches, bridges, hubs, repeaters and network interfaces; and software components,

including protocol stacks, communication handlers and drivers. The resulting
functionality and performance available to distributed system and application programs
is affected by all of these. We shall refer to the collection of hardware and software
components that provide the communication facilities for a distributed system as a
communication subsystem. The computers and other devices that use the network for
communication purposes are referred to as hosts. The term node is used to refer to any
computer or switching device attached to a network.

The Internet is a single communication subsystem providing communication
between all of the hosts that are connected to it. The Internet is constructed from many
subnets. A subnet is a unit of routing (delivering data from one part of the Internet to
another); it is a collection of nodes that can all be reached on the same physical network.
The Internet’s infrastructure includes an architecture and hardware and software
components that effectively integrate diverse subnets into a single data communication
service.

The design of a communication subsystem is strongly influenced by the
characteristics of the operating systems used in the computers of which the distributed
system is composed as well as the networks that interconnect them. In this chapter, we
consider the impact of network technologies on the communication subsystem;
operating system issues are discussed in Chapter 7.

This chapter is intended to provide an introductory overview of computer
networking with reference to the communication requirements of distributed systems.
Readers who are not familiar with computer networking should regard it as an
underpinning for the remainder of the book, while those who are will find that this
chapter offers an extended summary of those aspects of computer networking that are
particularly relevant for distributed systems.

Computer networking was conceived soon after the invention of computers. The
theoretical basis for packet switching was introduced in a paper by Leonard Kleinrock
[1961]. In 1962, J.C.R. Licklider and W. Clark, who participated in the development of
the first timesharing system at MIT in the early 1960s, published a paper discussing the
potential for interactive computing and wide area networking that presaged the Internet
in several respects [DEC 1990]. In 1964, Paul Baran produced an outline of a practical
design for reliable and effective wide area networks [Baran 1964]. Further material and
links on the history of computer networking and the Internet can be found in the
following sources: [www.isoc.org, Comer 2007, Kurose and Ross 2007].

In the remainder of this section we discuss the communication requirements of
distributed systems. We give an overview of network types in Section 3.2 and an
introduction to networking principles in Section 3.3. Section 3.4 deals specifically with
the Internet. The chapter concludes with detailed case studies on the Ethernet, IEEE
802.11 (WiFi) and Bluetooth networking technologies in Section 3.5.

SECTION 3.1 INTRODUCTION 83

3.1.1 Networking issues for distributed systems

Early computer networks were designed to meet a few, relatively simple application
requirements. Network applications such as file transfer, remote login, electronic mail and
newsgroups were supported. The subsequent development of distributed systems with
support for distributed application programs accessing shared files and other resources set
a higher standard of performance to meet the needs of interactive applications.

More recently, following the growth and commercialization of the Internet and the
emergence of many new modes of use, more stringent requirements for reliability,
scalability, mobility, security and quality of service have emerged. In this section, we
define and describe the nature of each of these requirements.

Performance • The network performance parameters that are of primary interest for our
purposes are those affecting the speed with which individual messages can be
transferred between two interconnected computers. These are the latency and the point-
to-point data transfer rate:

Latency is the delay that occurs after a send operation is executed and before data
starts to arrive at the destination computer. It can be measured as the time required to
transfer an empty message. Here we are considering only network latency, which
forms a part of the process-to-process latency defined in Section 2.4.1.

Data transfer rate is the speed at which data can be transferred between two
computers in the network once transmission has begun, usually quoted in bits per
second.

Following from these definitions, the time required for a network to transfer a message
containing length bits between two computers is:

Message transmission time = latency + length ⁄ data transfer rate

The above equation is valid for messages whose length does not exceed a maximum that
is determined by the underlying network technology. Longer messages have to be
segmented and the transmission time is the sum of the times for the segments.

The transfer rate of a network is determined primarily by its physical
characteristics, whereas the latency is determined primarily by software overheads,
routing delays and a load-dependent statistical element arising from conflicting
demands for access to transmission channels. Many of the messages transferred between
processes in distributed systems are small in size; latency is therefore often of equal or
greater significance than transfer rate in determining performance.

The total system bandwidth of a network is a measure of throughput – the total
volume of traffic that can be transferred across the network in a given time. In many
local area network technologies, such as Ethernet, the full transmission capacity of the
network is used for every transmission and the system bandwidth is the same as the data
transfer rate. But in most wide area networks messages can be transferred on several
different channels simultaneously, and the total system bandwidth bears no direct
relationship to the transfer rate. The performance of networks deteriorates in conditions
of overload – when there are too many messages in the network at the same time. The
precise effect of overload on the latency, data transfer rate and total system bandwidth
of a network depends strongly on the network technology.

84 CHAPTER 3 NETWORKING AND INTERNETWORKING

Now consider the performance of client-server communication. The time required
to transmit a short request message and receive a short reply between nodes on a lightly
loaded local network (including system overheads) is about half a millisecond. This
should be compared with the sub-microsecond time required to invoke an operation on
an application-level object in the local memory. Thus, despite advances in network
performance, the time required to access shared resources on a local network remains
about a thousand times greater than that required to access resources that are resident in
local memory. But networks often outperform hard disks; networked access to a local
web server or file server with a large in-memory cache of frequently used files can match
or outstrip access to files stored on a local hard disk.

On the Internet, round-trip latencies are in the 5–500 ms range, with means of
20–200 ms depending on distance [www.globalcrossing.net], so requests transmitted
across the Internet are 10–100 times slower than those sent on fast local networks. The
bulk of this time difference derives from switching delays at routers and contention for
network circuits.

Section 7.5.1 discusses and compares the performance of local and remote
operations in greater detail.

Scalability • Computer networks are an indispensable part of the infrastructure of
modern societies. In Figure 1.6 we showed the growth in the number of host computers
and web servers connected to the Internet over a 12-year period ending in 2005. The
growth since then has been so rapid and diverse that it is difficult to find recent reliable
statistics. The potential future size of the Internet is commensurate with the population
of the planet. It is realistic to expect it to include several billion nodes and hundreds of
millions of active hosts.

These numbers indicate the future changes in size and load that the Internet must
handle. The network technologies on which it is based were not designed to cope with
even the Internet’s current scale, but they have performed remarkably well. Some
substantial changes to the addressing and routing mechanisms are in progress in order
to handle the next phase of the Internet’s growth; these will be described in Section 3.4.
For simple client-server applications such as the Web, we would expect future traffic to
grow at least in proportion to the number of active users. The ability of the Internet’s
infrastructure to cope with this growth will depend upon the economics of use, in
particular charges to users and the patterns of communication that actually occur – for
example, their degree of locality.

Reliability • Our discussion of failure models in Section 2.4.2 describes the impact of
communication errors. Many applications are able to recover from communication
failures and hence do not require guaranteed error-free communication. The end-to-end
argument (Section 2.3.3) further supports the view that the communication subsystem
need not provide totally error-free communication; the detection of communication
errors and their correction is often best performed by application-level software. The
reliability of most physical transmission media is very high. When errors occur they
are usually due to failures in the software at the sender or receiver (for example,
failure by the receiving computer to accept a packet) or buffer overflow rather than
errors in the network.

SECTION 3.1 INTRODUCTION 85

Security • Chapter 11 sets out the requirements and techniques for achieving security
in distributed systems. The first level of defence adopted by most organizations is to
protect its networks and the computers attached to them with a firewall. A firewall
creates a protection boundary between the organization’s intranet and the rest of the
Internet. The purpose of the firewall is to protect the resources in all of the computers
inside the organization from access by external users or processes and to control the use
of resources outside the firewall by users inside the organization.

A firewall runs on a gateway – a computer that stands at the network entry point
to an organization’s intranet. The firewall receives and filters all of the messages
travelling into and out of an organization. It is configured according to the
organization’s security policy to allow certain incoming and outgoing messages to pass
through it and to reject all others. We shall return to this topic in Section 3.4.8.

To enable distributed applications to move beyond the restrictions imposed by
firewalls there is a need to produce a secure network environment in which a wide range
of distributed applications can be deployed, with end-to-end authentication, privacy and
security. This finer-grained and more flexible form of security can be achieved through
the use of cryptographic techniques. It is usually applied at a level above the
communication subsystem and hence is not dealt with here but in Chapter 11.
Exceptions include the need to protect network components such as routers against
unauthorized interference with their operation and the need for secure links to mobile
devices and other external nodes to enable them to participate in a secure intranet – the
virtual private network (VPN) concept, discussed in Section 3.4.8.

Mobility • Mobile devices such as laptop computers and Internet-capable mobile
phones are moved frequently between locations and reconnected at convenient network
connection points or even used while on the move. Wireless networks provide
connectivity to such devices, but the addressing and routing schemes of the Internet
were developed before the advent of these mobile devices and are not well adapted to
their need for intermittent connection to many different subnets. The Internet’s
mechanisms have been adapted and extended to support mobility, but the expected
future growth in the use of mobile devices will demand further development.

Quality of service • In Chapter 1, we defined quality of service as including the ability
to meet deadlines when transmitting and processing streams of real-time multimedia
data. This imposes major new requirements on computer networks. Applications that
transmit multimedia data require guaranteed bandwidth and bounded latencies for the
communication channels that they use. Some applications vary their demands
dynamically and specify both a minimum acceptable quality of service and a desired
optimum. The provision of such guarantees and their maintenance is the subject of
Chapter 20.

Multicasting • Most communication in distributed systems is between pairs of
processes, but there often is also a need for one-to-many communication. While this can
be simulated by sends to several destinations, that is more costly than necessary and may
not exhibit the fault-tolerance characteristics required by applications. For these reasons,
many network technologies support the simultaneous transmission of messages to
several recipients.

86 CHAPTER 3 NETWORKING AND INTERNETWORKING

3.2 Types of network

Here we introduce the main types of network that are used to support distributed
systems: personal area networks, local area networks, wide area networks,
metropolitan area networks and the wireless variants of them. Internetworks such as the
Internet are constructed from networks of all these types. Figure 3.1 shows the
performance characteristics of the various types of network discussed below.

Figure 3.1 Network performance

Example Range Bandwidth

(Mbps)

Latency

(ms)

Wired:

LAN Ethernet 1–2 kms 10–10,000 1–10

WAN IP routing worldwide 0.010–600 100–500

MAN ATM 2–50 kms 1–600 10

Internetwork Internet worldwide 0.5–600 100–500

Wireless:

WPAN Bluetooth (IEEE 802.15.1) 10–30m 0.5–2 5–20

WLAN WiFi (IEEE 802.11) 0.15–1.5 km 11–108 5–20

WMAN WiMAX (IEEE 802.16) 5–50 km 1.5–20 5–20

WWAN 3G phone cell: 1–-5
km

348–14.4 100–500

Some of the names used to refer to types of networks are confusing because they
seem to refer to the physical extent (local area, wide area), but they also identify physical
transmission technologies and low-level protocols. These are different for local and
wide area networks, although some network technologies, such as ATM (Asynchronous
Transfer Mode), are suitable for both local and wide area applications and some wireless
networks also support local and metropolitan area transmission.

We refer to networks that are composed of many interconnected networks,
integrated to provide a single data communication medium, as internetworks. The
Internet is the prototypical internetwork; it is composed of millions of local,
metropolitan and wide area networks. We describe its implementation in some detail in
Section 3.4.

Personal area networks (PANs) • PANs are a subcategory of local networks in which
the various digital devices carried by a user are connected by a low-cost, low-energy
network. Wired PANs are not of much significance because few users wish to be
encumbered by a network of wires on their person, but wireless personal area networks
(WPANs) are of increasing importance due to the number of personal devices such as
mobile phones, tablets, digital cameras, music players and so on that are now carried by
many people. We describe the Bluetooth WPAN in Section 3.5.3.

Local area networks (LANs) • LANs carry messages at relatively high speeds between
computers connected by a single communication medium, such as twisted copper wire,

SECTION 3.2 TYPES OF NETWORK 87

coaxial cable or optical fibre. A segment is a section of cable that serves a department or
a floor of a building and may have many computers attached. No routing of messages is
required within a segment, since the medium provides direct connections between all of
the computers connected to it. The total system bandwidth is shared between the
computers connected to a segment. Larger local networks, such as those that serve a
campus or an office building, are composed of many segments interconnected by
switches or hubs (see Section 3.3.7). In local area networks, the total system bandwidth
is high and latency is low, except when message traffic is very high.

Several local area technologies were developed in the 1970s including Ethernet,
token rings and slotted rings. Each provides an effective and high-performance solution,
but Ethernet emerged as the dominant technology for wired local area networks. It was
originally produced in the early 1970s with a bandwidth of 10 Mbps (million bits per
second) and extended to 100 Mbps, 1000 Mbps (1 gigabit per second) and 10 Gbps
versions more recently. We describe the principles of operation of Ethernet networks in
Section 3.5.1.

There is a very large installed base of local area networks, serving virtually all
working environments that contain more than one or two personal computers or
workstations. Their performance is generally adequate for the implementation of
distributed systems and applications. Ethernet technology lacks the latency and
bandwidth guarantees needed by many multimedia applications. ATM networks were
developed to fill this gap, but their cost has inhibited their adoption in local area
applications. Instead, high-speed Ethernets have been deployed in a switched mode that
overcomes these drawbacks to a significant degree, though not as effectively as ATM.

Wide area networks (WANs) • WANs carry messages at lower speeds between nodes
that are often in different organizations and may be separated by large distances. They
may be located in different cities, countries or continents. The communication medium
is a set of communication circuits linking a set of dedicated computers called routers.

They manage the communication network and route messages or packets to their
destinations. In most networks, the routing operations introduce a delay at each point in
the route, so the total latency for the transmission of a message depends on the route that
it follows and the traffic loads in the various network segments that it traverses. In
current networks these latencies can be as high as 0.1 to 0.5 seconds. The speed of
electronic signals in most media is close to the speed of light, and this sets a lower bound
on the transmission latency for long-distance networks. For example, the propagation
delay for a signal to travel from Europe to Australia via a terrestrial link is approximately
0.13 seconds and signals via a geostationary satellite between any two points on the
Earth’s surface are subject to a delay of approximately 0.20 seconds.

Bandwidths available across the Internet also vary widely. Speeds of up to 600
Mbps are commonly available, but speeds of 1–10 Mbps are more typically experienced
for bulk transfers of data.

Metropolitan area networks (MANs) • This type of network is based on the high-
bandwidth copper and fibre optic cabling recently installed in some towns and cities for
the transmission of video, voice and other data over distances of up to 50 kilometres. A
variety of technologies have been used to implement the routing of data in MANs,
ranging from Ethernet to ATM.

88 CHAPTER 3 NETWORKING AND INTERNETWORKING

The DSL (Digital Subscriber Line) and cable modem connections now available
in many countries are an example. DSL typically uses ATM switches located in
telephone exchanges to route digital data onto twisted pairs of copper wire (using high-
frequency signalling on the existing wiring used for telephone connections) to the
subscriber’s home or office at speeds in the range 1–10 Mbps. The use of twisted copper
wire for DSL subscriber connections limits the range to about 5.5 km from the switch.
Cable modem connections use analogue signalling on cable television networks to
achieve speeds of up to 15 Mbps over coaxial cable with greater range than DSL.

The term DSL actually represents a family of technologies, sometimes referred to
as xDSL and including for example ADSL (or Asymmetric Digital Subscriber Line).
Latest developments include VDSL and VDSL2 (Very High Bit Rate DSL), which are
capable of speeds of up to 100 Mbps and designed to support a range of multimedia
traffic including High Definition TV (HDTV).

Wireless local area networks (WLANs) • WLANs are designed for use in place of wired
LANs to provide connectivity for mobile devices, or simply to remove the need for a
wired infrastructure to connect computers within homes and office buildings to each
other and the Internet. They are in widespread use in several variants of the IEEE 802.11
standard (WiFi), offering bandwidths of 10–100 Mbps over ranges up to 1.5 kilometres.
Section 3.5.2 gives further information on their method of operation.

Wireless metropolitan area networks (WMANs) • The IEEE 802.16 WiMAX standard is
targeted at this class of network. It aims to provide an alternative to wired connections
to home and office buildings and to supersede 802.11 WiFi networks in some
applications.

Wireless wide area networks (WWANs) • Most mobile phone networks are based on
digital wireless network technologies such as the GSM (Global System for Mobile
communication) standard, which is used in most countries of the world. Mobile phone
networks are designed to operate over wide areas (typically entire countries or
continents) through the use of cellular radio connections; their data transmission
facilities therefore offer wide area mobile connections to the Internet for portable
devices. The cellular networks mentioned above offer relatively low data rates – 9.6 to
33 kbps – but the ‘third generation’ (3G) of mobile phone networks is now available,
with data transmission rates in the range of 2–14.4 Mbps while stationary and 348 kbps
while moving (for example in a car). The underlying technology is referred to as UMTS
(Universal Mobile Telecommunications System). A path has also been defined to evolve
UMTS towards 4G data rates of up to 100 Mbps. Readers interested in digging more
deeply than we are able to here into the rapidly evolving technologies of mobile and
wireless networks of all types are referred to Stojmenovic’s excellent handbook [2002].

Internetworks • An internetwork is a communication subsystem in which several
networks are linked together to provide common data communication facilities that
overlay the technologies and protocols of the individual component networks and the
methods used for their interconnection.

Internetworks are needed for the development of extensible, open distributed
systems. The openness characteristic of distributed systems implies that the networks
used in distributed systems should be extensible to very large numbers of computers,
whereas individual networks have restricted address spaces and some have performance

SECTION 3.3 NETWORK PRINCIPLES 89

limitations that are incompatible with their large-scale use. In internetworks, a variety
of local and wide area network technologies can be integrated to provide the networking
capacity needed by each group of users. Thus internetworks bring many of the benefits
of open systems to the provision of communication in distributed systems.

Internetworks are constructed from a variety of component networks. They are
interconnected by dedicated switching computers called routers and general-purpose
computers called gateways, and an integrated communication subsystem is produced by
a software layer that supports the addressing and transmission of data to computers
throughout the internetwork. The result can be thought of as a ‘virtual network’
constructed by overlaying an internetwork layer on a communication medium that
consists of the underlying networks, routers and gateways. The Internet is the major
instance of internetworking, and its TCP/IP protocols are an example of this integration
layer.

Network errors • An additional point of comparison not mentioned in Figure 3.1 is the
frequency and types of failure that can be expected in the different types of network. The
reliability of the underlying data transmission media is very high in all types except
wireless networks, where packets are frequently lost due to external interference. But
packets may be lost in all types of network due to processing delays and buffer overflow
at switches and at the destination node. This is by far the most common cause of packet
loss.

Packets may also be delivered in an order different from that in which they were
transmitted. This arises only in networks where separate packets are individually routed
– principally wide area networks. Finally, duplicate copies of packets can be delivered.
This is usually a consequence of an assumption by the sender that a packet has been lost;
the packet is retransmitted, and both the original and the retransmitted copy then turn up
at the destination.

3.3 Network principles

The basis for all computer networks is the packet-switching technique first developed in
the 1960s. This enables data packets addressed to different destinations to share a single
communications link, unlike the circuit-switching technology that underlies convention-
al telephony. Packets are queued in a buffer and transmitted when the link is available.
Communication is asynchronous – messages arrive at their destination after a delay that
varies depending upon the time that packets take to travel through the network.

3.3.1 Packet transmission

In most applications of computer networks the requirement is for the transmission of
logical units of information, or messages – sequences of data items of arbitrary length.
But before a message is transmitted it is subdivided into packets. The simplest form of
packet is a sequence of binary data (an array of bits or bytes) of restricted length,

90 CHAPTER 3 NETWORKING AND INTERNETWORKING

together with addressing information sufficient to identify the source and destination
computers. Packets of restricted length are used:

• so that each computer in the network can allocate sufficient buffer storage to hold
the largest possible incoming packet;

• to avoid the undue delays that would occur in waiting for communication channels
to become free if long messages were transmitted without subdivision.

3.3.2 Data streaming

The transmission and display of audio and video in real time is referred to as streaming.
It requires much higher bandwidths than most other forms of communication in
distributed systems. We have already noted in Chapter 2 that multimedia applications
rely upon the transmission of streams of audio and video data elements at guaranteed
high rates and with bounded latencies.

A video stream requires a bandwidth of about 1.5 Mbps if the data is compressed,
or 120 Mbps if uncompressed. UDP internet packets are generally used to hold the video
frames, but because the flow is continuous as opposed to the intermittent traffic
generated by typical client-server interactions, the packets are handled somewhat
differently. The play time of a multimedia element such as a video frame is the time at
which it must be displayed (for a video element) or converted to sound (for a sound
sample). For example, in a stream of video frames with a frame rate of 24 frames per
second, frame N has a play time that is N/24 seconds after the stream’s start time.
Elements that arrive at their destination later than their play time are no longer useful
and will be dropped by the receiving process.

The timely delivery of audio and video streams depends upon the availability of
connections with adequate quality of service – bandwidth, latency and reliability must
all be considered. Ideally, adequate quality of service should be guaranteed. In general
the Internet does not offer that capability, and the quality of real-time video streams
sometimes reflects that, but in proprietary intranets such as those operated by media
companies, guarantees are sometimes achieved. What is required is the ability to
establish a channel from the source to the destination of a multimedia stream, with a
predefined route through the network, a reserved set of resources at each node through
which it will travel and buffering where appropriate to smooth any irregularities in the
flow of data through the channel. Data can then be passed through the channel from
sender to receiver at the required rate.

ATM networks are specifically designed to provide high bandwidth and low
latencies and to support quality of service by the reservation of network resources. IPv6,
the new network protocol for the Internet outlined in Section 3.4.4, includes features that
enable each of the IP packets in a real-time stream to be identified and treated separately
from other data at the network level.

Communication subsystems that provide quality of service guarantees require
facilities for the preallocation of network resources and the enforcement of the
allocations. The Resource Reservation Protocol (RSVP) [Zhang et al. 1993] enables
applications to negotiate the preallocation of bandwidth for real-time data streams. The
Real Time Transport Protocol (RTP) [Schulzrinne et al. 1996] is an application-level
data transfer protocol that includes details of the play time and other timing

SECTION 3.3 NETWORK PRINCIPLES 91

requirements in each packet. The availability of effective implementations of these
protocols in the general Internet will depend upon substantial changes to the transport
and network layers. Chapter 20 discusses the needs of distributed multimedia
applications in more detail.

3.3.3 Switching schemes

A network consists of a set of nodes connected together by circuits. To transmit
information between two arbitrary nodes, a switching system is required. Here we define
the four types of switching that are used in computer networking.

Broadcast • Broadcasting is a transmission technique that involves no switching.
Everything is transmitted to every node, and it is up to potential receivers to notice
transmissions addressed to them. Some LAN technologies, including Ethernet, are
based on broadcasting. Wireless networking is necessarily based on broadcasting, but in
the absence of fixed circuits the broadcasts are arranged to reach nodes grouped in cells.

Circuit switching • At one time telephone networks were the only telecommunication
networks. Their operation was simple to understand: when a caller dialled a number, the
pair of wires from her phone to the local exchange was connected by an automatic
switch at the exchange to the pair of wires connected to the other party’s phone. For a
long-distance call the process was similar but the connection would be switched through
a number of intervening exchanges to its destination. This system is sometimes referred
to as the plain old telephone system, or POTS. It is a typical circuit-switching network.

Packet switching • The advent of computers and digital technology brought many new
possibilities for telecommunication. At the most basic level, it brought processing and
storage. These made it possible to construct a different kind of communication network
called a store-and-forward network. Instead of making and breaking connections to
build circuits, a store-and-forward network just forwards packets from their source to
their destination. There is a computer at each switching node (that is, wherever several
circuits need to be interconnected). Each packet arriving at a node is first stored in
memory at the node and then processed by a program that transmits it on an outgoing
circuit, which transfers the packet to another node that is closer to its ultimate
destination.

There is nothing really new in this idea: the postal system is a store-and-forward
network for letters, with the processing done by humans or machinery at sorting offices.
But in a computer network packets can be stored and processed fast enough to give an
illusion of instantaneous transmission, even though the packet has to be routed through
many nodes.

Frame relay • In reality, it takes anything from a few tens of microseconds to a few
milliseconds to switch a packet through each network node in a store-and-forward
network. This switching delay depends on the packet size, hardware speed and quantity
of other traffic, but its lower bound is determined by the network bandwidth, since the
entire packet must be received before it can be forwarded to another node. Much of the
Internet is based on store-and-forward switching, and as we have already seen, even
short Internet packets typically take up to 200 milliseconds to reach their destinations.
Delays of this magnitude are too long for real-time applications such as telephony and

92 CHAPTER 3 NETWORKING AND INTERNETWORKING

video conferencing, where delays of less than 50 milliseconds are needed to sustain
high-quality conversation.

The frame relay switching method brings some of the advantages of circuit
switching to packet-switching networks. They overcome the delay problems by
switching small packets (called frames) on the fly. The switching nodes (which are
usually special-purpose parallel digital processors) route frames based on the
examination of their first few bits; frames as a whole are not stored at nodes but pass
through them as short streams of bits. ATM networks are a prime example; high-speed
ATM networks can transmit packets across networks consisting of many nodes in a few
tens of microseconds.

3.3.4 Protocols

Figure 3.2 Conceptual layering of protocol software

Layer n

Layer 2

Layer 1

Message sent Message received

Communication
medium

Sender Recipient

‚

‚

The term protocol is used to refer to a well-known set of rules and formats to be used
for communication between processes in order to perform a given task. The definition
of a protocol has two important parts to it:

• a specification of the sequence of messages that must be exchanged;

• a specification of the format of the data in the messages.

The existence of well-known protocols enables the separate software components of
distributed systems to be developed independently and implemented in different
programming languages on computers that may have different order codes and data
representations.

A protocol is implemented by a pair of software modules located in the sending
and receiving computers. For example, a transport protocol transmits messages of any
length from a sending process to a receiving process. A process wishing to transmit a
message to another process issues a call to a transport protocol module, passing it a
message in the specified format. The transport software then concerns itself with the
transmission of the message to its destination, subdividing it into packets of some
specified size and format that can be transmitted to the destination via the network

protocol – another, lower-level protocol. The corresponding transport protocol module
in the receiving computer receives the packet via the network-level protocol module and

SECTION 3.3 NETWORK PRINCIPLES 93

performs inverse transformations to regenerate the message before passing it to a
receiving process.

Protocol layers • Network software is arranged in a hierarchy of layers. Each layer
presents an interface to the layers above it that extends the properties of the underlying
communication system. A layer is represented by a module in every computer connected
to the network. Figure 3.2 illustrates the structure and the flow of data when a message
is transmitted using a layered protocol. Each module appears to communicate directly
with a module at the same level in another computer in the network, but in reality data
is not transmitted directly between the protocol modules at each level. Instead, each
layer of network software communicates by local procedure calls with the layers above
and below it.

On the sending side, each layer (except the topmost, or application layer) accepts
items of data in a specified format from the layer above it and applies transformations
to encapsulate the data in the format specified for that layer before passing it to the layer
below for further processing. Figure 3.3

Figure 3.3 Encapsulation as it is applied in layered protocols

Application-layer message

Presentation header

Session header

Transport header

Network header

 illustrates this process as it applies to the top
four layers of the OSI protocol suite (discussed in the next subsection). The figure shows
the packet headers that hold most network-related data items, but for clarity it omits the
trailers that are present in some types of packet; it also assumes that the application-layer
message to be transmitted is shorter than the underlying network’s maximum packet
size. If not, it would have to be encapsulated in several network-layer packets. On the
receiving side, the converse transformations are applied to data items received from the
layer below before they are passed to the layer above. The protocol type of the layer
above is included in the header of each layer, to enable the protocol stack at the receiver
to select the correct software components to unpack the packets.

Thus each layer provides a service to the layer above it and extends the service
provided by the layer below it. At the bottom is a physical layer. This is implemented
by a communication medium (copper or fibre optic cables, satellite communication
channels or radio transmission) and by analogue signalling circuits that place signals on
the communication medium at the sending node and sense them at the receiving node.
At receiving nodes data items are received and passed upwards through the hierarchy of
software modules, being transformed at each stage until they are in a form that can be
passed to the intended recipient process.

Figure 3.4 Protocol layers in the ISO Open Systems Interconnection (OSI) protocol model

Application

Presentation

Session

Transport

Network

Data link

Physical

Message sent Message received

Sender Recipient

Layers

Communication
medium

94 CHAPTER 3 NETWORKING AND INTERNETWORKING

Protocol suites • A complete set of protocol layers is referred to as a protocol suite or a
protocol stack, reflecting the layered structure. Figure 3.4 shows a protocol stack that
conforms to the seven-layer Reference Model for Open Systems Interconnection (OSI)
adopted by the International Organization for Standardization (ISO) [ISO 1992]. The
OSI Reference Model was adopted in order to encourage the development of protocol
standards that would meet the requirements of open systems.

The purpose of each level in the OSI Reference Model is summarized in Figure
3.5. As its name implies, it is a framework for the definition of protocols and not a
definition for a specific suite of protocols. Protocol suites that conform to the OSI model
must include at least one specific protocol at each of the seven levels that the model
defines.

Protocol layering brings substantial benefits in simplifying and generalizing the
software interfaces for access to the communication services of networks, but it also
carries significant performance costs. The transmission of an application-level message
via a protocol stack with N layers typically involves N transfers of control to the relevant
layer of software in the protocol suite, at least one of which is an operating system entry,
and taking N copies of the data as a part of the encapsulation mechanism. All of these
overheads result in data transfer rates between application processes that are much lower
than the available network bandwidth.

Figure 3.5 includes examples from protocols used in the Internet, but the
implementation of the Internet does not follow the OSI model in two respects. First, the
application, presentation and session layers are not clearly distinguished in the Internet
protocol stack. Instead, the application and presentation layers are implemented either
as a single middleware layer or separately within each application. Thus CORBA
implements inter-object invocations and data representations in a middleware library
that is included in each application process (see Chapter 8 for further details on
CORBA). Web browsers and other applications that require secure channels employ the
Secure Sockets Layer (Chapter 11) as a procedure library in a similar manner.

Second, the session layer is integrated with the transport layer. Internetwork
protocol suites include an application layer, a transport layer and an internetwork layer.

Figure 3.5 OSI protocol summary

Layer Description Examples

Application Protocols at this level are designed to meet the communication requirements of
specific applications, often defining the interface to a service.

HTTP, FTP,
SMTP, CORBA
IIOP

Presentation Protocols at this level transmit data in a network representation that is
independent of the representations used in individual computers, which may
differ. Encryption is also performed in this layer, if required.

TLS security,
CORBA data
representation

Session At this level reliability and adaptation measures are performed, such as
detection of failures and automatic recovery.

SIP

Transport This is the lowest level at which messages (rather than packets) are handled.
Messages are addressed to communication ports attached to processes.
Protocols in this layer may be connection-oriented or connectionless.

TCP, UDP

Network Transfers data packets between computers in a specific network. In a WAN or
an internetwork this involves the generation of a route passing through routers.
In a single LAN no routing is required.

IP, ATM virtual
circuits

Data link Responsible for transmission of packets between nodes that are directly
connected by a physical link. In a WAN transmission is between pairs of routers
or between routers and hosts. In a LAN it is between any pair of hosts.

Ethernet MAC,
ATM cell
transfer, PPP

Physical The circuits and hardware that drive the network. It transmits sequences of
binary data by analogue signalling, using amplitude or frequency modulation of
electrical signals (on cable circuits), light signals (on fibre optic circuits) or
other electromagnetic signals (on radio and microwave circuits).

Ethernet base-
band signalling,
ISDN

SECTION 3.3 NETWORK PRINCIPLES 95

The internetwork layer is a ‘virtual’ network layer that is responsible for transmitting
internetwork packets to a destination computer. An internetwork packet is the unit of
data transmitted over an internetwork.

Internetwork protocols are overlaid on underlying networks as illustrated in
Figure 3.6. The network interface layer accepts internetwork packets and converts them
into packets suitable for transmission by the network layers of each underlying network.

Packet assembly • The task of dividing messages into packets before transmission and
reassembling them at the receiving computer is usually performed in the transport layer.

The network-layer protocol packets consist of a header and a data field. In most
network technologies, the data field is variable in length, with the maximum length
called the maximum transfer unit (MTU). If the length of a message exceeds the MTU
of the underlying network layer, it must be fragmented into chunks of the appropriate
size, with sequence numbers for use on reassembly, and transmitted in multiple packets.
For example, the MTU for Ethernets is 1500 bytes – no more than that quantity of data
can be transmitted in a single Ethernet packet.

Although the IP protocol stands in the position of a network-layer protocol in the
Internet suite of protocols, its MTU is unusually large at 64 kbytes (8 kbytes is often
used in practice because some nodes are unable to handle such large packets).

96 CHAPTER 3 NETWORKING AND INTERNETWORKING

Whichever MTU value is adopted for IP packets, packets larger than the Ethernet MTU
can arise and they must be fragmented for transmission over Ethernets.

Figure 3.6 Internetwork layers

Underlying network

Application

Network interface

Transport

Internetwork

Internetwork packets

Network-specific packets

Message
Layers

Internetwork
protocols

Underlying
network
protocols

Ports • The transport layer’s task is to provide a network-independent message
transport service between pairs of network ports. Ports are software-defined destination
points at a host computer. They are attached to processes, enabling data transmission to
be addressed to a specific process at a destination node. Next, we discuss the addressing
of ports as they are implemented in the Internet and most other networks. Chapter 4
describes their programming.

Addressing • The transport layer is responsible for delivering messages to destinations
with transport addresses that are composed of the network address of a host computer
and a port number. A network address is a numeric identifier that uniquely identifies a
host computer and enables it to be located by nodes that are responsible for routing data
to it. In the Internet every host computer is assigned an IP number, which identifies it
and the subnet to which it is connected, enabling data to be routed to it from any other
node (as described in the following sections). In Ethernets there are no routing nodes;
each host is responsible for recognizing and picking up packets addressed to it.

Well-known Internet services such as HTTP and FTP have been allocated contact

port numbers and these are registered with a central authority (the Internet Assigned
Numbers Authority (IANA) [www.iana.org I]). To access a service at a given host, a
request is sent to the relevant port at the host. Some services, such as FTP (contact port:
21), then allocate a new port (with a private number) and send the number of the new
port to the client. The client uses the new port for the remainder of a transaction or a
session. Other services, such as HTTP (contact port: 80), transact all of their business
through the contact port.

Port numbers below 1023 are defined as well-known ports whose use is restricted
to privileged processes in most operating systems. The ports between 1024 and 49151
are registered ports for which IANA holds service descriptions, and the remaining ports
up to 65535 are available for private purposes. In practice, all of the ports above 1023

SECTION 3.3 NETWORK PRINCIPLES 97

can be used for private purposes, but computers using them for private purposes cannot
simultaneously access the corresponding registered services.

A fixed port number allocation does not provide an adequate basis for the
development of distributed systems which often include a multiplicity of servers
including dynamically allocated ones. Solutions to this problem involve the dynamic
allocation of ports to services and the provision of binding mechanisms to enable clients
to locate services and their ports using symbolic names. Some of these are discussed
further in Chapter 5.

Packet delivery • There are two approaches to the delivery of packets by the network
layer:

Datagram packet delivery: The term ‘datagram’ refers to the similarity of this
delivery mode to the way in which letters and telegrams are delivered. The essential
feature of datagram networks is that the delivery of each packet is a ‘one-shot’
process; no setup is required, and once the packet is delivered the network retains no
information about it. In a datagram network a sequence of packets transmitted by a
single host to a single destination may follow different routes (if, for example, the
network is capable of adaptation to handle failures or to mitigate the effects of
localized congestion), and when this occurs they may arrive out of sequence.

Every datagram packet contains the full network address of the source and
destination hosts; the latter is an essential parameter for the routing process, which
we describe in the next section. Datagram delivery is the concept on which packet
networks were originally based, and it can be found in most of the computer networks
in use today. The Internet’s network layer (IP), Ethernet and most wired and wireless
local network technologies are based on datagram delivery.

Virtual circuit packet delivery: Some network-level services implement packet
transmission in a manner that is analogous to a telephone network. A virtual circuit
must be set up before packets can pass from a source host A to destination host B.
The establishment of a virtual circuit involves the identification of a route from the
source to the destination, possibly passing through several intermediate nodes. At
each node along the route a table entry is made, indicating which link should be used
for the next stage of the route.

Once a virtual circuit has been set up, it can be used to transmit any number of
packets. Each network-layer packet contains only a virtual circuit number in place of
the source and destination addresses. The addresses are not needed, because packets
are routed at intermediate nodes by reference to the virtual circuit number. When a
packet reaches its destination the source can be determined from the virtual circuit
number.

The analogy with telephone networks should not be taken too literally. In the
POTS a telephone call results in the establishment of a physical circuit from the caller
to the callee, and the voice links from which it is constructed are reserved for their
exclusive use. In virtual circuit packet delivery the circuits are represented only by
table entries in routing nodes, and the links along which the packets are routed are
used only for the time taken to transmit a packet; they are free for other uses for the
rest of the time. A single link may therefore be employed in many separate virtual
circuits. The most important virtual circuit network technology in current use is

98 CHAPTER 3 NETWORKING AND INTERNETWORKING

ATM; we have already mentioned (in Section 3.3.3) that it benefits from lower
latencies for the transmission of individual packets; this is a direct result of its use of
virtual circuits. The requirement for a setup phase does, however, result in a short
delay before any packets can be sent to a new destination.

The distinction between datagram and virtual circuit packet delivery in the network
layer should not be confused with a similarly named pair of mechanisms in the transport
layer: connectionless and connection-oriented transmission. We describe these in
Section 3.4.6 in the context of the Internet transport protocols, UDP (connectionless)
and TCP (connection-oriented). Here we simply note that each of these modes of
transmission can be implemented over either type of network layer.

3.3.5 Routing

Figure 3.7 Routing in a wide area network

Hosts Links
or local
networks

A

D E

B

C

1

2

5

43

6

Routers

Routing is a function that is required in all networks except those LANs, such as
Ethernets, that provide direct connections between all pairs of attached hosts. In large
networks, adaptive routing is employed: the best route for communication between two
points in the network is re-evaluated periodically, taking into account the current traffic
in the network and any faults such as broken connections or routers.

The delivery of packets to their destinations in a network such as the one shown
in Figure 3.7 is the collective responsibility of the routers located at connection points.
Unless the source and destination hosts are on the same LAN, the packet has to be
transmitted in a series of hops, passing through router nodes. The determination of
routes for the transmission of packets to their destinations is the responsibility of a
routing algorithm implemented by a program in the network layer at each node.

A routing algorithm has two parts:

1. It must make decisions that determine the route taken by each packet as it travels
through the network. In circuit-switched network layers such as X.25 and frame-
relay networks such as ATM, the route is determined whenever a virtual circuit or
connection is established. In packet-switched network layers such as IP it is

SECTION 3.3 NETWORK PRINCIPLES 99

determined separately for each packet, and the algorithm must be particularly
simple and efficient if it is not to degrade network performance.

2. It must dynamically update its knowledge of the network based on traffic
monitoring and the detection of configuration changes or failures. This activity is
less time-critical; slower and more computation-intensive techniques can be used.

Both of these activities are distributed throughout the network. The routing decisions are
made on a hop-by-hop basis, using locally held information to determine the next hop
to be taken by each incoming packet. The locally held routing information is updated
periodically by an algorithm that distributes information about the states of the links
(their loads and failure status).

A simple routing algorithm • The algorithm that we describe here is a ‘distance vector’
algorithm. This will provide a basis for the discussion in Section 3.4.3 of the link-state

algorithm that has been used since 1979 as the main routing algorithm in the Internet.
Routing in networks is an instance of the problem of path finding in graphs. Bellman’s
shortest path algorithm, published well before computer networks were developed
[Bellman 1957], provides the basis for the distance vector method.

Figure 3.8 Routing tables for the network in Figure 3.7

Routings from A Routings from B Routings from C

To Link Cost To Link Cost To Link Cost

A
B

C
D
E

local
1
1
3
1

0
1
2
1
2

A
B

C
D
E

1
local

2
1
4

1
0
1
2
1

A
B

C
D
E

2
2

local
5
5

2
1
0
2
1

Routings from D Routings from E

To Link Cost To Link Cost

A
B

C
D
E

3
3
6

local
6

1
2
2
0
1

A
B

C
D
E

4
4
5
6

local

2
1
1
1
0

 Bellman’s method
was converted into a distributed algorithm suitable for implementation in large networks
by Ford and Fulkerson [1962], and protocols based on their work are often referred to
as ‘Bellman–Ford’ protocols.

Figure 3.8 shows the routing tables that would be held at each of the routers for
the network of Figure 3.7, assuming that the network has no failed links or routers. Each
row provides the routing information for packets addressed to a given destination. The
link field specifies the outgoing link for packets addressed to the destination. The cost

100 CHAPTER 3 NETWORKING AND INTERNETWORKING

field is simply a calculation of the vector distance, or the number of hops to the given
destination. For store-and-forward networks with links of similar bandwidth, this gives
a reasonable estimate of the time for a packet to travel to the destination. The cost
information stored in the routing tables is not used during packet-routing actions taken
by part 1 of the routing algorithm, but it is required for the routing table construction and
maintenance actions in part 2.

The routing tables contain a single entry for each possible destination, showing the
next hop that a packet must take towards its destination. When a packet arrives at a
router the destination address is extracted and looked up in the local routing table. The
resulting entry in the routing table identifies the outgoing link that should be used to
route the packet onwards towards its destination.

For example, when a packet addressed to C is submitted to the router at A, the
router examines the entry for C in its routing table. It shows that the packet should be
routed outwards from A on the link labelled 1. The packet arrives at B and the same
procedure is followed using the routing table at B, which shows that the onward route to
C is via the link labelled 2. When the packet arrives at C the routing table entry shows
‘local’ instead of a link number. This indicates that the packet should be delivered to a
local host.

Now let us consider how the routing tables are built up and how they are
maintained when faults occur in the network – that is, how part 2 of the routing
algorithm described above is performed. Because each routing table specifies only a
single hop for each route, the construction or repair of the routing information can
proceed in a distributed fashion. A router exchanges information about the network with
its neighbouring nodes by sending a summary of its routing table using a router

information protocol (RIP). The RIP actions performed at a router are described
informally as follows:

1. Periodically, and whenever the local routing table changes, send the table (in a
summary form) to all accessible neighbours. That is, send an RIP packet
containing a copy of the table on each non-faulty outgoing link.

2. When a table is received from a neighbouring router, if the received table shows
a route to a new destination, or a better (lower-cost) route to an existing
destination, update the local table with the new route. If the table was received on
link n and it gives a different cost than the local table for a route that begins with
link n, replace the cost in the local table with the new cost. This is done because
the new table was received from a router that is closer to the relevant destination
and is therefore always more authoritative for routes that pass through it.

This algorithm is more precisely described by the pseudo-code program shown in Figure
3.9, where Tr is a table received from another router and Tl is the local table. Ford and
Fulkerson [1962] have shown that the steps described above are sufficient to ensure that
the routing tables will converge on the best routes to each destination whenever there is
a change in the network. The frequency t with which routing tables are propagated, even
when no changes have occurred, is designed to ensure that stability is maintained, for
example, in the case that some RIP packets are lost. The value for t adopted throughout
the Internet is 30 seconds.

Figure 3.9 Pseudo-code for RIP routing algorithm

Send: Each t seconds or when Tl changes, send Tl on each non-faulty outgoing link.

Receive: Whenever a routing table Tr is received on link n:
for all rows Rr in Tr {

if (Rr.link n) {
Rr.cost = Rr.cost + 1;
Rr.link = n;
if (Rr.destination is not in Tl) add Rr to Tl; // add new destination to Tl

else for all rows Rl in Tl {
if (Rr.destination = Rl.destination and

(Rr.cost < Rl.cost or Rl.link = n)) Rl = Rr;

// Rr.cost < Rl.cost : remote node has better route
// Rl.link = n : remote node is more authoritative

}
}

}

SECTION 3.3 NETWORK PRINCIPLES 101

To deal with faults, each router monitors its links and acts as follows:

When a faulty link n is detected, set cost to for all entries in the local table that refer
to the faulty link and perform the Send action.

Thus the information that the link is broken is represented by an infinite value for the
cost to the relevant destinations. When this information is propagated to neighbouring
nodes it will be processed according to the Receive action (note +1 =) and then
propagated further until a node is reached that has a working route to the relevant
destinations, if one exists. The node that still has a working route will eventually
propagate its table, and the working route will replace the faulty one at all nodes.

The vector-distance algorithm can be improved in various ways: costs (also
known as the metric) can be based on the actual bandwidths of the links and the
algorithm can be modified to increase its speed of convergence and to avoid some
undesirable intermediate states, such as loops, that may occur before convergence is
achieved. A routing information protocol with these enhancements was the first routing
protocol used in the Internet, now known as RIP-1 and described in RFC 1058 [Hedrick
1988]. But the solutions for the problems caused by slow convergence are not totally
effective, and this leads to inefficient routing and packet loss while the network is in
intermediate states.

Subsequent developments in routing algorithms have been in the direction of
increasing the amount of knowledge of the network that is held at each node. The most
important family of algorithms of this type are known as link-state algorithms. They are
based on the distribution and updating of a database at each node that represents all, or
a substantial portion, of the network. Each node is then responsible for computing the
optimum routes to the destinations shown in its database. This computation can be
performed by a variety of algorithms, some of which avoid known problems in the
Bellman–Ford algorithm such as slow convergence and undesirable intermediate states.
The design of routing algorithms is a substantial topic, and our discussion of it here is

102 CHAPTER 3 NETWORKING AND INTERNETWORKING

necessarily limited. We return to it in Section 3.4.3 with a description of the operation
of the RIP-1 algorithm, one of the first used for IP routing and still in use in many parts
of the Internet. For extensive coverage of routing in the Internet, see Huitema [2000],
and for further material on routing algorithms in general see Tanenbaum [2003].

3.3.6 Congestion control

The capacity of a network is limited by the performance of its communication links and
switching nodes. When the load at any particular link or node approaches its capacity,
queues will build up at hosts trying to send packets and at intermediate nodes holding
packets whose onward transmission is blocked by other traffic. If the load continues at
the same high level, the queues will continue to grow until they reach the limit of
available buffer space.

Once this state is reached at a node, the node has no option but to drop further
incoming packets. As we have already noted, the occasional loss of packets at the
network level is acceptable and can be remedied by retransmission initiated at higher
levels. But if the rate of packet loss and retransmission reaches a substantial level, the
effect on the throughput of the network can be devastating. It is easy to see why this is
the case: if packets are dropped at intermediate nodes, the network resources that they
have already consumed are wasted and the resulting retransmissions will require a
similar quantity of resources to reach the same point in the network. As a rule of thumb,
when the load on a network exceeds 80% of its capacity, the total throughput tends to
drop as a result of packet losses unless usage of heavily loaded links is controlled.

Instead of allowing packets to travel through the network until they reach over-
congested nodes, where they will have to be dropped, it would be better to hold them at
earlier nodes until the congestion is reduced. This will result in increased delays for
packets but will not significantly degrade the total throughput of the network.
Congestion control is the name given to techniques that are designed to achieve this.

In general, congestion control is achieved by informing nodes along a route that
congestion has occurred and that their rate of packet transmission should therefore be
reduced. For intermediate nodes, this will result in the buffering of incoming packets for
a longer period. For hosts that are sources of the packets, the result may be to queue
packets before transmission or to block the application process that is generating them
until the network can handle them.

All datagram-based network layers, including IP and Ethernets, rely on the end-
to-end control of traffic. That is, the sending node must reduce the rate at which it
transmits packets based only on information that it receives from the receiver.
Congestion information may be supplied to the sending node by explicit transmission of
special messages (called choke packets) requesting a reduction in transmission rate, by
the implementation of a specific transmission control protocol (from which TCP derives
its name – Section 3.4.6 explains the mechanism used in TCP) or by observing the
occurrence of dropped packets (if the protocol is one in which each packet is
acknowledged).

In some virtual circuit based networks, congestion information can be received
and acted on at each node. Although ATM uses virtual circuit delivery, it relies on
quality of service management (see Chapter 20) to ensure that each circuit can carry the
required traffic.

SECTION 3.3 NETWORK PRINCIPLES 103

3.3.7 Internetworking

There are many network technologies with different network-, link- and physical-layer
protocols. Local networks are built with Ethernet technologies, while wide area
networks are built over analogue and digital telephone networks of various types,
satellite links and wide area ATM networks. Individual computers and local networks
are linked to the Internet or intranets by modems and by wireless and DSL connections.

To build an integrated network (an internetwork) we must integrate many subnets,
each of which is based on one of these network technologies. To make this possible, the
following are needed:

1. a unified internetwork addressing scheme that enables packets to be addressed to
any host connected to any subnet;

2. a protocol defining the format of internetwork packets and giving rules according
to which they are handled;

3. interconnecting components that route packets to their destinations in terms of
internetwork addresses, transmitting the packets using subnets with a variety of
network technologies.

For the Internet, (1) is provided by IP addresses, (2) is the IP protocol and (3) is
performed by components called Internet routers. The IP protocol and IP addressing are
described in some detail in Section 3.4. Here we describe the functions of Internet
routers and some other components that are used to link networks together.

Figure 3.10 shows a small part of the campus intranet at a British university. Many
of the details shown will be explained in later sections. Here we note that the portion
shown in the figure comprises several subnets interconnected by routers. There are five
subnets, three of which share the IP network 138.37.95 (using the classless interdomain
routing scheme described in Section 3.4.3). The numbers in the diagram are IP
addresses; their structure will be explained in Section 3.4.1. The routers in the diagram
are members of multiple subnets and have an IP address for each subnet, shown against
the connecting links.

The routers (hostnames: hammer and sickle) are, in fact, general-purpose
computers that also fulfil other purposes. One of those purposes is to serve as firewalls;
the role of a firewall is closely linked with the routing function, as we describe in Section
3.4. The 138.37.95.232/29 subnet is not connected to the rest of the network at the IP
level. Only the file server custard can access it to provide a printing service on the
attached printers via a server process that monitors and controls the use of the printers.

All of the links in Figure 3.10 are Ethernets. The bandwidth of most of them is 100
Mbps, but one is 1000 Mbps because it carries a large volume of traffic between a large
number of computers used by students and custard, the file server that holds all of their
files.

There are two Ethernet switches and several Ethernet hubs in the portion of the
network illustrated. Both types of component are transparent to IP packets. An Ethernet
hub is simply a means of connecting together several segments of Ethernet cable, all of
which form a single Ethernet at the network protocol level. All of the Ethernet packets
received by the host are relayed to all of the segments. An Ethernet switch connects

Figure 3.10 Simplified view of part of a university campus network

file

compute

dialup

hammer

henry

hotpoint

138.37.88.230

138.37.88.162

bruno
138.37.88.249

router/
sickle

138.37.95.241138.37.95.240/29

138.37.95.249

1
3

8
.3

7
.9

4
.2

4
7

copper
138.37.88.248

firewall

web

138.37.95.248/29

server

desktop computers 138.37.88.xx

subnet

subnet

Eswitch

138.37.88

server

server

server

138.37.88.251

custard
138.37.94.246

desktop computers 138.37.94.xx

Eswitch

138.37.94

hubhub

Student subnetStaff subnet

other
servers

router/
firewall

138.37.94.251

1
3

8
.3

7
.8

8
.2

4
7

file server/
gateway

printers

13
8.

37
.9

5.
23

2/
29

su
bn

et

Campus
router

Campus
router Subnet boundary

100 Mbps Ethernet

1000 Mbps Ethernet
Eswitch Ethernet switch

104 CHAPTER 3 NETWORKING AND INTERNETWORKING

several Ethernets, routing the incoming packets only to the Ethernet to which the
destination host is connected.

Routers • We have noted that routing is required in all networks except those such as
Ethernets and wireless networks, in which all of the hosts are connected by a single
transmission medium. Figure 3.7 shows such a network with five routers connected by
six links. In an internetwork, the routers may be linked by direct connections, as is
shown in Figure 3.7, or they may be interconnected through subnets, as shown for
custard in Figure 3.10. In both cases, the routers are responsible for forwarding the
internetwork packets that arrive on any connection to the correct outgoing connection,
as explained above. They maintain routing tables for that purpose.

Bridges • Bridges link networks of different types. Some bridges link several networks,
and these are referred to as bridge/routers because they also perform routing functions.
For example, the wider campus network includes a Fibre Distributed Data Interface

SECTION 3.3 NETWORK PRINCIPLES 105

(FDDI) backbone (not shown on Figure 3.10), and this is linked to the Ethernet subnets
in the figure by bridge/routers.

Hubs • Hubs are simply a convenient means of connecting hosts and extending
segments of Ethernet and other broadcast local network technologies. They have a
number of sockets (typically 4–64), to each of which a host computer can be connected.
They can also be used to overcome the distance limitations on single segments and
provide a means of adding additional hosts.

Switches • Switches perform a similar function to routers, but for local networks
(normally Ethernets) only. That is, they interconnect several separate Ethernets, routing
the incoming packets to the appropriate outgoing network. They perform their task at the
level of the Ethernet network protocol. When they start up they have no knowledge of
the wider internetwork and build up routing tables by the observation of traffic,
supplemented by broadcast requests when they lack information.

The advantage of switches over hubs is that they separate the incoming traffic and
transmit it only on the relevant outgoing network, reducing congestion on the other
networks to which they are connected.

Tunnelling • Bridges and routers transmit internetwork packets over a variety of
underlying networks by translating between their network-layer protocols and an
internetwork protocol, but there is one situation in which the underlying network
protocol can be hidden from the layers above it without the use of an internetwork
protocol. A pair of nodes connected to separate networks of the same type can
communicate through another type of network by constructing a protocol ‘tunnel’. A
protocol tunnel is a software layer that transmits packets through an alien network
environment.

The following analogy explains the reason for the choice of terminology and
provides another way to think about tunnelling. A tunnel through a mountain enables a
road to transport cars where it would otherwise be impossible. The road is continuous –
the tunnel is transparent to the application (cars). The road is the transport mechanism,
and the tunnel enables it to work in an alien environment.

Figure 3.11 Tunnelling for IPv6 migration

A B
IPv6 IPv6

IPv6 encapsulated in IPv4 packets

Encapsulators

IPv4 network

Figure 3.11 illustrates the use of tunnelling to support the migration of the Internet
to the IPv6 protocol. IPv6 is intended to replace the version of IP still widely in use,
IPv4, and is incompatible with it. (Both IPv4 and IPv6 are described in Section 3.4.)
During the period of transition to IPv6 there will be ‘islands’ of IPv6 networking in the
sea of IPv4. In our illustration A and B are such islands. At the boundaries of islands

106 CHAPTER 3 NETWORKING AND INTERNETWORKING

IPv6 packets are encapsulated in IPv4 and transported over the intervening IPv4
networks in that manner.

For another example, MobileIP (described in Section 3.4.5) transmits IP packets
to mobile hosts anywhere in the Internet by constructing a tunnel to them from their
home base. The intervening network nodes do not need to be modified to handle the
MobileIP protocol. The IP multicast protocol is handled in a similar way, relying on a
few routers that support IP multicast routing to determine the routes, but transmitting IP
packets through other routers using standard IP addresses. The PPP protocol for the
transmission of IP packets over serial links provides yet another example.

3.4 Internet protocols

We describe here the main features of the TCP/IP suite of protocols and discuss their
advantages and limitations when used in distributed systems.

Figure 3.12 TCP/IP layers

Messages (UDP) or streams (TCP)

Application

Transport

Internet

UDP or TCP packets

IP datagrams

Network-specific frames

Message
Layers

Underlying network

Network interface

The Internet emerged from two decades of research and development work on
wide area networking in the USA, commencing in the early 1970s with the ARPANET
– the first large-scale computer network development [Leiner et al. 1997]. An important
part of that research was the development of the TCP/IP protocol suite. TCP stands for
Transmission Control Protocol, IP for Internet Protocol. The widespread adoption of the
TCP/IP and Internet application protocols in national research networks, and more
recently in commercial networks in many countries, has enabled the national networks
to be integrated into a single internetwork that has grown extremely rapidly to its present
size, with more than 60 million hosts. Many application services and application-level
protocols (shown in parentheses in the following list) now exist based on TCP/IP,
including the Web (HTTP), email (SMTP, POP), netnews (NNTP), file transfer (FTP)
and Telnet (telnet). TCP is a transport protocol; it can be used to support applications
directly, or additional protocols can be layered on it to provide additional features. For

SECTION 3.4 INTERNET PROTOCOLS 107

example, HTTP is usually transported by the direct use of TCP, but when end-to-end
security is required, the Transport Layer Security (TLS) protocol (described in Section
11.6.3) is layered on top of TCP to produce secure channels and HTTP messages are
transmitted via the secure channels.

The Internet protocols were originally developed primarily to support simple wide
area applications such as file transfer and electronic mail, involving communication
with relatively high latencies between geographically dispersed computers, but they
turned out to be efficient enough to support the requirements of many distributed
applications on both wide area and local networks and they are now almost universally
used in distributed systems. The resulting standardization of communication protocols
has brought immense benefits.

The general illustration of internetwork protocol layers of Figure 3.6 is translated
into the specific Internet case in Figure 3.12. There are two transport protocols – TCP
(Transport Control Protocol) and UDP (User Datagram Protocol). TCP is a reliable
connection-oriented protocol, and UDP is a datagram protocol that does not guarantee
reliable transmission. The Internet Protocol is the underlying ‘network’ protocol of the
Internet virtual network – that is, IP datagrams provide the basic transmission
mechanism for the Internet and other TCP/IP networks. We placed the word ‘network’
in quotation marks in the preceding sentence because it is not the only network layer
involved in the implementation of Internet communication. This is because the Internet
protocols are usually layered over another network technology, such as Ethernet, which
already provides a network layer that enables the computers attached to the same
network to exchange datagrams.

Figure 3.13 Encapsulation as it occurs when a message is transmitted via TCP over an Ethernet

Application message

TCP header

Ethernet header

Ethernet frame

port

TCP

IP

IP header

Figure 3.13 illustrates the encapsulation of packets that
would occur for the transmission of a message via TCP over an underlying Ethernet. The
tags in the headers are the protocol types for the layers above, needed for the receiving
protocol stack to correctly unpack the packets. In the TCP layer, the receiver’s port
number serves a similar purpose, enabling the TCP software component at the receiving
host to pass the message to a specific application-level process.

The TCP/IP specifications [Postel 1981a; 1981b] do not specify the layers below
the Internet datagram layer – IP packets in the Internet layer are transformed into packets
for transmission over almost any combination of underlying networks or data links.

For example, IP ran initially over the ARPANET, which consisted of hosts and an
early version of routers (called PSEs) connected by long-distance data links. Today it is

108 CHAPTER 3 NETWORKING AND INTERNETWORKING

used over virtually every known network technology, including ATM, local area
networks such as Ethernets, and token ring networks. IP is implemented over serial lines
and telephone circuits via the PPP protocol [Parker 1992], enabling it to be used for
communication with modem connections and other serial links.

Figure 3.14 The programmer's conceptual view of a TCP/IP Internet

IP

Application Application

TCP UDP

The success of TCP/IP is based on the protocols’ independence from the
underlying transmission technology, enabling internetworks to be built up from many
heterogeneous networks and data links. Users and application programs perceive a
single virtual network supporting TCP and UDP and implementors of TCP and UDP see
a single virtual IP network, hiding the diversity of the underlying transmission media.
Figure 3.14 illustrates this view.

In the next two sections we describe the IP addressing scheme and the IP protocol.
The Domain Name System – which converts domain names such as www.amazon.com,

hpl.hp.com, stanford.edu and qmw.ac.uk, with which Internet users are so familiar, into
IP addresses – is introduced in Section 3.4.7 and described more fully in Chapter 13.

The version of IP in predominant use throughout the Internet is IPv4 (since
January 1984), and that is the version that we shall describe in the next two sections. But
the rapid growth in the use of the Internet led to the publication of a specification of a
new version (IPv6) to overcome the addressing limitations of IPv4 and add features to
support some new requirements. We describe IPv6 in Section 3.4.4. Because of the vast
amount of software that will be affected, a gradual migration to IPv6 is planned over a
period of 10 years or more.

3.4.1 IP addressing

Perhaps the most challenging aspect of the design of the Internet protocols was the
construction of schemes for naming and addressing hosts and for routing IP packets to
their destinations. The scheme used for assigning host addresses to networks and the
computers connected to them had to satisfy the following requirements:

• It must be universal – any host must be able to send packets to any other host in
the Internet.

• It must be efficient in its use of the address space – it is impossible to predict the
ultimate size of the Internet and the number of network and host addresses likely
to be required. The address space must be carefully partitioned to ensure that
addresses will not run out. In 1978–82, when the specifications for the TCP/IP
protocols were being developed, provision for 232 or approximately 4 billion
addressable hosts (about the same as the population of the world at that time) was

Figure 3.15 Internet address structure, showing field sizes in bits

7 24

Class A: 0 Network ID Host ID

14 16

Class B: 1 0 Network ID Host ID

21 8

Class C: 1 1 0 Network ID Host ID

28

Class D (multicast): 1 1 1 0 Multicast address

Class E (reserved): 1 1 1 1 unused

28

SECTION 3.4 INTERNET PROTOCOLS 109

considered adequate. This judgement has proved to be short-sighted, for two
reasons:

– The rate of growth of the Internet has far outstripped all predictions.

– The address space has been allocated and used much less efficiently than
expected.

• The addressing scheme must lend itself to the development of a flexible and
efficient routing scheme, but the addresses themselves cannot contain very much
of the information needed to route a packet to its destination.

Today the overwhelming majority of Internet traffic continues to use the IP version 4
address and packet format defined three decades ago. The scheme assigns an IP address
to each host in the Internet – a 32-bit numeric identifier containing a network identifier,
which uniquely identifies one of the subnetworks in the Internet, and a host identifier,
which uniquely identifies the host’s connection to that network. It is these addresses that
are placed in IP packets and used to route them to their destinations.

The design adopted for the Internet address space is shown in Figure 3.15. There
are four allocated classes of Internet address – A, B, C and D. Class D is reserved for
Internet multicast communication, which is implemented in only some Internet routers
and is discussed further in Section 4.4.1. Class E contains a range of unallocated
addresses, which are reserved for future requirements.

These 32-bit Internet addresses, containing a network identifier and host
identifier, are usually written as a sequence of four decimal numbers separated by dots.
Each decimal number represents one of the four bytes, or octets, of the IP address. The
permissible values for each class of network address are shown in Figure 3.16.

Three classes of address were designed to meet the requirements of different types
of organization. The Class A addresses, with a capacity for 224 hosts on each subnet, are
reserved for very large networks such as the US NSFNet and other national wide area
networks. Class B addresses are allocated to organizations that operate networks likely

Figure 3.16 Decimal representation of Internet addresses

octet 1 octet 2 octet 3

Class A: 1 to 127

0 to 255 0 to 255 1 to 254

Class B: 128 to 191

Class C: 192 to 223

224 to 239 Class D (multicast):

Network ID

Network ID

Network ID

Host ID

Host ID

Host ID

Multicast address

0 to 255 0 to 255 1 to 254

0 to 255 0 to 255 0 to 255

0 to 255 0 to 255 0 to 255

Multicast address

0 to 255 0 to 255 1 to 254240 to 255 Class E (reserved):

1.0.0.0 to
127.255.255.255

128.0.0.0 to
191.255.255.255

192.0.0.0 to
223.255.255.255

224.0.0.0 to
239.255.255.255

240.0.0.0 to
255.255.255.255

Range of addresses

110 CHAPTER 3 NETWORKING AND INTERNETWORKING

to contain more than 255 computers, and Class C addresses are allocated to all other
network operators.

Internet addresses with host identifiers 0 and all 1s (binary) are used for special
purposes. Addresses with the host identifier set to 0 are used to refer to ‘this host’, and
a host identifier that is all 1s is used to address a broadcast message to all of the hosts
connected to the network specified in the network identifier part of the address.

Network identifiers are allocated by the Internet Assigned Numbers Authority
(IANA) to organizations with networks connected to the Internet. Host identifiers for the
computers on each network connected to the Internet are assigned by the managers of
the relevant networks.

Since host addresses include a network identifier, any computer that is connected
to more than one network must have separate addresses on each, and whenever a
computer is moved to a different network, its Internet address must change. These
requirements can lead to substantial administrative overheads, for example in the case
of portable computers.

In practice, the IP address allocation scheme has not turned out to be very
effective. The main difficulty is that network administrators in user organizations cannot
easily predict future growth in their need for host addresses, and they tend to
overestimate, requesting Class B addresses when in doubt. Around 1990 it became
evident that based on the rate of allocation at the time, IP addresses were likely to run
out around 1996. Three steps were taken. The first was to initiate the development of a
new IP protocol and addressing scheme, the result of which was the specification of
IPv6.

The second step was to radically modify the way in which IP addresses were
allocated. A new address allocation and routing scheme designed to make more
effective use of the IP address space was introduced, called classless interdomain
routing (CIDR). We describe CIDR in Section 3.4.3. The local network illustrated in

SECTION 3.4 INTERNET PROTOCOLS 111

Figure 3.10 includes several Class C sized subnets in the range 138.37.88–138.37.95,
linked by routers. The routers manage the delivery of IP packets to all of the subnets.
They also handle traffic between the subnets and from the subnets to the rest of the
world. The figure also illustrates the use of CIDR to subdivide a Class B address space
to produce several Class C sized subnets.

The third step was to enable unregistered computers to access the Internet
indirectly through routers that implement a Network Address Translation (NAT)
scheme. We describe this scheme in Section 3.4.3.

3.4.2 The IP protocol

The IP protocol transmits datagrams from one host to another, if necessary via
intermediate routers. The full IP packet format is rather complex, but Figure 3.17

Figure 3.17 IP packet layout

dataIP address of destinationIP address of source

header

up to 64 kilobytes

 shows
the main components. There are several header fields, not shown in the diagram, that are
used by the transmission and routing algorithms.

IP provides a delivery service that is described as offering unreliable or best-effort

delivery semantics, because there is no guarantee of delivery. Packets can be lost,
duplicated, delayed or delivered out of order, but these errors arise only when the
underlying networks fail or buffers at the destination are full. The only checksum in IP
is a header checksum, which is inexpensive to calculate and ensures that any corruptions
in the addressing and packet management data will be detected. There is no data
checksum, which avoids overheads when crossing routers, leaving the higher-level
protocols (TCP and UDP) to provide their own checksums – a practical instance of the
end-to-end argument (Section 2.3.3).

The IP layer puts IP datagrams into network packets suitable for transmission in
the underlying network (which might, for example, be an Ethernet). When an IP
datagram is longer than the MTU of the underlying network, it is broken into smaller
packets at the source and reassembled at its final destination. Packets can be further
broken up to suit the underlying networks encountered during the journey from source
to destination. (Each packet has a fragment identifier to enable out-of-order fragments
to be collected.)

The IP layer must also insert a ‘physical’ network address of the message
destination to the underlying network. It obtains this from the address resolution module
in the Internet network interface layer, which is described in the next subsection.

Address resolution • The address resolution module is responsible for converting
Internet addresses to network addresses for a specific underlying network (sometimes
called physical addresses). For example, if the underlying network is an Ethernet, the
address resolution module converts 32-bit Internet addresses to 48-bit Ethernet
addresses.

112 CHAPTER 3 NETWORKING AND INTERNETWORKING

This translation is network technology dependent:

• Some hosts are connected directly to Internet packet switches; IP packets can be
routed to them without address translation.

• Some local area networks allow network addresses to be assigned to hosts
dynamically, and the addresses can be conveniently chosen to match the host
identifier portion of the Internet address – translation is simply a matter of
extracting the host identifier from the IP address.

• For Ethernets and some other local networks, the network address of each
computer is hard-wired into its network interface hardware and bears no direct
relation to its Internet address – translation depends upon knowledge of the
correspondence between IP addresses and addresses for the hosts on the local
network and is done using an address resolution protocol (ARP).

We now outline the implementation of an ARP for Ethernets. It uses dynamic enquiries
in order to operate correctly when computers are added to a local network but exploits
caching to minimize enquiry messages. Consider first the case in which a host computer
connected to an Ethernet uses IP to transmit a message to another computer on the same
Ethernet. The IP software module on the sending computer must translate the recipient’s
Internet address that it finds in the IP packet to an Ethernet address before the packet can
be delivered. It invokes the ARP module on the sending computer to do so.

The ARP module on each host maintains a cache of (IP address, Ethernet address)
pairs that it has previously obtained. If the required IP address is in the cache, then the
query is answered immediately. If not, then ARP transmits an Ethernet broadcast packet
(an ARP request packet) on the local Ethernet containing the desired IP address. Each
of the computers on the local Ethernet receives the ARP request packet and checks the
IP address in it to see whether it matches its own IP address. If it does, an ARP reply
packet is sent to the originator of the ARP request containing the sender’s Ethernet
address; otherwise the ARP request packet is ignored. The originating ARP module adds
the new IP address to Ethernet address mapping to its local cache of (IP address,
Ethernet address) pairs so that it can respond to similar requests in the future without
broadcasting an ARP request. Eventually, the ARP cache at each computer will contain
an (IP address, Ethernet address) pair for all of the computers that IP packets are sent
to. Thus ARP broadcasts will be needed only when a computer is newly connected to
the local Ethernet.

IP spoofing • We have seen that IP packets include a source address – the IP address of
the sending computer. This, together with a port address encapsulated in the data field
(for UDP and TCP packets), is often used by servers to generate a return address.
Unfortunately, it is not possible to guarantee that the source address given is in fact the
address of the sender. A malicious sender can easily substitute an address that is
different from its own. This loophole has been the source of several well-known attacks,
including the distributed denial of service attacks of February 2000 [Farrow 2000]
mentioned in Chapter 1, Section 1.5.3. The method used was to issue many ping service
requests to a large number of computers at several sites (ping is a simple service
designed to check the availability of a host). These malicious ping requests all contained
the IP address of a target computer in their sender address field. The ping responses were

SECTION 3.4 INTERNET PROTOCOLS 113

therefore all directed to the target, whose input buffers were overwhelmed, preventing
any legitimate IP packets getting through. This attack is discussed further in Chapter 11.

3.4.3 IP routing

The IP layer routes packets from their source to their destination. Each router in the
Internet implements IP-layer software to provide a routing algorithm.

Backbones • The topological map of the Internet is partitioned conceptually into
autonomous systems (ASs), which are subdivided into areas. The intranets of most large
organizations such as universities and large companies are regarded as ASs, and they
will usually include several areas. In Figure 3.10, the campus intranet is an AS and the
portion shown is an area. Every AS in the topological map has a backbone area. The
collection of routers that connect non-backbone areas to the backbone and the links that
interconnect those routers are called the backbone of the network. The links in the
backbone are usually of high bandwidth and are replicated for reliability. This hierarchic
structure is a conceptual one that is exploited primarily for the management of resources
and the maintenance of the components. It does not affect the routing of IP packets.

Routing protocols • RIP-1, the first routing algorithm used in the Internet, is a version
of the distance-vector algorithm described in Section 3.3.5. RIP-2 (described in RFC
1388 [Malkin 1993]) was developed from it to accommodate several additional
requirements, including classless interdomain routing, better multicast routing and the
need for authentication of RIP packets to prevent attacks on the routers.

As the scale of the Internet has expanded and the processing capacity of routers
has increased, there has been a move towards the adoption of algorithms that do not
suffer from the slow convergence and potential instability of distance-vector algorithms.
The direction of the move is towards the link-state class of algorithms mentioned in
Section 3.3.5 and the algorithm called open shortest path first (OSPF). This protocol is
based on a path-finding algorithm that is due to Dijkstra [1959] and has been shown to
converge more rapidly than the RIP algorithm.

We should note that the adoption of new routing algorithms in IP routers can
proceed incrementally. A change in routing algorithm results in a new version of the RIP
protocol, and a version number is carried by each RIP packet. The IP protocol does not
change when a new RIP protocol is introduced. Any IP router will correctly forward
incoming IP packets on a reasonable, if not optimum, route, whatever version of RIP
they use. But for routers to cooperate in the updating of their routing tables, they must
share a similar algorithm. For this purpose the topological areas defined above are used.
Within each area a single routing algorithm applies, and the routers within an area
cooperate in the maintenance of their routing tables. Routers that support only RIP-1 are
still commonplace and they coexist with routers that support RIP-2 and OSPF, using
backwards-compatibility features incorporated in the newer protocols.

In 1993, empirical observations [Floyd and Jacobson 1993] showed that the 30-
second frequency with which RIP routers exchange information was producing a
periodicity in the performance of IP transmissions. The average latency for IP packet
transmissions showed a peak at 30-second intervals. This was traced to the behaviour of
routers performing the RIP protocol – on receipt of an RIP packet, routers would delay
the onward transmission of any IP packets that they held until the routing table update

114 CHAPTER 3 NETWORKING AND INTERNETWORKING

process was complete for all RIP packets received to date. This tended to cause the
routers to perform the RIP actions in lock-step. The correction recommended was for
routers to adopt a random value in the range of 15–45 seconds for the RIP update period.

Default routes • Up to now, our discussion of routing algorithms has suggested that
every router maintains a full routing table showing the route to every destination (subnet
or directly connected host) in the Internet. At the current scale of the Internet this is
clearly infeasible (the number of destinations is probably already in excess of 1 million
and still growing very rapidly).

Two possible solutions to this problem come to mind, and both have been adopted
in an effort to alleviate the effects of the Internet’s growth. The first solution is to adopt
some form of topological grouping of IP addresses. Prior to 1993, nothing could be
inferred from an IP address about its location. In 1993, as part of the move to simplify
and economize on the allocation of IP addresses that is discussed below under CIDR,
the decision was taken that for future allocations, the following regional locations would
be applied:

Addresses 194.0.0.0 to 195.255.255.255 are in Europe
Addresses 198.0.0.0 to 199.255.255.255 are in North America
Addresses 200.0.0.0 to 201.255.255.255 are in Central and South America
Addresses 202.0.0.0 to 203.255.255.255 are in Asia and the Pacific

Because these geographical regions also correspond to well-defined topological regions
in the Internet and just a few gateway routers provide access to each region, this enables
a substantial simplification of routing tables for those address ranges. For example, a
router outside Europe can have a single table entry for the range of addresses 194.0.0.0
to 195.255.255.255 that sends all IP packets with destinations in that range on the same
route to the nearest European gateway router. But note that before the date of that
decision, IP addresses were allocated largely without regard to topology or geography.
Many of those addresses are still in use, and the 1993 decision does nothing to reduce
the scale of routing table entries for those addresses.

The second solution to the routing table size explosion probem is simpler and very
effective. It is based on the observation that the accuracy of routing information can be
relaxed for most routers as long as some key routers (those closest to the backbone links)
have relatively complete routing tables. The relaxation takes the form of a default

destination entry in routing tables. The default entry specifies a route to be used for all
IP packets whose destinations are not included in the routing table. To illustrate this,
consider Figures 3.7 and 3.8 and suppose that the routing table for node C is altered to
show:

Routings from C

To Link Cost

B

C
E

Default

2
local

5
5

1
0
1
-

SECTION 3.4 INTERNET PROTOCOLS 115

Thus node C is ignorant of nodes A and D. It will route all packets addressed to them
via link 5 to E. What is the consequence? Packets addressed to D will reach their
destination without loss of efficiency in routing, but packets addressed to A will make
an extra hop, passing through E and B on the way. In general, the use of default routings
trades routing efficiency for table size. But in some cases, especially where a router is
on a spur, so that all outward messages must pass through a single point, there is no loss
of efficiency. The default routing scheme is heavily used in Internet routing; no single
router holds routes to all destinations in the Internet.

Routing on a local subnet • Packets addressed to hosts on the same network as the
sender are transmitted to the destination host in a single hop, using the host identifier
part of the address to obtain the address of the destination host on the underlying
network. The IP layer simply uses ARP to get the network address of the destination and
then uses the underlying network to transmit the packets.

If the IP layer in the sending computer discovers that the destination is on a
different network, it must send the message to a local router. It uses ARP to get the
network address of the gateway or router and then uses the underlying network to
transmit the packet to it. Gateways and routers are connected to two or more networks
and they have several Internet addresses, one for each network to which they are
attached.

Classless interdomain routing (CIDR) • The shortage of IP addresses referred to in
Section 3.4.1 led to the introduction in 1996 of this scheme for allocating addresses and
managing the entries in routing tables. The main problem was a scarcity of Class B
addresses – those for subnets with more than 255 hosts connected. Plenty of Class C
addresses were available. The CIDR solution for this problem is to allocate a batch of
contiguous Class C addresses to a subnet requiring more than 255 addresses. The CIDR
scheme also makes it possible to subdivide a Class B address space for allocation to
multiple subnets.

Batching Class C addresses sounds like a straightforward step, but unless it is
accompanied by a change in routing table format, it has a substantial impact on the size
of routing tables and hence the efficiency of the algorithms that manage them. The
change adopted was to add a mask field to the routing tables. The mask is a bit pattern
that is used to select the portion of an IP address that is compared with the routing table
entry. This effectively enables the host/subnet address to be any portion of the IP
address, providing more flexibility than the classes A, B and C – hence the name
classless interdomain routing. Once again, these changes to routers are made on an
incremental basis, so some routers perform CIDR and others use the old class-based
algorithms.

This works because the newly allocated ranges of Class C addresses are assigned
modulo 256, so each range represents an integral number of Class C sized subnet
addresses. On the other hand, some subnets also make use of CIDR to subdivide the
range of addresses in a single network, of Class A, B or C. If a collection of subnets is
connected to the rest of the world entirely by CIDR routers, then the ranges of IP
addresses used within the collection can be allocated to individual subnets in chunks
determined by a binary mask of any size.

For example, a Class C address space can be subdivided into 32 groups of 8.
Figure 3.10 contains an example of the use of the CIDR mechanism to split the

116 CHAPTER 3 NETWORKING AND INTERNETWORKING

138.37.95 Class C sized subnet into several groups of eight host addresses that are
routed differently. The separate groups are denoted by notations 138.37.95.232/29,
138.37.95.248/29 and so on. The /29 portion of these addresses denotes an attached 32-
bit binary mask with 29 leading 1s and three trailing 0s.

Unregistered addresses and Network Address Translation (NAT) • Not all of the
computers and devices that access the Internet need to be assigned globally unique IP
addresses. Computers that are attached to a local network and access to the Internet
through a NAT-enabled router can rely upon the router to redirect incoming UDP and
TCP packets for them.

Figure 3.18 A typical NAT-based home network

83.215.152.95

Ethernet switch

Modem / firewall / router (NAT-enabled)

printer

DSL or cable
connection to ISP

192.168.1.xx subnet

PC 1

WiFi base station/
access point 192.168.1.10

192.168.1.5

192.168.1.2

192.168.1.1

192.168.1.104 PC 2
192.168.1.101

Laptop

192.168.1.105

Game box

192.168.1.106

Media hub

TV monitor

Bluetooth
adapter

Bluetooth
printer

Camera

Figure 3.18 illustrates a typical home network with computers
and other network devices linked to the Internet through a NAT-enabled router. The
network includes Internet-enabled computers that are connected to the router by a wired
Ethernet connection as well as others that are connected through a WiFi access point.
For completeness some Bluetooth-enabled devices are shown, but these are not
connected to the router and hence cannot access the Internet directly. The home network
has been allocated a single registered IP address (83.215.152.95) by its Internet service
provider. The approach described here is suitable for any organization wishing to
connect computers without registered IP addresses to the Internet.

All of the Internet-enabled devices on the home network have been assigned
unregistered IP addresses on the 192.168.1.x Class C subnet. Most of the internal
computers and devices are allocated individual IP addresses dynamically by a Dynamic

SECTION 3.4 INTERNET PROTOCOLS 117

Host Configuration Protocol (DHCP) service running on the router. In our illustration
the numbers above 192.168.1.100 are used by the DHCP service and the nodes with
lower numbers (such as PC 1) have been allocated numbers manually, for a reason
explained later in this subsection. Although all of these addresses are completely hidden
from the rest of the Internet by the NAT router, it is conventional to use a range of
addresses from one of three blocks of addresses (10.z.y.x, 172.16.y.x or 192.168.y.x)
that IANA has reserved for private internets.

NAT is described in RFC 1631 [Egevang and Francis 1994] and extended in RFC
2663 [Srisuresh and Holdrege 1999]. NAT-enabled routers maintain an address
translation table and exploit the source and destination port number fields in the UDP
and TCP packets to assign each incoming reply message to the internal computer that
sent the corresponding request message. Note that the source port given in a request
message is always used as the destination port in the corresponding reply message.

The most commonly used variant of NAT addressing works as follows:

– When a computer on the internal network sends a UDP or TCP packet to a
computer outside it, the router receives the packet and saves the source IP
address and port number to an available slot in its address translation table.

– The router replaces the source address in the packet with the router’s IP address
and the source port with a virtual port number that indexes the table slot
containing the sending computer’s address information.

– The packet with the modified source address and port number is then
forwarded towards its destination by the router. The address translation table
now holds a mapping from virtual port numbers to real internal IP addresses
and port numbers for all packets sent recently by computers on the internal
network.

– When the router receives a UDP or TCP packet from an external computer it
uses the destination port number in the packet to access a slot in the address
translation table. It replaces the destination address and destination port in the
received packet with those stored in the slot and forwards the modified packet
to the internal computer identified by the destination address.

The router will retain a port mapping and reuse it as long as it appears to be in use. A
timer is reset each time the router accesses an entry in the table. If the entry is not
accessed again before the timer expires, the entry is removed from the table.

The scheme described above deals satisfactorily with the commonest modes of
communication for nonregistered computers, in which they act as clients to external
services such as web servers. But it does not enable them to act as servers to handle
incoming requests. To deal with that case, NAT routers can be configured manually to
forward all of the incoming requests on a given port to one particular internal computer.
Computers that act as servers must retain the same internal IP address and this is
achieved by allocating their addresses manually (as was done for PC 1). This solution to
the problem of providing external access to services is satisfactory as long as there is no
requirement for more than one internal computer to offer a service on any given port.

NAT was introduced as a short-term solution to the problem of IP address
allocation for personal and home computers. Its has enabled the expansion of Internet
use to proceed far further than was originally anticipated, but it does impose some

118 CHAPTER 3 NETWORKING AND INTERNETWORKING

limitations, of which the last point is an example. IPv6 must be seen as the next step,
enabling full Internet participation for all computers and portable devices.

3.4.4 IP version 6

A more permanent solution to the addressing limitations of IPv4 was also pursued, and
this led to the development and adoption of a new version of the IP protocol with
substantially larger addresses. The IETF noticed the potential problems arising from the
32-bit addresses of IPv4 as early as 1990 and initiated a project to develop a new version
of the IP protocol. IPv6 was adopted by the IETF in 1994 and a strategy for migration
to it was recommended.

Figure 3.19 IPv6 header layout

Source address
(128 bits)

Destination address
(128 bits)

Version (4 bits) Traffic class (8 bits) Flow label (20 bits)

Payload length (16 bits) Hop limit (8 bits)Next header (8 bits)

Figure 3.19 shows the layout of IPv6 headers. We do not propose to cover their
construction in detail here. Readers are referred to Tanenbaum [2003] or Stallings
[2002] for tutorial material on IPv6 and to Huitema [1998] for a blow-by-blow account
of the IPv6 design process and implementation plans. Here we will outline the main
advances that IPv6 embodies:

Address space: IPv6 addresses are 128 bits (16 bytes) long. This provides for a truly
astronomical number of addressable entities: 2128, or approximately 3 1038.
Tanenbaum calculates that this is sufficient to provide 7 1023 IP addresses per
square metre across the entire surface of the Earth. More conservatively, Huitema
made a calculation assuming that IP addresses are allocated as inefficiently as
telephone numbers and came up with a figure of 1000 IP addresses per square metre
of the Earth’s surface (land and water).

The IPv6 address space is partitioned. We cannot detail the partitioning here,
but even the minor partitions (one of which will hold the entire range of IPv4
addresses, mapped one-to-one) are far larger than the total IPv4 space. Many
partitions (representing 72% of the total) are reserved for purposes as yet undefined.
Two large partitions (each comprising 1/8 of the address space) are allocated for
general purposes and will be assigned to normal network nodes. One of them is
intended to be organized according to the geographic locations of the addressed
nodes and the other according to their organizational locations. This allows two

SECTION 3.4 INTERNET PROTOCOLS 119

alternative strategies for aggregating addresses for routing purposes – it remains to
be seen which will prove more effective or popular.

Routing speed: The complexity of the basic IPv6 header and the processing required
at each node are reduced. No checksum is applied to the packet content (payload),
and no fragmentation can occur once a packet has begun its journey. The former is
considered acceptable because errors can be detected at higher levels (TCP does
include a content checksum), and the latter is achieved by supporting a mechanism
for determining the smallest MTU before a packet is transmitted.

Real-time and other special services: The traffic class and flow label fields are
concerned with this. Multimedia streams and other sequences of real-time data
elements can be transmitted as part of an identified flow. The first 6 bits of the traffic

class field can be used with the flow label or independently to enable specific packets
to be handled more rapidly or with higher reliability than others. Traffic class values
0 through 8 are for transmissions that can be slowed without disastrous effects on the
application. Other values are reserved for packets whose delivery is time-dependent.
Such packets must either be delivered promptly or dropped – late delivery is of no
value.

Flow labels enable resources to be reserved in order to meet the timing
requirements of specific real-time data streams, such as live audio and video
transmissions. Chapter 20 discusses these requirements and methods for the
allocation of resources for them. Of course, the routers and transmission links in the
Internet have limited resources, and the concept of reserving them for specific users
and applications has not previously been considered. The use of these facilities of
IPv6 will depend upon major enhancements to the infrastructure and the development
of suitable methods for charging and arbitrating the allocation of resources.

Future evolution: The key to the provision for future evolution is the next header

field. If non-zero, it defines the type of an extension header that is included in the
packet. There are currently extension header types that provide additional data for
special services of the following types: information for routers, route definition,
fragment handling, authentication, encryption and destination handling. Each
extension header type has a specific size and a defined format. Further extension
header types will be defined as new service requirements arise. An extension header,
if present, follows the basic header and precedes the payload and includes a next

header field, enabling multiple extension headers to be employed.

Multicast and anycast: Both IPv4 and IPv6 include support for the transmission of
IP packets to multiple hosts using a single address (one that is in the range reserved
for the purpose). The IP routers are then responsible for routing the packet to all of
the hosts that have subscribed to the group identified by the relevant address. Further
details on IP multicast communication can be found in Section 4.4.1. In addition,
IPv6 supports a new mode of transmission called anycast. This service delivers a
packet to at least one of the hosts that subscribes to the relevant address.

Security: Up to now, Internet applications that require authenticated or private data
transmission have relied on the use of cryptographic techniques in the application
layer. The end-to-end argument supports the view that this is the right place for it. If
security is implemented at the IP level, then users and application developers depend

120 CHAPTER 3 NETWORKING AND INTERNETWORKING

upon the correctness of the code that implements it in each router along the way, and
they must trust the routers and other intermediate nodes to handle cryptographic keys.

The advantage of implementing security at the IP level is that it can be applied
without the need for security-aware implementations of application programs. For
example, system managers can implement it in a firewall and apply it uniformly to
all external communication without incurring the cost of encryption for internal
communication. Routers may also exploit an IP-level security mechanism to secure
the routing table update messages that they exchange between themselves.

Security in IPv6 is implemented through the authentication and encrypted

security payload extension header types. These implement features equivalent to the
secure channel concept introduced in Section 2.4.3. The payload is encrypted and/or
digitally signed as required. Similar security features are also available in IPv4 using
IP tunnelling between routers or hosts that implement the IPSec specification (see
RFC 2411 [Thayer 1998]).

Migration from IPv4 • The consequences for the existing Internet infrastructure of a
change in its basic protocol are profound. IP is processed in the TCP/IP protocol stack
at every host and in the software of every router. IP addresses are handled in many
application and utility programs. All of these require upgrading to support the new
version of IP, but the change is made inevitable by the forthcoming exhaustion of the
address space provided by IPv4. The IETF working group responsible for IPv6 has
defined a migration strategy – essentially it involves the implementation of ‘islands’ of
IPv6 routers and hosts communicating with other IPv6 islands via tunnels and gradually
merging into larger islands.

As we have noted, IPv6 routers and hosts should have no difficulty in handling
mixed traffic, since the IPv4 address space is embedded in the IPv6 space. All of the
major operating systems (Windows XP, Mac OS X, Linux and other Unix variants)
already include implementations of UDP and TCP sockets (as described in Chapter 4)
over IPv6, enabling applications to be migrated with a simple upgrade.

The theory of this strategy is technically sound, but implementation progress has
been very slow, perhaps because CIDR and NAT have relieved the pressure to a greater
extent than anticipated. This has begun to change in the mobile phone and portable
device markets, though. All of these devices are likely to be Internet-enabled in the near
future and they cannot easily be hidden behind NAT routers. For example, it is projected
that more than a billion IP devices will be deployed in India and China by 2014. Only
IPv6 can address needs such as that.

3.4.5 MobileIP

Mobile computers such as laptops and tablets are connected to the Internet at different
locations as they migrate. In its owner’s office a laptop may be connected to a local
Ethernet connected to the Internet through a router, it may be connected via a mobile
phone while it is in transit by car or train, then it may be attached to an Ethernet at
another site. The user will wish to access services such as email and the Web at any of
these locations.

Simple access to services does not require a mobile computer to retain a single
address, and it may acquire a new IP address at each site; that is the purpose of the

SECTION 3.4 INTERNET PROTOCOLS 121

Dynamic Host Configuration Protocol (DHCP), which enables a newly connected
computer to dynamically acquire an IP address in the address range of the local subnet
and discover the addresses of local resources such as a DNS server from a local DHCP
server. It will also need to discover what local services (such as printing, mail delivery
and so on) are available at each site that it visits. Discovery services are a type of naming
service that assist with this; they are described in Chapter 19 (Section 19.2).

There may be files or other resources on the laptop to which others require access,
or the laptop may be running a distributed application such as a share-monitoring service
that receives notifications of specified events, such as stocks that the user holds passing
a preset threshold. If a mobile computer is to remain accessible to clients and resource-
sharing applications when it moves between local networks and wireless networks, it
must retain a single IP number, but IP routing is subnet-based. Subnets are at fixed
locations, and the correct routing of packets to them depends upon their position on the
network.

MobileIP is a solution for the latter problem. The solution is implemented
transparently, so IP communication continues normally when a mobile host computer
moves between subnets at different locations. It is based upon the permanent allocation
of a normal IP address to each mobile host on a subnet in its ‘home’ domain.

When the mobile host is connected at its home base, packets are routed to it in the
normal way. When it is connected to the Internet elsewhere, two agent processes take
responsibility for rerouting. The agents are a home agent (HA) and a foreign agent (FA).
These processes run on convenient fixed computers at the home site and at the current
location of the mobile host.

The HA is responsible for holding up-to-date knowledge of the mobile host’s
current location (the IP address by which it can be reached). It does this with the
assistance of the mobile host itself. When a mobile host leaves its home site, it should
inform the HA, and the HA notes the mobile host’s absence. During the absence it will
behave as a proxy; in order to do so, it tells the local routers to cancel any cached records
relating to the mobile host’s IP address. While it is acting as a proxy, the HA responds
to ARP requests concerning the mobile host’s IP address, giving its own local network
address as the network address of the mobile host.

When the mobile host arrives at a new site, it informs the FA at that site. The FA
allocates a ‘care-of address’ to it – a new, temporary IP address on the local subnet. The
FA then contacts the HA, giving it the mobile host’s home IP address and the care-of
address that has been allocated to it.

Figure 3.20 illustrates the MobileIP routing mechanism. When an IP packet
addressed to the mobile host’s home address is received at the home network, it is routed
to the HA. The HA then encapsulates the IP packet in a MobileIP packet and sends it to
the FA. The FA unpacks the original IP packet and delivers it to the mobile host via the
local network to which it is currently attached. Note that the method by which the HA
and the FA reroute the original packet to its intended recipient is an instance of the
tunnelling technique described in Section 3.3.7.

The HA also sends the care-of address of the mobile host to the original sender. If
the sender is MobileIP-enabled, it will note the new address and use it for subsequent
communication with the mobile host, avoiding the overheads of rerouting via the HA. If
it is not, then it will ignore the change of address and subsequent communication will
continue to be rerouted via the HA.

Sender

Home

Figure 3.20 The MobileIP routing mechanism

Mobile host (MH)

Foreign agent (FA)
Internet

agent

First IP packet
addressed to MH

Address of FA
returned to sender

First IP packet
tunnelled to FA

Subsequent IP packets
tunnelled to FA

122 CHAPTER 3 NETWORKING AND INTERNETWORKING

The MobileIP solution is effective, but hardly efficient. A solution that treats
mobile hosts as first-class citizens would be preferable, allowing them to wander
without giving prior notice and routing packets to them without any tunnelling or re-
routing. We should note that this apparently difficult feat is exactly what is achieved by
the cellular phone network – mobile phones do not change their number as they move
between cells, or even between countries. Instead, they simply notify the local cellular
phone base station of their presence from time to time.

3.4.6 TCP and UDP

TCP and UDP provide the communication capabilities of the Internet in a form that is
useful for application programs. Application developers might wish for other types of
transport service, for example to provide real-time guarantees or security, but such
services would generally require more support in the network layer than IPv4 provides.
TCP and UDP can be viewed as a faithful reflection at the application programming
level of the communication facilities that IPv4 has to offer. IPv6 is another story; it will
certainly continue to support TCP and UDP, but it includes capabilities that cannot be
conveniently accessed through TCP and UDP. It may be useful to introduce additional
types of transport service to exploit them, once the deployment of IPv6 is sufficiently
wide to justify their development.

Chapter 4 describes the characteristics of both TCP and UDP from the point of
view of distributed program developers. Here we shall be quite brief, describing only the
functionality that they add to IP.

Use of ports • The first characteristic to note is that, whereas IP supports
communication between pairs of computers (identified by their IP addresses), TCP and
UDP, as transport protocols, must provide process-to-process communication. This is
accomplished by the use of ports. Port numbers are used for addressing messages to
processes within a particular computer and are valid only within that computer. A port
number is a 16-bit integer. Once an IP packet has been delivered to the destination host,
the TCP- or UDP-layer software dispatches it to a process via a specific port at that host.

UDP features • UDP is almost a transport-level replica of IP. A UDP datagram is
encapsulated inside an IP packet. It has a short header that includes the source and

SECTION 3.4 INTERNET PROTOCOLS 123

destination port numbers (the corresponding host addresses are present in the IP header),
a length field and a checksum. UDP offers no guarantee of delivery. We have already
noted that IP packets may be dropped because of congestion or network error. UDP adds
no additional reliability mechanisms except the checksum, which is optional. If the
checksum field is non-zero, the receiving host computes a check value from the packet
contents and compares it with the received checksum; packets for which they do not
match are dropped.

Thus UDP provides a means of transmitting messages of up to 64 kbytes in size
(the maximum packet size permitted by IP) between pairs of processes (or from one
process to several in the case of datagrams addressed to IP multicast addresses), with
minimal additional costs or transmission delays above those due to IP transmission. It
incurs no setup costs and it requires no administrative acknowledgement messages. But
its use is restricted to those applications and services that do not require reliable delivery
of single or multiple messages.

TCP features • TCP provides a much more sophisticated transport service. It provides
reliable delivery of arbitrarily long sequences of bytes via stream-based programming
abstraction. The reliability guarantee entails the delivery to the receiving process of all
of the data presented to the TCP software by the sending process, in the same order. TCP
is connection-oriented. Before any data is transferred, the sending and receiving
processes must cooperate in the establishment of a bidirectional communication
channel. The connection is simply an end-to-end agreement to perform reliable data
transmission; intermediate nodes such as routers have no knowledge of TCP
connections, and the IP packets that transfer the data in a TCP transmission do not
necessarily all follow the same route.

The TCP layer includes additional mechanisms (implemented over IP) to meet the
reliability guarantees. These are:

Sequencing: A TCP sending process divides the stream into a sequence of data
segments and transmits them as IP packets. A sequence number is attached to each
TCP segment. It gives the byte number within the stream for the first byte of the
segment. The receiver uses the sequence numbers to order the received segments
before placing them in the input stream at the receiving process. No segment can be
placed in the input stream until all lower-numbered segments have been received and
placed in the stream, so segments that arrive out of order must be held in a buffer until
their predecessors arrive.

Flow control: The sender takes care not to overwhelm the receiver or the intervening
nodes. This is achieved by a system of segment acknowledgements. Whenever a
receiver successfully receives a segment, it records its sequence number. From time
to time the receiver sends an acknowledgement to the sender, giving the sequence
number of the highest-numbered segment in its input stream together with a window

size. If there is a reverse flow of data, acknowledgements are carried in the normal
data segments; otherwise they travel in acknowledgement segments. The window
size field in the acknowledgement segment specifies the quantity of data that the
sender is permitted to send before the next acknowledgement.

When a TCP connection is used for communication with a remote interactive
program, data may be produced in small quantities but in a very bursty manner. For

124 CHAPTER 3 NETWORKING AND INTERNETWORKING

example, keyboard input may result in only a few characters per second, but the
characters should be sent sufficiently quickly for the user to see the results of their
typing. This is dealt with by setting a timeout T on local buffering – typically 0.5
seconds. With this simple scheme, a segment is sent to the receiver whenever data
has been waiting in the output buffer for T seconds, or the contents of the buffer reach
the MTU limit. This buffering scheme cannot add more than T seconds to the
interactive delay. Nagle has described another algorithm that produces less traffic
and is more effective for some interactive applications [Nagle 1984]. Nagle’s
algorithm is used in many TCP implementations. Most TCP implementations are
configurable, allowing applications to change the value of T or to select one of
several buffering algorithms.

Because of the unreliability of wireless networks and the resulting frequent loss
of packets, these flow-control mechanisms are not particularly relevant for wireless
communication. This is one of the reasons for the adoption of a different transport
mechanism in the WAP family of protocols for wide area mobile communication.
But the implementation of TCP for wireless networks is also important, and
modifications to the TCP mechanism have been proposed for this purpose
[Balakrishnan et al. 1995, 1996]. The idea is to implement a TCP support component
at the wireless base station (the gateway between wired and wireless networks). The
support component snoops on TCP segments to and from the wireless network,
retransmitting any outbound segments that are not acknowledged rapidly by the
mobile receiver and requesting retransmissions of inbound segments when gaps in
the sequence numbers are noticed.

Retransmission: The sender records the sequence numbers of the segments that it
sends. When it receives an acknowledgement it notes that the segments were
successfully received, and it may then delete them from its outgoing buffers. If any
segment is not acknowledged within a specified timeout, the sender retransmits it.

Buffering: The incoming buffer at the receiver is used to balance the flow between
the sender and the receiver. If the receiving process issues receive operations more
slowly than the sender issues send operations, the quantity of data in the buffer will
grow. Usually it is extracted from the buffer before it becomes full, but ultimately the
buffer may overflow, and when that happens incoming segments are simply dropped
without recording their arrival. Their arrival is therefore not acknowledged and the
sender is obliged to retransmit them.

Checksum: Each segment carries a checksum covering the header and the data in the
segment. If a received segment does not match its checksum, the segment is dropped.

3.4.7 Domain names

The design and implementation of the Domain Name System (DNS) is described in
detail in Chapter 13; we give a brief overview here to complete our discussion of the
Internet protocols. The Internet supports a scheme for the use of symbolic names for
hosts and networks, such as binkley.cs.mcgill.ca or essex.ac.uk. The named entities are
organized into a naming hierarchy. The named entities are called domains and the
symbolic names are called domain names. Domains are organized in a hierarchy that is

SECTION 3.4 INTERNET PROTOCOLS 125

intended to reflect their organizational structure. The naming hierarchy is entirely
independent of the physical layout of the networks that constitute the Internet. Domain
names are convenient for human users, but they must be translated to Internet (IP)
addresses before they can be used as communication identifiers. This is the
responsibility of a specific service, the DNS. Application programs pass requests to the
DNS to convert the domain names that users specify into Internet addresses.

The DNS is implemented as a server process that can be run on host computers
anywhere in the Internet. There are at least two DNS servers in each domain, and often
more. The servers in each domain hold a partial map of the domain name tree below their
domain. They must hold at least the portion consisting of all of the domain and host
names within their domain, but they often contain a larger portion of the tree. DNS
servers handle requests for the translation of domain names outside their portion of the
tree by issuing requests to DNS servers in the relevant domains, proceeding recursively
from right to left, resolving the name in segments. The resulting translation is then
cached at the server handling the original request so that future requests for the
resolution of names referring to the same domain will be resolved without reference to
other servers. The DNS would not be workable without the extensive use of caching,
since the ‘root’ name servers would be consulted in almost every case, creating a service
access bottleneck.

3.4.8 Firewalls

Almost all organizations need Internet connectivity in order to provide services to their
customers and other external users and to enable their internal users to access
information and services. The computers in most organizations are quite diverse,
running a variety of operating systems and application software. The security of their
software is even more varied; some of it may include state-of-the-art security, but much
of it will have little or no capability to ensure that incoming communications can be
trusted and outgoing communications are private when required. In summary, in an
intranet with many computers and a wide range of software it is inevitable that some
parts of the system will have weaknesses that expose it to security attacks. Forms of
attack are detailed further in Chapter 11.

The purpose of a firewall is to monitor and control all communication into and out
of an intranet. A firewall is implemented by a set of processes that act as a gateway to
an intranet (Figure 3.21a), applying a security policy determined by the organization.

The aims of a firewall security policy may include any or all of the following:

Service control: To determine which services on internal hosts are accessible for
external access and to reject all other incoming service requests. Outgoing service
requests and the responses to them may also be controlled. These filtering actions can
be based on the contents of IP packets and the TCP and UDP requests that they
contain. For example, incoming HTTP requests may be rejected unless they are
directed to an official web server host.

Behaviour control: To prevent behaviour that infringes the organization’s policies,
is antisocial or has no discernible legitimate purpose and is hence suspected of
forming part of an attack. Some of these filtering actions may be applicable at the IP
or TCP level, but others may require interpretation of messages at a higher level. For

Figure 3.21 Firewall configurations

Internet

Router/
Protected intraneta) Filtering router

Internet

b) Filtering router and bastion

filter

Internet

R/filterc) Screened subnet for bastion R/filter Bastion

R/filter Bastion

web/ftp
server

web/ftp
server

web/ftp
server

126 CHAPTER 3 NETWORKING AND INTERNETWORKING

example, filtering of email ‘spam’ attacks may require examination of the sender’s
email address in message headers or even the message contents.

User control: The organization may wish to discriminate between its users, allowing
some to access external services but inhibiting others from doing so. An example of
user control that is perhaps more socially acceptable than some is to prevent the
acknowledging of software except to users who are members of the system
administration team, in order to prevent virus infection or to maintain software
standards. This particular example would in fact be difficult to implement without
inhibiting the use of the Web by ordinary users.

Another instance of user control is the management of dialup and other
connections provided for offsite users. If the firewall is also the host for modem
connections, it can authenticate the user at connection time and can require the use of
a secure channel for all communication (to prevent eavesdropping, masquerading and
other attacks on the external connection). That is the purpose of the virtual private
network technology described in the next subsection.

The policy has to be expressed in terms of filtering operations that are performed by
filtering processes operating at several different levels:

SECTION 3.4 INTERNET PROTOCOLS 127

IP packet filtering: This is a filter process examining individual IP packets. It may
make decisions based on the destination and source addresses. It may also examine
the service type field of IP packets and interpret the contents of the packets based on
the type. For example, it may filter TCP packets based on the port number to which
they are addressed, and since services are generally located at well-known ports, this
enables packets to be filtered based on the service requested. For example, many sites
prohibit the use of NFS servers by external clients.

For performance reasons, IP filtering is usually performed by a process within
the operating system kernel of a router. If multiple firewalls are used, the first may
mark certain packets for more exhaustive examination by a later firewall, allowing
‘clean’ packets to proceed. It is possible to filter based on sequences of IP packets,
for example, to prevent access to an FTP server before a login has been performed.

TCP gateway: A TCP gateway process checks all TCP connection requests and
segment transmissions. When a TCP gateway process is installed, the setting up of
TCP connections can be controlled and TCP segments can be checked for correctness
(some denial of service attacks use malformed TCP segments to disrupt client
operating systems). When desired, they can be routed through an application-level
gateway for content checking.

Application-level gateway: An application-level gateway process acts as a proxy for
an application process. For example, a policy may be desired that allows certain
internal users to make Telnet connections to certain external hosts. When a user runs
a Telnet program on their local computer, it attempts to establish a TCP connection
with a remote host. The request is intercepted by the TCP gateway. The TCP gateway
starts a Telnet proxy process and the original TCP connection is routed to it. If the
proxy approves the Telnet operation (i.e., if the user is authorized to use the requested
host) it establishes another connection to the requested host and relays all of the TCP
packets in both directions. A similar proxy process would run on behalf of each
Telnet client, and similar proxies might be employed for FTP and other services.

A firewall is usually composed of several processes working at different protocol levels.
It is common for firewall duties to be shared by more than one computer for performance
and fault-tolerance reasons. In all of the configurations described below and illustrated
in Figure 3.21, we show a public web and FTP server without protection. It holds only
published information that requires no protection against public access, and its server
software ensures that only authorized internal users can update it.

IP packet filtering is normally done by a router – a computer with at least two
network addresses on separate IP networks – that runs an RIP process, an IP packet-
filtering process and as few other processes as possible. The router/filter must run only
trusted software in a manner that enables its enforcement of filtering policies to be
guaranteed. This involves ensuring that no Trojan horse processes can run on it and that
the filtering and routing software have not been modified or tampered with. Figure
3.21(a) shows a simple firewall configuration that relies only on IP filtering and employs
a single router for that purpose. The network configuration in Figure 3.10 includes two
router/filters acting as firewalls of this type for performance and reliability reasons.
They both obey the same filtering policy and the second does not increase the security
of the system.

128 CHAPTER 3 NETWORKING AND INTERNETWORKING

When TCP and application-level gateway processes are required, these usually
run on a separate computer, which is known as a bastion. (The term originates from the
construction of fortified castles; it is a protruding watchtower from which the castle may
be defended or defenders may negotiate with those desiring entry.) A bastion computer
is a host that is located inside the intranet protected by an IP router/filter and runs the
TCP and application-level gateways (Figure 3.21b). Like the router/filter, the bastion
must run only trusted software. In a well-secured intranet, proxies must be used for
access to all outside services. Readers may be familiar with the use of proxies for web
access. These are an instance of the use of firewall proxies; they are often constructed in
a manner that integrates a web cache server (described in Chapter 2). This and other
proxies are likely to require substantial processing and storage resources.

Security can be enhanced by employing two router/filters in series, with the
bastion and any public servers located on a separate subnet linking the router/filters
(Figure 3.21c). This configuration has several security advantages:

• If the bastion policy is strict, the IP addresses of hosts in the intranet need not even
be published to the outside world, and the addresses in the outside world need not
be known to internal computers, since all external communication passes through
proxy processes in the bastion, has access to both.

• If the first router/filter is penetrated or compromised, the second, which is
invisible from outside the intranet and hence less vulnerable, remains to pick up
and reject unacceptable IP packets.

Virtual private networks • Virtual private networks (VPNs) extend the firewall
protection boundary beyond the local intranet by the use of cryptographically protected
secure channels at the IP level. In Section 3.4.4, we outlined the IP security extensions
available in IPv6 and IPv4 with IPSec tunnelling [Thayer 1998]. These are the basis for
the implementation of VPNs. They may be used for individual external users or to
implement secure connections between intranets located at different sites using public
Internet links.

For example, a member of staff may need to connect to the organization’s intranet
via an Internet service provider. Once connected, they should have the same capabilities
as a user inside the firewall. This can be achieved if their local host implements IP
security. The local host holds one or more cryptographic keys that it shares with the
firewall, and these are used to establish a secure channel at connection time. Secure
channel mechanisms are described in detail in Chapter 11.

3.5 Case studies: Ethernet, WiFi and Bluetooth

Up to this point we have discussed the principles involved in the construction of
computer networks and we have described IP, the ‘virtual network layer’ of the Internet.
To complete the chapter, we describe the principles and implementations of three actual
networks.

In the early 1980s, the US Institute of Electrical and Electronic Engineers (IEEE)
established a committee to specify a series of standards for local area networks (the 802
Committee [IEEE 1990]), and its subcommittees have produced a series of

Figure 3.22 IEEE 802 network standards

IEEE no. Name Title Reference

802.3 Ethernet CSMA/CD Networks (Ethernet) [IEEE 1985a]
802.4 Token Bus Networks [IEEE 1985b]
802.5 Token Ring Networks [IEEE 1985c]
802.6 Metropolitan Area Networks [IEEE 1994]
802.11 WiFi Wireless Local Area Networks [IEEE 1999]
802.15.1 Bluetooth Wireless Personal Area Networks [IEEE 2002]
802.15.4 ZigBee Wireless Sensor Networks [IEEE 2003]
802.16 WiMAX Wireless Metropolitan Area Networks [IEEE 2004a]

SECTION 3.5 CASE STUDIES: ETHERNET, WIFI AND BLUETOOTH 129

specifications that have become the key standards for LANs. In most cases, the
standards are based on pre-existing industry standards that emerged from research done
in the 1970s. The relevant subcommittees and the standards that they have been
published to date are shown in Figure 3.22.

They differ in performance, efficiency, reliability and cost, but they all provide
relatively high-bandwidth networking capabilities over short and medium distances.
The IEEE 802.3 Ethernet standard has largely won the battle for the wired LAN
marketplace, and we describe it in Section 3.5.1 as our representative wired LAN
technology. Although Ethernet implementations are available for several bandwidths,
the principles of operation are identical in all of them.

The IEEE 802.5 Token Ring standard was a significant competitor for much of
the 1990s, offering advantages over Ethernet in terms of efficiency and its support for
bandwidth guarantees, but it has now disappeared from the marketplace. Readers
interested in a brief description of this interesting LAN technology can find one at
www.cdk5.net/networking. The widespread use of Ethernet switches (as opposed to
hubs) has enabled Ethernets to be configured in a manner that offers bandwidth and
latency guarantees (as discussed further in Section 3.5.1, subsection Ethernet for real-

time and quality of service critical applications), and this is one reason for its
displacement of token ring technology.

The IEEE 802.4 Token Bus standard was developed for industrial applications
with real-time requirements and is employed in that domain. The IEEE 802.6
Metropolitan Area standard covers distances up to 50 km and is intended for use in
networks that span towns and cities.

The IEEE 802.11 Wireless LAN standard emerged somewhat later but holds a
major position in the marketplace with products from many vendors under the
commercial name WiFi, and is installed in a large proportion of mobile and handheld
computing devices. The IEEE 802.11 standard is designed to support communication at
speeds up to 54 Mbps over distances of up to 150 m between devices equipped with
simple wireless transmitter/receivers. We describe its principles of operation in Section
3.5.2. Further details on IEEE 802.11 networks can be found in Crow et al. [1997] and
Kurose and Ross [2007].

The IEEE 802.15.1 Wireless Personal Area Network standard (Bluetooth) was
based on a technology first developed in 1999 by the Ericsson company to transport low-

130 CHAPTER 3 NETWORKING AND INTERNETWORKING

bandwidth digital voice and data between devices such as tablets, mobile phones and
headsets and was subsequently standardized in 2002 as IEEE 802.15.1. Section 3.5.3
contains a description of Bluetooth.

IEEE 802.15.4 (ZigBee) is another WPAN standard aimed at providing data
communication for very low-bandwidth low-energy devices in the home such as remote
controls, burglar alarm and heating system sensors, and ubiquitous devices such as
active badges and tag readers. Such networks are termed wireless sensor networks and
their applications and communication characteristics are discussed in Chapter 19.

The IEEE 802.16 Wireless MAN standard (commercial name: WiMAX) was
ratified in 2004 and 2005. The IEEE 802.16 standard is designed as an alternative to
cable and DSL links for the ‘last mile’ connection to homes and offices. A variant of the
standard is intended to supersede 802.11 WiFi networks as the main connection
technology for laptop computers and mobile devices in outdoor and indoor public areas.

The ATM technology emerged from major research and standardization efforts in
the telecommunications and computer industries in the late 1980s and early 1990s
[CCITT 1990]. Its purpose is to provide a high-bandwidth wide area digital networking
technology suitable for telephone, data and multimedia (high-quality audio and video)
applications. Although the uptake has been slower than expected, ATM is now the
dominant technology for very high speed wide area networking. It was also seen in some
quarters as a replacement for Ethernet in LAN applications, but it has been less
successful in that marketplace due to competition from 100 Mbps and 1000 Mbps
Ethernets, which are available at much lower cost. Further details on ATM and on other
high-speed network technologies can be found in Tanenbaum [2003] and Stallings
[2002].

3.5.1 Ethernet

The Ethernet was developed at the Xerox Palo Alto Research Center in 1973 [Metcalfe
and Boggs 1976; Shoch et al. 1982, 1985] as part of the programme of research carried
out there on personal workstations and distributed systems. The pilot Ethernet was the
first high-speed local network, demonstrating the feasibility and usefulness of high-
speed local networks linking computers on a single site, allowing them to communicate
at high transmission speeds with low error rates and without switching delays. The
original prototype Ethernet ran at 3 Mbps. Ethernet systems are now available with
bandwidths ranging from 10 Mbps to 1000 Mbps.

We shall describe the principles of operation of the 10 Mbps Ethernet specified in
IEEE Standard 802.3 [IEEE 1985a]. This was the first widely deployed local area
network technology. The 100 Mbps variant is now more commonly used; its principles
of operation are identical. We conclude this section with a list of the more important
variants of Ethernet transmission technology and bandwidth that are available. For
comprehensive descriptions of the Ethernet in all its variations, see Spurgeon [2000].

A single Ethernet is a simple or branching bus-like connection line using a
transmission medium consisting of one or more continuous segments of cable linked by
hubs or repeaters. Hubs and repeaters are simple devices that link pieces of wire,
enabling the same signals to pass through all of them. Several Ethernets can be linked at
the Ethernet network protocol level by Ethernet switches or bridges. Switches and

SECTION 3.5 CASE STUDIES: ETHERNET, WIFI AND BLUETOOTH 131

bridges operate at the level of Ethernet frames, forwarding them to adjacent Ethernets
when their destination is there. Linked Ethernets appear as a single network to higher
protocol layers, such as IP (see Figure 3.10, where the IP subnets 138.37.88 and
138.37.94 are each composed of several Ethernets linked by components marked
Eswitch). In particular, the ARP protocol (Section 3.4.2) is able to resolve IP addresses
to Ethernet addresses across linked sets of Ethernets; each ARP request is broadcast on
all of the linked networks in a subnet.

The method of operation of Ethernets is defined by the phrase ‘carrier sensing,
multiple access with collision detection’ (abbreviated: CSMA/CD) and they belong to
the class of contention bus networks. Contention buses use a single transmission
medium to link all of the hosts. The protocol that manages access to the medium is called
a medium access control (MAC) protocol. Because a single link connects all hosts, the
MAC protocol combines the functions of a data link layer protocol (responsible for the
transmission of packets on communication links) and a network protocol (responsible
for delivery of packets to hosts) in a single protocol layer.

Packet broadcasting • The method of communication in CSMA/CD networks is by
broadcasting packets of data on the transmission medium. All stations are continuously
‘listening' to the medium for packets that are addressed to them. Any station wishing to
transmit a message broadcasts one or more packets (called frames in the Ethernet
specification) on the medium. Each packet contains the address of the destination
station, the address of the sending station and a variable-length sequence of bits
representing the message to be transmitted. Data transmission proceeds at 10 Mbps (or
at the higher speeds specified for 100 and 1000 Mbps Ethernets) and packets vary in
length between 64 and 1518 bytes, so the time required to transmit a packet on a 10
Mbps Ethernet is 50–1200 microseconds, depending on its length. The MTU is specified
as 1518 bytes in the IEEE standard, although there is no technical reason for any
particular fixed limit except the need to limit delays caused by contention.

The address of the destination station normally refers to a single network
interface. Controller hardware at each station receives a copy of every packet. It
compares the destination address in each packet with a wired-in local address, ignoring
packets addressed to other stations and passing those with a matching address to the
local host. The destination address may also specify a broadcast or a multicast address.
Ordinary addresses are distinguished from broadcast and multicast addresses by their
higher-order bit (0 and 1, respectively). An address consisting of all 1s is reserved for
use as a broadcast address and is used when a message is to be received by all of the
stations on the network. This is used, for example, to implement the ARP IP address
resolution protocol. Any station that receives a packet with a broadcast address will pass
it on to its local host. A multicast address specifies a limited form of broadcast that is
received by a group of stations whose network interfaces have been configured to
receive packets with that multicast address. Not all implementations of Ethernet network
interfaces can recognize multicast addresses.

The Ethernet network protocol (providing for the transmission of Ethernet packets
between pairs of hosts) is implemented in the Ethernet hardware interface; protocol
software is required for the transport layer and those above it.

132 CHAPTER 3 NETWORKING AND INTERNETWORKING

Ethernet packet layout • The packets (or more correctly, frames) transmitted by stations
on the Ethernet have the following layout:

bytes: 7 1 6 6 2 46 < length < 1500 4

Preamble S Destination
address

Source
address

Length
of data

Data for transmission Checksum

Apart from the destination and source addresses already mentioned, frames include a
fixed 8-byte prefix, a length field, a data field and a checksum. The prefix is used for
hardware timing purposes and consists of a preamble of 7 bytes, each containing the bit
pattern 10101010 followed by a single-byte start frame delimiter (S in the diagram) with
the pattern 10101011.

Despite the fact that the specification does not allow more than 1024 stations on a
single Ethernet, addresses occupy 6 bytes, providing 248 different addresses. This
enables every Ethernet hardware interface to be given a unique address by its
manufacturer, ensuring that all of the stations in any interconnected set of Ethernets will
have unique addresses. The US Institute of Electrical and Electronic Engineers (IEEE)
acts as an allocation authority for Ethernet addresses, allocating separate ranges of 48-
bit addresses to the manufacturers of Ethernet hardware interfaces. These are referred to
as MAC addresses, since they are used by the medium access control layer. In fact,
MAC addresses allocated in this fashion have also been adopted as unique addresses for
use in other network types in the IEEE 802 family, including 802.11 (WiFi) and
802.15.1 (Bluetooth).

The data field contains all or part (if the message length exceeds 1500 bytes) of
the message that is being transmitted. The lower bound of 46 bytes on the data field
ensures a minimum packet length of 64 bytes, which is necessary in order to guarantee
that collisions will be detected by all stations on the network, as explained below.

The frame check sequence is a checksum generated and inserted by the sender and
used to validate packets by the receiver. Packets with incorrect checksums are simply
dropped by the data link layer in the receiving station. This is another example of the
application of the end-to-end argument: to guarantee the transmission of a message, a
transport-layer protocol such as TCP, which acknowledges receipt of each packet and
retransmits any unacknowledged packets, must be used. The incidence of data
corruption in local networks is so small that the use of this method of recovery when
guaranteed delivery is required is entirely satisfactory and it enables a less costly
transport protocol such as UDP to be employed when there is no need for delivery
guarantees.

Packet collisions • Even in the relatively short time that it takes to transmit packets
there is a finite probability that two stations on the network will attempt to transmit
messages simultaneously. If a station attempts to transmit a packet without checking
whether the medium is in use by other stations, a collision may occur.

The Ethernet has three mechanisms to deal with this possibility. The first is called
carrier sensing: the interface hardware in each station listens for the presence of a signal
(known as the carrier by analogy with radio broadcasting) in the medium. When a
station wishes to transmit a packet, it waits until no signal is present in the medium and
then begins to transmit.

SECTION 3.5 CASE STUDIES: ETHERNET, WIFI AND BLUETOOTH 133

Unfortunately, carrier sensing does not prevent all collisions. The possibility of
collision remains due to the finite time for a signal inserted at a point in the medium
(travelling at electronic speed: approximately 2 108 metres per second) to reach all
other points. Consider two stations A and B that are ready to transmit packets at almost
the same time. If A begins to transmit first, B can check and find no signal in the medium
at any time t < after A has begun to transmit. B then begins to transmit, interfering with
A’s transmission. Both A’s packet and B’s packet will be damaged by the interference.

The technique used to recover from such interference is called collision detection.
Whenever a station is transmitting a packet through its hardware output port, it also
listens on its input port and the two signals are compared. If they differ, then a collision
has occurred. When this happens the station stops transmitting and produces a jamming

signal to ensure that all stations recognize the collision. As we have already noted, a
minimum packet length is necessary to ensure that collisions are always detected. If two
stations transmit approximately simultaneously from opposite ends of the network, they
will not become aware of the collision for 2 seconds (because the first sender must be
still transmitting when it receives the second signal). If the packets that they transmit
take less than to be broadcast, the collision will not be noticed, since each sending
station would not see the other packet until after it has finished transmitting its own,
whereas stations at intermediate points would receive both packets simultaneously,
resulting in data corruption.

After the jamming signal, all transmitting and listening stations cancel the current
packet. The transmitting stations then have to try to transmit their packets again. A
further difficulty now arises. If the stations involved in the collision all attempt to
retransmit their packets immediately after the jamming signal, another collision will
probably occur. To avoid this, a technique known as back-off is used. Each of the
stations involved in a collision chooses to wait a time n before retransmitting. The value
of n is a random integer chosen separately at each station and bounded by a constant L
defined in the network software. If a further collision occurs, the value of L is doubled
and the process is repeated if necessary for up to 10 attempts.

Finally, the interface hardware at the receiving station computes the check
sequence and compares it with the checksum transmitted in the packet. Using all of these
techniques, the stations connected to the Ethernet are able to manage the use of the
medium without any centralized control or synchronization.

Ethernet efficiency • The efficiency of an Ethernet is the ratio of the number of packets
transmitted successfully as a proportion of the theoretical maximum number that could
be transmitted without collisions. It is affected by the value of , since the interval of 2
seconds after a packet transmission starts is the ‘window of opportunity’ for collisions
– no collision can occur later than 2 seconds after a packet starts to be transmitted. It is
also affected by the number of stations on the network and their level of activity.

For a 1 km cable, the value of is less than 5 microseconds and the probability of
collisions is small enough to ensure high efficiency. The Ethernet can achieve a channel
utilization of between 80 and 95%, although the delays due to contention become
noticeable when 50% utilization is exceeded. Because the loading is variable, it is
impossible to guarantee the delivery of a given message within any fixed time, since the
network might be fully loaded when the message is ready for transmission. But the

134 CHAPTER 3 NETWORKING AND INTERNETWORKING

probability of transferring the message with a given delay is as good as, or better than,
that of other network technologies.

Empirical measurements of the performance of an Ethernet at Xerox PARC,
reported by Shoch and Hupp [1980], confirm this analysis. In practice, the load on
Ethernets used in distributed systems varies quite widely. Many networks are used
primarily for asynchronous client-server interactions, and these operate for most of the
time with no stations waiting to transmit. Their low level of contention results in a
channel utilization close to 1. Networks that support bulk data access for large numbers
of users experience more load, and those that carry multimedia streams are liable to be
overwhelmed if more than a few streams are transmitted concurrently.

Physical implementations • The description above defines the MAC-layer protocol for
all Ethernets. Widespread adoption across a large marketplace has resulted in the
availability of very low-cost controller hardware to perform the algorithms required for
its implementation, and this is included as a standard part of many desktop and consumer
computers.

A wide range of physical Ethernet implementations have been based on it to offer
a variety of performance and cost trade-offs and to exploit increased hardware
performance. The variations result from the use of different transmission media –
coaxial cable, twisted copper wire (similar to telephone wiring) and optical fibre – with
differing limits on transmission range, and from the use of higher signalling speeds,
resulting in greater system bandwidth and generally shorter transmission ranges. The
IEEE has adopted a number of standards for physical-layer implementations, and a
naming scheme is used to distinguish them. Names such as 10Base5 and 100BaseT are
used. They have the following form:

<R><L> Where: R = data rate in Mbps
B = medium signalling type (baseband or broadband)
L = maximum segment length in metres/100 or T

(twisted pair cable hierarchy)

We tabulate the bandwidth and maximum range of various currently available standard
configurations and cable types in

Figure 3.23 Ethernet ranges and speeds

10Base5 10BaseT 100BaseT 1000BaseT

Data rate 10 Mbps 10 Mbps 100 Mbps 1000 Mbps
Max. segment lengths:

Twisted wire (UTP) 100 m 100 m 100 m 25 m
Coaxial cable (STP) 500 m 500 m 500 m 25 m
Multi-mode fibre 2000 m 2000 m 500 m 500 m
Mono-mode fibre 25000 m 25000 m 20000 m 2000 m

Figure 3.23. Configurations ending with the T
designation are implemented with UTP cabling – unshielded twisted wires (telephone
wiring) – and this is organized as a hierarchy of hubs with computers as the leaves of the
tree. In that case, the segment lengths given in our table are twice the maximum
permissible distance from a computer to a hub.

SECTION 3.5 CASE STUDIES: ETHERNET, WIFI AND BLUETOOTH 135

Ethernet for real-time and quality of service critical applications • It is often argued that
the Ethernet MAC protocol is inherently unsuitable for real-time or quality of service
critical applications because of its lack of a guaranteed delivery delay. But it should be
noted that most Ethernet installations are now based on the use of MAC-level switches,
as illustrated in Figure 3.10 and described in Section 3.3.7 (rather than hubs or cables
with a tap for each connection, as was formerly the case). The use of switches
throughout results in a separate segment for each host with no packets transmitted on it
other than those addressed to that host. Hence if traffic to the host is from a single source,
there is no contention for the medium – efficiency is 100% and latency is constant. The
possibility of contention arises only at the switches, and these can be, and often are,
designed to handle several packets concurrently. Hence a lightly loaded switched
Ethernet installation approximates to 100% efficiency with a constant low latency, and
they are therefore often successfully used in these critical application areas.

A further step towards real-time support for Ethernet-style MAC protocols is
described in [Rether; Pradhan and Chiueh 1998] and a similar scheme is implemented
in an open-source Linux extension [RTnet]. These software approaches address the
contention problem by implementing an application-level cooperative protocol to
reserve timeslots for the use of the medium. This protocol depends upon the cooperation
of all the hosts connected to a segment.

3.5.2 IEEE 802.11 (WiFi) wireless LAN

In this section, we summarize the special characteristics of wireless networking that
must be addressed by a wireless LAN technology and explain how IEEE 802.11
addresses them. The IEEE 802.11 standard extends the carrier-sensing multiple access
(CSMA) principle employed by Ethernet (IEEE 802.3) technology to suit the
characteristics of wireless communication. The 802.11 standard is intended to support
communication between computers located within about 150 metres of each other at
speeds up to 54 Mbps.

Figure 3.24 illustrates a portion of an intranet including a wireless LAN. Several
mobile wireless devices communicate with the rest of the intranet through a base station
that is an access point to the wired LAN. A wireless network that connects to the world
through an access point to a conventional LAN is known as an infrastructure network.

An alternative configuration for wireless networking is known as an ad hoc

network. Ad hoc networks do not include an access point or base station. They are built
‘on the fly’ as a result of the mutual detection of two or more mobile devices with
wireless interfaces in the same vicinity. An ad hoc network might occur, for example,
when two or more laptop users in a room initiate a connection to any available station.
They might then share files by launching a file server process on one of the machines.

At the physical level, IEEE 802.11 networks use radio frequency signals (in the
licence-free 2.4 GHz and 5 GHz bands) or infrared signalling as the transmission
medium. The radio version of the standard has received the most commercial attention,
and we shall describe that. The IEEE 802.11b standard was the first variant to see
widespread use. It operates in the 2.4 GHz band and supports data communication at up
to 11 Mbps. It has been installed from 1999 onwards with base stations in many offices,
homes and public places, enabling laptop computers and handheld devices to access
local networked devices or the Internet. IEEE 802.11g is a more recent enhancement of

136 CHAPTER 3 NETWORKING AND INTERNETWORKING

802.11b that uses the same 2.4 GHz band but a different signalling technique to achieve
speeds up to 54 Mbps. Finally, the 802.11a variant works in the 5 GHz band and delivers
a more certain 54 Mbps of bandwidth over a somewhat shorter range. All variants use
various frequency-selection and frequency-hopping techniques to avoid external
interference and mutual interference between independent wireless LANs, which we
shall not detail here. We focus instead on the changes to the CSMA/CD mechanism that
are needed in the MAC layer for all versions of 802.11 to enable broadcast data
transmission to be used with radio transmission.

Figure 3.24 Wireless LAN configuration

LAN

Server

Wireless
LAN

Laptops

Base station/
access point

Tablet

Radio obstruction

A B C

D
E

Like Ethernet, the 802.11 MAC protocol offers equal opportunities to all stations
to use the transmission channel, and any station may transmit directly to any other. A
MAC protocol controls the use of the channel by the various stations. As for the
Ethernet, the MAC layer also performs the functions of both a data link layer and a
network layer, delivering data packets to the hosts on a network.

Several problems arise from the use of radio waves rather than wires as the
transmission medium. These problems stem from the fact that the carrier-sensing and
collision-detection mechanisms employed in Ethernets are effective only when the
strength of signals is approximately the same throughout a network.

We recall that the purpose of carrier sensing is to determine whether the medium
is free at all points between the sending and receiving stations, and that of collision
detection is to determine whether the medium in the vicinity of the receiver is free from
interference during the transmission. Because signal strength is not uniform throughout
the space in which wireless LANs operate, carrier detection and collision detection may
fail in the following ways:

Hidden stations: Carrier sensing may fail to detect that another station on the
network is transmitting. This is illustrated in Figure 3.24. If tablet D is transmitting
to the base station E, laptop A may not be able to sense D’s signal because of the radio
obstruction shown. A might then start transmitting, causing a collision at E unless
steps are taken to prevent this.

SECTION 3.5 CASE STUDIES: ETHERNET, WIFI AND BLUETOOTH 137

Fading: Due to the inverse square law of electromagnetic wave propagation, the
strength of radio signals diminishes rapidly with the distance from the transmitter.
Stations within a wireless LAN may be out of range of other stations in the same
LAN. Thus in Figure 3.24, laptop A may not be able to detect a transmission by C,
although each of them can transmit successfully to B or E. Fading defeats both carrier
sensing and collision detection.

Collision masking: Unfortunately, the ‘listening’ technique used in the Ethernet to
detect collisions is not very effective in radio networks. Because of the inverse square
law referred to above, the locally generated signal will always be much stronger than
any signal originating elsewhere, effectively drowning out the remote transmission.
So, laptops A and C might both transmit simultaneously to E and neither would detect
that collision, but E would receive only a garbled transmission.

Despite its fallibility, carrier sensing is not dispensed with in IEEE 802.11 networks;
rather, it is augmented by the addition of a slot reservation mechanism to the MAC
protocol. The resulting scheme is called carrier sensing, multiple access with collision

avoidance (CSMA/CA).
When a station is ready to transmit, it senses the medium. If it detects no carrier

signal it may assume that one of the following conditions is true:

1. The medium is available.

2. An out-of-range station is in the process of requesting a slot.

3. An out-of-range station is using a slot that it had previously reserved.

The slot-reservation protocol involves the exchange of a pair of short messages (frames)
between the intending sender and the receiver. The first is a request to send (RTS) frame
from the sender to the receiver. The RTS message specifies a duration for the slot
requested. The receiver replies with a clear to send (CTS) frame, repeating the duration
of the slot. The effect of this exchange is as follows:

• Stations within range of the sender will pick up the RTS frame and take note of
the duration.

• Stations within range of the receiver will pick up the CTS frame and take note of
the duration.

As a result, all of the stations within range of both the sender and the receiver will refrain
from transmitting for the duration of the requested slot, leaving the channel free for the
sender to transmit a data frame of the appropriate length. Finally, successful receipt of
the data frame is acknowledged by the receiver to help deal with the problem of external
interference with the channel. The slot-reservation feature of the MAC protocol helps to
avoid collisions in these ways:

• The CTS frames help to avoid the hidden station and fading problems.

• The RTS and CTS frames are short, so the risk of collisions with them are low. If
one is detected, or an RTS does not result in a CTS, a random back-off period is
used, as in Ethernet.

138 CHAPTER 3 NETWORKING AND INTERNETWORKING

• When the RTS and CTS frames have been correctly exchanged, there should be
no collisions involving the subsequent data and acknowledgement frames unless
intermittent fading prevented a third party from receiving either of them.

Security • The privacy and integrity of communication is an obvious concern for
wireless networks. Any station that is within range and equipped with a
receiver/transmitter might seek to join a network, or, failing that, it might eavesdrop on
transmissions between other stations. The first attempt to address the security issues for
802.11 is entitled Wired Equivalent Privacy (WEP). Unfortunately, WEP is anything but
what its name implies. Its security design was flawed in several ways that enabled it to
be broken fairly easily. We describe its weaknesses and summarize the Wi-Fi Protected
Access (WPA) system that succeeded it in Section 11.6.4.

3.5.3 IEEE 802.15.1 Bluetooth wireless PAN

Bluetooth is a wireless personal area network technology that emerged from the need to
link mobile phones, laptop computers and other personal devices without wires. A
special interest group (SIG) of mobile phone and computer manufacturers led by L.M.
Ericsson developed a specification for a wireless personal area network (WPAN) for the
transmission of digital voice streams as well as data [Haartsen et al. 1998]. Version 1.0
of the Bluetooth standard was published in 1999, borrowing its name from a Viking
king. We describe Version 1.1 here. It was published in 2002 resolving some problems.
The IEEE 802.15 Working Group then adopted it as standard 802.15.1 and published a
specification for the physical and data link layers [IEEE 2002].

Bluetooth networks differ substantially from IEEE 802.11 (WiFi), the only other
widely adopted wireless networking standard, in ways that reflect the different
application requirements of WPANs and the different cost and energy consumption
targets for which they are designed. Bluetooth aims to support very small, low-cost
devices such as ear-mounted wireless headsets receiving digital audio streams from a
mobile phone as well as interconnections between computers, phones, tablets and other
mobile devices. The cost target was to add only five dollars to the cost of a handheld
device and the energy target to utilize only a small fraction of the total battery power
used by a phone or tablet, enabling operation for several hours even with lightweight
batteries used in wearable devices such as headsets.

The intended applications require less bandwidth and a shorter transmission range
than typical wireless LAN applications. This is fortunate because Bluetooth operates in
the same crowded 2.4 GHz licence-free frequency band as WiFi networks, cordless
phones and many emergency service communication systems. Transmission is at low
energy, hopping at a rate of 1600 times per second between 79 1 MHz sub-bands of the
permitted frequency band to minimize the effects of interference. The output power of
normal Bluetooth devices is 1 milliwatt, giving a coverage of only 10 metres; 100
milliwatt devices with a range of up to 100 metres are permitted for applications such as
home networks. Energy efficiency is further improved by the inclusion of an adaptive

range facility, which adjusts the transmitted power to a lower level when partner devices
are nearby (as determined by the strength of the signals initially received).

Bluetooth nodes associate dynamically in pairs with no prior knowledge required.
The protocol for association is described below. After a successful association the

EXERCISES 139

initiating node has the role of master and the other slave. A Piconet is a dynamically
associated network composed of one master and up to seven active slaves. The master
controls the use of the communication channel, allocating timeslots to each slave. A
node that is in more than one Piconet can act as a bridge, enabling the masters to
communicate – multiple Piconets linked in this fashion are termed a scatternet. Most
types of device have the capacity to act as either master or slave.

All Bluetooth nodes are also equipped with a globally unique 48-bit MAC address
(see Section 3.5.1), although it is only the master’s MAC address that is used in the
protocol. When a slave becomes active in a Piconet, it is assigned a temporary local
address in the range 1 to 7 to reduce the length of packet headers. In addition to the seven
active slaves, a Piconet may contain up to 255 parked nodes in low-power mode
awaiting an activation signal from the master.

Association protocol • To conserve energy, devices remain in sleep or standby mode
before any associations are made or when no recent communication has occurred. In
standby mode they wake to listen for activation messages at intervals ranging from 0.64
to 2.56 seconds. To associate with a known nearby node (parked), the initiating node
transmits a train of 16 page packets, on 16 frequency sub-bands, which may have to be
repeated several times. To contact any unknown node within range, the initiator must
first broadcast a train of inquiry messages. These transmission trains can occupy up to
about 5 seconds in the worst case, leading to a maximum association time of 7–10
seconds.

Association is followed by an optional authentication exchange based on user-
supplied or previously received authentication tokens, to ensure that the association is
with the intended node and not an imposter. A slave then remains synchronized to the
master by observing regularly transmitted packets from the master, even when they are
not addressed to the slave. A slave that is inactive can be placed in parked mode by the
master, freeing its slot in the Piconet for use by another node.

 The requirement to support synchronous communication channels with adequate
quality of service for the transmission of two-way real-time audio (for example, between
a phone and its owner’s wireless headset) as well as asynchronous communication for
data exchange dictated a network architecture very different from the best-effort
multiple-access design of Ethernet and WiFi networks. Synchronous communication is
achieved by the use of a simple two-way communication protocol between a master and
one of its slaves, termed a synchronous connection oriented (SCO) link on which master
and slave must send alternating synchronized packets. Asynchronous communication is
achieved by an asynchronous connection-less (ACL) link on which the master sends
asynchronous poll packets to its slaves periodically and the slaves transmit only after
receiving a poll.

All variants of the Bluetooth protocol use frames that fit within the structure
shown in Figure 3.25. Once a Piconet has been established, the access code consists of
a fixed preamble to synchronize the sender and receiver and identify the start of a slot,
followed by a code derived from the master’s MAC address that uniquely identifies the
Piconet. The latter ensures that frames are correctly routed in situations where there are
multiple overlapping Piconets. Because the medium is likely to be noisy and real-time
communication cannot rely on retransmission, each bit in the header is transmitted in
triplicate to provide redundancy for both the information and the checksum parts.

Figure 3.25 Bluetooth frame structure

Header

SCO packets (e.g., for voice data) have a 240-bit payload containing 80 bits of data triplicated, filling
exactly one timeslot.

bits: 72 54 0 – 2744

Access code Header (redundantly encoded) Data for transmission

bits: 3 1 1 1 4 8

Destination Flow Ack Seq Type Header checksum

Address within

Piconet

= ACL, SCO,

poll, null

140 CHAPTER 3 NETWORKING AND INTERNETWORKING

The address field is just 3 bits to allow addressing to any of the seven currently
active slaves. A zero address from the master indicates a broadcast. There are single-bit
fields for flow control, acknowledgement and sequence numbering. The flow-control bit
is used by a slave to indicate to the master that its buffers are full; the master should
await a frame with a non-zero acknowledgement bit from the slave. The sequence
number bit is inverted on each new frame sent to the same node; this enables duplicate
(i.e., retransmitted) frames to be detected.

SCO links are used in time-critical applications such as the transmission of a two-
way voice conversation. Packets must be short to keep the latency low, and there is little
purpose in reporting or retransmitting corrupted packets in such applications since the
retransmitted data would arrive too late to be useful. So the SCO protocol uses a simple,
highly redundant protocol in which 80 bits of voice data are normally transmitted in
triplicate to produce a 240-bit payload. Any two matching 80-bit replicas are taken as
valid.

On the other hand, ACL links are used for data-transfer applications such as
address book synchronization between a computer and a phone with a larger payload.
The payload is not replicated but may contain an internal checksum that is checked at
the application level, and in the case of failure retransmission can be requested.

Data is transmitted in packets occupying timeslots of 625 microseconds clocked
and allocated by the master node. Each packet is transmitted on a different frequency in
a hopping sequence defined by the master node. Because these slots are not large enough
to allow a substantial payload, frames may be extended to occupy one, three or five slots.
These characteristics and the underlying physical transmission method result in a
maximum total throughput of 1 Mbps for a Piconet, accommodating up to three
synchronous duplex channels of 64 Kpbs between a master and its slaves or a channel
for asynchronous data transfer at rates up to 723 Kbps. These throughputs are calculated
for the most redundant version of the SCO protocol, as described above. Other protocol
variants are defined that trade the robustness and simplicity (and therefore low
computational cost) of triplicated data for higher throughput.

Unlike most network standards, Bluetooth includes specifications (called profiles)
for several application-level protocols, some of which are very specific to particular
applications. The purpose of these profiles is to increase the likelihood that devices

SECTION 3.6 SUMMARY 141

manufactured by different vendors will interwork. Thirteen application profiles are
covered: generic access, service discovery, serial port, generic object exchange, LAN
access, dialup networking, fax, cordless telephony, intercom, headset, object push, file
transfer and synchronization. Others are in preparation, including ambitious attempts to
transmit high-quality music and even video over Bluetooth.

Bluetooth occupies a special niche in the range of wireless local networks. It
achieves its ambitious design goal of supporting synchronous real-time audio
communication with satisfactory quality of service (see Chapter 20 for further
discussion of quality of service issues) as well as asynchronous data transfer using very
low cost, compact and portable hardware, low power and very limited bandwidth.

Its principal limitation is the time taken (up to 10 seconds) for association of new
devices. This impedes its use for certain applications, especially where devices are
moving relative to each other, preventing its use, for example, to pay road tolls or to
transmit promotional information to mobile phone users as they pass a store. A useful
further reference on Bluetooth networking is the book by Bray and Sturman [2002].

Version 2.0 of the Bluetooth standard, with data throughputs up to 3 Mbps –
sufficient to carry CD-quality audio – was released in 2004. Other improvements
included a faster association mechanism and larger Piconet addresses. Versions 3 and 4
of the standard were under development at the time of writing. Version 3 integrates a
Bluetooth control protocol with a WiFi data transfer layer to achieve throughputs up to
24 Mbps. Version 4 is under development as an ultra-low power Bluetooth technology
for devices requiring a very long battery life.

3.6 Summary

We have focused here on the networking concepts and techniques that are needed as a
basis for distributed systems, approaching them from the point of view of a distributed
system designer. Packet networks and layered protocols provide the basis for
communication in distributed systems. Local area networks are based on packet
broadcasting on a shared medium; Ethernet is the dominant technology. Wide area
networks are based on packet switching to route packets to their destinations through a
connected network. Routing is a key mechanism and a variety of routing algorithms are
used, of which the distance-vector method is the most basic but effective. Congestion
control is needed to prevent overflow of buffers at the receiver and at intermediate
nodes.

Internetworks are constructed by layering a ‘virtual’ internetwork protocol over
collections of networks linked together by routers. The Internet TCP/IP protocols enable
computers in the Internet to communicate with one another in a uniform manner,
irrespective of whether they are on the same local area network or in different countries.
The Internet standards include many application-level protocols that are suitable for use
in wide area distributed applications. IPv6 has the much larger address space needed for
the future evolution of the Internet and provision for new application requirements such
as quality of service and security.

Mobile users are supported by MobileIP for wide area roaming and by wireless
LANs based on IEEE 802 standards for local connectivity.

142 CHAPTER 3 NETWORKING AND INTERNETWORKING

EXERCISES

3.1 A client sends a 200 byte request message to a service, which produces a response
containing 5000 bytes. Estimate the total time required to complete the request in each
of the following cases, with the performance assumptions listed below:

i) using connectionless (datagram) communication (for example, UDP);

ii) using connection-oriented communication (for example, TCP);

iii) when the server process is in the same machine as the client.

[Latency per packet (local or remote,
incurred on both send and receive): 5 ms
Connection setup time (TCP only): 5 ms
Data transfer rate: 10 Mbps
MTU: 1000 bytes
Server request processing time: 2 ms
Assume that the network is lightly loaded.]

pages 82, 122

3.2 The Internet is far too large for any router to hold routing information for all
destinations. How does the Internet routing scheme deal with this issue? pages 98, 114

3.3 What is the task of an Ethernet switch? What tables does it maintain? pages 105, 130

3.4 Make a table similar to Figure 3.5 describing the work done by the software in each
protocol layer when Internet applications and the TCP/IP suite are implemented over an
Ethernet. pages 94, 122, 130

3.5 How has the end-to-end argument [Saltzer et al. 1984] been applied to the design of the
Internet? Consider how the use of a virtual circuit network protocol in place of IP would
impact the feasibility of the World Wide Web. pages 61, 96, 106, [www.reed.com]

3.6 Can we be sure that no two computers in the Internet have the same IP address?
page 108

3.7 Compare connectionless (UDP) and connection-oriented (TCP) communication for the
implementation of each of the following application-level or presentation-level
protocols:

i) virtual terminal access (for example, Telnet);

ii) file transfer (for example, FTP);

iii) user location (for example, rwho, finger);

iv) information browsing (for example, HTTP);

v) remote procedure call.
page 122

3.8 Explain how it is possible for a sequence of packets transmitted through a wide area
network to arrive at their destination in an order that differs from that in which they were
sent. Why can’t this happen in a local network?

pages 97, 131

EXERCISES 143

3.9 A specific problem that must be solved in remote terminal access protocols such as
Telnet is the need to transmit exceptional events such as ‘kill signals’ from the ‘terminal’
to the host in advance of previousl transmitted data. Kill signals should reach their
destination ahead of any other ongoing transmissions. Discuss the solution of this
problem with connection-oriented and connectionless protocols. page 122

3.10 What are the disadvantages of using network-level broadcasting to locate resources:

i) in a single Ethernet?

ii) in an intranet?

To what extent is Ethernet multicast an improvement on broadcasting? page 130

3.11 Suggest a scheme that improves on MobileIP for providing access to a web server on a
mobile device that is sometimes connected to the Internet by the mobile phone network
and at other times has a wired connection to the Internet at one of several locations.

page 120

3.12 Show the sequence of changes to the routing tables in Figure 3.8 that will occur
(according to the RIP algorithm given in Figure 3.9) after the link labelled 3 in Figure
3.7 is broken. pages 98–101

3.13 Use the diagram in Figure 3.13 as a basis for an illustration showing the segmentation
and encapsulation of an HTTP request to a server and the resulting reply. Assume that
the request is a short HTTP message, but the reply includes at least 2000 bytes of
HTML.

page 93, 107

3.14 Consider the use of TCP in a Telnet remote terminal client. How should the keyboard
input be buffered at the client? Investigate Nagle’s and Clark’s algorithms [Nagle 1984,
Clark 1982] for flow control and compare them with the simple algorithm described on
page 103 when TCP is used by:

a) a web server,

b) a Telnet application,

c) a remote graphical application with continuous mouse input.
pages 102, 123

3.15 Construct a network diagram similar to Figure 3.10 for the local network at your
institution or company. page 104

3.16 Describe how you would configure a firewall to protect the local network at your
institution or company. What incoming and outgoing requests should it intercept?

page 125

3.17 How does a newly installed personal computer connected to an Ethernet discover the IP
addresses of local servers? How does it translate them to Ethernet addresses? page 111

3.18 Can firewalls prevent denial of service attacks such as the one described on page 112?
What other methods are available to deal with such attacks? page 112, 125

This page intentionally left blank

 145

4

INTERPROCESS COMMUNICATION

4.1 Introduction
4.2 The API for the Internet protocols
4.3 External data representation and marshalling
4.4 Multicast communication
4.5 Network virtualization: Overlay networks
4.6 Case study: MPI
4.7 Summary

This chapter is concerned with the characteristics of protocols for communication
between processes in a distributed system – that is, interprocess communication.

Interprocess communication in the Internet provides both datagram and stream
communication. The Java APIs for these are presented, together with a discussion of their
failure models. They provide alternative building blocks for communication protocols.
This is complemented by a study of protocols for the representation of collections of data
objects in messages and of references to remote objects. Together, these services offer
support for the construction of higher-level communication services, as discussed in the
following two chapters.

The interprocess communication primitives discussed above all support point-to-
point communication, yet it is equally useful to be able to send a message from one sender
to a group of receivers. The chapter also considers multicast communication, including
IP multicast and the key concepts of reliability and ordering of messages in multicast
communication.

Multicast is an important requirement for distributed applications and must be
provided even if underlying support for IP multicast is not available. This is typically
provided by an overlay network constructed on top of the underlying TCP/IP network.
Overlay networks can also provide support for file sharing, enhanced reliability and
content distribution.

The Message Passing Interface (MPI) is a standard developed to provide an API for
a set of message-passing operations with synchronous and asynchronous variants.

146 CHAPTER 4 INTERPROCESS COMMUNICATION

4.1 Introduction

This and the next two chapters are concerned with the communication aspects of
middleware, although the principles discussed are more widely applicable. This one is
concerned with the design of the components shown in the darker layer in Figure 4.1.
The layer above it is discussed in Chapter 5, which examines remote invocation, and
Chapter 6, which is concerned with indirect communications paradigms.

Chapter 3 discussed the Internet transport-level protocols UDP and TCP without
saying how middleware and application programs could use these protocols. The next
section of this chapter introduces the characteristics of interprocess communication and
then discusses UDP and TCP from a programmer’s point of view, presenting the Java
interface to each of these two protocols, together with a discussion of their failure
models

Figure 4.1 Middleware layers

Applications, services

Middleware
layers

Underlying interprocess communication primitives:

UDP and TCP

This
chapter

Remote invocation, indirect communication

Sockets, message passing, multicast support, overlay networks

.
The application program interface to UDP provides a message passing abstraction

– the simplest form of interprocess communication. This enables a sending process to
transmit a single message to a receiving process. The independent packets containing
these messages are called datagrams. In the Java and UNIX APIs, the sender specifies
the destination using a socket – an indirect reference to a particular port used by the
destination process at a destination computer.

The application program interface to TCP provides the abstraction of a two-way
stream between pairs of processes. The information communicated consists of a stream
of data items with no message boundaries. Streams provide a building block for
producer-consumer communication. A producer and a consumer form a pair of
processes in which the role of the first is to produce data items and the role of the second
is to consume them. The data items sent by the producer to the consumer are queued on
arrival at the receiving host until the consumer is ready to receive them. The consumer
must wait when no data items are available. The producer must wait if the storage used
to hold the queued data items is exhausted.

Section 4.3 is concerned with how the objects and data structures used in
application programs can be translated into a form suitable for sending messages over
the network, taking into account the fact that different computers may use different
representations for simple data items. It also discusses a suitable representation for
object references in a distributed system.

SECTION 4.2 THE API FOR THE INTERNET PROTOCOLS 147

Section 4.4 discusses multicast communication: a form of interprocess
communication in which one process in a group of processes transmits the same
message to all members of the group. After explaining IP multicast, the section
discusses the need for more reliable forms of multicast.

Section 4.5 examines the increasingly important topic of overlay networks. An
overlay network is a network that is built over another network to permit applications to
route messages to destinations not specified by an IP address. Overlay networks can
enhance TCP/IP networks by providing alternative, more specialized network services.
They are important in supporting multicast communication and peer-to-peer
communication.

Finally, Section 4.6 presents a case study of a significant message-passing service,
MPI, developed by the high-performance computing community.

4.2 The API for the Internet protocols

In this section, we discuss the general characteristics of interprocess communication and
then discuss the Internet protocols as an example, explaining how programmers can use
them, either by means of UDP messages or through TCP streams.

Section 4.2.1 revisits the message communication operations send and receive

introduced in Section 2.3.2, with a discussion of how they synchronize with one another
and how message destinations are specified in a distributed system. Section 4.2.2
introduces sockets, which are used in the application programming interface to UDP and
TCP. Section 4.2.3 discusses UDP and its API in Java. Section 4.2.4 discusses TCP and
its API in Java. The APIs for Java are object oriented but are similar to the ones designed
originally in the Berkeley BSD 4.x UNIX operating system; a case study on the latter is
available on the web site for the book [www.cdk5.net/ipc]. Readers studying the
programming examples in this section should consult the online Java documentation or
Flanagan [2002] for the full specification of the classes discussed, which are in the
package java.net.

4.2.1 The characteristics of interprocess communication

Message passing between a pair of processes can be supported by two message
communication operations, send and receive, defined in terms of destinations and
messages. To communicate, one process sends a message (a sequence of bytes) to a
destination and another process at the destination receives the message. This activity
involves the communication of data from the sending process to the receiving process
and may involve the synchronization of the two processes. Section 4.2.3 gives
definitions for the send and receive operations in the Java API for the Internet protocols,
with a further case study of message passing (MPI) offered in Section 4.6.

Synchronous and asynchronous communication • A queue is associated with each
message destination. Sending processes cause messages to be added to remote queues and
receiving processes remove messages from local queues. Communication between the

148 CHAPTER 4 INTERPROCESS COMMUNICATION

sending and receiving processes may be either synchronous or asynchronous. In the
synchronous form of communication, the sending and receiving processes synchronize at
every message. In this case, both send and receive are blocking operations. Whenever a
send is issued the sending process (or thread) is blocked until the corresponding receive is
issued. Whenever a receive is issued by a process (or thread), it blocks until a message
arrives.

In the asynchronous form of communication, the use of the send operation is non-

blocking in that the sending process is allowed to proceed as soon as the message has
been copied to a local buffer, and the transmission of the message proceeds in parallel
with the sending process. The receive operation can have blocking and non-blocking
variants. In the non-blocking variant, the receiving process proceeds with its program
after issuing a receive operation, which provides a buffer to be filled in the background,
but it must separately receive notification that its buffer has been filled, by polling or
interrupt.

In a system environment such as Java, which supports multiple threads in a single
process, the blocking receive has no disadvantages, for it can be issued by one thread
while other threads in the process remain active, and the simplicity of synchronizing the
receiving threads with the incoming message is a substantial advantage. Non-blocking
communication appears to be more efficient, but it involves extra complexity in the
receiving process associated with the need to acquire the incoming message out of its
flow of control. For these reasons, today’s systems do not generally provide the non-
blocking form of receive.

Message destinations • Chapter 3 explains that in the Internet protocols, messages are
sent to (Internet address, local port) pairs. A local port is a message destination within
a computer, specified as an integer. A port has exactly one receiver (multicast ports are
an exception, see Section 4.5.1) but can have many senders. Processes may use multiple
ports to receive messages. Any process that knows the number of a port can send a
message to it. Servers generally publicize their port numbers for use by clients.

If the client uses a fixed Internet address to refer to a service, then that service must
always run on the same computer for its address to remain valid. This can be avoided by
using the following approach to providing location transparency:

• Client programs refer to services by name and use a name server or binder (see
Section 5.4.2) to translate their names into server locations at runtime. This allows
services to be relocated but not to migrate – that is, to be moved while the system
is running.

Reliability • Chapter 2 defines reliable communication in terms of validity and
integrity. As far as the validity property is concerned, a point-to-point message service
can be described as reliable if messages are guaranteed to be delivered despite a
‘reasonable’ number of packets being dropped or lost. In contrast, a point-to-point
message service can be described as unreliable if messages are not guaranteed to be
delivered in the face of even a single packet dropped or lost. For integrity, messages
must arrive uncorrupted and without duplication.

Ordering • Some applications require that messages be delivered in sender order – that
is, the order in which they were transmitted by the sender. The delivery of messages out
of sender order is regarded as a failure by such applications.

SECTION 4.2 THE API FOR THE INTERNET PROTOCOLS 149

4.2.2 Sockets

Both forms of communication (UDP and TCP) use the socket abstraction, which
provides an endpoint for communication between processes. Sockets originate from
BSD UNIX but are also present in most other versions of UNIX, including Linux as well
as Windows and the Macintosh OS. Interprocess communication consists of
transmitting a message between a socket in one process and a socket in another process,
as illustrated in

Figure 4.2 Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server

Figure 4.2. For a process to receive messages, its socket must be bound
to a local port and one of the Internet addresses of the computer on which it runs.
Messages sent to a particular Internet address and port number can be received only by
a process whose socket is associated with that Internet address and port number.
Processes may use the same socket for sending and receiving messages. Each computer
has a large number (216) of possible port numbers for use by local processes for
receiving messages. Any process may make use of multiple ports to receive messages,
but a process cannot share ports with other processes on the same computer. (Processes
using IP multicast are an exception in that they do share ports – see Section 4.4.1.)
However, any number of processes may send messages to the same port. Each socket is
associated with a particular protocol – either UDP or TCP.

Java API for Internet addresses • As the IP packets underlying UDP and TCP are sent
to Internet addresses, Java provides a class, InetAddress, that represents Internet
addresses. Users of this class refer to computers by Domain Name System (DNS)
hostnames (see Section 3.4.7). For example, instances of InetAddress that contain
Internet addresses can be created by calling a static method of InetAddress, giving a
DNS hostname as the argument. The method uses the DNS to get the corresponding
Internet address. For example, to get an object representing the Internet address of the
host whose DNS name is bruno.dcs.qmul.ac.uk, use:

InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk");

This method can throw an UnknownHostException. Note that the user of the class does
not need to state the explicit value of an Internet address. In fact, the class encapsulates
the details of the representation of Internet addresses. Thus the interface for this class is
not dependent on the number of bytes needed to represent Internet addresses – 4 bytes
in IPv4 and 16 bytes in IPv6.

150 CHAPTER 4 INTERPROCESS COMMUNICATION

4.2.3 UDP datagram communication

A datagram sent by UDP is transmitted from a sending process to a receiving process
without acknowledgement or retries. If a failure occurs, the message may not arrive. A
datagram is transmitted between processes when one process sends it and another
receives it. To send or receive messages a process must first create a socket bound to an
Internet address of the local host and a local port. A server will bind its socket to a server

port – one that it makes known to clients so that they can send messages to it. A client
binds its socket to any free local port. The receive method returns the Internet address
and port of the sender, in addition to the message, allowing the recipient to send a reply.

The following are some issues relating to datagram communication:
Message size: The receiving process needs to specify an array of bytes of a particular
size in which to receive a message. If the message is too big for the array, it is
truncated on arrival. The underlying IP protocol allows packet lengths of up to 216

bytes, which includes the headers as well as the message. However, most
environments impose a size restriction of 8 kilobytes. Any application requiring
messages larger than the maximum must fragment them into chunks of that size.
Generally, an application, for example DNS, will decide on a size that is not
excessively large but is adequate for its intended use.
Blocking: Sockets normally provide non-blocking sends and blocking receives for
datagram communication (a non-blocking receive is an option in some
implementations). The send operation returns when it has handed the message to the
underlying UDP and IP protocols, which are responsible for transmitting it to its
destination. On arrival, the message is placed in a queue for the socket that is bound
to the destination port. The message can be collected from the queue by an
outstanding or future invocation of receive on that socket. Messages are discarded at
the destination if no process already has a socket bound to the destination port.

The method receive blocks until a datagram is received, unless a timeout has
been set on the socket. If the process that invokes the receive method has other work
to do while waiting for the message, it should arrange to use a separate thread.
Threads are discussed in Chapter 7. For example, when a server receives a message
from a client, the message may specify work to do, in which case the server will use
separate threads to do the work and to wait for messages from other clients.

Timeouts: The receive that blocks forever is suitable for use by a server that is waiting
to receive requests from its clients. But in some programs, it is not appropriate that a
process that has invoked a receive operation should wait indefinitely in situations
where the sending process may have crashed or the expected message may have been
lost. To allow for such requirements, timeouts can be set on sockets. Choosing an
appropriate timeout interval is difficult, but it should be fairly large in comparison
with the time required to transmit a message.

Receive from any: The receive method does not specify an origin for messages.
Instead, an invocation of receive gets a message addressed to its socket from any
origin. The receive method returns the Internet address and local port of the sender,
allowing the recipient to check where the message came from. It is possible to
connect a datagram socket to a particular remote port and Internet address, in which
case the socket is only able to send messages to and receive messages from that
address.

SECTION 4.2 THE API FOR THE INTERNET PROTOCOLS 151

Failure model for UDP datagrams • Chapter 2 presents a failure model for
communication channels and defines reliable communication in terms of two properties:
integrity and validity. The integrity property requires that messages should not be
corrupted or duplicated. The use of a checksum ensures that there is a negligible
probability that any message received is corrupted. UDP datagrams suffer from the
following failures:

Omission failures: Messages may be dropped occasionally, either because of a
checksum error or because no buffer space is available at the source or destination.
To simplify the discussion, we regard send-omission and receive-omission failures
(see Figure 2.15) as omission failures in the communication channel.

Ordering: Messages can sometimes be delivered out of sender order.

Applications using UDP datagrams are left to provide their own checks to achieve the
quality of reliable communication they require. A reliable delivery service may be
constructed from one that suffers from omission failures by the use of
acknowledgements. Section 5.2 discusses how reliable request-reply protocols for
client-server communication may be built over UDP.

Use of UDP • For some applications, it is acceptable to use a service that is liable to
occasional omission failures. For example, the Domain Name System, which looks up
DNS names in the Internet, is implemented over UDP. Voice over IP (VOIP) also runs
over UDP. UDP datagrams are sometimes an attractive choice because they do not
suffer from the overheads associated with guaranteed message delivery. There are three
main sources of overhead:

• the need to store state information at the source and destination;

• the transmission of extra messages;

• latency for the sender.

The reasons for these overheads are discussed in Section 4.2.4.

Java API for UDP datagrams • The Java API provides datagram communication by
means of two classes: DatagramPacket and DatagramSocket.

DatagramPacket: This class provides a constructor that makes an instance out of an
array of bytes comprising a message, the length of the message and the Internet
address and local port number of the destination socket, as follows:

Datagram packet

array of bytes containing message length of message Internet address port number

An instance of DatagramPacket may be transmitted between processes when one
process sends it and another receives it.

This class provides another constructor for use when receiving a message. Its
arguments specify an array of bytes in which to receive the message and the length
of the array. A received message is put in the DatagramPacket together with its
length and the Internet address and port of the sending socket. The message can be
retrieved from the DatagramPacket by means of the method getData. The methods
getPort and getAddress access the port and Internet address.

Figure 4.3 UDP client sends a message to the server and gets a reply

import java.net.*;

import java.io.*;

public class UDPClient{

 public static void main(String args[]){

// args give message contents and server hostname

DatagramSocket aSocket = null;

try {

aSocket = new DatagramSocket();

byte [] m = args[0].getBytes();

InetAddress aHost = InetAddress.getByName(args[1]);

int serverPort = 6789;

DatagramPacket request =

 new DatagramPacket(m, m.length(), aHost, serverPort);

aSocket.send(request);

byte[] buffer = new byte[1000];

DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

aSocket.receive(reply);

System.out.println("Reply: " + new String(reply.getData()));

 } catch (SocketException e){System.out.println("Socket: " + e.getMessage());

 } catch (IOException e){System.out.println("IO: " + e.getMessage());

 } finally { if(aSocket != null) aSocket.close();}

 }

}

152 CHAPTER 4 INTERPROCESS COMMUNICATION

DatagramSocket: This class supports sockets for sending and receiving UDP
datagrams. It provides a constructor that takes a port number as its argument, for use
by processes that need to use a particular port. It also provides a no-argument
constructor that allows the system to choose a free local port. These constructors can
throw a SocketException if the chosen port is already in use or if a reserved port (a
number below 1024) is specified when running over UNIX.

The class DatagramSocket provides methods that include the following:

send and receive: These methods are for transmitting datagrams between a pair
of sockets. The argument of send is an instance of DatagramPacket containing
a message and its destination. The argument of receive is an empty
DatagramPacket in which to put the message, its length and its origin. The
methods send and receive can throw IOExceptions.

setSoTimeout: This method allows a timeout to be set. With a timeout set, the receive

method will block for the time specified and then throw an InterruptedIOException.

connect: This method is used for connecting to a particular remote port and
Internet address, in which case the socket is only able to send messages to and
receive messages from that address.

Figure 4.4 UDP server repeatedly receives a request and sends it back to the client

import java.net.*;

import java.io.*;

public class UDPServer{

 public static void main(String args[]){

DatagramSocket aSocket = null;

try{

aSocket = new DatagramSocket(6789);

byte[] buffer = new byte[1000];

 while(true){

 DatagramPacket request = new DatagramPacket(buffer, buffer.length);

 aSocket.receive(request);

 DatagramPacket reply = new DatagramPacket(request.getData(),

 request.getLength(), request.getAddress(), request.getPort());

 aSocket.send(reply);

}

} catch (SocketException e){System.out.println("Socket: " + e.getMessage());

} catch (IOException e) {System.out.println("IO: " + e.getMessage());

} finally {if (aSocket != null) aSocket.close();}

 }

}

SECTION 4.2 THE API FOR THE INTERNET PROTOCOLS 153

Figure 4.3 shows the program for a client that creates a socket, sends a message to a
server at port 6789 and then waits to receive a reply. The arguments of the main method
supply a message and the DNS hostname of the server. The message is converted to an
array of bytes, and the DNS hostname is converted to an Internet address. Figure 4.4
shows the program for the corresponding server, which creates a socket bound to its
server port (6789) and then repeatedly waits to receive a request message from a client,
to which it replies by sending back the same message.

4.2.4 TCP stream communication

The API to the TCP protocol, which originates from BSD 4.x UNIX, provides the
abstraction of a stream of bytes to which data may be written and from which data may
be read. The following characteristics of the network are hidden by the stream
abstraction:

Message sizes: The application can choose how much data it writes to a stream or
reads from it. It may deal in very small or very large sets of data. The underlying
implementation of a TCP stream decides how much data to collect before
transmitting it as one or more IP packets. On arrival, the data is handed to the
application as requested. Applications can, if necessary, force data to be sent
immediately.

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example
of a simple scheme (which is not used in TCP), the sending end keeps a record of each

154 CHAPTER 4 INTERPROCESS COMMUNICATION

IP packet sent and the receiving end acknowledges all the arrivals. If the sender does
not receive an acknowledgement within a timeout, it retransmits the message. The
more sophisticated sliding window scheme [Comer 2006] cuts down on the number
of acknowledgement messages required.

Flow control: The TCP protocol attempts to match the speeds of the processes that
read from and write to a stream. If the writer is too fast for the reader, then it is
blocked until the reader has consumed sufficient data.

Message duplication and ordering: Message identifiers are associated with each IP
packet, which enables the recipient to detect and reject duplicates, or to reorder
messages that do not arrive in sender order.

Message destinations: A pair of communicating processes establish a connection
before they can communicate over a stream. Once a connection is established, the
processes simply read from and write to the stream without needing to use Internet
addresses and ports. Establishing a connection involves a connect request from client
to server followed by an accept request from server to client before any
communication can take place. This could be a considerable overhead for a single
client-server request and reply.

The API for stream communication assumes that when a pair of processes are
establishing a connection, one of them plays the client role and the other plays the server
role, but thereafter they could be peers. The client role involves creating a stream socket
bound to any port and then making a connect request asking for a connection to a server
at its server port. The server role involves creating a listening socket bound to a server
port and waiting for clients to request connections. The listening socket maintains a
queue of incoming connection requests. In the socket model, when the server accepts a
connection, a new stream socket is created for the server to communicate with a client,
meanwhile retaining its socket at the server port for listening for connect requests from
other clients.

The pair of sockets in the client and server are connected by a pair of streams, one
in each direction. Thus each socket has an input stream and an output stream. One of the
pair of processes can send information to the other by writing to its output stream, and
the other process obtains the information by reading from its input stream.

 When an application closes a socket, this indicates that it will not write any more
data to its output stream. Any data in the output buffer is sent to the other end of the
stream and put in the queue at the destination socket, with an indication that the stream
is broken. The process at the destination can read the data in the queue, but any further
reads after the queue is empty will result in an indication of end of stream. When a
process exits or fails, all of its sockets are eventually closed and any process attempting
to communicate with it will discover that its connection has been broken.

The following are some outstanding issues related to stream communication:

Matching of data items: Two communicating processes need to agree as to the
contents of the data transmitted over a stream. For example, if one process writes an
int followed by a double to a stream, then the reader at the other end must read an int

followed by a double. When a pair of processes do not cooperate correctly in their
use of a stream, the reading process may experience errors when interpreting the data
or may block due to insufficient data in the stream.

SECTION 4.2 THE API FOR THE INTERNET PROTOCOLS 155

Blocking: The data written to a stream is kept in a queue at the destination socket.
When a process attempts to read data from an input channel, it will get data from the
queue or it will block until data becomes available. The process that writes data to a
stream may be blocked by the TCP flow-control mechanism if the socket at the other
end is queuing as much data as the protocol allows.

Threads: When a server accepts a connection, it generally creates a new thread in
which to communicate with the new client. The advantage of using a separate thread
for each client is that the server can block when waiting for input without delaying
other clients. In an environment in which threads are not provided, an alternative is
to test whether input is available from a stream before attempting to read it; for
example, in a UNIX environment the select system call may be used for this purpose.

Failure model • To satisfy the integrity property of reliable communication, TCP
streams use checksums to detect and reject corrupt packets and sequence numbers to
detect and reject duplicate packets. For the sake of the validity property, TCP streams
use timeouts and retransmissions to deal with lost packets. Therefore, messages are
guaranteed to be delivered even when some of the underlying packets are lost.

But if the packet loss over a connection passes some limit or the network
connecting a pair of communicating processes is severed or becomes severely
congested, the TCP software responsible for sending messages will receive no
acknowledgements and after a time will declare the connection to be broken. Thus TCP
does not provide reliable communication, because it does not guarantee to deliver
messages in the face of all possible difficulties.

 When a connection is broken, a process using it will be notified if it attempts to
read or write. This has the following effects:

• The processes using the connection cannot distinguish between network failure
and failure of the process at the other end of the connection.

• The communicating processes cannot tell whether the messages they have sent
recently have been received or not.

Use of TCP • Many frequently used services run over TCP connections, with reserved
port numbers. These include the following:

HTTP: The Hypertext Transfer Protocol is used for communication between web
browsers and web servers; it is discussed in Section 5.2.

FTP: The File Transfer Protocol allows directories on a remote computer to be
browsed and files to be transferred from one computer to another over a connection.

Telnet: Telnet provides access by means of a terminal session to a remote computer.

SMTP: The Simple Mail Transfer Protocol is used to send mail between computers.

Java API for TCP streams • The Java interface to TCP streams is provided in the classes
ServerSocket and Socket:

ServerSocket: This class is intended for use by a server to create a socket at a server
port for listening for connect requests from clients. Its accept method gets a connect

request from the queue or, if the queue is empty, blocks until one arrives. The result
of executing accept is an instance of Socket – a socket to use for communicating with
the client.

156 CHAPTER 4 INTERPROCESS COMMUNICATION

Socket: This class is for use by a pair of processes with a connection. The client uses
a constructor to create a socket, specifying the DNS hostname and port of a server.
This constructor not only creates a socket associated with a local port but also
connects it to the specified remote computer and port number. It can throw an
UnknownHostException if the hostname is wrong or an IOException if an IO error
occurs.

The Socket class provides the methods getInputStream and getOutputStream

for accessing the two streams associated with a socket. The return types of these
methods are InputStream and OutputStream, respectively – abstract classes that
define methods for reading and writing bytes. The return values can be used as the
arguments of constructors for suitable input and output streams. Our example uses
DataInputStream and DataOutputStream, which allow binary representations of
primitive data types to be read and written in a machine-independent manner.

Figure 4.5

Figure 4.5 TCP client makes connection to server, sends request and receives reply

import java.net.*;

import java.io.*;

public class TCPClient {

public static void main (String args[]) {

 // arguments supply message and hostname of destination

 Socket s = null;

 try{

int serverPort = 7896;

s = new Socket(args[1], serverPort);

DataInputStream in = new DataInputStream(s.getInputStream());

DataOutputStream out =

new DataOutputStream(s.getOutputStream());

out.writeUTF(args[0]); // UTF is a string encoding; see Sec 4.3

String data = in.readUTF();

System.out.println("Received: "+ data) ;

 }catch (UnknownHostException e){

System.out.println("Sock:"+e.getMessage());

 } catch (EOFException e){System.out.println("EOF:"+e.getMessage());

 } catch (IOException e){System.out.println("IO:"+e.getMessage());

 } finally {if(s!=null) try {s.close();}catch (IOException e){/*close failed*/}}

}

}

 shows a client program in which the arguments of the main method supply a
message and the DNS hostname of the server. The client creates a socket bound to the
hostname and server port 7896. It makes a DataInputStream and a DataOutputStream

from the socket’s input and output streams, then writes the message to its output stream
and waits to read a reply from its input stream. The server program in Figure 4.6 opens
a server socket on its server port (7896) and listens for connect requests. When one
arrives, it makes a new thread in which to communicate with the client. The new thread

Figure 4.6 TCP server makes a connection for each client and then echoes the client’s request

import java.net.*;

import java.io.*;

public class TCPServer {

public static void main (String args[]) {

 try{

int serverPort = 7896;

ServerSocket listenSocket = new ServerSocket(serverPort);

while(true) {

 Socket clientSocket = listenSocket.accept();

 Connection c = new Connection(clientSocket);

}

 } catch(IOException e) {System.out.println("Listen :"+e.getMessage());}

}

 }

class Connection extends Thread {

DataInputStream in;

DataOutputStream out;

Socket clientSocket;

public Connection (Socket aClientSocket) {

 try {

clientSocket = aClientSocket;

in = new DataInputStream(clientSocket.getInputStream());

out =new DataOutputStream(clientSocket.getOutputStream());

this.start();

 } catch(IOException e) {System.out.println("Connection:"+e.getMessage());}

}

public void run(){

 try { // an echo server

String data = in.readUTF();

out.writeUTF(data);

 } catch(EOFException e) {System.out.println("EOF:"+e.getMessage());

 } catch(IOException e) {System.out.println("IO:"+e.getMessage());

 } finally { try {clientSocket.close();}catch (IOException e){/*close failed*/}}

}

}

SECTION 4.2 THE API FOR THE INTERNET PROTOCOLS 157

creates a DataInputStream and a DataOutputStream from its socket’s input and output
streams and then waits to read a message and write the same one back.

As our message consists of a string, the client and server processes use the method
writeUTF of DataOutputStream to write it to the output stream and the method
readUTF of DataInputStream to read it from the input stream. UTF-8 is an encoding that
represents strings in a particular format, which is described in Section 4.3.

158 CHAPTER 4 INTERPROCESS COMMUNICATION

When a process has closed its socket, it will no longer be able to use its input and
output streams. The process to which it has sent data can read the data in its queue, but
any further reads after the queue is empty will result in an EOFException. Attempts to
use a closed socket or to write to a broken stream result in an IOException.

4.3 External data representation and marshalling

The information stored in running programs is represented as data structures – for
example, by sets of interconnected objects – whereas the information in messages
consists of sequences of bytes. Irrespective of the form of communication used, the data
structures must be flattened (converted to a sequence of bytes) before transmission and
rebuilt on arrival. The individual primitive data items transmitted in messages can be
data values of many different types, and not all computers store primitive values such as
integers in the same order. The representation of floating-point numbers also differs
between architectures. There are two variants for the ordering of integers: the so-called
big-endian order, in which the most significant byte comes first; and little-endian order,
in which it comes last. Another issue is the set of codes used to represent characters: for
example, the majority of applications on systems such as UNIX use ASCII character
coding, taking one byte per character, whereas the Unicode standard allows for the
representation of texts in many different languages and takes two bytes per character.

One of the following methods can be used to enable any two computers to
exchange binary data values:

• The values are converted to an agreed external format before transmission and
converted to the local form on receipt; if the two computers are known to be the
same type, the conversion to external format can be omitted.

• The values are transmitted in the sender’s format, together with an indication of
the format used, and the recipient converts the values if necessary.

Note, however, that bytes themselves are never altered during transmission. To support
RMI or RPC, any data type that can be passed as an argument or returned as a result must
be able to be flattened and the individual primitive data values represented in an agreed
format. An agreed standard for the representation of data structures and primitive values
is called an external data representation.

Marshalling is the process of taking a collection of data items and assembling
them into a form suitable for transmission in a message. Unmarshalling is the process
of disassembling them on arrival to produce an equivalent collection of data items at the
destination. Thus marshalling consists of the translation of structured data items and
primitive values into an external data representation. Similarly, unmarshalling consists
of the generation of primitive values from their external data representation and the
rebuilding of the data structures.

Three alternative approaches to external data representation and marshalling are
discussed (with a fourth considered in Chapter 21, when we examine Google’s approach
to representing structured data):

SECTION 4.3 EXTERNAL DATA REPRESENTATION AND MARSHALLING 159

• CORBA’s common data representation, which is concerned with an external
representation for the structured and primitive types that can be passed as the
arguments and results of remote method invocations in CORBA. It can be used by
a variety of programming languages (see Chapter 8).

• Java’s object serialization, which is concerned with the flattening and external
data representation of any single object or tree of objects that may need to be
transmitted in a message or stored on a disk. It is for use only by Java.

• XML (Extensible Markup Language), which defines a textual fomat for
representing structured data. It was originally intended for documents containing
textual self-describing structured data – for example documents accessible on the
Web – but it is now also used to represent the data sent in messages exchanged by
clients and servers in web services (see Chapter 9).

In the first two cases, the marshalling and unmarshalling activities are intended to be
carried out by a middleware layer without any involvement on the part of the application
programmer. Even in the case of XML, which is textual and therefore more accessible
to hand-encoding, software for marshalling and unmarshalling is available for all
commonly used platforms and programming environments. Because marshalling
requires the consideration of all the finest details of the representation of the primitive
components of composite objects, the process is likely to be error-prone if carried out
by hand. Compactness is another issue that can be addressed in the design of
automatically generated marshalling procedures.

In the first two approaches, the primitive data types are marshalled into a binary
form. In the third approach (XML), the primitive data types are represented textually.
The textual representation of a data value will generally be longer than the equivalent
binary representation. The HTTP protocol, which is described in Chapter 5, is another
example of the textual approach.

Another issue with regard to the design of marshalling methods is whether the
marshalled data should include information concerning the type of its contents. For
example, CORBA’s representation includes just the values of the objects transmitted,
and nothing about their types. On the other hand, both Java serialization and XML do
include type information, but in different ways. Java puts all of the required type
information into the serialized form, but XML documents may refer to externally
defined sets of names (with types) called namespaces.

Although we are interested in the use of an external data representation for the
arguments and results of RMIs and RPCs, it does have a more general use for
representing data structures, objects or structured documents in a form suitable for
transmission in messages or storing in files.

Two other techniques for external data representation are worthy of mention.
Google uses an approach called protocol buffers to capture representations of both
stored and transmitted data, which we examine in Section 20.4.1. There is also
considerable interest in JSON (JavaScript Object Notation) as an approach to external
data representation [www.json.org]. Protocol buffers and JSON represent a step towards
more lightweight approaches to data representation (when compared, for example, to
XML).

160 CHAPTER 4 INTERPROCESS COMMUNICATION

4.3.1 CORBA’s Common Data Representation (CDR)

CORBA CDR is the external data representation defined with CORBA 2.0 [OMG
2004a]. CDR can represent all of the data types that can be used as arguments and return
values in remote invocations in CORBA. These consist of 15 primitive types, which
include short (16-bit), long (32-bit), unsigned short, unsigned long, float (32-bit),
double (64-bit), char, boolean (TRUE, FALSE), octet (8-bit), and any (which can
represent any basic or constructed type); together with a range of composite types,
which are described in Figure 4.7. Each argument or result in a remote invocation is
represented by a sequence of bytes in the invocation or result message

Figure 4.7 CORBA CDR for constructed types

Type Representation

sequence length (unsigned long) followed by elements in order

string length (unsigned long) followed by characters in order (can also
have wide characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of the components

enumerated unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

.

Primitive types: CDR defines a representation for both big-endian and little-endian
orderings. Values are transmitted in the sender’s ordering, which is specified in each
message. The recipient translates if it requires a different ordering. For example, a
16-bit short occupies two bytes in the message, and for big-endian ordering, the most
significant bits occupy the first byte and the least significant bits occupy the second
byte. Each primitive value is placed at an index in the sequence of bytes according to
its size. Suppose that the sequence of bytes is indexed from zero upwards. Then a
primitive value of size n bytes (where n = 1, 2, 4 or 8) is appended to the sequence at
an index that is a multiple of n in the stream of bytes. Floating-point values follow
the IEEE standard, in which the sign, exponent and fractional part are in bytes 0–n

for big-endian ordering and the other way round for little-endian. Characters are
represented by a code set agreed between client and server.

Constructed types: The primitive values that comprise each constructed type are
added to a sequence of bytes in a particular order, as shown in Figure 4.7.

Figure 4.8 shows a message in CORBA CDR that contains the three fields of a struct

whose respective types are string, string and unsigned long. The figure shows the
sequence of bytes with four bytes in each row. The representation of each string consists
of an unsigned long representing its length followed by the characters in the string. For
simplicity, we assume that each character occupies just one byte. Variable-length data
is padded with zeros so that it has a standard form, enabling marshalled data or its
checksum to be compared. Note that each unsigned long, which occupies four bytes,

SECTION 4.3 EXTERNAL DATA REPRESENTATION AND MARSHALLING 161

starts at an index that is a multiple of four. The figure does not distinguish between the
big- and little-endian orderings. Although the example in Figure 4.8 is simple, CORBA
CDR can represent any data structure that can be composed from the primitive and
constructed types, but without using pointers.

Another example of an external data representation is the Sun XDR standard,
which is specified in RFC 1832 [Srinivasan 1995b] and described in www.cdk5.net/ipc.
It was developed by Sun for use in the messages exchanged between clients and servers
in Sun NFS (see Chapter 13).

The type of a data item is not given with the data representation in the message in
either the CORBA CDR or the Sun XDR standard. This is because it is assumed that the
sender and recipient have common knowledge of the order and types of the data items
in a message. In particular, for RMI or RPC, each method invocation passes arguments
of particular types, and the result is a value of a particular type.

Figure 4.8 CORBA CDR message

index in

sequence of bytes

notes

on representation

0–3 5 length of string

4–7 "Smit" ‘Smith’

8–11 "h___"

12–15 6 length of string

16–19 "Lond" ‘London’

20–23 "on__"

24–27 1984 unsigned long

4 bytes

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1984}

Marshalling in CORBA • Marshalling operations can be generated automatically from
the specification of the types of data items to be transmitted in a message. The types of
the data structures and the types of the basic data items are described in CORBA IDL
(see Section 8.3.1), which provides a notation for describing the types of the arguments
and results of RMI methods. For example, we might use CORBA IDL to describe the
data structure in the message in Figure 4.8 as follows:

struct Person{

string name;

string place;

unsigned long year;

};

The CORBA interface compiler (see Chapter 5) generates appropriate marshalling and
unmarshalling operations for the arguments and results of remote methods from the
definitions of the types of their parameters and results.

162 CHAPTER 4 INTERPROCESS COMMUNICATION

4.3.2 Java object serialization

In Java RMI, both objects and primitive data values may be passed as arguments and
results of method invocations. An object is an instance of a Java class. For example, the
Java class equivalent to the Person struct defined in CORBA IDL might be:

public class Person implements Serializable {

private String name;

private String place;

private int year;

 public Person(String aName, String aPlace, int aYear) {

name = aName;

place = aPlace;

year = aYear;

 }

// followed by methods for accessing the instance variables

}

The above class states that it implements the Serializable interface, which has no
methods. Stating that a class implements the Serializable interface (which is provided in
the java.io package) has the effect of allowing its instances to be serialized.

In Java, the term serialization refers to the activity of flattening an object or a
connected set of objects into a serial form that is suitable for storing on disk or
transmitting in a message, for example, as an argument or the result of an RMI.
Deserialization consists of restoring the state of an object or a set of objects from their
serialized form. It is assumed that the process that does the deserialization has no prior
knowledge of the types of the objects in the serialized form. Therefore some information
about the class of each object is included in the serialized form. This information enables
the recipient to load the appropriate class when an object is deserialized.

The information about a class consists of the name of the class and a version
number. The version number is intended to change when major changes are made to the
class. It can be set by the programmer or calculated automatically as a hash of the name
of the class and its instance variables, methods and interfaces. The process that
deserializes an object can check that it has the correct version of the class.

Java objects can contain references to other objects. When an object is serialized,
all the objects that it references are serialized together with it to ensure that when the
object is reconstructed, all of its references can be fulfilled at the destination. References
are serialized as handles. In this case, the handle is a reference to an object within the
serialized form – for example, the next number in a sequence of positive integers. The
serialization procedure must ensure that there is a 1–1 correspondence between object
references and handles. It must also ensure that each object is written once only – on the
second or subsequent occurrence of an object, the handle is written instead of the object.

To serialize an object, its class information is written out, followed by the types
and names of its instance variables. If the instance variables belong to new classes, then
their class information must also be written out, followed by the types and names of their
instance variables. This recursive procedure continues until the class information and
types and names of the instance variables of all of the necessary classes have been

SECTION 4.3 EXTERNAL DATA REPRESENTATION AND MARSHALLING 163

written out. Each class is given a handle, and no class is written more than once to the
stream of bytes (the handles being written instead where necessary).

The contents of the instance variables that are primitive types, such as integers,
chars, booleans, bytes and longs, are written in a portable binary format using methods
of the ObjectOutputStream class. Strings and characters are written by its writeUTF

method using the Universal Transfer Format (UTF-8), which enables ASCII characters
to be represented unchanged (in one byte), whereas Unicode characters are represented
by multiple bytes. Strings are preceded by the number of bytes they occupy in the
stream.

As an example, consider the serialization of the following object:

 Person p = new Person("Smith", "London", 1984);

Figure 4.9 Indication of Java serialized form

Serialized values Explanation

Person 8-byte version number h0 class name, version number

3 int year java.lang.String
name

java.lang.String
place

number, type and name of

instance variables

1984 5 Smith 6 London h1 values of instance variables

The true serialized form contains additional type markers; h0 and h1 are handles.

The serialized form is illustrated in Figure 4.9, which omits the values of the handles and
of the type markers that indicate the objects, classes, strings and other objects in the full
serialized form. The first instance variable (1984) is an integer that has a fixed length;
the second and third instance variables are strings and are preceded by their lengths.

To make use of Java serialization, for example to serialize the Person object,
create an instance of the class ObjectOutputStream and invoke its writeObject method,
passing the Person object as its argument. To deserialize an object from a stream of data,
open an ObjectInputStream on the stream and use its readObject method to reconstruct
the original object. The use of this pair of classes is similar to the use of
DataOutputStream and DataInputStream, illustrated in Figures 4.5 and 4.6.

Serialization and deserialization of the arguments and results of remote
invocations are generally carried out automatically by the middleware, without any
participation by the application programmer. If necessary, programmers with special
requirements may write their own version of the methods that read and write objects. To
find out how to do this and to get further information about serialization in Java, read
the tutorial on object serialization [java.sun.com II]. Another way in which a
programmer may modify the effects of serialization is by declaring variables that should
not be serialized as transient. Examples of things that should not be serialized are
references to local resources such as files and sockets.

The use of reflection • The Java language supports reflection – the ability to enquire
about the properties of a class, such as the names and types of its instance variables and
methods. It also enables classes to be created from their names, and a constructor with

164 CHAPTER 4 INTERPROCESS COMMUNICATION

given argument types to be created for a given class. Reflection makes it possible to do
serialization and deserialization in a completely generic manner. This means that there
is no need to generate special marshalling functions for each type of object, as described
above for CORBA. To find out more about reflection, see Flanagan [2002].

Java object serialization uses reflection to find out the class name of the object to
be serialized and the names, types and values of its instance variables. That is all that is
needed for the serialized form.

For deserialization, the class name in the serialized form is used to create a class.
This is then used to create a new constructor with argument types corresponding to those
specified in the serialized form. Finally, the new constructor is used to create a new
object with instance variables whose values are read from the serialized form.

4.3.3 Extensible Markup Language (XML)

XML is a markup language that was defined by the World Wide Web Consortium
(W3C) for general use on the Web. In general, the term markup language refers to a
textual encoding that represents both a text and details as to its structure or its
appearance. Both XML and HTML were derived from SGML (Standardized
Generalized Markup Language) [ISO 8879], a very complex markup language. HTML
(see Section 1.6) was designed for defining the appearance of web pages. XML was
designed for writing structured documents for the Web.

XML data items are tagged with ‘markup’ strings. The tags are used to describe
the logical structure of the data and to associate attribute-value pairs with logical
structures. That is, in XML, the tags relate to the structure of the text that they enclose,
in contrast to HTML, in which the tags specify how a browser could display the text. For
a specification of XML, see the pages on XML provided by W3C [www.w3.org VI].

XML is used to enable clients to communicate with web services and for defining
the interfaces and other properties of web services. However, XML is also used in many
other ways, including in archiving and retrieval systems – although an XML archive
may be larger than a binary one, it has the advantage of being readable on any computer.
Other examples of uses of XML include for the specification of user interfaces and the
encoding of configuration files in operating systems.

XML is extensible in the sense that users can define their own tags, in contrast to
HTML, which uses a fixed set of tags. However, if an XML document is intended to be
used by more than one application, then the names of the tags must be agreed between
them. For example, clients usually use SOAP messages to communicate with web
services. SOAP (see Section 9.2.1) is an XML format whose tags are published for use
by web services and their clients.

Some external data representations (such as CORBA CDR) do not need to be self-
describing, because it is assumed that the client and server exchanging a message have
prior knowledge of the order and the types of the information it contains. However,
XML was intended to be used by multiple applications for different purposes. The
provision of tags, together with the use of namespaces to define the meaning of the tags,
has made this possible. In addition, the use of tags enables applications to select just
those parts of a document it needs to process: it will not be affected by the addition of
information relevant to other applications.

SECTION 4.3 EXTERNAL DATA REPRESENTATION AND MARSHALLING 165

XML documents, being textual, can be read by humans. In practice, most XML
documents are generated and read by XML processing software, but the ability to read
XML can be useful when things go wrong. In addition, the use of text makes XML
independent of any particular platform. The use of a textual rather than a binary
representation, together with the use of tags, makes the messages large, so they require
longer processing and transmission times, as well as more space to store. A comparison
of the efficiency of messages using the SOAP XML format and CORBA CDR is given
in Section 9.2.4. However, files and messages can be compressed – HTTP version 1.1
allows data to be compressed, which saves bandwidth during transmission.

XML elements and attributes • Figure 4.10 shows the XML definition of the Person

structure that was used to illustrate marshalling in CORBA CDR and Java.

Figure 4.10 XML definition of the Person structure

<person id="123456789">

<name>Smith</name>

<place>London</place>

<year>1984</year>

<!-- a comment -->

</person >

It shows that
XML consists of tags and character data. The character data, for example Smith or 1984,
is the actual data. As in HTML, the structure of an XML document is defined by pairs
of tags enclosed in angle brackets. In Figure 4.10, <name> and <place> are both tags.
As in HTML, layout can generally be used to improve readability. Comments in XML
are denoted in the same way as those in HTML.

Elements: An element in XML consists of a portion of character data surrounded by
matching start and end tags. For example, one of the elements in Figure 4.10 consists of
the data Smith contained within the <name> ... </name> tag pair. Note that the element
with the <name> tag is enclosed in the element with the <person id="123456789"> ...
</person > tag pair. The ability of an element to enclose another element allows
hierarchic data to be represented – a very important aspect of XML. An empty tag has
no content and is terminated with /> instead of >. For example, the empty tag
<european/> could be included within the <person> ...</person> tag.

Attributes: A start tag may optionally include pairs of associated attribute names and
values such as id="123456789", as shown above. The syntax is the same as for HTML,
in which an attribute name is followed by an equal sign and an attribute value in quotes.
Multiple attribute values are separated by spaces.

It is a matter of choice as to which items are represented as elements and which
ones as attributes. An element is generally a container for data, whereas an attribute is
used for labelling that data. In our example, 123456789 might be an identifier used by
the application, whereas name, place and year might be displayed. Also, if data contains
substructures or several lines, it must be defined as an element. Attributes are for simple
values.

166 CHAPTER 4 INTERPROCESS COMMUNICATION

Names: The names of tags and attributes in XML generally start with a letter, but can
also start with an underline or a colon. The names continue with letters, digits, hyphens,
underscores, colons or full stops. Letters are case-sensitive. Names that start with xml

are reserved.

Binary data: All of the information in XML elements must be expressed as character
data. But the question is: how do we represent encrypted elements or secure hashes –
both of which, as we shall see in Section 9.5 are used in XML security? The answer is
that they can be represented in base64 notation [Freed and Borenstein 1996], which uses
only the alphanumeric characters together with +, / and =, which has a special meaning.

Parsing and well-formed documents • An XML document must be well formed – that
is, it must conform to rules about its structure. A basic rule is that every start tag has a
matching end tag. Another basic rule is that all tags are correctly nested – for example,
<x>..<y>..</y>..</x> is correct, whereas <x>..<y>..</x>..</y> is not. Finally, every
XML document must have a single root element that encloses all the other elements.
These rules make it very simple to implement parsers for XML documents. When a
parser reads an XML document that is not well formed, it will report a fatal error.

CDATA: XML parsers normally parse the contents of elements because they may contain
further nested structures. If text needs to contain an angle bracket or a quote, it may be
represented in a special way: for example, < represents the opening angle bracket.
However, if a section should not be parsed – for example, because it contains special
characters – it can be denoted as CDATA. For example, if a place name is to include an
apostrophe, then it could be specified in either of the two following ways:

<place> King&apos Cross </place >

<place> <![CDATA [King's Cross]]></place >

XML prolog: Every XML document must have a prolog as its first line. The prolog must
at least specify the version of XML in use (which is currently 1.0). For example:

<?XML version = "1.0" encoding = "UTF-8" standalone = "yes"?>

The prolog may specify the encoding (UTF-8 is the default and was explained in Section
4.3.2). The term encoding refers to the set of codes used to represent characters – ASCII
being the best-known example. Note that in the XML prolog, ASCII is specified as us-

ascii. Other possible encodings include ISO-8859-1 (or Latin-1) – an 8-bit encoding
whose first 128 values are ASCII, with the rest being used to represent the characters in
Western European languages – and various other 8-bit encodings for representing other
alphabets, for example, Greek or Cyrillic.

An additional attribute may be used to state whether the document stands alone or
is dependent on external definitions.

XML namespaces • Traditionally, namespaces provide a means for scoping names. An
XML namespace is a set of names for a collection of element types and attributes that is
referenced by a URL. Any other XML document can use an XML namespace by
referring to its URL.

Any element that makes use of an XML namespace can specify that namespace as
an attribute called xmlns, whose value is a URL referring to the file containing the
namespace definitions. For example:

 xmlns:pers = "http://www.cdk5.net/person"

Figure 4.11 Illustration of the use of a namespace in the Person structure

<person pers:id="123456789" xmlns:pers = "http://www.cdk5.net/person">

<pers:name> Smith </pers:name>

<pers:place> London </pers:place >

<pers:year> 1984 </pers:year>

</person>

SECTION 4.3 EXTERNAL DATA REPRESENTATION AND MARSHALLING 167

The name after xmlns, in this case pers can be used as a prefix to refer to the elements
in a particular namespace, as shown in Figure 4.11. The pers prefix is bound to
http://www.cdk4.net/person for the person element. A namespace applies within the
context of the enclosing pair of start and end tags unless overridden by an enclosed
namespace declaration. An XML document may be defined in terms of several different
namespaces, each of which is referenced by a unique prefix.

The namespace convention allows an application to make use of multiple sets of
external definitions in different namespaces without the risk of name clashes.

Figure 4.12 An XML schema for the Person structure

<xsd:schema xmlns:xsd = URL of XML schema definitions >
<xsd:element name= "person" type ="personType" />

<xsd:complexType name="personType">

<xsd:sequence>

<xsd:element name = "name" type="xs:string"/>

<xsd:element name = "place" type="xs:string"/>

<xsd:element name = "year" type="xs:positiveInteger"/>

</xsd:sequence>

<xsd:attribute name= "id" type = "xs:positiveInteger"/>

</xsd:complexType>

</xsd:schema>

XML schemas • An XML schema [www.w3.org VIII] defines the elements and
attributes that can appear in a document, how the elements are nested and the order and
number of elements, and whether an element is empty or can include text. For each
element, it defines the type and default value. Figure 4.12 gives an example of a schema
that defines the data types and structure of the XML definition of the person structure in
Figure 4.10.

The intention is that a single schema definition may be shared by many different
documents. An XML document that is defined to conform to a particular schema may
also be validated by means of that schema. For example, the sender of a SOAP message
may use an XML schema to encode it, and the recipient will use the same XML schema
to validate and decode it.

168 CHAPTER 4 INTERPROCESS COMMUNICATION

Document type definitions: Document type definitions (DTDs) [www.w3.org VI] were
provided as a part of the XML 1.0 specification for defining the structure of XML
documents and are still widely used for that purpose. The syntax of DTDs is different
from the rest of XML and it is quite limited in what it can specify; for example, it cannot
describe data types and its definitions are global, preventing element names from being
duplicated. DTDs are not used for defining web services, although they may still be used
to define documents that are transmitted by web services.

APIs for accessing XML • XML parsers and generators are available for most
commonly used programming languages. For example, there is Java software for
writing out Java objects as XML (marshalling) and for creating Java objects from such
structures (unmarshalling). Similar software is available in Python for Python data types
and objects.

4.3.4 Remote object references

This section applies only to languages such as Java and CORBA that support the
distributed object model. It is not relevant to XML.

When a client invokes a method in a remote object, an invocation message is sent
to the server process that hosts the remote object. This message needs to specify which
particular object is to have its method invoked. A remote object reference is an identifier
for a remote object that is valid throughout a distributed system. A remote object
reference is passed in the invocation message to specify which object is to be invoked.
Chapter 5 explains that remote object references are also passed as arguments and
returned as results of remote method invocations, that each remote object has a single
remote object reference and that remote object references can be compared to see
whether they refer to the same remote object. Here, we discuss the external
representation of remote object references.

 Remote object references must be generated in a manner that ensures uniqueness
over space and time. In general, there may be many processes hosting remote objects,
so remote object references must be unique among all of the processes in the various
computers in a distributed system. Even after the remote object associated with a given
remote object reference is deleted, it is important that the remote object reference is not
reused, because its potential invokers may retain obsolete remote object references. Any
attempt to invoke a deleted object should produce an error rather than allow access to a
different object.

There are several ways to ensure that a remote object reference is unique. One way
is to construct a remote object reference by concatenating the Internet address of its host
computer and the port number of the process that created it with the time of its creation
and a local object number. The local object number is incremented each time an object
is created in that process.

The port number and time together produce a unique process identifier on that
computer. With this approach, remote object references might be represented with a
format such as that shown in Figure 4.13. In the simplest implementations of RMI,
remote objects live only in the process that created them and survive only as long as that
process continues to run. In such cases, the remote object reference can be used as the
address of the remote object. In other words, invocation messages are sent to the Internet

SECTION 4.4 MULTICAST COMMUNICATION 169

address in the remote reference and to the process on that computer using the given port
number.

Figure 4.13 Representation of a remote object reference

32 bits 32 bits 32 bits 32 bits

Internet address port number time object number interface of
remote object

To allow remote objects to be relocated into a different process on a different
computer, the remote object reference should not be used as the address of the remote
object. Section 8.3.3 discusses a form of remote object reference that allows objects to
be activated in different servers throughout its lifetime.

The peer-to-peer overlay systems described in Chapter 10 use a form of remote
object reference that is completely independent of location. Messages are routed to
resources by means of a distributed routing algorithm.

The last field of the remote object reference shown in Figure 4.13 contains some
information about the interface of the remote object, for example, the interface name.
This information is relevant to any process that receives a remote object reference as an
argument or as the result of a remote invocation, because it needs to know about the
methods offered by the remote object. This point is explained again in Section 5.4.2.

4.4 Multicast communication

The pairwise exchange of messages is not the best model for communication from one
process to a group of other processes, which may be necessary, for example, when a
service is implemented as a number of different processes in different computers,
perhaps to provide fault tolerance or to enhance availability. A multicast operation is
more appropriate – this is an operation that sends a single message from one process to
each of the members of a group of processes, usually in such a way that the membership
of the group is transparent to the sender. There is a range of possibilities in the desired
behaviour of a multicast. The simplest multicast protocol provides no guarantees about
message delivery or ordering.

Multicast messages provide a useful infrastructure for constructing distributed
systems with the following characteristics:

1. Fault tolerance based on replicated services: A replicated service consists of a
group of servers. Client requests are multicast to all the members of the group,
each of which performs an identical operation. Even when some of the members
fail, clients can still be served.

2. Discovering services in spontaneous networking: Section 1.3.2 defines service
discovery in the context of spontaneous networking. Multicast messages can be
used by servers and clients to locate available discovery services in order to
register their interfaces or to look up the interfaces of other services in the
distributed system.

170 CHAPTER 4 INTERPROCESS COMMUNICATION

3. Better performance through replicated data: Data are replicated to increase the
performance of a service – in some cases replicas of the data are placed in users’
computers. Each time the data changes, the new value is multicast to the processes
managing the replicas.

4. Propagation of event notifications: Multicast to a group may be used to notify
processes when something happens. For example, in Facebook, when someone
changes their status, all their friends receive notifications. Similarly, publish-
subscribe protocols may make use of group multicast to disseminate events to
subscribers (see Chapter 6).

In this section introduce IP multicast and then review the needs of the above uses of
group communication to see which of them can be satisfied by IP multicast. For those
that cannot, we propose some further properties for group communication protocols in
addition to those provided by IP multicast.

4.4.1 IP multicast – An implementation of multicast communication

This section discusses IP multicast and presents Java’s API to it via the MulticastSocket

class.

IP multicast • IP multicast is built on top of the Internet Protocol (IP). Note that IP
packets are addressed to computers – ports belong to the TCP and UDP levels. IP
multicast allows the sender to transmit a single IP packet to a set of computers that form
a multicast group. The sender is unaware of the identities of the individual recipients and
of the size of the group. A multicast group is specified by a Class D Internet address (see
Figure 3.15) – that is, an address whose first 4 bits are 1110 in IPv4.

Being a member of a multicast group allows a computer to receive IP packets sent
to the group. The membership of multicast groups is dynamic, allowing computers to
join or leave at any time and to join an arbitrary number of groups. It is possible to send
datagrams to a multicast group without being a member.

At the application programming level, IP multicast is available only via UDP. An
application program performs multicasts by sending UDP datagrams with multicast
addresses and ordinary port numbers. It can join a multicast group by making its socket
join the group, enabling it to receive messages to the group. At the IP level, a computer
belongs to a multicast group when one or more of its processes has sockets that belong
to that group. When a multicast message arrives at a computer, copies are forwarded to
all of the local sockets that have joined the specified multicast address and are bound to
the specified port number. The following details are specific to IPv4:

Multicast routers: IP packets can be multicast both on a local network and on the
wider Internet. Local multicasts use the multicast capability of the local network, for
example, of an Ethernet. Internet multicasts make use of multicast routers, which
forward single datagrams to routers on other networks, where they are again
multicast to local members. To limit the distance of propagation of a multicast
datagram, the sender can specify the number of routers it is allowed to pass – called
the time to live, or TTL for short. To understand how routers know which other
routers have members of a multicast group, see Comer [2007].

SECTION 4.4 MULTICAST COMMUNICATION 171

Multicast address allocation: As discussed in Chapter 3, Class D addresses (that is,
addresses in the range 224.0.0.0 to 239.255.255.255) are reserved for multicast traffic
and managed globally by the Internet Assigned Numbers Authority (IANA). The
management of this address space is reviewed annually, with current practice
documented in RPC 3171 [Albanna et al. 2001]. This document defines a partitioning
of this address space into a number of blocks, including:

• Local Network Control Block (224.0.0.0 to 224.0.0.225), for multicast traffic
within a given local network.

• Internet Control Block (224.0.1.0 to 224.0.1.225).

• Ad Hoc Control Block (224.0.2.0 to 224.0.255.0), for traffic that does not fit
any other block.

• Administratively Scoped Block (239.0.0.0 to 239.255.255.255), which is used
to implement a scoping mechanism for multicast traffic (to constrain
propagation).

Multicast addresses may be permanent or temporary. Permanent groups exist even
when there are no members – their addresses are assigned by IANA and span the
various blocks mentioned above. For example, 224.0.1.1 in the Internet block is
reserved for the Network Time Protocol (NTP), as discussed in Chapter 14, and the
range 224.0.6.000 to 224.0.6.127 in the ad hoc block is reserved for the ISIS project
(see Chapters 6 and 18). Addresses are reserved for a variety of purposes, from
specific Internet protocols to given organizations that make heavy use of multicast
traffic, including multimedia broadcasters and financial institutions. A full list of
reserved addresses can be seen on the IANA web site [www.iana.org II].

The remainder of the multicast addresses are available for use by temporary
groups, which must be created before use and cease to exist when all the members
have left. When a temporary group is created, it requires a free multicast address to
avoid accidental participation in an existing group. The IP multicast protocol does not
directly address this issue. If used locally, relatively simple solutions are possible –
for example setting the TTL to a small value, making collisions with other groups
unlikely. However, programs using IP multicast throughout the Internet require a
more sophisticated solution to this problem. RFC 2908 [Thaler et al. 2000] describes
a multicast address allocation architecture (MALLOC) for Internet-wide
applications, that allocates unique addresses for a given period of time and in a given
scope. As such, the proposal is intrinsically bound with the scoping mechanisms
mentioned above. A client-server solution is adopted whereby clients request a
multicast address from a multicast address allocation server (MAAS), which must
then communicate across domains to ensure allocations are unique for the given
lifetime and scope.

Failure model for multicast datagrams • Datagrams multicast over IP multicast have the
same failure characteristics as UDP datagrams – that is, they suffer from omission
failures. The effect on a multicast is that messages are not guaranteed to be delivered to
any particular group member in the face of even a single omission failure. That is, some
but not all of the members of the group may receive it. This can be called unreliable

multicast, because it does not guarantee that a message will be delivered to any member
of a group. Reliable multicast is discussed in Chapter 15.

172 CHAPTER 4 INTERPROCESS COMMUNICATION

Java API to IP multicast • The Java API provides a datagram interface to IP multicast
through the class MulticastSocket, which is a subclass of DatagramSocket with the
additional capability of being able to join multicast groups. The class MulticastSocket

provides two alternative constructors, allowing sockets to be created to use either a
specified local port (6789, in Figure 4.14

Figure 4.14 Multicast peer joins a group and sends and receives datagrams

import java.net.*;

import java.io.*;

public class MulticastPeer{

public static void main(String args[]){

 // args give message contents & destination multicast group (e.g. "228.5.6.7")

 MulticastSocket s =null;

 try {

InetAddress group = InetAddress.getByName(args[1]);

s = new MulticastSocket(6789);

s.joinGroup(group);

byte [] m = args[0].getBytes();

DatagramPacket messageOut =

new DatagramPacket(m, m.length, group, 6789);

s.send(messageOut);

byte[] buffer = new byte[1000];

 for(int i=0; i< 3; i++) { // get messages from others in group

 DatagramPacket messageIn =

new DatagramPacket(buffer, buffer.length);

 s.receive(messageIn);

 System.out.println("Received:" + new String(messageIn.getData()));

}

s.leaveGroup(group);

 } catch (SocketException e){System.out.println("Socket: " + e.getMessage());

 } catch (IOException e){System.out.println("IO: " + e.getMessage());

 } finally { if(s != null) s.close();}

 }

}

) or any free local port. A process can join a
multicast group with a given multicast address by invoking the joinGroup method of its
multicast socket. Effectively, the socket joins a multicast group at a given port and it will
receive datagrams sent by processes on other computers to that group at that port. A
process can leave a specified group by invoking the leaveGroup method of its multicast
socket.

In the example in Figure 4.14, the arguments to the main method specify a
message to be multicast and the multicast address of a group (for example, "228.5.6.7").

After joining that multicast group, the process makes an instance of DatagramPacket

containing the message and sends it through its multicast socket to the multicast group
address at port 6789. After that, it attempts to receive three multicast messages from its

SECTION 4.4 MULTICAST COMMUNICATION 173

peers via its socket, which also belongs to the group on the same port. When several
instances of this program are run simultaneously on different computers, all of them join
the same group, and each of them should receive its own message and the messages from
those that joined after it.

The Java API allows the TTL to be set for a multicast socket by means of the
setTimeToLive method. The default is 1, allowing the multicast to propagate only on the
local network.

An application implemented over IP multicast may use more than one port. For
example, the MultiTalk [mbone] application, which allows groups of users to hold text-
based conversations, has one port for sending and receiving data and another for
exchanging control data.

4.4.2 Reliability and ordering of multicast

The previous section stated the failure model for IP multicast, which suffers from
omission failures. A datagram sent from one multicast router to another may be lost, thus
preventing all recipients beyond that router from receiving the message. Also, when a
multicast on a local area network uses the multicasting capabilities of the network to
allow a single datagram to arrive at multiple recipients, any one of those recipients may
drop the message because its buffer is full.

Another factor is that any process may fail. If a multicast router fails, the group
members beyond that router will not receive the multicast message, although local
members may do so.

Ordering is another issue. IP packets sent over an internetwork do not necessarily
arrive in the order in which they were sent, with the possible effect that some group
members receive datagrams from a single sender in a different order from other group
members. In addition, messages sent by two different processes will not necessarily
arrive in the same order at all the members of the group.

Some examples of the effects of reliability and ordering • We now consider the effect of
the failure semantics of IP multicast on the four examples of the use of replication in the
introduction to Section 4.4.

1. Fault tolerance based on replicated services: Consider a replicated service that
consists of the members of a group of servers that start in the same initial state and
always perform the same operations in the same order, so as to remain consistent
with one another. This application of multicast requires that either all of the
replicas or none of them should receive each request to perform an operation – if
one of them misses a request, it will become inconsistent with the others. In most
cases, this service would require that all members receive request messages in the
same order as one another.

3. Discovering services in spontaneous networking: One way for a process to
discover services in spontaneous networking is to multicast requests at periodic
intervals, and for the available services to listen for those multicasts and respond.
An occasional lost request is not an issue when discovering services. In fact, Jini
uses IP multicast in its protocol for discovering services. This is described in
Section 19.2.1.

174 CHAPTER 4 INTERPROCESS COMMUNICATION

3. Better performance through replicated data: Consider the case where the
replicated data itself, rather than operations on the data, are distributed by means
of multicast messages. The effect of lost messages and inconsistent ordering
would depend on the method of replication and the importance of all replicas
being totally up-to-date.

4. Propagation of event notifications: The particular application determines the
qualities required of multicast. For example, the Jini lookup services use IP
multicast to announce their existence (see Section 19.2.1).

These examples suggest that some applications require a multicast protocol that is more
reliable than IP multicast. In particular, there is a need for reliable multicast, in which
any message transmitted is either received by all members of a group or by none of them.
The examples also suggest that some applications have strong requirements for
ordering, the strictest of which is called totally ordered multicast, in which all of the
messages transmitted to a group reach all of the members in the same order.

Chapter 15 will define and show how to implement reliable multicast and various
useful ordering guarantees, including totally ordered multicast.

4.5 Network virtualization: Overlay networks

The strength of the Internet communication protocols is that they provide, through their
API (Section 4.2), a very effective set of building blocks for the construction of
distributed software. However, a growing range of different classes of application
(including, for example, peer-to-peer file sharing and Skype) coexist in the Internet. It
would be impractical to attempt to alter the Internet protocols to suit each of the many
applications running over them – what might enhance one of them could be detrimental
to another. In addition, the IP transport service is implemented over a large and ever-
increasing number of network technologies. These two factors have led to the interest in
network virtualization.

Network virtualization [Petersen et al. 2005] is concerned with the construction of
many different virtual networks over an existing network such as the Internet. Each
virtual network can be designed to support a particular distributed application. For
example, one virtual network might support multimedia streaming, as in BBC iPlayer,
BoxeeTV [boxee.tv] or Hulu [hulu.com], and coexist with another that supports a
multiplayer online game, both running over the same underlying network. This suggests
an answer to the dilemma raised by Salzer’s end-to-end argument (see Section 2.3.3): an
application-specific virtual network can be built above an existing network and
optimized for that particular application, without changing the characteristics of the
underlying network.

Chapter 3 showed that computer networks have addressing schemes, protocols
and routing algorithms; similarly, each virtual network has its own particular addressing
scheme, protocols and routing algorithms, but redefined to meet the needs of particular
application classes.

SECTION 4.5 NETWORK VIRTUALIZATION: OVERLAY NETWORKS 175

4.5.1 Overlay networks

An overlay network is a virtual network consisting of nodes and virtual links, which sits
on top of an underlying network (such as an IP network) and offers something that is not
otherwise provided:

• a service that is tailored towards the needs of a class of application or a particular
higher-level service – for example, multimedia content distribution;

• more efficient operation in a given networked environment – for example routing
in an ad hoc network;

• an additional feature – for example, multicast or secure communication.

This leads to a wide variety of types of overlay as captured by Figure 4.15. Overlay
networks have the following advantages:

• They enable new network services to be defined without requiring changes to the
underlying network, a crucial point given the level of standardization in this area
and the difficulties of amending underlying router functionality.

• They encourage experimentation with network services and the customization of
services to particular classes of application.

• Multiple overlays can be defined and can coexist, with the end result being a more
open and extensible network architecture.

The disadvantages are that overlays introduce an extra level of indirection (and hence
may incur a performance penalty) and they add to the complexity of network services
when compared, for example, to the relatively simple architecture of TCP/IP networks.

Overlays can be related to the familiar concept of layers (as introduced in Chapters
2 and 3). Overlays are layers, but layers that exist outside the standard architecture (such
as the TCP/IP stack) and exploit the resultant degrees of freedom. In particular, overlay
developers are free to redefine the core elements of a network as mentioned above,
including the mode of addressing, the protocols employed and the approach to routing,
often introducing radically different approaches more tailored towards particular
application classes of operating environments. For example, distributed hash tables
introduce a style of addressing based on a keyspace and also build a topology in such a
way that a node in the topology either owns the key or has a link to a node that is closer
to the owner (a style of routing known as key-based routing). The topology is most
commonly in the form of a ring.

We exemplify the successful use of an overlay network by discussing Skype.
Further examples of overlays will be given throughout the book. For example, Chapter
10 presents details of the protocols and structures adopted by peer-to-peer file sharing,
along with further information on distributed hash tables. Chapter 19 considers both
wireless ad hoc networks and disruption-tolerant networks in the context of mobile and
ubiquitous computing and Chapter 20 examines overlay support for multimedia
streaming.

Figure 4.15 Types of overlay

Motivation Type Description

Tailored for

application needs

Distributed hash tables One of the most prominent classes of overlay
network, offering a service that manages a
mapping from keys to values across a potentially
large number of nodes in a completely
decentralized manner (similar to a standard hash
table but in a networked environment).

Peer-to-peer file
sharing

Overlay structures that focus on constructing
tailored addressing and routing mechanisms to
support the cooperative discovery and use (for
example, download) of files.

Content distribution
networks

Overlays that subsume a range of replication,
caching and placement strategies to provide
improved performance in terms of content
delivery to web users; used for web acceleration
and to offer the required real-time performance
for video streaming [www.kontiki.com].

Tailored for

network style

Wireless ad hoc
networks

Network overlays that provide customized
routing protocols for wireless ad hoc networks,
including proactive schemes that effectively
construct a routing topology on top of the
underlying nodes and reactive schemes that
establish routes on demand typically supported
by flooding.

Disruption-tolerant
networks

Overlays designed to operate in hostile
environments that suffer significant node or link
failure and potentially high delays.

Offering additional

features

Multicast One of the earliest uses of overlay networks in
the Internet, providing access to multicast serv-
ices where multicast routers are not available;
builds on the work by Van Jacobsen, Deering
and Casner with their implementation of the
MBone (or Multicast Backbone) [mbone].

Resilience Overlay networks that seek an order of
magnitude improvement in robustness and
availability of Internet paths
[nms.csail.mit.edu].

Security Overlay networks that offer enhanced security
over the underling IP network, including virtual
private networks, for example, as discussed in
Section 3.4.8.

176 CHAPTER 4 INTERPROCESS COMMUNICATION

Figure 4.16 Skype overlay architecture

SN

Super node

Ordinary host

Skype
login server

SN

SN
SN

SN

SECTION 4.5 NETWORK VIRTUALIZATION: OVERLAY NETWORKS 177

4.5.2 Skype: An example of an overlay network

Skype is a peer-to-peer application offering Voice over IP (VoIP). It also includes
instant messaging, video conferencing and interfaces to the standard telephony service
through SkypeIn and SkypeOut. The software was developed by Kazaa in 2003 and
hence shares many of the characteristics of the Kazaa peer-to-peer file-sharing
application [Leibowitz et al. 2003]. It is widely deployed, with an estimated 370 million
users as of the start of 2009.

Skype is an excellent case study of the use of overlay networks in real-world (and
large-scale) systems, indicating how advanced functionality can be provided in an
application-specific manner and without modification of the core architecture of the
Internet. Skype is a virtual network in that it establishes connections between people
(Skype subscribers who are currently active). No IP address or port is required to
establish a call. The architecture of the virtual network supporting Skype is not widely
publicized but researchers have studied Skype through a variety of methods, including
traffic analysis, and its principles are now in the public domain. Much of the detail of
the description that follows is taken from the paper by Baset and Schulzrinne [2006],
which contains a detailed study of the behaviour of Skype.

178 CHAPTER 4 INTERPROCESS COMMUNICATION

Skype architecture • Skype is based on a peer-to-peer infrastructure consisting of
ordinary users’ machines (referred to as hosts) and super nodes – super nodes are
ordinary Skype hosts that happen to have sufficient capabilities to carry out their
enhanced role. Super nodes are selected on demand based a range of criteria including
bandwidth available, reachability (the machine must have a global IP address and not be
hidden behind a NAT-enabled router, for example) and availability (based on the length
of time that Skype has been running continuously on that node). This overall structure
is captured in Figure 4.16.

User connection • Skype users are authenticated via a well-known login server. They
then make contact with a selected super node. To achieve this, each client maintains a
cache of super node identities (that is, IP address and port number pairs). At first login
this cache is filled with the addresses of around seven super nodes, and over time the
client builds and maintains a much larger set (perhaps several hundred).

Search for users • The main goal of super nodes is to perform the efficient search of the
global index of users, which is distributed across the super nodes. The search is
orchestrated by the client’s chosen super node and involves an expanding search of other
super nodes until the specified user is found. On average, eight super nodes are
contacted. A user search typically takes between three and four seconds to complete for
hosts that have a global IP address (and slightly longer, five to six seconds, if behind a
NAT-enabled router). From experiments, it appears that intermediary nodes involved in
the search cache the results to improve performance.

Voice connection • Once the required user is discovered, Skype establishes a voice
connection between the two parties using TCP for signalling call requests and
terminations and either UDP or TCP for the streaming audio. UDP is preferred but TCP,
along with the use of an intermediary node, is used in certain circumstances to
circumvent firewalls (see Baset and Schulzrinne [2006] for details). The software used
for encoding and decoding audio plays a key part in providing the excellent call quality
normally attained using Skype, and the associated algorithms are carefully tailored to
operate in Internet environments at 32 kbps and above.

4.6 Case study: MPI

Message passing was introduced in Section 4.2.1, which outlines the basic principles of
exchanging messages between two processes using send and receive operations. The
synchronous variant of message passing is realised by blocking send and receive calls,
whereas the asynchronous variant requires a non-blocking form of send. The end result
is a paradigm for distributed programming that is lightweight, efficient and in many
ways minimal.

This style of distributed programming is attractive in classes of system where
performance is paramount, most notably in high-performance computing. In this
section, we present a case study of the Message Passing Interface standard, developed
by the high performance computing community. MPI was first introduced in 1994 by
the MPI Forum [www.mpi-forum.org] as a reaction against the wide variety of
proprietary approaches that were in use for message passing in this field. The standard

SECTION 4.6 CASE STUDY: MPI 179

has also been strongly influential in Grid computing (discussed in Chapter 9), for
example through the development of GridMPI [www.gridmpi.org]. The goal of the MPI
Forum was to retain the inherent simplicity, practicality and efficiency of the message-
passing approach but enhance this with portability through presenting a standardized
interface independent of the operating system or programming language-specific socket
interface. MPI was also designed to be flexible, and the result is a comprehensive
specification of message passing in all its variants (with over 115 operations).
Applications use the MPI interface via a message-passing library available for a variety
of operating systems and programming languages, including C++ and Fortran.

The underlying architectural model for MPI is relatively simple and captured in
Figure 4.17

Figure 4.17 An overview of point-to-point communication in MPI

Message

Process p Process q

MPI library buffer

send m receive

. This is similar to the model introduced in Section 4.2.1, but with the added
dimension of explicitly having MPI library buffers in both the sender and the receiver,
managed by the MPI library and used to hold data in transit. Note that this figure shows
one pathway from the sender to the receiver via the receiver’s MPI library buffer (other
options, for example using the sender’s MPI library buffer, will become apparent
below).

To provide a flavour of this complexity, let us examine a number of the variants
of send summarized in Figure 4.18. This is a refinement of the view of message passing
as presented in Section 4.2.1, offering more choice and control and effectively
separating the semantics of synchronous/asynchronous and blocking/non-blocking
message passing.

We start by examining the four blocking operations presented in the associated
column of Figure 4.18. The key to understanding this set of operations is to appreciate
that blocking is interpreted as ‘blocked until it is safe to return’, in the sense that
application data has been copied into the MPI system and hence is in transit or delivered
and therefore the application buffer can be reused (for example, for the next send

operation). This then enables various interpretations of ‘being safe to return’. The
MPI_Send operation is a generic operation that simply requires that this level of safety
is provided (in practice, this is often implemented using MPI_Ssend). MPI_Ssend is
exactly the same as synchronous (and blocking) message passing as introduced in
Section 4.2.1, with safety interpreted as delivered, whereas MPI_Bsend has weaker

Figure 4.18 Selected send operations in MPI

Send operations Blocking Non-blocking

Generic MPI_Send: the sender blocks until
it is safe to return – that is, until the
message is in transit or delivered
and the sender’s application buffer
can therefore be reused.

MPI_Isend: the call returns
immediately and the programmer is
given a communication request
handle, which can then be used to
check the progress of the call via
MPI_Wait or MPI_Test.

Synchronous MPI_Ssend: the sender and receiver
synchronize and the call only
returns when the message has been
delivered at the receiving end.

MPI_Issend: as with MPI_Isend,
but with MPI_Wait and MPI_Test

indicating whether the message has
been delivered at the receive end.

Buffered MPI_Bsend: the sender explicitly
allocates an MPI buffer library
(using a separate
MPI_Buffer_attach call) and the
call returns when the data is
successfully copied into this buffer.

MPI_Ibsend: as with MPI_Isend

but with MPI_Wait and MPI_Test

indicating whether the message has
been copied into the sender’s MPI
buffer and hence is in transit.

Ready MPI_Rsend: the call returns when
the sender’s application buffer can
be reused (as with MPI_Send), but
the programmer is also indicating to
the library that the receiver is ready
to receive the message, resulting in
potential optimization of the
underlying implementation.

MPI_Irsend: the effect is as with
MPI_Isend, but as with
MPI_Rsend, the programmer is
indicating to the underlying
implementation that the receiver is
guaranteed to be ready to receive
(resulting in the same
optimizations),

180 CHAPTER 4 INTERPROCESS COMMUNICATION

semantics in that the message is considered safe when it has been has been copied into
the preallocated MPI library buffer and is still in transit. MPI_Rsend is a rather curious
operation in which the programmer specifies that they know that the receiver is ready to
receive the message. If this is known, the underlying implementation can be optimized
in that there is no need to check if there is a buffer available to receive the message,
avoiding a handshake. This is clearly a rather dangerous operation that will fail if the
assumption about being ready is invalid. From the figure, it is possible to observe the
elegant symmetry for non-blocking send operations, this time defined over the
semantics of the associated MPI_Wait and MPI_Test operations (note also the consistent
naming convention across all the operations).

The standard also supports both blocking and non-blocking receive (MPI_recv

and MPI_Irecv, respectively), and the variants of send and receive can be paired in any
combination, offering the programmer rich control over the semantics of message
passing. In addition, the standard defines rich patterns of multiway communication
(referred to as collective communication) including, for example, scatter (one to many)
and gather (many to one) operations.

SECTION 4.7 SUMMARY 181

4.7 Summary

The first section of this chapter showed that the Internet transmission protocols provide
two alternative building blocks from which application protocols may be constructed.
There is an interesting trade-off between the two protocols: UDP provides a simple
message-passing facility that suffers from omission failures but carries no built-in
performance penalties, on the other hand, in good conditions TCP guarantees message
delivery, but at the expense of additional messages and higher latency and storage costs.

The second section showed three alternative styles of marshalling. CORBA and
its predecessors choose to marshal data for use by recipients that have prior knowledge
of the types of its components. In contrast, when Java serializes data, it includes full
information about the types of its contents, allowing the recipient to reconstruct it purely
from the content. XML, like Java, includes full type information. Another big difference
is that CORBA requires a specification of the types of data items to be marshalled (in
IDL) in order to generate the marshalling and unmarshalling methods, whereas Java
uses reflection in order to serialize objects and deserialize their serial form. But a variety
of different means are used for generating XML, depending on the context. For example,
many programming languages, including Java, provide processors for translating
between XML and language-level objects.

Multicast messages are used in communication between the members of a group
of processes. IP multicast provides a multicast service for both local area networks and
the Internet. This form of multicast has the same failure semantics as UDP datagrams,
but in spite of suffering from omission failures it is a useful tool for many applications
of multicast. Some other applications have stronger requirements – in particular, that
multicast delivery should be atomic; that is, it should have all-or-nothing delivery.
Further requirements on multicast are related to the ordering of messages, the strongest
of which requires that all members of a group receive all of the messages in the same
order.

Multicast can also be supported by overlay networks in cases where, for example,
IP multicast is not supported. More generally, overlay networks offer a service of
virtualization of the network architecture, allowing specialist network services to be
created on top of underlying networking infrastructure, (for example, UDP or TCP).
Overlay networks partially address the problems associated with Saltzer’s end-to-end
argument by allowing the generation of more application-specific network abstractions.

The chapter concluded with a case study of the MPI specification, developed by
the high-performance computing community and featuring flexible support for message
passing together with additional support for multiway message passing.

182 CHAPTER 4 INTERPROCESS COMMUNICATION

EXERCISES

4.1 Is it conceivably useful for a port to have several receivers? page 148

4.2 A server creates a port that it uses to receive requests from clients. Discuss the design
issues concerning the relationship between the name of this port and the names used by
clients. page 148

4.3 The programs in Figure 4.3 and Figure 4.4 are available at www.cdk5.net/ipc. Use them
to make a test kit to determine the conditions in which datagrams are sometimes dropped.
Hint: the client program should be able to vary the number of messages sent and their size;
the server should detect when a message from a particular client is missed. page 150

4.4 Use the program in Figure 4.3 to make a client program that repeatedly reads a line of
input from the user, sends it to the server in a UDP datagram message, then receives a
message from the server. The client sets a timeout on its socket so that it can inform the
user when the server does not reply. Test this client program with the server program in
Figure 4.4. page 150

4.5 The programs in Figure 4.5 and Figure 4.6 are available at www.cdk5.net/ipc. Modify
them so that the client repeatedly takes a line of user’s input and writes it to the stream
and the server reads repeatedly from the stream, printing out the result of each read.
Make a comparison between sending data in UDP datagram messages and over a stream.

 page 153

4.6 Use the programs developed in Exercise 4.5 to test the effect on the sender when the
receiver crashes, and vice-versa. page 153

4.7 Sun XDR marshals data by converting it into a standard big-endian form before
transmission. Discuss the advantages and disadvantages of this method when compared
with CORBA CDR. page 160

4.8 Sun XDR aligns each primitive value on a 4-byte boundary, whereas CORBA CDR
aligns a primitive value of size n on an n-byte boundary. Discuss the trade-offs in
choosing the sizes occupied by primitive values. page 160

4.9 Why is there no explicit data typing in CORBA CDR? page 160

4.10 Write an algorithm in pseudo-code to describe the serialization procedure described in
Section 4.3.2. The algorithm should show when handles are defined or substituted for
classes and instances. Describe the serialized form that your algorithm would produce
when serializing an instance of the following class, Couple:

class Couple implements Serializable{

private Person one;

private Person two;

public Couple(Person a, Person b) {

one = a;

two = b;

}

} page 162

EXERCISES 183

4.11 Write an algorithm in pseudo-code to describe deserialization of the serialized form
produced by the algorithm defined in Exercise 4.10. Hint: use reflection to create a class
from its name, to create a constructor from its parameter types and to create a new
instance of an object from the constructor and the argument values. page 162

4.12 Why can’t binary data be represented directly in XML, for example, by representing it
as Unicode byte values? XML elements can carry strings represented as base64. Discuss
the advantages or disadvantages of using this method to represent binary data.

page 164

4.13 Define a class whose instances represent remote object references. It should contain
information similar to that shown in Figure 4.13 and should provide access methods
needed by higher-level protocols (see request-reply in Chapter 5, for example). Explain
how each of the access methods will be used by that protocol. Give a justification for the
type chosen for the instance variable containing information about the interface of the
remote object. page 168

4.14 IP multicast provides a service that suffers from omission failures. Make a test kit,
possibly based on the program in Figure 4.14, to discover the conditions under which a
multicast message is sometimes dropped by one of the members of the multicast group.
The test kit should be designed to allow for multiple sending processes. page 170

4.15 Outline the design of a scheme that uses message retransmissions with IP multicast to
overcome the problem of dropped messages. Your scheme should take the following
points into account:

i) There may be multiple senders.

ii) Generally only a small proportion of messages are dropped.

iii) Recipients may not necessarily send a message within any particular time limit.

Assume that messages that are not dropped arrive in sender order. page 173

4.16 Your solution to Exercise 4.15 should have overcome the problem of dropped messages
in IP multicast. In what sense does your solution differ from the definition of reliable
multicast? page 173

4.17 Devise a scenario in which multicasts sent by different clients are delivered to two group
members in different orders. Assume that some form of message retransmission is in
use, but that messages that are not dropped arrive in sender order. Suggest how
recipients might remedy this situation. page 173

4.18 Revisit the Internet architecture as introduced in Chapter 3 (see Figures 3.12 and 3.14).
What impact does the introduction of overlay networks have on this architecture, and in
particular on the programmer’s conceptual view of the Internet? page 175

4.19 What are the main arguments for adopting a super node approach in Skype? page 177

4.20 As discussed in Section 4.6, MPI offers a number of variants of send including the
MPI_Rsend operation, which assumes the receiver is ready to receive at the time of
sending. What optimizations in implementation are possible if this assumption is correct
and what are the repercussions of this assumption being false? page 180

This page intentionally left blank

 185

5

REMOTE INVOCATION

5.1 Introduction
5.2 Request-reply protocols
5.3 Remote procedure call
5.4 Remote method invocation
5.5 Case study: Java RMI
5.6 Summary

This chapter steps through the remote invocation paradigms introduced in Chapter 2
(indirect communication techniques are addressed in Chapter 6). The chapter starts by
examining the most primitive service, request-reply communication, which represents
relatively minor enhancements to the underlying interprocess communication primitives
discussed in Chapter 4. The chapter then continues by examining the two most prominent
remote invocation techniques for communication in distributed systems:

• The remote procedure call (RPC) approach extends the common programming
abstraction of the procedure call to distributed environments, allowing a calling
process to call a procedure in a remote node as if it is local.

• Remote method invocation (RMI) is similar to RPC but for distributed objects, with
added benefits in terms of using object-oriented programming concepts in
distributed systems and also extending the concept of an object reference to the
global distributed environments, and allowing the use of object references as
parameters in remote invocations.

The chapter also features Java RMI as a case study of the remote method invocation
approach (further insight can also be gained in Chapter 8, where we look at CORBA).

186 CHAPTER 5 REMOTE INVOCATION

5.1 Introduction

This chapter is concerned with how processes (or entities at a higher level of abstraction
such as objects or services) communicate in a distributed system, examining, in
particular, the remote invocation paradigms defined in Chapter 2:

• Request-reply protocols represent a pattern on top of message passing and support
the two-way exchange of messages as encountered in client-server computing. In
particular, such protocols provide relatively low-level support for requesting the
execution of a remote operation, and also provide direct support for RPC and
RMI, discussed below.

• The earliest and perhaps the best-known example of a more programmer-friendly
model was the extension of the conventional procedure call model to distributed
systems (the remote procedure call, or RPC, model), which allows client
programs to call procedures transparently in server programs running in separate
processes and generally in different computers from the client.

• In the 1990s, the object-based programming model was extended to allow objects
in different processes to communicate with one another by means of remote

method invocation (RMI). RMI is an extension of local method invocation that
allows an object living in one process to invoke the methods of an object living in
another process.

Note that we use the term ‘RMI’ to refer to remote method invocation in a generic way
– this should not be confused with particular examples of remote method invocation
such as Java RMI.

Returning to the diagram first introduced in Chapter 4 (and reproduced in Figure
5.1

Figure 5.1 Middleware layers

Applications, services

Middleware
layers

Underlying interprocess communication primitives:

UDP and TCP

This
chapter Remote invocation, indirect communication

Sockets, message passing, multicast support, overlay networks

(and Chapter 6)

), this chapter, together with Chapter 6, continues our study of middleware concepts
by focusing on the layer above interprocess communication. In particular, Sections 5.2
through 5.4 focus on the styles of communication listed above, with Section 5.5
providing a more complex case study, Java RMI.

SECTION 5.2 REQUEST-REPLY PROTOCOLS 187

5.2 Request-reply protocols

This form of communication is designed to support the roles and message exchanges in
typical client-server interactions. In the normal case, request-reply communication is
synchronous because the client process blocks until the reply arrives from the server. It
can also be reliable because the reply from the server is effectively an acknowledgement
to the client. Asynchronous request-reply communication is an alternative that may be
useful in situations where clients can afford to retrieve replies later – see Section 7.5.2.

The client-server exchanges are described in the following paragraphs in terms of
the send and receive operations in the Java API for UDP datagrams, although many
current implementations use TCP streams. A protocol built over datagrams avoids
unnecessary overheads associated with the TCP stream protocol. In particular:

• Acknowledgements are redundant, since requests are followed by replies.

• Establishing a connection involves two extra pairs of messages in addition to the
pair required for a request and a reply.

• Flow control is redundant for the majority of invocations, which pass only small
arguments and results.

The request-reply protocol • The protocol we describe here is based on a trio of
communication primitives, doOperation, getRequest and sendReply, as shown in Figure
5.2

Figure 5.2 Request-reply communication

Request

ServerClient

Reply
message

message getRequest

select operation

sendReply

doOperation

(wait)

(continuation)

•

•
•

•
execute operation

. This request-reply protocol matches requests to replies. It may be designed to
provide certain delivery guarantees. If UDP datagrams are used, the delivery guarantees
must be provided by the request-reply protocol, which may use the server reply message
as an acknowledgement of the client request message. Figure 5.3 outlines the three
communication primitives.

The doOperation method is used by clients to invoke remote operations. Its
arguments specify the remote server and which operation to invoke, together with
additional information (arguments) required by the operation. Its result is a byte array
containing the reply. It is assumed that the client calling doOperation marshals the

188 CHAPTER 5 REMOTE INVOCATION

arguments into an array of bytes and unmarshals the results from the array of bytes that
is returned. The first argument of doOperation is an instance of the class RemoteRef,
which represents references for remote servers. This class provides methods for getting
the Internet address and port of the associated server. The doOperation method sends a
request message to the server whose Internet address and port are specified in the remote
reference given as an argument. After sending the request message, doOperation

invokes receive to get a reply message, from which it extracts the result and returns it to
the caller. The caller of doOperation is blocked until the server performs the requested
operation and transmits a reply message to the client process.

getRequest is used by a server process to acquire service requests, as shown in
Figure 5.3

Figure 5.3 Operations of the request-reply protocol

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)

Sends a request message to the remote server and returns the reply.
The arguments specify the remote server, the operation to be invoked and the
arguments of that operation.

public byte[] getRequest ();

Acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);

Sends the reply message reply to the client at its Internet address and port.

. When the server has invoked the specified operation, it then uses sendReply

to send the reply message to the client. When the reply message is received by the client
the original doOperation is unblocked and execution of the client program continues.

The information to be transmitted in a request message or a reply message is
shown in Figure 5.4

Figure 5.4 Request-reply message structure

messageType int (0=Request, 1= Reply)

requestId int

remoteReference RemoteRef

operationId int or Operation

arguments // array of bytes

. The first field indicates whether the message is a Request or a Reply

message. The second field, requestId, contains a message identifier. A doOperation in
the client generates a requestId for each request message, and the server copies these IDs
into the corresponding reply messages. This enables doOperation to check that a reply
message is the result of the current request, not a delayed earlier call. The third field is
a remote reference. The fourth field is an identifier for the operation to be invoked. For
example, the operations in an interface might be numbered 1, 2, 3, ... , if the client and
server use a common language that supports reflection, a representation of the operation
itself may be put in this field.

SECTION 5.2 REQUEST-REPLY PROTOCOLS 189

Message identifiers • Any scheme that involves the management of messages to
provide additional properties such as reliable message delivery or request-reply
communication requires that each message have a unique message identifier by which
it may be referenced. A message identifier consists of two parts:

1. a requestId, which is taken from an increasing sequence of integers by the sending
process;

2. an identifier for the sender process, for example, its port and Internet address.

The first part makes the identifier unique to the sender, and the second part makes it
unique in the distributed system. (The second part can be obtained independently – for
example, if UDP is in use, from the message received.)

 When the value of the requestId reaches the maximum value for an unsigned
integer (for example, 232 – 1) it is reset to zero. The only restriction here is that the
lifetime of a message identifier should be much less than the time taken to exhaust the
values in the sequence of integers.

Failure model of the request-reply protocol • If the three primitives doOperation,
getRequest and sendReply are implemented over UDP datagrams, then they suffer from
the same communication failures. That is:

• They suffer from omission failures.

• Messages are not guaranteed to be delivered in sender order.

In addition, the protocol can suffer from the failure of processes (see Section 2.4.2). We
assume that processes have crash failures. That is, when they halt, they remain halted –
they do not produce Byzantine behaviour.

To allow for occasions when a server has failed or a request or reply message is
dropped, doOperation uses a timeout when it is waiting to get the server’s reply
message. The action taken when a timeout occurs depends upon the delivery guarantees
being offered.

Timeouts • There are various options as to what doOperation can do after a timeout.
The simplest option is to return immediately from doOperation with an indication to the
client that the doOperation has failed. This is not the usual approach – the timeout may
have been due to the request or reply message getting lost and in the latter case, the
operation will have been performed. To compensate for the possibility of lost messages,
doOperation sends the request message repeatedly until either it gets a reply or it is
reasonably sure that the delay is due to lack of response from the server rather than to
lost messages. Eventually, when doOperation returns, it will indicate to the client by an
exception that no result was received.

Discarding duplicate request messages • In cases when the request message is
retransmitted, the server may receive it more than once. For example, the server may
receive the first request message but take longer than the client’s timeout to execute the
command and return the reply. This can lead to the server executing an operation more
than once for the same request. To avoid this, the protocol is designed to recognize
successive messages (from the same client) with the same request identifier and to filter
out duplicates. If the server has not yet sent the reply, it need take no special action – it
will transmit the reply when it has finished executing the operation.

190 CHAPTER 5 REMOTE INVOCATION

Lost reply messages • If the server has already sent the reply when it receives a
duplicate request it will need to execute the operation again to obtain the result, unless
it has stored the result of the original execution. Some servers can execute their
operations more than once and obtain the same results each time. An idempotent

operation is an operation that can be performed repeatedly with the same effect as if it
had been performed exactly once. For example, an operation to add an element to a set
is an idempotent operation because it will always have the same effect on the set each
time it is performed, whereas an operation to append an item to a sequence is not an
idempotent operation because it extends the sequence each time it is performed. A server
whose operations are all idempotent need not take special measures to avoid executing
its operations more than once.

History • For servers that require retransmission of replies without re-execution of
operations, a history may be used. The term ‘history’ is used to refer to a structure that
contains a record of (reply) messages that have been transmitted. An entry in a history
contains a request identifier, a message and an identifier of the client to which it was
sent. Its purpose is to allow the server to retransmit reply messages when client
processes request them. A problem associated with the use of a history is its memory
cost. A history will become very large unless the server can tell when the messages will
no longer be needed for retransmission.

As clients can make only one request at a time, the server can interpret each
request as an acknowledgement of its previous reply. Therefore the history need contain
only the last reply message sent to each client. However, the volume of reply messages
in a server’s history may still be a problem when it has a large number of clients. This
is compounded by the fact that, when a client process terminates, it does not
acknowledge the last reply it has received – messages in the history are therefore
normally discarded after a limited period of time.

Styles of exchange protocols • Three protocols, that produce differing behaviours in the
presence of communication failures are used for implementing various types of request
behaviour. They were originally identified by Spector [1982]:

• the request (R) protocol;

• the request-reply (RR) protocol;

• the request-reply-acknowledge reply (RRA) protocol.

The messages passed in these protocols are summarized in Figure 5.5. In the R protocol,
a single Request message is sent by the client to the server. The R protocol may be used
when there is no value to be returned from the remote operation and the client requires
no confirmation that the operation has been executed. The client may proceed
immediately after the request message is sent as there is no need to wait for a reply
message. This protocol is implemented over UDP datagrams and therefore suffers from
the same communication failures.

The RR protocol is useful for most client-server exchanges because it is based on
the request-reply protocol. Special acknowledgement messages are not required,
because a server’s reply message is regarded as an acknowledgement of the client’s
request message. Similarly, a subsequent call from a client may be regarded as an
acknowledgement of a server’s reply message. As we have seen, communication

Figure 5.5 RPC exchange protocols

Name Messages sent by

Client Server Client

R Request

RR Request Reply

RRA Request Reply Acknowledge reply

SECTION 5.2 REQUEST-REPLY PROTOCOLS 191

failures due to UDP datagrams being lost may be masked by the retransmission of
requests with duplicate filtering and the saving of replies in a history for retransmission.

The RRA protocol is based on the exchange of three messages: request-reply-
acknowledge reply. The Acknowledge reply message contains the requestId from the
reply message being acknowledged. This will enable the server to discard entries from
its history. The arrival of a requestId in an acknowledgement message will be
interpreted as acknowledging the receipt of all reply messages with lower requestIds, so
the loss of an acknowledgement message is harmless. Although the exchange involves
an additional message, it need not block the client, as the acknowledgement may be
transmitted after the reply has been given to the client. However it does use processing
and network resources. Exercise 5.10 suggests an optimization to the RRA protocol.

Use of TCP streams to implement the request-reply protocol • Section 4.2.3 mentioned
that it is often difficult to decide on an appropriate size for the buffer in which to receive
datagrams. In the request-reply protocol, this applies to the buffers used by the server to
receive request messages and by the client to receive replies. The limited length of
datagrams (usually 8 kilobytes) may not be regarded as adequate for use in transparent
RMI or RPC systems, since the arguments or results of procedures may be of any size.

The desire to avoid implementing multipacket protocols is one of the reasons for
choosing to implement request-reply protocols over TCP streams, allowing arguments
and results of any size to be transmitted. In particular, Java object serialization is a
stream protocol that allows arguments and results to be sent over streams between the
client and server, making it possible for collections of objects of any size to be
transmitted reliably. If the TCP protocol is used, it ensures that request and reply
messages are delivered reliably, so there is no need for the request-reply protocol to deal
with retransmission of messages and filtering of duplicates or with histories. In addition
the flow-control mechanism allows large arguments and results to be passed without
taking special measures to avoid overwhelming the recipient. Thus the TCP protocol is
chosen for request-reply protocols because it can simplify their implementation. If
successive requests and replies between the same client-server pair are sent over the
same stream, the connection overhead need not apply to every remote invocation. Also,
the overhead due to TCP acknowledgement messages is reduced when a reply message
follows soon after a request message.

Howeever, if the application does not require all of the facilities offered by TCP,
a more efficient, specially tailored protocol can be implemented over UDP. For
example, Sun NFS does not require support for messages of unlimited size, since it

192 CHAPTER 5 REMOTE INVOCATION

transmits fixed-size file blocks between client and server. In addition to that, its
operations are designed to be idempotent, so it does not matter if operations are executed
more than once in order to retransmit lost reply messages, making it unnecessary to
maintain a history.

HTTP: An example of a request-reply protocol • Chapter 1 introduced the HyperText
Transfer Protocol (HTTP) used by web browser clients to make requests to web servers
and to receive replies from them. To recap, web servers manage resources implemented
in different ways:

• as data – for example the text of an HTML page, an image or the class of an applet;

• as a program – for example, servlets [java.sun.com III], or PHP or Python
programs that run on the web server.

Client requests specify a URL that includes the DNS hostname of a web server and an
optional port number on the web server as well as the identifier of a resource on that
server.

HTTP is a protocol that specifies the messages involved in a request-reply
exchange, the methods, arguments and results, and the rules for representing
(marshalling) them in the messages. It supports a fixed set of methods (GET, PUT,
POST, etc) that are applicable to all of the server’s resources. It is unlike the previously
described protocols, where each service has its own set of operations. In addition to
invoking methods on web resources, the protocol allows for content negotiation and
password-style authentication:

Content negotiation: Clients’ requests can include information as to what data
representations they can accept (for example, language or media type), enabling the
server to choose the representation that is the most appropriate for the user.

Authentication: Credentials and challenges are used to support password-style
authentication. On the first attempt to access a password-protected area, the server
reply contains a challenge applicable to the resource. Chapter 11 explains challenges.
When a client receives a challenge, it gets the user to type a name and password and
submits the associated credentials with subsequent requests.

HTTP is implemented over TCP. In the original version of the protocol, each client-
server interaction consisted of the following steps:

• The client requests and the server accepts a connection at the default server port
or at a port specified in the URL.

• The client sends a request message to the server.

• The server sends a reply message to the client.

• The connection is closed.

However, establishing and closing a connection for every request-reply exchange is
expensive, overloading the server and causing too many messages to be sent over the
network. Bearing in mind that browsers generally make multiple requests to the same
server – for example, to get the images in a page just supplied – a later version of the
protocol (HTTP 1.1, see RFC 2616 [Fielding et al. 1999]) uses persistent connections –
connections that remain open over a series of request-reply exchanges between client

SECTION 5.2 REQUEST-REPLY PROTOCOLS 193

and server. A persistent connection can be closed by the client or server at any time by
sending an indication to the other participant. Servers will close a persistent connection
when it has been idle for a period of time. It is possible that a client may receive a
message from the server saying that the connection is closed while it is in the middle of
sending another request or requests. In such cases, the browser will resend the requests
without user involvement, provided that the operations involved are idempotent. For
example, the method GET described below is idempotent. Where non-idempotent
operations are involved, the browser should consult the user as to what to do next.

Requests and replies are marshalled into messages as ASCII text strings, but
resources can be represented as byte sequences and may be compressed. The use of text
in the external data representation has simplified the use of HTTP for application
programmers who work directly with the protocol. In this context, a textual
representation does not add much to the length of the messages.

Data resources are supplied as MIME-like structures in arguments and results.
Multipurpose Internet Mail Extensions (MIME), specified in RFC 2045 [Freed and
Borenstein 1996], is a standard for sending multipart data containing, for example, text,
images and sound in email messages. Data is prefixed with its MIME type so that the
recipient will know how to handle it. A MIME type specifies a type and a subtype, for
example, text/plain, text/html, image/gif or image/jpeg. Clients can also specify the
MIME types that they are willing to accept.

HTTP methods • Each client request specifies the name of a method to be applied to a
resource at the server and the URL of that resource. The reply reports on the status of
the request. Requests and replies may also contain resource data, the contents of a form
or the output of a program resource run on the web server. The methods include the
following:

Figure 5.6 HTTP Request message

method URL or pathname HTTP version headers message body

GET http://www.dcs.qmul.ac.uk/index.html HTTP/ 1.1

GET: Requests the resource whose URL is given as its argument. If the URL refers
to data, then the web server replies by returning the data identified by that URL. If
the URL refers to a program, then the web server runs the program and returns its
output to the client. Arguments may be added to the URL; for example, GET can be
used to send the contents of a form to a program as an argument. The GET operation
can be made conditional on the date a resource was last modified. GET can also be
configured to obtain parts of the data.

With GET, all the information for the request is provided in the URL (see, for
example, the query string in Section 1.6).

HEAD: This request is identical to GET, but it does not return any data. However, it
does return all the information about the data, such as the time of last modification,
its type or its size.

194 CHAPTER 5 REMOTE INVOCATION

POST: Specifies the URL of a resource (for example a program) that can deal with
the data supplied in the body of the request. The processing carried out on the data
depends on the function of the program specified in the URL. This method is used
when the action may change data on the server. It is designed to deal with:

• providing a block of data to a data-handling process such as a servlet – for
example, submitting a web form to buy something from a web site;

• posting a message to a mailing list or updating details of members of the list;

• extending a database with an append operation.

PUT: Requests that the data supplied in the request is stored with the given URL as
its identifier, either as a modification of an existing resource or as a new resource.

DELETE: The server deletes the resource identified by the given URL. Servers may
not always allow this operation, in which case the reply indicates failure.

OPTIONS: The server supplies the client with a list of methods it allows to be
applied to the given URL (for example GET, HEAD, PUT) and its special
requirements.

TRACE: The server sends back the request message. Used for diagnostic purposes.

The operations PUT and DELETE are idempotent, but POST is not necessarily so
because it can change the state of a resource. The others are safe operations in that they
do not change anything.

The requests described above may be intercepted by a proxy server (see Section 2.3.1).
The responses to GET and HEAD may be cached by proxy servers.

Message contents • The Request message specifies the name of a method, the URL of
a resource, the protocol version, some headers and an optional message body. Figure 5.6
shows the contents of an HTTP Request message whose method is GET. When the URL
specifies a data resource, the GET method does not have a message body.

Requests to proxies need the absolute URL, as shown in Figure 5.6. Requests to
origin servers (the origin server is where the resource resides) specify a pathname and
give the DNS name of the origin server in a Host header field. For example,

GET /index.html HTTP/1.1

Host: www.dcs.qmul.ac.uk

In general, the header fields contain request modifiers and client information, such as
conditions on the latest date of modification of the resource or acceptable content types
(for example, HTML text, audio or JPEG images). An authorization field can be used to
provide the client’s credentials in the form of a certificate specifying their rights to
access a resource.

A Reply message specifies the protocol version, a status code and ‘reason’, some
headers and an optional message body, as shown in Figure 5.7. The status code and
reason provide a report on the server’s success or otherwise in carrying out the request:
the former is a three-digit integer for interpretation by a program, and the latter is a
textual phrase that can be understood by a person. The header fields are used to pass
additional information about the server or access to the resource. For example, if the
request requires authentication, the status of the response indicates this and a header

Figure 5.7 HTTP Reply message

HTTP version status code reason headers message body

HTTP/1.1 200 OK resource data

SECTION 5.3 REMOTE PROCEDURE CALL 195

field contains a challenge. Some status returns have quite complex effects. In particular,
a 303 status response tells the browser to look under a different URL, which is supplied
in a header field in the reply. It is intended for use in a response from a program activated
by a POST request when the program needs to redirect the browser to a selected
resource.

The message body in request or reply messages contains the data associated with
the URL specified in the request. The message body has its own headers specifying
information about the data, such as its length, its MIME type, its character set, its content
encoding and the last date it was modified. The MIME type field specifies the type of
the data, for example image/jpeg or text/plain. The content encoding field specifies the
compression algorithm to be used

5.3 Remote procedure call

As mentioned in Chapter 2, the concept of a remote procedure call (RPC) represents a
major intellectual breakthrough in distributed computing, with the goal of making the
programming of distributed systems look similar, if not identical, to conventional
programming – that is, achieving a high level of distribution transparency. This
unification is achieved in a very simple manner, by extending the abstraction of a
procedure call to distributed environments. In particular, in RPC, procedures on remote
machines can be called as if they are procedures in the local address space. The
underlying RPC system then hides important aspects of distribution, including the
encoding and decoding of parameters and results, the passing of messages and the
preserving of the required semantics for the procedure call. This concept was first
introduced by Birrell and Nelson [1984] and paved the way for many of the
developments in distributed systems programming used today.

5.3.1 Design issues for RPC

Before looking at the implementation of RPC systems, we look at three issues that are
important in understanding this concept:

• the style of programming promoted by RPC – programming with interfaces;

• the call semantics associated with RPC;

• the key issue of transparency and how it relates to remote procedure calls.

Programming with interfaces • Most modern programming languages provide a means
of organizing a program as a set of modules that can communicate with one another.
Communication between modules can be by means of procedure calls between modules

196 CHAPTER 5 REMOTE INVOCATION

or by direct access to the variables in another module. In order to control the possible
interactions between modules, an explicit interface is defined for each module. The
interface of a module specifies the procedures and the variables that can be accessed
from other modules. Modules are implemented so as to hide all the information about
them except that which is available through its interface. So long as its interface remains
the same, the implementation may be changed without affecting the users of the module.

Interfaces in distributed systems: In a distributed program, the modules can run in
separate processes. In the client-server model, in particular, each server provides a set
of procedures that are available for use by clients. For example, a file server would
provide procedures for reading and writing files. The term service interface is used to
refer to the specification of the procedures offered by a server, defining the types of the
arguments of each of the procedures.

There are a number of benefits to programming with interfaces in distributed
systems, stemming from the important separation between interface and
implementation:

• As with any form of modular programming, programmers are concerned only
with the abstraction offered by the service interface and need not be aware of
implementation details.

• Extrapolating to (potentially heterogeneous) distributed systems, programmers
also do not need to know the programming language or underlying platform used
to implement the service (an important step towards managing heterogeneity in
distributed systems).

• This approach provides natural support for software evolution in that
implementations can change as long as long as the interface (the external view)
remains the same. More correctly, the interface can also change as long as it
remains compatible with the original.

The definition of service interfaces is influenced by the distributed nature of the
underlying infrastructure:

• It is not possible for a client module running in one process to access the variables
in a module in another process. Therefore the service interface cannot specify
direct access to variables. Note that CORBA IDL interfaces can specify attributes,
which seems to break this rule. However, the attributes are not accessed directly
but by means of some getter and setter procedures added automatically to the
interface.

• The parameter-passing mechanisms used in local procedure calls – for example,
call by value and call by reference, are not suitable when the caller and procedure
are in different processes. In particular, call by reference is not supported. Rather,
the specification of a procedure in the interface of a module in a distributed
program describes the parameters as input or output, or sometimes both. Input

parameters are passed to the remote server by sending the values of the arguments
in the request message and then supplying them as arguments to the operation to
be executed in the server. Output parameters are returned in the reply message and
are used as the result of the call or to replace the values of the corresponding

SECTION 5.3 REMOTE PROCEDURE CALL 197

variables in the calling environment. When a parameter is used for both input and
output, the value must be transmitted in both the request and reply messages.

• Another difference between local and remote modules is that addresses in one
process are not valid in another remote one. Therefore, addresses cannot be passed
as arguments or returned as results of calls to remote modules.

These constraints have a significant impact on the specification of interface definition
languages, as discussed below.

Interface definition languages: An RPC mechanism can be integrated with a particular
programming language if it includes an adequate notation for defining interfaces,
allowing input and output parameters to be mapped onto the language’s normal use of
parameters. This approach is useful when all the parts of a distributed application can be
written in the same language. It is also convenient because it allows the programmer to
use a single language, for example, Java, for local and remote invocation.

However, many existing useful services are written in C++ and other languages.
It would be beneficial to allow programs written in a variety of languages, including
Java, to access them remotely. Interface definition languages (IDLs) are designed to
allow procedures implemented in different languages to invoke one another. An IDL
provides a notation for defining interfaces in which each of the parameters of an
operation may be described as for input or output in addition to having its type specified.

Figure 5.8 CORBA IDL example

// In file Person.idl

struct Person {

string name;

string place;

long year;

};

interface PersonList {

readonly attribute string listname;

void addPerson(in Person p) ;

void getPerson(in string name, out Person p);

long number();

};

Figure 5.8 shows a simple example of CORBA IDL. The Person structure is the
same as the one used to illustrate marshalling in Section 4.3.1. The interface named
PersonList specifies the methods available for RMI in a remote object that implements
that interface. For example, the method addPerson specifies its argument as in, meaning
that it is an input argument, and the method getPerson that retrieves an instance of
Person by name specifies its second argument as out, meaning that it is an output

argument.

198 CHAPTER 5 REMOTE INVOCATION

The concept of an IDL was initially developed for RPC systems but applies
equally to RMI and also web services. Our case studies include:

• Sun XDR as an example of an IDL for RPC (in Section 5.3.3);

• CORBA IDL as an example of an IDL for RMI (in Chapter 8 and also included
above);

• the Web Services Description Language (WSDL), which is designed for an
Internet-wide RPC supporting web services (see Section 9.3);

• and protocol buffers used at Google for storing and interchanging many kinds of
structured information (see Section 21.4.1).

RPC call semantics • Request-reply protocols were discussed in Section 5.2, where we
showed that doOperation can be implemented in different ways to provide different
delivery guarantees. The main choices are:

Retry request message: Controls whether to retransmit the request message until
either a reply is received or the server is assumed to have failed.

Duplicate filtering: Controls when retransmissions are used and whether to filter out
duplicate requests at the server.

Retransmission of results: Controls whether to keep a history of result messages to
enable lost results to be retransmitted without re-executing the operations at the
server.

Combinations of these choices lead to a variety of possible semantics for the reliability
of remote invocations as seen by the invoker. Figure 5.9

Figure 5.9 Call semantics

Fault tolerance measures Call semantics

Retransmit request

message

Duplicate

filtering

Re-execute procedure

or retransmit reply

No Not applicable Not applicable Maybe

Yes No Re-execute procedure At-least-once

Yes Yes Retransmit reply At-most-once

 shows the choices of interest,
with corresponding names for the semantics that they produce. Note that for local
procedure calls, the semantics are exactly once, meaning that every procedure is
executed exactly once (except in the case of process failure). The choices of RPC
invocation semantics are defined as follows.

SECTION 5.3 REMOTE PROCEDURE CALL 199

Maybe semantics: With maybe semantics, the remote procedure call may be executed
once or not at all. Maybe semantics arises when no fault-tolerance measures are applied
and can suffer from the following types of failure:

• omission failures if the request or result message is lost;

• crash failures when the server containing the remote operation fails.

If the result message has not been received after a timeout and there are no retries, it is
uncertain whether the procedure has been executed. If the request message was lost, then
the procedure will not have been executed. On the other hand, the procedure may have
been executed and the result message lost. A crash failure may occur either before or
after the procedure is executed. Moreover, in an asynchronous system, the result of
executing the procedure may arrive after the timeout. Maybe semantics is useful only for
applications in which occasional failed calls are acceptable.

At-least-once semantics: With at-least-once semantics, the invoker receives either a
result, in which case the invoker knows that the procedure was executed at least once,
or an exception informing it that no result was received. At-least-once semantics can be
achieved by the retransmission of request messages, which masks the omission failures
of the request or result message. At-least-once semantics can suffer from the following
types of failure:

• crash failures when the server containing the remote procedure fails;

• arbitrary failures – in cases when the request message is retransmitted, the remote
server may receive it and execute the procedure more than once, possibly causing
wrong values to be stored or returned.

Section 5.2 defines an idempotent operation as one that can be performed repeatedly
with the same effect as if it had been performed exactly once. Non-idempotent
operations can have the wrong effect if they are performed more than once. For example,
an operation to increase a bank balance by $10 should be performed only once; if it were
to be repeated, the balance would grow and grow! If the operations in a server can be
designed so that all of the procedures in their service interfaces are idempotent
operations, then at-least-once call semantics may be acceptable.

At-most-once semantics: With at-most-once semantics, the caller receives either a
result, in which case the caller knows that the procedure was executed exactly once, or
an exception informing it that no result was received, in which case the procedure will
have been executed either once or not at all. At-most-once semantics can be achieved by
using all of the fault-tolerance measures outlined in Figure 5.9. As in the previous case,
the use of retries masks any omission failures of the request or result messages. This set
of fault tolerance measures prevents arbitrary failures by ensuring that for each RPC a
procedure is never executed more than once. Sun RPC (discussed in Section 5.3.3)
provides at-least-once call semantics.

Transparency • The originators of RPC, Birrell and Nelson [1984], aimed to make
remote procedure calls as much like local procedure calls as possible, with no distinction
in syntax between a local and a remote procedure call. All the necessary calls to
marshalling and message-passing procedures were hidden from the programmer making
the call. Although request messages are retransmitted after a timeout, this is transparent
to the caller to make the semantics of remote procedure calls like that of local procedure
calls.

200 CHAPTER 5 REMOTE INVOCATION

More precisely, returning to the terminology of Chapter 1, RPC strives to offer at
least location and access transparency, hiding the physical location of the (potentially
remote) procedure and also accessing local and remote procedures in the same way.
Middleware can also offer additional levels of transparency to RPC.

However, remote procedure calls are more vulnerable to failure than local ones,
since they involve a network, another computer and another process. Whichever of the
above semantics is chosen, there is always the chance that no result will be received, and
in the case of failure, it is impossible to distinguish between failure of the network and
of the remote server process. This requires that clients making remote calls are able to
recover from such situations.

The latency of a remote procedure call is several orders of magnitude greater than
that of a local one. This suggests that programs that make use of remote calls need to be
able to take this factor into account, perhaps by minimizing remote interactions. The
designers of Argus [Liskov and Scheifler 1982] suggested that a caller should be able to
abort a remote procedure call that is taking too long in such a way that it has no effect
on the server. To allow this, the server would need to be able to restore things to how
they were before the procedure was called. These issues are discussed in Chapter 16.

Remote procedure calls also require a different style of parameter passing, as
discussed above. In particular, RPC does not offer call by reference.

Waldo et al. [1994] say that the difference between local and remote operations
should be expressed at the service interface, to allow participants to react in a consistent
way to possible partial failures. Other systems went further than this by arguing that the
syntax of a remote call should be different from that of a local call: in the case of Argus,
the language was extended to make remote operations explicit to the programmer.

The choice as to whether RPC should be transparent is also available to the
designers of IDLs. For example, in some IDLs, a remote invocation may throw an
exception when the client is unable to communicate with a remote procedure. This
requires that the client program handle such exceptions, allowing it to deal with such
failures. An IDL can also provide a facility for specifying the call semantics of a
procedure. This can help the designer of the service – for example, if at-least-once call
semantics is chosen to avoid the overheads of at-most-once, the operations must be
designed to be idempotent.

The current consensus is that remote calls should be made transparent in the sense
that the syntax of a remote call is the same as that of a local invocation, but that the
difference between local and remote calls should be expressed in their interfaces.

5.3.2 Implementation of RPC

The software components required to implement RPC are shown in Figure 5.10. The
client that accesses a service includes one stub procedure for each procedure in the
service interface. The stub procedure behaves like a local procedure to the client, but
instead of executing the call, it marshals the procedure identifier and the arguments into
a request message, which it sends via its communication module to the server. When the
reply message arrives, it unmarshals the results. The server process contains a dispatcher
together with one server stub procedure and one service procedure for each procedure
in the service interface. The dispatcher selects one of the server stub procedures
according to the procedure identifier in the request message. The server stub procedure

Figure 5.10 Role of client and server stub procedures in RPC

client

Request

Reply

CommunicationCommunication

 module module dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

SECTION 5.3 REMOTE PROCEDURE CALL 201

then unmarshals the arguments in the request message, calls the corresponding service
procedure and marshals the return values for the reply message. The service procedures
implement the procedures in the service interface. The client and server stub procedures
and the dispatcher can be generated automatically by an interface compiler from the
interface definition of the service.

RPC is generally implemented over a request-reply protocol like the ones
discussed in Section 5.2. The contents of request and reply messages are the same as
those illustrated for request-reply protocols in Figure 5.4. RPC may be implemented to
have one of the choices of invocation semantics discussed in Section 5.3.1 – at-least-

once or at-most-once is generally chosen. To achieve this, the communication module
will implement the desired design choices in terms of retransmission of requests, dealing
with duplicates and retransmission of results, as shown in Figure 5.9.

5.3.3 Case study: Sun RPC

RFC 1831 [Srinivasan 1995a] describes Sun RPC, which was designed for client-server
communication in the Sun Network File System (NFS). Sun RPC is sometimes called
ONC (Open Network Computing) RPC. It is supplied as a part of the various Sun and
other UNIX operating systems and is also available with NFS installations.
Implementors have the choice of using remote procedure calls over either UDP or TCP.
When Sun RPC is used with UDP, request and reply messages are restricted in length –
theoretically to 64 kilobytes, but more often in practice to 8 or 9 kilobytes. It uses at-

least-once call semantics. Broadcast RPC is an option.
The Sun RPC system provides an interface language called XDR and an interface

compiler called rpcgen, which is intended for use with the C programming language.

Interface definition language • The Sun XDR language, which was originally designed
for specifying external data representations, was extended to become an interface
definition language. It may be used to define a service interface for Sun RPC by
specifying a set of procedure definitions together with supporting type definitions. The
notation is rather primitive in comparison with that used by CORBA IDL or Java. In
particular:

Figure 5.11 Files interface in Sun XDR

const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data {

int length;

char buffer[MAX];

};

struct writeargs {

FileIdentifier f;

FilePointer position;

Data data;

};

struct readargs {

FileIdentifier f;

FilePointer position;

Length length;

};

program FILEREADWRITE {

 version VERSION {

void WRITE(writeargs)=1; 1

Data READ(readargs)=2; 2

}=2;

} = 9999;

202 CHAPTER 5 REMOTE INVOCATION

• Most languages allow interface names to be specified, but Sun RPC does not –
instead of this, a program number and a version number are supplied. The program
numbers can be obtained from a central authority to allow every program to have
its own unique number. The version number is intended to be changed when a
procedure signature changes. Both program and version number are passed in the
request message, so the client and server can check that they are using the same
version.

• A procedure definition specifies a procedure signature and a procedure number.
The procedure number is used as a procedure identifier in request messages.

• Only a single input parameter is allowed. Therefore, procedures requiring
multiple parameters must include them as components of a single structure.

• The output parameters of a procedure are returned via a single result.

• The procedure signature consists of the result type, the name of the procedure and
the type of the input parameter. The type of both the result and the input parameter
may specify either a single value or a structure containing several values.

SECTION 5.3 REMOTE PROCEDURE CALL 203

For example, see the XDR definition in Figure 5.11 of an interface with a pair of
procedures for writing and reading files. The program number is 9999 and the version
number is 2. The READ procedure (line 2) takes as its input parameter a structure with
three components specifying a file identifier, a position in the file and the number of
bytes required. Its result is a structure containing the number of bytes returned and the
file data. The WRITE procedure (line 1) has no result. The WRITE and READ procedures
are given numbers 1 and 2. The number 0 is reserved for a null procedure, which is
generated automatically and is intended to be used to test whether a server is available.

 This interface definition language provides a notation for defining constants,
typedefs, structures, enumerated types, unions and programs. Typedefs, structures and
enumerated types use the C language syntax. The interface compiler rpcgen can be used
to generate the following from an interface definition:

• client stub procedures;

• server main procedure, dispatcher and server stub procedures;

• XDR marshalling and unmarshalling procedures for use by the dispatcher and
client and server stub procedures.

Binding • Sun RPC runs a local binding service called the port mapper at a well-known
port number on each computer. Each instance of a port mapper records the program
number, version number and port number in use by each service running locally. When
a server starts up it registers its program number, version number and port number with
the local port mapper. When a client starts up, it finds out the server’s port by making a
remote request to the port mapper at the server’s host, specifying the program number
and version number.

When a service has multiple instances running on different computers, the
instances may use different port numbers for receiving client requests. If a client needs
to multicast a request to all the instances of a service that are using different port
numbers, it cannot use a direct IP multicast message for this purpose. The solution is that
clients make multicast remote procedure calls by multicasting them to all the port
mappers, specifying the program and version number. Each port mapper forwards all
such calls to the appropriate local service program, if there is one.

Authentication. Sun RPC request and reply messages provide additional fields enabling
authentication information to be passed between client and server. The request message
contains the credentials of the user running the client program. For example, in the
UNIX style of authentication the credentials include the uid and gid of the user. Access
control mechanisms can be built on top of the authentication information which is made
available to the server procedures via a second argument. The server program is
responsible for enforcing access control by deciding whether to execute each procedure
call according to the authentication information. For example, if the server is an NFS file
server, it can check whether the user has sufficient rights to carry out a requested file
operation. Several different authentication protocols can be supported. These include:

• none;

• UNIX style, as described above;

• a style in which a shared key is established for signing the RPC messages;

• Kerberos (see Chapter 11).

A field in the RPC header indicates which style is being used.

204 CHAPTER 5 REMOTE INVOCATION

A more generic approach to security is described in RFC 2203 [Eisler et al. 1997].
It provides for the secrecy and integrity of RPC messages as well as authentication. It
allows the client and server to negotiate a security context in which either no security is
applied, or in the case that security is required, message integrity or message privacy or
both may be applied.

Client and server programs • Further material on Sun RPC is available at
www.cdk5.net/rmi. It includes example client and server programs corresponding to the
interface defined in Figure 5.11.

5.4 Remote method invocation

Remote method invocation (RMI) is closely related to RPC but extended into the world
of distributed objects. In RMI, a calling object can invoke a method in a potentially
remote object. As with RPC, the underlying details are generally hidden from the user.
The commonalities between RMI and RPC are as follows:

• They both support programming with interfaces, with the resultant benefits that
stem from this approach (see Section 5.3.1).

• They are both typically constructed on top of request-reply protocols and can offer
a range of call semantics such as at-least-once and at-most-once.

• They both offer a similar level of transparency – that is, local and remote calls
employ the same syntax but remote interfaces typically expose the distributed
nature of the underlying call, for example by supporting remote exceptions.

The following differences lead to added expressiveness when it comes to the
programming of complex distributed applications and services.

• The programmer is able to use the full expressive power of object-oriented
programming in the development of distributed systems software, including the
use of objects, classes and inheritance, and can also employ related object-
oriented design methodologies and associated tools.

• Building on the concept of object identity in object-oriented systems, all objects
in an RMI-based system have unique object references (whether they are local or
remote), such object references can also be passed as parameters, thus offering
significantly richer parameter-passing semantics than in RPC.

The issue of parameter passing is particularly important in distributed systems. RMI
allows the programmer to pass parameters not only by value, as input or output
parameters, but also by object reference. Passing references is particularly attractive if
the underlying parameter is large or complex. The remote end, on receiving an object
reference, can then access this object using remote method invocation, instead of having
to transmit the object value across the network.

The rest of this section examines the concept of remote method invocation in more
detail, looking initially at the key issues surrounding distributed object models before
looking at implementation issues surrounding RMI, including distributed garbage
collection.

SECTION 5.4 REMOTE METHOD INVOCATION 205

5.4.1 Design issues for RMI

As mentioned above, RMI shares the same design issues as RPC in terms of
programming with interfaces, call semantics and level of transparency. The reader is
encouraged to refer back to Section 5.3.1 for discussion of these items.

The key added design issue relates to the object model and, in particular,
achieving the transition from objects to distributed objects. We first describe the
conventional, single-image object model and then describe the distributed object model.

The object model • An object-oriented program, for example in Java or C++, consists
of a collection of interacting objects, each of which consists of a set of data and a set of
methods. An object communicates with other objects by invoking their methods,
generally passing arguments and receiving results. Objects can encapsulate their data
and the code of their methods. Some languages, for example Java and C++, allow
programmers to define objects whose instance variables can be accessed directly. But
for use in a distributed object system, an object’s data should be accessible only via its
methods.

Object references: Objects can be accessed via object references. For example, in Java, a
variable that appears to hold an object actually holds a reference to that object. To
invoke a method in an object, the object reference and method name are given, together
with any necessary arguments. The object whose method is invoked is sometimes called
the target and sometimes the receiver. Object references are first-class values, meaning
that they may, for example, be assigned to variables, passed as arguments and returned
as results of methods.

Interfaces: An interface provides a definition of the signatures of a set of methods (that
is, the types of their arguments, return values and exceptions) without specifying their
implementation. An object will provide a particular interface if its class contains code
that implements the methods of that interface. In Java, a class may implement several
interfaces, and the methods of an interface may be implemented by any class. An
interface also defines types that can be used to declare the type of variables or of the
parameters and return values of methods. Note that interfaces do not have constructors.

Actions : Action in an object-oriented program is initiated by an object invoking a
method in another object. An invocation can include additional information (arguments)
needed to carry out the method. The receiver executes the appropriate method and then
returns control to the invoking object, sometimes supplying a result. An invocation of a
method can have three effects:

1. The state of the receiver may be changed.

2. A new object may be instantiated, for example, by using a constructor in Java or
C++.

3. Further invocations on methods in other objects may take place.

As an invocation can lead to further invocations of methods in other objects, an action
is a chain of related method invocations, each of which eventually returns.

Exceptions: Programs can encounter many sorts of errors and unexpected conditions of
varying seriousness. During the execution of a method, many different problems may be
discovered: for example, inconsistent values in the object’s variables, or failures in

206 CHAPTER 5 REMOTE INVOCATION

attempts to read or write to files or network sockets. When programmers need to insert
tests in their code to deal with all possible unusual or erroneous cases, this detracts from
the clarity of the normal case. Exceptions provide a clean way to deal with error
conditions without complicating the code. In addition, each method heading explicitly
lists as exceptions the error conditions it might encounter, allowing users of the method
to deal with them. A block of code may be defined to throw an exception whenever
particular unexpected conditions or errors arise. This means that control passes to
another block of code that catches the exception. Control does not return to the place
where the exception was thrown.

Garbage collection: It is necessary to provide a means of freeing the space occupied by
objects when they are no longer needed. A language such as Java, that can detect
automatically when an object is no longer accessible recovers the space and makes it
available for allocation to other objects. This process is called garbage collection. When
a language (for example, C++) does not support garbage collection, the programmer has
to cope with the freeing of space allocated to objects. This can be a major source of
errors.

Distributed objects • The state of an object consists of the values of its instance
variables. In the object-based paradigm the state of a program is partitioned into separate
parts, each of which is associated with an object. Since object-based programs are
logically partitioned, the physical distribution of objects into different processes or
computers in a distributed system is a natural extension (the issue of placement is
discussed in Section 2.3.1).

Distributed object systems may adopt the client-server architecture. In this case,
objects are managed by servers and their clients invoke their methods using remote
method invocation. In RMI, the client’s request to invoke a method of an object is sent
in a message to the server managing the object. The invocation is carried out by
executing a method of the object at the server and the result is returned to the client in
another message. To allow for chains of related invocations, objects in servers are
allowed to become clients of objects in other servers.

Distributed objects can assume other architectural models. For example, objects
can be replicated in order to obtain the usual benefits of fault tolerance and enhanced
performance, and objects can be migrated with a view to enhancing their performance
and availability.

Having client and server objects in different processes enforces encapsulation.
That is, the state of an object can be accessed only by the methods of the object, which
means that it is not possible for unauthorized methods to act on the state. For example,
the possibility of concurrent RMIs from objects in different computers implies that an
object may be accessed concurrently. Therefore the possibility of conflicting accesses
arises. However, the fact that the data of an object is accessed only by its own methods
allows objects to provide methods for protecting themselves against incorrect accesses.
For example, they may use synchronization primitives such as condition variables to
protect access to their instance variables.

Another advantage of treating the shared state of a distributed program as a
collection of objects is that an object may be accessed via RMI, or it may be copied into
a local cache and accessed directly, provided that the class implementation is available
locally.

SECTION 5.4 REMOTE METHOD INVOCATION 207

The fact that objects are accessed only via their methods gives rise to another
advantage of heterogeneous systems, that different data formats may be used at different
sites – these formats will be unnoticed by clients that use RMI to access the methods of
the objects.

The distributed object model • This section discusses extensions to the object model to
make it applicable to distributed objects. Each process contains a collection of objects,
some of which can receive both local and remote invocations, whereas the other objects
can receive only local invocations, as shown in Figure 5.12

Figure 5.12 Remote and local method invocations

invocation invocationremote local

local

local
invocation

invocation
B

C

D

E

invocation
remote

F
A

. Method invocations
between objects in different processes, whether in the same computer or not, are known
as remote method invocations. Method invocations between objects in the same process
are local method invocations.

We refer to objects that can receive remote invocations as remote objects. In
Figure 5.12, the objects B and F are remote objects. All objects can receive local
invocations, although they can receive them only from other objects that hold references
to them. For example, object C must have a reference to object E so that it can invoke
one of its methods. The following two fundamental concepts are at the heart of the
distributed object model:

Remote object references: Other objects can invoke the methods of a remote object
if they have access to its remote object reference. For example, a remote object
reference for B in Figure 5.12 must be available to A.

Remote interfaces: Every remote object has a remote interface that specifies which
of its methods can be invoked remotely. For example, the objects B and F in Figure
5.12 must have remote interfaces.

We look at remote object references, remote interfaces and other aspects of the
distributed object model next.

Remote object references: The notion of object reference is extended to allow any object
that can receive an RMI to have a remote object reference. A remote object reference is
an identifier that can be used throughout a distributed system to refer to a particular
unique remote object. Its representation, which is generally different from that of a local
object reference is discussed in Section 4.3.4. Remote object references are analogous
to local ones in that:

1. The remote object to receive a remote method invocation is specified by the
invoker as a remote object reference.

2. Remote object references may be passed as arguments and results of remote
method invocations.

208 CHAPTER 5 REMOTE INVOCATION

Remote interfaces: The class of a remote object implements the methods of its remote
interface, for example as public instance methods in Java. Objects in other processes can
invoke only the methods that belong to its remote interface, as shown in Figure 5.13

Figure 5.13 A remote object and its remote interface

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

.
Local objects can invoke the methods in the remote interface as well as other methods
implemented by a remote object. Note that remote interfaces, like all interfaces, do not
have constructors.

The CORBA system provides an interface definition language (IDL), which is
used for defining remote interfaces. See Figure 5.8 for an example of a remote interface
defined in CORBA IDL. The classes of remote objects and the client programs may be
implemented in any language for which an IDL compiler is available, such as C++, Java
or Python. CORBA clients need not use the same language as the remote object in order
to invoke its methods remotely.

In Java RMI, remote interfaces are defined in the same way as any other Java
interface. They acquire their ability to be remote interfaces by extending an interface
named Remote. Both CORBA IDL (Chapter 8) and Java support multiple inheritance of
interfaces. That is, an interface is allowed to extend one or more other interfaces.

Actions in a distributed object system • As in the non-distributed case, an action is
initiated by a method invocation, which may result in further invocations on methods in
other objects. But in the distributed case, the objects involved in a chain of related
invocations may be located in different processes or different computers. When an
invocation crosses the boundary of a process or computer, RMI is used, and the remote
reference of the object must be available to the invoker. In Figure 5.12, object A needs
to hold a remote object reference to object B. Remote object references may be obtained
as the results of remote method invocations. For example, object A in Figure 5.12 might
obtain a remote reference to object F from object B.

When an action leads to the instantiation of a new object, that object will normally
live within the process where instantiation is requested – for example, where the
constructor was used. If the newly instantiated object has a remote interface, it will be a
remote object with a remote object reference.

Distributed applications may provide remote objects with methods for
instantiating objects that can be accessed by RMI, thus effectively providing the effect
of remote instantiation of objects. For example, if the object L in Figure 5.14 contains a
method for creating remote objects, then the remote invocations from C and K could
lead to the instantiation of the objects M and N, respectively.

Figure 5.14 Instantiation of remote objects

C

NM

K

invocation
remote

invocation
remote

L

instantiate instantiate

SECTION 5.4 REMOTE METHOD INVOCATION 209

Garbage collection in a distributed-object system: If a language, for example Java,
supports garbage collection, then any associated RMI system should allow garbage
collection of remote objects. Distributed garbage collection is generally achieved by
cooperation between the existing local garbage collector and an added module that
carries out a form of distributed garbage collection, usually based on reference counting.
Section 5.4.3 describes such a scheme in detail. If garbage collection is not available,
then remote objects that are no longer required should be deleted.

Exceptions: Any remote invocation may fail for reasons related to the invoked object
being in a different process or computer from the invoker. For example, the process
containing the remote object may have crashed or may be too busy to reply, or the
invocation or result message may be lost. Therefore, remote method invocation should
be able to raise exceptions such as timeouts that are due to distribution as well as those
raised during the execution of the method invoked. Examples of the latter are an attempt
to read beyond the end of a file, or to access a file without the correct permissions.

CORBA IDL provides a notation for specifying application-level exceptions, and
the underlying system generates standard exceptions when errors due to distribution
occur. CORBA client programs need to be able to handle exceptions. For example, a
C++ client program will use the exception mechanisms in C++.

5.4.2 Implementation of RMI

Several separate objects and modules are involved in achieving a remote method
invocation. These are shown in Figure 5.15, in which an application-level object A
invokes a method in a remote application-level object B for which it holds a remote
object reference. This section discusses the roles of each of the components shown in
that figure, dealing first with the communication and remote reference modules and then
with the RMI software that runs over them.

We then explore the following related topics: the generation of proxies, the
binding of names to their remote object references, the activation and passivation of
objects and the location of objects from their remote object references.

Communication module • The two cooperating communication modules carry out the
request-reply protocol, which transmits request and reply messages between the client
and server. The contents of request and reply messages are shown in Figure 5.4. The
communication module uses only the first three items, which specify the message type,
its requestId and the remote reference of the object to be invoked. The operationId and

Figure 5.15 The role of proxy and skeleton in remote method invocation

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication

 module modulereference module module

for B’s class
& dispatcher

remote
client server

servant

210 CHAPTER 5 REMOTE INVOCATION

all the marshalling and unmarshalling are the concern of the RMI software, discussed
below. The communication modules are together responsible for providing a specified
invocation semantics, for example at-most-once.

The communication module in the server selects the dispatcher for the class of the
object to be invoked, passing on its local reference, which it gets from the remote
reference module in return for the remote object identifier in the request message. The
role of dispatcher is discussed in the forthcoming section on RMI software.

Remote reference module • A remote reference module is responsible for translating
between local and remote object references and for creating remote object references.
To support its responsibilities, the remote reference module in each process has a remote

object table that records the correspondence between local object references in that
process and remote object references (which are system-wide). The table includes:

• An entry for all the remote objects held by the process. For example, in Figure
5.15 the remote object B will be recorded in the table at the server.

• An entry for each local proxy. For example, in Figure 5.15 the proxy for B will be
recorded in the table at the client.

The role of a proxy is discussed in the subsection on RMI software. The actions of the
remote reference module are as follows:

• When a remote object is to be passed as an argument or a result for the first time,
the remote reference module is asked to create a remote object reference, which it
adds to its table.

• When a remote object reference arrives in a request or reply message, the remote
reference module is asked for the corresponding local object reference, which may
refer either to a proxy or to a remote object. In the case that the remote object
reference is not in the table, the RMI software creates a new proxy and asks the
remote reference module to add it to the table.

This module is called by components of the RMI software when they are marshalling
and unmarshalling remote object references. For example, when a request message
arrives, the table is used to find out which local object is to be invoked.

SECTION 5.4 REMOTE METHOD INVOCATION 211

Servants • A servant is an instance of a class that provides the body of a remote object.
It is the servant that eventually handles the remote requests passed on by the
corresponding skeleton. Servants live within a server process. They are created when
remote objects are instantiated and remain in use until they are no longer needed, finally
being garbage collected or deleted.

The RMI software • This consists of a layer of software between the application-level
objects and the communication and remote reference modules. The roles of the
middleware objects shown in Figure 5.15 are as follows:

Proxy: The role of a proxy is to make remote method invocation transparent to
clients by behaving like a local object to the invoker; but instead of executing an
invocation, it forwards it in a message to a remote object. It hides the details of the
remote object reference, the marshalling of arguments, unmarshalling of results and
sending and receiving of messages from the client. There is one proxy for each
remote object for which a process holds a remote object reference. The class of a
proxy implements the methods in the remote interface of the remote object it
represents, which ensures that remote method invocations are suitable for the type of
the remote object. However, the proxy implements them quite differently. Each
method of the proxy marshals a reference to the target object, its own operationId and
its arguments into a request message and sends it to the target. It then awaits the reply

message, unmarshals it and returns the results to the invoker.

Dispatcher: A server has one dispatcher and one skeleton for each class
representing a remote object. In our example, the server has a dispatcher and a
skeleton for the class of remote object B. The dispatcher receives request messages
from the communication module. It uses the operationId to select the appropriate
method in the skeleton, passing on the request message. The dispatcher and the proxy
use the same allocation of operationIds to the methods of the remote interface.

Skeleton: The class of a remote object has a skeleton, which implements the methods
in the remote interface. They are implemented quite differently from the methods in
the servant that incarnates a remote object. A skeleton method unmarshals the
arguments in the request message and invokes the corresponding method in the
servant. It waits for the invocation to complete and then marshals the result, together
with any exceptions, in a reply message to the sending proxy’s method.

Remote object references are marshalled in the form shown in Figure 4.13, which
includes information about the remote interface of the remote object – for example, the
name of the remote interface or the class of the remote object. This information enables
the proxy class to be determined so that a new proxy may be created when it is needed.
For example, the proxy class name may be generated by appending _proxy to the name
of the remote interface.

Generation of the classes for proxies, dispatchers and skeletons • The classes for the
proxy, dispatcher and skeleton used in RMI are generated automatically by an interface
compiler. For example, in the Orbix implementation of CORBA, interfaces of remote
objects are defined in CORBA IDL, and the interface compiler can be used to generate
the classes for proxies, dispatchers and skeletons in C++ or in Java [www.iona.com].
For Java RMI, the set of methods offered by a remote object is defined as a Java interface

212 CHAPTER 5 REMOTE INVOCATION

that is implemented within the class of the remote object. The Java RMI compiler
generates the proxy, dispatcher and skeleton classes from the class of the remote object.

Dynamic invocation: An alternative to proxies • The proxy just described is static, in the
sense that its class is generated from an interface definition and then compiled into the
client code. Sometimes this is not practical, though. Suppose that a client program
receives a remote reference to an object whose remote interface was not available at
compile time. In this case it needs another way to invoke the remote object. Dynamic

invocation gives the client access to a generic representation of a remote invocation like
the doOperation method used in Exercise 5.18, which is available as part of the
infrastructure for RMI (see Section 5.4.1). The client will supply the remote object
reference, the name of the method and the arguments to doOperation and then wait to
receive the results.

Note that although the remote object reference includes information about the
interface of the remote object, such as its name, this is not enough – the names of the
methods and the types of the arguments are required for making a dynamic invocation.
CORBA provides this information via a component called the Interface Repository,
which is described in Chapter 8.

The dynamic invocation interface is not as convenient to use as a proxy, but it is
useful in applications where some of the interfaces of the remote objects cannot be
predicted at design time. An example of such an application is the shared whiteboard
that we use to illustrate Java RMI (Section 5.5), CORBA (Chapter 8) and web services
(Section 9.2.3). To summarize: the shared whiteboard application displays many
different types of shapes, such as circles, rectangles and lines, but it should also be able
to display new shapes that were not predicted when the client was compiled. A client
that uses dynamic invocation is able to address this challenge. We shall see in Section
5.5 that the dynamic downloading of classes to clients is an alternative to dynamic
invocation. This is available in Java RMI – a single-language system.

Dynamic skeletons: It is clear, from the above example, that it can also arise that a server
will need to host remote objects whose interfaces were not known at compile time. For
example, a client may supply a new type of shape to the shared whiteboard server for it
to store. A server with dynamic skeletons would be able to deal with this situation. We
defer describing dynamic skeletons until the chapter on CORBA (Chapter 8). However,
as we shall see in Section 5.5, Java RMI addresses this problem by using a generic
dispatcher and the dynamic downloading of classes to the server.

Server and client programs • The server program contains the classes for the
dispatchers and skeletons, together with the implementations of the classes of all of the
servants that it supports. In addition, the server program contains an initialization

section (for example, in a main method in Java or C++). The initialization section is
responsible for creating and initializing at least one of the servants to be hosted by the
server. Additional servants may be created in response to requests from clients. The
initialization section may also register some of its servants with a binder (see below).
Generally it will register just one servant, which can be used to access the rest.

The client program will contain the classes of the proxies for all of the remote
objects that it will invoke. It can use a binder to look up remote object references.

SECTION 5.4 REMOTE METHOD INVOCATION 213

Factory methods: We noted earlier that remote object interfaces cannot include
constructors. This means that servants cannot be created by remote invocation on
constructors. Servants are created either in the initialization section or in methods in a
remote interface designed for that purpose. The term factory method is sometimes used
to refer to a method that creates servants, and a factory object is an object with factory
methods. Any remote object that needs to be able to create new remote objects on
demand for clients must provide methods in its remote interface for this purpose. Such
methods are called factory methods, although they are really just normal methods.

The binder • Client programs generally require a means of obtaining a remote object
reference for at least one of the remote objects held by a server. For example, in Figure
5.12, object A would require a remote object reference for object B. A binder in a
distributed system is a separate service that maintains a table containing mappings from
textual names to remote object references. It is used by servers to register their remote
objects by name and by clients to look them up. Chapter 8 contains a discussion of the
CORBA Naming Service. The Java binder, RMIregistry, is discussed briefly in the case
study on Java RMI in Section 5.5.

Server threads • Whenever an object executes a remote invocation, that execution may
lead to further invocations of methods in other remote objects, which may take some
time to return. To avoid the execution of one remote invocation delaying the execution
of another, servers generally allocate a separate thread for the execution of each remote
invocation. When this is the case, the designer of the implementation of a remote object
must allow for the effects on its state of concurrent executions.

Activation of remote objects • Some applications require that information survive for
long periods of time. However, it is not practical for the objects representing such
information to be kept in running processes for unlimited periods, particularly since they
are not necessarily in use all of the time. To avoid the potential waste of resources that
would result from to running all of the servers that manage remote objects all of the time,
the servers can be started whenever they are needed by clients, as is done for the standard
set of TCP services such as FTP, which are started on demand by a service called Inetd.
Processes that start server processes to host remote objects are called activators, for the
following reasons.

 A remote object is described as active when it is available for invocation within
a running process, whereas it is called passive if is not currently active but can be made
active. A passive object consists of two parts:

1. the implementation of its methods;

2. its state in the marshalled form.

Activation consists of creating an active object from the corresponding passive object by
creating a new instance of its class and initializing its instance variables from the stored
state. Passive objects can be activated on demand, for example when they need to be
invoked by other objects.

An activator is responsible for:

• registering passive objects that are available for activation, which involves
recording the names of servers against the URLs or file names of the
corresponding passive objects;

214 CHAPTER 5 REMOTE INVOCATION

• starting named server processes and activating remote objects in them;

• keeping track of the locations of the servers for remote objects that it has already
activated.

Java RMI provides the ability to make some remote objects activatable [java.sun.com
IX]. When an activatable object is invoked, if that object is not currently active, the
object is made active from its marshalled state and then passed the invocation. It uses
one activator on each server computer.

The CORBA case study in Chapter 8 describes the implementation repository – a
weak form of activator that starts services containing objects in an initial state.

Persistent object stores • An object that is guaranteed to live between activations of
processes is called a persistent object. Persistent objects are generally managed by
persistent object stores, which store their state in a marshalled form on disk. Examples
include the CORBA persistent state service (see Chapter 8), Java Data Objects
[java.sun.com VIII] and Persistent Java [Jordan 1996; java.sun.com IV].

In general, a persistent object store will manage very large numbers of persistent
objects, which are stored on disk or in a database until they are needed. They will be
activated when their methods are invoked by other objects. Activation is generally
designed to be transparent – that is, the invoker should not be able to tell whether an
object is already in main memory or has to be activated before its method is invoked.
Persistent objects that are no longer needed in main memory can be passivated. In most
cases, objects are saved in the persistent object store whenever they reach a consistent
state, for the sake of fault tolerance. The persistent object store needs a strategy for
deciding when to passivate objects. For example, it may do so in response to a request
in the program that activated the objects, either at the end of a transaction or when the
program exits. Persistent object stores generally attempt to optimize passivation by
saving only those objects that have been modified since the last time they were saved.

Persistent object stores generally allow collections of related persistent objects to
have human-readable names such as pathnames or URLs. In practice, each human-
readable name is associated with the root of a connected set of persistent objects.

There are two approaches to deciding whether an object is persistent or not:

• The persistent object store maintains some persistent roots, and any object that is
reachable from a persistent root is defined to be persistent. This approach is used
by Persistent Java, Java Data Objects and PerDiS [Ferreira et al. 2000]. They
make use of a garbage collector to dispose of objects that are no longer reachable
from the persistent roots.

• The persistent object store provides some classes on which persistence is based –
persistent objects belong to their subclasses. For example, in Arjuna [Parrington
et al. 1995], persistent objects are based on C++ classes that provide transactions
and recovery. Unwanted objects must be deleted explicitly.

Some persistent object stores, such as PerDiS and Khazana [Carter et al. 1998], allow
objects to be activated in multiple caches local to users, instead of in servers. In this case,
a cache consistency protocol is required. Further details on consistency models can be
found on the companion web site, in the chapter from the fourth edition on distributed
shared memory [www.cdk5.net/dsm].

SECTION 5.4 REMOTE METHOD INVOCATION 215

Object location • Section 4.3.4 describes a form of remote object reference that contains
the Internet address and port number of the process that created the remote object as a
way of guaranteeing uniqueness. This form of remote object reference can also be used
as an address for a remote object, so long as that object remains in the same process for
the rest of its life. But some remote objects will exist in a series of different processes,
possibly on different computers, throughout their lifetime. In this case, a remote object
reference cannot act as an address. Clients making invocations require both a remote
object reference and an address to which to send invocations.

A location service helps clients to locate remote objects from their remote object
references. It uses a database that maps remote object references to their probable
current locations – the locations are probable because an object may have migrated again
since it was last heard of. For example, the Clouds system [Dasgupta et al. 1991] and
the Emerald system [Jul et al. 1988] used a cache/broadcast scheme in which a member
of a location service on each computer holds a small cache of remote object reference-
to-location mappings. If a remote object reference is in the cache, that address is tried
for the invocation and will fail if the object has moved. To locate an object that has
moved or whose location is not in the cache, the system broadcasts a request. This
scheme may be enhanced by the use of forward location pointers, which contain hints as
to the new location of an object. Another example is the resolution service required for
resolving the URN of a resource into its current URL, mentioned in Section 9.1.

5.4.3 Distributed garbage collection

The aim of a distributed garbage collector is to ensure that if a local or remote reference
to an object is still held anywhere in a set of distributed objects, the object itself will
continue to exist, but as soon as no object any longer holds a reference to it, the object
will be collected and the memory it uses recovered.

We describe the Java distributed garbage collection algorithm, which is similar to
the one described by Birrell et al. [1995]. It is based on reference counting. Whenever a
remote object reference enters a process, a proxy will be created and will stay there for
as long as it is needed. The process where the object lives (its server) should be informed
of the new proxy at the client. Then later when there is no longer a proxy at the client,
the server should be informed. The distributed garbage collector works in cooperation
with the local garbage collectors as follows:

• Each server process maintains a set of the names of the processes that hold remote
object references for each of its remote objects; for example, B.holders is the set
of client processes (virtual machines) that have proxies for object B. (In Figure
5.15, this set will include the client process illustrated.) This set can be held in an
additional column in the remote object table.

• When a client C first receives a remote reference to a particular remote object, B,
it makes an addRef(B) invocation to the server of that remote object and then
creates a proxy; the server adds C to B.holders.

216 CHAPTER 5 REMOTE INVOCATION

• When a client C’s garbage collector notices that a proxy for remote object B is no
longer reachable, it makes a removeRef(B) invocation to the corresponding server
and then deletes the proxy; the server removes C from B.holders.

• When B.holders is empty, the server’s local garbage collector will reclaim the
space occupied by B unless there are any local holders.

This algorithm is intended to be carried out by means of pairwise request-reply
communication with at-most-once invocation semantics between the remote reference
modules in processes – it does not require any global synchronization. Note also that the
extra invocations made on behalf of the garbage collection algorithm do not affect every
normal RMI; they occur only when proxies are created and deleted.

There is a possibility that one client may make a removeRef(B) invocation at about
the same time as another client makes an addRef(B) invocation. If the removeRef arrives
first and B.holders is empty, the remote object B could be deleted before the addRef

arrives. To avoid this situation, if the set B.holders is empty at the time when a remote
object reference is transmitted, a temporary entry is added until the addRef arrives.

 The Java distributed garbage collection algorithm tolerates communication
failures by using the following approach. The addRef and removeRef operations are
idempotent. In the case that an addRef(B) call returns an exception (meaning that the
method was either executed once or not at all), the client will not create a proxy but will
make a removeRef(B) call. The effect of removeRef is correct whether or not the addRef

succeeded. The case where removeRef fails is dealt with by leases.
The Java distributed garbage collection algorithm can tolerate the failure of client

processes. To achieve this, servers lease their objects to clients for a limited period of
time. The lease period starts when the client makes an addRef invocation to the server.
It ends either when the time has expired or when the client makes a removeRef

invocation to the server. The information stored by the server concerning each lease
contains the identifier of the client’s virtual machine and the period of the lease. Clients
are responsible for requesting the server to renew their leases before they expire.

Leases in Jini • The Jini distributed system includes a specification for leases [Arnold
et al. 1999] that can be used in a variety of situations when one object offers a resource
to another object – for example, when remote objects offer references to other objects.
Objects that offer such resources are at risk of having to maintain the resources when the
users are no longer interested or their programs have exited. To avoid complicated
protocols to discover whether the resource users are still interested, the resources are
offered for a limited period of time. The granting of the use of a resource for a period of
time is called a lease. The object offering the resource will maintain it until the time in
the lease expires. The resource users are responsible for requesting their renewal when
they expire.

The period of a lease may be negotiated between the grantor and the recipient in
Jini, although this does not happen with the leases used in Java RMI. In Jini, an object
representing a lease implements the Lease interface. It contains information about the
period of the lease and methods enabling the lease to be renewed or cancelled. The
grantor returns an instance of a Lease when it supplies a resource to another object.

SECTION 5.5 CASE STUDY: JAVA RMI 217

5.5 Case study: Java RMI

Java RMI extends the Java object model to provide support for distributed objects in the
Java language. In particular, it allows objects to invoke methods on remote objects using
the same syntax as for local invocations. In addition, type checking applies equally to
remote invocations as to local ones. However, an object making a remote invocation is
aware that its target is remote because it must handle RemoteExceptions; and the
implementor of a remote object is aware that it is remote because it must implement the
Remote interface. Although the distributed object model is integrated into Java in a
natural way, the semantics of parameter passing differ because the invoker and target are
remote from one another.

The programming of distributed applications in Java RMI should be relatively
simple because it is a single-language system – remote interfaces are defined in the Java
language. If a multiple-language system such as CORBA is used, the programmer needs
to learn an IDL and to understand how it maps onto the implementation language.
However, even in a single-language system, the programmer of a remote object must
consider its behaviour in a concurrent environment.

In the remainder of this introduction, we give an example of a remote interface,
then discuss the parameter-passing semantics with reference to the example. Finally, we
discuss the downloading of classes and the binder. The second section of this case study
discusses how to build client and server programs for the example interface. The third
section is concerned with the design and implementation of Java RMI. For full details
of Java RMI, see the tutorial on remote invocation [java.sun.com I].

In this case study, the CORBA case study in Chapter 8 and the discussion of web
services in Chapter 9, we use a shared whiteboard as an example. This is a distributed
program that allows a group of users to share a common view of a drawing surface
containing graphical objects, such as rectangles, lines and circles, each of which has
been drawn by one of the users. The server maintains the current state of a drawing by
providing an operation for clients to inform it about the latest shape one of their users
has drawn and keeping a record of all the shapes it has received. The server also provides
operations allowing clients to retrieve the latest shapes drawn by other users by polling
the server. The server has a version number (an integer) that it increments each time a
new shape arrives and attaches to the new shape. The server provides operations
allowing clients to enquire about its version number and the version number of each
shape, so that they may avoid fetching shapes that they already have.

Remote interfaces in Java RMI • Remote interfaces are defined by extending an
interface called Remote provided in the java.rmi package. The methods must throw
RemoteException, but application-specific exceptions may also be thrown. Figure 5.16
shows an example of two remote interfaces called Shape and ShapeList. In this example,
GraphicalObject is a class that holds the state of a graphical object – for example, its
type, its position, enclosing rectangle, line colour and fill colour – and provides
operations for accessing and updating its state. GraphicalObject must implement the
Serializable interface. Consider the interface Shape first: the getVersion method returns
an integer, whereas the getAllState method returns an instance of the class
GraphicalObject. Now consider the interface ShapeList: its newShape method passes an
instance of GraphicalObject as its argument but returns an object with a remote

Figure 5.16 Java Remote interfaces Shape and ShapeList

import java.rmi.*;

import java.util.Vector;

public interface Shape extends Remote {

int getVersion() throws RemoteException;

GraphicalObject getAllState() throws RemoteException; 1

}

public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2

Vector allShapes() throws RemoteException;

int getVersion() throws RemoteException;

}

218 CHAPTER 5 REMOTE INVOCATION

interface (that is, a remote object) as its result. An important point to note is that both
ordinary objects and remote objects can appear as arguments and results in a remote
interface. The latter are always denoted by the name of their remote interface. In the next
subsection, we discuss how ordinary objects and remote objects are passed as arguments
and results.

Parameter and result passing • In Java RMI, the parameters of a method are assumed
to be input parameters and the result of a method is a single output parameter. Section
4.3.2 describes Java serialization, which is used for marshalling arguments and results
in Java RMI. Any object that is serializable – that is, that implements the Serializable

interface – can be passed as an argument or result in Java RMI. All primitive types and
remote objects are serializable. Classes for arguments and result values are downloaded
to the recipient by the RMI system where necessary.

Passing remote objects: When the type of a parameter or result value is defined as
a remote interface, the corresponding argument or result is always passed as a remote
object reference. For example, in Figure 5.16, line 2, the return value of the method
newShape is defined as Shape – a remote interface. When a remote object reference
is received, it can be used to make RMI calls on the remote object to which it refers.

Passing non-remote objects: All serializable non-remote objects are copied and
passed by value. For example, in Figure 5.16 (lines 2 and 1) the argument of
newShape and the return value of getAllState are both of type GraphicalObject,
which is serializable and is passed by value. When an object is passed by value, a new
object is created in the receiver’s process. The methods of this new object can be
invoked locally, possibly causing its state to differ from the state of the original object
in the sender’s process.

Thus, in our example, the client uses the method newShape to pass an instance of
GraphicalObject to the server; the server makes a remote object of type Shape

containing the state of the GraphicalObject and returns a remote object reference to it.
The arguments and return values in a remote invocation are serialized to a stream using
the method described in Section 4.3.2, with the following modifications:

SECTION 5.5 CASE STUDY: JAVA RMI 219

1. Whenever an object that implements the Remote interface is serialized, it is
replaced by its remote object reference, which contains the name of its (the remote
object’s) class.

2. When any object is serialized, its class information is annotated with the location
of the class (as a URL), enabling the class to be downloaded by the receiver.

Downloading of classes • Java is designed to allow classes to be downloaded from one
virtual machine to another. This is particularly relevant to distributed objects that
communicate by means of remote invocation. We have seen that non-remote objects are
passed by value and remote objects are passed by reference as arguments and results of
RMIs. If the recipient does not already possess the class of an object passed by value, its
code is downloaded automatically. Similarly, if the recipient of a remote object
reference does not already possess the class for a proxy, its code is downloaded
automatically. This has two advantages:

1. There is no need for every user to keep the same set of classes in their working
environment.

2. Both client and server programs can make transparent use of instances of new
classes whenever they are added.

As an example, consider the whiteboard program and suppose that its initial
implementation of GraphicalObject does not allow for text. A client with a textual
object can implement a subclass of GraphicalObject that deals with text and pass an
instance to the server as an argument of the newShape method. After that, other clients
may retrieve the instance using the getAllState method. The code of the new class will
be downloaded automatically from the first client to the server and then to other clients
as needed.

Figure 5.17 The Naming class of Java RMIregistry

void rebind (String name, Remote obj)

This method is used by a server to register the identifier of a remote object by name,
as shown in Figure 5.18, line 3.

void bind (String name, Remote obj)

This method can alternatively be used by a server to register a remote object by name,
but if the name is already bound to a remote object reference an exception is thrown.

void unbind (String name, Remote obj)

This method removes a binding.

Remote lookup(String name)

This method is used by clients to look up a remote object by name, as shown in Figure
5.20, line 1. A remote object reference is returned.

String [] list()

This method returns an array of Strings containing the names bound in the registry.

220 CHAPTER 5 REMOTE INVOCATION

RMIregistry • The RMIregistry is the binder for Java RMI. An instance of RMIregistry
should normally run on every server computer that hosts remote objects. It maintains a
table mapping textual, URL-style names to references to remote objects hosted on that
computer. It is accessed by methods of the Naming class, whose methods take as an
argument a URL-formatted string of the form:

//computerName:port/objectName

where computerName and port refer to the location of the RMIregistry. If they are
omitted, the local computer and default port are assumed. Its interface offers the
methods shown in Figure 5.17, in which the exceptions are not listed – all of the methods
can throw a RemoteException.

Used in this way, clients must direct their lookup enquiries to particular hosts.
Alternatively, it is possible to set up a system-wide binding service. To achieve this, it
is necessary to run an instance of the RMIregistry in the networked environment and
then use the class LocateRegistry, which is in java.rmi.registry, to discover this registry.
More specifically, this class contains a getRegistry method that returns an object of type
Registry representing the remote binding service:

public static Registry getRegistry() throws RemoteException

Following this, it is then necessary to issue a call of rebind on this returned Registry

object to establish a connection with the remote RMIregistry.

5.5.1 Building client and server programs

Figure 5.18 Java class ShapeListServer with main method

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

public class ShapeListServer{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

try{

ShapeList aShapeList = new ShapeListServant(); 1

ShapeList stub = 2

(ShapeList) UnicastRemoteObject.exportObject(aShapeList,0);3

Naming.rebind("//bruno.ShapeList", stub); 4

System.out.println("ShapeList server ready");

}catch(Exception e) {

System.out.println("ShapeList server main " + e.getMessage());}

}

}

This section outlines the steps necessary to produce client and server programs that use
the Remote interfaces Shape and ShapeList shown in Figure 5.16. The server program is
a simplified version of a whiteboard server that implements the two interfaces Shape and
ShapeList. We describe a simple polling client program and then introduce the callback

SECTION 5.5 CASE STUDY: JAVA RMI 221

technique that can be used to avoid the need to poll the server. Complete versions of the
classes illustrated in this section are available at www.cdk5.net/rmi.

Server program • The server is a whiteboard server: it represents each shape as a remote
object instantiated by a servant that implements the Shape interface and holds the state
of a graphical object as well as its version number; it represents its collection of shapes
by using another servant that implements the ShapeList interface and holds a collection
of shapes in a Vector.

The server program consists of a main method and a servant class to implement
each of its remote interfaces. The main method of the server class is shown in Figure
5.18, with the key steps contained in the lines marked 1 to 4:

• In line 1, the server creates an instance of ShapeListServant.

• Lines 2 and 3 use the method exportObject (defined on UnicastRemoteObject) to
make this object available to the RMI runtime, thereby making it available to
receive incoming invocations. The second parameter of exportObject specifies the
TCP port to be used for incoming invocations. It is normal practice to set this to
zero, implying that an anonymous port will be used (one that is generated by the
RMI runtime). Using UnicastRemoteObject ensures that the resultant object lives
only as long as the process in which it is created (an alternative is to make this an
Activatable object that is, one that lives beyond the server instance).

• Finally, line 4 binds the remote object to a name in the RMIregistry. Note that the
value bound to the name is a remote object reference, and its type is the type of its
remote interface – ShapeList.

Figure 5.19 Java class ShapeListServant implements interface ShapeList

import java.util.Vector;

public class ShapeListServant implements ShapeList {

 private Vector theList; // contains the list of Shapes

private int version;

public ShapeListServant(){...}

public Shape newShape(GraphicalObject g) { 1

version++;

Shape s = new ShapeServant(g, version); 2

theList.addElement(s);

return s;

}

public Vector allShapes(){...}

public int getVersion() { ... }

}

The two servant classes are ShapeListServant, which implements the ShapeList

interface, and ShapeServant, which implements the Shape interface. Figure 5.19 gives
an outline of the class ShapeListServant.

222 CHAPTER 5 REMOTE INVOCATION

The implementation of the methods of the remote interface in a servant class is
completely straightforward because it can be done without any concern for the details of
communication. Consider the method newShape in Figure 5.19 (line 1), which could be
called a factory method because it allows the client to request the creation of a servant.
It uses the constructor of ShapeServant, which creates a new servant containing the
GraphicalObject and version number passed as arguments. The type of the return value
of newShape is Shape – the interface implemented by the new servant. Before returning,
the method newShape adds the new shape to its vector that contains the list of shapes
(line 2).

The main method of a server needs to create a security manager to enable Java
security to apply the protection appropriate for an RMI server. A default security
manager called RMISecurityManager is provided. It protects the local resources to
ensure that the classes that are loaded from remote sites cannot have any effect on
resources such as files, but it differs from the standard Java security manager in allowing
the program to provide its own class loader and to use reflection. If an RMI server sets
no security manager, proxies and classes can only be loaded from the local classpath, in
order to protect the program from code that is downloaded as a result of remote method
invocations.

Client program •

Figure 5.20 Java client of ShapeList

import java.rmi.*;

import java.rmi.server.*;

import java.util.Vector;

public class ShapeListClient{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

ShapeList aShapeList = null;

try{

aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList"); 1

Vector sList = aShapeList.allShapes(); 2

} catch(RemoteException e) {System.out.println(e.getMessage());

}catch(Exception e) {System.out.println("Client: " + e.getMessage());}

}

}

A simplified client for the ShapeList server is illustrated in Figure
5.20. Any client program needs to get started by using a binder to look up a remote
object reference. Our client sets a security manager and then looks up a remote object
reference for the remote object using the lookup operation of the RMIregistry (line 1).
Having obtained an initial remote object reference, the client continues by sending RMIs
to that remote object or to others discovered during its execution according to the needs
of its application. In our example, the client invokes the method allShapes in the remote
object (line 2) and receives a vector of remote object references to all of the shapes
currently stored in the server. If the client was implementing a whiteboard display, it
would use the server’s getAllState method in the Shape interface to retrieve each of the
graphical objects in the vector and display them in a window. Each time the user finishes

SECTION 5.5 CASE STUDY: JAVA RMI 223

drawing a graphical object, it will invoke the method newShape in the server, passing
the new graphical object as its argument. The client will keep a record of the latest
version number at the server, and from time to time it will invoke getVersion at the
server to find out whether any new shapes have been added by other users. If so, it will
retrieve and display them.

Callbacks • The general idea behind callbacks is that instead of clients polling the
server to find out whether some event has occurred, the server should inform its clients
whenever that event occurs. The term callback is used to refer to a server’s action of
notifying clients about an event. Callbacks can be implemented in RMI as follows:

• The client creates a remote object that implements an interface that contains a
method for the server to call. We refer to this as a callback object.

• The server provides an operation allowing interested clients to inform it of the
remote object references of their callback objects. It records these in a list.

• Whenever an event of interest occurs, the server calls the interested clients. For
example, the whiteboard server would call its clients whenever a graphical object
is added.

The use of callbacks avoids the need for a client to poll the objects of interest in the
server and its attendant disadvantages:

• The performance of the server may be degraded by the constant polling.

• Clients cannot notify users of updates in a timely manner.

However, callbacks have problems of their own. First, the server needs to have up-to-
date lists of the clients’ callback objects, but clients may not always inform the server
before they exit, leaving the server with incorrect lists. The leasing technique discussed
in Section 5.4.3 can be used to overcome this problem. The second problem associated
with callbacks is that the server needs to make a series of synchronous RMIs to the
callback objects in the list. See Chapter 6 for some ideas about solving the second
problem.

We illustrate the use of callbacks in the context of the whiteboard application. The
WhiteboardCallback interface could be defined as follows:

public interface WhiteboardCallback implements Remote {

void callback(int version) throws RemoteException;

};

This interface is implemented as a remote object by the client, enabling the server to
send the client a version number whenever a new object is added. But before the server
can do this, the client needs to inform the server about its callback object. To make this
possible, the ShapeList interface requires additional methods such as register and
deregister, defined as follows:

int register(WhiteboardCallback callback) throws RemoteException;

void deregister(int callbackId) throws RemoteException;

After the client has obtained a reference to the remote object with the ShapeList interface
(for example, in Figure 5.20, line 1) and created an instance of its callback object, it uses
the register method of ShapeList to inform the server that it is interested in receiving

224 CHAPTER 5 REMOTE INVOCATION

callbacks. The register method returns an integer (the callbackId) referring to the
registration. When the client is finished it should call deregister to inform the server it
no longer requires callbacks. The server is responsible for keeping a list of interested
clients and notifying all of them each time its version number increases.

5.5.2 Design and implementation of Java RMI

The original Java RMI system used all of the components shown in Figure 5.15. But in
Java 1.2, the reflection facilities were used to make a generic dispatcher and to avoid the
need for skeletons. Prior to J2SE 5.0, the client proxies were generated by a compiler
called rmic from the compiled server classes (not from the definitions of the remote
interfaces). However, this step is no longer necessary with recent versions of J2SE,
which contain support for the dynamic generation of stub classes at runtime.

Use of reflection • Reflection is used to pass information in request messages about the
method to be invoked. This is achieved with the help of the class Method in the reflection
package. Each instance of Method represents the characteristics of a particular method,
including its class and the types of its arguments, return value and exceptions. The most
interesting feature of this class is that an instance of Method can be invoked on an object
of a suitable class by means of its invoke method. The invoke method requires two
arguments: the first specifies the object to receive the invocation and the second is an
array of Object containing the arguments. The result is returned as type Object.

To return to the use of the Method class in RMI: the proxy has to marshal
information about a method and its arguments into the request message. For the method
it marshals an object of class Method. It puts the arguments into an array of Objects and
then marshals that array. The dispatcher unmarshals the Method object and its
arguments in the array of Objects from the request message. As usual, the remote object
reference of the target will have been unmarshalled and the corresponding local object
reference obtained from the remote reference module. The dispatcher then calls the
Method object’s invoke method, supplying the target and the array of argument values.
When the method has been executed, the dispatcher marshals the result or any
exceptions into the reply message.

Figure 5.21 Classes supporting Java RMI

RemoteServer

UnicastRemoteObject

<servant class>

Activatable

RemoteObject

Thus the dispatcher is generic – that is, the same
dispatcher can be used for all classes of remote object, and no skeletons are required.

Java classes supporting RMI • Figure 5.21 shows the inheritance structure of the classes
supporting Java RMI servers. The only class that the programmer need be aware of is
UnicastRemoteObject, which every simple servant class needs to extend. The class
UnicastRemoteObject extends an abstract class called RemoteServer, which provides

SECTION 5.6 SUMMARY 225

abstract versions of the methods required by remote servers. UnicastRemoteObject was
the first example of RemoteServer to be provided. Another called Activatable is
available for providing activatable objects. Further alternatives might provide for
replicated objects. The class RemoteServer is a subclass of RemoteObject that has an
instance variable holding the remote object reference and provides the following
methods:

equals This method compares remote object references.

toString: This method gives the contents of the remote object reference as a String.

readObject, writeObject: These methods deserialize/serialize remote objects.

In addition, the instanceOf operator can be used to test remote objects.

5.6 Summary

This chapter has discussed three paradigms for distributed programming – request-reply
protocols, remote procedure calls and remote method invocation. All of these paradigms
provide mechanisms for distributed independent entities (processes, objects,
components or services) to communicate directly with one another.

Request-reply protocols provide lightweight and minimal support for client-server
computing. Such protocols are often used in environments where overheads of
communication must be minimized – for example, in embedded systems. Their more
common role is to support either RPC or RMI, as discussed below.

The remote procedure call approach was a significant breakthrough in distributed
systems, providing higher-level support for programmers by extending the concept of a
procedure call to operate in a networked environment. This provides important levels of
transparency in distributed systems. However, due to their different failure and
performance characteristics and to the possibility of concurrent access to servers, it is
not necessarily a good idea to make remote procedure calls appear to be exactly the same
as local calls. Remote procedure calls provide a range of invocation semantics, from
maybe invocations through to at-most-once semantics.

The distributed object model is an extension of the local object model used in
object-based programming languages. Encapsulated objects form useful components in
a distributed system, since encapsulation makes them entirely responsible for managing
their own state, and local invocation of methods can be extended to remote invocation.
Each object in a distributed system has a remote object reference (a globally unique
identifier) and a remote interface that specifies which of its operations can be invoked
remotely.

Middleware implementations of RMI provide components (including proxies,
skeletons and dispatchers) that hide the details of marshalling, message passing and
locating remote objects from client and server programmers. These components can be
generated by an interface compiler. Java RMI extends local invocation to remote
invocation using the same syntax, but remote interfaces must be specified by extending
an interface called Remote and making each method throw a RemoteException. This
ensures that programmers know when they make remote invocations or implement
remote objects, enabling them to handle errors or to design objects suitable for
concurrent access.

226 CHAPTER 5 REMOTE INVOCATION

EXERCISES

5.1 Define a class whose instances represent request and reply messages as illustrated in
Figure 5.4. The class should provide a pair of constructors, one for request messages and
the other for reply messages, showing how the request identifier is assigned. It should
also provide a method to marshal itself into an array of bytes and to unmarshal an array
of bytes into an instance. page 188

5.2 Program each of the three operations of the request-reply protocol in Figure 5.3, using
UDP communication, but without adding any fault-tolerance measures. You should use
the classes you defined in the previous chapter for remote object references (Exercise
4.13) and above for request and reply messages (Exercise 5.1). page 187

5.3 Give an outline of the server implementation, showing how the operations getRequest

and sendReply are used by a server that creates a new thread to execute each client
request. Indicate how the server will copy the requestId from the request message into
the reply message and how it will obtain the client IP address and port. page 187

5.4 Define a new version of the doOperation method that sets a timeout on waiting for the
reply message. After a timeout, it retransmits the request message n times. If there is still
no reply, it informs the caller. page 188

5.5 Describe a scenario in which a client could receive a reply from an earlier call.
page 187

5.6 Describe the ways in which the request-reply protocol masks the heterogeneity of
operating systems and of computer networks. page 187

5.7 Discuss whether the following operations are idempotent:

i) pressing a lift (elevator) request button;

ii) writing data to a file;

iii) appending data to a file.

Is it a necessary condition for idempotence that the operation should not be associated
with any state? page 190

5.8 Explain the design choices that are relevant to minimizing the amount of reply data held
at a server. Compare the storage requirements when the RR and RRA protocols are used.

page 191

5.9 Assume the RRA protocol is in use. How long should servers retain unacknowledged
reply data? Should servers repeatedly send the reply in an attempt to receive an
acknowledgement? page 191

5.10 Why might the number of messages exchanged in a protocol be more significant to
performance than the total amount of data sent? Design a variant of the RRA protocol
in which the acknowledgement is piggy-backed on – that is, transmitted in the same
message as – the next request where appropriate, and otherwise sent as a separate
message. (Hint: use an extra timer in the client.) page 191

EXERCISES 227

5.11 An Election interface provides two remote methods:

vote: This method has two parameters through which the client supplies the name
of a candidate (a string) and the ‘voter’s number’ (an integer used to ensure each
user votes once only). The voter’s numbers are allocated sparsely from the range
of integers to make them hard to guess.

result: This method has two parameters through which the server supplies the
client with the name of a candidate and the number of votes for that candidate.

Which of the parameters of these two procedures are input and which are output

parameters? page 195

5.12 Discuss the invocation semantics that can be achieved when the request-reply protocol
is implemented over a TCP/IP connection, which guarantees that data is delivered in the
order sent, without loss or duplication. Take into account all of the conditions causing a
connection to be broken. Section 4.2.4 and page 198

5.13 Define the interface to the Election service in CORBA IDL and Java RMI. Note that
CORBA IDL provides the type long for 32-bit integers. Compare the methods in the two
languages for specifying input and output arguments. Figure 5.8, Figure 5.16

5.14 The Election service must ensure that a vote is recorded whenever any user thinks they
have cast a vote.

Discuss the effect of maybe call semantics on the Election service.

Would at-least-once call semantics be acceptable for the Election service or would you
recommend at-most-once call semantics? page 199

5.15 A request-reply protocol is implemented over a communication service with omission
failures to provide at-least-once invocation semantics. In the first case the implementor
assumes an asynchronous distributed system. In the second case the implementor
assumes that the maximum time for the communication and the execution of a remote
method is T. In what way does the latter assumption simplify the implementation?

page 198

5.16 Outline an implementation for the Election service that ensures that its records remain
consistent when it is accessed concurrently by multiple clients. page 199

5.17 Assume the Election service is implemented in RMI and must ensure that all votes are
safely stored even when the server process crashes. Explain how this can be achieved
with reference to the implementation outline in your answer to Exercise 5.16.

pages 213–214

5.18 Show how to use Java reflection to construct the client proxy class for the Election

interface. Give the details of the implementation of one of the methods in this class,
which should call the method doOperation with the following signature:

byte[] doOperation (RemoteObjectRef o, Method m, byte[] arguments);

Hint: an instance variable of the proxy class should hold a remote object reference (see
Exercise 4.13). Figure 5.3, page 224

228 CHAPTER 5 REMOTE INVOCATION

5.19 Show how to generate a client proxy class using a language such as C++ that does not
support reflection, for example from the CORBA interface definition given in your
answer to Exercise 5.13. Give the details of the implementation of one of the methods
in this class, which should call the method doOperation defined in Figure 5.3.

page 211

5.20 Explain how to use Java reflection to construct a generic dispatcher. Give Java code for
a dispatcher whose signature is:

public void dispatch(Object target, Method aMethod, byte[] args)

The arguments supply the target object, the method to be invoked and the arguments for
that method in an array of bytes. page 224

5.21 Exercise 5.18 required the client to convert Object arguments into an array of bytes
before invoking doOperation and Exercise 5.20 required the dispatcher to convert an
array of bytes into an array of Objects before invoking the method. Discuss the
implementation of a new version of doOperation with the following signature:

Object[] doOperation (RemoteObjectRef o, Method m, Object[] arguments);

which uses the ObjectOutputStream and ObjectInputStream classes to stream the
request and reply messages between client and server over a TCP connection. How
would these changes affect the design of the dispatcher? Section 4.3.2 and page 224

5.22 A client makes remote method invocations to a server. The client takes 5 milliseconds
to compute the arguments for each request, and the server takes 10 milliseconds to
process each request. The local operating system processing time for each send or
receive operation is 0.5 milliseconds, and the network time to transmit each request or
reply message is 3 milliseconds. Marshalling or unmarshalling takes 0.5 milliseconds
per message.

Calculate the time taken by the client to generate and return from two requests:

(i) if it is single-threaded;

(ii) if it has two threads that can make requests concurrently on a single
processor.

You can ignore context-switching times. Is there a need for asynchronous invocation if
the client and server processes are threaded? page 213

5.23 Design a remote object table that can support distributed garbage collection as well as
translating between local and remote object references. Give an example involving
several remote objects and proxies at various sites to illustrate the use of the table. Show
the changes in the table when an invocation causes a new proxy to be created. Then show
the changes in the table when one of the proxies becomes unreachable. page 215

5.24 A simpler version of the distributed garbage collection algorithm described in Section
5.4.3 just invokes addRef at the site where a remote object lives whenever a proxy is
created and removeRef whenever a proxy is deleted. Outline all the possible effects of
communication and process failures on the algorithm. Suggest how to overcome each of
these effects, but without using leases. page 215

 229

6

INDIRECT COMMUNICATION

6.1 Introduction
6.2 Group communication
6.3 Publish-subscribe systems
6.4 Message queues
6.5 Shared memory approaches
6.6 Summary

This chapter completes our tour of communication paradigms by examining indirect
communication; it builds on our studies of interprocess communication and remote
invocation in Chapters 4 and 5, respectively. The essence of indirect communication is to
communicate through an intermediary and hence have no direct coupling between the
sender and the one or more receivers. The important concepts of space and time
uncoupling are also introduced.

The chapter examines a range of indirect communication techniques:

• group communication, in which communication is via a group abstraction with the
sender unaware of the identity of the recipients;

• publish-subscribe systems, a family of approaches that all share the common
characteristic of disseminating events to multiple recipients through an
intermediary;

• message queue systems, wherein messages are directed to the familiar abstraction
of a queue with receivers extracting messages from such queues;

• shared memory–based approaches, including distributed shared memory and tuple
space approaches, which present an abstraction of a global shared memory to
programmers.

Case studies are used throughout the chapter to illustrate the main concepts introduced.

230 CHAPTER 6 INDIRECT COMMUNICATION

6.1 Introduction

This chapter concludes our examination of communication paradigms by examining
indirect communication, building on the studies of interprocess communication and
remote invocation in Chapters 4 and 5, respectively. Indirection is a fundamental
concept in computer science, and its ubiquity and importance are captured nicely by the
following quote, which emerged from the Titan Project at the University of Cambridge
and is attributable to Roger Needham, Maurice Wilkes and David Wheeler:

All problems in computer science can be solved by another level of indirection.

In terms of distributed systems, the concept of indirection is increasingly applied to
communication paradigms.

Indirect communication is defined as communication between entities in a
distributed system through an intermediary with no direct coupling between the sender
and the receiver(s). The precise nature of the intermediary varies from approach to
approach, as will be seen in the rest of this chapter. In addition, the precise nature of
coupling varies significantly between systems, and again this will be brought out in the
text that follows. Note the optional plural associated with the receiver; this signifies that
many indirect communication paradigms explicitly support one-to-many communication.

The techniques considered in Chapters 4 and 5 are all based on a direct coupling
between a sender and a receiver, and this leads to a certain amount of rigidity in the
system in terms of dealing with change. To illustrate this, consider a simple client-server
interaction. Because of the direct coupling, it is more difficult to replace a server with
an alternative one offering equivalent functionality. Similarly, if the server fails, this
directly affects the client, which must explicitly deal with the failure. In contrast,
indirect communication avoids this direct coupling and hence inherits interesting
properties. The literature refers to two key properties stemming from the use of an
intermediary:

Space uncoupling, in which the sender does not know or need to know the identity
of the receiver(s), and vice versa. Because of this space uncoupling, the system
developer has many degrees of freedom in dealing with change: participants (senders
or receivers) can be replaced, updated, replicated or migrated.

Time uncoupling, in which the sender and receiver(s) can have independent
lifetimes. In other words, the sender and receiver(s) do not need to exist at the same
time to communicate. This has important benefits, for example, in more volatile
environments where senders and receivers may come and go.

For these reasons, indirect communication is often used in distributed systems where
change is anticipated – for example, in mobile environments where users may rapidly
connect to and disconnect from the global network – and must be managed to provide
more dependable services. Indirect communication is also heavily used for event
dissemination in distributed systems where the receivers may be unknown and liable to
change – for example, in managing event feeds in financial systems, as featured in
Chapter 1. Indirect communication is also exploited in key parts of the Google
infrastructure, as discussed in the major case study in Chapter 21.

SECTION 6.1 INTRODUCTION 231

The discussion above charts the advantages associated with indirect
communication. The main disadvantage is that there will inevitably be a performance
overhead introduced by the added level of indirection. Indeed, the quote above on
indirection is often paired by the following quote, attributable to Jim Gray:

There is no performance problem that cannot be solved by eliminating a
level of indirection.

In addition, systems developed using indirect communication can be more difficult to
manage precisely because of the lack of any direct (space or time) coupling.

A closer look at space and time uncoupling • It may be assumed that indirection implies
both space and time uncoupling, but this is not always the case. The precise relationship
is summarized in Figure 6.1

Figure 6.1 Space and time coupling in distributed systems

Time-coupled Time-uncoupled

Space coupling

Properties: Communication directed
towards a given receiver or receivers;
receiver(s) must exist at that moment in
time
Examples: Message passing, remote
invocation (see Chapters 4 and 5)

Properties: Communication directed
towards a given receiver or receivers;
sender(s) and receiver(s) can have
independent lifetimes
Examples: See Exercise 6.3

Space uncoupling

Properties: Sender does not need to
know the identity of the receiver(s);
receiver(s) must exist at that moment in
time
Examples: IP multicast (see Chapter 4)

Properties: Sender does not need to know
the identity of the receiver(s); sender(s)
and receiver(s) can have independent
lifetimes
Examples: Most indirect communication
paradigms covered in this chapter

.
From this table, it is clear that most of the techniques considered in this book are

either coupled in both time and space or indeed uncoupled in both dimensions. The top-
left box represents the communication paradigms featured in Chapters 4 and 5 where
communication is direct with no space or time uncoupling. For example, message
passing is both directed towards a particular entity and requires the receiver to be present
at the time of the message send (but see Exercise 6.2 for an added dimension introduced
by DNS name resolution). The range of remote invocation paradigms are also coupled
in both space and time. The bottom-right box represents the main indirect
communication paradigms that exhibit both properties. A small number of
communication paradigms sit outside these two areas:

• IP multicast, as featured in Chapter 4, is space-uncoupled but time-coupled. It is
space-uncoupled because messages are directed towards the multicast group, not
any particular receiver. It is time-coupled, though, as all receivers must exist at the
time of the message send to receive the multicast. Some implementations of group
communication and indeed publish-subscribe systems, also fall into this category
(see Section 6.6). This example illustrates the importance of persistency in the

232 CHAPTER 6 INDIRECT COMMUNICATION

communication channel to achieve time uncoupling – that is, the communication
paradigm must store messages so that they can be delivered when the receiver(s)
is ready to receive. IP multicast does not support this level of persistency.

• The case in which communication is space-coupled but time-uncoupled is more
subtle. Space coupling implies that the sender knows the identity of a specific
receiver or receivers, but time uncoupling implies that the receiver or receivers
need not exist at the time of sending. Exercises 6.3 and 6.4 invite the reader to
consider whether such a paradigm exists or could be constructed.

Returning to our definition, we treat all paradigms that involve an intermediary as
indirect and recognize that the precise level of coupling will vary from system to system.
We revisit the properties of different indirect communication paradigms in Section 6.6,
once we have had a chance to study the precise characteristics of each approach.

The relationship with asynchronous communication • Note that, to fully understand this
area, it is important to distinguish between asynchronous communication (as defined in
Chapter 4) and time uncoupling. In asynchronous communication, a sender sends a
message and then continues (without blocking), and hence there is no need to meet in
time with the receiver to communicate. Time uncoupling adds the extra dimension that
the sender and receiver(s) can have independent existences; for example, the receiver
may not exist at the time communication is initiated. Eugster et al. also recognize the
important distinction between asynchronous communication (synchronization
uncoupling) and time uncoupling [2003].

Many of the techniques examined in this chapter are time-uncoupled and
asynchronous, but a few, such as the MessageDispatcher and RpcDispatcher operations
in JGroups, discussed in Section 6.2.3, offer a synchronous service over indirect
communication.

The rest of the chapter examines specific examples of indirect communication
starting with group communication in Section 6.2. Section 6.3 then examines the
fundamentals of publish-subscribe systems, with Section 6.4 examining the contrasting
approach offered by message queues. Following this, Section 6.5 considers approaches
based on shared memory abstractions, specifically distributed shared memory and tuple
space–based approaches.

6.2 Group communication

Group communication provides our first example of an indirect communication
paradigm. Group communication offers a service whereby a message is sent to a group
and then this message is delivered to all members of the group. In this action, the sender
is not aware of the identities of the receivers. Group communication represents an
abstraction over multicast communication and may be implemented over IP multicast or
an equivalent overlay network, adding significant extra value in terms of managing
group membership, detecting failures and providing reliability and ordering guarantees.
With the added guarantees, group communication is to IP multicast what TCP is to the
point-to-point service in IP.

SECTION 6.2 GROUP COMMUNICATION 233

Group communication is an important building block for distributed systems, and
particularly reliable distributed systems, with key areas of application including:

• the reliable dissemination of information to potentially large numbers of clients,
including in the financial industry, where institutions require accurate and up-to-
date access to a wide variety of information sources;

• support for collaborative applications, where again events must be disseminated
to multiple users to preserve a common user view – for example, in multiuser
games, as discussed in Chapter 1;

• support for a range of fault-tolerance strategies, including the consistent update of
replicated data (as discussed in detail in Chapter 18) or the implementation of
highly available (replicated) servers;

• support for system monitoring and management, including for example load
balancing strategies.

We look at group communication in more detail below, examining the programming
model offered and the associated implementation issues. We examine the JGroups
toolkit as a case study of a group communication service.

6.2.1 The programming model

In group communication, the central concept is that of a group with associated group

membership, whereby processes may join or leave the group. Processes can then send a
message to this group and have it propagated to all members of the group with certain
guarantees in terms of reliability and ordering. Thus, group communication implements
multicast communication, in which a message is sent to all the members of the group by
a single operation. Communication to all processes in the system, as opposed to a
subgroup of them, is known as broadcast, whereas communication to a single process
is known as unicast.

The essential feature of group communication is that a process issues only one
multicast operation to send a message to each of a group of processes (in Java this
operation is aGroup.send(aMessage)) instead of issuing multiple send operations to
individual processes.

The use of a single multicast operation instead of multiple send operations
amounts to much more than a convenience for the programmer: it enables the
implementation to be efficient in its utilization of bandwidth. It can take steps to send
the message no more than once over any communication link, by sending it over a
distribution tree; and it can use network hardware support for multicast where this is
available. The implementation can also minimize the total time taken to deliver the
message to all destinations, as compared with transmitting it separately and serially.

To see these advantages, compare the bandwidth utilization and the total
transmission time taken when sending the same message from a computer in London to
two computers on the same Ethernet in Palo Alto, (a) by two separate UDP sends, and (b)
by a single IP multicast operation. In the former case, two copies of the message are sent
independently, and the second is delayed by the first. In the latter case, a set of multicast-
aware routers forward a single copy of the message from London to a router on the
destination LAN in California. That router then uses hardware multicast (provided by the
Ethernet) to deliver the message to both destinations at once, instead of sending it twice.

234 CHAPTER 6 INDIRECT COMMUNICATION

The use of a single multicast operation is also important in terms of delivery
guarantees. If a process issues multiple independent send operations to individual
processes, then there is no way for the implementation to provide guarantees that affect
the group of processes as a whole. If the sender fails halfway through sending, then some
members of the group may receive the message while others do not. In addition, the
relative ordering of two messages delivered to any two group members is undefined.
Group communication, however, has the potential to offer a range of guarantees in terms
of reliability and ordering, as discussed in Section 6.2.2 below.

Group communication has been the subject of many research projects, including
the V-system [Cheriton and Zwaenepoel 1985], Chorus [Rozier et al. 1988], Amoeba
[Kaashoek et al. 1989; Kaashoek and Tanenbaum 1991], Trans/Total [Melliar-Smith et

al. 1990], Delta-4 [Powell 1991], Isis [Birman 1993], Horus [van Renesse et al. 1996],
Totem [Moser et al. 1996] and Transis [Dolev and Malki 1996] – and we shall cite other
notable work in the course of this chapter and indeed throughout the book (particularly
in Chapters 15 and 18).

Process groups and object groups • Most work on group services focuses on the
concept of process groups, that is, groups where the communicating entities are
processes. Such services are relatively low-level in that:

• Messages are delivered to processes and no further support for dispatching is
provided.

• Messages are typically unstructured byte arrays with no support for marshalling
of complex data types (as provided, for example, in RPC or RMI – see Chapter 5).

The level of service provided by process groups is therefore similar to that of sockets,
as discussed in Chapter 4. In contrast, object groups provide a higher-level approach to
group computing. An object group is a collection of objects (normally instances of the
same class) that process the same set of invocations concurrently, with each returning
responses. Client objects need not be aware of the replication. They invoke operations
on a single, local object, which acts as a proxy for the group. The proxy uses a group
communication system to send the invocations to the members of the object group.
Object parameters and results are marshalled as in RMI and the associated calls are
dispatched automatically to the right destination objects/methods.

Electra [Maffeis 1995] is a CORBA-compliant system that supports object
groups. An Electra group can be interfaced to any CORBA-compliant application.
Electra was originally built on top of the Horus group communication system, which it
uses to manage the membership of the group and to multicast invocations. In
‘transparent mode’, the local proxy returns the first available response to a client object.
In ‘non-transparent mode’, the client object can access all the responses returned by the
group members. Electra uses an extension of the standard CORBA Object Request
Broker interface, with functions for creating and destroying object groups and managing
their membership. Eternal [Moser et al. 1998] and the Object Group Service [Guerraoui
et al. 1998] also provide CORBA-compliant support for object groups.

Despite the promise of object groups, however, process groups still dominate in
terms of usage. For example, the popular JGroups toolkit, discussed in Section 6.2.3, is
a classical process group approach.

SECTION 6.2 GROUP COMMUNICATION 235

Other key distinctions • A wide range of group communication services has been
developed, and they vary in the assumptions they make:

Closed and open groups: A

Figure 6.2 Open and closed groups

Closed group Open group

group is said to be closed if only members of the group
may multicast to it (Figure 6.2). A process in a closed group delivers to itself any
message that it multicasts to the group. A group is open if processes outside the group
may send to it. (The categories ‘open’ and ‘closed’ also apply with analogous
meanings to mailing lists.) Closed groups of processes are useful, for example, for
cooperating servers to send messages to one another that only they should receive.
Open groups are useful, for example, for delivering events to groups of interested
processes.

Overlapping and non-overlapping groups: In overlapping groups, entities (process-
es or objects) may be members of multiple groups, and non-overlapping groups im-
ply that membership does not overlap (that is, any process belongs to at most one
group). Note that in real-life systems, it is realistic to expect that group membership
will overlap.

Synchronous and asynchronous systems: There is a requirement to consider group
communication in both environments.

Such distinctions can have a significant impact on the underlying multicast algorithms.
For example, some algorithms assume that groups are closed. The same effect as
openness can be achieved with a closed group by picking a member of the group and
sending it a message (one-to-one) for it to multicast to its group. Rodrigues et al. [1998]
discuss multicast to open groups. Issues related to open and closed groups arise in
Chapter 15, when algorithms for reliability and ordering are considered. That chapter
also considers the impact of overlapping groups and whether the system is synchronous
or asynchronous on such protocols.

236 CHAPTER 6 INDIRECT COMMUNICATION

6.2.2 Implementation issues

We now turn to implementation issues for group communication services, discussing the
properties of the underlying multicast service in terms of reliability and ordering and
also the key role of group membership management in dynamic environments, where
processes can join and leave or fail at any time.

Reliability and ordering in multicast • In group communication, all members of a group
must receive copies of the messages sent to the group, generally with delivery
guarantees. The guarantees include agreement on the set of messages that every process
in the group should receive and on the delivery ordering across the group members.

Group communication systems are extremely sophisticated. Even IP multicast,
which provides minimal delivery guarantees, requires a major engineering effort.

So far, we have discussed reliability and ordering in rather general terms. We now
look in more detail at what such properties mean.

Reliability in one-to-one communication was defined in Section 2.4.2 in terms of
two properties: integrity (the message received is the same as the one sent, and no
messages are delivered twice) and validity (any outgoing message is eventually
delivered). The interpretation for reliable multicast builds on these properties, with
integrity defined the same way in terms of delivering the message correctly at most once,
and validity guaranteeing that a message sent will eventually be delivered. To extend the
semantics to cover delivery to multiple receivers, a third property is added – that of
agreement, stating that if the message is delivered to one process, then it is delivered to
all processes in the group.

As well as reliability guarantees, group communication demands extra guarantees
in terms of the relative ordering of messages delivered to multiple destinations. Ordering
is not guaranteed by underlying interprocess communication primitives. For example, if
multicast is implemented by a series of one-to-one messages, they may be subject to
arbitrary delays. Similar problems may occur if using IP multicast. To counter this,
group communication services offer ordered multicast, with the option of one or more
of the following properties (with hybrid solutions also possible):

FIFO ordering: First-in-first-out (FIFO) ordering (also referred to as source
ordering) is concerned with preserving the order from the perspective of a sender
process, in that if a process sends one message before another, it will be delivered in
this order at all processes in the group.

Causal ordering: Causal ordering takes into account causal relationships between
messages, in that if a message happens before another message in the distributed
system this so-called causal relationship will be preserved in the delivery of the
associated messages at all processes (see Chapter 14 for a detailed discussion of the
meaning of ‘happens before’).

Total ordering: In total ordering, if a message is delivered before another message
at one process, then the same order will be preserved at all processes.

Reliability and ordering are examples of coordination and agreement in distributed
systems, and hence further consideration of this is deferred to Chapter 15, which focuses
exclusively on this topic. In particular, Chapter 15 provides more complete definitions

SECTION 6.2 GROUP COMMUNICATION 237

of integrity, validity, agreement and the various ordering properties and also examines
in detail algorithms to realize reliable and ordered multicast.

Group membership management • The key elements of group communication
management are summarized in Figure 6.3, which shows an open group

Figure 6.3 The role of group membership management

Join

Group
address

expansion

Multicast
communication

Group
send

Fail Group membership
management

Leave

Group

. This diagram
illustrates the important role of group membership management in maintaining an
accurate view of the current membership, given that entities may join, leave or indeed
fail. In more detail, a group membership service has four main tasks:

Providing an interface for group membership changes: The membership service
provides operations to create and destroy process groups and to add or withdraw a
process to or from a group. In most systems, a single process may belong to several
groups at the same time (overlapping groups, as defined above). This is true of IP
multicast, for example.

Failure detection: The service monitors the group members not only in case they
should crash, but also in case they should become unreachable because of a
communication failure. The detector marks processes as Suspected or Unsuspected.
The service uses the failure detector to reach a decision about the group’s
membership: it excludes a process from membership if it is suspected to have failed
or to have become unreachable.

Notifying members of group membership changes: The service notifies the group’s
members when a process is added, or when a process is excluded (through failure or
when the process is deliberately withdrawn from the group).

Performing group address expansion: When a process multicasts a message, it
supplies the group identifier rather than a list of processes in the group. The
membership management service expands the identifier into the current group

238 CHAPTER 6 INDIRECT COMMUNICATION

membership for delivery. The service can coordinate multicast delivery with
membership changes by controlling address expansion. That is, it can decide
consistently where to deliver any given message, even though the membership may
be changing during delivery.

Note that IP multicast is a weak case of a group membership service, with some but not
all of these properties. It does allow processes to join or leave groups dynamically and
it performs address expansion, so that senders need only provide a single IP multicast
address as the destination for a multicast message. But IP multicast does not itself
provide group members with information about current membership, and multicast
delivery is not coordinated with membership changes. Achieving these properties is
complex and requires what is known as view-synchronous group communication.
Further consideration of this important issue is deferred to Chapter 18, which discusses
the maintenance of group views and how to realize view-synchronous group
communication in the context of supporting replication in distributed systems.

In general, the need to maintain group membership has a significant impact on the
utility of group-based approaches. In particular, group communication is most effective
in small-scale and static systems and does not operate as well in larger-scale
environments or environments with a high degree of volatility. This can be traced to the
need for a form of synchrony assumption. Ganesh et al [2003] present a more
probabilistic approach to group membership designed to operate in more large-scale and
dynamic environments, using an underlying gossip protocol (see Section 10.5.3).
Researchers have also developed group membership protocols specifically for ad hoc
networks and mobile environments [Prakash and Baldoni 1998; Roman et al. 2001; Liu
et al. 2005].

6.2.3 Case study: the JGroups toolkit

JGroups is a toolkit for reliable group communication written in Java. The toolkit is a
part of the lineage of group communication tools that have emerged from Cornell
University, building on the fundamental concepts developed in ISIS [Birman 1993],
Horus [van Renesse et al. 1996] and Ensemble [van Renesse et al. 1998]. The toolkit is
now maintained and developed by the JGroups open source community
[www.jgroups.org], which is part of the JBoss middleware community, as discussed in
Chapter 8 [www.jboss.org].

JGroups supports process groups in which processes are able to join or leave a
group, send a message to all members of the group or indeed to a single member, and
receive messages from the group. The toolkit supports a variety of reliability and
ordering guarantees, which are discussed in more detail below, and also offers a group
membership service.

The architecture of JGroups is shown in Figure 6.4, which shows the main
components of the JGroups implementation:

• Channels represent the most primitive interface for application developers,
offering the core functions of joining, leaving, sending and receiving.

• Building blocks offer higher-level abstractions, building on the underlying service
offered by channels.

Figure 6.4 The architecture of JGroups

Network

UDP

FRAG

MERGE

GMS

CAUSAL

Protocol stack

Channel

Building
blocks

Applications

SECTION 6.2 GROUP COMMUNICATION 239

• The protocol stack provides the underlying communication protocol, constructed
as a stack of composable protocol layers.

We look at each in turn below.

Channels • A process interacts with a group through a channel object, which acts as a
handle onto a group. When created, it is disconnected, but a subsequent connect

operation binds that handle to a particular named group; if the named group does not
exist, it is implicitly created at the time of the first connect. To leave the group, the
process executes the corresponding disconnect operation. A close operation is also
provided to render the channel unusable. Note that a channel can only be connected to
one group at a time; if a process wants to connect to two or more groups, it must create
multiple channels. When connected, a process can send or receive via a channel.
Messages are sent by reliable multicast, with the precise semantics defined by the
protocol stack deployed (as discussed further below).

A range of other operations are defined on channels, most notably to return
management information associated with the channel. For example, getView returns the
current view defined in terms of the current member list, while getState returns the
historical application state associated with the group (this can be used, for example, by
a new group member to catch up with previous events).

Note that the term channel should not be confused with channel-based publish-

subscribe, as introduced in Section 6.3.1. A channel in JGroups is synonymous with an
instance of a group as defined in Section 6.2.1.

240 CHAPTER 6 INDIRECT COMMUNICATION

We illustrate the use of channels further by a simple example, a service whereby
an intelligent fire alarm can send a “Fire!” multicast message to any registered receivers.
The code for the fire alarm is as shown in Figure 6.5

Figure 6.5 Java class FireAlarmJG

import org.jgroups.JChannel;

public class FireAlarmJG {

public void raise() {

try {

JChannel channel = new JChannel();

channel.connect("AlarmChannel");

Message msg = new Message(null, null, "Fire!");

channel.send(msg);

}

catch(Exception e) {

}

}

}

.
When an alarm is raised, the first step is to create a new instance of JChannel (the

class representing channels in JGroups) and then connect to a group called
AlarmChannel. If this is the first connect, then the group will be created at this stage
(unlikely in this example, or the alarm is not going to be very effective). The constructor
for a message takes three parameters: the destination, the source and the payload. In this
case, the destination is null, which specifies that the message is to be sent to all members
(if an address is specified, it is sent to that address only). The source is also null; this
need not be provided in JGroups as it will be included automatically. The payload is an
unstructured byte array that is delivered to all members of the group through the send

method. The code to create a new instance of the FireAlarmJG class and then raise an
alarm would be:

FireAlarmJG alarm = new FireAlarmJG();

alarm.raise();

The corresponding code for the receiver end has a similar structure and is shown in
Figure 6.6. In this case, however, after connecting a receive method is called. This
method takes one parameter, a timeout. If it is set to zero, as in this case, the receive
message will block until a message is received. Note that in JGroups incoming messages
are buffered and receive returns the top element in the buffer. If no messages are present,
then receive blocks awaiting the next message. Strictly speaking, receive can return a
range of object types – for example, notification of a change in membership or of a
suspected failure of a group member (hence the cast to Message above).

A given receiver must include the following code to await an alarm:

FireAlarmConsumerJG alarmCall = new FireAlarmConsumerJG();

String msg = alarmCall.await();

System.out.println("Alarm received: " + msg);

Figure 6.6 Java class FireAlarmConsumerJG

import org.jgroups.JChannel;

public class FireAlarmConsumerJG {

public String await() {

try {

JChannel channel = new JChannel();

channel.connect("AlarmChannel");

Message msg = (Message) channel.receive(0);

return (String) msg.GetObject();

}

catch(Exception e) {

return null;

}

}

}

SECTION 6.2 GROUP COMMUNICATION 241

Building blocks • Building blocks are higher-level abstractions on top of the channel
class discussed above. Channels are similar in level to sockets. Building blocks are
analogous to the more advanced communication paradigms discussed in Chapter 5,
offering support for commonly occurring patterns of communication (but in this case
targeted at multicast communication). Examples of building blocks in JGroups are:

• MessageDispatcher is the most intuitive of the building blocks offered in
JGroups. In group communication, it is often useful for a sender to send a message
to a group and then wait for some or all of the replies. MessageDispatcher

supports this by providing a castMessage method that sends a message to a group
and blocks until a specified number of replies are received (for example, until a
specified number n, a majority, or all messages are received).

• RpcDispatcher takes a specific method (together with optional parameters and
results) and then invokes this method on all objects associated with a group. As
with MessageDispatcher, the caller can block awaiting some or all of the replies.

• NotificationBus is an implementation of a distributed event bus, in which an event
is any serializable Java object. This class is often used to implement consistency
in replicated caches.

The protocol stack • JGroups follows the architectures offered by Horus and Ensemble
by constructing protocol stacks out of protocol layers (initially referred to as micro-
protocols in the literature [van Renesse et al. 1996, 1998]). In this approach, a protocol
is a bidirectional stack of protocol layers with each layer implementing the following
two methods:

public Object up (Event evt);

public Object down (Event evt);

Protocol processing therefore happens by passing events up and down the stack. In
JGroups, events may be incoming or outgoing messages or management events, for
example related to view changes. Each layer can carry out arbitrary processing on the

242 CHAPTER 6 INDIRECT COMMUNICATION

message, including modifying its contents, adding a header or indeed dropping or re-
ordering the message.

To illustrate the concept further, let us examine the protocol stack shown in Figure
6.4. This shows a protocol that consists of five layers:

• The layer referred to as UDP is the most common transport layer in JGroups. Note
that, despite the name, this is not entirely equivalent to the UDP protocol; rather,
the layer utilizes IP multicast for sending to all members in a group and UDP
datagrams specifically for point-to-point communication. This layer therefore
assumes that IP multicast is available. If it is not, the layer can be configured to
send a series of unicast messages to members, relying on another layer for
membership discovery (in particular, a layer known as PING). For larger-scale
systems operating over wide area networks, a TCP layer may be preferred (using
the TCP protocol to send unicast messages and again relying on PING for
membership discovery).

• FRAG implements message packetization and is configurable in terms of the
maximum message size (8,192 bytes by default).

• MERGE is a protocol that deals with unexpected network partitioning and the
subsequent merging of subgroups after the partition. A series of alternative merge
layers are actually available, ranging from the simple to ones that deal with, for
example, state transfer.

• GMS implements a group membership protocol to maintain consistent views of
membership across the group (see Chapter 18 for further details of algorithms for
group membership management).

• CAUSAL implements causal ordering, introduced in Section 6.2.2 (and discussed
further in Chapter 15).

A wide range of other protocol layers are available, including protocols for FIFO and
total ordering, for membership discovery and failure detection, for encryption of
messages and for implementing flow-control strategies (see the JGroups web site for
details [www.jgroups.org]). Note that because all layers implement the same interface,
they can be combined in any order, although many of the resultant protocol stacks would
not make sense. All members of a group must share the same protocol stack.

6.3 Publish-subscribe systems

We now turn our attention to the area of publish-subscribe systems [Baldoni and
Virgillito 2005], sometimes also referred to as distributed event-based systems [Muhl et

al. 2006]. These are the most widely used of all the indirect communication techniques
discussed in this chapter. Chapter 1 has already highlighted that many classes of system
are fundamentally concerned with the communication and processing of events (for
example financial trading systems). More specifically, whereas many systems naturally
map onto a request-reply or a remote invocation pattern of interaction as discussed in
Chapter 5, many do not and are more naturally modelled by the more decoupled and
reactive style of programming offered by events.

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 243

A publish-subscribe system is a system where publishers publish structured
events to an event service and subscribers express interest in particular events through
subscriptions which can be arbitrary patterns over the structured events. For example, a
subscriber could express an interest in all events related to this textbook, such as the
availability of a new edition or updates to the related web site. The task of the publish-
subscribe system is to match subscriptions against published events and ensure the
correct delivery of event notifications. A given event will be delivered to potentially
many subscribers, and hence publish-subscribe is fundamentally a one-to-many
communications paradigm.

Applications of publish-subscribe systems • Publish-subscribe systems are used in a
wide variety of application domains, particularly those related to the large-scale
dissemination of events. Examples include:

• financial information systems;

• other areas with live feeds of real-time data (including RSS feeds);

• support for cooperative working, where a number of participants need to be
informed of events of shared interest;

• support for ubiquitous computing, including the management of events emanating
from the ubiquitous infrastructure (for example, location events);

• a broad set of monitoring applications, including network monitoring in the
Internet.

Publish-subscribe is also a key component of Google’s infrastructure, including for
example the dissemination of events related to advertisements, such as ‘ad clicks’, to
interested parties (see Chapter 21).

To illustrate the concept further, we consider a simple dealing room system as an
example of the broader class of financial information systems.

Dealing room system: Consider a simple dealing room system whose task is to allow
dealers using computers to see the latest information about the market prices of the
stocks they deal in. The market price for a single named stock is represented by an
associated object. The information arrives in the dealing room from several different
external sources in the form of updates to some or all of the objects representing the
stocks and is collected by processes we call information providers. Dealers are typically
interested only in their own specialist stocks. A dealing room system could be
implemented by processes with two different tasks:

• An information provider process continuously receives new trading information
from a single external source. Each of the updates is regarded as an event. The
information provider publishes such events to the publish-subscribe system for
delivery to all of the dealers who have expressed an interest in the corresponding
stock. There will be a separate information provider process for each external
source.

• A dealer process creates a subscription representing each named stock that the
user asks to have displayed. Each subscription expresses an interest in events
related to a given stock at the relevant information provider. It then receives all the
information sent to it in notifications and displays it to the user. The
communication of notifications is illustrated in Figure 6.7.

Figure 6.7 Dealing room system

Dealer's computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer Dealer

Notification

Notification

Notification

Notification

Notification Notification

Notification

Notification
Not

ific
ati

on

Notifi
ca

tio
n

Dealer's computer

Dealer's computerDealer's computer

244 CHAPTER 6 INDIRECT COMMUNICATION

Characteristics of publish-subscribe systems • Publish-subscribe systems have two
main characteristics:

Heterogeneity: When event notifications are used as a means of communication,
components in a distributed system that were not designed to interoperate can be
made to work together. All that is required is that event-generating objects publish
the types of events they offer, and that other objects subscribe to patterns of events
and provide an interface for receiving and dealing with the resultant notifications. For
example, Bates et al. [1996] describe how publish-subscribe systems can be used to
connect heterogeneous components in the Internet. They describe a system in which
applications can be made aware of users’ locations and activities, such as using
computers, printers or electronically tagged books. They envisage its future use in the
context of a home network supporting commands such as: ‘if the children come
home, turn on the central heating’.

Asynchronicity: Notifications are sent asynchronously by event-generating
publishers to all the subscribers that have expressed an interest in them to prevent
publishers needing to synchronize with subscribers – publishers and subscribers need
to be decoupled. Mushroom [Kindberg et al. 1996] is an object-based publish-
subscribe system designed to support collaborative work, in which the user interface
displays objects representing users and information objects such as documents and
notepads within shared workspaces called network places. The state of each place is
replicated at the computers of users currently in that place. Events are used to
describe changes to objects and to a user’s focus of interest. For example, an event

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 245

could specify that a particular user has entered or left a place or has performed a
particular action on an object. Each replica of any object to which particular types of
events are relevant expresses an interest in them through a subscription and receives
notifications when they occur. But subscribers to events are decoupled from objects
experiencing events, because different users are active at different times.

In addition, a variety of different delivery guarantees can be provided for notifications
– the one that is chosen should depend on the application requirements. For example, if
IP multicast is used to send notifications to a group of receivers, the failure model will
relate to the one described for IP multicast in Section 4.4.1 and will not guarantee that
any particular recipient will receive a particular notification message. This is adequate
for some applications – for example, to deliver the latest state of a player in an Internet
game – because the next update is likely to get through.

However, other applications have stronger requirements. Consider the dealing
room application: to be fair to the dealers interested in a particular stock, we require that
all the dealers for the same stock receive the same information. This implies that a
reliable multicast protocol should be used.

In the Mushroom system mentioned above, notifications about changes in object
state are delivered reliably to a server, whose responsibility it is to maintain up-to-date
copies of objects. However, notifications may also be sent to object replicas in users’
computers by means of unreliable multicast; in the case that the latter lose notifications,
they can retrieve an object’s state from the server. When the application requires it,
notifications may be ordered and sent reliably to object replicas.

Some applications have real-time requirements.These include events in a nuclear
power station or a hospital patient monitor. It is possible to design multicast protocols
that provide real-time guarantees as well as reliability and ordering in a system that
satisfies the properties of a synchronous distributed system.

We discuss publish-subscribe systems in more detail in the following sections,
considering the programming model they offer before examining some of the key
implementation challenges, particularly related to large-scale dissemination of events in
the Internet.

6.3.1 The programming model

The programming model in publish-subscribe systems is based on a small set of
operations, captured in Figure 6.8. Publishers disseminate an event e through a
publish(e) operation and subscribers express an interest in a set of events through
subscriptions. In particular, they achieve this through a subscribe(f) operation where f
refers to a filter – that is, a pattern defined over the set of all possible events. The
expressiveness of filters (and hence of subscriptions) is determined by the subscription
model; which we discuss in more detail below. Subscribers can later revoke this interest
through a corresponding unsubscribe(f) operation. When events arrive at a subscriber,
the events are delivered using a notify(e) operation.

Some systems complement the above set of operations by introducing the concept
of advertisements. With advertisements, publishers have the option of declaring the
nature of future events through an advertise(f) operation. The advertisements are defined
in terms of the types of events of interest (these happen to take the same form as filters).

Figure 6.8 The publish-subscribe paradigm

Publishers Subscribers

publish(e1)

subscribe(t2)

subscribe(t1)

publish(e2)

advertise(t1)
notify(e1)

Publish-subscribe system

246 CHAPTER 6 INDIRECT COMMUNICATION

In other words, subscribers declare their interests in terms of subscriptions and
publishers optionally declare the styles of events they will generate through
advertisements. Advertisements can be revoked through a call of unadvertise(f).

As mentioned above, the expressiveness of publish-subscribe systems is
determined by the subscription (filter) model, with a number of schemes defined and
considered here in increasing order of sophistication:

Channel-based: In this approach, publishers publish events to named channels and
subscribers then subscribe to one of these named channels to receive all events sent
to that channel. This is a rather primitive scheme and the only one that defines a
physical channel; all other schemes employ some form of filtering over the content
of events as we shall see below. Although simple, this scheme has been used
successfully in the CORBA Event Service (see Chapter 8).

Topic-based (also referred to as subject-based): In this approach, we make the
assumption that each notification is expressed in terms of a number of fields, with one
field denoting the topic. Subscriptions are then defined in terms of the topic of
interest. This approach is equivalent to channel-based approaches, with the
difference that topics are implicitly defined in the case of channels but explicitly
declared as one of the fields in topic-based approaches. The expressiveness of topic-
based approaches can also be enhanced by introducing hierarchical organization of
topics. For example, let us consider a publish-subscribe system for this book.
Subscriptions could be defined in terms of indirect_communication or
indirect_communication/publish-subscribe. Subscribers expressing interest in the
former will receive all events related to this chapter, whereas with the latter
subscribers can instead express an interest in the more specific topic of publish-
subscribe.

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 247

Content-based: Content-based approaches are a generalization of topic-based
approaches allowing the expression of subscriptions over a range of fields in an event
notification. More specifically, a content-based filter is a query defined in terms of
compositions of constraints over the values of event attributes. For example, a
subscriber could express interest in events that relate to the topic of publish-subscribe
systems, where the system in question is the ‘CORBA Event Service’ and where the
author is ‘Tim Kindberg’ or ‘Gordon Blair’. The sophistication of the associated
query languages varies from system to system, but in general this approach is
significantly more expressive than channel- or topic-based approaches, but with
significant new implementation challenges (discussed below).

Type-based: These approaches are intrinsically linked with object-based approaches
where objects have a specified type. In type-based approaches, subscriptions are
defined in terms of types of events and matching is defined in terms of types or
subtypes of the given filter. This approach can express a range of filters, from coarse-
grained filtering based on overall type names to more fine-grained queries defining
attributes and methods of a given object. Such fine-grained filters are similar in
expressiveness to content-based approaches. The advantages of type-based
approaches are that they can be integrated elegantly into programming languages and
they can check the type correctness of subscriptions, eliminating some kinds of
subscription errors.

As well as these classical categories, a number of commercial systems are based on
subscribing directly to objects of interest. Such systems are similar to type-based
approaches in that they are intrinsically linked to object-based approaches, although
they differ by focusing on changes of state of the objects of interest rather than
predicates associated with the types of objects. They allow one object to react to a
change occurring in another object. Notifications of events are asynchronous and
determined by their receivers. In particular, in interactive applications, the actions that
the user performs on objects – for example, by manipulating a button with the mouse or
entering text in a text box via the keyboard – are seen as events that cause changes in the
objects that maintain the state of the application. The objects that are responsible for
displaying a view of the current state are notified whenever the state changes.

Rosenblum and Wolf [1997] describe a general architecture for this style of
publish-subscribe system. The main component in their architecture is an event service
that maintains a database of event notifications and of interests of subscribers. The event
service is notified of events that occur at objects of intetest. Subscribers inform the event
service about the types of events they are interested in. When an event occurs at an
object of interest a message containing the notification is sent directly to the subscribers
of that type of event.

The Jini distributed event specification described by Arnold et al. [1999] is one
leading example of this approach, and a case study on Jini, together with further
background information on this style of approach, can be found on the companion web
site for the book [www.cdk5.net/rmi]. Note, however, that Jini is a relatively primitive
example of a distributed event-based system that allows direct connectivity between
producers and consumers of events (hence compromising time and space uncoupling).

A number of more experimental approaches are also being investigated. For
example, some researchers are considering the added expressiveness of context [Frey

248 CHAPTER 6 INDIRECT COMMUNICATION

and Roman 2007, Meier and Cahill 2010]. Context and context-awareness are major
concepts in mobile and ubiquitous computing. Context is defined in Chapter 19 as an
aspect of the physical circumstances of relevance to the system behaviour. One intuitive
example of context is location, and such systems have the potential for users to subscribe
to events associated with a given location – for example, any emergency messages
associated with the building where a user is located. Cilia et al. [2004] have also
introduced concept-based subscription models whereby filters are expressed in terms of
the semantics as well as the syntax of events. More specifically, data items have an
associated semantic context that captures the meaning of those items, allowing for
interpretation and possible translation into different data formats, thus addressing
heterogeneity.

For some classes of application, such as the financial trading system described in
Chapter 1, it is not enough for subscriptions to express queries over individual events.
Rather, there is a need for more complex systems that can recognize complex event
patterns. For example, Chapter 1 introduced the example of buying and selling shares
based on observing temporal sequences of events related to share prices, demonstrating
the need for complex event processing (or composite event detection, as it is sometimes
called). Complex event processing allows the specification of patterns of events as they
occur in the distributed environment – for example, ‘inform me if water levels rise by at
least 20% in the River Eden in at least three places and simulation models are also
reporting a risk of flooding’. A further example of an event pattern arose in Chapter 1,
concerned with detecting share price movements over a given time period. In general,
patterns can be logical, temporal or spatial. For further information on complex event
processing, refer to Muhl et al. [2006].

6.3.2 Implementation issues

From the description above, the task of a publish-subscribe system is clear: to ensure that
events are delivered efficiently to all subscribers that have filters defined that match the
event. Added to this, there may be additional requirements in terms of security,
scalability, failure handling, concurrency and quality of service. This makes the
implementation of publish-subscribe systems rather complex, and this has been an area
of intense investigation in the research community. We consider key implementation
issues below, examining centralized versus distributed implementations before moving
on to consider the overall system architecture required to implement publish-subscribe
systems (particularly distributed implementations of content-based approaches). We
conclude the section by summarizing the design space of publish-subscribe systems,
with associated pointers to the literature.

Centralized versus distributed implementations • A number of architectures for the
implementation of publish-subscribe systems have been identified. The simplest
approach is to centralize the implementation in a single node with a server on that node
acting as an event broker. Publishers then publish events (and optionally send
advertisements) to this broker, and subscribers send subscriptions to the broker and
receive notifications in return. Interaction with the broker is then through a series of
point-to-point messages; this can be implemented using message passing or remote
invocation.

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 249

This approach is straightforward to implement, but the design lacks resilience and
scalability, since the centralized broker represents a single point for potential system
failure and a performance bottleneck. Consequently, distributed implementations of
publish-subscribe systems are also available. In such schemes, the centralized broker is
replaced by a network of brokers that cooperate to offer the desired functionality as
illustrated in Figure 6.9

Figure 6.9 A network of brokers

Broker network
P1

P2

P3

Publishers Subscribers

S1

S2

S3

. Such approaches have the potential to survive node failure and
have been shown to be able to operate well in Internet-scale deployments.

Taking this a step further, it is possible to have a fully peer-to-peer

implementation of a publish-subscribe system. This is a very popular implementation
strategy for recent systems. In this approach, there is no distinction between publishers,
subscribers and brokers; all nodes act as brokers, cooperatively implementing the
required event routing functionality (as discussed further below).

Overall systems architecture • As mentioned above, the implementation of centralized
schemes is relatively straightforward, with the central service maintaining a repository
of subscriptions and matching event notifications with this set of subscriptions.
Similarly, the implementations of channel-based or topic-based schemes are relatively
straightforward. For example, a distributed implementation can be achieved by mapping
channels or topics onto associated groups (as defined in Section 6.2) and then using the
underlying multicast communication facilities to deliver events to interested parties
(using reliable and ordered variants, as appropriate). The distributed implementation of
content-based (or by extrapolation, type-based) approaches is more complex and
deserving of further consideration. The range of architectural choices for such
approaches is captured in Figure 6.10 (adapted from Baldoni and Virgillito [2005]).

In the bottom layer, publish-subscribe systems make use of a range of interprocess
communication services, such as TCP/IP, IP multicast (where available) or more
specialized services, as offered for example by wireless networks. The heart of the

Figure 6.10 The architecture of publish-subscribe systems

Network protocols

Matching

Event routing

Overlay networks

TCP/IP MAC bcast802.11gIP mcast

Flooding Filtering Rendezvous Informed
gossip

Broker
network

Group GossipDHTmulticast

Publish-subscribe architecture

250 CHAPTER 6 INDIRECT COMMUNICATION

architecture is provided by the event routing layer supported by a network overlay
infrastructure. Event routing performs the task of ensuring that event notifications are
routed as efficiently as possible to appropriate subscribers, whereas the overlay
infrastructure supports this by setting up appropriate networks of brokers or peer-to-peer
structures. For content-based approaches, this problem is referred to as content-based

routing (CBR), with the goal being to exploit content information to efficiently route
events to their required destination. The top layer implements matching – that is,
ensuring that events match a given subscription. While this can be implemented as a
discrete layer, often matching is pushed down into the event routing mechanisms, as will
become apparent shortly.

Within this overall architecture, there is a wide variety of implementation
approaches. We step through a select set of implementations to illustrate the general
principles behind content-based routing:

Flooding: The simplest approach is based on flooding, that is, sending an event
notification to all nodes in the network and then carrying out the appropriate
matching at the subsciber end. As an alternative, flooding can be used to send
subscriptions back to all possible publishers, with the matching carried out at the
publishing end and matched events sent directly to the relevant subscribers using
point-to-point communication. Flooding can be implemented using an underlying
broadcast or multicast facility. Alternatively, brokers can be arranged in an acyclic
graph in which each forwards incoming event notifications to all its neighbours
(effectively providing a multicast overlay, as discussed in Section 4.5.1). This
approach has the benefit of simplicity but can result in a lot of unnecessary network

Figure 6.11 Filtering-based routing

upon receive publish(event e) from node x 1

matchlist := match(e, subscriptions) 2

send notify(e) to matchlist; 3

fwdlist := match(e, routing); 4

send publish(e) to fwdlist - x; 5

upon receive subscribe(subscription s) from node x 6

if x is client then 7

add x to subscriptions; 8

else add(x, s) to routing; 9

send subscribe(s) to neighbours - x; 10

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 251

traffic. Hence, the alternative schemes described below try to optimize the number of
messages exchanged through consideration of content.

Filtering: One principle that underpins many approaches is to apply filtering in the
network of brokers. This is referred to as filtering-based routing. Brokers forward
notifications through the network only where there is a path to a valid subscriber.
This is achieved by propagating subscription information through the network
towards potential publishers and then storing associated state at each broker. More
specifically, each node must maintain a neighbours list containing a list of all
connected neighbours in the network of brokers, a subscription list containing a list
of all directly connected subscribers serviced by this node, and a routing table.
Crucially, this routing table maintains a list of neighbours and valid subscriptions for
that pathway.

This approach also requires an implementation of matching on each node in the
network of brokers: in particular, a match function takes a given event notification
and a list of nodes together with associated subscriptions and returns a set of nodes
where the notification matches the subscription. The specific algorithm for this
filtering approach is captured in Figure 6.11 (taken from Baldoni and Virgillito
[2005]). When a broker receives a publish request from a given node, it must pass
this notification to all connected nodes where there is a corresponding matching
subscription and also decide where to propagate this event through the network of
brokers. Lines 2 and 3 achieve the first goal by matching the event against the
subscription list and then forwarding the event to all the nodes with matching
subscriptions (the matchlist). Lines 4 and 5 then use the match function again, this
time matching the event against the routing table and forwarding only to the paths
that lead to a subscription (the fwdlist). Brokers must also deal with incoming
subscription events. If the subscription event is from an immediately connected
subscriber, then this subscription must be entered in the subscriptions table (lines 7
and 8). Otherwise, the broker is an intermediary node; this node now knows that a
pathway exists towards this subscription and hence an appropriate entry is added to
the routing table (line 9). In both cases, this subscription event is then passed to all
neighbours apart from the originating node (line 10).

252 CHAPTER 6 INDIRECT COMMUNICATION

Advertisements: The pure filtering-based approach described above can generate a
lot of traffic due to propagation of subscriptions, with subscriptions essentially using
a flooding approach back towards all possible publishers. In systems with
advertisements this burden can be reduced by propagating the advertisements
towards subscribers in a similar (actually, symmetrical) way to the propagation of
subscriptions. There are interesting trade-offs between the two approaches, and some
systems adopt both approaches in tandem [Carzaniga et al. 2001].

Figure 6.12 Rendezvous-based routing

upon receive publish(event e) from node x at node i

rvlist := EN(e);

if i in rvlist then begin

matchlist <- match(e, subscriptions);

send notify(e) to matchlist;

end

send publish(e) to rvlist - i;

upon receive subscribe(subscription s) from node x at node i

rvlist := SN(s);

if i in rvlist then

add s to subscriptions;

else

send subscribe(s) to rvlist - i;

Rendezvous: Another approach to control the propagation of subscriptions (and to
achieve a natural load balancing) is the rendezvous approach. To understand this
approach, it is necessary to view the set of all possible events as an event space and
to partition responsibility for this event space between the set of brokers in the
network. In particular, this approach defines rendezvous nodes, which are broker
nodes responsible for a given subset of the event space. To achieve this, a given
rendezvous-based routing algorithm must define two functions. First, SN(s) takes a
given subscription, s, and returns one or more rendezvous nodes that take
responsibility for that subscription. Each such rendezvous node maintains a
subscription list as in the filtering approach above, and forwards all matching events
to the set of subscribing nodes. Second, when an event e is published, the function
EN(e) also returns one or more rendezvous nodes, this time responsible for matching
e against subscriptions in the system. Note that both SN(s) and EN(e) return more
than one node if reliability is a concern. Note also that this approach only works if
the intersection of EN(e) and SN(s) is non-empty for a given e that matches s (known
as the mapping intersection rule, as defined by Baldoni and Virgillito [2005]). The
corresponding code for rendezvous-based routing is shown in Figure 6.12 (again
taken from Baldoni and Virgillito [2005]). This time, we leave the interpretation of
the algorithm as an exercise for the reader (see Exercise 6.11).

One interesting interpretation of rendezvous-based routing is to map the event
space onto a distributed hash table (DHT). Distributed hash tables were introduced
briefly in Section 4.5.1 and are examined in more detail in Chapter 10. A distributed

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 253

hash table is a style of network overlay that distributes a hash table over a set of nodes
in a peer-to-peer network. The key observation for rendezvous-based routing is that the
hash function can be used to map both events and subscriptions onto a corresponding
rendezvous node for the management of such subscriptions.

Figure 6.13 Example publish-subscribe systems

System (and further reading) Subscription

model

Distribution

model

Event routing

CORBA Event Service (Chapter 8) Channel-based Centralized -

TIB Rendezvouz [Oki et al. 1993] Topic-based Distributed Ffiltering

Scribe [Castro et al. 2002b] Topic-based Peer-to-peer
(DHT)

Rendezvous

TERA [Baldoni et al. 2007] Topic-based Peer-to-peer Informed gossip

Siena [Carzaniga et al. 2001] Content-based Distributed Filtering

Gryphon [www.research.ibm.com] Content-based Distributed Filtering

Hermes [Pietzuch and Bacon 2002] Topic- and
content-based

Distributed Rendezvous and
filtering

MEDYM [Cao and Singh 2005] Content-based Distributed Flooding

Meghdoot [Gupta et al. 2004] Content-based Peer-to-peer Rendezvous

Structure-less CBR [Baldoni et al. 2005] Content-based Peer-to-peer Informed gossip

It is possible to employ other peer-to-peer middleware approaches to underpin
event routing in publish-subscribe systems. Indeed, this is a very active area of research
with many novel and interesting proposals emerging, particularly for very large-scale
systems [Carzaniga et al. 2001]. One specific approach is to adopt gossiping as a means
of supporting event routing. Gossip-based approaches are a popular mechanism for
achieving multicast (including reliable multicast), as discussed in Section 18.4.1. They
operate by nodes in the network periodically and probabilistically exchanging events (or
data) with neighbouring nodes. Through this approach, it is possible to propagate events
effectively through the network without the structure imposed by other approaches. A
pure gossip approach is effectively an alternative strategy for implementing flooding, as
described above. However, it is possible to take into account local information and, in
particular, content to achieve what is referred to as informed gossip. Such approaches
can be particularly attractive in highly dynamic environments where network or node
churn can be high [Baldoni et al. 2005].

6.3.3 Examples of publish-subscribe systems

We conclude this section by listing some major examples of publish-subscribe systems,
providing references for further reading (see Figure 6.13). This figure also captures the
design space for publish-subscribe systems, illustrating how different designs can result
from decisions on subscription and distribution models and, especially, the underlying
event routing strategy. Note that event routing is not required for centralized schemes,
hence the blank entry in the table.

254 CHAPTER 6 INDIRECT COMMUNICATION

6.4 Message queues

Message queues (or more accurately, distributed message queues) are a further
important category of indirect communication systems. Whereas groups and publish-
subscribe provide a one-to-many style of communication, message queues provide a
point-to-point service using the concept of a message queue as an indirection, thus
achieving the desired properties of space and time uncoupling. They are point-to-point
in that the sender places the message into a queue, and it is then removed by a single
process. Message queues are also referred to as Message-Oriented Middleware. This is
a major class of commercial middleware with key implementations including IBM’s
WebSphere MQ, Microsoft’s MSMQ and Oracle’s Streams Advanced Queuing (AQ).
The main use of such products is to achieve Enterprise Application Integration (EAI) –
that is, integration between applications within a given enterprise – a goal that is
achieved by the inherent loose coupling of message queues. They are also extensively
used as the basis for commercial transaction processing systems because of their
intrinsic support for transactions, discussed further in Section 6.4.1.

We examine message queues in more detail below, considering the programming
model offered by message queueing systems before addressing implementation issues.
The section then concludes by presenting the Java Messaging Service (JMS) as an
example of a middleware specification supporting message queues (and also publish-
subscribe).

6.4.1 The programming model

The programming model offered by message queues is very simple. It offers an
approach to communication in distributed systems through queues. In particular,
producer processes can send messages to a specific queue and other (consumer)
processes can then receive messages from this queue. Three styles of receive are
generally supported:

• a blocking receive, which will block until an appropriate message is available;

• a non-blocking receive (a polling operation), which will check the status of the
queue and return a message if available, or a not available indication otherwise;

• a notify operation, which will issue an event notification when a message is
available in the associated queue.

This overall approach is captured pictorially in Figure 6.14.
A number of processes can send messages to the same queue, and likewise a

number of receivers can remove messages from a queue. The queuing policy is normally
first-in-first-out (FIFO), but most message queue implementations also support the
concept of priority, with higher-priority messages delivered first. Consumer processes
can also select messages from the queue based on properties of a message. In more
detail, a message consists of a destination (that is, a unique identifier designating the
destination queue), metadata associated with the message, including fields such as the
priority of the message and the delivery mode, and also the body of the message. The
body is normally opaque and untouched by the message queue system. The associated

Figure 6.14 The message queue paradigm

Message queue systemProducers

Poll

Message

Send

Receive

Consumers

Notify

.

.
Send

Send

SECTION 6.4 MESSAGE QUEUES 255

content is serialized using any of the standard approaches described in Section 4.3; that
is, marshalled data types, object serialization or XML structured messages. Message
sizes are configurable and can be very large – for example, on the order of a 100 Mbytes
Given the fact that message bodies are opaque, message selection is normally expressed
through predicates defined over the metadata.

Oracle’s AQ introduces an interesting twist on this basic idea to achieve better
integration with (relational) databases; in Oracle AQ, messages are rows in a database
table, and queues are database tables that can be queried using the full power of a
database query language.

One crucial property of message queue systems is that messages are persistent –
that is, message queues will store the messages indefinitely (until they are consumed)
and will also commit the messages to disk to enable reliable delivery. In particular,
following the definition of reliable communication in Section 2.4.2, any message sent is
eventually received (validity) and the message received is identical to the one sent, and
no messages are delivered twice (integrity). Message queue systems therefore guarantee
that messages will be delivered (and delivered once) but cannot say anything about the
timing of the delivery.

Message passing systems can also support additional functionality:

• Most commercially available systems provide support for the sending or receiving
of a message to be contained within a transaction. The goal is to ensure that all the
steps in the transaction are completed, or the transaction has no effect at all (the
‘all or nothing’ property). This relies on interfacing with an external transaction
service, provided by the middleware environment. Detailed consideration of
transactions is deferred until Chapter 16.

• A number of systems also support message transformation, whereby an arbitrary
transformation can be performed on an arriving message. The most common
application of this concept is to transform messages between formats to deal with
heterogeneity in underlying data representations. This could be as simple as

256 CHAPTER 6 INDIRECT COMMUNICATION

transforming from one byte order to another (big-endian to little-endian) or more
complex, involving for example a transformation from one external data
representation to another (such as SOAP to IIOP). Some systems also allow
programmers to develop their own application-specific transformation in response
to triggers from the underlying message queuing system. Message transformation
is an important tool in dealing with heterogeneity generally and achieving
Enterprise Application Integration in particular (as discussed above). Note that the
term message broker is often used to denote a service responsible for message
transformation.

• Some message queue implementations also provide support for security. For
example, WebSphere MQ provides support for the confidential transmission of
data using the Secure Sockets Layer (SSL) together with support for
authentication and access control. See Chapter 11.

As a final word on the programming abstraction offered by message queues, it is helpful
to compare the style of programming with other communication paradigms. Message
queues are similar in many ways to the message-passing systems considered in Chapter
4. The difference is that whereas message-passing systems have implicit queues
associated with senders and receivers (for example, the message buffers in MPI),
message queuing systems have explicit queues that are third-party entities, separate
from the sender and the receiver. It is this key difference that makes message queues an
indirect communication paradigm with the crucial properties of space and time
uncoupling.

6.4.2 Implementation issues

The key implementation issue for message queuing systems is the choice between
centralized and distributed implementations of the concept. Some implementations are
centralized, with one or more message queues managed by a queue manager located at
a given node. The advantage of this scheme is simplicity, but such managers can become
rather heavyweight components and have the potential to become a bottleneck or a
single point of failure. As a result, more distributed implementations have been
proposed. To illustrate distributed architectures, we briefly consider the approach
adopted in WebSphere MQ as representative of the state-of-the-art in this area.

Case study: WebSphere MQ • WebSphere MQ is middleware developed by IBM based
on the concept of message queues, offering an indirection between senders and receivers
of messages [www.redbooks.ibm.com]. Queues in WebSphere MQ are managed by
queue managers which host and manage queues and allow applications to access queues
through the Message Queue Interface (MQI). The MQI is a relatively simple interface
allowing applications to carry out operations such as connecting to or disconnecting
from a queue (MQCONN and MQDISC) or sending/receiving messages to/from a queue
(MQPUT and MQGET). Multiple queue managers can reside on a single physical server.

Client applications accessing a queue manager may reside on the same physical
server. More generally, though, they will be on different machines and must then
communicate with the queue manager through what is known as a client channel. Client
channels adopt the rather familiar concept of a proxy, as introduced in Chapters 2 and 5,

SECTION 6.4 MESSAGE QUEUES 257

whereby MQI commands are issued on the proxy and then sent transparently to the
queue manager for execution using RPC. An example of such a configuration is shown
in Figure 6.15

Figure 6.15 A simple networked topology in WebSphere MQ

Queue manager

T
Proxy

Stub

Client channel

Client

Services

. In this configuration, a client application is sending messages to a remote
queue manager and multiple services (on the same machine as the server) are then
consuming the incoming messages.

This is a very simple use of WebSphere MQ, and in practice it is more common
for queue managers to be linked together into a federated structure, mirroring the
approach often adopted in publish-subscribe systems (with networks of brokers). To
achieve this, MQ introduces the concept of a message channel as a unidirectional
connection between two queue managers that is used to forward messages
asynchronously from one queue to another. Note the terminology here: a message
channel is a connection between two queue managers, whereas a client channel is a
connection between a client application and a queue manager. A message channel is
managed by a message channel agent (MCA) at each end. The two agents are
responsible for establishing and maintaining the channel, including an initial negotiation
to agree on the properties of the channel (including security properties). Routing tables
are also included in each queue manager, and together with channels this allows
arbitrary topologies to be created.

This ability to create customized topologies is crucial to WebSphere MQ,
allowing users to determine the right topology for their application domain, for example
to deliver certain requirements in terms of scalability and performance. Tools are
provided for systems administrators to create suitable topologies and to hide the
complexities of establishing message channels and routing strategies.

A wide range of topologies can be created, including trees, meshes or a bus-based
configuration. To illustrate the concept of topologies further, we present one example
topology often used in WebSphere MQ deployments, the hub-and-spoke topology.

258 CHAPTER 6 INDIRECT COMMUNICATION

The hub-and-spoke approach: In the hub-and-spoke topology, one queue manager is
designated as the hub. The hub hosts a range of services. Client applications do not
connect directly to this hub but rather connect through queue managers designated as
spokes. Spokes relay messages to the message queue of the hub for processing by the
various services. Spokes are placed strategically around the network to support different
clients. The hub is placed somewhere appropriate in the network, on a node with
sufficient resources to deal with the volume of traffic. Most applications and services are
located on the hub, although it is also possible to have some more local services on
spokes.

This topology is heavily used with WebSphere MQ, particularly in large-scale
deployments covering significant geographical areas (and possibly crossing
organizational boundaries). The key to the approach is to be able to connect to a local
spoke over a high-bandwidth connection, for example over a local area network (spokes
may even be placed in the same physical machine as client applications to minimize
latency).

Recall that communication between a client application and a queue manager uses
RPC, whereas internal communication between queue managers is asynchronous (non-
blocking). This means that the client application is only blocked until the message is
deposited in the local queue manager (the local spoke); subsequent delivery, potentially
over wide area networks, is asynchronous but guaranteed to be reliable by the
WebSphere MQ middleware.

 Clearly, the drawback of this architecture is that the hub can be a potential
bottleneck and a single point of failure. WebSphere MQ also supports other facilities to
overcome these problems, including queue manager clusters, which allow multiple
instances of the same service to be supported by multiple queue managers with implicit
load balancing across the different instantiations [www.redbooks.ibm.com].

6.4.3 Case study: The Java Messaging Service (JMS)

The Java Messaging Service (JMS) [java.sun.com XI] is a specification of a
standardized way for distributed Java programs to communicate indirectly. Most
notably, as will be explained, the specification unifies the publish-subscribe and
message queue paradigms at least superficially by supporting topics and queues as
alternative destinations of messages. A wide variety of implementations of the common
specification are now available, including Joram from OW2, Java Messaging from
JBoss, Sun’s Open MQ, Apache ActiveMQ and OpenJMS. Other platforms, including
WebSphere MQ, also provide a JMS interface on to their underlying infrastructure.

JMS distinguishes between the following key roles:

• A JMS client is a Java program or component that produces or consumes
messages, a JMS producer is a program that creates and produces messages and a
JMS consumer is a program that receives and consumes messages.

• A JMS provider is any of the multiple systems that implement the JMS
specification.

• A JMS message is an object that is used to communicate information between
JMS clients (from producers to consumers).

SECTION 6.4 MESSAGE QUEUES 259

• A JMS destination is an object supporting indirect communication in JMS. It is
either a JMS topic or a JMS queue.

Programming with JMS • The programming model offered by the JMS API is captured
in Figure 6.16

Figure 6.16 The programming model offered by JMS

Connection factory

Connection

Session MessageMessage
producer consumer

Creates

Destination:
Topic

Queue

Destination:
Topic

Queue

Message

Sends to Receives from

Communicates

. To interact with a JMS provider, it is first necessary to create a
connection between a client program and the provider. This is created through a
connection factory (a service responsible for creating connections with the required
properties). The resultant connection is a logical channel between the client and
provider; the underlying implementation may, for example, map onto a TCP/IP socket
if implemented over the Internet. Note that two types of connection can be established,
a TopicConnection or a QueueConnection, thus enforcing a clear separation between the
two modes of operation within given connections.

Connections can be used to create one or more sessions – a session is a series of
operations involving the creation, production and consumption of messages related to a
logical task. The resultant session object also supports operations to create transactions,
supporting all-or-nothing execution of a series of operations, as discussed in Section
6.4.1. There is a clear distinction between topic sessions and queue sessions in that a
TopicConnection can support one or more topic sessions and a QueueConnection can
support one or more queue sessions, but it is not possible to mix session styles in a
connection. Thus, the two styles of operation are integrated in a rather superficial way.

The session object is central to the operation of JMS, supporting methods for the
creation of messages, message producers and message consumers:

• In JMS, a message consists of three parts: a header, a set of properties and the
body of the message. The header contains all the information needed to identify
and route the message, including the destination (a reference to either a topic or a

Figure 6.17 Java class FireAlarmJMS

import javax.jms.*;

import javax.naming.*;

public class FireAlarmJMS {

public void raise() {

try { 1

Context ctx = new InitialContext(); 2

TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4

Topic topic = (Topic)ctx.lookup("Alarms"); 5

TopicConnection topicConn = 6

topicConnectionFactory.createTopicConnection(); 7

TopicSession topicSess = topicConn.createTopicSession(false, 8

Session.AUTO_ACKNOWLEDGE); 9

TopicPublisher topicPub = topicSess.createPublisher(topic); 10

TextMessage msg = topicSess.createTextMessage(); 11

msg.setText("Fire!"); 12

topicPub.publish(message); 13

} catch (Exception e) { 14

} 15

}

260 CHAPTER 6 INDIRECT COMMUNICATION

queue), the priority of the message, the expiration date, a message ID and a
timestamp. Most of these fields are created by the underlying system, but some
can be filled in specifically through the associated constructor methods. Properties
are all user-defined and can be used to associate other application-specific
metadata elements with a message. For example, if implementing a context-aware
system (as discussed in Chapter 19), the properties can be used to express
additional context associated with the message, including a location field. As in
the general description of message queue systems, this body is opaque and
untouched by the system. In JMS, the body can be any one of a text message, a
byte stream, a serialized Java object, a stream of primitive Java values or a more
structured set of name/value pairs.

• A message producer is an object used to publish messages under a particular topic
or to send messages to a queue.

• A message consumer is an object used to subscribe to messages concerned with a
given topic or to receive messages from a queue. The consumer is more
complicated than the producer, for two reasons. First, it is possible to associate
filters with message consumers by specifying what is known as a message selector

– a predicate defined over the values in the header and properties parts of a
message (not the body). A subset of the database query language SQL is used to
specify properties. This could be used, for example, to filter messages from a

SECTION 6.4 MESSAGE QUEUES 261

given location in the context-aware example above. Second, there are two modes
provided for receiving messages: the program either can block using a receive

operation or it can establish a message listener object which must provide an
onMessage method that is invoked whenever a suitable message is identified.

Figure 6.18 Java class FireAlarmConsumerJMS

import javax.jms.*;

import javax.naming.*;

public class FireAlarmConsumerJMS {

public String await() {

try { 1

Context ctx = new InitialContext(); 2

TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4

Topic topic = (Topic)ctx.lookup("Alarms"); 5

TopicConnection topicConn = 6

topicConnectionFactory.createTopicConnection(); 7

TopicSession topicSess = topicConn.createTopicSession(false, 8

Session.AUTO_ACKNOWLEDGE); 9

TopicSubscriber topicSub = topicSess.createSubscriber(topic); 10

topicSub.start(); 11

TextMessage msg = (TextMessage) topicSub.receive(); 12

return msg.getText(); 13

} catch (Exception e) { 14

return null; 15

} 16

}

A simple example • To illustrate the use of JMS, we return to our example of Section
6.2.3, the fire alarm service, and show how this would be implemented in JMS. We
choose the topic-based publish-subscribe service as this is intrinsically a one-to-many
application, with the alarm producing alarm messages targeted towards many consumer
applications.

The code for the fire alarm object is shown in Figure 6.17. It is more complicated
than the equivalent JGroups example mainly because of the need to create a connection,
session, publisher and message, as shown in lines 6–11. This is relatively
straightforward apart from the parameters of createTopicSession, which are whether the
session should be transactional (false in this case) and the mode of acknowledging
messages (AUTO_ACKNOWLEDGE in this example, which means a session
automatically acknowledges the receipt of a message). There is additional complexity
associated with finding the connection factory and topic in the distributed environment
(the complexity of connecting to a named channel in JGroups is all hidden in the connect

method). This is achieved using JNDI (the Java Naming and Directory Interface) in lines
2 to 5. This is included for completeness and it is assumed that readers can appreciate

262 CHAPTER 6 INDIRECT COMMUNICATION

the purpose of these lines of code without further explanation. Lines 12 and 13 contain
the crucial code to create a new message and then publish it to the appropriate topic. The
code to create a new instance of the FireAlarmJMS class and then raise an alarm is:

FireAlarmJMS alarm = new FireAlarmJMS();

alarm.raise();

The corresponding code for the receiver end is very similar and is shown in Figure 6.18.
Lines 2–9 are identical and create the required connection and session, respectively.
This time, though, an object of type TopicSubscriber is created next (line 10), and the
start method in line 11 starts this subscription, enabling messages to be received. The
blocking receive in line 12 then awaits an incoming message and line 13 returns the
textual contents of this message as a string. This class is used as follows by a consumer:

FireAlarmConsumerJMS alarmCall = new FireAlarmConsumerJMS();

String msg = alarmCall.await();

System.out.println("Alarm received: "+msg);

Overall this case study has illustrated how both publish-subscribe and message queues
can be supported by a single middleware solution (in this case JMS), offering the
programmer the choice of one-to-many or point-to-point variants of indirect
communication, respectively.

6.5 Shared memory approaches

In this section, we examine indirect communication paradigms that offer an abstraction
of shared memory. We look briefly at distributed shared memory techniques that were
developed principally for parallel computing before moving on to tuple space
communication, an approach that allows programmers to read and write tuples from a
shared tuple space. Whereas distributed shared memory operates at the level of reading
and writing bytes, tuple spaces offer a higher-level perspective in the form of semi-
structured data. In addition, whereas distributed shared memory is accessed by address,
tuple spaces are associative, offering a form of content-addressable memory [Gelernter
1985].

Chapter 18 of the fourth edition of this book provided in-depth coverage of
distributed shared memory, including consistency models and several case studies. This
chapter can be found on the companion web site for the book [www.cdk5.net/dsm].

6.5.1 Distributed shared memory

Distributed shared memory (DSM) is an abstraction used for sharing data between
computers that do not share physical memory. Processes access DSM by reads and
updates to what appears to be ordinary memory within their address space. However, an
underlying runtime system ensures transparently that processes executing at different
computers observe the updates made by one another. It is as though the processes access
a single shared memory, but in fact the physical memory is distributed (see Figure 6.19).

Figure 6.19 The distributed shared memory abstraction

Physical
memory

Process
accessing DSM

DSM appears as
memory in address
space of process

Physical
memory

Physical
memory

Distributed shared memory

Mappings

SECTION 6.5 SHARED MEMORY APPROACHES 263

The main point of DSM is that it spares the programmer the concerns of message
passing when writing applications that might otherwise have to use it. DSM is primarily
a tool for parallel applications or for any distributed application or group of applications
in which individual shared data items can be accessed directly. DSM is in general less
appropriate in client-server systems, where clients normally view server-held resources
as abstract data and access them by request (for reasons of modularity and protection).

Message passing cannot be avoided altogether in a distributed system: in the
absence of physically shared memory, the DSM runtime support has to send updates in
messages between computers. DSM systems manage replicated data: each computer has
a local copy of recently accessed data items stored in DSM, for speed of access. The
problems of implementing DSM are related to the replication issues to be discussed in
Chapter 18, as well as to those of caching shared files, discussed in Chapter 12.

One of the first notable examples of a DSM implementation was the Apollo
Domain file system [Leach et al. 1983], in which processes hosted by different
workstations share files by mapping them simultaneously into their address spaces. This
example shows that distributed shared memory can be persistent. That is, it may outlast
the execution of any process or group of processes that accesses it and be shared by
different groups of processes over time.

The significance of DSM first grew alongside the development of shared-memory
multiprocessors (discussed further in Section 7.3). Much research has gone into
investigating algorithms suitable for parallel computation on these multiprocessors. At
the hardware architectural level, developments include both caching strategies and fast
processor-memory interconnections, aimed at maximizing the number of processors
that can be sustained while achieving fast memory access latency and throughput
[Dubois et al. 1988]. Where processes are connected to memory modules over a
common bus, the practical limit is on the order of 10 processors before performance
degrades drastically due to bus contention. Processors sharing memory are commonly
constructed in groups of four, sharing a memory module over a bus on a single circuit
board. Multiprocessors with up to 64 processors in total are constructed from such
boards in a Non-Uniform Memory Access (NUMA) architecture. This is a hierarchical

264 CHAPTER 6 INDIRECT COMMUNICATION

architecture in which the four-processor boards are connected using a high-performance
switch or higher-level bus. In a NUMA architecture, processors see a single address
space containing all the memory of all the boards. But the access latency for on-board
memory is less than that for a memory module on a different board – hence the name of
this architecture.

In distributed-memory multiprocessors and clusters of off-the-shelf computing
components (again, see Section 7.3), the processors do not share memory but are
connected by a very high speed network. These systems, like general-purpose
distributed systems, can scale to much greater numbers of processors than a shared-
memory multiprocessor’s 64 or so. A central question that has been pursued by the DSM
and multiprocessor research communities is whether the investment in knowledge of
shared memory algorithms and the associated software can be directly transferred to a
more scalable distributed memory architecture.

Message passing versus DSM • As a communication mechanism, DSM is comparable
with message passing rather than with request-reply-based communication, since its
application to parallel processing, in particular, entails the use of asynchronous
communication. The DSM and message-passing approaches to programming can be
contrasted as follows:

Service offered: Under the message-passing model, variables have to be marshalled
from one process, transmitted and unmarshalled into other variables at the receiving
process. By contrast, with shared memory the processes involved share variables
directly, so no marshalling is necessary – even of pointers to shared variables – and
thus no separate communication operations are necessary. Most implementations
allow variables stored in DSM to be named and accessed similarly to ordinary
unshared variables. In favour of message passing, on the other hand, is that it allows
processes to communicate while being protected from one another by having private
address spaces, whereas processes sharing DSM can, for example, cause one another
to fail by erroneously altering data. Furthermore, when message passing is used
between heterogeneous computers, marshalling takes care of differences in data
representation; but how can memory be shared between computers with, for example,
different integer representations?

Synchronization between processes is achieved in the message model through
message passing primitives themselves, using techniques such as the lock server
implementation discussed in Chapter 16. In the case of DSM, synchronization is via
normal constructs for shared-memory programming such as locks and semaphores
(although these require different implementations in the distributed memory
environment). Chapter 7 briefly discusses such synchronization objects in the context
of programming with threads.

Finally, since DSM can be made persistent, processes communicating via DSM
may execute with non-overlapping lifetimes. A process can leave data in an agreed
memory location for the other to examine when it runs. By contrast, processes
communicating via message passing must execute at the same time.

Efficiency: Experiments show that certain parallel programs developed for DSM can
be made to perform about as well as functionally equivalent programs written for
message-passing platforms on the same hardware [Carter et al. 1991] – at least in the

SECTION 6.5 SHARED MEMORY APPROACHES 265

case of relatively small numbers of computers (10 or so). However, this result cannot
be generalized. The performance of a program based on DSM depends upon many
factors, as we shall discuss below – particularly the pattern of data sharing (such as
whether an item is updated by several processes).

There is a difference in the visibility of costs associated with the two types of
programming. In message passing, all remote data accesses are explicit and therefore
the programmer is always aware of whether a particular operation is in-process or
involves the expense of communication. Using DSM, however, any particular read
or update may or may not involve communication by the underlying runtime support.
Whether it does or not depends upon such factors as whether the data have been
accessed before and the sharing pattern between processes at different computers.

There is no definitive answer as to whether DSM is preferable to message passing for
any particular application. DSM remains a tool whose ultimate status depends upon the
efficiency with which it can be implemented.

6.5.2 Tuple space communication

Tuple spaces were first introduced by David Gelernter from Yale University as a novel
form of distributed computing based on what he refers to as generative communication

[Gelernter 1985]. In this approach, processes communicate indirectly by placing tuples
in a tuple space, from which other processes can read or remove them. Tuples do not
have an address but are accessed by pattern matching on content (content-addressable
memory, as discussed by Gelernter [1985]). The resultant Linda programming model
has been highly influential and has led to significant developments in distributed
programming including systems such as Agora [Bisiani and Forin 1988] and, more
significantly, JavaSpaces from Sun (discussed below) and IBM’s TSpaces. Tuple space
communication has also been influential in the field of ubiquitous computing, for
reasons that are explored in depth in Chapter 19.

This section provides an examination of the tuple space paradigm as it applies to
distributed computing. We start by examining the programming model offered by tuple
spaces before briefly considering the associated implementation issues. The section then
concludes by examining the JavaSpaces specification as a case study, illustrating how
tuple spaces have evolved to embrace the object-oriented world.

The programming model • In the tuple space programming model, processes
communicate through a tuple space – a shared collection of tuples. Tuples in turn consist
of a sequence of one or more typed data fields such as <"fred", 1958>, <"sid", 1964>

and <4, 9.8, "Yes">. Any combination of types of tuples may exist in the same tuple
space. Processes share data by accessing the same tuple space: they place tuples in tuple
space using the write operation and read or extract them from tuple space using the read

or take operation. The write operation adds a tuple without affecting existing tuples in
the space. The read operation returns the value of one tuple without affecting the
contents of the tuple space. The take operation also returns a tuple, but in this case it also
removes the tuple from the tuple space.

When reading or removing a tuple from tuple space, a process provides a tuple
specification and the tuple space returns any tuple that matches that specification – as
mentioned above, this is a type of associative addressing. To enable processes to

<"Capital", "Scotland", "Edinburgh">

<"Capital", "Wales", "Cardiff">

<"Capital", "England", "London">

<"Capital", "N. Ireland", "Belfast">

<"Population", "Scotland", 5168000>

<"Population", "UK", 61000000>

take(<String, "Scotland", Integer>)

write(<"Population", "Wales", 2900000>)

read(<"Population", String, Integer>)

take(<String, "Scotland", String>)

Figure 6.20 The tuple space abstraction

266 CHAPTER 6 INDIRECT COMMUNICATION

synchronize their activities, the read and take operations both block until there is a
matching tuple in the tuple space. A tuple specification includes the number of fields and
the required values or types of the fields. For example, take(<String, integer>) could
extract either <"fred", 1958> or <"sid", 1964>; take(<String, 1958>) would extract only
<"fred", 1958> of those two.

In the tuple space paradigm, no direct access to tuples in tuple space is allowed
and processes have to replace tuples in the tuple space instead of modifying them. Thus,
tuples are immutable. Suppose, for example, that a set of processes maintains a shared
counter in tuple space. The current count (say, 64) is in the tuple <"counter", 64>. A
process must execute code of the following form in order to increment the counter in a
tuple space myTS:

<s, count> := myTS.take(<"counter", integer>);
myTS.write(<"counter", count+1>);

A further illustration of the tuple space paradigm is given in Figure 6.20. This tuple
space contains a range of tuples representing geographical information about countries
in the United Kingdom, including populations and capital cities. The take operation
take(<String, "Scotland", String>) will match <"Capital", "Scotland", "Edinburgh">,
whereas take(<String, "Scotland", Integer>) will match <"Population", "Scotland",

5168000>. The write operation write(<"Population", "Wales, 2900000>) will insert a
new tuple in the tuple space with information on the population of Wales. Finally,
read(<"Population", String, Integer) can match the equivalent tuples for the
populations of the UK, Scotland or indeed Wales, if this operation is executed after the
corresponding write operation. One will be selected nondeterministically by the tuple

SECTION 6.5 SHARED MEMORY APPROACHES 267

space implementation and, with this being a read operation, the tuple will remain in the
tuple space.

Note that write, read and take are known as out, rd and in in Linda; we use the
more descriptive former names throughout this book. This terminology is also used in
JavaSpaces, discussed in a case study below.

Properties associated with tuple spaces: Gelernter [1985] presents some interesting
properties associated with tuple space communication, highlighting in particular both
space and time uncoupling as discussed in Section 6.1:

Space uncoupling: A tuple placed in tuple space may originate from any number of
sender processes and may be delivered to any one of a number of potential recipients.
This property is also referred to as distributed naming in Linda.

Time uncoupling: A tuple placed in tuple space will remain in that tuple space until
removed (potentially indefinitely), and hence the sender and receiver do not need to
overlap in time.

Together, these features provide an approach that is fully distributed in space and time
and also provide for a form of distributed sharing of shared variables via the tuple space.

Gelernter [1985] also explores a range of other properties associated with the
rather flexible style of naming employed in Linda (referred to as free naming). The
interested reader is directed to Gelernter’s paper for more information on this topic.

Variations on a theme: Since the introduction of Linda, refinements have been proposed
to the original model:

• The original Linda model proposed a single, global tuple space. This is not
optimal in large systems, as it leads to the danger of unintended aliasing of tuples:
as the number of tuples in a tuple space increases, there is an increasing chance of
a read or take matching a tuple by accident. This is particularly likely when
matching on types, such as with take(<String, integer>), as mentioned above.
Given this, a number of systems have proposed multiple tuple spaces, including
the ability to dynamically create tuple spaces, introducing a degree of scoping into
the system (see, for example, the JavaSpaces case study below).

• Linda was anticipated to be implemented as a centralized entity but later systems
have experimented with distributed implementations of tuple spaces (including
strategies to provide more fault tolerance). Given the importance of this topic to
this book, we focus on this in the implementation issues subsection below.

• Researchers have also experimented with modifying or extending the operations
provided in tuple spaces and adapting the underlying semantics. One rather
interesting proposal is to unify the concepts of tuples and tuple spaces by
modelling everything as (unordered) sets – that is, tuple spaces are sets of tuples
and tuples are sets of values, which may now also include tuples. This variant is
known as Bauhaus Linda [Carriero et al. 1995].

• Perhaps most interestingly, recent implementations of tuple spaces have moved
from tuples of typed data items to data objects (with attributes), turning the tuple
space into an object space. This proposal is adopted, for example, in the influential
system JavaSpaces, discussed in more detail below.

268 CHAPTER 6 INDIRECT COMMUNICATION

Implementation issues • Many of the implementations of tuple spaces adopt a
centralized solution where the tuple space resource is managed by a single server. This
has advantages in terms of simplicity, but such solutions are clearly not fault tolerant and
also will not scale. Because of this, distributed solutions have been proposed.

Replication: Several systems have proposed the use of replication to overcome the
problems identified above [Bakken and Schlichting 1995, Bessani et al. 2008, Xu and
Liskov 1989].

The proposals from Bakken and Schlichting [1995] and Bessani et al. [2008]
adopt a similar approach to replication, referred to as the state machine approach and
discussed further in Chapter 18. This approach assumes that a tuple space behaves like
a state machine, maintaining state and changing this state in response to events received
from other replicas or from the environment. To ensure consistency the replicas (i) must
start in the same state (an empty tuple space), (ii) must execute events in the same order
and (iii) must react deterministically to each event. The key second property can be
guaranteed by adopting a totally ordered multicast algorithm, as discussed in Section
6.2.2.

Xu and Liskov [1989] adopt a different approach, which optimizes the replication
strategy by using the semantics of the particular tuple space operations. In this proposal,
updates are carried out in the context of the current view (the agreed set of replicas) and
tuples are also partitioned into distinct tuple sets based on their associated logical names
(designated as the first field in the tuple). The system consists of a set of workers
carrying out computations on the tuple space, and a set of tuple space replicas. A given
physical node can contain any number of workers, replicas or indeed both; a given
worker therefore may or may not have a local replica. Nodes are connected by a
communications network that may lose, duplicate or delay messages and can deliver
messages out of order. Network partitions can also occur.

A write operation is implemented by sending a multicast message over the
unreliable communications channel to all members of the view. On receipt, members
place this tuple into their replica and acknowledge receipt. The write request is repeated
until all acknowledgements are received. For the correct operation of the protocol,
replicas must detect and acknowledge duplicate requests, but not carry out the
associated write operations.

The read operation consists of sending a multicast message to all replicas. Each
replica seeks a match and returns this match to the requesting site. The first tuple
returned is delivered as the result of the read. This may come from a local node, but
given that many workers will not have a local replica, this is not guaranteed.

The take operation is more complex because of the need to agree on the tuple to
be selected and to remove this agreed tuple from all copies. The algorithm proceeds in
two phases. In phase 1, the tuple specification is sent to all replicas, and the replica
attempts to acquired the lock on the associated tuple set to serialize take requests on the
replicas (write and read operations are unaffected by the lock); if the lock cannot be
acquired, the take request is refused. Each replica that succeeds in obtaining the lock
responds with the set of matching tuples. This step is repeated until all replicas have
accepted the request and responded. The initiating process can then select one tuple from
the intersection of all the replies and return this as the result of the take request. If it is

SECTION 6.5 SHARED MEMORY APPROACHES 269

not possible to obtain a majority of locks, the replicas are asked to release their locks and
phase 1 repeats.

Figure 6.21 Replication and the tuple space operations [Xu and Liskov 1989]

write 1. The requesting site multicasts the write request to all members of the view;

2. On receiving this request, members insert the tuple into their replica and acknowledge this action;

3. Step 1 is repeated until all acknowledgements are received.

read 1. The requesting site multicasts the read request to all members of the view;

2. On receiving this request, a member returns a matching tuple to the requestor;

3. The requestor returns the first matching tuple received as the result of the operation (ignoring others);

4. Step 1 is repeated until at least one response is received.

take Phase 1: Selecting the tuple to be removed

1. The requesting site multicasts the take request to all members of the view;

2. On receiving this request, each replica acquires a lock on the associated tuple set and, if the lock
cannot be acquired, the take request is rejected;

3. All accepting members reply with the set of all matching tuples;

4. Step 1 is repeated until all sites have accepted the request and responded with their set of tuples and
the intersection is non-null;

5. A particular tuple is selected as the result of the operation (selected randomly from the intersection
of all the replies);

6. If only a minority accept the request, this minority are asked to release their locks and phase 1 repeats.

Phase 2: Removing the selected tuple

1. The requesting site multicasts a remove request to all members of the view citing the tuple to be
removed;

2. On receiving this request, members remove the tuple from their replica, send an acknowledgement
and release the lock;

3. Step 1 is repeated until all acknowledgements are received.

In phase 2, this tuple must be removed from all replicas. This is achieved by
repeated multicasts to the replicas in the view until all have acknowledged deletion. As
with write requests, it is necessary for replicas to detect repeat requests in phase 2 and
to simply send another acknowledgement without carrying out another deletion
(otherwise multiple tuples could erroneously be deleted at this stage).

The steps involved for each operation are summarized in Figure 6.21. Note that a
separate algorithm is required to manage view changes if node failures occur or the
network partitions (see Xu and Liskov [1989] for details).

This algorithm is designed to minimize delay given the semantics of the three
tuple space operations:

read operations only block until the first replica responds to the request.

take operations block until the end of phase 1, when the tuple to be deleted has been
agreed.

write operations can return immediately.

270 CHAPTER 6 INDIRECT COMMUNICATION

This, though, introduces unacceptable levels of concurrency. For example, a read

operation may access a tuple that should have been deleted in the second phase of a take

operation. Therefore additional levels of concurrency control are required. In particular,
Xu and Liskov [1989] introduce the following additional constraints:

• The operations of each worker must be executed at each replica in the same order
as they were issued by the worker;.

• A write operation must not be executed at any replica until all previous take

operations issued by the same worker have completed at all replicas in the
worker's view.

A further example of using replication is provided in Chapter 19, where we present the
L2imbo approach, which uses replication to provide high availability in mobile
environments [Davies et al. 1998].

Other approaches: A range of other approaches have been employed in the
implementation of the tuple space abstraction, including partitioning of the tuple space
over a number of nodes and mapping onto peer-to-peer overlays:

• The Linda Kernel developed at the University of York [Rowstron and Wood
1996] adopts an approach in which tuples are partitioned across a range of
available tuple space servers (TSSs), as illustrated in Figure 6.22

Figure 6.22 Partitioning in the York Linda Kernel

Local tuple
space manager

User process

Local tuple
space manager

User process

Local tuple
space manager

User process

Local tuple
space manager

User process

Local tuple
space manager

User process

Local tuple
space manager

User process

TSS TSS TSSTSS TSS

. There is no
replication of tuples; that is, there is only one copy of each tuple. The motivation
is to increase performance of the tuple space, especially for highly parallel
computation.When a tuple is placed in tuple space, a hashing algorithm is used to
select one of the tuple space servers to be used. The implementation of read or
take is slightly more complex, as a tuple specification is provided that may specify
types or values of the associated fields. The hashing algorithm uses this

SECTION 6.5 SHARED MEMORY APPROACHES 271

specification to generate a set of possible servers that may contain matching
tuples, and a linear search must then be employed until a matching tuple is
discovered. Note that because there is only a single copy of a given tuple, the
implementation of take is greatly simplified.

• Some implementations of tuple spaces have adopted peer-to-peer approaches in
which all nodes cooperate to provide the tuple space service. This approach is
particularly attractive given the intrinsic availability and scalability of peer-to-peer
solutions. Examples of peer-to-peer implementations include PeerSpaces [Busi et

al. 2003], which is developed using the JXTA peer-to-peer middleware
[jxta.dev.java.net], LIME and TOTA (the latter two systems feature in Chapter 19).

Case study: JavaSpaces • JavaSpaces

Figure 6.23 The JavaSpaces API

Operation Effect

Lease write(Entry e, Transaction txn, long lease) Places an entry into a particular
JavaSpace

Entry read(Entry tmpl, Transaction txn, long timeout) Returns a copy of an entry matching
a specified template

Entry readIfExists(Entry tmpl, Transaction txn, long timeout) As above, but not blocking

Entry take(Entry tmpl, Transaction txn, long timeout) Retrieves (and removes) an entry
matching a specified template

Entry takeIfExists(Entry tmpl, Transaction txn, long timeout) As above, but not blocking

EventRegistration notify(Entry tmpl, Transaction txn,

RemoteEventListener listen, long lease,

MarshalledObject handback)

Notifies a process if a tuple matching
a specified template is written to a
JavaSpace

 is a tool for tuple space communication
developed by Sun [java.sun.com X, [java.sun.com VI]. More specifically, Sun provides
the specification of a JavaSpaces service, and third-party developers are then free to
offer implementations of JavaSpaces (significant implementations include GigaSpaces
[www.gigaspaces.com] and Blitz [www.dancres.org]). The tool is strongly dependent
on Jini (Sun’s discovery service, discussed further in Section 19.2.1), as will become
apparent below. The Jini Technology Starter Kit also includes an implementation of
JavaSpaces, referred to as Outrigger.

The goals of the JavaSpaces technology are:

• to offer a platform that simplifies the design of distributed applications and
services;

• to be simple and minimal in terms of the number and size of associated classes and
to have a small footprint to allow the code to run on resource-limited devices (such
as smart phones);

• to enable replicated implementations of the specification (although in practice
most implementations are centralized).

272 CHAPTER 6 INDIRECT COMMUNICATION

Programming with JavaSpaces: JavaSpaces allows the programmer to create any number
of instances of a space, where a space is a shared, persistent repository of objects (thus
offering an object space in the terminology introduced above). More specifically, an
item in a JavaSpace is referred to as an entry: a group of objects contained in a class that
implements net.jini.core.entry.Entry. Note that with entries containing objects (rather
than tuples), it is possible to associate arbitrary behaviour with entries, thus significantly
increasing the expressive power of the approach.

The operations defined on JavaSpaces are summarized in Figure 6.23 (showing
the full signatures of each of the operations) and can be described as follows:

• A process can place an entry into a JavaSpace instance with the write method. As
with Jini, an entry can have an associated lease (see Section 5.4.3), which is the
time for which access is granted to the associated objects. This can be forever
(Lease.FOREVER) or can be a numerical value specified in milliseconds. After
this period, the entry is destroyed. The write operation can also be used in the
context of a transaction, as discussed below (a value of null indicates that this is
not a transactional operation). The write operation returns a Lease value
representing the lease granted by the JavaSpace (which may be less than the time
requested).

•

Figure 6.24 Java class AlarmTupleJS

import net.jini.core.entry.*;

public class AlarmTupleJS implements Entry {

public String alarmType;

public AlarmTupleJS() {

}

public AlarmTupleJS(String alarmType) {

this.alarmType = alarmType;

}

}

A process can access an entry in a JavaSpace with either the read or take

operation; read returns a copy of a matching entry and take removes a matching
entry from the JavaSpace (as in the general programming model presented above).
The matching requirements are specified by a template, which is of type entry.
Particular fields in the template may be set to specific values and others can be left
unspecified. A match is then defined as an entry that is of the same class as the
template (or a valid subclass) and where there is an exact match for the set of
specified values. As with write, read and take can be carried out in the context of
a specified transaction (discussed below). The two operations are also blocking;
the final parameter specifies a timeout representing the maximum length of time
that a particular process or thread will block, for example to deal with the failure
of a process supplying a given entry. The readIfExists and takeIfExists operations

SECTION 6.5 SHARED MEMORY APPROACHES 273

are equivalent to read and take, respectively, but these operations will return a
matching entry if one exists; otherwise, they will return null.

• The notify operation uses Jini distributed event notification, mentioned in Section
6.3 to register an interest in a given event – in this case, the arrival of entries
matching a given template. This registration is governed by a lease, that is, the
length of time the registration should persist in the JavaSpace. Notification is via
a specified RemoteEventListener interface. Once again, this operation can be
carried out in the context of a specified transaction.

As mentioned throughout the discussion above, operations in JavaSpaces can take place
in the context of a transaction, ensuring that either all or none of the operations will be
executed. Transactions are distributed entities and can span multiple JavaSpaces and
multiple participating processes. Discussion of the general concept of transactions is
deferred until Chapter 16.

A simple example: We conclude this examination of JavaSpaces by presenting an
example, the intelligent fire alarm example first introduced in Section 6.2.3 and revisited
in Section 6.4.3. In this example, there is a need to disseminate an emergency message
to all recipients when a fire event is detected.

We start by defining an entry object of type AlarmTupleJS, as shown in Figure
6.24. This is relatively straightforward and shows the creation of a new entry with one
field, the alarmType. The associated fire alarm code is shown in Figure 6.25

Figure 6.25 Java class FireAlarmJS

import net.jini.space.JavaSpace;

public class FireAlarmJS {

public void raise() {

try {

JavaSpace space = SpaceAccessor.findSpace("AlarmSpace");

AlarmTupleJS tuple = new AlarmTupleJS("Fire!");

space.write(tuple, null, 60*60*1000);

catch (Exception e) {

}

}

}

. The first
step in raising an alarm is to gain access to an appropriate instance of a JavaSpace (called
"AlarmSpace"), which we assume is already created. Most implementations of
JavaSpaces provide utility functions for this and, for simplicity, this is what we show in
this code, using a utility class SpaceAccessor and method findSpace as provided in
GigaSpaces (for convenience, a copy of this class is provided on the companion web site
for the book [www.cdk5.net]). An entry is then created as an instance of the previously
defined AlarmTupleJS. This entry has only one field, a string called alarmType, and this

274 CHAPTER 6 INDIRECT COMMUNICATION

is set to "Fire!"”. Finally, this entry is placed into the JavaSpace using the write method,
where it will remain for one hour. This code can then be called using the following:

FireAlarmJS alarm = new FireAlarmJS();

alarm.raise();

The corresponding code for the consumer end is shown in Figure 6.26

Figure 6.26 Java class FireAlarmReceiverJS

import net.jini.space.JavaSpace;

public class FireAlarmConsumerJS {

public String await() {

try {

JavaSpace space = SpaceAccessor.findSpace();

AlarmTupleJS template = new AlarmTupleJS("Fire!");

AlarmTupleJS recvd = (AlarmTupleJS) space.read(template, null,

Long.MAX_VALUE);

return recvd.alarmType;

}

catch (Exception e) {

return null;

}

}

}

. Access to the
appropriate JavaSpace is obtained in the same manner. Following this, a template is
created, the single field is set to "Fire!", and an associated read method is invoked. Note
that by setting the field to "Fire!", we ensure that only entries with this type and this
value will be returned (leaving the field blank would make any entry of type
AlarmTupleJS a valid match). This is called as follows in a consumer:

FireAlarmConsumerJS alarmCall = new FireAlarmConsumerJS();

String msg = alarmCall.await();

System.out.println("Alarm received: " + msg);

This simple example illustrates how easy it is to write multiparty applications using
JavaSpaces that are both time- and space-uncoupled.

6.6 Summary

This chapter has examined indirect communication in detail, complementing the study
of remote invocation paradigms in the previous chapter. We defined indirect
communication in terms of communication through an intermediary, with a resultant
uncoupling between producers and consumers of messages. This leads to interesting
properties, particularly in terms of dealing with change and establishing fault-tolerant
strategies.

SECTION 6.6 SUMMARY 275

We have considered five styles of indirect communication in this chapter:

• group communication;

• publish-subscribe systems;

• message queues;

• distributed shared memory;

• tuple spaces.

The discussion has emphasized their commonalities in terms of all supporting indirect
communication through forms of intermediary including groups, channels or topics,
queues, shared memory or tuple spaces. Content-based publish-subscribe systems
communicate through the publish-subscribe system as a whole, with subscriptions
effectively defining logical channels managed by content-based routing.

As well as focusing on the commonalities, it is instructive to consider the key
differences between the various approaches. We start by reconsidering the level of space
and time uncoupling, picking up on the discussion in Section 6.1. All the techniques
considered in this chapter exhibit space uncoupling in that messages are directed to an
intermediary and not to any specific recipient or recipients. The position with respect to
time uncoupling is more subtle and dependent on the level of persistency in the
paradigm. Message queues, distributed shared memory and tuple spaces all exhibit time
uncoupling. The other paradigms may, depending on the implementation. For example,
in group communication, it is possible in some implementations for a receiver to join a
group at an arbitrary point in time and to be brought up-to-date with respect to previous
message exchanges (this is an optional feature in JGroups, for example, selected by
constructing an appropriate protocol stack). Many publish-subscribe systems do not
support persistency of events and hence are not time-uncoupled, but there are
exceptions. JMS, for example, does support persistent events, in keeping with its
integration of publish-subscribe and message queues.

The next observation is that the initial three techniques (groups, publish-subscribe
and message queues) offer a programming model that emphasizes communication

(through messages or events), whereas distributed shared memory and tuple spaces offer
a more state-based abstraction. This is a fundamental difference and one that has
significant repercussions in terms of scalability; in general terms, the communication-
based abstractions have the potential to scale to very large scale systems with
appropriate routing infrastructure (although this is not the case for group communication
because of the need to maintain group membership, as discussed in Section 6.2.2). In
contrast, the two state-based approaches have limitations with respect to scaling. This
stems from the need to maintain consistent views of the shared state, for example
between multiple readers and writers of shared memory. The situation with tuple spaces
is a bit more subtle given the immutable nature of tuples. The key problem rests with
implementing the destructive read operation, take, in a large-scale system; it is an
interesting observation that without this operation, tuple spaces look very much like
publish-subscribe systems (and hence are potentially highly scalable).

Most of the above systems also offer one-to-many styles of communication, that
is, multicast in terms of the communication-based services and global access to shared
values in the state-based abstractions. The exceptions are message queuing, which is
fundamentally point-to-point (and hence often offered in combination with publish-

Figure 6.27 Summary of indirect communication styles

Groups Publish-

subscribe systems

Message queues DSM Tuple spaces

Space-

uncoupled

Yes Yes Yes Yes Yes

Time- uncoupled Possible Possible Yes Yes Yes

Style of service Communication-
based

Communication-
based

Communication-
based

State-based State-based

Communication

pattern

1-to-many 1-to-many 1-to-1 1-to-many 1-1 or 1-to-many

Main intent Reliable
distributed
computing

Information
dissemination or
EAI; mobile and
ubiquitous
systems

Information
dissemination or
EAI;
commercial
transaction
processing

Parallel and
distributed
computation

Parallel and
distributed
computation;
mobile and
ubiquitous
systems

Scalability Limited Possible Possible Limited Limited

Associative No Content-based
publish-subscribe
only

No No Yes

276 CHAPTER 6 INDIRECT COMMUNICATION

subscribe systems in commercial middleware), tuple spaces, which can be either one-to-
many or point-to-point depending on whether receiving processes use the read or take

operations, respectively.
There are also differences in intent in the various systems. Group communication

is mainly designed to support reliable distributed systems, and hence the emphasis is on
providing algorithmic support for reliability and ordering of message delivery.
Interestingly, the algorithms to ensure reliability and ordering (especially the latter) can
have a significant negative effect on scalability for similar reasons to maintaining
consistent views of shared state. Publish-subscribe systems have largely been targeted
at information dissemination (for example, in financial systems) and for Enterprise
Application Integration. Finally, the shared memory approaches have generally been
applied in parallel and distributed processing, including in the Grid community
(although tuple spaces have been used effectively across a variety of application
domains). Both publish-subscribe systems and tuple space communication have found
favour in mobile and ubiquitous computing due to their support for volatile
environments (as discussed in Chapter 19).

One other key issue associated with the five schemes is that both content-based
publish-subscribe and tuple spaces offer a form of associative addressing based on
content, allowing pattern matching between subscriptions and events or templates
against tuples, respectively. The other approaches do not.

This discussion is summarized in Figure 6.27.

EXERCISES 277

We have not considered issues related to quality of service in this analysis. Many
message queue systems do offer intrinsic support for reliability in the form of
transactions. More generally, however, quality of service remains a key challenge for
indirect communication paradigms. Indeed, space and time uncoupling by their very
nature make it difficult to reason about end-to-end properties of the system, such as real-
time behaviour or security, and hence this is an important area for further research.

EXERCISES

6.1 Construct an argument as to why indirect communication may be appropriate in volatile
environments. To what extent can this be traced to time uncoupling, space uncoupling
or indeed a combination of both? page 230

6.2 Section 6.1 states that message passing is both time- and space-coupled – that is,
messages are both directed towards a particular entity and require the receiver to be
present at the time of the message send. Consider the case, though, where messages are
directed towards a name rather than an address and this name is resolved using DNS.
Does such a system exhibit the same level of indirection? page 231, Section 13.2.3

6.3 Section 6.1 refers to systems that are space-coupled but time- uncoupled – that is,
messages are directed towards a given receiver (or receivers), but that receiver can have
a lifetime independent from the sender’s. Can you construct a communication paradigm
with these properties? For example, does email fall into this category? page 231

6.4 As a second example, consider the communication paradigm referred to as queued RPC,
as introduced in Rover [Joseph et al. 1997]. Rover is a toolkit to support distributed
systems programming in mobile environments where participants in communication
may become disconnected for periods of time. The system offers the RPC paradigm and
hence calls are directed towards a given server (clearly space-coupled). The calls,
though, are routed through an intermediary, a queue at the sending side, and are
maintained in the queue until the receiver is available. To what extent is this time-
uncoupled? Hint: consider the almost philosophical question of whether a recipient that
is temporarily unavailable exists at that point in time. page 231, Chapter 19

6.5 If a communication paradigm is asynchronous, is it also time-uncoupled? Explain your
answer with examples as appropriate. page 232

6.6 In the context of a group communication service, provide example message exchanges
that illustrate the difference between causal and total ordering. page 236

6.7 Consider the FireAlarm example as written using JGroups (Section 6.2.3). Suppose this
was generalized to support a variety of alarm types, such as fire, flood, intrusion and so
on. What are the requirements of this application in terms of reliability and ordering?

page 230, page 240

278 CHAPTER 6 INDIRECT COMMUNICATION

6.8 Suggest a design for a notification mailbox service that is intended to store notifications
on behalf of multiple subscribers, allowing subscribers to specify when they require
notifications to be delivered. Explain how subscribers that are not always active can
make use of the service you describe. How will the service deal with subscribers that
crash while they have delivery turned on? page 245

6.9 In publish-subscribe systems, explain how channel-based approaches can trivially be
implemented using a group communication service? Why is this a less optimal strategy
for implementing a content-based approach? page 245

6.10 Using the filtering-based routing algorithm in Figure 6.11 as a starting point, develop an
alternative algorithm that illustrates how the use of advertisements can result in
significant optimization in terms of message traffic generated. page 251

6.11 Construct a step-by-step guide explaining the operation of the alternative rendezvous-
based routing algorithm shown in Figure 6.12. page 252

6.12 Building on your answer to Exercise 6.11, discuss two possible implementations of
EN(e) and SN(s). Why must the intersection of EN(e) and SN(s) be non-null for a given
e that matches s (the intersection rule)? Does this apply in your possible
implementations? page 252

6.13 Explain how the loose coupling inherent in message queues can aid with Enterprise
Application Integration. As in Exercise 6.1, consider to what extent this can be traced to
time uncoupling, space uncoupling or a combination of both. page 254

6.14 Consider the version of the FireAlarm program written in JMS (Section 6.4.3). How
would you extend the consumer to receive alarms only from a given location?

page 261

6.15 Explain in which respects DSM is suitable or unsuitable for client-server systems.
page 262

6.16 Discuss whether message passing or DSM is preferable for fault-tolerant applications.
page 262

6.17 Assuming a DSM system is implemented in middleware without any hardware support
and in a platform-neutral manner, how would you deal with the problem of differing data
representations on heterogeneous computers? Does your solution extend to pointers?

page 262

6.18 How would you implement the equivalent of a remote procedure call using a tuple
space? What are the advantages and disadvantages of implementing a remote procedure
call–style interaction in this way? page 265

6.19 How would you implement a semaphore using a tuple space? page 265

6.20 Implement a replicated tuple space using the algorithm of Xu and Liskov [1989].
Explain how this algorithm uses the semantics of tuple space operations to optimize the
replication strategy. page 269

 279

7

OPERATING SYSTEM SUPPORT

7.1 Introduction
7.2 The operating system layer
7.3 Protection
7.4 Processes and threads
7.5 Communication and invocation
7.6 Operating system architecture
7.7 Virtualization at the operating system level
7.8 Summary

This chapter describes how middleware is supported by the operating system facilities at
the nodes of a distributed system. The operating system facilitates the encapsulation and
protection of resources inside servers and it supports the mechanisms required to access
these resources, including communication and scheduling.

An important theme of the chapter is the role of the system kernel. The chapter aims
to give the reader an understanding of the advantages and disadvantages of splitting
functionality between protection domains – in particular, of splitting functionality between
kernel- and user-level code. The trade-offs between kernel-level facilities and user-level
facilities are discussed, including the tension between efficiency and robustness.

The chapter examines the design and implementation of multi-threaded processing
and communication facilities. It goes on to explore the main kernel architectures that have
been devised and looks at the important role that virtualization is playing in operating
system architecture.

280 CHAPTER 7 OPERATING SYSTEM SUPPORT

7.1 Introduction

Chapter 2 introduced the chief software layers in a distributed system. We have learned
that an important aspect of distributed systems is resource sharing. Client applications
invoke operations on resources that are often on another node or at least in another
process. Applications (in the form of clients) and services (in the form of resource
managers) use the middleware layer for their interactions. Middleware enables remote
communication between objects or processes at the nodes of a distributed system.
Chapter 5 explained the main types of remote invocation found in middleware, such as
Java RMI and CORBA, with Chapter 6 exploring alternative indirect styles of
communication. In this chapter we shall focus on support for such remote
communication, without real-time guarantees. (Chapter 20 examines support for
multimedia communication, which is real-time and stream-oriented.)

Below the middleware layer is the operating system (OS) layer, which is the
subject of this chapter. Here we examine the relationship between the two, and in
particular how well the requirements of middleware can be met by the operating system.
Those requirements include efficient and robust access to physical resources, and the
flexibility to implement a variety of resource-management policies.

The task of any operating system is to provide problem-oriented abstractions of
the underlying physical resources – the processors, memory, networks, and storage
media. An operating system such as UNIX (and its variants, such as Linux and Mac OS
X) or Windows (and its variants, such as XP, Vista and Windows 7) provides the
programmer with, for example, files rather than disk blocks, and with sockets rather than
raw network access. It takes over the physical resources on a single node and manages
them to present these resource abstractions through the system-call interface.

Before we begin our detailed coverage of the operating system’s middleware
support role, it is useful to gain some historical perspective by examining two operating
system concepts that have come about during the development of distributed systems:
network operating systems and distributed operating systems. Definitions vary, but the
concepts behind them are something like the following.

Both UNIX and Windows are examples of network operating systems. They have
a networking capability built into them and so can be used to access remote resources.
Access is network-transparent for some – not all – types of resource. For example,
through a distributed file system such as NFS, users have network-transparent access to
files. That is, many of the files that users access are stored remotely, on a server, and this
is largely transparent to their applications.

But the defining characteristic is that the nodes running a network operating
system retain autonomy in managing their own processing resources. In other words,
there are multiple system images, one per node. With a network operating system, a user
can remotely log into another computer, using ssh, for example, and run processes there.
However, while the operating system manages the processes running at its own node, it
does not manage processes across the nodes.

By contrast, one could envisage an operating system in which users are never
concerned with where their programs run, or the location of any resources. There is a
single system image. The operating system has control over all the nodes in the system,
and it transparently locates new processes at whatever node suits its scheduling policies.

SECTION 7.2 THE OPERATING SYSTEM LAYER 281

For example, it could create a new process at the least-loaded node in the system, to
prevent individual nodes becoming unfairly overloaded.

An operating system that produces a single system image like this for all the
resources in a distributed system is called a distributed operating system [Tanenbaum
and van Renesse 1985].

Middleware and network operating systems • In fact, there are no distributed operating
systems in general use, only network operating systems such as UNIX, Mac OS and
Windows. This is likely to remain the case, for two main reasons. The first is that users
have much invested in their application software, which often meets their current
problem-solving needs; they will not adopt a new operating system that will not run their
applications, whatever efficiency advantages it offers. Attempts have been made to
emulate UNIX and other operating system kernels on top of new kernels, but the
emulations’ performance has not been satisfactory. Anyway, keeping emulations of all
the major operating systems up-to-date as they evolve would be a huge undertaking.

The second reason against the adoption of distributed operating systems is that
users tend to prefer to have a degree of autonomy for their machines, even in a closely
knit organization. This is particularly so because of performance [Douglis and
Ousterhout 1991]. For example, Jones needs good interactive responsiveness while she
writes her documents and would resent it if Smith’s programs were slowing her down.

The combination of middleware and network operating systems provides an
acceptable balance between the requirement for autonomy on the one hand and network-
transparent resource access on the other. The network operating system enables users to
run their favourite word processors and other standalone applications. Middleware
enables them to take advantage of services that become available in their distributed
system.

The next section explains the function of the operating system layer. Section 7.3
examines low-level mechanisms for resource protection, which we need to understand
in order to appreciate the relationship between processes and threads, and the role of the
kernel itself. Section 7.4 goes on to examine the process, address space and thread
abstractions. Here the main topics are concurrency, local resource management and
protection, and scheduling. Section 7.5 then covers communication as part of invocation
mechanisms. Section 7.6 discusses the different types of operating system architecture,
including the so-called monolithic and microkernel designs. The reader can find case
studies of the Mach kernel and the Amoeba, Chorus and Clouds operating systems at
www.cdk5.net/oss. The chapter concludes by examining the role that virtualization is
playing in the design of operating systems, featuring a case study of the Xen approach
to virtualization (Section 7.7).

7.2 The operating system layer

Users will only be satisfied if their middleware–OS combination has good performance.
Middleware runs on a variety of OS–hardware combinations (platforms) at the nodes of
a distributed system. The OS running at a node – a kernel and associated user-level
services such as communication libraries – provides its own flavour of abstractions of
local hardware resources for processing, storage and communication. Middleware

282 CHAPTER 7 OPERATING SYSTEM SUPPORT

utilizes a combination of these local resources to implement its mechanisms for remote
invocations between objects or processes at the nodes.

Applications, services

Computer &

Figure 7.1 System layers

Platform

Middleware

OS: kernel,
libraries &
servers

network hardware

OS1

Computer &
network hardware

Node 1 Node 2

Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

Figure 7.1 shows how the operating system layer at each of two nodes supports a
common middleware layer in providing a distributed infrastructure for applications and
services.

Our goal in this chapter is to examine the impact of particular OS mechanisms on
middleware’s ability to deliver distributed resource sharing to users. Kernels and the
client and server processes that execute upon them are the chief architectural
components that concern us. Kernels and server processes are the components that
manage resources and present clients with an interface to the resources. As such, we
require at least the following of them:

Encapsulation: They should provide a useful service interface to their resources –
that is, a set of operations that meet their clients’ needs. Details such as management
of memory and devices used to implement resources should be hidden from clients.

Protection: Resources require protection from illegitimate accesses – for example,
files are protected from being read by users without read permissions, and device
registers are protected from application processes.

Concurrent processing: Clients may share resources and access them concurrently.
Resource managers are responsible for achieving concurrency transparency.

Clients access resources by making, for example, remote method invocations to a server
object, or system calls to a kernel. We call a means of accessing an encapsulated
resource an invocation mechanism, however it is implemented. A combination of
libraries, kernels and servers may be called upon to perform the following invocation-
related tasks:

Communication: Operation parameters and results have to be passed to and from
resource managers, over a network or within a computer.

Scheduling: When an operation is invoked, its processing must be scheduled within
the kernel or server.

SECTION 7.2 THE OPERATING SYSTEM LAYER 283

Figure 7.2

Figure 7.2 Core OS functionality

Communication

manager

Thread manager Memory manager

Supervisor

Process manager

 shows the core OS functionality that we shall be concerned with: process and
thread management, memory management and communication between processes on
the same computer (horizontal divisions in the figure denote dependencies). The kernel
supplies much of this functionality – all of it in the case of some operating systems.

Shared-memory multiprocessors • Shared-memory multiprocessor computers are
equipped with several processors that share one or more modules of memory (RAM).
The processors may also have their own private memory. Multiprocessor computers
can be constructed in a variety of forms [Stone 1993]. The simplest and least
expensive multiprocessors are constructed by incorporating a circuit board holding a
few (2–8) processors in a personal computer.

In the common symmetric processing architecture, each processor executes the
same kernel and the kernels play largely equivalent roles in managing the hardware
resources. The kernels share key data structures, such as the queue of runnable
threads, but some of their working data is private. Each processor can execute a
thread simultaneously, accessing data in the shared memory, which may be private
(hardware-protected) or shared with other threads.

Multiprocessors can be used for many high-performance computing tasks. In
distributed systems, they are particularly useful for the implementation of high-
performance servers because the server can run a single program with several threads
that handle several requests from clients simultaneously – for example, providing
access to a shared database (see Section 7.4)

OS software is designed to be portable between computer architectures where
possible. This means that the majority of it is coded in a high-level language such as C,
C++ or Modula-3, and that its facilities are layered so that machine-dependent
components are reduced to a minimal bottom layer. Some kernels can execute on
shared-memory multiprocessors, which are described in the box below.

284 CHAPTER 7 OPERATING SYSTEM SUPPORT

The core OS components and their responsibilities are:

Process manager: Creation of and operations upon processes. A process is a unit of
resource management, including an address space and one or more threads.

Thread manager: Thread creation, synchronization and scheduling. Threads are
schedulable activities attached to processes and are fully described in Section 7.4.

Communication manager: Communication between threads attached to different
processes on the same computer. Some kernels also support communication between
threads in remote processes. Other kernels have no notion of other computers built
into them, and an additional service is required for external communication. Section
7.5 discusses the communication design.

Memory manager: Management of physical and virtual memory. Section 7.4 and
Section 7.5 describe the utilization of memory management techniques for efficient
data copying and sharing.

Supervisor: Dispatching of interrupts, system call traps and other exceptions; control
of memory management unit and hardware caches; processor and floating-point unit
register manipulations. This is known as the Hardware Abstraction Layer in
Windows. The reader is referred to Bacon [2002] and Tanenbaum [2007] for a fuller
description of the computer-dependent aspects of the kernel.

7.3 Protection

We said above that resources require protection from illegitimate accesses. However,
threats to a system’s integrity do not come only from maliciously contrived code.
Benign code that contains a bug or that has unanticipated behaviour may cause part of
the rest of the system to behave incorrectly.

To understand what we mean by an ‘illegitimate access’ to a resource, consider a
file. Let us suppose, for the sake of explanation, that open files have only two operations,
read and write. Protecting the file consists of two sub-problems. The first is to ensure
that each of the file’s two operations can be performed only by clients with the right to
perform it. For example, Smith, who owns the file, has read and write rights to it. Jones
may only perform the read operation. An illegitimate access here would be if Jones
somehow managed to perform a write operation on the file. A complete solution to this
resource-protection sub-problem in a distributed system requires cryptographic
techniques, and we defer it to Chapter 11.

The other type of illegitimate access, which we address here, is where a
misbehaving client sidesteps the operations that a resource exports. In our example, this
would be if Smith or Jones somehow managed to execute an operation that was neither
read nor write. Suppose, for example, that Smith managed to access the file pointer
variable directly. She could then construct a setFilePointerRandomly operation, that sets
the file pointer to a random number. Of course, this is a meaningless operation that
would upset normal use of the file.

SECTION 7.3 PROTECTION 285

We can protect resources from illegitimate invocations such as
setFilePointerRandomly. One way is to use a type-safe programming language, such as
Sing#, an extension of C# used in the Singularity project [Hunt et al. 2007], or Modula-
3. In type-safe languages, no module may access a target module unless it has a
reference to it – it cannot make up a pointer to it, as would be possible in C or C++ – and
it may only use its reference to the target module to perform the invocations (method
calls or procedure calls) that the programmer of the target made available to it. It may
not, in other words, arbitrarily change the target’s variables. By contrast, in C++ the
programmer may cast a pointer however she likes, and thus perform non-type-safe
invocations.

We can also employ hardware support to protect modules from one another at the
level of individual invocations, regardless of the language in which they are written. To
operate this scheme on a general-purpose computer, we require a kernel.

Kernels and protection • The kernel is a program that is distinguished by the facts that
it remains loaded from system initialization and its code is executed with complete
access privileges for the physical resources on its host computer. In particular, it can
control the memory management unit and set the processor registers so that no other
code may access the machine’s physical resources except in acceptable ways.

Most processors have a hardware mode register whose setting determines whether
privileged instructions can be executed, such as those used to determine which
protection tables are currently employed by the memory management unit. A kernel
process executes with the processor in supervisor (privileged) mode; the kernel arranges
that other processes execute in user (unprivileged) mode.

The kernel also sets up address spaces to protect itself and other processes from
the accesses of an aberrant process, and to provide processes with their required virtual
memory layout. An address space is a collection of ranges of virtual memory locations,
in each of which a specified combination of memory access rights applies, such as read-
only or read-write. A process cannot access memory outside its address space. The terms
user process or user-level process are normally used to describe one that executes in
user mode and has a user-level address space (that is, one with restricted memory access
rights compared with the kernel’s address space).

When a process executes application code, it executes in a distinct user-level
address space for that application; when the same process executes kernel code, it
executes in the kernel’s address space. The process can safely transfer from a user-level
address space to the kernel’s address space via an exception such as an interrupt or a
system call trap – the invocation mechanism for resources managed by the kernel. A
system call trap is implemented by a machine-level TRAP instruction, which puts the
processor into supervisor mode and switches to the kernel address space. When the
TRAP instruction is executed, as with any type of exception, the hardware forces the
processor to execute a kernel-supplied handler function, in order that no process may
gain illicit control of the hardware.

Programs pay a price for protection. Switching between address spaces may take
many processor cycles, and a system call trap is a more expensive operation than a
simple procedure or method call. We shall see in Section 7.5.1 how these penalties factor
into invocation costs.

286 CHAPTER 7 OPERATING SYSTEM SUPPORT

7.4 Processes and threads

The traditional operating system notion of a process that executes a single activity was
found in the 1980s to be unequal to the requirements of distributed systems – and also
to those of more sophisticated single-computer applications that require internal
concurrency. The problem, as we shall show, is that the traditional process makes
sharing between related activities awkward and expensive.

The solution reached was to enhance the notion of a process so that it could be
associated with multiple activities. Nowadays, a process consists of an execution
environment together with one or more threads. A thread is the operating system
abstraction of an activity (the term derives from the phrase ‘thread of execution’). An
execution environment is the unit of resource management: a collection of local kernel-
managed resources to which its threads have access. An execution environment
primarily consists of:

• an address space;

• thread synchronization and communication resources such as semaphores and
communication interfaces (for example, sockets);

• higher-level resources such as open files and windows.

Execution environments are normally expensive to create and manage, but several
threads can share them – that is, they can share all resources accessible within them. In
other words, an execution environment represents the protection domain in which its
threads execute.

Threads can be created and destroyed dynamically, as needed. The central aim of
having multiple threads of execution is to maximize the degree of concurrent execution
between operations, thus enabling the overlap of computation with input and output, and
enabling concurrent processing on multiprocessors. This can be particularly helpful
within servers, where concurrent processing of clients’ requests can reduce the tendency
for servers to become bottlenecks. For example, one thread can process a client’s request
while a second thread servicing another request waits for a disk access to complete.

An analogy for threads and processes • The following memorable, if slightly unsa-
voury, way to think of the concepts of threads and execution environments was pub-
lished on the comp.os.mach USENET group and is by Chris Lloyd. An execution
environment consists of a stoppered jar and the air and food within it. Initially, there
is one fly – a thread – in the jar. This fly can produce other flies and kill them, as can
its progeny. Any fly can consume any resource (air or food) in the jar. Flies can be
programmed to queue up in an orderly manner to consume resources. If they lack this
discipline, they might bump into one another within the jar – that is, collide and pro-
duce unpredictable results when attempting to consume the same resources in an un-
constrained manner. Flies can communicate with (send messages to) flies in other
jars, but none may escape from the jar, and no fly from outside may enter it. In this
view, originally a UNIX process was a single jar with a single sterile fly within it.

An execution environment provides protection from threads outside it, so that the
data and other resources contained in it are by default inaccessible to threads residing in

SECTION 7.4 PROCESSES AND THREADS 287

other execution environments. But certain kernels allow the controlled sharing of
resources such as physical memory between execution environments residing at the
same computer.

As many older operating systems allow only one thread per process, we shall
sometimes use the term multi-threaded process for emphasis. Confusingly, in some
programming models and operating system designs the term ‘process’ means what we
have called a thread. The reader may encounter in the literature the terms heavyweight

process, where an execution environment is taken to be included, and lightweight

process, where it is not. See the box on the preceding page for an analogy describing
threads and execution environments.

Figure 7.3 Address space

Stack

Text

Heap

Auxiliary
regions

0

2N

7.4.1 Address spaces

An address space, introduced in the previous section, is a unit of management of a
process’s virtual memory. It is large (typically up to 232 bytes, and sometimes up to 264

bytes) and consists of one or more regions, separated by inaccessible areas of virtual
memory. A region (Figure 7.3) is an area of contiguous virtual memory that is accessible
by the threads of the owning process. Regions do not overlap. Note that we distinguish
between the regions and their contents. Each region is specified by the following
properties:

• its extent (lowest virtual address and size);

• read/write/execute permissions for the process’s threads;

• whether it can be grown upwards or downwards.

288 CHAPTER 7 OPERATING SYSTEM SUPPORT

Note that this model is page-oriented rather than segment-oriented. Regions, unlike
segments, would eventually overlap if they were extended in size. Gaps are left between
regions to allow for growth. This representation of an address space as a sparse set of
disjoint regions is a generalization of the UNIX address space, which has three regions:
a fixed, unmodifiable text region containing program code; a heap, part of which is
initialized by values stored in the program’s binary file, and which is extensible towards
higher virtual addresses; and a stack, which is extensible towards lower virtual
addresses.

The provision of an indefinite number of regions is motivated by several factors.
One of these is the need to support a separate stack for each thread. Allocating a separate
stack region to each thread makes it possible to detect attempts to exceed the stack limits
and to control each stack’s growth. Unallocated virtual memory lies beyond each stack
region, and attempts to access this will cause an exception (a page fault). The alternative
is to allocate stacks for threads on the heap, but then it is difficult to detect when a thread
has exceeded its stack limit.

Another motivation is to enable files in general – not just the text and data sections
of binary files – to be mapped into the address space. A mapped file is one that is
accessed as an array of bytes in memory. The virtual memory system ensures that
accesses made in memory are reflected in the underlying file storage. Section
CDK3-18.6 (in www.cdk5.net/oss/mach) describes how the Mach kernel extends the
abstraction of virtual memory so that regions can correspond to arbitrary ‘memory
objects’ and not just to files.

The need to share memory between processes, or between processes and the
kernel, is another factor leading to extra regions in the address space. A shared memory

region (or shared region for short) is one that is backed by the same physical memory
as one or more regions belonging to other address spaces. Processes therefore access
identical memory contents in the regions that are shared, while their non-shared regions
remain protected. The uses of shared regions include the following:

Libraries: Library code can be very large and would waste considerable memory if it
was loaded separately into every process that used it. Instead, a single copy of the
library code can be shared by being mapped as a region in the address spaces of
processes that require it.

Kernel: Often the kernel code and data are mapped into every address space at the
same location. When a process makes a system call or an exception occurs, there is
no need to switch to a new set of address mappings.

Data sharing and communication: Two processes, or a process and the kernel, might
need to share data in order to cooperate on some task. It can be considerably more
efficient for the data to be shared by being mapped as regions in both address spaces
than by being passed in messages between them. The use of region sharing for
communication is described in Section 7.5.

SECTION 7.4 PROCESSES AND THREADS 289

7.4.2 Creation of a new process

The creation of a new process has traditionally been an indivisible operation provided
by the operating system. For example, the UNIX fork system call creates a process with
an execution environment copied from the caller (except for the return value from fork).
The UNIX exec system call transforms the calling process into one executing the code
of a named program.

For a distributed system, the design of the process-creation mechanism has to take
into account the utilization of multiple computers; consequently, the process-support
infrastructure is divided into separate system services.

The creation of a new process can be separated into two independent aspects:

• the choice of a target host, for example, the host may be chosen from among the
nodes in a cluster of computers acting as a compute server, as introduced in
Chapter 1;

• the creation of an execution environment (and an initial thread within it).

Choice of process host • The choice of the node at which the new process will reside –
the process allocation decision – is a matter of policy. In general, process allocation
policies range from always running new processes at their originator’s workstation to
sharing the processing load between a set of computers. Eager et al. [1986] distinguish
two policy categories for load sharing.

The transfer policy determines whether to situate a new process locally or
remotely. This may depend, for example, on whether the local node is lightly or heavily
loaded.

The location policy determines which node should host a new process selected for
transfer. This decision may depend on the relative loads of nodes, on their machine
architectures or on any specialized resources they may possess. The V system [Cheriton
1984] and Sprite [Douglis and Ousterhout 1991] both provide commands for users to
execute a program at a currently idle workstation (there are often many of these at any
given time) chosen by the operating system. In the Amoeba system [Tanenbaum et al.

1990], the run server chooses a host for each process from a shared pool of processors.
In all cases, the choice of target host is transparent to the programmer and the user.
Those programming for explicit parallelism or fault tolerance, however, may require a
means of specifying process location.

Process location policies may be static or adaptive. The former operate without
regard to the current state of the system, although they are designed according to the
system’s expected long-term characteristics. They are based on a mathematical analysis
aimed at optimizing a parameter such as the overall process throughput. They may be
deterministic (‘node A should always transfer processes to node B’) or probabilistic
(‘node A should transfer processes to any of nodes B–E at random’). Adaptive policies,
on the other hand, apply heuristics to make their allocation decisions, based on
unpredictable runtime factors such as a measure of the load on each node.

Load-sharing systems may be centralized, hierarchical or decentralized. In the
first case there is one load manager component, and in the second there are several,
organized in a tree structure. Load managers collect information about the nodes and use
it to allocate new processes to nodes. In hierarchical systems, managers make process
allocation decisions as far down the tree as possible, but managers may transfer

290 CHAPTER 7 OPERATING SYSTEM SUPPORT

processes to one another, via a common ancestor, under certain load conditions. In a
decentralized load-sharing system, nodes exchange information with one another
directly to make allocation decisions. The Spawn system [Waldspurger et al. 1992], for
example, considers nodes to be ‘buyers’ and ‘sellers’ of computational resources and
arranges them in a (decentralized) ‘market economy’.

In sender-initiated load-sharing algorithms, the node that requires a new process
to be created is responsible for initiating the transfer decision. It typically initiates a
transfer when its own load crosses a threshold. By contrast, in receiver-initiated

algorithms, a node whose load is below a given threshold advertises its existence to other
nodes so that relatively loaded nodes can transfer work to it.

Migratory load-sharing systems can shift load at any time, not just when a new
process is created. They use a mechanism called process migration: the transfer of an
executing process from one node to another. Milojicic et al. [1999] provide a collection
of papers on process migration and other types of mobility. While several process
migration mechanisms have been constructed, they have not been widely deployed. This
is largely because of their expense and the tremendous difficulty of extracting the state
of a process that lies within the kernel, in order to move it to another node.

Eager et al. [1986] studied three approaches to load sharing and concluded that
simplicity is an important property of any load-sharing scheme. This is because
relatively high overheads – for example, state-collection overheads – can outweigh the
advantages of more complex schemes.

Creation of a new execution environment • Once the host computer has been selected, a
new process requires an execution environment consisting of an address space with
initialized contents (and perhaps other resources, such as default open files).

There are two approaches to defining and initializing the address space of a newly
created process. The first approach is used where the address space is of a statically
defined format. For example, it could contain just a program text region, heap region and
stack region. In this case, the address space regions are created from a list specifying
their extent. Address space regions are initialized from an executable file or filled with
zeros as appropriate.

Alternatively, the address space can be defined with respect to an existing
execution environment. In the case of UNIX fork semantics, for example, the newly
created child process physically shares the parent’s text region and has heap and stack
regions that are copies of the parent’s in extent (as well as in initial contents). This
scheme has been generalized so that each region of the parent process may be inherited
by (or omitted from) the child process. An inherited region may either be shared with or
logically copied from the parent’s region. When parent and child share a region, the page
frames (units of physical memory corresponding to virtual memory pages) belonging to
the parent’s region are mapped simultaneously into the corresponding child region.

Mach [Accetta et al. 1986] and Chorus [Rozier et al. 1988, 1990], for example,
apply an optimization called copy-on-write when an inherited region is copied from the
parent. The region is copied, but no physical copying takes place by default. The page
frames that make up the inherited region are shared between the two address spaces. A
page in the region is only physically copied when one or another process attempts to
modify it.

SECTION 7.4 PROCESSES AND THREADS 291

Copy-on-write is a general technique – for example, it is also used in copying
large messages – so we take some time to explain its operation here. Let us follow
through an example of regions RA and RB, whose memory is shared copy-on-write
between two processes, A and B (Figure 7.4

Figure 7.4 Copy-on-write

a) Before write b) After write

Shared
frame

A’s page
table

B’s page
table

Process A’s address space Process B’s address space

Kernel

RA RB

RB copied
from RA

). For the sake of definiteness, let us assume
that process A set region RA to be copy-inherited by its child, process B, and that the
region RB was thus created in process B.

We assume, for the sake of simplicity, that the pages belonging to region A are
resident in memory. Initially, all page frames associated with the regions are shared
between the two processes’ page tables. The pages are initially write-protected at the
hardware level, even though they may belong to regions that are logically writable. If a
thread in either process attempts to modify the data, a hardware exception called a page

fault is taken. Let us say that process B attempted the write. The page fault handler
allocates a new frame for process B and copies the original frame’s data into it byte for
byte. The old frame number is replaced by the new frame number in one process’s page
table – it does not matter which – and the old frame number is left in the other page table.
The two corresponding pages in processes A and B are then each made writable once
more at the hardware level. After all of this has taken place, process B’s modifying
instruction is allowed to proceed.

292 CHAPTER 7 OPERATING SYSTEM SUPPORT

7.4.3 Threads

The next key aspect of a process to consider in more detail is its threads. This section
examines the advantages of enabling client and server processes to possess more than
one thread. It then discusses programming with threads, using Java threads as a case
study, and ends with alternative designs for implementing threads.

Consider the server shown in Figure 7.5

Figure 7.5 Client and server with threads

Server

N threads

Input-output

Client

Thread 2 makes

Thread 1

requests to server

generates
results

Requests

Receipt &
queuing

 (we shall turn to the client shortly). The
server has a pool of one or more threads, each of which repeatedly removes a request
from a queue of received requests and processes it. We shall not concern ourselves for
the moment with how the requests are received and queued up for the threads. Also, for
the sake of simplicity, we assume that each thread applies the same procedure to process
the requests. Let us assume that each request takes, on average, 2 milliseconds of
processing plus 8 milliseconds of I/O (input/output) delay when the server reads from a
disk (there is no caching). Let us further assume for the moment that the server executes
at a single-processor computer.

Consider the maximum server throughput, measured in client requests handled per
second, for different numbers of threads. If a single thread has to perform all processing,
then the turnaround time for handling any request is on average 2 + 8 = 10 milliseconds,
so this server can handle 100 client requests per second. Any new request messages that
arrive while the server is handling a request are queued at the server port.

Now consider what happens if the server pool contains two threads. We assume
that threads are independently schedulable – that is, one thread can be scheduled when
another becomes blocked for I/O. Then thread number two can process a second request
while thread number one is blocked, and vice versa. This increases the server
throughput. Unfortunately, in our example, the threads may become blocked behind the
single disk drive. If all disk requests are serialized and take 8 milliseconds each, then the
maximum throughput is 1000/8 = 125 requests per second.

Suppose, now, that disk block caching is introduced. The server keeps the data that
it reads in buffers in its address space; a server thread that is asked to retrieve data first
examines the shared cache and avoids accessing the disk if it finds the data there. If a
75% hit rate is achieved, the mean I/O time per request reduces to (0.75 0 + 0.25 8) =
2 milliseconds, and the maximum theoretical throughput increases to 500 requests per

SECTION 7.4 PROCESSES AND THREADS 293

second. But if the average processor time for a request has been increased to 2.5
milliseconds per request as a result of caching (it takes time to search for cached data on
every operation), then this figure cannot be reached. The server, limited by the
processor, can now handle at most 1000/2.5 = 400 requests per second.

The throughput can be increased by using a shared-memory multiprocessor to
ease the processor bottleneck. A multi-threaded process maps naturally onto a shared-
memory multiprocessor. The shared execution environment can be implemented in
shared memory, and the multiple threads can be scheduled to run on the multiple
processors. Consider now the case in which our example server executes at a
multiprocessor with two processors. Given that threads can be independently scheduled
to the different processors, then up to two threads can process requests in parallel. The
reader should check that two threads can process 444 requests per second and three or
more threads, bounded by the I/O time, can process 500 requests per second.

Architectures for multi-threaded servers • We have described how multi-threading
enables servers to maximize their throughput, measured as the number of requests
processed per second. To describe the various ways of mapping requests to threads
within a server we summarize the account by Schmidt [1998], who describes the
threading architectures of various implementations of the CORBA Object Request
Broker (ORB). ORBs process requests that arrive over a set of connected sockets. Their
threading architectures are relevant to many types of server, regardless of whether
CORBA is used.

Figure 7.5 shows one of the possible threading architectures, the worker pool

architecture. In its simplest form, the server creates a fixed pool of ‘worker’ threads to
process the requests when it starts up. The module marked ‘receipt and queuing’ in
Figure 7.5 is typically implemented by an ‘I/O’ thread, which receives requests from a
collection of sockets or ports and places them on a shared request queue for retrieval by
the workers.

There is sometimes a requirement to treat the requests with varying priorities. For
example, a corporate web server could prioritize request processing according to the
class of customer from which the request derives [Bhatti and Friedrich 1999]. We may
handle varying request priorities by introducing multiple queues into the worker pool
architecture, so that the worker threads scan the queues in the order of decreasing
priority. A disadvantage of this architecture is its inflexibility: as we saw with our
worked-out example, the number of worker threads in the pool may be too few to deal
adequately with the current rate of request arrival. Another disadvantage is the high level
of switching between the I/O and worker threads as they manipulate the shared queue.

In the thread-per-request architecture (Figure 7.6a) the I/O thread spawns a new
worker thread for each request, and that worker destroys itself when it has processed the
request against its designated remote object. This architecture has the advantage that the
threads do not contend for a shared queue, and throughput is potentially maximized
because the I/O thread can create as many workers as there are outstanding requests. Its
disadvantage is the overhead of the thread creation and destruction operations.

The thread-per-connection architecture (Figure 7.6b) associates a thread with
each connection. The server creates a new worker thread when a client makes a
connection and destroys the thread when the client closes the connection. In between,
the client may make many requests over the connection, targeted at one or more remote

294 CHAPTER 7 OPERATING SYSTEM SUPPORT

objects. The thread-per-object architecture (Figure 7.6c) associates a thread with each
remote object. An I/O thread receives requests and queues them for the workers, but this
time there is a per-object queue.

In each of these last two architectures the server benefits from lower thread-
management overheads compared with the thread-per-request architecture. Their
disadvantage is that clients may be delayed while a worker thread has several
outstanding requests but another thread has no work to perform.

Schmidt [1998] describes variations on these architectures as well as hybrids of
them, and discusses their advantages and disadvantages in more detail. Section 7.5
describes a different threading model in the context of invocations within a single
machine, in which client threads enter the server’s address space.

Threads within clients •

Figure 7.6 Alternative server threading architectures (see also Figure 7.5)

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remoteremote I/O

per-connection threads per-object threads

objects objects objects

Threads can be useful for clients as well as servers. Figure 7.5
also shows a client process with two threads. The first thread generates results to be
passed to a server by remote method invocation, but does not require a reply. Remote
method invocations typically block the caller, even when there is strictly no need to wait.
This client process can incorporate a second thread, which performs the remote method
invocations and blocks while the first thread is able to continue computing further
results. The first thread places its results in buffers, which are emptied by the second
thread. It is only blocked when all the buffers are full.

The case for multi-threaded clients is also evident in the example of web browsers.
Users experience substantial delays while pages are fetched; it is essential, therefore, for
browsers to handle multiple concurrent requests for web pages.

Threads versus multiple processes • We can see from the above examples the utility of
threads, which allow computation to be overlapped with I/O and, in the case of a
multiprocessor, with other computation. The reader may have noted, however, that the
same overlap could be achieved through the use of multiple single-threaded processes.
Why, then, should the multi-threaded process model be preferred? The answer is
twofold: threads are cheaper to create and manage than processes, and resource sharing
can be achieved more efficiently between threads than between processes because
threads share an execution environment.

Figure 7.7 shows some of the main state components that must be maintained for
execution environments and threads, respectively. An execution environment has an
address space, communication interfaces such as sockets, higher-level resources such as
open files and thread synchronization objects such as semaphores; it also lists the

Figure 7.7 State associated with execution environments and threads

Execution environment Thread

Address space tables Saved processor registers

Communication interfaces, open files Priority and execution state (such as
BLOCKED)

Semaphores, other synchronization
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

SECTION 7.4 PROCESSES AND THREADS 295

threads associated with it. A thread has a scheduling priority, an execution state (such as
BLOCKED or RUNNABLE), saved processor register values when the thread is
BLOCKED, and state concerning the thread’s software interrupt handling. A software

interrupt is an event that causes a thread to be interrupted (similar to the case of a
hardware interrupt). If the thread has assigned a handler procedure, control is transferred
to it. UNIX signals are examples of software interrupts.

The figure shows that an execution environment and the threads belonging to it
are both associated with pages belonging to the address space held in main memory, and
data and instructions held in hardware caches.

We can summarize a comparison of processes and threads as follows:

• Creating a new thread within an existing process is cheaper than creating a
process.

• More importantly, switching to a different thread within the same process is
cheaper than switching between threads belonging to different processes.

• Threads within a process may share data and other resources conveniently and
efficiently compared with separate processes.

• But, by the same token, threads within a process are not protected from one
another.

Consider the cost of creating a new thread in an existing execution environment. The
main tasks are to allocate a region for its stack and to provide initial values for the
processor registers and the thread’s execution state (it may initially be SUSPENDED or
RUNNABLE) and priority. Since the execution environment exists, only an identifier for
this has to be placed in the thread’s descriptor record (which contains data necessary to
manage the thread’s execution).

The overheads associated with creating a process are in general considerably
greater than those of creating a new thread. A new execution environment must first be
created, including address space tables. Anderson et al. [1991] quote a figure of about
11 milliseconds to create a new UNIX process, and about 1 millisecond to create a
thread on the same CVAX processor architecture running the Topaz kernel; in each case
the time measured includes the new entity simply calling a null procedure and then
exiting. These figures are given as a rough guide only.

296 CHAPTER 7 OPERATING SYSTEM SUPPORT

When the new entity performs some useful work rather than calling a null
procedure, there are also long-term costs, which are liable to be greater for a new process
than for a new thread within an existing process. In a kernel supporting virtual memory,
the new process will incur page faults as data and instructions are referenced for the first
time; hardware caches will initially contain no data values for the new process, and it
must acquire cache entries as it executes. In the case of thread creation, these long-term
overheads may also occur, but they are liable to be smaller. When the thread accesses
code and data that have recently been accessed by other threads within the process, it
automatically takes advantage of any hardware or main memory caching that has taken
place.

The second performance advantage of threads concerns switching between
threads – that is, running one thread instead of another at a given processor. This cost is
the most important, because it may be incurred many times in the lifetime of a thread.
Switching between threads sharing the same execution environment is considerably
cheaper than switching between threads belonging to different processes. The overheads
associated with thread switching are related to scheduling (choosing the next thread to
run) and context switching.

A processor context comprises the values of the processor registers such as the
program counter, and the current hardware protection domain: the address space and the
processor protection mode (supervisor or user). A context switch is the transition
between contexts that takes place when switching between threads, or when a single
thread makes a system call or takes another type of exception. It involves the following:

• the saving of the processor’s original register state, and the loading of the new
state;

• in some cases, a transfer to a new protection domain – this is known as a domain

transition.

The aliasing problem • Memory management units usually include a hardware
cache to speed up the translation between virtual and physical addresses, called a
translation lookaside buffer (TLB). TLBs, and also virtually addressed data and
instruction caches, suffer in general from the so-called aliasing problem. The same
virtual address can be valid in two different address spaces, but in general it is
supposed to refer to different physical data in the two spaces. Unless their entries are
tagged with a context identifier, TLBs and virtually addressed caches are unaware of
this and so might contain incorrect data. Therefore the TLB and cache contents have
to be flushed on a switch to a different address space. Physically addressed caches do
not suffer from the aliasing problem but using virtual addresses for cache lookups is
a common practice, largely because it allows the lookups to be overlapped with
address translation.

Switching between threads sharing the same execution environment entirely at user
level involves no domain transition and is relatively cheap. Switching to the kernel, or
to another thread belonging to the same execution environment via the kernel, involves
a domain transition. The cost is therefore greater but it is still relatively low if the kernel
is mapped into the process’s address space. When switching between threads belonging
to different execution environments, however, there are greater overheads. The box
below explains the expensive implications of hardware caching for these domain

SECTION 7.4 PROCESSES AND THREADS 297

transitions. Longer-term costs of having to acquire hardware cache entries and main
memory pages are more liable to apply when such a domain transition occurs. Figures
quoted by Anderson et al. [1991] are 1.8 milliseconds for the Topaz kernel to switch
between UNIX processes and 0.4 milliseconds to switch between threads belonging to
the same execution environment. Even lower costs (0.04 milliseconds) are achieved if
threads are switched at user level. These figures are given as a rough guide only; they
do not measure the longer-term caching costs.

In the example above of the client process with two threads, the first thread
generates data and passes it to the second thread, which makes a remote method
invocation or remote procedure call. Since the threads share an address space, there is
no need to use message passing to pass the data. Both threads may access the data via a
common variable. Herein lies both the advantage and the danger of using multi-threaded
processes. The convenience and efficiency of access to shared data is an advantage. This
is particularly so for servers, as the example of caching file data given above showed.
However, threads that share an address space and that are not written in a type-safe
language are not protected from one another. An errant thread can arbitrarily alter data
used by another thread, causing a fault. If protection is required, then either a type-safe
language should be used or it may be preferable to use multiple processes instead of
multiple threads.

Threads programming • Threads programming is concurrent programming, as
traditionally studied in, for example, the field of operating systems. This section refers
to the following concurrent programming concepts, which are explained fully by Bacon
[2002]: race conditions, critical sections (Bacon calls these critical regions), monitors,
condition variables and semaphores.

Much threads programming is done in a conventional language, such as C, that has
been augmented with a threads library. The C Threads package developed for the Mach
operating system is an example of this. More recently, the POSIX Threads standard
IEEE 1003.1c-1995, known as pthreads, has been widely adopted. Boykin et al. [1993]
describe both C Threads and pthreads in the context of Mach.

Some languages provide direct support for threads, including Ada95 [Burns and
Wellings 1998], Modula-3 [Harbison 1992] and Java [Oaks and Wong 1999]. We give
an overview of Java threads here.

Like any threads implementation, Java provides methods for creating threads,
destroying them and synchronizing them. The Java Thread class includes the
constructor and management methods listed in Figure 7.8. The Thread and Object

synchronization methods are in Figure 7.9.

Thread lifetimes • A new thread is created on the same Java virtual machine (JVM) as
its creator, in the SUSPENDED state. After it is made RUNNABLE with the start()

method, it executes the run() method of an object designated in its constructor. The JVM
and the threads on top of it all execute in a process on top of the underlying operating
system. Threads can be assigned a priority, so that a Java implementation that supports
priorities will run a particular thread in preference to any thread with lower priority. A
thread ends its life when it returns from the run() method or when its destroy() method
is called.

Programs can manage threads in groups. Every thread belongs to one group,
which it is assigned at the time of its creation. Thread groups are useful when several

Figure 7.8 Java thread constructor and management methods

 Thread(ThreadGroup group, Runnable target, String name)

Creates a new thread in the SUSPENDED state, which will belong to group and be
identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()

Sets and returns the thread’s priority.

run()

A thread executes the run() method of its target object, if it has one, and otherwise its
own run() method (Thread implements Runnable).

start()

Changes the state of the thread from SUSPENDED to RUNNABLE.

sleep(long millisecs)

Causes the thread to enter the SUSPENDED state for the specified time.

yield()

Causes the thread to enter the READY state and invokes the scheduler.

destroy()

Destroys the thread.

298 CHAPTER 7 OPERATING SYSTEM SUPPORT

applications coexist on the same JVM. One example of their use is security: by default,
a thread in one group cannot perform management operations on a thread in another
group. For example, an application thread cannot mischievously interrupt a system
windowing (AWT) thread.

Thread groups also facilitate control of the relative priorities of threads (on Java
implementations that support priorities). This is useful for browsers running applets and
for web servers running programs called servlets [Hunter and Crawford 1998], which
create dynamic web pages. An unprivileged thread within an applet or servlet can only
create a new thread that belongs to its own group, or to a descendant group created
within it (the exact restrictions depend upon the SecurityManager in place). Browsers
and servers can assign threads belonging to different applets or servlets to different
groups and set the maximum priority of each group as a whole (including descendant
groups). There is no way for an applet or servlet thread to override the group priorities
set by the manager threads, since they cannot be overridden by calls to setPriority().

Thread synchronization • Programming a multi-threaded process requires great care.
The main difficult issues are the sharing of objects and the techniques used for thread
coordination and cooperation. Each thread’s local variables in methods are private to it
– threads have private stacks. However, threads are not given private copies of static
(class) variables or object instance variables.

Consider, for example, the shared queues that we described earlier in this section,
which I/O threads and worker threads use to transfer requests in some server threading
architectures. Race conditions can in principle arise when threads manipulate data

SECTION 7.4 PROCESSES AND THREADS 299

structures such as queues concurrently. The queued requests can be lost or duplicated
unless the threads’ pointer manipulations are carefully coordinated.

Java provides the synchronized keyword for programmers to designate the well-
known monitor construct for thread coordination. Programmers designate either entire
methods or arbitrary blocks of code as belonging to a monitor associated with an
individual object. The monitor’s guarantee is that at most one thread can execute within
it at any time. We could serialize the actions of the I/O and worker threads in our
example by designating addTo() and removeFrom() methods in the Queue class as
synchronized methods. All accesses to variables within those methods would then be
carried out in mutual exclusion with respect to invocations of these methods.

Java allows threads to be blocked and woken up via arbitrary objects that act as
condition variables. A thread that needs to block awaiting a certain condition calls an
object’s wait() method. All objects implement this method, since it belongs to Java’s
root Object class. Another thread calls notify() to unblock at most one thread or
notifyAll() to unblock all threads waiting on that object. Both notification methods also
belong to the Object class.

As an example, when a worker thread discovers that there are no requests to
process, it calls wait() on the instance of Queue. When the I/O thread subsequently adds
a request to the queue, it calls the queue’s notify() method to wake up a worker.

The Java synchronization methods are given in Figure 7.9

Figure 7.9 Java thread synchronization calls

thread.join(long millisecs)

Blocks the calling thread for up to the specified time or until thread has terminated.

thread.interrupt()

Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)

Blocks the calling thread until a call made to notify() or notifyAll() on object wakes
the thread, the thread is interrupted or the specified time has elapsed.

object.notify(), object.notifyAll()

Wakes, respectively, one or all of any threads that have called wait() on object.

. In addition to the
synchronization primitives that we have mentioned, the join() method blocks the caller
until the target thread’s termination. The interrupt() method is useful for prematurely
waking a waiting thread. All the standard synchronization primitives, such as
semaphores, can be implemented in Java. But care is required, since Java’s monitor
guarantees apply only to an object’s synchronized code; a class may have a mixture of
synchronized and non-synchronized methods. Note also that the monitor implemented
by a Java object has only one implicit condition variable, whereas in general a monitor
may have several condition variables.

Thread scheduling • An important distinction is between preemptive and non-
preemptive scheduling of threads. In preemptive scheduling, a thread may be suspended
at any point to make way for another thread, even when the preempted thread would

300 CHAPTER 7 OPERATING SYSTEM SUPPORT

otherwise continue running. In non-preemptive scheduling (sometimes called coroutine

scheduling), a thread runs until it makes a call to the threading system (for example, a
system call), when the system may deschedule it and schedule another thread to run.

The advantage of non-preemptive scheduling is that any section of code that does
not contain a call to the threading system is automatically a critical section. Race
conditions are thus conveniently avoided. On the other hand, non-preemptively
scheduled threads cannot take advantage of a multiprocessor, since they run exclusively.
Care must be taken over long-running sections of code that do not contain calls to the
threading system. The programmer may need to insert special yield() calls, whose sole
function is to enable other threads to be scheduled and make progress. Non-
preemptively scheduled threads are also unsuited to real-time applications, in which
events are associated with absolute times by which they must be processed.

 Java does not, by default, support real-time processing, although real-time
implementations exist [www.rtj.org]. For example, multimedia applications that process
data such as voice and video have real-time requirements for both communication and
processing (e.g., filtering and compression) [Govindan and Anderson 1991]. Chapter 20
will examine real-time thread-scheduling requirements. Process control is another
example of a real-time domain. In general, each real-time domain has its own thread-
scheduling requirements. It is therefore sometimes desirable for applications to
implement their own scheduling policies. To consider this, we turn now to the
implementation of threads.

Threads implementation • Many kernels provide native support for multi-threaded
processes, including Windows, Linux, Solaris, Mach and Mac OS X. These kernels
provide thread-creation and -management system calls, and they schedule individual
threads. Some other kernels have only a single-threaded process abstraction. Multi-
threaded processes must then be implemented in a library of procedures linked to
application programs. In such cases, the kernel has no knowledge of these user-level
threads and therefore cannot schedule them independently. A threads runtime library
organizes the scheduling of threads. A thread would block the process, and therefore all
threads within it, if it made a blocking system call, so the asynchronous (non-blocking)
I/O facilities of the underlying kernel are exploited. Similarly, the implementation can
utilize the kernel-provided timers and software interrupt facilities to timeslice between
threads.

When no kernel support for multi-threaded processes is provided, a user-level
threads implementation suffers from the following problems:

• The threads within a process cannot take advantage of a multiprocessor.

• A thread that takes a page fault blocks the entire process and all threads within it.

• Threads within different processes cannot be scheduled according to a single
scheme of relative prioritization.

User-level threads implementations, on the other hand, have significant advantages over
kernel-level implementations:

• Certain thread operations are significantly less costly. For example, switching
between threads belonging to the same process does not necessarily involve a
system call, which entails a relatively expensive trap to the kernel.

SECTION 7.4 PROCESSES AND THREADS 301

• Given that the thread-scheduling module is implemented outside the kernel, it can
be customized or changed to suit particular application requirements. Variations
in scheduling requirements occur largely because of application-specific
considerations such as the real-time nature of multimedia processing.

• Many more user-level threads can be supported than could reasonably be provided
by default by a kernel.

It is possible to combine the advantages of user-level and kernel-level threads
implementations. One approach, applied, for example, to the Mach kernel [Black 1990],
is to enable user-level code to provide scheduling hints to the kernel’s thread scheduler.
Another, adopted in the Solaris 2 operating system, is a form of hierarchical scheduling.
Each process creates one or more kernel-level threads, known in Solaris as ‘lightweight
processes’. User-level threads are also supported. A user-level scheduler assigns each
user-level thread to a kernel-level thread. This scheme can take advantage of
multiprocessors, and also benefits because some thread-creation and thread-switching
operations take place at user level. The scheme’s disadvantage is that it still lacks
flexibility: if a thread blocks in the kernel, then all user-level threads assigned to it are
also prevented from running, regardless of whether they are eligible to run.

Several research projects have developed hierarchical scheduling further in order
to provide greater efficiency and flexibility. These include work on so-called scheduler
activations [Anderson et al. 1991], the multimedia work of Govindan and Anderson
[1991], the Psyche multiprocessor operating system [Marsh et al. 1991], the Nemesis
kernel [Leslie et al. 1996] and the SPIN kernel [Bershad et al. 1995]. The insight driving
these designs is that what a user-level scheduler requires from the kernel is not just a set
of kernel-supported threads onto which it can map user-level threads. The user-level
scheduler also requires the kernel to notify it of the events that are relevant to its
scheduling decisions. We describe the scheduler activations design in order to make this
clear.

The FastThreads package of Anderson et al. [1991] is an implementation of a
hierarchic, event-based scheduling system. They consider the main system components
to be a kernel running on a computer with one or more processors, and a set of
application programs running on it. Each application process contains a user-level
scheduler, which manages the threads inside the process. The kernel is responsible for
allocating virtual processors to processes. The number of virtual processors assigned to
a process depends on such factors as the applications’ requirements, their relative
priorities and the total demand on the processors. Figure 7.10(a) shows an example of a
three-processor machine, on which the kernel allocates one virtual processor to process
A, running a relatively low-priority job, and two virtual processors to process B. They
are virtual processors because the kernel can allocate different physical processors to
each process as time goes by, while keeping its guarantee of how many processors it has
allocated.

The number of virtual processors assigned to a process can also vary. Processes
can give back a virtual processor that they no longer need; they can also request extra
virtual processors. For example, if process A has requested an extra virtual processor and
B terminates, then the kernel can assign one to A.

Process
A

Process
B

Virtual processors Kernel

Process

Kernel

P idle

P needed

P added

SA blocked

SA unblocked

SA preempted

Figure 7.10 Scheduler activations

A. Assignment of virtual processors
 to processes

B. Events between user-level scheduler & kernel
 Key: P = processor; SA = scheduler activation

302 CHAPTER 7 OPERATING SYSTEM SUPPORT

Figure 7.10(b) shows that a process notifies the kernel when either of two types of
event occurs: when a virtual processor is ‘idle’ and no longer needed, or when an extra
virtual processor is required.

Figure 7.10(b) also shows that the kernel notifies the process when any of four
types of event occurs. A scheduler activation (SA) is a call from the kernel to a process,
which notifies the process’s scheduler of an event. Entering a body of code from a lower
layer (the kernel) in this way is sometimes called an upcall. The kernel creates an SA by
loading a physical processor’s registers with a context that causes it to commence
execution of code in the process, at a procedure address designated by the user-level
scheduler. An SA is thus also a unit of allocation of a timeslice on a virtual processor.
The user-level scheduler has the task of assigning its READY threads to the set of SAs
currently executing within it. The number of those SAs is at most the number of virtual
processors that the kernel has assigned to the process.

The four types of event that the kernel notifies the user-level scheduler (which we
shall refer to simply as ‘the scheduler’) of are as follows:

Virtual processor allocated: The kernel has assigned a new virtual processor to the
process, and this is the first timeslice upon it; the scheduler can load the SA with the
context of a READY thread, which can thus recommence execution.

SA blocked: An SA has blocked in the kernel, and the kernel is using a fresh SA to
notify the scheduler; the scheduler sets the state of the corresponding thread to
BLOCKED and can allocate a READY thread to the notifying SA.

SA unblocked: An SA that was blocked in the kernel has become unblocked and is
ready to execute at user level again; the scheduler can now return the corresponding
thread to the READY list. In order to create the notifying SA, the kernel either
allocates a new virtual processor to the process or preempts another SA in the same
process. In the latter case, it also communicates the preemption event to the
scheduler, which can reevaluate its allocation of threads to SAs.

SECTION 7.5 COMMUNICATION AND INVOCATION 303

SA preempted: The kernel has taken away the specified SA from the process
(although it may do this to allocate a processor to a fresh SA in the same process);
the scheduler places the preempted thread in the READY list and reevaluates the
thread allocation.

This hierarchical scheduling scheme is flexible because the process’s user-level
scheduler can allocate threads to SAs in accordance with whatever policies can be built
on top of the low-level events. The kernel always behaves the same way. It has no
influence on the user-level scheduler’s behaviour, but it assists the scheduler through its
event notifications and by providing the register state of blocked and preempted threads.
The scheme is potentially efficient because no user-level thread need stay in the READY

state if there is a virtual processor on which to run it.

7.5 Communication and invocation

Here we concentrate on communication as part of the implementation of what we have
called an invocation – a construct, such as a remote method invocation, remote
procedure call or event notification, whose purpose is to bring about an operation on a
resource in a different address space.

We cover operating system design issues and concepts by asking the following
questions about the OS:

• What communication primitives does it supply?

• Which protocols does it support and how open is the communication implemen-
tation?

• What steps are taken to make communication as efficient as possible?

• What support is provided for high-latency and disconnected operation?

We focus on the first two questions here then turn to the final two in Sections 7.5.1 and
7.5.2, respectively.

Communication primitives • Some kernels designed for distributed systems have
provided communication primitives tailored to the types of invocation that Chapter 5
described. Amoeba [Tanenbaum et al. 1990], for example, provides doOperation,
getRequest and sendReply as primitives. Amoeba, the V system and Chorus provide
group communication primitives. Placing relatively high-level communication
functionality in the kernel has the advantage of efficiency. If, for example, middleware
provides RMI over UNIX’s connected (TCP) sockets, then a client must make two
communication system calls (socket write and read) for each remote invocation. Over
Amoeba, it would require only a single call to doOperation. The savings in system call
overhead are liable to be even greater with group communication.

In practice, middleware, and not the kernel, provides most high-level
communication facilities found in systems today, including RPC/RMI, event
notification and group communication. Developing such complex software as user-level
code is much simpler than developing it for the kernel. Developers typically implement
middleware over sockets giving access to Internet standard protocols – often connected

304 CHAPTER 7 OPERATING SYSTEM SUPPORT

sockets using TCP but sometimes unconnected UDP sockets. The principal reasons for
using sockets are portability and interoperability: middleware is required to operate over
as many widely used operating systems as possible, and all common operating systems,
such as UNIX and the Windows family, provide similar socket APIs giving access to
TCP and UDP protocols.

Despite the widespread use of TCP and UDP sockets provided by common
kernels, research continues to be carried out into lower-cost communication primitives
in experimental kernels. We examine performance issues further in Section 7.5.1.
Protocols and openness • One of the main requirements of the operating system is to
provide standard protocols that enable interworking between middleware
implementations on different platforms. Several research kernels developed in the 1980s
incorporated their own network protocols tuned to RPC interactions – notably Amoeba
RPC [van Renesse et al. 1989], VMTP [Cheriton 1986] and Sprite RPC [Ousterhout et

al. 1988]. However, these protocols were not widely used beyond their native research
environments. By contrast, the designers of the Mach 3.0 and Chorus kernels (as well as
L4 [Härtig et al. 1997]) decided to leave the choice of networking protocols entirely
open. These kernels provide message passing between local processes only, and leave
network protocol processing to a server that runs on top of the kernel.

Given the everyday requirement for access to the Internet, compatibility at the
level of TCP and UDP is required of operating systems for all but the smallest of
networked devices. And the operating system is still required to enable middleware to
take advantage of novel low-level protocols. For example, users want to benefit from
wireless technologies such as infrared and radio frequency (RF) transmission,
preferably without having to upgrade their applications. This requires that
corresponding protocols, such as IrDA for infrared networking and Bluetooth or IEEE
802.11 for RF networking, can be integrated.

Protocols are normally arranged in a stack of layers (see Chapter 3). Many
operating systems allow new layers to be integrated statically, by including a layer such
as IrDA as a permanently installed protocol ‘driver’. By contrast, dynamic protocol

composition is a technique whereby a protocol stack can be composed on the fly to meet
the requirements of a particular application, and to utilize whichever physical layers are
available given the platform’s current connectivity. For example, a web browser running
on a notebook computer should be able to take advantage of a wide area wireless link
while the user is on the road, and then a faster Ethernet or IEEE 802.11 connection when
the user is back in the office.

Another example of dynamic protocol composition is use of a customized request-
reply protocol over a wireless networking layer, to reduce round-trip latencies. Standard
TCP implementations have been found to work poorly over wireless networking media
[Balakrishnan et al. 1996], which tend to exhibit higher rates of packet loss than wired
media. In principle, a request-response protocol such as HTTP could be engineered to
work more efficiently between wirelessly connected nodes by using the wireless
transport layer directly, rather than using an intermediate TCP layer.

Support for protocol composition appeared in the design of the UNIX Streams
facility [Ritchie 1984], in Horus [van Renesse et al. 1995] and in the x-kernel
[Hutchinson and Peterson 1991]. A more recent example is the construction of a
configurable transport protocol CTP on top of the Cactus system for dynamic protocol
composition [Bridges et al. 2007].

SECTION 7.5 COMMUNICATION AND INVOCATION 305

7.5.1 Invocation performance

Invocation performance is a critical factor in distributed system design. The more
designers separate functionality between address spaces, the more remote invocations
are required. Clients and servers may make many millions of invocation-related
operations in their lifetimes, so small fractions of milliseconds count in invocation costs.
Network technologies continue to improve, but invocation times have not decreased in
proportion with increases in network bandwidth. This section will explain how software
overheads often predominate over network overheads in invocation times – at least, for
the case of a LAN or intranet. This is in contrast to a remote invocation over the Internet
– for example, fetching a web resource. On the Internet, network latencies are highly
variable and relatively high on average; throughput may be relatively low, and server
load often predominates over per-request processing costs. For an example of latencies,
Bridges et al. [2007] report minimal UDP message round-trips taking average times of
about 400 milliseconds over the Internet between two computers connected across US
geographical regions, as opposed to about 0.1 milliseconds when identical computers
were connected over a single Ethernet.

RPC and RMI implementations have been the subject of study because of the
widespread acceptance of these mechanisms for general-purpose client-server
processing. Much of the research has been carried out into invocations over the network,
and particularly into how invocation mechanisms can take advantage of high-
performance networks [Hutchinson et al. 1989, van Renesse et al. 1989, Schroeder and
Burrows 1990, Johnson and Zwaenepoel 1993, von Eicken et al. 1995, Gokhale and
Schmidt 1996]. There is also, as we shall show, an important special case of RPCs
between processes hosted at the same computer [Bershad et al. 1990, 1991].

Invocation costs • Calling a conventional procedure or invoking a conventional
method, making a system call, sending a message, remote procedure calling and remote
method invocation are all examples of invocation mechanisms. Each mechanism causes
code to be executed outside the scope of the calling procedure or object. Each involves,
in general, the communication of arguments to this code and the return of data values to
the caller. Invocation mechanisms can be either synchronous, as for example in the case
of conventional and remote procedure calls, or asynchronous.

The important performance-related distinctions between invocation mechanisms,
apart from whether or not they are synchronous, are whether they involve a domain
transition (that is, whether they cross an address space), whether they involve
communication across a network and whether they involve thread scheduling and
switching. Figure 7.11 shows the particular cases of a system call, a remote invocation
between processes hosted at the same computer, and a remote invocation between
processes at different nodes in the distributed system.

Invocation over the network • A null RPC (and similarly, a null RMI) is defined as an
RPC without parameters that executes a null procedure and returns no values. Its
execution involves an exchange of messages carrying some system data but no user data.
The time taken by a null RPC between user processes connected by a LAN is on the
order of a tenth of a millisecond (see, for example, measurements by Bridges et al.

[2007] of round-trip UDP times using two 2.2GHz Pentium 3 Xeon PCs across a 100
megabits/second Ethernet). By comparison, a null conventional procedure call takes a

Figure 7.11 Invocations between address spaces

Control transfer via
trap instruction

User Kernel

Thread

User 1 User 2

Control transfer via
privileged instructions

Thread 1 Thread 2

Protection domain
boundary

(a) System call

(b) RPC/RMI (within one computer)

(c) RPC/RMI (between computers)

Kernel

User 1 User 2

Thread 1 Network Thread 2

Kernel 2Kernel 1

306 CHAPTER 7 OPERATING SYSTEM SUPPORT

small fraction of a microsecond. Approximately 100 bytes in total are passed across the
network for a null RPC. With a raw bandwidth of 100 megabits/second, the total
network transfer time for this amount of data is about 0.01 milliseconds. Clearly, much
of the observed delay – the total RPC call time experienced by a client – has to be
accounted for by the actions of the operating system kernel and user-level RPC runtime
code.

Null invocation (RPC, RMI) costs are important because they measure a fixed
overhead, the latency. Invocation costs increase with the sizes of arguments and results,
but in many cases the latency is significant compared with the remainder of the delay.

Consider an RPC that fetches a specified amount of data from a server. It has one
integer request argument, specifying how much data to return. It has two reply
arguments, an integer specifying success or failure (the client might have given an
invalid size) and, when the call is successful, an array of bytes from the server.

SECTION 7.5 COMMUNICATION AND INVOCATION 307

Figure 7.12

Figure 7.12 RPC delay against parameter size

1000 2000

RPC delay

Requested data
size (bytes)

Packet
size

0

 shows, schematically, client delay against requested data size. The
delay is roughly proportional to the size until the size reaches a threshold at about
network packet size. Beyond that threshold, at least one extra packet has to be sent, to
carry the extra data. Depending on the protocol, a further packet might be used to
acknowledge this extra packet. Jumps in the graph occur each time the number of
packets increases.

Delay is not the only figure of interest for an RPC implementation: RPC
throughput (or bandwidth) is also of concern when data has to be transferred in bulk.
This is the rate of data transfer between computers in a single RPC. If we examine Figure
7.12, we can see that the throughput is relatively low for small amounts of data, when
the fixed processing overheads predominate. As the amount of data is increased, the
throughput rises as those overheads become less significant.

Recall that the steps in an RPC are as follows (RMI involves similar steps):

• A client stub marshals the call arguments into a message, sends the request
message and receives and unmarshals the reply.

• At the server, a worker thread receives the incoming request, or an I/O thread
receives the request and passes it to a worker thread; in either case, the worker
calls the appropriate server stub.

• The server stub unmarshals the request message, calls the designated procedure,
and marshals and sends the reply.

The following are the main components accounting for remote invocation delay, besides
network transmission times:

Marshalling: Marshalling and unmarshalling, which involve copying and converting
data, create a significant overhead as the amount of data grows.

308 CHAPTER 7 OPERATING SYSTEM SUPPORT

Data copying: Potentially, even after marshalling, message data is copied several
times in the course of an RPC:

1. across the user–kernel boundary, between the client or server address space and
kernel buffers;

2. across each protocol layer (for example, RPC/UDP/IP/Ethernet);

3. between the network interface and kernel buffers.

Transfers between the network interface and main memory are usually handled by
direct memory access (DMA). The processor handles the other copies.

Packet initialization: This involves initializing protocol headers and trailers,
including checksums. The cost is therefore proportional, in part, to the amount of data
sent.

Thread scheduling and context switching: These may occur as follows:

1. Several system calls (that is, context switches) are made during an RPC, as
stubs invoke the kernel’s communication operations.

2. One or more server threads is scheduled.

3. If the operating system employs a separate network manager process, then each
Send involves a context switch to one of its threads.

Waiting for acknowledgements: The choice of RPC protocol may influence delay,
particularly when large amounts of data are sent.

Careful design of the operating system can help reduce some of these costs. The case
study of the Firefly RPC design available at www.cdk5.net/oss shows some of these in
detail, as well as techniques that are applicable within the middleware implementation.

We have already shown how appropriate operating system support for threads can
help reduce multi-threading overheads. The operating system can also have an impact
in reducing memory-copying overheads through memory-sharing facilities.

Memory sharing • Shared regions (introduced in Section 7.4) may be used for rapid
communication between a user process and the kernel, or between user processes. Data
is communicated by writing to and reading from the shared region. Data is thus passed
efficiently, without being copied to and from the kernel’s address space. But system
calls and software interrupts may be required for synchronization, such as when the user
process has written data that should be transmitted, or when the kernel has written data
for the user process to consume. Of course, a shared region is only justified if it is used
sufficiently to offset the initial cost of setting it up.

Even with shared regions, the kernel still has to copy data from the buffers to the
network interface. The U-Net architecture [von Eicken et al. 1995] even allows user-
level code to have direct access to the network interface itself, so that user-level code
can transfer the data to the network without any copying.

Choice of protocol • The delay that a client experiences during request-reply interac-
tions over TCP is not necessarily worse than for UDP and in fact is sometimes better,
particularly for large messages. However, care is required when implementing request-
reply interactions on top of a protocol such as TCP, which was not specifically designed

SECTION 7.5 COMMUNICATION AND INVOCATION 309

for this purpose. In particular, TCP’s buffering behaviour can hinder good performance,
and its connection overheads put it at a disadvantage compared with UDP, unless
enough requests are made over a single connection to render the overhead per request
negligible.

The connection overheads of TCP are particularly evident in web invocations.
HTTP 1.0, now relatively little-used, makes a separate TCP connection for every
invocation. Client browsers are delayed while the connection is made. Furthermore,
TCP’s slow-start algorithm has the effect of delaying the transfer of HTTP data
unnecessarily in many cases. The slow-start algorithm operates pessimistically in the
face of possible network congestion by allowing only a small window of data to be sent
at first, before an acknowledgement is received. Nielsen et al. [1997] discuss how HTTP
1.1, now widely used instead of HTTP 1.0, makes use of so-called persistent

connections, which last over the course of several invocations. The initial connection
costs are thus amortized, as long as several invocations are made to the same web server.
This is likely, as users often fetch several pages from the same site, each containing
several images.

Nielsen et al. also found that overriding the operating system’s default buffering
behaviour could have a significant impact on the invocation delay. It is often beneficial
to collect several small messages and then send them together, rather than sending them
in separate packets, because of the per-packet latency that we described above. For this
reason, the OS does not necessarily dispatch data over the network immediately after the
corresponding socket write() call. The default OS behaviour is to wait until its buffer is
full or to use a timeout as the criterion for dispatching the data over the network, in the
hope that more data will arrive.

Nielsen et al. found that in the case of HTTP 1.1 the default operating system
buffering behaviour could cause significant unnecessary delays because of the timeouts.
To remove these delays, they altered the kernel’s TCP settings and forced network
dispatch on HTTP request boundaries. This is a good example of how an operating
system can help or hinder middleware because of the policies it implements.

Invocation within a computer • Bershad et al. [1990] report a study that showed that, in
the installation examined, most cross-address-space invocation took place within a
computer and not, as might be expected in a client-server installation, between
computers. The trend towards placing service functionality inside user-level servers
means that more and more invocations will be to a local process. This is especially so as
caching is pursued aggressively if the data needed by a client is liable to be held in a local
server. The cost of an RPC within a computer is growing in importance as a system
performance parameter. These considerations suggest that this local case should be
optimized.

Figure 7.11 suggests that a cross-address-space invocation is implemented within
a computer exactly as it is between computers, except that the underlying message
passing happens to be local. Indeed, this has often been the model implemented. Bershad
et al. developed a more efficient invocation mechanism for the case of two processes on
the same machine called lightweight RPC (LRPC). The LRPC design is based on
optimizations concerning data copying and thread scheduling.

First, they noted that it would be more efficient to use shared memory regions for
client-server communication, with a different (private) region between the server and

310 CHAPTER 7 OPERATING SYSTEM SUPPORT

each of its local clients. Such a region contains one or more A (for argument) stacks (see
Figure 7.13

Figure 7.13 A lightweight remote procedure call

1. Copy args

2. Trap to kernel

4. Execute procedure
and copy results

Client

User stub

Server

Kernel

stub

3. Upcall 5. Return (trap)

A
 A stack

). Instead of RPC parameters being copied between the kernel and user
address spaces involved, the client and server are able to pass arguments and return
values directly via an A stack. The same stack is used by the client and server stubs. In
LRPC, arguments are copied once: when they are marshalled onto the A stack. In an
equivalent RPC, they are copied four times: from the client stub’s stack onto a message;
from the message to a kernel buffer, from the kernel buffer to a server message, and from
the message to the server stub’s stack. There may be several A stacks in a shared region,
because several threads in the same client may call the server at the same time.

Bershad et al. also considered the cost of thread scheduling. Compare the model
of system call and remote procedure calls in Figure 7.11. When a system call occurs,
most kernels do not schedule a new thread to handle the call but instead perform a
context switch on the calling thread so that it handles the system call. In an RPC, a
remote procedure may exist in a different computer from the client thread, so a different
thread must be scheduled to execute it. In the local case, however, it may be more
efficient for the client thread – which would otherwise be BLOCKED – to call the
invoked procedure in the server’s address space.

A server must be programmed differently in this case to the way we have
described servers before. Instead of setting up one or more threads, which then listen on
ports for invocation requests, the server exports a set of procedures that it is prepared to
have called. Threads in local processes may enter the server’s execution environment as
long as they start by calling one of the server’s exported procedures. A client needing to
invoke a server’s operations must first bind to the server interface (not shown in the
figure). It does this via the kernel, which notifies the server; when the server has
responded to the kernel with a list of allowed procedure addresses, the kernel replies to
the client with a capability for invoking the server’s operations.

An invocation is shown in Figure 7.13. A client thread enters the server’s
execution environment by first trapping to the kernel and presenting it with a capability.

SECTION 7.5 COMMUNICATION AND INVOCATION 311

The kernel checks this and only allows a context switch to a valid server procedure; if it
is valid, the kernel switches the thread’s context to call the procedure in the server’s
execution environment. When the procedure in the server returns, the thread returns to
the kernel, which switches the thread back to the client execution environment. Note that
clients and servers employ stub procedures to hide the details just described from
application writers.

Discussion of LRPC • There is little doubt that LRPC is more efficient than RPC for the
local case, as long as enough invocations take place to offset the memory management
costs. Bershad et al. [1990] record LRPC delays a factor of three smaller than those of
RPCs executed locally.

Location transparency is not sacrificed in Bershad’s implementation. A client stub
examines a bit set at bind time that records whether the server is local or remote, and
proceeds to use LRPC or RPC, respectively. The application is unaware of which is
used. However, migration transparency might be hard to achieve when a resource is
transferred from a local server to a remote server or vice versa, because of the need to
change invocation mechanisms.

In later work, Bershad et al. [1991] describe several performance improvements,
which are addressed particularly to multiprocessor operation. The improvements largely
concern avoiding traps to the kernel and scheduling processors in such a way as to avoid
unnecessary domain transitions. For example, if a processor is idling in the server’s
memory management context at the time a client thread attempts to invoke a server
procedure, then the thread should be transferred to that processor. This avoids a domain
transition; at the same time, the client’s processor may be reused by another thread in
the client. These enhancements involve an implementation of two-level (user and
kernel) thread scheduling, as described in Section 7.4.

7.5.2 Asynchronous operation

We have discussed how the operating system can help the middleware layer to provide
efficient remote invocation mechanisms. But in the Internet environment the effects of
relatively high latencies, low throughput and high server loads may outweigh any
benefits that the OS can provide. We can add to this the phenomena of network
disconnection and reconnection, which can be regarded as causing extremely high-
latency communication. Users’ mobile computers are not connected to the network all
the time. Even if they have wide area wireless access (for example, using cellular
communication), they may be peremptorily disconnected when, for example, their train
enters a tunnel.

A common technique to defeat high latencies is asynchronous operation, which
arises in two programming models: concurrent invocations and asynchronous
invocations. These models are largely in the domain of middleware rather than operating
system kernel design, but it is useful to consider them here, while we are examining the
topic of invocation performance.

Making invocations concurrently • In the first model, the middleware provides only
blocking invocations, but the application spawns multiple threads to perform blocking
invocations concurrently.

312 CHAPTER 7 OPERATING SYSTEM SUPPORT

A good example of such an application is a web browser. A web page typically
contains several images and may contain many. The browser does not need to obtain the
images in a particular sequence, so it makes several concurrent requests at a time. That
way, the time taken to complete all the image requests is typically lower than the delay
that would result from making the requests serially. Not only is the total communication
delay less, in general, but the browser can overlap computation such as image rendering
with communication.

Figure 7.14 Times for serialized and concurrent invocations

Client Server

execute request

Send

Receive
unmarshal

marshal

Receive
unmarshal

process results

marshal
Send

process args

marshal
Send

process args

transmission

Receive
unmarshal

process results

execute request

Send

Receive
unmarshal

marshal

marshal
Send

process args

marshal
Send

process args

execute request

Send

Receive
unmarshal

marshal

execute request

Send

Receive
unmarshal

marshal
Receive

unmarshal
process results

Receive
unmarshal

process results
time

Client Server

Serialized invocations Concurrent invocations

Figure 7.14 shows the potential benefits of interleaving invocations (such as
HTTP requests) between a client and a single server on a single-processor machine. In
the serialized case, the client marshals the arguments, calls the Send operation and then
waits until the reply from the server arrives – whereupon it Receives, unmarshals and
then processes the results. After this it can make the second invocation.

In the concurrent case, the first client thread marshals the arguments and calls the
Send operation. The second thread then immediately makes the second invocation. Each
thread waits to receive its results. The total time taken is liable to be lower than in the
serialized case, as the figure shows. Similar benefits apply if the client threads make

SECTION 7.5 COMMUNICATION AND INVOCATION 313

concurrent requests to several servers, and if the client executes on a multiprocessor
even greater throughput is potentially possible, since the two threads’ processing can
also be overlapped.

Returning to the particular case of HTTP, the study by Nielsen et al. [1997] that
we referred to above also measured the effects of concurrently interleaved HTTP 1.1
invocations (which they call pipelining) over persistent connections. They found that
pipelining reduced network traffic and could lead to performance benefits for clients, as
long as the operating system provides a suitable interface for flushing buffers, to
override the default TCP behaviour.

Asynchronous invocations • An asynchronous invocation is one that is performed
asynchronously with respect to the caller. That is, it is made with a non-blocking call,
which returns as soon as the invocation request message has been created and is ready
for dispatch.

Sometimes the client does not require any response (except perhaps an indication
of failure if the target host could not be reached). For example, CORBA oneway

invocations have maybe semantics. Otherwise, the client uses a separate call to collect
the results of the invocation. For example, the Mercury communication system [Liskov
and Shrira 1988] supports asynchronous invocations. An asynchronous operation
returns an object called a promise. Eventually, when the invocation succeeds or is
deemed to have failed, the Mercury system places the status and any return values in the
promise. The caller uses the claim operation to obtain the results from the promise. The
claim operation blocks until the promise is ready, whereupon it returns the results or
exceptions from the call. The ready operation is available for testing a promise without
blocking – it returns true or false according to whether the promise is ready or blocked.

Persistent asynchronous invocations • Traditional asynchronous invocation mecha-
nisms such as Mercury invocations and CORBA oneway invocations are implemented
upon TCP streams and fail if a stream breaks – that is, if the network link is down or the
target host crashes.

But a more developed form of the asynchronous invocation model, which we shall
call persistent asynchronous invocation, is becoming increasingly relevant because of
disconnected operation. This model is similar to Mercury in terms of the programming
operations it provides, but the difference is in its failure semantics. A conventional
invocation mechanism (synchronous or asynchronous) is designed to fail after a given
number of timeouts have occurred, but these short-term timeouts are often not
appropriate where disconnections or very high latencies occur.

A system for persistent asynchronous invocation tries indefinitely to perform the
invocation, until it is known to have succeeded or failed, or until the application cancels
the invocation. An example is Queued RPC (QRPC) in the Rover toolkit for mobile
information access [Joseph et al. 1997].

As its name suggests, QRPC queues outgoing invocation requests in a stable log
while there is no network connection and schedules their dispatch over the network to
servers when there is a connection. Similarly, it queues invocation results from servers
in what we can consider to be the client’s invocation ‘mailbox’ until the client re-
connects and collects them. Requests and results may be compressed when they are
queued, before their transmission over a low-bandwidth network.

314 CHAPTER 7 OPERATING SYSTEM SUPPORT

QRPC can take advantage of different communication links for sending an
invocation request and receiving the reply. For example, a request could be dispatched
over a cellular data link while the user is on the road, and then the response delivered
over an Ethernet link when the user connects her device to the corporate intranet. In
principle, the invocation system can even store the invocation results near to the user’s
next expected point of connection.

The client’s network scheduler operates according to various criteria and does not
necessarily dispatch invocations in FIFO order. Applications can assign priorities to
individual invocations. When a connection becomes available, QRPC evaluates its
bandwidth and the expense of using it. It dispatches high-priority invocation requests
first, and may not dispatch all of them if the link is slow and expensive (such as a wide
area wireless connection), assuming that a faster, cheaper link such as an Ethernet will
become available eventually. Similarly, QRPC takes priority into account when fetching
invocation results from the mailbox over a low-bandwidth link.

Programming with an asynchronous invocation system (persistent or otherwise)
raises the issue of how users can continue using the applications on their client device
while the results of invocations are still not known. For example, the user may wonder
whether they have succeeded in updating a paragraph in a shared document, or if
someone else has made a conflicting update, such as deleting the paragraph. Chapter 18
examines this issue.

7.6 Operating system architecture

In this section, we examine the architecture of a kernel suitable for a distributed system.
We adopt a first-principles approach of starting with the requirement of openness and
examining the major kernel architectures that have been proposed, with this in mind.

An open distributed system should make it possible to:

• run only that system software at each computer that is necessary for it to carry out
its particular role in the system architecture – system software requirements can
vary between, for example, mobile phones and server computers, and loading
redundant modules wastes memory resources;

• allow the software (and the computer) implementing any particular service to be
changed independently of other facilities;

• allow for alternatives of the same service to be provided, when this is required to
suit different users or applications;

• introduce new services without harming the integrity of existing ones.

The separation of fixed resource management mechanisms from resource management
policies, which vary from application to application and service to service, has been a
guiding principle in operating system design for a long time [Wulf et al. 1974]. For
example, we said that an ideal scheduling system would provide mechanisms that enable
a multimedia application such as video conferencing to meet its real-time demands
while coexisting with a non-real-time application such as web browsing.

SECTION 7.6 OPERATING SYSTEM ARCHITECTURE 315

Ideally, the kernel would provide only the most basic mechanisms upon which the
general resource management tasks at a node are carried out. Server modules would be
dynamically loaded as required, to implement the required resource management
policies for the currently running applications.

Monolithic kernels and microkernels • There are two key examples of kernel design: the
so-called monolithic and microkernel approaches. These designs differ primarily in the
decision as to what functionality belongs in the kernel and what is to be left to server
processes that can be dynamically loaded to run on top of it. Although microkernels have
not been deployed widely, it is instructive to understand their advantages and
disadvantages compared with the typical kernels found today.

Figure 7.15 Monolithic kernel and microkernel

Monolithic kernel Microkernel

Server: Dynamically loaded server program:Kernel code and data:

.......

.......

Key:

.......

S4

S1 S2 S3

S1 S2 S3 S4

The UNIX operating system kernel has been called monolithic (see definition in
the box below

Monolithic • The Chambers 20th Century Dictionary gives the following definition
of monolith and monolithic. monolith, n. a pillar, or column, of a single stone:
anything resembling a monolith in uniformity, massiveness or intractability. – adj.
monolithic pertaining to or resembling a monolith: of a state, an organization, etc.,
massive, and undifferentiated throughout: intractable for this reason.

). This term is meant to suggest that it is massive – it performs all basic
operating system functions and takes up in the order of megabytes of code and data –
and that it is undifferentiated, i.e. it is coded in a non-modular way. The result is that to
a large extent it is intractable: altering any individual software component to adapt it to
changing requirements is difficult. Another example of a monolithic kernel is that of the
Sprite network operating system [Ousterhout et al. 1988]. A monolithic kernel can
contain some server processes that execute within its address space, including file
servers and some networking. The code that these processes execute is part of the
standard kernel configuration (see Figure 7.15).

By contrast, in the case of a microkernel design the kernel provides only the most
basic abstractions, principally address spaces, threads and local interprocess
communication; all other system services are provided by servers that are dynamically
loaded at precisely those computers in the distributed system that require them (Figure
7.15). Clients access these system services using the kernel’s message-based invocation
mechanisms.

316 CHAPTER 7 OPERATING SYSTEM SUPPORT

We said above that users are liable to reject operating systems that do not run their
applications. But in addition to extensibility, microkernel designers have another goal:
the binary emulation of standard operating systems such as UNIX [Armand et al. 1989,
Golub et al. 1990, Härtig et al. 1997].

The place of the microkernel – in its most general form – in the overall distributed
system design is shown in Figure 7.16

Figure 7.16 The role of the microkernel

Middleware

Language
support

subsystem A

Language
support

subsystem B

OS emulation
subsystem

Microkernel

Hardware

The microkernel supports middleware via subsystems

. The microkernel appears as a layer between the
hardware layer and a layer consisting of major system components called subsystems. If
performance is the main goal, rather than portability, then middleware may use the
facilities of the microkernel directly. Otherwise, it uses a language runtime support
subsystem, or a higher-level operating system interface provided by an operating system
emulation subsystem. Each of these, in turn, is implemented by a combination of library
procedures linked into applications and a set of servers running on top of the
microkernel.

There can be more than one system call interface – more than one ‘operating
system’ – presented to the programmer on the same underlying platform. An example is
the implementation of UNIX and OS/2 on top of the Mach distributed operating system
kernel. Note that operating system emulation is different from machine virtualization

(see Section 7.7).

Comparison • The chief advantages of a microkernel-based operating system are its
extensibility and its ability to enforce modularity behind memory protection boundaries.
In addition, a relatively small kernel is more likely to be free of bugs than one that is
larger and more complex.

The advantage of a monolithic design is the relative efficiency with which
operations can be invoked. System calls may be more expensive than conventional
procedures, but even using the techniques we examined in the previous section, an
invocation to a separate user-level address space on the same node is more costly still.

The lack of structure in monolithic designs can be avoided by the use of software
engineering techniques such as layering, used in MULTICS [Organick 1972], or object-
oriented design, used for example in Choices [Campbell et al. 1993]. Windows employs
a combination of both [Custer 1998]. But Windows remains ‘massive’, and the majority
of its functionality is not designed to be routinely replaceable. Even a modularized large

SECTION 7.6 OPERATING SYSTEM ARCHITECTURE 317

kernel can be hard to maintain, and it provides limited support for an open distributed
system. As long as modules are executed within the same address space, using a
language such as C or C++ that compiles to efficient code but permits arbitrary data
accesses, it is possible for strict modularity to be broken by programmers seeking
efficient implementations, and for a bug in one module to corrupt the data in another.

Some hybrid approaches • Two of the original microkernels, Mach [Acetta et al. 1986]
and Chorus [Rozier et al. 1990], began their developmental life running servers only as
user processes. In this configuration, modularity is hardware-enforced through address
spaces. Where servers require direct access to hardware, special system calls can be
provided for these privileged processes, which map device registers and buffers into
their address spaces. The kernel turns interrupts into messages, which enables user-level
servers to handle interrupts.

Because of performance problems, the Chorus and Mach microkernel designs
eventually changed to allow servers to be loaded dynamically either into the kernel
address space or into a user-level address space. In each case, clients interact with
servers using the same interprocess communication calls. A developer can thus debug a
server at user level and then, when the development is deemed complete, allow the
server to run inside the kernel’s address space in order to optimize system performance.
But such a server then threatens the integrity of the system, should it turn out still to
contain bugs.

The SPIN operating system design [Bershad et al. 1995] finesses the problem of
trading off efficiency for protection by employing language facilities for protection. The
kernel and all dynamically loaded modules grafted onto the kernel execute within a
single address space. But all are written in a type-safe language (Modula-3), so they can
be mutually protected. Protection domains within the kernel address space are
established using protected name spaces. No module grafted onto the kernel may access
a resource unless it has been handed a reference for it, and Modula-3 enforces the rule
that a reference can only be used to perform operations allowed by the programmer.

In an attempt to minimize the dependencies between system modules, the SPIN
designers chose an event-based model as a mechanism for interaction between modules
grafted into the kernel’s address space (see Section 6.3 for a discussion of event-based
programming). The system defines a set of core events, such as network packet arrival,
timer interrupts, page fault occurrences and thread state changes. System components
operate by registering themselves as handlers for the events that affect them. For
example, a scheduler would register itself to handle events similar to those we studied
in the scheduler activations system in Section 7.4.

Operating systems such as Nemesis [Leslie et al. 1996] exploit the fact that, even
at the hardware level, an address space is not necessarily also a single protection domain.
The kernel coexists in a single address space with all dynamically loaded system
modules and all applications. When it loads an application, the kernel places the
application’s code and data in regions chosen from those that are available at runtime.
The advent of processors with 64-bit addressing has made single-address-space
operating systems particularly attractive, since they support very large address spaces
that can accommodate many applications.

The kernel of a single-address-space operating system sets the protection
attributes on individual regions within the address space to restrict access by user-level

318 CHAPTER 7 OPERATING SYSTEM SUPPORT

code. User-level code still runs with the processor in a particular protection context
(determined by settings in the processor and memory management unit), which gives it
full access to its own regions and only selectively shared access to others. The saving of
a single address space, compared with using multiple address spaces, is that the kernel
need never flush any caches when it implements a domain transition.

Some later kernel designs, such as L4 [Härtig et al. 1997] and the Exokernel
[Kaashoek et al. 1997], take the approach that what we have described as ‘microkernels’
still contain too much policy as opposed to mechanism. L4 is a ‘second-generation’
microkernel design that forces dynamically loaded system modules to execute in user-
level address spaces, but optimizes interprocess communication to offset the costs of
doing so. It offloads much of the kernel’s complexity by delegating the management of
address spaces to user-level servers. The Exokernel takes a quite different approach,
employing user-level libraries instead of user-level servers to supply functional
extensions. It provides protected allocation of extremely low-level resources such as
disk blocks, and it expects all other resource management functionality – even a file
system – to be linked into applications as libraries.

In the words of one microkernel designer [Liedtke 1996], ‘the microkernel story
is full of good ideas and blind alleys’. As we shall see in the next section, the need to
support multiple subsystems and also enforce protection between these subsystems is
now met by the concept of virtualization which has replaced microkernel approaches as
the key innovation in operating system design.

7.7 Virtualization at the operating system level

Virtualization is an important concept in distributed systems. We have already seen one
application of virtualization in the context of networking, in the form of overlay
networks (see Section 4.5) offering support for particular classes of distributed
application. Virtualization is also applied in the context of operating systems; indeed, it
is in this context that virtualization has had the most impact. In this section, we examine
what it means to apply virtualization at the operating system level (system
virtualization) and also present a case study of Xen, a leading example of system-level
virtualization.

7.7.1 System virtualization

The goal of system virtualization is to provide multiple virtual machines (virtual
hardware images) over the underlying physical machine architecture, with each virtual
machine running a separate operating system instance. The concept stems from the
observation that modern computer architectures have the necessary performance to
support potentially large numbers of virtual machines and multiplex resources between
them. Multiple instances of the same operating system can run on the virtual machines
or a range of different operating systems can be supported. The virtualization system
allocates the physical processor(s) and other resources of a physical machine between
all virtual machines that it supports.

SECTION 7.7 VIRTUALIZATION AT THE OPERATING SYSTEM LEVEL 319

Historically, processes were used to share the processor and other resources
between multiple tasks running on behalf of one or several users. System virtualization
has emerged more recently and is now commonly used for this purpose. It offers benefits
for security and clean separation of tasks and in allocating and charging each user for
their use of resources more precisely than can be achieved with processes running in a
single system.

To fully understand the motivation for virtualization at the operating system level,
it is useful to consider different use cases of the technology:

• On server machines, an organization assigns each service it offers to a virtual
machine and then optimally allocates the virtual machines to physical servers.
Unlike processes, virtual machines can be migrated quite simply to other physical
machines, adding flexibility in managing the server infrastructure. This approach
has the potential to reduce investment in server computers and to reduce energy
consumption, a key issue for large server farms.

• Virtualization is very relevant to the provision of cloud computing. As described
in Chapter 1, cloud computing adopts a model where storage, computation and
higher-level objects built over them are offered as a service. The services offered
range from low-level aspects such as physical infrastructure (referred to as
infrastructure as a service), through software platforms such as the Google App
Engine, featured in Chapter 21, (platform as a service), to arbitrary application-
level services (software as a service). Indeed, the first is enabled directly by
virtualization, allowing users of the cloud to be provided with one or more virtual
machines for their own use.

• The developers of virtualization solutions are also motivated by the need for
distributed applications to create and destroy virtual machines readily and with
little overhead. This is required in applications that may need to demand resources
dynamically, such as multiplayer online games or distributed multimedia
applications, as featured in Chapter 1 [Whitaker et al. 2002]. Support for such
applications can be enhanced by adopting appropriate resource allocation policies
to meet quality of service requirements of virtual machines.

• A quite different case arises in providing convenient access to several different
operating system environments on a single desktop computer. Virtualization can
be used to provide multiple operating system types on one physical architecture.
For example, on a Macintosh OS X computer, the Parallels Desktop virtual
machine monitor enables a Windows or a Linux system to be installed and to
coexist with OS X, sharing the underlying physical resources.

System virtualization is implemented by a thin layer of software on top of the underlying
physical machine architecture; this layer is referred to as a virtual machine monitor or
hypervisor. This virtual machine monitor provides an interface based closely on the
underlying physical architecture. More precisely, in full virtualization the virtual
machine monitor offers an identical interface to the underlying physical architecture.
This has the advantage that existing operating systems can run transparently and
unmodified on the virtual machine monitor. Experience has shown, however, that full
virtualization can be hard to realize with satisfactory performance on many computer
architectures, including the x86 family of processors, and that performance may be

320 CHAPTER 7 OPERATING SYSTEM SUPPORT

improved by allowing a modified interface to be provided (with the drawback that
operating systems then need to be ported to this modified interface). This technique is
known as paravirtualization and is considered in more detail in the case study below.

Note that virtualization is quite distinct from the microkernel approach as
discussed in Section 7.6. Although microkernels support the co-existence of multiple
operating systems, this is achieved by emulating the operating system on top of the re-
usable building blocks offered by the microkernel. In contrast, in operating system
virtualization, an operating system is run directly (or with minor modifications) on the
virtualized hardware. The key advantage of virtualization and the principal reason for its
predominance over microkernels is that applications can run in virtualized environments
without being rewritten or recompiled.

Virtualization began with the IBM 370 architecture, whose VM operating system
can present several complete virtual machines to different programs running at the same
computer. The technique can therefore be traced back to the 1970s. More recently, there
has been an explosion in interest in virtualization, with a number of research projects and
commercial systems providing virtualization solutions for commodity PCs, servers and
cloud infrastructure. Examples of leading virtualization solutions include Xen [Barham
et al. 2003a], Denali [Whitaker et al. 2002], VMWare, Parallels and Microsoft Virtual
Server. We present a case study of the Xen approach below.

7.7.2 Case study: The Xen approach to system virtualization

Xen is a leading example of system virtualization, initially developed as part of the
Xenoserver project at the Computer Laboratory, Cambridge University and now
maintained by an open source community [www.xen.org]. An associated company,
XenSource, was acquired by Citrix Systems in 2007 and Citrix now offers enterprise
solutions based on Xen technology, including XenoServer and associated management
and automation tools. The description of Xen provided below is based on the paper by
Barham et al. [2003a] and associated XenoServer internal reports [Barham et al. 2003b,
Fraser et al. 2003], together with an excellent and comprehensive book about the
internals of the Xen hypervisor [Chisnall 2007].

The overall goal of the XenoServer project [Fraser et al. 2003] is to provide a
public infrastructure for wide area distributed computing. As such, this is an early
example of cloud computing focussing on infrastructure as a service. In the XenoServer
vision, the world is populated by XenoServers that are capable of executing code on
behalf of customers who are then billed for the resources they use.

The two main outputs of the project are the Xen virtual machine monitor and the
XenoServer Open Platform discussed in more detail below.

The Xen virtual machine monitor • Xen is a virtual machine monitor that was designed
initially to support the implementation of XenoServers but has since evolved into a
standalone solution to system virtualization. The goal of Xen is to enable multiple
operating system instances to run in complete isolation on conventional hardware with
minimal performance overhead introduced by the associated virtualization. Xen is
designed to scale to very large numbers of operating system instances (up to several
hundred virtual machines on a single machine) and deal with heterogeneity, seeking to
support most major operating systems, including Windows, Linux, Solaris and NetBSD.

EXERCISES 321

Xen also runs on a variety of hardware platforms including 32- and 64-bit x86
architectures and also PowerPC and IA64 CPUs.

The architecture of Xen: The overall architecture of Xen is captured in Figure 7.17

Figure 7.17 The architecture of Xen

Underlying physical hardware (for example x86 machine)

Domain
control

interface

0
Virtual

x86 CPU
Scheduling . . .

Guest OS
(XenoLinux

Device drivers

Control
plane

software

Domain0

Guest OS
(XenoBSD)

Device drivers

User
software

DomainU

Guest OS
(XenoLinux)

Device drivers

software
. . .

User

Xen
hypervisor

)

Virtual
memory

. The
Xen virtual machine monitor (known as the hypervisor) is central to this architecture,
supporting the virtualization of the underlying physical resources, specifically the CPU
and its instruction set, the scheduling of the CPU resource and the physical memory. The
overall goal of the hypervisor is to provide virtual machines with a virtualization of the
hardware, providing the appearance that each virtual machine has its own (virtualized)
physical machine and multiplexing the virtual resources onto the underlying physical
resources. In achieving this, it must also ensure strong protection between the different
virtual machines it supports.

The hypervisor follows the design of Exokernel (introduced in Section 7.6) by
implementing a minimal set of mechanisms for resource management and isolation and
leaving higher level policy to other parts of the systems architecture – in particular the
domains, as discussed below. The hypervisor also has no knowledge of devices or their
management but rather just provides a conduit for interacting with devices (as again
discussed below). This minimal design is important for two key reasons:

• Xen is primarily concerned with isolation, including isolation of faults, and yet a
fault in the hypervisor can crash the whole system. It is therefore important that
the hypervisor is minimal, thoroughly tested and bug-free.

• The hypervisor represents an inevitable overhead relative to executing on the bare
hardware, and it is important for the performance of the system that this is as
lightweight as possible (as we shall see below, paravirtualization also helps to
minimize this overhead through bypassing the hypervisor wherever possible).

322 CHAPTER 7 OPERATING SYSTEM SUPPORT

The role of the hypervisor is to support a potentially large number of virtual machine
instances (called domains in Xen) all running guest operating systems. The guest
operating systems run in a set of domains referred to collectively as domainU, or the
unprivileged domain, referring to their lack of privilege in terms of accessing physical
(as opposed to virtual) resources. In other words, all access to resources is carefully
controlled by Xen. Xen also supports a special domain, referred to as domain0, that has
privileged access to hardware resources and acts as a control plane for the Xen
architecture providing a clean separation between mechanism and policy in the system
(we will see examples of the usage of domain0 below). Domain0 is configured to run a
Xen port of Linux (XenoLinux), whereas other domains can run any guest operating
system. Note that the Xen architecture allows selected privileges to be granted to
domainU, specifically the ability to access hardware devices directly or to create new
domains. In practice, though, the most common configuration is for domain0 to retain
these privileges.

To continue our study of Xen, we consider the implementation of the core
functions of the hypervisor – namely, the virtualization of the underlying hardware
(including the use of paravirtualization), scheduling and virtual memory management –
before showing how Xen supports the management of devices, We conclude by
considering what it takes to port a given operating system to Xen.

Virtualization of the underlying CPU: The primary role of the hypervisor is to provide each
domain with a virtualization of the underlying CPU, that is provide the appearance that
each domain has its own (virtual) CPU and associated instruction set. The complexity
of this step depends entirely on the architecture of the given CPU. In this section, we
focus particularly on virtualization as it applies to the x86 architecture, the dominant
processor family in use today.

Popek and Goldberg [1974], in a classic paper on virtualization requirements,
focus on all instructions that can change the state of the machine in a way that can impact
on other processes (sensitive instructions), further subdividing such instructions into:

• control-sensitive instructions that attempt to change the configuration of resources
in the system, for example changing virtual memory mappings;

• behaviour-sensitive instructions that read privileged state and through this reveal
physical rather than virtual resources, thus breaking the virtualization.

They then state that a condition for being virtualizable is that all sensitive instructions
(control- and behaviour-sensitive) must be intercepted by the hypervisor (or equivalent
kernel mechanism). More specifically, this is achieved by trapping into the hypervisor,
supported by the concept of privileged instructions in a machine architecture – that is,
instructions that either execute in privileged mode or generate a trap (which can then
take them into privileged mode). This leads to the following precise statement of the
Popek and Goldberg condition:

Condition for virtualization : A processor architecture lends itself to virtualization if
all sensitive instructions are privileged instructions.

Unfortunately, in the x86 family of processors, this is not the case: it is possible to
identify 17 instructions that are sensitive but not privileged. For example, the LAR (load
access rights) and LSL (load segment limit) instructions fall into this category. They

SECTION 7.7 VIRTUALIZATION AT THE OPERATING SYSTEM LEVEL 323

need to be trapped by the hypervisor to ensure correct virtualization, but there is no
mechanism to do this as they are not privileged.

One solution is to provide a layer of emulation for all instructions in the instruction
set. It is then possible to manage sensitive instructions within this layer. This is what is
done in full virtualization and this approach has the advantage that guest operating
systems can run unchanged in this virtualized environment. However, this approach can
be expensive, adding cost to every affected instruction call. Paravirtualization, in
contrast, takes the view that many instructions can run directly on the bare hardware
without emulation and that privileged instructions should be trapped and dealt with by
the hypervisor. This then leaves the sensitive instructions that are not privileged; a
paravirtualization solution recognizes that such instructions can lead to potential
problems but leaves this to be dealt with in the guest operating system. In other words,
the guest operating system must be rewritten to tolerate or deal with any side effects of
these instructions. One approach, for example, is to rewrite sections of the code to avoid
the usage of problematic instructions. This paravirtualization approach greatly improves
the performance of virtualization, but at the expense of requiring a port of the guest
operating system to the virtualized environment.

To understand the implementation of paravirtualization further, it is helpful to
look at levels (or rings) of privilege in modern processors. For example, the x86 family
supports four levels of privilege with ring 0 being the most privileged, ring 1 being the
next most privileged and so on, with ring 3 being the least privileged. In a traditional
operating system environment, the kernel will run in ring 0 and applications in ring 3
with rings 1 and 2 unused. Traps take the flow of control from the application to the
kernel and allow privileged activities to take place. In Xen, the hypervisor runs in ring
0 and this is the only ring that can execute privileged instructions. The guest operating
systems then run in ring 1, with applications running in ring 3. Privileged instructions
are rewritten as hypercalls that trap into the hypervisor allowing the hypervisor to
control execution of these potentially sensitive operations. All other sensitive
instructions must be managed by the guest operating system, as discussed above.

This distinction between kernel-based operating systems and Xen is summarized
in Figure 7.18.

Hypercalls are asynchronous and hence represent notifications that the
corresponding instructions should be executed (there is no blocking in the guest
operating system awaiting a result). Communication between the hypervisor and the
guest operating system is also asynchronous and is supported by a simple event

mechanism offered by the Xen hypervisor. This is used, for example, to deal with device
interrupts. The hypervisor maps such hardware interrupts to software events targeted
towards the right guest operating system. The Xen hypervisor is therefore completely
event-driven.

Scheduling: We saw in Section 7.4 that many operating system environments support
two levels of scheduling – that is, the scheduling of processes and the subsequent
scheduling of user-level threads within processes. Xen goes one step further,
introducing an extra level of scheduling concerned with the execution of particular guest
operating systems. It achieves this by introducing the concept of a virtual CPU (VCPU),
with each VCPU supporting a guest system. Scheduling therefore involves the following
steps:

Figure 7.18 Use of rings of privilege

ring 0

ring 3

ring 2

ring 1

ring 0

ring 3

ring 2

ring 1

kernel

applications applications

guest OShypervisor

a) kernel-based operating systems b) paravirtualization in Xen

324 CHAPTER 7 OPERATING SYSTEM SUPPORT

• The hypervisor schedules VCPUs on to the underlying physical CPU(s), thereby
providing each guest with a portion of the underlying physical processing time.

• Guest operating systems schedule kernel-level threads on to their allocated
VCPU(s).

• Where applicable, threads libraries in user space schedule user-level threads onto
the available kernel-level threads.

The key requirement in Xen is that the design of the underlying hypervisor scheduler is
predictable, as higher-level schedulers will make assumptions about the behaviour of
this scheduler and it is crucial that these assumptions are met.

Xen supports two schedulers, Simple EDF and the Credit Scheduler:

Xen’s Simple Earliest Deadline First (SEDF) Scheduler: This scheduler operates
by selecting the VCPU that has the closest deadline, with deadlines calculated
according to two parameters, n (the slice) and m (the period). For example, a domain
can request 10 ms (n) every 100 ms (m). The deadline is defined as the latest time this
domain can be run to meet its deadline. Returning to our example, at the start point
of the system, this VCPU can be scheduled as late as 90 ms into the 100 ms period
and still meet its deadline. The scheduler operates by picking the earliest of the
current deadlines, looking across the set of runnable VCPUs.

Xen’s Credit Scheduler: For this scheduler, each domain (VCPU) is specified in
terms of two properties, the weight and the cap. The weight determines the share of
the CPU that should be given to that VCPU. For example, if one VCPU has a weight
of 64 and another a weight of 32, the first VCPU should get double the share of the
second. Legal weights range from 1 to 65535, with the default being 256. This

SECTION 7.7 VIRTUALIZATION AT THE OPERATING SYSTEM LEVEL 325

behaviour is modified by the cap, which expresses the total percentage of the CPU
that should be given to the corresponding VCPU, expressed as a percentage. This can
be left as uncapped. The scheduler transforms the weight associated with a VCPU
into credits, and as the VCPU runs, it consumes credits. The VCPU is deemed under

if it has credits left; otherwise it is deemed over. For each CPU, the scheduler
maintains a queue of runnable VCPUs, with all the under VCPUs first, followed by
the over VCPUs. When a VCPU is unscheduled, it is placed in this queue at the end
of the appropriate category (depending upon whether it is now under or over credit).
The scheduler then picks the first element in the queue to run next. As a form of load
balancing, if a given CPU has no under VCPUs, it will search the queues of other
CPUs for a possible candidate to schedule.

These replace previous Xen schedulers, including a simple round robin scheduler, one
based on borrowed virtual time (designed to provide a proportional share of the
underlying CPU based on setting different domain weights), and Atropos (designed to
support soft real-time scheduling). Further details of these schedulers can be found in
Chisnall [2007].

It is also possible to add new schedulers to the Xen hypervisor, but this is
something that should be done with caution and after extensive testing because of the
requirements of the hypervisor as discussed above. Chisnall [2007] provides a step-by-
step guide on how to implement such a simple scheduler in Xen.

Interaction between guest operating systems and the underlying scheduler is via a
number of scheduler-specific hypercalls, including operations to voluntary yield the
CPU (but remain runnable), to block a particular domain until an event has occurred or
to shutdown the domain for a specified reason.

Virtual memory management: Virtual memory management is the most complicated
aspect of virtualization partly because of the complexity of underlying hardware
solutions to memory management and partly because of the need to inject extra levels
of protection to provide isolation between different domains. We provide below some
general principles of memory management in Xen. The reader is encouraged to study
the detailed description of virtual memory management in Xen provided by Chisnall
[2007].

The overall approach to virtualization of memory management in Xen is captured
in Figure 7.19. As with scheduling, Xen adopts a three-level architecture with the
hypervisor managing physical memory, the kernel of the guest operating system
providing pseudo-physical memory and applications within that operating system
provided with virtual memory, as would be expected of any underlying operating
system. The concept of pseudo-physical memory is crucial to understanding this
architecture and is described further below.

The key design decision in the virtual memory management architecture is to keep
the functionality of the hypervisor to a minimum. The hypervisor effectively has just
two roles – the allocation and subsequent management of physical memory in the form
of pages:

• In terms of memory allocation, the hypervisor retains a small portion of physical
memory for its own needs and then allocates pages to domains on demand. For
example, when a new domain is created, it is given a set of pages according to its
declared needs. In practice, this set of pages will be fragmented across the physical

Figure 7.19 Virtualization of memory management

Virtual

Pseudo-physical

Physical

Application

Guest OS

Hypervisor

326 CHAPTER 7 OPERATING SYSTEM SUPPORT

address space, and this may be in conflict with the expectations of the guest
operating system (which may expect a contiguous address space). The role of the
pseudo-physical memory is to provide this abstraction by offering a contiguous
pseudo-physical address space and then maintaining a mapping from this address
space to the real physical addresses. Crucially, this mapping must be managed by
the guest operating system and not in the hypervisor, to maintain the lightweight
nature of the hypervisor (more specifically, the composition of the two functions
shown in Figure 7.19 is carried out in the guest). This approach allows the guest
operating system to interpret the mapping in its own context (for example, for
some guest operating systems where contiguous addresses are not expected, this
mapping can be eliminated) and also makes it easier to migrate a domain to a
different address space, for example in server consolidation. The same mechanism
is also used to support suspension and resumption of guest operating systems. On
suspension, the state of the domain is serialized to disk, and on resumption, this
state is restored but in a different physical location. This is supported by the extra
level of indirection in the memory management architecture.

• In terms of managing the physical memory, the hypervisor exports a small set of
hypercalls to manipulate the underlying page tables. As an illustration, the
hypercall pt_update(list of requests) is used by a guest operating system to request
a batch of incremental updates to a page table. This allows the hypervisor to
validate all the requests and carry out only those updates that are deemed safe, for
example to enforce isolation.

The overall result is a flexible approach to virtual memory management that allows
guest operating systems to optimize their implementation for different processor
families.

SECTION 7.7 VIRTUALIZATION AT THE OPERATING SYSTEM LEVEL 327

Device management: The Xen approach to device management relies on the concept of
split device drivers, as shown in Figure 7.20

Figure 7.20 Split device drivers

Hardware
Physical
device

Hypervisor

Domain0:Domain0

Split device
driver

Real device
driver

Split device
driver

Shared
memory

Guest O

. As can be seen from this figure, access to
the physical device is controlled exclusively by domain0, which also hosts a real device
driver for this device. As domain0 runs XenoLinux, this will be an available Linux
device driver. It is important to stress that while some device drivers have good support
for multiplexing, others do not, and hence it is important for Xen to provide an
abstraction whereby each guest operating system can have the appearance of its own
virtual device. This is achieved by the split driver structure involving a back-end device
driver running in domain0 and a front-end driver running in the guest operating system.
The two then communicate to provide the necessary device access for the guest
operating system. The respective roles of the back-end and front-end parts of the driver
are as follows:

• The back end has two critical roles to play in the architecture. Firstly, it must
manage multiplexing (in particular access from multiple guest operating systems),
especially where support is not provided in the underlying Linux driver. Secondly,
it provides a generic interface that both captures the essential functions of the
device and is neutral to the different guest operating systems that will use it. This
is made easier because operating systems already provide a number of
abstractions that effectively provide the necessary multiplexing in a neutral way,
for example reading and writing blocks to persistent storage. Higher-level
interfaces (for example, sockets) would be inappropriate as they would be too
biased towards given operating system abstractions.

328 CHAPTER 7 OPERATING SYSTEM SUPPORT

• The front end, in contrast, is very simple and acts as a proxy for the device in the
guest operating system environment, accepting commands and then
communicating with the back end as described below.

Communication between the front end and back end of the split device structure is
facilitated by the creation of a memory page shared between the two components. The
region of shared memory is established using a grant table mechanism supported by the
hypervisor. A grant table is an array of structures (grant entries) that supports operations
to provide permissions to grant foreign access to a memory reservation or to access other
memory reservations via grant references. Access can be granted to read or write the
shared memory region. This mechanism provides a lightweight and high-performance
means for different domains to communicate in Xen.

The normal mechanism to communicate is to use a data structure known as an I/O

ring in this shared memory region, which supports two-way asynchronous
communication between the two parts of the split device driver. The structure of an I/O
ring is shown in Figure 7.21

Figure 7.21 I/O rings

Request start

Request end

Response start

Response end

. Domains communicate through requests and responses. In
particular, a domain writes its request clockwise, starting at the request start indicator
(assuming there is enough room) and moving on the pointer accordingly. The other end
can then read the data from its end, again moving the associated pointer. The same
procedure then occurs for responses. For devices that continually transfer large amounts
of data, the corresponding endpoints will poll this data structure. For less frequent
transfers, I/O rings can be supplemented by the use of the Xen event mechanism to
notify the recipient that data is ready for consumption. The mechanism for device
discovery is via a shared information space called XenStore, accessible by all domains.
XenStore is itself implemented as a device using the split device architecture, which
device drivers use to advertise their services. The information provided includes the
grant reference for the I/O rings associated with the device and also (where appropriate)

SECTION 7.7 VIRTUALIZATION AT THE OPERATING SYSTEM LEVEL 329

any event channels associated with the device. The range of communication facilities
used by device drivers (I/O rings, events and XenStore) are collectively referred to as
XenBus.

A given Xen installation can provide different configurations of device drivers. It
is expected, though, that most Xen implementations will provide two generic drivers:

• The first one is the block device driver, offering a common abstraction onto block
devices (most commonly storage devices). The interface to this is very simple,
supporting three operations: to read or write a block and also to implement a write

barrier ensuring that all outstanding writes are completed.

• The second one is the Xen Virtual Interface Network Driver, which offers a
common interface to interact with network devices. This uses two I/O rings for
transmitting and receiving data to/from the network. Strictly speaking, the rings
are used for control flow and separate shared memory areas are used for the
associated data (which helps in terms of minimizing copies and reusing memory
regions).

Note that most of this architecture is implemented above the hypervisor, in domain0 and
the other guest operating systems. The role of the hypervisor is simply to facilitate inter-
domain communication, for example through the grant table mechanism, and the rest is
built on top of this minimal base. This helps considerably in terms of keeping the
hypervisor small and efficient.

Porting a guest operating system: From the descriptions above, it is now possible to see
what is required in terms of porting an operating system to the Xen environment. This
involves several key stages:

• replacing all privileged instructions used by the operating system with the relevant
hypercalls;

• taking all other sensitive instructions and reimplementing them in a way that
preserves the desired semantics of the associated operations;

• porting the virtual memory subsystem;

• developing split-level device drivers for the required set of devices, reusing the
device driver functionality already provided in domain0 together with the generic
device driver interfaces where appropriate.

This list covers the major tasks, but there are also some other, more specific tasks that
need to be carried out. For example, Xen offers its own time architecture, recognizing
the difference between real time and time passing as viewed by individual guest
operating systems.

In more detail, the hypervisor provides support for various time abstractions –
specifically, an underlying cycle counter time based on the clock of the underlying
processor and used to extrapolate other time references; domain virtual time, which
progresses at the same rate as cycle counter time but only when a particular domain is
scheduled; system time, which accurately reflects the passing of real time in the system;
and wall clock time, providing the actual time of day. It is assumed that operating system
instances running in domains will provide real time and virtual time abstractions on top
of these values, requiring further porting effort. Interestingly, both system time and wall

330 CHAPTER 7 OPERATING SYSTEM SUPPORT

clock time are corrected automatically for clock drift, exploiting a single instance of an
NTP client (described in Chapter 14) running in domain0. This is just one example of
the optimizations that are enabled by the shared domain0.

The XenoServer Open Platform • As mentioned above, Xen was initially developed as
part of the XenoServer project, which investigated software infrastructure for wide area
distributed computing. We now describe the overall architecture of the associated
XenoServer Open Platform [Hand et al. 2003]. In this architecture, which is shown in
Figure 7.22

Figure 7.22 The XenoServer Open Platform Architecture

XenoCorp

XenoServer Client

Xenoserver

Information
Service

RD System

register_client

create_purchase_order
register_xenoserver

validate_purchase_order

charge_from_purchase_order

query_xenoserver_status
create_session

deploy_task

advertise_xenoserver lookup_xenoserver

find_xenoservers

update

, clients register with an entity known as XenoCorp in order to use the
system. The developers of the XenoServer Open Architecture anticipate a number of
competing instances of XenoCorps existing in a given system offering different
payment regimes and levels of quality of service (for example, varying support for
privacy). More formally, the role of a given XenoCorp is to offer authentication,
auditing, charging and payment services and to maintain a contractual relationship with
both clients and organizations offering XenoServers. This is supported by a process of
registration whereby identity is established, and the creation of purchase orders that
represent the commitment by the (authenticated) client to fund a given session.

In the overall architecture, XenoServers compete against each other to offer
services. The role of the XenoServer Information Service is then to allow XenoServers
to advertise their services and for clients to locate appropriate XenoServers based on

SECTION 7.8 SUMMARY 331

their specified requirements. Advertisements are specified using XML and include
clauses covering functionality, resource availability and pricing.

The Information Service is relatively primitive, offering basic search mechanisms
over the set of advertisements. To complement this, the platform architecture also offers
a resource discovery (RD) system supporting more complex queries, such as:

• Find a XenoServer with a low-latency link to the client that meets certain resource
requirements for a given price, o.r

• Find a cluster of XenoServers that are inter-connected by low-latency links,
support secure communication and meet certain resource requirements.

The main innovation in the XenoServer project is in how it couples the above
architecture with virtualization – each XenoServer runs the Xen virtual machine
monitor, allowing clients to bid for virtual rather than physical resources and allowing
the system to manage the set of resources more effectively because of this virtualization.
This is a direct illustration of the complementary nature of cloud computing and
virtualization, as discussed above.

7.8 Summary

This chapter has described how the operating system supports the middleware layer in
providing invocations upon shared resources. The operating system provides a
collection of mechanisms upon which varying resource management policies can be
implemented, to meet local requirements and to take advantage of technological
improvements. It allows servers to encapsulate and protect resources, while allowing
clients to share them concurrently. It also provides the mechanisms necessary for clients
to invoke operations upon resources.

A process consists of an execution environment and threads: an execution
environment consists of an address space, communication interfaces and other local
resources such as semaphores; a thread is an activity abstraction that executes within an
execution environment. Address spaces need to be large and sparse in order to support
sharing and mapped access to objects such as files. New address spaces may be created
with their regions inherited from parent processes. An important technique for copying
regions is copy-on-write.

Processes can have multiple threads, which share the execution environment.
Multi-threaded processes allow us to achieve relatively cheap concurrency and to take
advantage of multiprocessors for parallelism. They are useful for both clients and
servers. Recent threads implementations allow for two-tier scheduling: the kernel
provides access to multiple processors, while user-level code handles the details of
scheduling policy.

The operating system provides basic message-passing primitives and mechanisms
for communication via shared memory. Most kernels include network communication
as a basic facility; others provide only local communication and leave network
communication to servers, which may implement a range of communication protocols.
This is a trade-off of performance against flexibility.

332 CHAPTER 7 OPERATING SYSTEM SUPPORT

We discussed remote invocations and accounted for the difference between
overheads due directly to network hardware and overheads that are due to the execution
of operating system code. We found the proportion of the total time due to software to
be relatively large for a null invocation but to decrease as a proportion of the total as the
size of the invocation arguments grows. The chief overheads involved in an invocation
that are candidates for optimization are marshalling, data copying, packet initialization,
thread scheduling and context switching, as well as the flow control protocol used.
Invocation between address spaces within a computer is an important special case, and
we described the thread-management and parameter-passing techniques used in
lightweight RPC.

There are two main approaches to kernel architecture: monolithic kernels and
microkernels. The main difference between them lies in where the line is drawn between
resource management by the kernel and resource management performed by
dynamically loaded (and usually user-level) servers. A microkernel must support at least
a notion of process and interprocess communication. It supports operating system
emulation subsystems as well as language support and other subsystems, such as those
for real-time processing. Virtualization offers an attractive alternative to this style by
providing emulation of the hardware and then allowing multiple virtual machines (and
hence multiple operating systems) to coexist on the same machine.

EXERCISES

7.1 Discuss the tasks of encapsulation, concurrent processing, protection, name resolution,
communication of parameters and results, and scheduling in the context of the UNIX file
service (or that of another kernel that is familiar to you). page 282

7.2 Why are some system interfaces implemented by dedicated system calls (to the kernel),
and others on top of message-based system calls? page 282

7.3 Smith decides that every thread in his processes ought to have its own protected stack –
all other regions in a process would be fully shared. Does this make sense? page 286

7.4 Should signal (software interrupt) handlers belong to a process or to a thread?
page 286

7.5 Discuss the issue of naming applied to shared memory regions. page 288

7.6 Suggest a scheme for balancing the load on a set of computers. You should discuss:

i) what user or system requirements are met by such a scheme;

ii) to what categories of applications it is suited;

iii) how to measure load and with what accuracy;

iv) how to monitor load and choose the location for a new process. Assume that
processes may not be migrated.

How would your design be affected if processes could be migrated between computers?
Would you expect process migration to have a significant cost? page 289

EXERCISES 333

7.7 Explain the advantage of copy-on-write region copying for UNIX, where a call to fork

is typically followed by a call to exec. What should happen if a region that has been
copied using copy-on-write is itself copied? page 291

7.8 A file server uses caching and achieves a hit rate of 80%. File operations in the server
cost 5 ms of CPU time when the server finds the requested block in the cache, and an
additional 15 ms of disk I/O time otherwise. Explaining any assumptions you make,
estimate the server’s throughput capacity (average requests/sec) if it is:

i) single-threaded;

ii) two-threaded, running on a single processor;

iii) two-threaded, running on a two-processor computer. page 292

7.9 Compare the worker pool multi-threading architecture with the thread-per-request
architecture. page 293

7.10 What thread operations are the most significant in cost? page 295

7.11 A spin lock (see Bacon [2002]) is a boolean variable accessed via an atomic test-and-set

instruction, which is used to obtain mutual exclusion. Would you use a spin lock to
obtain mutual exclusion between threads on a single-processor computer? page 298

7.12 Explain what the kernel must provide for a user-level implementation of threads, such
as Java on UNIX. page 300

7.13 Do page faults present a problem for user-level threads implementations? page 300

7.14 Explain the factors that motivate the hybrid scheduling approach of the ‘scheduler
activations’ design (instead of pure user-level or kernel-level scheduling). page 301

7.15 Why should a threads package be interested in the events of a thread’s becoming
blocked or unblocked? Why should it be interested in the event of a virtual processor’s
impending preemption? (Hint: other virtual processors may continue to be allocated.)

page 302

7.16 Network transmission time accounts for 20% of a null RPC and 80% of an RPC that
transmits 1024 user bytes (less than the size of a network packet). By what percentage
will the times for these two operations improve if the network is upgraded from 10
megabits/second to 100 megabits/second? page 305

7.17 A ‘null’ RMI that takes no parameters, calls an empty procedure and returns no values
delays the caller for 2.0 milliseconds. Explain what contributes to this time.

In the same RMI system, each 1K of user data adds an extra 1.5 milliseconds. A client
wishes to fetch 32K of data from a file server. Should it use one 32K RMI or 32 1K
RMIs? page 305

7.18 Which factors identified in the cost of a remote invocation also feature in message
passing? page 307

7.19 Explain how a shared region could be used for a process to read data written by the
kernel. Include in your explanation what would be necessary for synchronization.

page 308

334 CHAPTER 7 OPERATING SYSTEM SUPPORT

7.20 i) Can a server invoked by lightweight procedure calls control the degree of
concurrency within it?

ii) Explain why and how a client is prevented from calling arbitrary code within a
server under lightweight RPC.

iii) Does LRPC expose clients and servers to greater risks of mutual interference than
conventional RPC (given the sharing of memory)? page 309

7.21 A client makes RMIs to a server. The client takes 5 ms to compute the arguments for
each request, and the server takes 10 ms to process each request. The local OS
processing time for each send or receive operation is 0.5 ms, and the network time to
transmit each request or reply message is 3 ms. Marshalling or unmarshalling takes 0.5
ms per message.

Estimate the time taken by the client to generate and return from two requests (i) if it is
single-threaded, and (ii) if it has two threads that can make requests concurrently on a
single processor. Is there a need for asynchronous RMI if processes are multi-threaded?
page 311

7.22 Explain what a security policy is and what the corresponding mechanisms are in the case
of a multiuser operating system such as UNIX. page 314

7.23 Explain the program linkage requirements that must be met if a server is to be
dynamically loaded into the kernel’s address space, and how these differ from the case
of executing a server at the user level. page 315

7.24 How could an interrupt be communicated to a user-level server? page 317

7.25 On a certain computer we estimate that, regardless of the OS it runs, thread scheduling
costs about 50 s, a null procedure call 1 ms, a context switch to the kernel 20 s and a
domain transition 40 s. For each of Mach and SPIN, estimate the cost to a client of
calling a dynamically loaded null procedure. page 317

7.26 What is the distinction between the virtualization approach advocated by Xen and the
style of microkernel advocated by the Exokernel project? In your answer, highlight two
things they have in common and two distinguishing characteristics between the
approaches. pages 317, 320

7.27 Sketch out in pseudo-code how you would add a simple round robin scheduler to the
Xen hypervisor using the framework discussed in Section 7.7.2. page 323

7.28 From your understanding of the Xen approach to virtualization, discuss specific features
of Xen that can support the XenoServer architecture, thus illustrating the synergy
between virtualization and cloud computing. pages 320, 330

 335

8

DISTRIBUTED

OBJECTS AND COMPONENTS

8.1 Introduction
8.2 Distributed objects
8.3 Case study: CORBA
8.4 From objects to components
8.5 Case studies: Enterprise JavaBeans and Fractal
8.6 Summary

A complete middleware solution must present a higher-level programming abstraction as
well as abstracting over the underlying complexities involved in distributed systems. This
chapter examines two of the most important programming abstractions, namely
distributed objects and components, and also examines associated middleware platforms
including CORBA, Enterprise JavaBeans and Fractal.

CORBA is a middleware design that allows application programs to communicate
with one another irrespective of their programming languages, their hardware and
software platforms, the networks they communicate over and their implementors.
Applications are built from CORBA objects, which implement interfaces defined in
CORBA’s interface definition language, IDL. Like Java RMI, CORBA supports transparent
invocation of methods on remote objects. The middleware component that supports RMI
is called the object request broker, or ORB.

Component-based middleware has emerged as a natural evolution of distributed
objects, providing support for managing dependencies between components, hiding low-
level details associated with the middleware, managing the complexities of establishing
distributed applications with appropriate non-functional properties such as security, and
supporting appropriate deployment strategies. Key technologies in this area include
Enterprise JavaBeans and Fractal.

336 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

8.1 Introduction

The previous chapters introduced fundamental underlying building blocks for
distributed systems in terms of communication and operating system support. This
chapter turns to complete middleware solutions, presenting distributed objects and
components as two of the most important styles of middleware in use today. This
discussion is followed in Chapters 9 and 10 with consideration of alternative approaches
based on web services and peer-to-peer solutions.

As discussed in Chapter 2, the task of middleware is to provide a higher-level
programming abstraction for the development of distributed systems and, through
layering, to abstract over heterogeneity in the underlying infrastructure to promote
interoperability and portability.

Distributed object middleware • The key characteristic of distributed objects is that they
allow you to adopt an object-oriented programming model for the development of
distributed systems and, through this, hide the underlying complexity of distributed
programming. In this approach, communicating entities are represented by objects.
Objects communicate mainly using remote method invocation, but also possibly using
an alternative communication paradigm (such as distributed events). This relatively
simple approach has a number of important benefits, including the following:

• The encapsulation inherent in object-based solutions is well suited to distributed
programming.

• The related property of data abstraction provides a clean separation between the
specification of an object and its implementation, allowing programmers to deal
solely in terms of interfaces and not be concerned with implementation details
such as the programming language and operating system used.

• This approach also lends itself to more dynamic and extensible solutions, for
example by enabling the introduction of new objects or the replacement of one
object with another (compatible) object.

A range of middleware solutions based on distributed objects are available, including
Java RMI and CORBA. We summarize the key features of distributed objects in Section
8.2 and provide a detailed case study of CORBA in Section 8.3.

Component-based middleware • Component-based solutions have been developed to
overcome a number of limitations that have been observed for application developers
working with distributed object middleware:

Implicit dependencies: Object interfaces do not describe what the implementation of
an object depends on, making object-based systems difficult to develop (especially
for third-party developers) and subsequently manage.

Programming complexity: Programming distributed object middleware leads to a
need to master many low-level details associated with middleware implementations.

Lack of separation of distribution concerns: Application developers are obliged to
consider details of concerns such as security, failure handling and concurrency,
which are largely similar from one application to another.

SECTION 8.2 DISTRIBUTED OBJECTS 337

No support for deployment: Object-based middleware provides little or no support
for the deployment of (potentially complex) configurations of objects.

Component-based solutions can best be understood as a natural evolution of object-
based approaches, building on the strong heritage of this earlier work. Section 8.4
discusses this rationale in more detail and introduces the key features of a component-
based approach. Section 8.5 then presents two contrasting case studies of component-
based solutions, Enterprise JavaBeans and Fractal, with the former offering a
comprehensive solution that abstracts over many of the key issues in developing
distributed applications and the latter representing a more lightweight solution often
used to construct more complex middleware technologies.

8.2 Distributed objects

Middleware based on distributed objects is designed to provide a programming model
based on object-oriented principles and therefore to bring the benefits of the object-
oriented approach to distributed programming.

Emmerich [2000] sees such distributed objects as a natural evolution from three
strands of activity:

• In distributed systems, earlier middleware was based on the client-server model
and there was a desire for more sophisticated programming abstractions.

• In programming languages, earlier work in object-oriented languages such as
Simula-67 and Smalltalk led to the emergence of more mainstream and heavily
used programming languages such as Java and C++ (languages used extensively
in distributed systems).

• In software engineering, significant progress was made in the development of
object-oriented design methods, leading to the emergence of the Unified
Modelling Language (UML) as an industrial-standard notation for specifying
(potentially distributed) object-oriented software systems.

In other words, through adopting an object-oriented approach, distributed systems
developers are not only provided with richer programming abstractions (using familiar
programming languages such as C++ and Java) but are also able to use object-oriented
design principles, tools and techniques (including UML) in the development of
distributed systems software. This represents a major step forward in an area where,
previously, such design techniques were not available. It is interesting to note that the
OMG, the organization that developed CORBA (see Section 8.3), also manages the
standardization of UML.

Distributed object middleware offers a programming abstraction based on object-
oriented principles. Leading examples of distributed object middleware include Java
RMI (discussed in Section 5.5) and CORBA (examined in depth in Section 8.3 below).
While Java RMI and CORBA share a lot in common, there is one important difference:
the use of Java RMI is restricted to Java-based development, whereas CORBA is a
multi-language solution allowing objects written in a variety of languages to
interoperate. (Bindings exist for C++, Java, Python and several others.)

338 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

It must be stressed that programming with distributed objects is both different
from and significantly more complex than standard object-oriented programming, as
summarized below.

The differences: Key differences between objects and distributed objects have already
been covered in Section 5.4.1, in the context of RMI. For convenience, this discussion
is repeated here in summary form (see Figure 8.1

Figure 8.1 Distributed objects

Objects Distributed objects Description of distributed object

Object references Remote object references Globally unique reference for a
distributed object; may be passed as a
parameter.

Interfaces Remote interfaces Provides an abstract specification of the
methods that can be invoked on the
remote object; specified using an
interface definition language (IDL).

Actions Distributed actions Initiated by a method invocation,
potentially resulting in invocation
chains; remote invocations use RMI.

Exceptions Distributed exceptions Additional exceptions generated from
the distributed nature of the system,
including message loss or process
failure.

Garbage collection Distributed garbage collection Extended scheme to ensure that an
object will continue to exist if at least
one object reference or remote object
reference exists for that object,
otherwise, it should be removed.
Requires a distributed garbage
collection algorithm.

). Other differences will emerge when
we look in detail at CORBA in Section 8.3. These include:

• Class is a fundamental concept in object-oriented languages but does not feature
so prominently in distributed object middleware. As noted in the CORBA case
study, it is difficult to agree upon a common interpretation of class in a
heterogeneous environment where multiple languages coexist. In the object-
oriented world more generally, class has several interpretations, including the
description of the behaviour associated with a group of objects (the template used
to create an object from the class), the place to go to instantiate an object with a
given behaviour (the associated factory) or even the group of objects that adhere
to that behaviour. While the term ‘class’ is avoided, more specific terms such as

SECTION 8.2 DISTRIBUTED OBJECTS 339

‘factory’ and ‘template’ are readily used (a factory being an object that will
instantiate a new object from a given template).

• The style of inheritance is significantly different from that offered in most object-
oriented languages. In particular, distributed object middleware offers interface

inheritance, which is a relationship between interfaces whereby the new interface
inherits the method signatures of the original interface and can add extra ones. In
contrast, object-oriented languages such as Smalltalk offer implementation

inheritance as a relationship between implementations, whereby the new class (in
this case) inherits the implementation (and hence behaviour) of the original class
and can add extra behaviour. Implementation inheritance is much more difficult
to implement, particularly in distributed systems, due to the need to resolve the
correct executable behaviour at runtime. Consider, for example, the level of
heterogeneity that may exist in a distributed system, together with the need to
implement highly scalable solutions.

Wegner, in his seminal paper on object-oriented languages [Wegner 1987], defines
object orientation as objects + class + inheritance. In distributed systems, clearly the
interpretation is somewhat different, with both class and inheritance avoided or adapted.
What remains is a strong focus on encapsulation and data abstraction, together with the
powerful links to design methodologies as emphasized above.

The added complexities: Because of the added complexities involved, the associated
distributed object middleware must provide additional functionality, as summarized
below:

Inter-object communication: A distributed object middleware framework must offer
one or more mechanisms for objects to communicate in the distributed environment.
This is normally provided by remote method invocation, although distributed object
middleware often supplements this with other communications paradigms (for
example, indirect approaches such as distributed events). CORBA provides an event
service and an associated notification service, both implemented as services on top
of the core middleware (see Section 8.3.4).

Lifecycle management: Lifecycle management is concerned with the creation,
migration and deletion of objects, with each step having to deal with the distributed
nature of the underlying environment.

Activation and deactivation: In non-distributed implementations, it can often be
assumed that objects are active all the time while the process that contains them runs.
In distributed systems, however, this cannot be assumed as the numbers of objects
may be very large, and hence it would be wasteful of resources to have all objects
available at any time. In addition, nodes hosting objects may be unavailable for
periods of time. Activation is the process of making an object active in the distributed
environment by providing the necessary resources for it to process incoming
invocations – effectively, locating the object in virtual memory and giving it the
necessary threads to execute. Deactivation is then the opposite process, rendering an
object temporarily unable to process invocations.

Persistence: Objects typically have state, and it is important to maintain this state
across possible cycles of activation and deactivation and indeed system failures.

340 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

Distributed object middleware must therefore offer persistency management for
stateful objects.

Additional services: A comprehensive distributed object middleware framework
must also provide support for the range of distributed system services considered in
this book, including naming, security and transaction services.

8.3 Case study: CORBA

The Object Management Group (OMG) was formed in 1989 with a view to encouraging
the adoption of distributed object systems in order to gain the benefits of object-oriented
programming for software development and to make use of distributed systems, which
were becoming widespread. To achieve its aims, the OMG advocated the use of open
systems based on standard object-oriented interfaces. These systems would be built
from heterogeneous hardware, computer networks, operating systems and programming
languages.

An important motivation was to allow distributed objects to be implemented in
any programming language and to be able to communicate with one another. The OMG
therefore designed an interface language that was independent of any specific
implementation language.

They introduced a metaphor, the object request broker (ORB), whose role is to
help a client to invoke a method on an object (following the RMI style, as introduced in
Chapter 5). This role involves locating the object, activating the object if necessary and
then communicating the client’s request to the object, which carries it out and replies.

This section presents a case study of OMG’s Common Object Request Broker
Architecture (CORBA), building on this object request broker concept. The presentation
focuses on the CORBA 2 specification (the main innovation in its successor, CORBA
3, is the introduction of a component model, as discussed in Section 8.4).

 The main components of CORBA’s language-independent RMI framework are
the following:

• an interface definition language known as IDL, which is described in some detail
in Section 8.3.1;

• an architecture, which is discussed in Section 8.3.2;

• an external data representation, called CDR, which is described in Section 4.3.1 –
it also defines specific formats for the messages in a request-reply protocol and
messages for enquiring about the location of an object, for cancelling requests and
for reporting errors;

• a standard form for remote object references, which is described in Section 8.3.3.

The CORBA architecture also allows for CORBA services – a set of generic services
that are useful for distributed applications. These are briefly introduced in Section 8.3.4
(a more complete version of this case study, including detailed consideration of CORBA
services, can be found on the companion web site [www.cdk5.net]).

SECTION 8.3 CASE STUDY: CORBA 341

Section 8.3.5 also contains an example of developing a client and server using
CORBA.

For an interesting collection of articles on CORBA, see the CACM special issue
[Seetharamanan 1998].

8.3.1 CORBA RMI

Programming in a multi-language RMI system such as CORBA RMI requires more of
the programmer than programming in a single-language RMI system such as Java RMI.
The following new concepts need to be learned:

• the object model offered by CORBA;

• the interface definition language;

• its mapping onto the implementation language.

Other aspects of CORBA programming are similar to those discussed in Chapter 5. In
particular, the programmer defines remote interfaces for the remote objects and then
uses an interface compiler to produce the corresponding proxies and skeletons. But in
CORBA, proxies are generated in the client language and skeletons in the server
language.

CORBA's object model • The CORBA object model is similar to the one described in
Section 5.4.1, but clients are not necessarily objects – a client can be any program that
sends request messages to remote objects and receives replies. The term CORBA object

is used to refer to remote objects. Thus, a CORBA object implements an IDL interface,
has a remote object reference and is able to respond to invocations of methods in its IDL
interface. A CORBA object can be implemented by a language that is not object-
oriented – for example, without the concept of class. Since implementation languages
will have different notions of class, or even none at all, the class concept does not exist
in CORBA (see also the discussion in Section 8.2). Therefore classes cannot be defined
in CORBA IDL, which means that instances of classes cannot be passed as arguments.
However, data structures of various types and of arbitrary complexity can be passed as
arguments.

CORBA IDL • A CORBA IDL interface specifies a name and a set of methods that
clients can request. As an initial example, Figure 8.2 shows two interfaces named Shape

(line 3) and ShapeList (line 5), which are IDL versions of the interfaces defined in Figure
5.16. These are preceded by definitions of two structs, which are used as parameter types
in defining the methods. Note in particular that GraphicalObject is defined as struct,
whereas it was a class in the Java RMI example. A component whose type is struct has
a set of fields containing values of various types, like the instance variables of an object,
but it has no methods.

In more detail, the CORBA IDL provides facilities for defining modules,
interfaces, types, attributes and method signatures. We can see examples of all of the
above, apart from modules, in Figures 5.8 and 8.2. CORBA IDL has the same lexical
rules as C++ but has additional keywords to support distribution, for example, interface,
any, attribute, in, out, inout, readonly and raises. It also allows standard C++
preprocessing facilities. See, for example, the typedef for All in Figure 8.3.

Figure 8.2 IDL interfaces Shape and ShapeList

struct Rectangle{ 1

long width;

long height;

long x;

long y;

};

struct GraphicalObject { 2

string type;

Rectangle enclosing;

boolean isFilled;

};

interface Shape { 3

long getVersion();

GraphicalObject getAllState(); // returns state of the GraphicalObject

};

typedef sequence <Shape, 100> All; 4

interface ShapeList { 5

exception FullException{ }; 6

Shape newShape(in GraphicalObject g) raises (FullException); 7

All allShapes(); // returns sequence of remote object references 8

long getVersion();

};

342 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

The grammar of IDL is a subset of ANSI C++ with additional constructs to
support method signatures. We give here only a brief overview of IDL. A useful
overview and many examples are given in Baker [1997] and Henning and Vinoski
[1999]. The full specification is available on the OMG web site [OMG 2002a].

IDL modules: The module construct allows interfaces and other IDL type definitions to
be grouped in logical units. A module defines a naming scope, which prevents names
defined within a module from clashing with names defined outside it. For example, the
definitions of the interfaces Shape and ShapeList could belong to a module called
Whiteboard, as shown in Figure 8.3.

IDL interfaces: As we have seen, an IDL interface describes the methods that are
available in CORBA objects that implement that interface. Clients of a CORBA object
may be developed just from the knowledge of its IDL interface. From a study of our
examples, readers will see that an interface defines a set of operations and attributes and
generally depends on a set of types defined with it. For example, the PersonList interface
in Figure 5.2 defines an attribute and three methods and depends on the type Person.

IDL methods: The general form of a method signature is:

[oneway] <return_type> <method_name> (parameter1,..., parameterL)

[raises (except1,..., exceptN)] [context (name1,..., nameM)];

Figure 8.3 IDL module Whiteboard

module Whiteboard {

struct Rectangle{

...};

struct GraphicalObject {

...};

interface Shape {

...};

typedef sequence <Shape, 100> All;

interface ShapeList {

...};

};

SECTION 8.3 CASE STUDY: CORBA 343

where the expressions in square brackets are optional. For an example of a method
signature that contains only the required parts, consider:

void getPerson(in string name, out Person p);

The parameters are labelled as in, out or inout, where the value of an in parameter is
passed from the client to the invoked CORBA object and the value of an out parameter
is passed back from the invoked CORBA object to the client. Parameters labelled as
inout are seldom used, but they indicate that the parameter value may be passed in both
directions. The return type may be specified as void if no value is to be returned. Figure
5.8 illustrates a simple example of the use of those keywords. In Figure 8.2, line 7, the
parameter of newShape is an in parameter to indicate that the argument should be passed
from client to server in the request message. The return value provides an additional out

parameter – it can be indicated as void if there is no out parameter.
The parameters may be any one of the primitive types, such as long or boolean, or

one of the constructed types, such as struct or array (more information on IDL primitive
and constructed types can be found below). Our example shows the definitions of two
structs in lines 1 and 2. Sequences and arrays are defined in typedefs, as shown in line
4, which shows a sequence of elements of type Shape of length 100. The semantics of
parameter passing are as follows:

Passing CORBA objects: Any parameter whose type is specified by the name of an
IDL interface, such as the return value Shape in line 7, is a reference to a CORBA
object and the value of a remote object reference is passed.

Passing CORBA primitive and constructed types: Arguments of primitive and
constructed types are copied and passed by value. On arrival, a new value is created
in the recipient’s process. For example, the struct GraphicalObject passed as an
argument (in line 7) produces a new copy of this struct at the server.

These two forms of parameter passing are combined in the method allShapes (in line 8),
whose return type is an array of type Shape – that is, an array of remote object
references. The return value is a copy of the array in which each of the elements is a
remote object reference.

344 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

Invocation semantics: Remote invocation in CORBA has at-most-once call semantics as
the default. However, IDL may specify that the invocation of a particular method has
maybe semantics by using the oneway keyword. The client does not block on oneway

requests, which can be used only for methods that do not return results. For an example
of a oneway request, see the example on callbacks at the end of Section 8.3.5.

Exceptions in CORBA IDL: CORBA IDL allows exceptions to be defined in interfaces and
thrown by their methods. The optional raises expression indicates user-defined
exceptions that can be raised to terminate an execution of the method. Consider the
following example from Figure 8.2:

exception FullException{ };

Shape newShape(in GraphicalObject g) raises (FullException);

The method newShape specifies with the raises expression that it may raise an exception
called FullException, which is defined within the ShapeList interface. In our example,
the exception contains no variables. However, exceptions may be defined to contain
variables, for example:

exception FullException {GraphicalObject g};

When an exception that contains variables is raised, the server may use the variables to
return information to the client about the context of the exception.

CORBA can also produce system exceptions relating to problems with servers
(such as their being too busy or unable to activate objects), problems with
communication and client-side problems. Client programs should handle user-defined
and system exceptions. The optional context expression is used to supply mappings from
string names to string values. See Baker [1997] for an explanation of context.

IDL types: IDL supports 15 primitive types, which include short (16-bit), long (32-bit),
unsigned short, unsigned long, float (32-bit), double (64-bit), char, boolean (TRUE,
FALSE), octet (8-bit) and any (which can represent any primitive or constructed type).
Constants of most of the primitive types and constant strings may be declared using the
const keyword. IDL provides a special type called Object, whose values are remote
object references. If a parameter or result is of type Object, then the corresponding
argument may refer to any CORBA object.

IDL’s constructed types, all of which are passed by value in arguments and results,
are described in Figure 8.4. All arrays or sequences used as arguments must be defined
in typedefs. None of the primitive or constructed data types can contain references.

CORBA also supports passing non-CORBA objects by value [OMG 2002c].
These non-CORBA objects are object-like in the sense that they possess both attributes
and methods. However, they are purely local objects in that their operations cannot be
invoked remotely. The pass-by-value facility provides the ability to pass a copy of a non-
CORBA object between client and server.

This is achieved by the addition to IDL of a type called valuetype for representing
non-CORBA objects. A valuetype is a struct with additional method signatures (like
those of an interface), and valuetype arguments and results are passed by value. That is,
the state is passed to the remote site and used to produce a new object at the destination.

The methods of this new object may be invoked locally, causing its state to
diverge from the state of the original object. Passing the implementation of the methods

Figure 8.4 IDL constructed types

Type Examples Use

sequence typedef sequence <Shape, 100> All;

typedef sequence <Shape> All;

Bounded and unbounded sequences
of Shapes

Defines a type for a variable-length
sequence of elements of a specified IDL
type. An upper bound on the length may
be specified.

string string name;

typedef string<8> SmallString;

Unbounded and bounded sequences
of characters

Defines a sequence of characters,
terminated by the null character. An
upper bound on the length may be
specified.

array typedef octet uniqueId[12];

typedef GraphicalObject GO[10][8];

Defines a type for a multi-dimensional
fixed-length sequence of elements of a
specified IDL type.

record struct GraphicalObject {

 string type;

 Rectangle enclosing;

 boolean isFilled;

};

Defines a type for a record containing a
group of related entities.

enumerated enum Rand

 (Exp, Number, Name);

The enumerated type in IDL maps a type
name onto a small set of integer values.

union union Exp switch (Rand) {

 case Exp: string vote;

 case Number: long n;

 case Name: string s;

};

The IDL discriminated union allows one
of a given set of types to be passed as an
argument. The header is parameterized
by an enum, which specifies which
member is in use.

SECTION 8.3 CASE STUDY: CORBA 345

is not so straightforward, since the client and server may use different languages.
However, if the client and server are both implemented in Java, the code can be
downloaded. For a common implementation in C++, the necessary code would need to
be present at both client and server.

This facility is useful when it is beneficial to place a copy of an object in the client
process to enable it to receive local invocations. However, it does not get us any nearer
to passing CORBA objects by value.

Attributes: IDL interfaces can have attributes as well as methods. Attributes are like
public class fields in Java. Attributes may be defined as readonly where appropriate. The
attributes are private to CORBA objects, but for each attribute declared, a pair of
accessor methods is generated automatically by the IDL compiler: one to retrieve the
value of the attribute and the other to set it. For readonly attributes, only the getter
method is provided. For example, the PersonList interface defined in Figure 5.2 includes
the following definition of an attribute:

readonly attribute string listname;

346 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

Inheritance: IDL interfaces may be extended through interface inheritance, as defined in
Section 8.2 above. For example, if interface B extends interface A, this means that it may
add new types, constants, exceptions, methods and attributes to those of A. An extended
interface can redefine types, constants and exceptions but is not allowed to redefine
methods. A value of an extended type is valid as the value of a parameter or result of the
parent type. For example, the type B is valid as the value of a parameter or result of the
type A. In addition, an IDL interface may extend more than one interface. For example,
interface Z here extends both B and C:

interface A { };

interface B: A{ };

interface C {};

interface Z : B, C {};

This means that Z has all of the components of both B and C (apart from those it
redefines), as well as those it defines as extensions.

When an interface such as Z extends more than one interface, there is a possibility
that it may inherit a type, constant or exception with the same name from two different
interfaces. For example, suppose that both B and C define a type called Q; the use of Q
in the Z interface will be ambiguous unless a scoped name such as B::Q or C::Q is given.
IDL does not permit an interface to inherit methods or attributes with common names
from two different interfaces.

All IDL interfaces inherit from the type Object, which implies that all IDL
interfaces are compatible with the type Object – which includes remote object
references. This makes it possible to define IDL operations that can takes as an argument
or return as a result a remote object reference of any type. The bind and resolve

operations in the Naming service are examples.

IDL type identifiers: As we will see in section 8.3.2, type identifiers are generated by the
IDL compiler for each type in an IDL interface. For example, the IDL type for the
interface Shape (Figure 8.3) might be:

IDL:Whiteboard/Shape:1.0

This example shows that an IDL type name has three parts – the IDL prefix, a type name
and a version number. Since interface identifiers are used as keys for accessing interface
definitions in the interface repository (described in Section 8.3.2), programmers must
ensure that they provide a unique mapping to the interfaces themselves. Programmers
may use the IDL prefix pragma to prefix an additional string to the type name in order
to distinguish their own types from those of others.

IDL pragma directives: These allow additional, non-IDL properties to be specified for
components in an IDL interface (see Henning and Vinoski [1999]). These properties
include, for example, specifying that an interface will be used only locally, or supplying
the value of an interface repository ID. Each pragma is introduced by #pragma and
specifies its type, for example:

#pragma version Whiteboard 2.3

CORBA language mappings • The mapping from the types in IDL to types in a given
programming language is quite straightforward. For example, in Java the primitive types
in IDL are mapped to the corresponding primitive types in that language. Structs, enums

SECTION 8.3 CASE STUDY: CORBA 347

and unions are mapped to Java classes; sequences and arrays in IDL are mapped to
arrays in Java. An IDL exception is mapped to a Java class that provides instance
variables for the fields of the exception and constructors. The mappings in C++ are
similarly straightforward.

However, some difficulties arise with mapping the parameter-passing semantics
of IDL onto those of Java. In particular, IDL allows methods to return several separate
values via output parameters, whereas Java can have only a single result. The Holder

classes are provided to overcome this difference, but this requires the programmer to
make use of them, which is not altogether straightforward. For example, the method
getPerson in Figure 5.2 is defined in IDL as follows:

void getPerson(in string name, out Person p);

In Java, the equivalent method would be defined as:

void getPerson(String name, PersonHolder p);

and the client would have to provide an instance of PersonHolder as the argument of its
invocation. The holder class has an instance variable that holds the value of the argument
for the client to access by RMI when the invocation returns. It also has methods to
transmit the argument between server and client.

Although C++ implementations of CORBA can handle out and inout parameters
quite naturally, C++ programmers suffer from a different set of problems with
parameters, related to storage management. These difficulties arise when object
references and variable-length entities such as strings or sequences are passed as
arguments.

For example, in Orbix [Baker 1997] the ORB keeps reference counts to remote
objects and proxies and releases them when they are no longer needed. It provides
programmers with methods for releasing or duplicating them. Whenever a server
method has finished executing, the out arguments and results are released and the
programmer must duplicate them if they will still be needed. For example, a C++ servant
implementing the ShapeList interface will need to duplicate the references returned by
the method allShapes. Object references passed to clients must be released when they
are no longer needed. Similar rules apply to variable-length parameters.

In general, programmers using IDL not only have to learn the IDL notation itself
but also have an understanding of how its parameters are mapped onto the parameters
of the implementation language.

Asynchronous RMI • CORBA supports a form of asynchronous RMI that allows clients
to make non-blocking invocation requests on CORBA objects [OMG 2004e]. It is
intended to be implemented in the client. Therefore a server is generally unaware of
whether it is invoked synchronously or asynchronously. (One exception is the
Transaction Service, which does need to be aware of the difference.)

Asynchronous RMI adds two new variants to the invocation semantics of RMIs:

• callback, in which a client uses an extra parameter to pass a reference to a callback
with each invocation so that the server can call back with the results;

• polling, in which the server returns a valuetype object that can be used to poll or
wait for the reply.

348 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

The architecture of asynchronous RMI allows an intermediate agent to be deployed to
make sure that the request is carried out and, if necessary, to store the reply. Thus it is
appropriate for use in environments where clients may become temporarily
disconnected – such as, for example, a client using a laptop on a train.

8.3.2 The architecture of CORBA

The CORBA architecture is designed to support the role of an object request broker that
enables clients to invoke methods in remote objects, where both clients and servers can
be implemented in a variety of programming languages. The main components of the
CORBA architecture are illustrated in Figure 8.5.

Figure 8.5 The main components of the CORBA architecture

client server

proxy

or dynamic invocation

implementation
 repository

ob
je

ct
ad

ap
te

r

ORBORB

sk
el

et
on

or dynamic skeleton

client
 program

interface
 repository

Request

Reply
corecore for A

Servant
A

This figure should be compared with Figure 5.15, in which case it will be noted
that the CORBA architecture contains three additional components: the object adapter,
the implementation repository and the interface repository.

CORBA provides for both static and dynamic invocations. Static invocations are
used when the remote interface of the CORBA object is known at compile time,
enabling client stubs and server skeletons to be used. If the remote interface is not known
at compile time, dynamic invocation must be used. Most programmers prefer to use
static invocation because it provides a more natural programming model.

We now discuss the components of the architecture, leaving those concerned with
dynamic invocation until last.

ORB core • The role of the ORB core includes all the functionality of the
communication module of Figure 5.15. In addition, an ORB core provides an interface
that includes the following:

• operations enabling it to be started and stopped;

• operations to convert between remote object references and strings;

• operations to provide argument lists for requests using dynamic invocation.

Object adapter • The role of an object adapter is to bridge the gap between CORBA
objects with IDL interfaces and the programming language interfaces of the

SECTION 8.3 CASE STUDY: CORBA 349

corresponding servant classes. This role also includes that of the remote reference and
dispatcher modules in Figure 5.15. An object adapter has the following tasks:

• It creates remote object references for CORBA objects (see Section 8.3.3).

• It dispatches each RMI via a skeleton to the appropriate servant.

• It activates and deactivates servants.

An object adapter gives each CORBA object a unique object name, which forms part of
its remote object reference. The same name is used each time an object is activated. The
object name may be specified by the application program or generated by the object
adapter. Each CORBA object is registered with its object adapter, which keeps a remote
object table that maps the names of CORBA objects to their servants.

Each object adapter also has its own name, which forms part of the remote object
references of all of the CORBA objects it manages. This name may either be specified
by the application program or generated automatically.

Portable object adapter • The CORBA standard for object adapters is called the
Portable Object Adapter (POA). It is called portable because it allows applications and
servants to be run on ORBs produced by different developers [Vinoski 1998]. This is
achieved by means of the standardization of the skeleton classes and of the interactions
between the POA and the servants.

The POA supports CORBA objects with two different sorts of lifetimes:

• those whose lifetimes are restricted to that of the process in which their servants
are instantiated;

• those whose lifetimes can span the instantiations of servants in multiple processes.

The former have transient object references and the latter have persistent object
references (see Section 8.3.3).

The POA allows CORBA objects to be instantiated transparently; and in addition
it separates the creation of CORBA objects from the creation of th, servants that
implement those objects. Server applications such as databases with large numbers of
CORBA objects can create servants on demand, only when the objects are accessed. In
this case, they may use database keys for the object names, or they may use a single
servant to support all of these objects.

In addition, it is possible to specify policies to the POA, for example, as to whether
it should provide a separate thread for each invocation, whether the object references
should be persistent or transient and whether there should be a separate servant for each
CORBA object. The default is that a single servant can represent all of the CORBA
objects for its POA.

Note that implementations of CORBA provide interfaces to the functionality of
the POA and the ORB core through pseudo-objects, given this name because they
cannot be used like regular CORBA objects; for example, they cannot be passed as
arguments in RMIs. They do, though, have IDL interfaces and are implemented as
libraries. The POA pseudo-object includes, for example, one method for activating a
POAmanager and another method, servant_to_reference, for registering a CORBA
object; the ORB pseudo-object includes the method init, which must be called to
initialize the ORB, the method resolve_initial_references, which is used to find services

350 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

such as the Naming service and the root POA, and other methods that enable
conversions between remote object references and strings.

Skeletons • Skeleton classes are generated in the language of the server by an IDL
compiler. As described in Section 5.4.2, remote method invocations are dispatched via
the appropriate skeleton to a particular servant, and the skeleton unmarshals the
arguments in request messages and marshals exceptions and results in reply messages.

Client stubs/proxies • These are in the client language. The class of a proxy (for object-
oriented languages) or a set of stub procedures (for procedural languages) is generated
from an IDL interface by an IDL compiler for the client language. As before, the client
stubs/proxies marshal the arguments in invocation requests and unmarshal exceptions
and results in replies.

Implementation repository • An implementation repository is responsible for activating
registered servers on demand and for locating servers that are currently running. The
object adapter name is used to refer to servers when registering and activating them.

An implementation repository stores a mapping from the names of object adapters
to the pathnames of files containing object implementations. Object implementations
and object adapter names are generally registered with the implementation repository
when server programs are installed. When object implementations are activated in
servers, the hostname and port number of the server are added to the mapping:

Implementation repository entry:

object adapter name pathname of object
implementation

hostname and port number
of server

Not all CORBA objects need to be activated on demand. Some objects, for example
callback objects created by clients, run once and cease to exist when they are no longer
needed. They do not use the implementation repository.

An implementation repository generally allows extra information to be stored
about each server, such as access control information as to who is allowed to activate it
or to invoke its operations. It is possible to replicate information in implementation
repositories in order to provide availability or fault tolerance.

Interface repository • The role of the interface repository is to provide information
about registered IDL interfaces to clients and servers that require it. For an interface of
a given type it can supply the names of the methods and, for each method, the names and
types of the arguments and exceptions. Thus, the interface repository adds a facility for
reflection to CORBA. Suppose that a client program receives a remote reference to a
new CORBA object. If the client has no proxy for it, it can ask the interface repository
about the methods of the object and the types of parameter each of them requires.

When an IDL compiler processes an interface, it assigns a type identifier to each
IDL type it encounters. For each interface registered with it, the interface repository
provides a mapping between the type identifier of that interface and the interface itself.
Thus, the type identifier of an interface is sometimes called the repository ID because it
may be used as a key to IDL interfaces registered in the interface repository.

SECTION 8.3 CASE STUDY: CORBA 351

Every CORBA remote object reference includes a slot that contains the type
identifier of its interface, enabling clients that hold it to enquire its type of the interface
repository. Those applications that use static (ordinary) invocation with client proxies
and IDL skeletons do not require an interface repository. Not all ORBs provide an
interface repository.

Dynamic invocation interface • As suggested in Section 5.5, in some applications it
may be necessary to construct a client program without knowing all the proxy classes it
will need in the future. For example, an object browser might need to display
information about all the CORBA objects available in the various servers in a distributed
system. It is not feasible for such a program to include proxies for all of these objects,
particularly as new objects may be added to the system as time passes. CORBA does not
allow classes for proxies to be downloaded at runtime, as in Java RMI. The dynamic
invocation interface is CORBA’s alternative.

The dynamic invocation interface allows clients to make dynamic invocations on
remote CORBA objects. It is used when it is not practical to employ proxies. The client
can obtain from the interface repository the necessary information about the methods
available for a given CORBA object. The client may use this information to construct
an invocation with suitable arguments and send it to the server.

Dynamic skeletons • Again, as explained in Section 5.5, it may be necessary to add to
a server a CORBA object whose interface was unknown when the server was compiled.
If a server uses dynamic skeletons, then it can accept invocations on the interface of a
CORBA object for which it has no skeleton. When a dynamic skeleton receives an
invocation, it inspects the contents of the request to discover its target object, the method
to be invoked and the arguments. It then invokes the target.

Legacy code • The term legacy code refers to existing code that was not designed with
distributed objects in mind. A piece of legacy code may be made into a CORBA object
by defining an IDL interface for it and providing an implementation of an appropriate
object adapter and the necessary skeletons.

8.3.3 CORBA remote object references

CORBA specifies a format for remote object references that is suitable for use whether
or not the remote object is to be activated by an implementation repository. References
using this format are called interoperable object references (IORs). The following
figure is based on Henning [1998], which contains a more detailed account of IORs:

IOR format

IDL interface type ID Protocol and address details Object key

interface repository
identifier or type

IIOP host domain
name

 port number adapter name object name

Stepping through the various fields:

• The first field of an IOR specifies the type identifier of the IDL interface of the
CORBA object. Note that if the ORB has an interface repository, this type name

352 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

is also the interface repository identifier of the IDL interface, which allows the
IDL definition for the interface to be retrieved at runtime.

• The second field specifies the transport protocol and the details required by that
particular transport protocol to identify the server. In particular, the Internet Inter-
ORB protocol (IIOP) uses TCP, in which the server address consists of a host
domain name and a port number [OMG 2004a].

• The third field is used by the ORB to identify a CORBA object. It consists of the
name of an object adapter in the server and the object name of a CORBA object
specified by the object adapter.

Transient IORs for CORBA objects last only as long as the process that hosts those
objects, whereas persistent IORs last between activations of the CORBA objects. A
transient IOR contains the address details of the server hosting the CORBA object,
whereas a persistent IOR contains the address details of the implementation repository
with which it is registered. In both cases, the client ORB sends the request message to
the server whose address details are given in the IOR. Here is how the IOR is used to
locate the servant representing the CORBA object in the two cases:

Transient IORs: The server ORB core receives the request message containing the
object adapter name and object name of the target. It uses the object adapter name to
locate the object adapter, which uses the object name to locate the servant.

Persistent IORs: An implementation repository receives the request. It extracts the
object adapter name from the IOR in the request. Provided that the object adapter
name is in its table, it attempts if necessary to activate the CORBA object at the host
address specified in its table. Once the CORBA object has been activated, the
implementation repository returns its address details to the client ORB, which uses
them as the destination for RMI request messages, which include the object adapter
name and the object name. These enable the server ORB core to locate the object
adapter, which uses the object name to locate the servant, as before.

The second field of an IOR may be repeated so as to specify the host domain name and
port number of more than one destination, to allow for an object or an implementation
repository to be replicated at several different locations.

The reply message in the request-reply protocol includes header information that
enables the above procedure for persistent IORs to be carried out. In particular, it
includes a status entry that can indicate whether the request should be forwarded to a
different server, in which case the body of the reply includes an IOR that contains the
address of the server of the newly activated object.

8.3.4 CORBA services

CORBA includes specifications for services that may be required by distributed objects.
In particular, the Naming service is an essential addition to any ORB, as we will see in
our programming example in Section 8.3.5. An index to documentation on all of the
services can be found at OMG’s web site [www.omg.org]. Many of the CORBA
services are described in Orfali et al. [1996, 1997]. A summary of key CORBA Services
is included in Figure 8.6. Further details of such services can be found on the companion
web site [www.cdk5.net/corba].

Figure 8.6 CORBA Services

CORBA Service Role Further details

Naming service Supports naming in CORBA, in particular mapping names to
remote object references within a given naming context (see
Chapter 9).

[OMG 2004b]

Trading service Whereas the Naming service allows objects to be located by
name, the Trading service allows them to be located by
attribute; that is, it is a directory service. The underlying
database manages a mapping of service types and associated
attributes onto remote object references.

[OMG 2000a,
Henning and
Vinoski 1999]

Event service Allows objects of interest to communicate notifications to
subscribers using ordinary CORBA remote method
invocations (see Chapter 6 for more on event services
generally).

[Farley 1998,
OMG 2004c]

Notification

service

Extends the event service with added capabilities including
the ability to define filters expressing events of interest and
also to define the reliability and ordering properties of the
underlying event channel.

[OMG 2004d]

Security service Supports a range of security mechanisms including
authentication, access control, secure communication,
auditing and nonrepudiation (see Chapter 11).

[Blakely 1999,
Baker 1997,
OMG 2002b]

Transaction

service

Supports the creation of both flat and nested transactions (as
defined in Chapters 16 and 17).

[OMG 2003]

Concurrency

control service

Uses locks to apply concurrency control to the access of
CORBA objects (may be used via the transaction service or as
an independent service).

[OMG 2000b]

Persistent state

service

Offers a persistent object store for CORBA, used to save and
restore the state of CORBA objects (implementations are
retrieved from the implementation repository).

[OMG 2002d]

Lifecycle service Defines conventions for creating, deleting, copying and
moving CORBA objects; for example, how to use factories to
create objects.

[OMG 2002e]

SECTION 8.3 CASE STUDY: CORBA 353

8.3.5 CORBA client and server example

This section outlines the steps necessary to produce client and server programs that use
the IDL Shape and ShapeList interfaces shown in Figure 8.2. This is followed by a
discussion of callbacks in CORBA. We use Java as the client and server languages, but
the approach is similar for other languages. The interface compiler idlj can be applied to
the CORBA interfaces to generate the following items:

• The equivalent Java interfaces – two per IDL interface. The name of the first Java
interface ends in Operations – this interface just defines the operations in the IDL
interface. The second Java interface has the same name as the IDL interface and

354 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

implements the operations in the first interface as well as those in an interface
suitable for a CORBA object. For example, the IDL interface ShapeList results in
the two Java interfaces ShapeListOperations and ShapeList, as shown in Figure
8.7

Figure 8.7 Java interfaces generated by idlj from CORBA interface ShapeList

public interface ShapeListOperations {

 Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException;

 Shape[] allShapes();

 int getVersion();

}

public interface ShapeList extends ShapeListOperations, org.omg.CORBA.Object,

org.omg.CORBA.portable.IDLEntity { }

.

• The server skeletons for each idl interface. The names of skeleton classes end in
POA – for example, ShapeListPOA.

• The proxy classes or client stubs, one for each IDL interface. The names of these
classes end in Stub – for example, _ShapeListStub.

• A Java class to correspond to each of the structs defined with the IDL interfaces.
In our example, classes Rectangle and GraphicalObject are generated. Each of
these classes contains a declaration of one instance variable for each field in the
corresponding struct and a pair of constructors, but no other methods.

• Classes called helpers and holders, one for each of the types defined in the IDL
interface. A helper class contains the narrow method, which is used to cast down
from a given object reference to the class to which it belongs, which is lower down
the class hierarchy. For example, the narrow method in ShapeHelper casts down to
class Shape. The holder classes deal with out and inout arguments, which cannot be
mapped directly onto Java. See Exercise 8.9 for an example of the use of holders.

Server program • The server program should contain implementations of one or more
IDL interfaces. For a server written in an object-oriented language such as Java or C++,
these interfaces are implemented as servant classes. CORBA objects are instances of
servant classes.

When a server creates an instance of a servant class, it must register it with the
POA, which makes the instance into a CORBA object and gives it a remote object
reference. Unless this is done, the CORBA object will not be able to receive remote
invocations. Readers who studied Chapter 5 carefully may realize that registering the
object with the POA causes it to be recorded in the CORBA equivalent of the remote
object table.

In our example, the server contains implementations of the interfaces Shape and
ShapeList in the form of two servant classes, together with a server class that contains
an initialization section (see Section 5.4.2) in its main method:

The servant classes: Each servant class extends the corresponding skeleton class and
implements the methods of an IDL interface using the method signatures defined in

Figure 8.8 ShapeListServant class of the Java server program for CORBA interface ShapeList

import org.omg.CORBA.*;

import org.omg.PortableServer.POA;

class ShapeListServant extends ShapeListPOA {

private POA theRootpoa;

private Shape theList[];

private int version;

 private static int n=0;

public ShapeListServant(POA rootpoa){

theRootpoa = rootpoa;

// initialize the other instance variables

}

public Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException { 1

version++;

Shape s = null;

 ShapeServant shapeRef = new ShapeServant(g, version);

 try {

org.omg.CORBA.Object ref = theRootpoa.servant_to_reference(shapeRef); 2

s = ShapeHelper.narrow(ref);

} catch (Exception e) {}

 if(n >=100) throw new ShapeListPackage.FullException();

theList[n++] = s;

return s;

}
public Shape[] allShapes(){ ... }

public int getVersion() { ... }

}

SECTION 8.3 CASE STUDY: CORBA 355

the equivalent Java interface. The servant class that implements the ShapeList

interface is named ShapeListServant, although any other name could have been
chosen. Its outline is shown in Figure 8.8. Consider the method newShape in line 1,
which is a factory method because it creates Shape objects. To make a Shape object
a CORBA object, it is registered with the POA by means of its servant_to_reference

method, as shown in line 2, which makes use of the reference to the root POA that
was passed on via the constructor when the servant was created. Complete versions
of the IDL interface and the client and server classes in this example are available at
www.cdk5.net/corba.

The server: The main method in the server class ShapeListServer is shown in Figure
8.9. It first creates and initializes the ORB (line 1), then gets a reference to the root
POA and activates the POAManager (lines 2 & 3). Then it creates an instance of
ShapeListServant, which is just a Java object (line 4), and in doing this passes on a
reference to the root POA. It then makes it into a CORBA object by registering it with
the POA (line 5). After this, it registers the server with the Naming service. It then
waits for incoming client requests (line 10).

Figure 8.9 Java class ShapeListServer

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

import org.omg.PortableServer.*;

public class ShapeListServer {

public static void main(String args[]) {

 try{

ORB orb = ORB.init(args, null); 1

POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA")); 2

rootpoa.the_POAManager().activate(); 3

ShapeListServant SLSRef = new ShapeListServant(rootpoa); 4

org.omg.CORBA.Object ref = rootpoa.servant_to_reference(SLSRef); 5

ShapeList SLRef = ShapeListHelper.narrow(ref);

org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");

 NamingContext ncRef = NamingContextHelper.narrow(objRef); 6

NameComponent nc = new NameComponent("ShapeList", ""); 7

NameComponent path[] = {nc}; 8

ncRef.rebind(path, SLRef); 9

orb.run(); 10

 } catch (Exception e) { ... }

}
}

356 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

A server using the Naming service first gets a root naming context using the
NamingContextHelper (line 6). The naming context defines the scope within which
a set of names apply (each of the names within a context must be unique). The server
then makes a NameComponent (line 7), with the NameComponent being an object
representing a name in CORBA. This has two parts, a name and a kind; the kind field
is purely descriptive (the field is used by applications and is not interpreted by the
Naming service). Names can be compound and represented by a path to the object in
the naming graph. In this example, compound naming is not used; rather, the path
consists of a single name as defined in line 8. Finally, the server uses the rebind

method of the Naming service (line 9), which registers the name and remote object
reference pair in the appropriate context. Clients carry out the same steps but use the
resolve method as shown in Figure 8.10, line 2.

The client program • An example client program is shown in Figure 8.10. It creates and
initializes an ORB (line 1), then contacts the Naming service to get a reference to the
remote ShapeList object by using its resolve method (line 2). After that it invokes its
allShapes method (line 3) to obtain a sequence of remote object references to all the
Shapes currently held at the server. It then invokes the getAllState method (line 4),
giving as its argument the first remote object reference in the sequence returned; the
result is supplied as an instance of the GraphicalObject class.

Figure 8.10 Java client program for CORBA interfaces Shape and ShapeList

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

public class ShapeListClient{

public static void main(String args[]) {

try{

ORB orb = ORB.init(args, null); 1

org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objRef);

NameComponent nc = new NameComponent("ShapeList", "");

NameComponent path [] = { nc };

ShapeList shapeListRef =

ShapeListHelper.narrow(ncRef.resolve(path)); 2

Shape[] sList = shapeListRef.allShapes(); 3

GraphicalObject g = sList[0].getAllState(); 4

} catch(org.omg.CORBA.SystemException e) {...} 5

}

}

SECTION 8.3 CASE STUDY: CORBA 357

The getAllState method seems to contradict our earlier statement that objects
cannot be passed by value in CORBA, because both client and server deal in instances
of the class GraphicalObject. However, there is no contradiction: the CORBA object
returns a struct, and clients using a different language might see it differently. For
example, in the C++ language the client would see it as a struct. Even in Java, the
generated class GraphicalObject is more like a struct because it has no methods.

Client programs should always catch CORBA SystemExceptions, which report on
errors due to distribution (see line 5). Client programs should also catch the exceptions
defined in the IDL interface, such as the FullException thrown by the newShape method.

This example illustrates the use of the narrow operation: the resolve operation of
the Naming service returns a value of type Object, and this type is narrowed to suit the
particular type required – (ShapeList).

Callbacks • Callbacks can be implemented in CORBA in a manner similar to the one
described for Java RMI in Section 5.5.1. For example, the WhiteboardCallback

interface may be defined as follows:

interface WhiteboardCallback {

 oneway void callback(in int version);

};

This interface is implemented as a CORBA object by the client, enabling the server to
send the client a version number whenever new objects are added. But before the server
can do this, the client needs to inform the server of the remote object reference of its

358 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

object. To make this possible, the ShapeList interface requires additional methods such
as register and deregister, as follows:

int register(in WhiteboardCallback callback);

void deregister(in int callbackId);

After a client has obtained a reference to the ShapeList object and created an instance of
WhiteboardCallback, it uses the register method of ShapeList to inform the server that
it is interested in receiving callbacks. The ShapeList object in the server is responsible
for keeping a list of interested clients and notifying all of them each time its version
number increases when a new object is added. The callback method is declared as
oneway so that the server may use asynchronous calls to avoid delay as it notifies each
client.

8.4 From objects to components

Distributed object middleware has been heavily deployed in a wide range of
applications, including the areas featured in Chapter 1: finance and commerce,
healthcare, education, transport and logistics and so on. The techniques incorporated in
CORBA and related platforms have proved to be successful in tackling many of the key
issues associated with distributed programming, especially related to resolving
heterogeneity and enabling portability and interoperability of distributed systems
software. The range of services that accompany such platforms also encourage the
development of software that is secure and reliable.

However, a number of shortcomings have been identified. This has led to the
emergence of what we shall define to be component-based approaches, as a natural
evolution from distributed object computing. This section charts this transition,
discussing the requirements that led to component-based approaches and provides a
definition of components before examining in more depth the styles of component-
based approaches adopted in distributed systems. This is followed by Section 8.5 which
presents two contrasting case studies of component technologies, Enterprise JavaBeans
and Fractal.

Issues with object-oriented middleware • As mentioned above, component-based
approaches emerged to tackle the problems identified with distributed object computing.
The problems were listed in Section 8.1 and are discussed in more detail below.

Implicit dependencies: A distributed object offers a contract to the outside world in terms
of the interface (or interfaces) it offers to the distributed environment. The contract
represents a binding agreement between the provider of the object and users of that
object in terms of its expected behaviour. It is often assumed that such interfaces provide
a complete contract for the deploying and use of this object. However, this is not the
case. The problem arises from the fact that the internal (encapsulated) behaviour of an
object is hidden. For example, an object may communicate with another object or
associated distributed system service through a remote method invocation or other
communication paradigm. If we look back at the CORBA server and client programs
shown in Figure 8.9 and Figure 8.10, respectively, we see that the server issues a

SECTION 8.4 FROM OBJECTS TO COMPONENTS 359

callback to the client, but this is not apparent from the interface defined on the server.
Also, while both the client and the server communicate with the name service, again this
is not visible from the external view of that object (as offered by the interfaces).

More generally, a given object can make arbitrary calls to other application-level
objects or to distributed system services offering naming, persistence, concurrency
control, transactions, security and so on, and this is not captured in the external view of
the configuration. Implicit dependencies in the distributed configuration make it
difficult to ensure the safe composition of a configuration, to replace one object with
another, and for third-party developers to implement one particular element in a
distributed configuration.

Requirement: From this, there is a clear requirement to specify not only the
interfaces offered by an object but also the dependencies that object has on other
objects in the distributed configuration.

Interaction with the middleware: Despite the goals of transparency, it is clear that in using
distributed object middleware the programmer is exposed to many relatively low-level
details associated with the middleware architecture. Again, the client-server example
shown in Figures 8.9 and 8.10 provides an illustration of this. Despite this being a rather
simple application, there are many CORBA-related calls that are absolutely essential to
the operation of the application. These include calls associated with naming (as
mentioned above), with the POA and to the ORB core. In more complex examples, this
could include arbitrarily sophisticated code in terms of the creation and management of
object references, management of object lifecycles, activation and passivation policies,
management of persistent state and policies for mappings to underlying platform
resources such as threads. All of this can very quickly become a distraction from the
main purpose of the code, which is to create a particular application. This is all too
evident from the example cited above, where the actual code related to the whiteboard
application is minimal and interleaved with code related to distributed systems concerns.

Requirement: There is a clear need to simplify the programming of distributed
applications, to present a clean separation of concerns between code related to
operation in a middleware framework and code associated with the application, and
to allow the programmer to focus exclusively on the latter.

Lack of separation of distribution concerns: Programmers using distributed object
middleware also have to deal explicitly with non-functional concerns related to issues
such as security, transactions, coordination and replication. In technologies such as
CORBA and RMI, this is achieved by inserting appropriate calls to the associated
distributed system services within the objects. This has two repercussions:

• Programmers must have an intimate knowledge of the full details of all the
associated distributed system services.

• The implementation for a given object will contain application code alongside
calls to distributed system services and to the underlying middleware interfaces
(as mentioned above). The resultant tangling of concerns further increases the
complexity of distributed systems programming.

360 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

Requirement: The separation of concerns alluded to above should extend also to
dealing with the full range of distributed system services, and the complexities of
dealing with such services should be hidden wherever possible from the programmer.

No support for deployment: While technologies such as CORBA and Java RMI make it
possible to develop arbitrary distributed configurations of objects, there is no support for
the deployment of such configurations. Rather, objects must be deployed manually on
individual machines. This can become a tiresome and error-prone process, particularly
with large-scale deployments consisting of many objects spread over a physical
architecture with a large number of (potentially heterogeneous) nodes. In addition to
physically placing the objects, objects must also be activated and appropriate bindings
created to other objects. Because of the lack of support for deployment, developers
inevitably resort to ad hoc strategies for deployment, which are then not portable to other
environments.

Requirement: Middleware platforms should provide intrinsic support for
deployment so that distributed software can be installed and deployed in the same
way as software for a single machine, with the complexities of deployment hidden
from the user.

These four requirements have led to the emergence of component-based approaches to
distributed systems development, alongside the emergence of component-based

middleware, including the style of middleware referred to as application servers.
Note that although component-based approaches have only gained importance in

recent years, their roots can be traced back to earlier projects addressing reconfiguration
in distributed systems (such as the Conic Project at Imperial College London [Magee
and Sloman 1989]).

Essence of components • For the purposes of this discussion, we adopt the definition of
components provided by Szyperski in his book on component software [Szyperski
2002]:

Components: A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only.

In this classic definition, the word ‘only’ refers to the fact that any context dependencies
must be explicit – that is, there are no implicit dependencies present.

Software components are like distributed objects in that they are encapsulated
units of composition, but a given component specifies both its interfaces provided to the
outside world and its dependencies on other components in the distributed environment.
The dependencies are also represented as interfaces. More specifically, a component is
specified in terms of a contract, which includes:

• a set of provided interfaces – that is, interfaces that the component offers as
services to other components;

• a set of required interfaces – that is, the dependencies that this component has in
terms of other components that must be present and connected to this component
for it to function correctly.

In a given component configuration, every required interface must be bound to a
provided interface of another component. This is also referred to as a software

SECTION 8.4 FROM OBJECTS TO COMPONENTS 361

architecture consisting of components, interfaces and connections between interfaces.
We can see an example of such a configuration in Figure 8.11.

Figure 8.11 An example software architecture

Block module

File service

Directory service

Flat file service

Device module

Required interface

Provided interface

 This example shows the
architecture of a simple file system providing an interface to other users and in turn
requiring connection to a directory service component and a flat file service component.
The figure also shows additional connections to block and device modules, capturing the
overall architecture of this particular file system. (We will investigate the actual
architectures of distributed file systems in Chapter 12.)

Interfaces may be of different styles. In particular, many component-based
approaches offer two styles of interface:

• interfaces supporting remote method invocation, as in CORBA and Java RMI;

• interfaces supporting distributed events (as discussed in Chapter 6).

We will see examples of both styles of interface when we look at Enterprise JavaBeans
in Section 8.5.1.

Programming in component-based systems is concerned with the development of
components and their composition. The goal is to support a style of software
development that parallels hardware development in using off-the-shelf components
and composing them together to develop more sophisticated services: a move from
software development to software assembly. This approach therefore supports third-
party development of software components and also makes it easier to adapt system
configurations at runtime, by replacing one component with another that is a precise
match in terms of provided and required interfaces.

Note that advocates of component-based approaches place significant emphasis
on this use of composition and see this as the cleanest approach to constructing complex
software systems. In particular, they advocate composition over inheritance, viewing
inheritance as creating additional forms of implicit dependency (this time between

362 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

classes). This can lead to issues such as the fragile base class problem, where changes
to a base class may have unforeseen repercussions for other objects further down the
inheritance hierarchy [Szyperski 2002].

So far, we have addressed the first requirement highlighted above (in terms of
making all dependencies explicit), but not the next three, which refer to simplifying the
development and deployment of distributed applications. This further level of support
will become apparent when we examine how component-based approaches have
evolved in the distributed systems community.

Components and distributed systems •

Figure 8.12 The structure of a container

Lifecycle interface

External (provided)

interfaces

Components

Calls to external
distributed system

services

Interception

Incoming invocations

A range of component-based middleware
technologies have emerged, including Enterprise JavaBeans (discussed in Section 8.5.1
below) and the CORBA Component Model (CCM) [Wang et al. 2001], an evolution of
CORBA from an object-based to a component-based platform. Component-based
middleware builds on the philosophy captured above but also adds significant support
for distributed systems development and deployment, as discussed below.

Containers: The concept of containers is absolutely central to component-based
middleware. Containers support a common pattern often encountered in distributed
applications, which consists of:

• a front-end (perhaps web-based) client;

• a container holding one or more components that implement the application or
business logic;

• system services that manage the associated data in persistent storage.

(This is analogous to the three-tier model described in Section 2.3.2.)
The tasks of the container are to provide a managed server-side hosting

environment for components and to provide the necessary separation of concerns
alluded to above, where components deal with application concerns and the container

SECTION 8.4 FROM OBJECTS TO COMPONENTS 363

deals with distributed systems and middleware issues, ensuring that non-functional
properties are achieved. The overall structure of a container is shown in Figure 8.12.
This shows a number of components encapsulated within a container; the container
does not provide direct access to the components but rather intercepts incoming
invocations and then takes appropriate actions to ensure the desired properties of the
distributed application are maintained. If we take the case of CORBA, for example, this
would include:

• managing the interaction with the underlying ORB core and POA functionality
and hiding this entirely from application developers;

• managing calls to appropriate distributed system services, including security and
transaction services, to provide the required non-functional properties of the
application, again transparently to the programmer.

Taken together, this can significantly simplify the development of distributed
applications, allowing the component developer to focus exclusively on application-
level concerns. For example, with a container approach, all the POA-related calls
featured in Figures 8.8 and 8.9 would be made by the container and not by the
component. Similarly, through the interception mechanism, the container can issue a
potentially complex sequence of calls to appropriate distributed system services to
implement the required non-functional properties. As an illustration of the latter point,
consider the implementation of a simple management policy to deal with concurrent
access to a component. This can be implemented in a manner that is transparent to the
component by intercepting the incoming invocation at the external interface, acquiring
a lock associated with the underlying component and then proceeding with the call on
the underlying operation on the component itself, ensuring the lock is released when the
invocation is completed (we will talk more about locks in Section 16.4, but for now a
general understanding will suffice).

Middleware that supports the container pattern and the separation of concerns
implied by this pattern is known as an application server. This style of distributed
programming is in widespread use in industry today. A wide range of application servers
are now available; a summary of the key approaches is presented in Figure 8.13

Figure 8.13 Application servers

Technology Developed by Further details

WebSphere Application Server IBM [www.ibm.com]

Enterprise JavaBeans SUN [java.sun.com XII]

Spring Framework SpringSource
(a division of VMware)

[www.springsource.org]

JBoss JBoss Community [www.jboss.org]

CORBA Component Model OMG [Wang et al. 2001]

JOnAS OW2 Consortium [jonas.ow2.org]

GlassFish SUN [glassfish.dev.java.net]

. Section
8.5.1 examines the Enterprise JavaBeans specification as an example of an application
server.

364 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

Support for deployment: Component-based middleware provides support for the
deployment of component configurations; releases of software are packaged as software
architectures (components and their interconnections) together with deployment

descriptors that fully describe how the configurations should be deployed in a
distributed environment.

Note that components are deployed into containers, and deployment descriptors
are interpreted by containers to establish the required policies for the underlying
middleware and distributed system services. A given container therefore includes a
number of components that require the same configuration in terms of distributed
system support.

Deployment descriptors are typically written in XML and include sufficient
information to ensure that:

• components are correctly connected using appropriate protocols and associated
middleware support;

• the underlying middleware and platform are configured to provide the right level
of support to the component configuration (for example, in CORBA, this would
include configuring the POA);

• the associated distributed system services are set up to provide the right level of
security, transaction support and so on.

Tools are also provided to interpret the deployment descriptors and ensure the correct
deployment in a given physical architecture.

8.5 Case studies: Enterprise JavaBeans and Fractal

The advantage of application servers is that they provide comprehensive support for one
style of distributed programming – the three-tier approach as explained above – and
most of the complexities associated with distributed programming are hidden from the
user. The disadvantages are that the approach is both prescriptive and heavyweight:
prescriptive in the sense that the approach mandates that particular style of systems
architecture and heavyweight in that application servers are large and complex software
systems that inevitably carry an overhead in terms of performance and resource
requirements. The approach works best on high-end server machines.

To counter this, a more stripped-down and minimal style of component
programming is also adopted in distributed systems. We refer to this style as lightweight

component models to distinguish them from the much more heavyweight application
server architectures. In this section, we present two case studies of component
technologies: Enterprise JavaBeans, a leading example of the application server
approach, and Fractal, an example of a lightweight component architecture.

8.5.1 Enterprise JavaBeans

Enterprise JavaBeans (EJB) [java.sun.com XII] is a specification of a server-side,
managed component architecture and a major element of the Java Platform, Enterprise
Edition (Java EE), a set of specifications for client-server programming. Other

SECTION 8.5 CASE STUDIES: ENTERPRISE JAVABEANS AND FRACTAL 365

specifications include Java RMI and JMS, as featured elsewhere in this book (in
Chapters 5 and 6, respectively).

EJB is defined as a server-side component model because it supports the
development of the classic style of application, where potentially large numbers of
clients interact with a number of services realized through components or configuration
of components. The components, which are known as beans in EJB, are intended to
capture the application (or business) logic, as defined in Chapter 2, with EJB also
supporting the separation between this application logic and its persistent storage in a
back-end database. In other words, EJB provides direct support for the three-tier
architecture introduced in Section 2.3.2.

EJB is managed in the sense that the container pattern introduced above (in
Section 8.4) is used to provide support for key distributed systems services including
transactions, security and lifecycle support. Typically, the container injects appropriate
calls to the associated services to provide the required properties, and the use of a
transaction manager or security services is completely hidden from the developer of the
associated beans (container-managed). It is also possible for the bean developer to take
more control over these operations (bean-managed).

The goal of EJB is to maintain a strong separation of concerns between the various
roles involved in developing distributed applications. The EJB specification identifies
the following key roles:

• the bean provider, who develops the application logic of the component(s);

• the application assembler, who assembles beans into application configurations;

• the deployer, who takes a given application assembly and ensures it can be
correctly deployed in a given operational environment;

• the service provider, who is a specialist in fundamental distributed system
services such as transaction management and establishes the desired level of
support in these areas;

• the persistence provider, who is a specialist in mapping persistent data to
underlying databases and in managing these relationships at runtime;

• the container provider, who builds on the above two roles and is responsible for
correctly configuring containers with the required level of distributed systems
support in terms of non-functional properties related to, for example, transactions
and security as well as the desired support for persistence;

• the system administrator, who is responsible for monitoring a deployment at
runtime and making any adjustments to ensure its correct operation.

Note that EJB is a heavyweight component architecture in the sense introduced above.
There is significant software complexity, particularly associated with the management
of containers. As such, the approach is prescriptive and intended for certain classes of
application only. As mentioned above, EJB is particularly suited to applications that
follow the three-tier architecture based on a back-end database accessed via a service
interface offered by the middle tier (the application logic). For example, this style of
architecture is common in many eCommerce applications where the database maintains
information on stock items, prices and availability, while the middle tier offers

366 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

interfaces to browse the stock and purchase selected items. These are typically large and
complex systems that require support in terms of distributed system services, and hence
the overhead associated with container management is fully justified. We will use the
example of an eShop throughout this section as motivation and to illustrate the use of
EJB in this setting. Other classes of application will not follow this pattern, and hence
EJB is an inappropriate technology for such applications. Examples include peer-to-peer
structures that simply do not follow this tiered model and more lightweight applications
running on embedded devices where the overhead of EJB cannot be justified.

 In this section, we focus on the features of EJB 3.0 [java.sun.com XII], released
in 2006. A very large number of implementations of EJB 3.0 are available both
commercially and from open source consortia. Leading examples include Spring, JBoss,
JOnAS and GlassFish.

The EJB component model • A bean in EJB is a component offering one or more
business interfaces to potential clients of that component, where interfaces can be either
remote, requiring the use of appropriate communication middleware (such as RMI or
JMS), or local, in which case more direct, and hence efficient, bindings are possible.
Relating back to the terminology introduced in Section 8.4, a business interface is
equivalent to a provided interface (we will see how EJB supports required interfaces
below, in the subsection on dependency injection). A given bean is represented by the
set of remote and local business interfaces together with an associated bean class that
implements the interfaces. Two main styles of bean are supported in the EJB 3.0
specification:

Session beans: A session bean is a component implementing a particular task within
the application logic of a service, for example to make a purchase in our eShop

application. A session bean persists for the duration of a service and maintains a
running conversation with the client for the duration of the session. Session beans can
be either stateful, maintaining associated conversational state (such as the current
status of the eCommerce transaction), or stateless, in which case no state is
maintained. Stateful session beans imply a conversation with a single client and
maintain the state of that conversation. In contrast, stateless beans can have many
concurrent conversations with different clients. The state associated with stateful
beans may or may not be persistent, as we discuss below.

Message-driven beans: Clients interact with session beans using local or remote
invocation. We have seen throughout this book that other communication paradigms
are also important for distributed systems development, including indirect
communication paradigms. The concept of a message-driven bean was introduced in
EJB 2.0 to support indirect communication and, in particular, the possibility to
interact with components using either message queues or topics, building directly on
the functionality offered by JMS (remember that both queues and topics are first-
class entities in JMS representing alternative intermediaries for messages – see
Section 6.4.3). In a message-drive bean, a business interface will be realized as a
listener-style interface reflecting the event-driven nature of the associated bean.

POJOs and annotations • The task of programming in EJB has been simplified
significantly through the use of Enterprise JavaBeanPOJOs (plain old Java objects)
together with Java Enterprise JavaBean annotations. A bean (that is the implementation

SECTION 8.5 CASE STUDIES: ENTERPRISE JAVABEANS AND FRACTAL 367

of the bean’s business interfaces) is a plain old Java object: it consists of the application
logic written simply in Java with no other code relating to it being a bean. Annotations
are then used to ensure the correct behaviour in the EJB context. In other words, a bean
is a POJO supplemented by annotations.

Annotations were introduced in Java 1.5 as a mechanism for associating metadata
with packages, classes, methods, parameters and variables. This metadata can then be
used by frameworks to ensure the right behaviour or interpretation is associated with
that part of the program. As an example, annotations are used to introduce a bean of a
particular style. For example, the following are examples of annotated bean definitions
(representing the main styles of bean in EJB 3.0):

@Stateful public class eShop implements Orders {...}

@Stateless public class CalculatorBean implements Calculator {...}

@MessageDriven public class SharePrice implements MessageListener {...}

Annotations are also used to indicate whether business interfaces are remote (@Remote)
or local (@Local). The following example introduces the Orders interface as a remote
interface and the Calculator interface from the CalculatorBean as a local interface only:

@Remote public interface Orders {...}

@Local public interface Calculator {...}

As will become apparent, annotations are used throughout EJB, providing a
specification of how a program should be interpreted in an EJB context.

In the description that follows we will develop the eShop example as an
illustration of the extensive use of annotations in programming bean objects (in this cas,
a session bean).

Enterprise JavaBean containers in EJB • EJB adopts a container-based approach as
described in Section 8.4. Beans are deployed to containers, and the containers provide
implicit distributed system management using interception. In this way, the container
provides the necessary policies in areas including transaction management, security,
persistence and lifecycle management allowing the bean developer to focus exclusively
on the application logic. Containers must therefore be configured with the necessary
level of support. In the current version, EJB is preconfigured with common default
policies and the developer need only take action if these defaults are insufficient
(referred to as configuration by exception in the specification [java.sun.com XII]).

A significant number of annotations are defined to control the various aspects
mentioned above. We illustrate their use by focusing on Enterprise JavaBean transaction
management and encourage the reader to also look at the EJB 3.0 specifications for
further examples. Transactions will be introduced in Chapters 16 and 17. In outline,
though, their role is to ensure that all objects (or, in this context, components) managed
by a single server (or multiple servers in the case of distributed transactions) remain in
a consistent state in spite of concurrent access from multiple clients and in the event of
server failure. They achieve this by enabling a sequence of operations to be executed
atomically, in that the sequence of operations either completes successfully in a manner
that is free from interference from other concurrent access, or in the presence of a failure
(such as, a server crash), has no effect at all Returning to our eShop example, a
transaction mechanism will ensure, for example, that two concurrent purchases do not
result in a single item being sold twice and that a server crash does not allow the system

368 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

to get into an inconsistent state where an item has been paid for but not assigned to the
purchaser.

The mechanisms to achieve transactions are relatively complex, hence the two
chapters devoted to this area later in the book. Nevertheless, the overall concept is
relatively straightforward, and an intuitive understanding will suffice to understand how
EJB manages transactions. The key thing to bear in mind is that transactions refer to
sequences of operations, and that the sequences must be clearly identified for the
transaction management service to do its job. Transactions in EJB apply equally to any
style of bean, including both session beans and message-driven beans.

The first thing to declare is whether transactions associated with an enterprise
bean should be bean-managed or container-managed. This is achieved by associating the
following annotations with the associated class, respectively:

@TransactionManagement (BEAN)

@TransactionManagement (CONTAINER)

Bean-managed transactions are the most straightforward to understand. In this case, the
bean developer is responsible for explicitly identifying the sequence of operations to be
included within the transaction. This is achieved by explicitly including two methods
from the Java interface javax.transaction.UserTransaction – the User.Transaction.begin

and UserTransaction.commit methods – within the code of the bean. These can be used
at either the client or the server end of an interaction. The following code fragment
illustrates the use of this bean-managed approach in the eShop example:

@Stateful

@TransactionManagement (BEAN)

public class eShop implements Orders {

@Resource javax.transaction.UserTransaction ut;

public void MakeOrder (...) {

ut.begin ();

...

ut.commit ();

}

}

To a certain extent, however, this is against the spirit of the container approach as it
requires the inclusion of transaction-related code within the bean. The alternative,
container-managed transaction, obviates the need for this explicit code by allowing the
container to determine when to start and finish a transaction. This is achieved through
the association of a given demarcation policy with the bean execution. Again, this is
achieved declaratively by associating an appropriate annotation with a given method
within the bean class. For example, consider the following code fragment:

@Stateful public class eShop implements Orders {

...

@TransactionAttribute (REQUIRED)

public void MakeOrder (...) {

...

}

}

SECTION 8.5 CASE STUDIES: ENTERPRISE JAVABEANS AND FRACTAL 369

This shows the association of the REQUIRED policy with the MakeOrder method. This
policy sates that the associated method must be carried out within a transaction. To
understand this policy, it is necessary to realize that a transaction may be initiated by the
caller or may be the responsibility of the bean itself. The REQUIRED policy starts a new
transaction if necessary – that is, if the caller does not provide a transaction context
indicating the work is already being carried out within a transaction. This and other
policies are summarized in Figure 8.14

Figure 8.14 Transaction attributes in EJB.

Attribute Policy

REQUIRED If the client has an associated transaction running, execute
within this transaction; otherwise, start a new transaction.

REQUIRES_NEW Always start a new transaction for this invocation.

SUPPORTS If the client has an associated transaction, execute the
method within the context of this transaction; if not, the call
proceeds without any transaction support.

NOT_SUPPORTED If the client calls the method from within a transaction, then
this transaction is suspended before calling the method and
resumed afterwards – that is, the invoked method is excluded
from the transaction.

MANDATORY The associated method must be called from within a client
transaction; if not, an exception is thrown.

NEVER The associated methods must not be called from within a
client transaction; if this is attempted, an exception is
thrown.

.
Note that, by default, transactions are container-managed in EJB.

Dependency injection: The example above also illustrates a further important role of
containers: Enterprise JavaBean dependency injection. Dependency injection is a
common pattern in programming whereby a third party, in this case a container, is
responsible for managing and resolving the relationships between a component and its
dependencies (the required interfaces, in the terminology of Section 8.4). In particular,
in EJB 3.0, a component refers to a dependency using an annotation and the container is
responsible for resolving this annotation and ensuring that, at runtime, the associated
attribute refers to the right object. This is typically implemented by the container using
reflection.

For example, in the code fragment above, the @Resource annotation indicates a
dependency of this component on an object implementing the UserTransaction

interface. This simply must exist for the configuration to make sense. Dependency
injection both flags this dependency and ensures that, when the correct component
configuration is deployed, the associated attribute ut refers to the right external resource.

370 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

Enterprise JavaBean Interception • The Enterprise JavaBeans specification enables the
programmer to intercept two types of operation on beans in order to alter their default
behaviour:

• method calls associated with a business interface;

• lifecycle events.

We look at each in turn below.

Interception of methods: This mechanism is used where it is necessary to associate a
particular action or set of actions with an incoming call on a business interface. This
applies equally to incoming invocations on a session bean or incoming events on a
message-driven bean. As we have already seen, interception is used widely in the EJB
architecture to provide implicit management. This allows the application developer to
extend the use of interception to more domain-specific concerns not provided by the
container.

Consider the running example of the eShop. Suppose there is a need within the
eShop to implement logging of all operations carried out in the system, for example for
auditing purposes. Interception allows the programmer to introduce such a service
without changing the application logic contained in the bean. As a second example, the
interception mechanism could be used to prevent certain customers from making
purchases in the eShop (for example, if they have defaulted on previous payments).

There are several ways of associating interceptors with a given bean, including
associating an interception class with a given bean class or individual method (using the
annotation @Interceptors), or associating an interception method with a given class
(using the annotation @AroundInvoke). For the sake of simplicity, we focus on the latter
mechanism and return to our example of an eShop:

@Stateful

public class eShop implements Orders {

public void MakeOrder (...) {

...

}

@AroundInvoke

public Object log(InvocationContext ctx) throws Exception {

System.out.println ("The following method was invoked: " +

ctx.getMethod().getName());

return invocationContext.proceed();

}

}

The annotation @AroundInvoke introduces an interceptor on the eShop bean class. The
interceptor method must have the following syntax:

Object <methodName>(javax.ejb.InvocationContext)

This method is then called whenever any of the business methods are called on eShop.
The associated parameter adds significantly to the capabilities of interceptors by
providing both metadata associated with the invocation being intercepted (for example,
references to the bean, the method invoked and the actual parameters associated with the

SECTION 8.5 CASE STUDIES: ENTERPRISE JAVABEANS AND FRACTAL 371

invocation) and also limited capabilities to intercede – that is, to change the parameters
before the method is executed. The last line of the method, the call to proceed, returns
control back to the intercepted method (or to the next interceptor in the chain if more
than one interceptor is defined).

The main methods associated with the invocation context are summarized in
Figure 8.15

Figure 8.15 Invocation contexts in EJB

Signature Use

public Object getTarget() Returns the bean instance associated with the
incoming invocation or event

public Method getMethod() Returns the method being invoked

public Object[] getParameters() Returns the set of parameters associated with the
intercepted business method

public void setParameters(

Object[] params)

Allows the parameter set to be altered by the
interceptor, assuming type correctness is
maintained

public Object proceed() throws

Exception

Execution proceeds to next interceptor in the chain
(if any) or the method that has been intercepted

.

Interception of lifecycle events: A similar mechanism can be used to intercept and react to
lifecycle events associated with a component. In particular, the EJB specification allows
a bean developer to associate interceptors with the creation and deletion of components
using the following annotations, respectively:

@PostConstruct

@PreDestroy

The annotations are associated with given methods in the bean class, with the effect that
these methods will be called when the associated lifecycle events happen. For example,
in the code fragment below from the eShop, TidyUp will be called just before the
component is destroyed:

@Stateful

public class eShop implements Orders {

...

public void MakeOrder (...) { ...}

...

@PreDestroy void TidyUp() { ... }}

}

This annotation is generally used to release any resources currently in use by the eShop

class, for example, open files or sockets associated with the eShop implementation.

372 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

Similarly, TidyUp could be used to ensure key data associated with the eShop is written
to the back-end database.

If the bean is stateful, it is also possible to capture activation and passivation
events using @PostActivate and @PrePassivate. Again, this allows key actions to be
taken in association with these lifecycle events – for example, ensuring conversational
state associated with a session is stored in the database before the bean is passivated.

Annotations are used throughout EJB 3.0 to provide a consistent and simple
programming model whereby component developers construct application logic in
POJOs and then decorate this, where appropriate, with additional meta-level annotations
that are interpreted by the container framework.

8.5.2 Fractal

As mentioned above, Fractal is a lightweight component model that brings the benefits
of component-based programming to the development of distributed systems [Bruneton
et al. 2006, fractal.ow2.org I]. Fractal provides support for programming with

interfaces, with the associated benefits in terms of the separation of interface and
implementation (benefits also provided by distributed objects). Fractal goes further,
though, and supports the explicit representation of the software architecture of the
system, avoiding the problem of implicit dependencies discussed in Section 8.4. The
approach is deliberately minimal, with no support for additional component-related
functionality such as deployment, the full container pattern or the enriched
programming model offered by application servers. Fractal is used to construct more
complex software systems (including middleware systems as discussed below) using the
component model as the basic building block, resulting in software that has a clear
component-based architecture and that is configurable and also reconfigurable at
runtime to match the current operational environment and requirements.

Fractal defines a programming model and, as such, is programming
language–agnostic. Implementations of this model are available in several different
languages, including:

• Julia and AOKell (Java-based, with the latter also offering support for aspect-
oriented programming);

• Cecilia and Think (C-based);

• FracNet (.NET-based);

• FracTalk (Smalltalk-based);

• Julio (Python-based).

Julia and Cecilia are treated as the reference implementations of Fractal.
Fractal is supported by the OW2 consortium [www.ow2.org], an open source

software community for distributed systems middleware that encourages and promotes
the component-based philosophy for the construction of such software. To date, Fractal
has been used in the construction of a wide range of middleware platforms including
Think (a configurable operating system kernel), DREAM (a middleware platform
supporting various forms of indirect communication), Jasmine (a tool supporting the
monitoring and management of SOA platforms), GOTM (offering flexible transaction

SECTION 8.5 CASE STUDIES: ENTERPRISE JAVABEANS AND FRACTAL 373

management) and Proactive (a middleware platform for Grid computing). Fractal is also
the basis of the Grid Component Model (GCM), which has been influential in the
development of associated ETSI standards [Baude et al. 2009]. Further details of all
these projects can be found on the OW2 web site [www.ow2.org].

Note that a some other lightweight component models have been developed
specifically for distributed systems. We feature two – OpenCOM and OSGI – in the box
on the next page.

The core component model • A component in Fractal offers one or more interfaces,
with two types of interfaces available:

• server interfaces, which support incoming operational invocations (equivalent to
provided interfaces in the terminology of Section 8.4);

• client interfaces, which support outgoing invocations (equivalent to required
interfaces).

An interface is an implementation of an interface type, which defines the operations that
are supported by that interface.

Bindings in Fractal: To enable composition, Fractal supports bindings between
interfaces. Two styles of binding are supported by the model:

Primitive bindings: The simplest style of binding is a primitive binding, which is a
direct mapping between one client interface and one server interface within the same
address space, assuming the types are compatible. Primitive bindings can be
implemented efficiently in a given language environment, for example through direct
object references.

Composite bindings: Fractal also supports composite bindings, which are arbitrarily
complex software architectures (that is consisting of components and bindings)
implementing communication between a number of interfaces potentially on
different machines. For example, if you were implementing a CORBA connection in
Fractal, the binding would be composed of components representing the core
architectural elements in CORBA, including proxies, the ORB core, object adapters,
skeletons and servants (mirroring the architecture in Figure 8.5).

Composite bindings are themselves components in Fractal, and this is important
for two reasons:

• A system developed using Fractal is fully configurable in terms of the components
and their interconnections. For example, a configuration can be established
wherein components interact using a composite binding implementing any of the
communication paradigms discussed in Chapters 5 and 6 (remote invocation or
indirect, point-to-point or multiparty, and so on). If a given communication
paradigm is not already provided, it can be developed in Fractal and then made
available to future developers as a component.

• Once established, any aspect of the software architecture can be reconfigured at
runtime, including composite bindings. It is very useful to be able to adapt
communication structures at runtime, for example to introduce added levels of
security or to alter the implementation to be more scalable as a system grows in
size.

OpenCOM • OpenCOM [Coulson et al. 2008] is a lightweight component model
with very similar goals to Fractal. OpenCOM is a minimal and open component
model that is designed to be domain– and operating environment–independent; that
is, the component technology is sufficiently flexible to be applied in any context
including demanding areas such as resource-limited wireless sensor networks.
OpenCOM is also designed to offer negligible overhead in terms of performance and
memory requirements, allowing it to be used in situations where performance is
critical – for example, in router implementations.

The overall architecture of OpenCOM consists of a minimal runtime kernel
supporting basic component operations including loading and unloading a
component, and binding components together. This is then enhanced with optional
reflective and platform extensions, which support the dynamic loading of reflective
capabilities and also different models underpinning key platform operations,
including the semantics of loading and binding. The extensions are therefore
conceptually similar to controllers in Fractal.

OpenCOM has been used in the development of a variety of experimental
middleware platforms, including ReMMoC [Grace et al. 2003], which offers service
discovery in highly heterogeneous ubiquitous computing environments (see Chapter
19), and GridKIT [Grace et al. 2008], an experimental, highly configurable and
reconfigurable middleware framework for Grid computing, which also features an
open overlays framework for the construction of arbitrary network virtualizations
including structured and unstructured peer-to-peer overlays.

OSGi • OSGi [www.osgi.org] is a specification of a Java-based middleware
platform managed by the open standards organization, the OSGi Alliance. A number
of implementations of this specification exist, including Equinox, Knopflerfish, Felix
and Concierge. The platform supports the deployment and subsequent lifecycle
management and adaptation of modular software systems organized as
communicating bundles (similar to components). Bundles communicate through one
or more service interfaces with services published in a service registry, thus
supporting dynamic binding. As the unit of lifecycle management, a given bundle can
be installed, started, activated, stopped and uninstalled. Bundles can also be
dynamically deployed at runtime, and existing bundles updated. OSGi was originally
developed for the programming of service gateways (hence the original name of
Open Service Gateway i) but is now used in a wide variety of application domains,
including in the programming of mobile phones, as middleware for Grid computing
and also as the plug-in architecture in the Eclipse Integrated Development
Environment (IDE), a popular multi-language framework for software development.

OSGi targets the deployment and management of centralized configurations of
software, for example residing on a single device or on a server. A distributed
implementation of OSGI, R-OSGi, has also been developed [Rellermeyer et al.
2007]. This allows software architectures to be distributed at service boundaries
across arbitrary networked configurations. R-OSGi uses the proxy pattern, first
introduced in Chapter 2, to obtain transparent distribution at such boundaries.

374 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

SECTION 8.5 CASE STUDIES: ENTERPRISE JAVABEANS AND FRACTAL 375

We look in more detail at support for reconfiguration in the subsection on membranes
and controllers below.

Hierarchical composition: The component model is hierarchical in that a component
consists of a series of subcomponents and associated bindings, where the
subcomponents may themselves be composite. For example, the ORB core in the above
example could be further decomposed, given its inherent complexity. Composition is
supported by a Fractal Architectural Description Language (ADL), which we introduce
by a simple example showing the creation of a component containing two
subcomponents that interact in a client-server manner:

<definition name="cs.ClientServer">

<interface name="r" role="server"

signature="java.lang.Runnable" />

<component name="caller" definition="hw.CallerImpl" />

<component name="callee" definition="hw.CalleeImpl" />

<binding client="this.r" server="caller.r" />

<binding client="caller.s" server="callee.s" />

</definition>

Fractal ADL is based on XML. This example shows a component cs.ClientServer with
two subcomponents, caller and callee; bindings are created between the client interface,
this.r (that is, the r interface defined on the containing component cs.ClientServer), and
the associated caller.r interface (the r interface defined on the caller component), and
between the client interface caller.s and the corresponding server interface callee.s. The
associated configuration is illustrated in Figure 8.16.

Figure 8.16 An example component configuration in Fractal

Caller Callee

r

r

s s

cs.ClientServer

Fractal also supports sharing, whereby a given component may be shared across
multiple software architectures. The developers of Fractal argue that this is necessary to
faithfully represent system architectures including access to underlying resources that
are fundamentally shared, such as a TCP connection. As a further example, it would be
possible for the callee (the server component) to be shared across multiple
configurations.

Membranes and controllers • In implementation, a component consists of a membrane,
which defines control capabilities associated with the component through a set of
controllers, and also the associated content – the subcomponents (and bindings) that
make up its architecture. Interfaces can be internal to the membrane and hence only

376 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

visible to components within the content part, or external and hence visible to any other
components. This structure is illustrated in Figure 8.17.

Figure 8.17 The structure of a Fractal component

Control interfaces

Membrane

Client interface
Server interfaces

Content

Controllers

The membrane concept is crucial to the Fractal approach; a membrane provides a
configurable control regime for the encapsulated set of components (the content). In
other words, the set of controllers defines the control capabilities and associated
semantics for these components. By changing the set of controllers, wealso change the
capabilities.

Controllers can be used for various purposes:

• One of the key uses of controllers is to implement lifecycle management,
including operations associated with activation and passivation such as suspend,
resume and checkpoint. For example, Fractal supports a LifeCycleController

supporting three methods, startFc, stopFc and getFcState, which implements
these three functions, respectively. This is crucial in cases where reconfigurations
of the underlying software architecture are being carried out at runtime. Consider
the simple example of the client-server configuration above and suppose the
server is to be replaced dynamically by an enhanced server (perhaps one
supporting multi-threading for improved throughput). In this case, to avoid
inconsistencies, it is helpful to suspend the configuration, replace the callee

component with the new one, and then resume the configuration.

• Controllers also offer reflection capabilities (see Chapter 2). In particular,
introspection capabilities are provided through two interfaces, Component and
ContentController, which support introspection (dynamic discovery) of the
interfaces associated with a component and step through the architecture of a
composite component structure respectively. The full interfaces for the two
controllers are shown in Figure 8.18. Introspection is again important to support
dynamic reconfiguration. Returning to our client-server example, it is possible,
through the above interfaces, to discover the precise architecture of the underlying
component configuration (in this case, a simple configuration consisting of two

SECTION 8.5 CASE STUDIES: ENTERPRISE JAVABEANS AND FRACTAL 377

components) and also to ensure that a replacement callee component supports
precisely the same interface as the old one.

• Controllers can be introduced to offer interception capabilities mirroring the
capability offered in EJB and reported in Section 8.5.1 above. Interception is a
powerful mechanism with many uses. In the EJB section, the example is provided
of using interception to implement logging. For example, interception could be
used in the client-server example to log all calls issued by the caller component in
a manner that would be completely transparent to both the caller and callee. A
further use of interception is to implement an access control policy only allowing
an invocation to proceed if a given principal has rights to access a given resource
(see Section 11.2.4).

Having studied the relative roles of membranes and controllers, it is now possible to
relate membranes to containers, as introduced in Section 8.4 and in the EJB case study
above. Membranes, like containers, provide a place for the deployment of components;
both techniques also support implicit distributed systems management, containers by
making implicit calls to distributed systems services and membranes through their
constituent controllers. Membranes, though, are significantly more flexible:

Figure 8.18 Component and ContentController Interfaces in Fractal

public interface Component {

Object[] getFcInterfaces ();

Object getFcInterface (String itfName);

Type getFcType ();

}

public interface ContentController {

Object[] getFcInternalInterfaces ();

Object getFcInterfaceInterface(String itfName);

Component[] getFcSubComponents ();

void addFcSubComponent (Component c);

void removeFcSubComponent(Component c);

}

• In terms of reflection, support can range from black-box components where
internal structure is hidden, through approaches where limited introspection
capabilities are offered (dynamically discovering interfaces), to advanced
reflection features supporting full introspection and providing inherent support for
subsequent adaptation of internal structures.

• In terms of supporting non-functional concerns, at one extreme, membranes can
provide no more than a simple encapsulation of components (if, for example,
minimal controllers are deployed); at the other extreme, they can support fully
fledged distributed systems management of components, including support for
transactions and security as in application servers, but in a completely
configurable and reconfigurable manner.

378 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

Because of this inherent flexibility, Fractal is referred to as a open component model.
A worked example of a complete Fractal implementation can be found in the

online tutorial [fractal.ow2.org II]. This example shows how Fractal can be used to
implement a configurable, minimal HTTP server called Comanche.

8.6 Summary

This chapter has examined the design of complete middleware solutions based around
distributed objects and components. As will now be apparent, they represent a natural
evolution in thinking about such programming abstractions. Distributed objects are
important in terms of bringing the benefits of encapsulation and data abstraction to
distributed systems, and as well as associated tools and techniques from the field of
object-oriented design. Distributed objects therefore represent a significant step forward
from previous approaches based directly on the client-server model. In applying the
distributed object approach, however, a number of significant limitations have emerged
and these have been presented and analyzed in this chapter. In summary, it is often too
complex in practice to use middleware solutions such as CORBA for sophisticated
distributed applications and services, particularly when dealing with advanced
properties of such systems such as, for example, dependability (fault tolerance and
security).

Component technologies overcome these limitations, through their intrinsic
separation of concerns between application logic and distributed systems management.
The explicit identification of dependencies also helps in terms of supporting third party
composition of distributed systems. This chapter examined the EJB 3.0 specification
which has made further steps forward in terms of simplifying distributed systems
development through an approach that emphasizes the use of plain old Java objects with
the complexities managed declaratively through the use of Java annotations. As we saw,
more lightweight technologies such as Fractal and OpenCOM have also been introduced
to bring the benefits of component-based programming to the development of
middleware platforms themselves, with little added overhead in terms of performance.

Component technologies are important for the development of distributed
applications, but like any technology, they have their strengths and weaknesses. For
example, the component approach is quite prescriptive and best suited to applications
that naturally resemble three-tier architectures. To offer a broader perspective on the
range of available middleware platforms, the next two chapters examine alternative
approaches based on the adoption of web-based standards (web services) and peer-to-
peer systems.

EXERCISES 379

EXERCISES

8.1 The Task Bag is an object that stores (key, value) pairs . A key is a string and a value is
a sequence of bytes. Its interface provides the following remote methods:

pairOut, with two parameters through which the client specifies a key and a value to
be stored.

pairIn, whose first parameter allows the client to specify the key of a pair to be
removed from the Task Bag. The value in the pair is supplied to the client via a
second parameter. If no matching pair is available, an exception is thrown.

readPair, which is the same as pairIn except that the pair remains in the Task Bag.

Use CORBA IDL to define the interface of the Task Bag. Define an exception that can
be thrown whenever any one of the operations cannot be carried out. Your exception
should return an integer indicating the problem number and a string describing the
problem. The Task Bag interface should define a single attribute giving the number of
tasks in the bag. page 341

8.2 Define an alternative signature for the methods pairIn and readPair, whose return value
indicates when no matching pair is available. The return value should be defined as an
enumerated type whose values can be ok and wait. Discuss the relative merits of the two
alternative approaches. Which approach would you use to indicate an error such as a key
that contains illegal characters? page 342

8.3 Which of the methods in the Task Bag interface could have been defined as a oneway

operation? Give a general rule regarding the parameters and exceptions of oneway

methods. In what way does the meaning of the oneway keyword differ from the
remainder of IDL? page 342

8.4 The IDL union type can be used for a parameter that will need to pass one of a small
number of types. Use it to define the type of a parameter that is sometimes empty and
sometimes has the type Value. page 345

8.5 In Figure 8.2 the type All was defined as a sequence of fixed length. Redefine this as an
array of the same length. Give some recommendations as to the choice between arrays
and sequences in an IDL interface. page 345

8.6 The Task Bag is intended to be used by cooperating clients, some of which add pairs
(describing tasks) and others of which remove them (and carry out the tasks described).
When a client is informed that no matching pair is available, it cannot continue with its
work until a pair becomes available. Define an appropriate callback interface for use in
this situation. page 357

8.7 Describe the necessary modifications to the Task Bag interface to allow callbacks to be
used. page 357

8.8 Which of the parameters of the methods in the Task Bag interface are passed by value
and which are passed by reference? page 343

380 CHAPTER 8 DISTRIBUTED OBJECTS AND COMPONENTS

8.9 Use the Java IDL compiler to process the interface you defined in Exercise 8.1. Inspect
the definition of the signatures for the methods pairIn and readPair in the generated
Java equivalent of the IDL interface. Look also at the generated definition of the holder
method for the value argument for the methods pairIn and readPair. Now give an
example showing how the client will invoke the pairIn method, explaining how it will
acquire the value returned via the second argument. page 346

8.10 Give an example to show how a Java client will access the attribute giving the number
of tasks in the Task Bag object. In what respects does an attribute differ from an instance
variable of an object? page 345

8.11 Explain why the interfaces to remote objects in general and CORBA objects in
particular do not provide constructors. Explain how CORBA objects can be created in
the absence of constructors. Chapter 5 and page 355

8.12 Redefine the Task Bag interface from Exercise 8.1 in IDL so that it makes use of a struct

to represent a Pair, which consists of a Key and a Value. Note that there is no need to
use a typedef to define a struct. page 345

8.13 Discuss the functions of the implementation repository from the point of view of
scalability and fault tolerance. page 350, page 351

8.14 To what extent may CORBA objects be migrated from one server to another?
page 350, page 351

8.15 Explain carefully how component-based middleware in general and EJB in particular
can overcome the key limitations of distributed object middleware. Provide examples to
illustrate your answer. page 358-364

8.16 Discuss whether the EJB architecture would be suitable to implement a massively
multiplayer online game (an application domain initially introduced in Section 1.2.2).
What would be the strengths and weaknesses of using EJB in this domain? page 364

8.17 Would Fractal be a more suitable implementation choice for the MMOG domain?
Justify your answer. page 372

8.18 Explain how the container-based philosophy could be adopted to provide migration
transparency for distributed components. page 362, 362

8.19 How would you achieve the same effect in Fractal? page 375

8.20 Consider the implementation of Java RMI as a composite binding in Fractal. Discuss the
extent to which such a binding can be both configurable and reconfigurable.

Chapter 5, page 373

 381

9

WEB SERVICES

9.1 Introduction
9.2 Web services
9.3 Service descriptions and IDL for web services
9.4 A directory service for use with web services
9.5 XML security
9.6 Coordination of web services
9.7 Applications of web services
9.8 Summary

A web service provides a service interface enabling clients to interact with servers in a
more general way than web browsers do. Clients access the operations in the interface of
a web service by means of requests and replies formatted in XML and usually transmitted
over HTTP. Web services can be accessed in a more ad hoc manner than CORBA-based
services, enabling them to be more easily used in Internet-wide applications.

As with CORBA and Java, the interfaces of web services can be described in an IDL.
But for web services, additional information, including the encoding and communication
protocols in use and the service locations must be provided.

Users require a secure means for creating, storing and modifying documents and
exchanging them over the Internet. The secure channels of Transport Layer Security (TLS,
described in Chapter 9) do not provide all of the necessary requirements. XML security is
intended to bridge this gap.

Web services are increasingly important in distributed systems: they support
interoperability across the global Internet, including the key area of business-to-business
integration and also the emergent ‘mashup’ culture enabling third-party developers to
creative innovative software on top of the existing service base. Web services also provide
the underlying middleware for both the Grid and cloud computing.

382 CHAPTER 9 WEB SERVICES

9.1 Introduction

The growth of the Web in the last two decades (see Figure 1.6) proves the effectiveness
of using simple protocols over the Internet as the basis for a large number of wide-area
services and applications. In particular, the HTTP request-reply protocol (Section 5.2),
allows general-purpose clients, called browsers, to view web pages and other resources
with reference to their Uniform Resource Locators (URLs – see the box below for a note
on URIs, URLs and URNs).

URI, URL and URN • The Uniform Resource Identifier (URI) is a general resource
identifier, whose value may be either a URL or a URN. URLs, which include
resource location information such as the domain name of the server of a resource
being named, are well known to all web users. Uniform Resource Names (URNs) are
location-independent – they rely on a lookup service to map them onto the URLs of
resources. URNs are discussed in more detail in Section 13.1.

However, the use of a general-purpose browser as client, even with the
enhancements provided by downloaded application-specific applets, restricts the
potential scope of applications. In the original client-server model, both client and server
were functionally specialized. Web services return to this model, in which an
application-specific client interacts with a service with a functionally specialized
interface over the Internet.

Thus, web services provide an infrastructure for maintaining a richer and more
structured form of interoperability between clients and servers. They provide a basis
whereby a client program in one organization may interact with a server in another
organization without human supervision. In particular, web services allow complex
applications to be developed by providing services that integrate several other services.
Due to the generality of their interactions, web services cannot be accessed directly by
browsers.

The provision of web services as an addition to web servers is based on the ability
to use an HTTP request to cause the execution of a program. Recall that when a URL in
an HTTP request refers to an executable program, for example, a search, the result is
produced by that program and returned. In a similar way, web services are an extension
of the Web and can be provided by web servers. However, their servers need not be web
servers. The terms ‘web server’ and ‘web services’ should not be confused: a web server
provides a basic HTTP service, whereas a web service provides a service based on the
operations defined in its interface.

External data representation and marshalling of messages exchanged between
clients and web services is done in XML, which is described in Section 4.3.3. To recap,
XML is a textual representation that, although more bulky than alternative
representations, has been adopted for its readability and the consequent ease of
debugging.

The SOAP protocol (Section 9.2.1) specifies the rules for using XML to package
messages, for example to support a request-reply protocol. Figure 9.1 summarizes the
main points about the communication architecture in which web services operate: a web
service is identified by a URI and can be accessed by clients using messages formatted

Figure 9.1 Web services infrastructure and components

Security

Service descriptions (in WSDL)

Applications

Directory service

Web Services

XML

Choreography

SOAP

URIs (URLs or URNs) HTTP, SMTP or other transport

SECTION 9.1 INTRODUCTION 383

in XML. SOAP is used to encapsulate these messages and transmit them over HTTP or
another protocol, for example, TCP or SMTP. A web service deploys service
descriptions to specify the interface and other aspects of the service for the benefit of
potential clients.

The top layer of the figure illustrates the following:

• Web services and applications may be built on top of other web services.

• Some particular web services provide general functionality required for the
operation of a large number of other web services. They include directory
services, security and choreography, all of which are discussed later in this
chapter.

A web service generally provides a service description, which includes an interface
definition and other information, such as the server’s URL. This is used as the basis for
a common understanding between client and server as to the service on offer. Section
9.3 presents the Web Services Description Language (WSDL).

Another common need in middleware is for a naming or directory service to allow
clients to find out about services. Clients of web services have similar needs, but
frequently manage without directory services. For example, they often find out about
services from information on a web page (say, as the result of a Google search).
However, some work has been done to provide a directory service that is suitable for use
within organizations. This is discussed in Section 9.4.

XML security is introduced in Section 9.5. In this approach to security, documents
or parts of documents may be signed or encrypted. A document that has signed or
encrypted elements may then be transmitted or stored; later additions may be made and
these too may be signed or encrypted.

Web services provide access to resources for remote clients, but they do not
provide a means for coordinating their operations with one another. Section 9.7.3
discusses choreography of web services, which is intended to allow one web service to
use predefined patterns of access in using a set of other web services.

The last section of this chapter considers applications of web services, including
support for service-oriented architecture, the Grid and cloud computing.

384 CHAPTER 9 WEB SERVICES

9.2 Web services

A web service interface generally consists of a collection of operations that can be used
by a client over the Internet. The operations in a web service may be provided by a
variety of different resources, for example, programs, objects or databases. A web
service may be managed by a web server along with web pages; or it may be a totally
separate service.

The key characteristic of most web services is that they can process XML-
formatted SOAP messages (see Section 9.2.1). An alternative is the REST approach
which is outlined in the box on page 386. Each web service uses its own service
description to deal with the service-specific characteristics of the messages it receives.
For a good account of many more-detailed aspects of web services, see Newcomer
[2002] or Alonso et al. [2004].

Many well-known commercial web servers including Amazon, Yahoo, Google
and eBay, offer web service interfaces that allow clients to manipulate their web
resources. As an example, the web service offered by Amazon.com provides operations
to allow clients to get information about products, to add an item to a shopping cart or
to check the status of a transaction. The Amazon web services [associates.amazon.com]
may be accessed either by SOAP or by REST. This enables third-party applications to
build value-added services over those provided by Amazon.com. For example, an
inventory control and purchasing application might order supplies of various
commodities as they are needed from Amazon.com and automatically keep track of the
changing status of each order. Over 50,000 developers registered to use these web
services in the first two years after they were introduced [Greenfield and Dornan 2004].

Another interesting example of an application that requires the presence of a web
service is one that implements ‘sniping’ in eBay auctions – that is, placing a bid during
the last few seconds before an auction closes. Although humans can perform the same
actions by direct interaction with the web page, they cannot do it as quickly.

Combination of web services • Providing an interface for a web service allows its
operations to be combined with those of other services to provide new functionality (see
also Section 9.7.1). The purchasing application mentioned above might be using other
suppliers as well. As another example of the benefits of combining several services,
consider the fact that many people book flights, hotels and rental cars for trips online
using a variety of different web sites. If each of these web sites were to provide a
standard web service interface, then a ‘travel agent service’ could use their operations
to provide a traveller with a combination of these services. This point is illustrated in
Figure 9.2.

Communication patterns • The travel agent service illustrates the possible use of the two
alternative communication patterns available in web services:

• The processing of a booking takes a long time to complete and could well be
supported by an asynchronous exchange of documents, starting with the details of
the dates and destinations, followed by a return of status information from time to
time and eventually the details of completion. Performance is not an issue here.

hotel bookinga

Figure 9.2 The ‘travel agent service’ combines other web services

flight bookinga

hire car bookinga

flight bookingb

hotel bookingb

hire car bookingb

Client
Travel Agent

Service

SECTION 9.2 WEB SERVICES 385

• The checking of credit card details and the interactions with the client should be
supported by a request-reply protocol.

In general, web services either use a synchronous request-reply pattern of
communication with their clients or communicate by means of asynchronous messages.
The latter style of communication may be used even when requests require replies, in
which case the client sends a request and then later receives the reply asynchronously.
An event-style pattern can also be used: for example, clients of a directory service may
register for events of interest and will be notified whenever certain events (such as the
arrival or departure of a service) occur.

To allow for a variety of patterns of communication, the SOAP protocol
(discussed in Section 9.2.1) is based on the packaging of single one-way messages. Its
supports request-reply interactions by using pairs of single messages and specifying
how to represent operations, their arguments and their results.

More generally, web services are designed to support distributed computing in the
Internet, in which many different programming languages and paradigms coexist.
Hence, they are designed to be independent of any particular programming paradigm.
This is in contrast to, for example, distributed objects which advocate a rather specific
programming paradigm for developers (further discussion of the distinctions between
web services and distributed objects can be found in Section 9.2.2).

Loose coupling • There is considerable interest in loose coupling in distributed systems,
particularly in the web services community. The terminology is often ill-defined and
imprecise, though. In the context of web services, loose coupling refers to minimizing
the dependencies between services in order to have a flexible underlying architecture
(reducing the risk that a change in one service will have a knock-on effect on other
services). This is partially supported by the intended independence of web services with
the subsequent intention to produce combinations of web services as discussed above.
Loose coupling is, however, further enhanced by a number of additional features:

• Programming with interfaces (as discussed in Chapter 5) provides one level of
loose coupling by separating the interface from its implementation (and also
supports important areas of heterogeneity, – for example in the choice of
programming language and platform used). Programming with interfaces is

386 CHAPTER 9 WEB SERVICES

adopted by most distributed systems paradigms including distributed objects and
components (discussed in Chapter 8) as well as web services.

• There is a trend towards simple, generic interfaces in distributed systems and this
is exemplified by the minimal interface offered by the World Wide Web and the
REST approach

REST (Representational State Transfer) • REST [Fielding 2000] is an approach with
a very constrained style of operation, in which clients use URLs and the HTTP
operations GET, PUT, DELETE and POST to manipulate resources that are
represented in XML. The emphasis is on the manipulation of data resources rather
than on interfaces. When a new resource is created, it has a new URL by which it can
be accessed or updated. Clients are supplied with the entire state of a resource instead
of calling an operation to get some part of it. Fielding argues that in the context of the
Internet, the proliferation of different service interfaces will not be as useful as a
simple minimum uniform set of operations. It is interesting to note that, according to
Greenfield and Dornan [2004], 80% of the requests to the web services at
Amazon.com are via the REST interface, with the remaining 20% using SOAP.

 in web services. This approach contributes to loose coupling by
reducing dependency on specific operation names (the Google case study in
Chapter 21 provides a further example of this style of distributed programming).
One consequence of this is that data becomes more important than operation, with
the semantics of interoperation often held in the data (for example, the associated
XML document definition in web services); this data-oriented view is discussed
further in the context of mobile systems Section 19.3.2.

• As mentioned above, web services can be used with a variety of communication
paradigms, including request-reply communication, asynchronous messaging or
indeed indirect communication paradigms (as featured in Chapter 6). The level of
coupling is directly affected by this choice. For example, in request-reply
communication, the two parties are intrinsically coupled; asynchronous
messaging offers a degree of decoupling (referred to as synchronization
uncoupling in Chapter 6), whereas indirect communication also offers time and
space uncoupling.

In conclusion, there are a number of dimensions to loose coupling, and it is important to
bear this in mind when using the term. Web services intrinsically support a level of loose
coupling due to the design philosophy adopted and the programming with interfaces
approach used. This can be further enhanced by additional design choices, including the
adoption of the REST approach and the use of indirect communication.

Representation of messages • Both SOAP and the data it carries are represented in
XML, a textual self-describing format introduced in Section 4.3.3. Textual
representations take up more space than binary ones and the parsing that they require
takes more time to process. In document-style interactions speed is not an issue, but it is
important in request-reply interactions. However, it is argued that there is an advantage
in a human-readable format that allows for the easy construction of simple messages and
for debugging of more complex ones.

Each item in an XML description is annotated with its type and the meaning of
each type is defined by a schema referenced within the description. This makes the

SECTION 9.2 WEB SERVICES 387

format extensible, enabling any type of data to be transported. There is no limit to the
potential richness and complexity of documents formatted in XML, but there could be a
problem in interpreting those that become unduly complex.

Service references • In general, each web service has a URI, which clients use to refer
to it. The URL is the most frequently used form of URI. Because a URL contains the
domain name of a computer, the service to which it refers will always be accessed at that
computer. However, the access point of a web service with a URN can depend on
context and can change from time to time – its current URL can be obtained from a URN
lookup service. This service reference is known as an endpoint in web services.

Activation of services • A web service will be accessed via the computer whose domain
name is included in its current URL. That computer may run the web service itself or it
may run it on another server computer. For example, a service with tens of thousands of
clients may need to be deployed on hundreds of computers. A web service may run
continuously, or it may be activated on demand. The URL is a persistent reference,
meaning that it will continue to refer to the service for as long as the server the URL
points to exists.

Transparency • A major task of many middleware platforms is to protect the
programmer from the details of data representation and marshalling; another is to make
remote invocations look like local ones. None of these things are provided as a part of
an infrastructure or middleware platform for web services. At the simplest level, clients
and servers may read and write their messages directly in SOAP, using XML.

But for convenience, the details of SOAP and XML are generally hidden by a
local API in a programming language such as Java, Perl, Python or C++. In this case,
the service description may be used as a basis for automatically generating the necessary
marshalling and unmarshalling procedures.

Proxies: One way to hide the difference between local and remote calls is by providing
a client proxy or a set of stub procedures. Section 9.2.3 explains how this is done in Java.
Client proxies or stubs provide a static form of invocation in which the framework for
each call and the marshalling procedures are generated before any invocations are made.

Dynamic invocation: An alternative to proxies is to provide clients with a generic
operation to be used irrespective of the remote procedure to be called, similar to the
DoOperation procedure defined in Figure 5.3 (but without the first argument). In this
case, the client specifies the name of an operation and its arguments and they are
converted to SOAP and XML on the fly. The asynchronous communication of single
messages can be achieved in a similar way by providing clients with generic operations
for sending and receiving messages.

9.2.1 SOAP

SOAP is designed to enable both client-server and asynchronous interaction over the
Internet. It defines a scheme for using XML to represent the contents of request and
reply messages (see Figure 5.4) as well as a scheme for the communication of
documents. Originally SOAP was based only on HTTP, but the current version is
designed to use a variety of transport protocols including SMTP, TCP or UDP. The

388 CHAPTER 9 WEB SERVICES

description in this section is based on SOAP version 1.2 [www.w3.org IX], which is a
World Wide Web Consortium (W3C) recommendation. SOAP is an extension of
Userland’s XML-RPC [Winer 1999].

Figure 9.3 SOAP message in an envelope

envelope

header

body

header element

body element

header element

body element

The SOAP specification states:

• how XML is to be used to represent the contents of individual messages;

• how a pair of single messages can be combined to produce a request-reply pattern;

• the rules as to how the recipients of messages should process the XML elements
that they contain;

• how HTTP and SMTP should be used to communicate SOAP messages. It is
expected that future versions of the specification will define how to use other
transport protocols, for example, TCP.

This section describes how SOAP uses XML to represent messages and HTTP to
communicate them. However, the programmer does not normally need to be concerned
with these details, since SOAP APIs have been implemented in many programming
languages, including Java, JavaScript, Perl, Python, .NET, C, C++, C# and Visual Basic.

To support client-server communication, SOAP specifies how to use the HTTP
POST method for the request message and its response for the reply message. The
combined use of XML and HTTP provides a standard protocol for client-server
communication over the Internet.

It is intended that a SOAP message can be passed via intermediaries on the way
to the computer that manages the resource to be accessed and that higher-level
middleware services such as transactions or security may use these intermediaries to
perform processing.

SOAP messages • A SOAP message is carried in an ‘envelope’. Inside the envelope
there is an optional header and a body, as shown in Figure 9.3. Message headers can be
used for establishing the necessary context for a service or for keeping a log or audit of
operations. An intermediary may interpret and act on the information in the message

SECTION 9.2 WEB SERVICES 389

headers, for example by adding, altering or removing information. The message body
carries an XML document for a particular web service.

Figure 9.4 Example of a simple request without headers

m:exchange

env:envelope xmlns:env =namespace URI for SOAP envelopes

m:arg1

env:body

xmlns:m = namespace URI of the service description

Hello

In this figure and the next, each XML element is represented by a shaded box with its

m:arg2
World

name in italics,at the top left corner,followed by any attributes and its content

The XML elements envelope, header and body, together with other attributes and
elements of SOAP messages, are defined as a schema in the SOAP XML namespace.
The definition of this schema can be found on the W3C web site [www.w3.org IX].
Since they use a textual encoding, XML schemas can be viewed with the ‘view source’
option of a browser. Both the header and the body contain inner elements.

The previous section explained that service descriptions contain information that
is to be shared by clients and servers. Message senders use these descriptions to generate
the body and to ensure that it contains the correct contents, and message recipients use
them to parse and check the validity of the contents.

A SOAP message may be used either to convey a document or to support client-
server communication:

• A document to be communicated is placed directly inside the body element
together with a reference to an XML schema containing the service description –
which defines the names and types used in the document. This sort of SOAP
message may be sent either synchronously or asynchronously.

• For client-server communication, the body element contains either a Request or a
Reply. These two cases are illustrated in Figure 9.4 and Figure 9.5.

Figure 9.4 shows an example of a simple request message without a header. The body

encloses an element containing the name of the procedure to be called and the URI of
the namespace (the file containing the XML schema) for the relevant service
description, which is denoted by m. The inner elements of a request message contain the
arguments of the procedure. This request message provides two strings to be returned in
the opposite order by the procedure at the server. The XML namespace denoted by env

contains the SOAP definitions for an envelope. Figure 9.5 shows the corresponding
successful reply message, which contains the two output arguments. Note that the name
of the procedure has ‘Response’ added to it. If a procedure has a return value, then it may
be denoted as an element called rpc:result. The reply message uses the same two XML

Figure 9.5 Example of a reply corresponding to the request in Figure 9.4

env:envelope xmlns:env = namespace URI for SOAP envelope

m:res1

env:body

xmlns:m = namespace URI for the service description

m:res2
World

m:exchangeResponse

Hello

390 CHAPTER 9 WEB SERVICES

schemas as the request message, the first defining the SOAP envelope and the second
the application-specific procedure and argument names.

Soap faults: If a request fails in some way, the fault descriptions are conveyed in the
body of a reply message in a fault element. This element contains information about the
fault, including a code and an associated string, together with application-specific
details.

SOAP headers • Message headers are intended to be used by intermediaries to add to
the service that deals with the message carried in the corresponding body. However, two
aspects of this usage are left unclear in the SOAP specification:

1. How the headers will be used by any particular higher middleware service. For
example, a header might contain:

– a transaction identifier for use with a transaction service;

– a message identifier for relating messages to one another, for example, for
implementing reliable delivery;

– a username, a digital signature or a public key.

2. How the messages will be routed via a set of intermediaries to the ultimate
recipient. For example, a message transported by HTTP could be routed via a
chain of proxy servers, some of which might assume a SOAP role.

However, the specification does specify the roles and duties of intermediaries. An
attribute called role can specify whether every intermediary, none of them, or just the
ultimate recipient must process the element [www.w3.org IX]. The particular actions to
be carried out are defined by applications – for example, an action might be to log the
contents of an element.

Transport of SOAP messages • A transport protocol is required to send a SOAP
message to its destination. SOAP messages are independent of the type of transport used
– their envelopes contain no reference to the destination address. HTTP (or whatever
protocol is used to transport a SOAP message) is left to specify the destination address.

Figure 9.6 illustrates how the HTTP POST method is used to transmit a SOAP
message. The HTTP headers and body are used as follows:

Figure 9.6 Use of HTTP POST Request in SOAP client-server communication

endpoint address

action

POST /examples/stringer
Host: www.cdk4.net
Content-Type: application/soap+xml
Action: http://www.cdk4.net/examples/stringer#exchange

<env:envelope xmlns:env = namespace URI for SOAP envelope>
<env:header> </env:header>
<env:body> </env:body>
</env:Envelope>

S
O

A
P

 m
es

sa
ge

H
TT

P
 h

ea
de

rs

SECTION 9.2 WEB SERVICES 391

• The HTTP headers specify the endpoint address (the URI of the ultimate receiver)
and the action to be carried out. The Action header is intended to optimize
dispatching by revealing the name of the operation without the need to analyze the
SOAP message in the body of the HTTP message.

• The HTTP body carries the SOAP message.

As HTTP is a synchronous protocol, it is used to return a reply containing the SOAP
reply, like the one shown in Figure 9.5. Section 5.2 details the status codes and reasons
returned by HTTP for successful and failing requests.

If a SOAP Request is just a request for information to be returned, has no
arguments and does not alter data in the server, then the HTTP GET method can be used
to carry it out.

The above point about the Action header and dispatching applies to any service
that performs a variety of different actions for clients, even if it does not offer operations
as such. For example, a web service may be able to deal with various types of
documents, such as purchase orders and enquiries, which are dealt with by different
software modules. The Action header enables the correct module to be chosen without
inspecting the SOAP message. This header can be used if the HTTP content type is
specified as application/soap+xml.

The separation of the definition of the SOAP envelope from the information as to
how and where it is to be sent makes it possible to use a variety of different underlying
protocols. For example, the SOAP specification states how SMTP can be used as an
alternative way of transmitting documents encoded as SOAP messages.

But this strength is also a weakness. It implies that the developer must be involved
in the details of the specific transport protocol chosen. In addition, it makes it difficult
to use different protocols for different parts of the route followed by a particular
message.

WS-Addressing: Advances in SOAP addressing and routing • Two problems were men-
tioned above:

• how to make SOAP independent of the underlying transport used;

• how to specify a route to be followed by a SOAP message via a set of
intermediaries.

392 CHAPTER 9 WEB SERVICES

Early work in this area by Nielsen and Thatte [2001] suggests that the endpoint address
and the dispatching information should be specified in SOAP headers. This effectively
separates the message destination from the underlying protocol. They suggested
specifying the path to be followed by giving the address of the endpoint and the ‘next
hop’. Each of the intermediaries would update the ‘next hop’ information.

 The work of Box and Curbera [2004] suggests that having intermediaries alter the
headers could lead to breaches of security. They proposed WS-Addressing, which
allows SOAP headers to specify message routing data, with an underlying SOAP
infrastructure providing the ‘next hop’ information. The W3C recommendations for
WS-Addressing are defined in [www.w3.org XXIII]. This form of addressing uses an
Endpoint Reference – an XML structure containing the destination address, routing
information and possibly other information about the service. To support long-running
asynchronous interactions, SOAP headers can supply a return address and message
identifiers of their own and of related messages.

WS-ReliableMessaging: Reliable communication • SOAP’s usual protocol, HTTP,
runs over TCP, whose failure model is discussed in Section 4.2.4. To summarize: TCP
does not guarantee to deliver messages in the face of all difficulties, and when it times
out while waiting for acknowledgements, it declares that the connection is broken, at
which point the communicating processes are left without any idea as to whether the
messages they sent recently have been received or not.

Early work on the provision of reliable communication of SOAP messages with
guaranteed delivery, no duplicates and guaranteed message ordering led to two
competing specifications by Ferris and Langworthy [2004] and Evans et al. [2003].

More recently, Oasis (a global consortium that works on the development,
agreement and adoption of e-business and web service standards) has made a
recommendation called WS-ReliableMessaging [www.oasis.org]. This allows a SOAP
message to be delivered at-least-once, at-most-once or exactly-once, with the following
semantics:

At-least-once: The message is delivered at least once, but an error is reported if it
cannot be delivered.

At-most-once: The message is delivered at most once, but without any error report if
it cannot be delivered.

Exactly-once: The message is delivered exactly once, but an error is reported if it
cannot be delivered.

Ordering of messages is also provided in combination with any of the above:

In-order: Messages will be delivered to the destination in the order in which they
were sent by a particular sender.

Note that WS-ReliableMessaging is concerned with the delivery of single messages and
should not be confused with the RPC call semantics described in Section 5.3.1, which
refer to the number of times the server executes the remote procedure. The reader is
referred to Exercise 9.16 for further consideration of the comparison.

Traversing firewalls • Web services are intended to be used by clients in one
organization to access servers in another organization over the Internet. Most

SECTION 9.2 WEB SERVICES 393

organizations use a firewall to protect the resources on their own networks, and
transport protocols such as those used by Java RMI or CORBA will not normally be able
to pass through a firewall. However, firewalls do normally allow both HTTP and SMTP
messages to pass through them. Therefore it is convenient to use one of these protocols
for transporting SOAP messages.

9.2.2 A comparison of web services with the distributed object model

A web service has a service interface that can provide operations for accessing and
updating the data resources it manages. At a superficial level, the interaction between
client and server is very similar to RMI, where a client uses a remote object reference to
invoke an operation in a remote object. For a web service, the client uses a URI to invoke
an operation in the resource named by that URI. For arguments about the similarities and
differences between web services and distributed objects, see Birman [2004], Vinoski
[2002] and Vogels [2003].

We shall attempt to show that there are limits to the above analogy, by making use
of the shared whiteboard example used in Section 5.5 for Java RMI and Section 8.3 for
CORBA.

Remote object references versus URIs • The URI of a web service can be compared
with the remote object reference of a single object. However, in the distributed object
model, objects can create remote objects dynamically and return remote references to
them. The recipient of these remote references can use them to invoke operations in the
objects to which they refer. In the shared whiteboard example, an invocation of the
newShape factory method causes a new instance of Shape to be created and a remote
reference to it is returned. Nothing like this can be done with web services, which cannot
create instances of remote objects; effectively, a web service consists of a single remote
object and therefore both garbage collection and remote object referencing are
irrelevant.

Web services model • The users of the Java web services toolkit (JAX-RPC)
[java.sun.com VII] must model their web services programs to allow for the fact that
they are not using transparent Java-to-Java remote invocation but rather are using the
web services model, in which remote objects cannot be instantiated. This is taken into
account by JAX-RPC, which does not permit remote object references to be passed as
arguments or returned as results.

Figure 9.7 shows a version of the interface given in Figure 5.16 which has been
modified as follows to become a web services interface:

• In the original (distributed object) version of the program, instances of Shape are
created in the server and remote references to them are returned by newShape,
whose modified (web service) version is shown in line 1. To avoid the
instantiation of remote objects and the consequent use of remote object references,
the Shape interface is removed and its operations (getAllState and getGOVersion

– originally getVersion) are added to the ShapeList interface.

• In the original (distributed object) version of the program, the server stored a
vector of Shape. This will be changed to a vector of GraphicalObject. The new

Figure 9.7 Java web service interface ShapeList

import java.rmi.*;

 public interface ShapeList extends Remote {

int newShape(GraphicalObject g) throws RemoteException; 1

int numberOfShapes() throws RemoteException;

int getVersion() throws RemoteException;

int getGOVersion(int i) throws RemoteException;

GraphicalObject getAllState(int i) throws RemoteException;

}

394 CHAPTER 9 WEB SERVICES

(web service) version of the method newShape returns an integer that gives the
offset of the GraphicalObject in that vector.

This change to the method newShape means that it is no longer a factory method – that
is, it does not create instances of remote objects.

Servants • In the distributed object model, the server program is generally modelled as
a collection of servants (potentially remote objects). For example, the shared whiteboard
application used one servant for the list of shapes and one servant for each graphical
object created. These servants were created as instances of the servant classes ShapeList

and Shape, respectively. When the server started, its main function created the instance
of ShapeList, and each time the client called the newShape method the server created an
instance of Shape.

In contrast, web services do not support servants. Therefore web services
applications cannot create servants as and when they are needed to handle different
server resources. To enforce this situation, the implementations of web service
interfaces must not have either constructors or main methods.

9.2.3 The use of SOAP with Java

The Java API for developing web services and clients over SOAP is called JAX-RPC.
It is described in the Java web services tutorial [java.sun.com VII]. This API hides all
the details of SOAP from the programmers of both clients and the services.

JAX-RPC maps some of the types in the Java language to definitions in XML used
in both SOAP messages and service descriptions. The permitted types include Integer,
String, Date and Calendar, as well as java.net.uri, which allows URIs to be passed as
arguments or returned as results. It supports some of the collection types (including
Vector) as well as the primitive types of the language and arrays.

In addition, instances of some classes may be passed as arguments and results of
remote calls, provided that:

• Each of their instance variables is one of the permitted types.

• They have a public default constructor.

• They do not implement the Remote interface.

SECTION 9.2 WEB SERVICES 395

In general, as mentioned in the previous section, values of types that are remote
references (that is, that implement the Remote interface) cannot be passed as arguments
or returned as results of remote calls.

Figure 9.8 Java implementation of the ShapeList server

import java.util.Vector;

public class ShapeListImpl implements ShapeList{

private Vector theList = new Vector();

private int version = 0;

private Vector theVersions = new Vector();

public int newShape(GraphicalObject g) throws RemoteException{

version++;

theList.addElement(g);

theVersions.addElement(new Integer(version));

return theList.size();

}

public int numberOfShapes(){}

public int getVersion() {}

public int getGOVersion(int i){}

public GraphicalObject getAllState(int i) {}

}

The service interface • The Java interface of a web service must conform to the
following rules, some of which are illustrated in Figure 9.7:

• It must extend the Remote interface.

• It must not have constant declarations, such as public final static.

• The methods must throw java.rmi.RemoteException or one of its subclasses.

• Method parameters and return types must be permitted JAX-RPC types.

The server program • The class that implements the interface ShapeList is shown in
Figure 9.8. As explained above, there is no main method, and the implementation of the
ShapeList interface does not have a constructor. In effect, a web service is a single object
that offers a set of procedures. The source of the programs shown in Figure 9.7, Figure
9.8 and Figure 9.9 is available on the book’s web site at www.cdk5.net/web.

The service interface and its implementation are compiled as usual. A pair of tools
called wscompile and wsdeploy can be used to generate the skeleton class and the service
description (in WSDL, as described in Section 9.3), using information concerning the
URL of the service, its name and description retrieved from a configuration file written
in XML. The name of the service (in this case, MyShapeListService) is used to generate
the name of the class used in the client program to access it – that is,
MyShapeListService_Impl.

396 CHAPTER 9 WEB SERVICES

Servlet container • The service implementation is run as a servlet inside a servlet

container whose role is to load, initialize and execute servlets. The servlet container
includes a dispatcher and skeletons (see Section 5.4.2). When a request arrives, the
dispatcher maps it to a particular skeleton, which translates it into Java and passes on the
request to the appropriate method in the servlet. That method carries out the request and
produces a reply, which the skeleton translates back into a SOAP reply. The URL of a
service consists of a concatenation of the URL of the servlet container and the service
category and name, for example, http://localhost:8080/ShapeList-jaxrpc/ShapeList.

Tomcat [jakarta.apache.org] is a commonly used servlet container. When Tomcat
is running, its management interface is available at a URL for viewing with a browser.
This interface shows the names of servlets that are currently deployed and provides
operations for managing them and for accessing information about each one, including
its service description. Once a servlet is deployed in Tomcat, clients may access it and
the combined effects of their operations will be stored in its instance variables. In our
example, a list of GraphicalObjects will be built up as each one is added as the result of
a client request to the newShape operation. If a servlet is stopped by Tomcat’s
management interface, then the values of the instance variables are reset when it is
restarted.

Tomcat also provides access to a description of each of the services that it
contains, to enable programmers to design client programs and to facilitate the
automatic compilation of the proxies required by client code. The service description is
human-readable since it is expressed in XML notation (more specifically, in WSDL, as
introduced in Section 9.3).

Note that it is possible to develop web services without using servlet containers;
for example, Apache Axis hides this level of detail from the programmer.

The client program • The client program may use static proxies, dynamic proxies or a
dynamic invocation interface. In all cases, the relevant service description may be used
to obtain any information required by client code. In our example, the service
description can be obtained from Tomcat.

Static proxies: Figure 9.9 shows the ShapeList client making a call through a proxy – a
local object that passes on messages to the remote service. The code for the proxy is
generated by wscompile from the service description. The class name for the proxy is
formed by adding ‘_Impl’ to the name of the service – in this case, the proxy class is
called MyShapeListService_Impl. This name is implementation-specific, since the
SOAP specification does not give a rule for naming proxy classes.

At line 1, the createProxy method is called. This method is shown at line 5; line 6
creates a proxy, using the class MyShapeListService_Impl, which it returns (note that
proxies are sometimes called stubs, hence the name of the class, Stub). At line 2, the
URL of the service is supplied to the proxy via the argument given on the command line.
At line 3, the type of the proxy is narrowed to suit the type of the interface – ShapeList.
Line 4 makes a call to the remote procedure getAllState, asking the service to return the
object at element 0 in the vector of GraphicalObjects.

Because the proxy is created at compile time, it is called a static proxy. The service
description of the service from which it was generated will not necessarily have been
generated from a Java interface, but may have been made by any one of a variety of tools

Figure 9.9 Java implementation of the ShapeList client

package staticstub;

import javax.xml.rpc.Stub;

public class ShapeListClient {

public static void main(String[] args) { /* pass URL of service */

 try {

Stub proxy = createProxy(); 1

proxy._setProperty 2

 (javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

ShapeList aShapeList = (ShapeList)proxy; 3

GraphicalObject g = aShapeList.getAllState(0); 4

 } catch (Exception ex) { ex.printStackTrace(); }

}

private static Stub createProxy() { 5

return

(Stub) (new MyShapeListService_Impl().getShapeListPort()); 6

 }

}

SECTION 9.2 WEB SERVICES 397

associated with various different language systems. It may even have been written
directly in XML.

Dynamic proxies: Instead of using a precompiled static proxy, the client may use a
dynamic proxy whose class is created at runtime from the information in the service
description and the interface of the service. This method avoids the need for involving
an implementation-specific name for the proxy class.

Dynamic invocation interface: This allows a client to call a remote procedure, even if its
signature or the name of the service is unknown until runtime. In contrast to the above
alternatives, the client does not require a proxy. Instead, it has to use a series of
operations to set the name of the server operation, the return value and each of the
parameters before making the procedure call.

Implementation of Java SOAP • The way the Java API is implemented can be explained
with reference to Figure 5.15. The following paragraphs explain the roles of the various
components in a Java/SOAP environment – the interactions between the components are
the same as before. There is no remote reference module.

Communication modules: The tasks of these modules are carried out by a pair of HTTP
modules. The HTTP module in the server selects the dispatcher according to the URL
given in the Action header to the POST request.

Client proxy: A proxy (or stub) method knows the URL of the service and marshals its
own method name and its arguments, together with a reference to the XML schema for
the service, into a SOAP request envelope. Unmarshalling the reply consists of
analyzing a SOAP envelope in order to extract the results, return value or fault report.
The client’s request method call is sent to the service as an HTTP request.

398 CHAPTER 9 WEB SERVICES

Dispatcher and skeleton: As mentioned above, the dispatcher and skeletons live in the
servlet container. The dispatcher extracts the name of the operation from the Action

header in the HTTP request and invokes the corresponding method in the appropriate
skeleton, passing the SOAP envelope to it. A skeleton method carries out the following
tasks: it analyzes the SOAP envelope in the request message and extracts its arguments,
calls the corresponding method and assembles a SOAP reply envelope containing the
results.

Errors, faults and correctness in SOAP/XML: Faults may be reported by the HTTP
module, the dispatcher, the skeleton or the service itself. The service can report its errors
via a return value or by means of fault parameters specified in the service description.
The skeleton is responsible for checking that the SOAP envelope contains a request and
that the XML in which it is written is well-formed. Having established that the XML is
well-formed, the skeleton will use the XML namespace in the envelope to check that the
request corresponds to the service on offer and that the operation and its arguments are
appropriate. If the checking of the request fails at either of these levels, then an error is
returned to the client. Similar checks are made by the proxy when it receives the SOAP
envelope containing the result.

9.2.4 Comparison of web services with CORBA

The main difference between web services and CORBA or other similar middleware is
the intended usage context. CORBA was designed for use within a single organization
or between a small number of collaborating organizations. This resulted in certain
aspects of the design being too centralized for collaborative use by independent
organizations or for ad hoc use without prior arrangements, as will now be explained.

Naming issues • In CORBA, each remote object is referenced by means of a name that
is managed by an instance of the CORBA Naming Service (see Section 8.3.5). This
service, like the DNS, provides a mapping from a name to a value to be used as an
address (an IOR in CORBA). But unlike the DNS, the CORBA Naming Service is
designed for use within an organization, instead of throughout the Internet.

In the CORBA Naming Service, each server manages a graph of names with an
initial naming context and is initially independent of any other servers. Although
separate organizations may federate their naming services, this is not automatic. Before
a server can federate with another, it needs to know the other server’s initial naming
context. Thus, the design of the CORBA Naming Service effectively restricts the
sharing of CORBA objects to within a small set of organizations that have federated
their naming services.

Reference issues • We now consider whether a CORBA remote object reference,
which is called an IOR (Section 8.3.3), could be used as an Internet-wide object
reference in the same way as a URL. Each IOR contains a slot that specifies the type
identifier of the interface of the object it references. However, this type identifier is
understood only by the interface repository that stores the definition of the
corresponding type. This has the implication that the client and server need to use the
same interface repository, which is not really practical on a global scale.

SECTION 9.2 WEB SERVICES 399

In contrast, in the web services model, a service is identified by means of a URL,
enabling a client anywhere in the Internet to make a request to a service that may belong
to any organization anywhere else. That is, a web service can be shared by clients
throughout the Internet. The DNS is the only service required for URL access, and it is
designed to work effectively Internet-wide.

Separation of activation and location • The tasks of locating and activating web services
are neatly separated. In contrast, a CORBA persistent reference refers to a component
of the platform (the implementation repository) that activates the corresponding object
on demand on any suitable computer and is also responsible for locating the object once
it has been activated.

Ease of use • The HTTP and XML infrastructure for web services is well understood
and convenient to use and is already installed on all of the most commonly used
operating systems, although the user does require a convenient programming language
API to SOAP. In contrast, the CORBA platform is a large and complex piece of software
requiring installation and support.

Efficiency • CORBA has been designed to be efficient: CORBA CDR (Section 4.3.1) is
binary, whereas XML is textual. A study by Olson and Ogbuji [2002] compared the
performance of CORBA with that of SOAP and XML-RPC. They found that SOAP
request messages are 14 times as large as the equivalent ones in CORBA and that a
SOAP request took, on average, 882 times as long as an equivalent CORBA invocation.
Although the relative performance is dependent on the language used and also the
particular middleware implementation employed, this example does provide an
indication of the potential overhead of XML-based approaches. For many applications,
however, the message overhead and slower performance of SOAP are not noticed, and
its effects are made less obvious by the availability of cheap bandwidth, processors,
memory and disk space.

The W3C and others have been investigating the possibility of allowing binary
data to be included in XML elements, so as to increase efficiency. Discussions of this
topic can be found at [www.w3.org XXI] and [www.w3.org XXII]. Note that XML does
already provide for both hexadecimal and base64 representations of binary data. The
base64 representation is used in conjunction with XML encryption (see Section 9.5).
There is a considerable time and space overhead when binary data is converted to base64
or hexadecimal, so what is really needed is to be able to include a binary representation
of a preparsed sequence of data items such as, for example, that produced by CORBA
CDR or gzip. Another approach that is also under investigation is to take a SOAP
message – together with attachments, some of which may be binary – and use a multipart
MIME document to transport it.

The strengths of CORBA • The availability of CORBA services for transactions,
concurrency control, security and access control, events and persistent objects makes it
a desirable choice for use in many applications that are intended for use within an
organization or a related group of organizations. In general, it is a good choice for those
applications that require very complex interactions. In addition, the distributed object
model is an attractive one for the design of complex applications, and it is worth the
extra learning effort needed to understand the details of the relationship between the
CORBA object model (Section 8.3) and the particular programming language in use.

400 CHAPTER 9 WEB SERVICES

9.3 Service descriptions and IDL for web services

Figure 9.10 The main elements in a WSDL description

abstract concrete

how where

definitions

types

target namespace

interface bindings servicesmessage

document-style request-reply-style

Interface definitions are needed to allow clients to communicate with services. For web
services, interface definitions are provided as part of a more general service description,
which specifies two other additional characteristics – how the messages are to be
communicated (for example, by SOAP over HTTP) and the URI of the service. To cater
for use in a multi-language environment, service descriptions are written in XML.

A service description forms the basis of an agreement between a client and a
server as to the service on offer. It assembles all of the facts concerning the service that
are relevant to its clients. Service descriptions are generally used to generate client stubs
that automatically implement the correct behaviour for the client.

The IDL-like component of a service description is more flexible than other IDLs,
in that a service may be specified either in terms of the types of messages that it will send
and receive or in terms of the operations it supports, to allow for both document
exchange and request-reply-style interactions.

A variety of different methods of communication can be used by web services and
their clients. Therefore the method of communication is left to be decided by the service
provider and specified in the service description, rather than built into the system, as it
is in CORBA, for example.

The ability to specify the URI of a service as a part of the service description
avoids the need for the separate binder or naming service used by most other
middleware. It has the implication that the URI cannot be changed once the service
description has been made available to potential clients, but the URN scheme does cater
for a change of location by allowing for an indirection at the reference level.

In contrast, in the binder approach, the client uses a name to look up the service
reference at runtime, allowing the service references to change over time. This approach
requires an indirection from a name to a service reference for all services, even though
many of them may always remain at the same location.

In the web services context, the Web Services Description Language (WSDL) is
commonly used for service descriptions. The current version, WSDL 2.0 [www.w3.org
XI], became a W3C Recommendation in 2007. It defines an XML schema for
representing the components of a service description, which include, for example, the
element names definitions, types, message, interface, bindings and services.

WSDL separates the abstract part of a service description from the concrete part,
as shown in Figure 9.10.

SECTION 9.3 SERVICE DESCRIPTIONS AND IDL FOR WEB SERVICES 401

The abstract part of the description includes a set of definitions of the types used
by the service – in particular, the types of the values exchanged in messages. The Java
example from Section 9.2.3, whose Java interface is shown in Figure 9.7, uses the Java
types int and GraphicalObject. The former (like any basic type) can be translated
directly into the XML equivalent, but GraphicalObject is defined in Java in terms of the
types int, String and boolean. GraphicalObject is represented in XML, for common use
by heterogeneous clients, as a complexType consisting of a sequence of named XML
types including, for example:

<element name="isFilled" type="boolean"/>

<element name="originx" type="int"/>

The set of names defined within the types section of a WSDL definition is called its
target namespace. The message section of the abstract part contains a description of the
set of messages exchanged. For the document style of interaction, these messages will
be used directly. For the request-reply style of interaction, there are two messages for
each operation, which are used to describe the operations in the interface section. The
concrete part specifies how and where the service may be contacted.

The inherent modularity of a WSDL definition allows its components to be
combined in different ways – for example, the same interface may be used with
different bindings or locations. The types may be defined inside the types element or
they may be defined in a separate document referenced by a URI from the types element.
In the latter case, the type definitions can be referenced from several different WSDL
documents.

Figure 9.11 WSDL request and reply messages for the newShape operation

message name = "ShapeList_newShape"

type = "ns:GraphicalObject"
part name="GraphicalObject_1"

tns – target namespace xsd – XML schema definitions

message name = "ShapeList_newShapeResponse"

part name="result"
type = "xsd:int"

Messages or operations • In web services, all that the client and the server need is to
have a common idea about the messages to be exchanged. For a service based on the
exchange of a small number of different types of document, WSDL just describes the
types of the different messages to be exchanged. When a client sends one of these
messages to a web service, the latter decides what operation to perform and what type
of message to send back to the client on the basis of the message type received. In our
Java example, two messages will be defined for each of the operations in the interface –
one for the request and one for the reply. For example, Figure 9.11 shows the request
and reply messages for the newShape operation, which has a single input argument of
type GraphicalObject and a single output argument of type int.

For services that support several different operations, it is more effective to
specify the messages exchanged as requests for operations with arguments and their
corresponding replies, allowing the service to dispatch each request to the appropriate

402 CHAPTER 9 WEB SERVICES

operation. However, in WSDL an operation is a construct for relating request and reply
messages, in contrast to the definition of an operation in a service interface.

Interface • The collection of operations belonging to a web service are grouped
together in an XML element named interface (sometimes called portType). Each
operation must specify the message exchange pattern between client and server. The
available options include those shown in Figure 9.12

Figure 9.12 Message exchange patterns for WSDL operations

Name Messages sent by

Client Server Delivery Fault message

In-Out Request Reply May replace Reply

In-Only Request No fault message

Robust In-Only Request Guaranteed May be sent

Out-In Reply Request May replace Reply

Out-Only Request No fault message

Robust Out-Only Request Guaranteed May send fault

. The first one, In-Out, is the
commonly used request-reply form of client-server communication. In this pattern, the
reply message may be replaced with a fault message. In-Only is for one-way messages
with maybe semantics and Out-Only is for oneway messages from server to client; fault
messages cannot be sent with either. Robust In-Only and Robust Out-Only are the
corresponding messages with guaranteed delivery; fault messages may be exchanged.
Out-In is a request-reply interaction initiated by the server. WSDL 2.0 is also extensible
in that organizations can introduce their own message exchange patterns if the
predefined ones prove to be inadequate.

Returning to our Java example, each of the operations is defined to have an In-Out

pattern. The operation newShape is shown in Figure 9.13, using the messages defined in
Figure 9.11

Figure 9.13 WSDL operation newShape

operation name = "newShape"

input message = "tns:ShapeList_newShape"

output message = "tns:ShapeList_newShapeResponse"

pattern = In-Out

tns – target namespace xsd – XML schema definitions

The names operation, pattern, input and output are defined in the XML schema for WSDL

. This definition, together with definitions of the four other operations will
be enclosed in an XML interface element. An operation may also specify the fault
messages that can be sent.

SECTION 9.3 SERVICE DESCRIPTIONS AND IDL FOR WEB SERVICES 403

If, for example, an operation has two arguments – say, an integer and a string –
there is no need to define a new data type, since these types are defined for XML
schemas. However, it will be necessary to define a message that has these two parts. This
message can then be used as an input or output in the definition for the operation.

Inheritance: Any WSDL interface may extend one or more other WSDL interfaces. This
is a simple form of inheritance in which an interface supports the operations of any
interfaces it extends in addition to those it defines itself. Recursive definition of
interfaces is not allowed; that is, if interface B extends interface A, then interface A
cannot extend interface B.

Concrete part • The remaining (concrete) part of a WSDL document consists of the
binding (the choice of protocols) and the service (the choice of endpoint or server
address). The two are related, since the form of address depends on the type of protocol
in use. For example, a SOAP endpoint will use a URI whereas a CORBA endpoint will
use a CORBA-specific object identifier.

Binding: The binding section in a WSDL document says which message formats and
form of external data representation are to be used. For example, web services frequently
use SOAP, HTTP and MIME. Bindings may be associated with particular operations or
interfaces, or they may be left free for use by a variety of different web services.

Figure 9.14

Figure 9.14 SOAP binding and service definitions

soap:binding transport = URI

binding

style= "rpc"

endpoint

service
name =

binding = "tns:ShapeListBinding"

soap:address
 location = service URI

name = "MyShapeListService"

name = "ShapeListPort"
for schemas for soap/http

The service URI is:

 operation

 soap:operation
soapAction

"ShapeListBinding"
"tns:ShapeList"type =

name="newShape"
 input

soap:body
 encoding, namespace

soap:body
 encoding, namespace

 output
"http://localhost:8080/ShapeList-jaxrpc/ShapeList"

 shows an example of a binding enclosing a soap:binding that specifies
the URL of a particular protocol for transmitting SOAP envelopes: the HTTP binding
for SOAP. Optional attributes of this element may also specify the following:

• the message exchange pattern, which may be either rpc (request-reply) or
document exchange – the default value is document;

404 CHAPTER 9 WEB SERVICES

• the XML schema for the message formats – the default is the SOAP envelope;

• the XML schema for the external data representation – the default is the SOAP
encoding of XML.

Figure 9.14 also shows the details of the bindings for one of the operations (newShape),
specifying that both the input and the output message should travel in a soap:body, using
a particular encoding style, and that the operation should be transmitted as a soapAction.

Service: Each service element in a WSDL document specifies the name of the service
and one or more endpoints (or ports) where an instance of the service may be contacted.
Each of the endpoint elements refers to the name of the binding in use and, in the case
of a SOAP binding, uses a soap:address element to specify the URI of the service
location.

Documentation • Both human- and machine-readable information may be inserted in a
documentation element at most points within a WSDL document. This information may
be removed before WSDL is used for automatic processing, for example, by stub
compilers.

WSDL use • Complete WSDL documents can be accessed via their URIs by clients and
servers, either directly or indirectly via a directory service such as UDDI. Tools are
available for generating WSDL definitions from information provided via a graphical
user interface, removing the need for users to be involved in the complex details and
structure of WSDL. For example, the Web Services Description Language for Java
Toolkit (WSDL4J) allows the creation, representation and manipulation of WSDL
documents describing services [wsdl4j.sourceforge.org]. WSDL definitions can also be
generated from interface definitions written in other languages, such as Java JAX-RPC,
discussed in Section 9.2.1.

9.4 A directory service for use with web services

There are many ways in which clients can obtain service descriptions. For example,
anyone providing a higher-level web service like the travel agent service discussed in
Section 9.1 would almost certainly make a web page advertising the service and
potential clients would come across the web page when searching for services of that
type.

However, any organization that plans to base its applications on web services will
find it more convenient to use a directory service to make these services available to
clients. This is the purpose of the Universal Description, Discovery and Integration
service (UDDI) [Bellwood et al. 2003], which provides both a name service and a
directory service (see Section 13.3). That is, WSDL service descriptions may be looked
up by name (a white pages service) or by attribute (a yellow pages service). They may
also be accessed directly via their URLs, which is convenient for developers who are
designing client programs that use the service.

Clients may use the yellow pages approach to look up a particular category of
service, such as travel agent or bookseller, or they may use the white pages approach to
look up a service with reference to the organization that provides it.

SECTION 9.4 A DIRECTORY SERVICE FOR USE WITH WEB SERVICES 405

Data structures • The data structures supporting UDDI are designed to allow all the
above styles of access and can incorporate any amount of human-readable information.
The data is organized in terms of the four structures shown in Figure 9.15

tModel

businessServices

tModel

Figure 9.15 The main UDDI data structures

businessEntity

information

about the publisher

tModel

businessServiceshuman-readable

service descriptions
key

URL

URL

URL

businessServices

information

about a

family of services

human-readable

service interfaces

bindingTemplate

bindingTemplate

bindingTemplate
information
about the

key
service interfaces

key

, each of which
can be accessed individually by means of an identifier called a key (apart from tModel,
which can be accessed by a URL):

businessEntity describes the organization that provides these web services, giving its
name, address and activities, etc.;

businessServices stores information about a set of instances of a web service, such as
its name and a description of its purpose (for example, travel agent or bookseller);

bindingTemplate holds the address of a web service instance and references to
service descriptions;

tModel holds service descriptions, usually WSDL documents, stored outside the
database and accessed by means of URLs.

Lookup • UDDI provides an API for looking up services based on two sets of query
operations:

• The get_xxx set of operations includes get_BusinessDetail, get_ServiceDetail,
get_bindingDetail and get_tModelDetail; they retrieve an entity corresponding to
a given key.

• The find_xxx set of operations includes find_business, find_service, find_binding

and find_tModel; they retrieve the set of entities that matches a particular set of
search criteria, providing a summary of names, descriptions, keys and URLs.

Thus clients in possession of a particular key may use a get_xxx operation to retrieve the
corresponding entity directly, and other clients may use browsing to assist with searches,
starting with a large set of results and gradually narrowing it down. For example, they
may start by using the find_business operation in order to get a list containing a summary

406 CHAPTER 9 WEB SERVICES

of information on matching providers. From this summary, the user may use the
find_service operation to narrow the search by matching the sort of service required. In
both cases, they will find the key of a suitable bindingTemplate and thereby find the
URL for retrieving the WSDL document for a suitable service.

In addition, UDDI provides a notify/subscribe interface by which clients register
interest in a particular set of entities in a UDDI registry and get change notifications,
either synchronously or asynchronously.

Publication • UDDI provides an interface for publishing and updating information
about web services. The first time that a data structure (see Figure 9.15) is published at
a UDDI server, it is given a key in the form of a URI – for example, uddi:cdk5.net:213

– and that server becomes its owner.

Registries • The UDDI service is based on replicated data stored in registries. A UDDI
registry consists of one or more UDDI servers, each of which has a copy of the same set
of data. The data is replicated between the members of a registry. Each of them may
respond to queries and publish information. Changes to a data structure must be
submitted to its owner – that is, the server at which it was first published. It is possible
for an owner to pass on the ownership to another UDDI server in the same registry.

Replication scheme: The members of a registry propagate copies of data structures to one
another as follows: a server that has made changes notifies the other servers in the
registry, which then request the changes. A form of vector timestamp is used to
determine which of the changes should be propagated and applied. The scheme is simple
in comparison with other replication schemes that use vector timestamps, such as Gossip
(Section 18.4.1) or Coda (Section 18.4.3) for two reasons:

1. All changes to a particular data structure are made at the same server.

2. Updates from a particular server are received in sequential order by the other
members, but no particular ordering is imposed between update operations made
by different servers.

Interaction between servers: As described above, servers interact with one another to
carry out the replication scheme. They can also interact in order to transfer ownership of
data structures. However, the response to a lookup operation is made by a single server
without any interaction with other servers in the registry, unlike in the X.500 directory
service (Section 13.5), in which data is partitioned between servers that cooperate with
one another in finding the relevant server for a particular request.

9.5 XML security

XML security consists of a set of related W3C designs for signing, key management and
encryption. It is intended for use in cooperative work over the Internet involving
documents whose contents may need to be authenticated or encrypted. Typically the
documents are created, exchanged, stored and then exchanged again, possibly after
being modified by a series of different users.

SECTION 9.5 XML SECURITY 407

WS-Security [Kaler 2002] is another approach to security that is concerned with
applying message integrity, message confidentiality and single message authentication
to SOAP.

As an example of a context in which XML security would be useful, consider a
document containing a patient’s medical records. Different parts of this document are
used at the local doctor’s surgery and at the various special clinics and hospitals visited
by the patient. It will be updated by doctors, nurses and consultants making notes on the
patient’s condition and treatment, by administrators making appointments and by
pharmacists providing medicine. Different parts of the document will be viewable by the
different roles mentioned above, and possibly the patient as well. It is essential that
certain parts of the document, for example, recommendations as to treatment, can be
attributed to the person that made them and can be guaranteed not to have been altered.

These needs cannot be met by TLS (previously known as SSL and described in
Section 11.6.3), which is used to create a secure channel for the communication of
information. It allows the processes at the two ends of the channel to negotiate as to the
need for authentication or encryption and the keys and algorithms to be used, both when
a channel is set up and during its lifetime. For example, data about a financial transaction
might be signed and sent in the clear until sensitive information such as credit card
details are to be given, at which point encryption will be applied.

To allow for the new type of usage outlined above, the security must be specified
within the document itself and applied to the document rather than as a property of the
channel that will convey it from one user to another.

This is possible in XML or other structured document formats, in which metadata
can be used. XML tags can be used to define the properties of the data in the document.
In particular, XML security depends on new tags that can be used to indicate the
beginning and end of sections of encrypted or signed data and of signatures. Once the
necessary security has been applied within a document, it may be sent to a variety of
different users, even by means of multicast.

Basic requirements • XML security should provide at least the same level of protection
as TLS. That is:

To be able to encrypt either an entire document or just some selected parts of it: For
example, consider the information about a financial transaction, which includes a
person’s name, the type of transaction and details about the credit or debit card being
used. In one case, just the card details could be hidden, making it possible to identify
the transaction before decrypting the record. In another case, the type of transaction
could also be hidden, so that outsiders cannot tell whether it is, for example, an order
or a payment.

To be able to sign either an entire document or just some selected parts of it: When
a document is intended to be used for cooperative work by a group of people, there
can be some critical parts of the document that should be signed in order to guarantee
that they were made by a particular person or that they have not been changed. But it
is also useful to be able to have other parts that can be altered during the use of the
document – these should not be signed.

408 CHAPTER 9 WEB SERVICES

Additional basic requirements • Further requirements arise from the need to store
documents, possibly to modify them and then to send them on to a variety of different
recipients:

To add to a document that is already signed and to sign the result: For example, Alice
may sign a document and pass it on to Bob, who ‘witnesses her signature’ by adding
a remark to that effect and then signing the entire document. (Section 11.1 introduces
the names, including Alice and Bob, used for the protagonists in security protocols.)

To authorize different users to view different parts of a document: In the case of a
medical record, a researcher can view some particular section of the medical data, an
administrator can view personal details and a doctor can view both.

To add to a document that already contains encrypted sections and to encrypt part of

the new version, possibly including some of the already encrypted sections.

The flexibility and structuring capabilities of XML notation make it possible do all of
the above, without any additions to the scheme derived from the basic requirements.

Requirements concerning algorithms • XML secure documents are signed and/or en-
crypted well in advance of any consideration as to who will be accessing them. If the
originator is no longer involved, it is not possible to negotiate the protocols and whether
to use authentication or encryption. Therefore:

The standard should specify a suite of algorithms to be provided in any implementa-

tion of XML security: At least one encryption and one signature algorithm should be
mandatory, to enable the widest possible interoperability. Other optional algorithms
should be provided for use within smaller groups.

The algorithms used for encryption and authentication of a particular document must

be selected from that suite and the names of the algorithms in use must be referenced

within the XML document itself: If the places where the document will be used cannot
be predicted, then one of the required protocols should be used.

XML security defines the names of elements that can be used to specify the URI of the
algorithm in use for signing or encryption. So as to be able to select a variety of
algorithms within the same XML document, an element that specifies an algorithm is
generally nested inside an element containing signed information or encrypted data.

Requirements for finding keys • When a document is created and each time that it is
updated, appropriate keys must be chosen, without any negotiation with those parties
that may access the document in the future. This leads to the following requirements:

To help the users of secure documents with finding the necessary keys: For example,
a document that includes signed data should contain information as to the public key
to be used to validate the signature, such as a name that can be used to obtain the key,
or a certificate. A KeyInfo element can be used for this purpose.

To make it possible for cooperating users to help one another with keys: Provided
that the KeyInfo element is not cryptographically bound to the signature itself,
information may be added without breaking the digital signature. For example,
suppose Alice signs a document and sends it to Bob with a KeyInfo element that
specifies only the name of the key. When Bob receives the document he retrieves the
information needed to validate the signature and adds this to the KeyInfo element
when he passes the document to Carol.

SECTION 9.5 XML SECURITY 409

The KeyInfo element • XML security specifies a KeyInfo element for indicating the key
to be used to validate a signature or to decrypt some data. It may contain, for example,
certificates, the names of keys or key agreement algorithms. Its use is optional: the
signer may not want to reveal any key information to all of the parties that access the
document, and in some cases the application using XML security may already have
access to the keys in use.

Canonical XML • Some applications may make changes that have no effect on the
actual information content of an XML document. This arises because there are a variety
of different ways of representing what is logically the same XML document. For
example, attributes may be in different orders and differing character encodings may be
used, yet the information content is equivalent. Canonical XML [www.w3.org X] was
designed for use with digital signatures, which are used to guarantee that the information
content of a document has not been changed. XML elements are canonicalized before
being signed and the name of the canonicalization algorithm is stored, together with the
signature. This enables the same algorithm to be used when the signature is validated.

The canonical form is a standard serialization of XML as a stream of bytes. It adds
default attributes and removes superfluous schemas, putting the attributes and schema
declarations in lexicographic order in each element. It uses a standard form for line
breaks and the UTF-8 encoding for characters. Any two equivalent XML documents
have the same canonical form.

When a subset of an XML document – say an element – is canonicalized, the
canonical form includes the ancestor context, that is, the namespaces declared and the
values of the attributes. Thus when canonical XML is used in conjunction with digital
signatures, the signature of an element will not pass its validation if that element is
placed in a different context.

A variation of this algorithm, called Exclusive Canonical XML, omits the context
from the serialization. This could be used if the application intends a particular signed
element to be used in different contexts.

Figure 9.16 Algorithms required for XML signature

Type of algorithm Name of algorithm Required reference

Message digest SHA-1 Required Section 11.4.3
Encoding base64 Required [Freed and Borenstein 1996]
Signature DSA with SHA-1 Required [NIST 1994]
(asymmetric) RSA with SHA-1 Recommended Section 11.3.2
MAC signature
(symmetric)

HMAC-SHA-1 Required Section 11.4.2 and
Krawczyk et al. [1997]

Canonicalization Canonical XML Required Page 409

Use of digital signatures in XML • The specification for digital signatures in XML
[www.w3.org XII] is a W3C recommendation that defines new XML element types to
hold signatures, the names of algorithms, keys and references to signed information. The
names provided in this specification are defined in the XML Signature schema which

410 CHAPTER 9 WEB SERVICES

includes the elements Signature, SignatureValue, SignedInfo and KeyInfo. Figure 9.16
shows the algorithms that must be available in an implementation of XML Signature.

Key management service • The specification of the XML key management service
[www.w3.org XIII] contains protocols for distributing and registering public keys for
use in XML signatures. Although it does not require any particular public key
infrastructure, the service is designed to be compatible with existing ones, for example,
X.509 certificates (Section 11.4.4), SPKI (the Simple Public Key Infrastructure, Section
11.4.4) or PGP key identifiers (Pretty Good Privacy, Section 11.5.2).

Clients can use this service to find the public key of a person. For example, if Alice
wants to send an encrypted email to Bob, she can use this service to obtain his public
key. In another example, Bob receives a signed document from Alice containing her
X.509 certificate and then asks the key information service to extract the public key.

XML encryption • The standard for encryption in XML is defined in a W3C
recommendation that specifies both the way to represent encrypted data in XML and the
process for encrypting and decrypting it [www.w3.org XIV]. It introduces an
EncryptedData element for enclosing portions of encrypted data.

Figure 9.17

Figure 9.17 Algorithms required for XML encryption (the algorithms in Figure 9.16 are also required)

Type of algorithm Name of algorithm Required reference

Block cipher TRIPLEDES,
AES-128, AES-256

Required Section 11.3.1

AES-192 Optional
Encoding base64 Required [Freed and Borenstein 1996]
Key transport RSA-v1.5,

RSA-OAEP
Required Section 11.3.2

[Kaliski and Staddon 1998]
Symmetric key wrap

(signature by
shared key)

TRIPLEDES
KeyWrap,
AES-128 KeyWrap,
AES-256KeyWrap

Required [Housley 2002]

AES-192 KeyWrap Optional
Key agreement Diffie-Hellman Optional [Rescorla, 1999]

specifies the encryption algorithms that should be included in an
implementation of XML encryption. Block cipher algorithms are used for encrypting the
data, and base64 encoding is used in XML for representing digital signatures and
encrypted data. Key transport algorithms are public key encryption algorithms designed
for use in encrypting and decrypting the keys themselves.

Symmetric key wrap algorithms are shared secret key encryption algorithms
designed for encrypting and decrypting symmetric keys by means of another key. This
could be used if a key were to be included in a KeyInfo element.

A key agreement algorithm allows a shared secret key to be derived from a
computation on a pair of public keys. This algorithm is made available for use by
applications that need to agree a shared key without any exchange. It is not applied by
the XML security system itself.

SECTION 9.6 COORDINATION OF WEB SERVICES 411

9.6 Coordination of web services

The SOAP infrastructure supports single request-response interactions between clients
and web services. However, many useful applications involve several requests that need
to be done in a particular order. For example, when booking a flight, the price and
availability information is collected before the reservations are made. When a user
interacts with web pages by means of a browser, for example, to book a flight or to make
a bid in an auction, the interface provided by the browser (which is based on the
information provided by the server) controls the sequence in which the operations are
performed.

However, if it is a web service that is making reservations, like the travel agent
service shown in Figure 9.2, that web service needs to work from a description of the
appropriate way to proceed when interacting with other services are used for, e.g., car
hire and hotel bookings as well as flight bookings. Figure 9.18

Figure 9.18 Travel agent scenario

1. The client asks the travel agent service for information about a set of services; for
example, flights, car hire and hotel bookings.

2. The travel agent service collects prices and availability information and sends it
to the client, which chooses one of the following on behalf of the user:

(a) Refine the query, possibly involving more providers to get more information,
then repeat step 2.

(b) Make reservation.

(c) Quit.

3. The client requests a reservation and the travel agent service checks availability.

4. Either all are available;

or for services that are not available;

either alternatives are offered to the client, which goes back to step 3;

or the client goes back to step 1.

5. Take deposit.

6. Give the client a reservation number as a confirmation.

7. During the period until the final payment, the client may modify or cancel
reservations.

 shows an example of such
a description.

This example illustrates the need for web services as clients to be provided with a
description of a particular protocol to follow when interacting with other web services.
But there is also the issue of maintaining consistency in the server data when it is
receiving and responding to requests from multiple clients. Chapters 16 and 17 discuss
transactions, illustrating the issues by means of a series of banking transactions. As a

412 CHAPTER 9 WEB SERVICES

simple example, in a transfer of money between two bank accounts, consistency requires
that both the deposit in one account and the withdrawal from the other must be
performed. Chapter 17 presents the two-phase commit protocol that is used by
cooperating servers to ensure consistency of transactions.

In some cases, atomic transactions suit the requirements of applications using web
services. However, activities such as those of the travel agent take a long time to
complete, and it would be impractical to use a two-phase commit protocol to carry them
out because it involves keeping resources locked for long periods of time. An alternative
is to use a more relaxed protocol in which each participant makes changes to persistent
state as they occur. In the case of failure, an application-level protocol is used to undo
these actions.

In conventional middleware, the infrastructure provides a simple request-reply
protocol, leaving other services such as transactions, persistency and security to be
implemented as separate higher-level services that can be used when they are needed.
The same is true for web services, where the W3C and others have been putting in effort
towards the definition of higher-level services.

Work has been done on a general model for coordination of web services, which
is similar to the distributed transaction model described in Section 17.2 in that it has
coordinator and participant roles that are able to act out particular protocols, for
example, to carry out a distributed transaction. This work, which is called WS-
Coordination, is described by Langworthy [2004]. The same group has also shown how
transactions may be carried out within this model. For a comprehensive study of web
services coordination protocols, see Alonso et al. [2004].

In the remainder of this section, we outline the ideas behind web service
choreography. Consider the fact that it would be possible to describe all of the possible
valid alternative paths through the set of interactions between pairs of web services
working together in a joint task such as the travel agent scenario. If such a description
were available, it could be used as an aid to the coordination of joint tasks. It could also
be used as a specification to be followed by new instances of a service, such as a new
flight booking service wishing to join a collaboration.

The W3C uses the term choreography to refer to a language based on WSDL for
defining coordination. For example, the language might specify constraints on the order
and the conditions in which messages are exchanged by participants. A choreography is
intended to provide a global description of a set of interactions, showing the behaviour
of each member of a set of participants, with a view to enhancing interoperability.

Requirements for choreography • Choreography is intended to support interactions
between web services which are generally managed by different companies and
organizations. A collaboration involving multiple web services and clients should be
described in terms of the sets of observable interactions between pairs of them. Such a
description might be seen as a contract between the participants, and could be used for
the following purposes:

• to generate code outlines for a new service that wants to participate;

• as a basis for generating test messages for a new service;

• to promote a common understanding of the collaboration;

• to analyze the collaboration, for example to identify possible deadlock situations.

SECTION 9.7 APPLICATIONS OF WEB SERVICES 413

The use of a common choreography description by a set of collaborating web services
should result in more robust services with better interoperability. In addition, it should
be easier to develop and to introduce new services, making the overall service more
useful.

The W3C working draft document [www.w3.org XV] suggests that a
choreography language should include the following features:

• hierarchical and recursive composition of choreographies;

• the ability to add new instances of an existing service and new services;

• concurrent paths, alternative paths and the ability to repeat a section of a
choreography;

• variable timeouts – for example, different periods for holding reservations;

• exceptions, for example, to deal with messages arriving out of sequence and user
actions such as cancellations;

• asynchronous interactions (callbacks);

• reference passing, for example, to allow a car hire company to consult a bank for
a credit check on behalf of a user;

• marking of the boundaries of the separate transactions that take place, for
example, to allow for recovery;

• the ability to include human-readable documentation.

A model based on these requirements is described in another W3C working draft
document [www.w3.org XVI].

Languages for choreography • The intention is to produce a declarative, XML-based
language for defining choreographies that can make use of WSDL definitions. The W3C
has made a recommendation for Web Services Choreography Definition Language
Version 1 [www.w3.org XVII]. Prior to this, a group of companies submitted to the
W3C a specification for the web services choreography interface [www.w3.org XVIII].

9.7 Applications of web services

Web services are now one of the dominant paradigms for programming distributed
systems. In this section, we discuss a number of the major areas where web services have
been employed extensively: in supporting service-oriented architecture, the Grid and
latterly, cloud computing.

9.7.1 Service-oriented architecture

Service-oriented architecture (SOA) is a set of design principles whereby distributed
systems are developed using sets of loosely coupled services that can be dynamically
discovered and then communicate with each other or are coordinated through
choreography to provide enhanced services. Service-oriented architecture is an abstract

414 CHAPTER 9 WEB SERVICES

concept that can be implemented using a variety of technologies including the
distributed object or component-based approaches discussed in Chapter 8. The principal
means of realizing service-oriented architecture, however, is through the use of web
services, largely due to the loose coupling inherent in this approach (as discussed in
Section 9.2).

This style of architecture can be used within a business or organization to offer a
flexible software architecture and to achieve interoperability between the various
services. Its prime use, however is in the broader Internet, offering a common view of
services making them globally accessible and amenable to subsequent composition.
This makes it possible to transcend the levels of heterogeneity inherent in the Internet
and also to deal with the problem of different organizations adopting different
middleware products internally – it is possible for one organization to use CORBA
internally and another to use .NET but both then to expose interfaces using web services,
thus encouraging global interoperability. The resultant property is known as business-

to-business (B2B) integration. We already saw one example of the need for B2B
integration in Figure 9.18 (the travel agent scenario), where the travel agent may deal
with a wide range of companies offering flights, car rentals and hotel accommodation.

Service-oriented architecture also enables and encourages a mashup approach to
software development. A mashup is a new service created by a third-party developer by
combining two or more services available in the distributed environment. The mashup
culture relies on the ready availability of useful services with well-defined interfaces
coupled with an open innovation community where individuals or groups engage in the
development of experimental combined services and make them available to others for
further development. Both conditions are now met by the Internet, particularly with the
emergence of cloud computing and software as a service (as introduced in Section
7.7.1), where major software developers such as Amazon, Flickr and eBay make
services available through published interfaces to other developers. As an example, refer
to JBidwatcher [www.jbidwatcher.org], a Java-based mashup that interfaces to eBay to
manage bids proactively on behalf of a client, for example tracking auctions and bidding
at the last minute to maximize chances of success.

9.7.2 The Grid

The name ‘Grid’ is used to refer to middleware that is designed to enable the sharing of
resources such as files, computers, software, data and sensors on a very large scale. The
resources are shared typically by groups of users in different organizations who are
collaborating on the solution of problems requiring large numbers of computers to solve
them, either by the sharing of data or by the sharing of computing power. These
resources are necessarily supported by heterogeneous computer hardware, operating
systems, programming languages and applications. Management is needed to coordinate
the use of resources to ensure that clients get what they need and that services can afford
to supply it. In some cases, sophisticated security techniques are required to ensure that
the correct use is made of resources in this type of environment. For an example of a
Grid application, refer to the box on page 415, which features the World-Wide
Telescope application developed at Microsoft Research.

The World-Wide Telescope: A Grid application

This project is concerned with deploying the data resources shared by the
astronomy community. It is described in the work of Szalay and Gray [2004], Szalay
and Gray [2001] and Gray and Szalay [2002]. Astronomy data consists of archives of
observations, each of which covers a particular period of time, a part of the
electromagnetic spectrum (optical, x-ray, radio) and a particular area of the sky.
These observations are made by different instruments deployed at various places
throughout the world.

A study of how astronomers share their data is useful for deriving the
characteristics of a typical Grid application, because astronomers freely share their
results with one another and issues of security can be omitted, making this discussion
simpler.

 Astronomers make studies that need to combine data on the same celestial
objects but involve several different periods of time and multiple parts of the
spectrum. The ability to use independent observations of data is important to
research. Visualization allows astronomers to see the data as 2D or 3D scatter plots.

The teams gathering the data store it in immense archives (currently terabytes),
which are managed locally by each team that gathers data. The instruments used in
gathering data are subject to Moore’s law, so the amount of data gathered grows
exponentially. As it is gathered, the data is analyzed by a pipeline process and stored
as derived data for use by astronomers throughout the world. But before data can be
used by other researchers, scientists working in a particular field need to agree on a
common way of labelling their data.

Szalay and Gray [2004] point out that in the past, scientific research data was
included by authors in articles and published in journals that lived in libraries. But
nowadays, the quantity of data is too great to be included in a publication. This
applies not only to astronomy, but also to the fields of particle physics and genome
and biology research. The role of author now belongs to the collaborations, which
take 5–10 years to build their experiments before producing the data that is published
to the world in web-based archives. Thus, the scientists working on the projects
become data publishers and librarians as well as authors.

This additional role requires any project that manages a data archive to make it
accessible to other researchers. This implies a considerable overhead in addition to
the original task of data analysis. To make such sharing possible, the raw data
requires metadata to describe, for example, the time it was collected, the part of the
sky and the instrument used. In addition, the derived data needs to be accompanied
by metadata describing the parameters of the pipelines through which it was
processed.

The calculation of derived data requires heavy computational support. It often
has to be recalculated as techniques improve. All of this is a considerable expense for
the project that owns the data.

The aim of the World-Wide Telescope is to unify the world’s astronomy
archives into a giant database containing astronomy literature, images, raw data,
derived datasets and simulation data.

SECTION 9.7 APPLICATIONS OF WEB SERVICES 415

416 CHAPTER 9 WEB SERVICES

Requirements of Grid applications • The World-Wide Telescope is typical of a range of
data-intensive Grid applications, wherein:

• data is collected by means of scientific instruments;

• the data is stored in archives at separate sites whose locations can be in different
places throughout the world;

• the data is managed by teams of scientists belonging to separate organizations;

• an immense and increasing quantity (terabytes or petabytes) of raw data is
generated from the instruments;

• computer programs are used to analyze and make summaries of the raw data, for
example, to classify, calibrate and catalogue the raw data representing celestial
objects.

The Internet makes all of these data archives potentially available to scientists
throughout the world, enabling them to get data from different instruments gathered at
different times and at different sites. However, a particular scientist using this data for
their own research will be interested in just a subset of the objects in the archives.

The immense quantity of data in an archive makes it infeasible to transfer it to the
location of the user before processing it to extract the objects of interest, due to
considerations such as transmission time and the local disk space required. Therefore, it
is not appropriate to use FTP or web access in this context. The processing of the raw
data should take place at the location where it is collected and stored in a database. Then
when a scientist makes a query about particular objects, the information in each database
should be analyzed and if necessary, visualizations produced before returning the results
to the remote query.

The fact that data is processed at many different sites provides an inbuilt
parallelism that effectively divides the immense task being undertaken.

From the above characteristics, the following requirements are derived:

R1: Remote access to resources – that is, to the required information in the archives.

R2: Processing of data at the site where it is stored and managed, either when it is
gathered or in response to a request. A typical query might result in a
visualization based on data collected for one region of sky recorded by different
instruments at different times. It will involve selecting a small quantity of data
from each massive data archive.

R3: The resource manager of a data archive should be able to create service instances
dynamically to deal with the particular section of data required, just as in the
distributed object model, where servants are created whenever they are needed
to handle different resources managed by a service.

R4: Metadata to describe:

– characteristics of the data in an archive – for example, for astronomy, the area
of the sky, the date and time collected and the instruments used;

– characteristics of a service managing that data – for example, its cost, its
geographic location, its publisher or its load or space available.

SECTION 9.7 APPLICATIONS OF WEB SERVICES 417

R5: Directory services based on the above metadata.

R6: Software to manage queries, data transfers and advance reservation of resources,
taking into account that the resources are generally managed by the projects that
generate the data and that access to them may need to be rationed.

Web services can deal with the first two requirements by providing a convenient way
for scientists to access operations on data in remote archives. This will require that each
particular application provide a service description that includes a set of methods for
accessing its data. The Grid middleware must deal with the remaining requirements.

Grids are also used for computationally intensive Grid applications such as
processing the vast quantities of data produced by the CMS high-energy particle accel-
erator at CERN [www.uscms.org], testing the effects of candidate drug molecules
[Taufer et al. 2003, Chien 2004] or supporting massively multiplayer online games us-
ing spare capacity in cluster computers [www.butterfly.net]. Where computationally-in-
tensive applications are deployed on a Grid, resource management will be concerned
with allocating computing resources and balancing loads.

 Finally, security will be needed for many Grid applications. For example, the Grid
is in use for medical research and for business applications. Even when the privacy of
data is not an issue, it will be important to establish the identity of the people who
created the data.

Grid middleware • The Open Grid Services Architecture (OGSA) is a standard for
Grid-based applications [Foster et al. 2001, 2002]. It provides a framework within
which the above requirements can be met, based on web services. Resources are
managed by application-specific Grid services. The Globus toolkit then implements the
architecture.

The Globus Project started in 1994 with a view to providing software that
integrates and standardizes the functions required by a family of scientific applications.
These functions include directory services, security and resource management. The first
Globus toolkit appeared in 1997. The OGSA evolved from the second version of the
toolkit (called GT2), which is described in Foster and Kesselman [2004]. The third
version (GT3), which appeared in 2002, was based on OGSA and therefore built on web
services. It was developed by the Globus Alliance (www.globus.org) and is described in
Sandholm and Gawor [2003]. Since then, two further versions have been released – the
latest version is referred to as GT5 and is available as open source software
[www.globus.org]).

A case study of OGSA and the Globus toolkit (up to GT3) can be found on the
companion web site [www.cdk5.net/web].

9.7.3 Cloud computing

Cloud computing was introduced in Chapter 1 as a set of Internet-based application,
storage and computing services sufficient to support most users’ needs, thus enabling
them to largely or totally dispense with local data storage and application software.
Cloud computing also promotes a view of everything as a service, from physical or
virtual infrastructure through to software, often paid for on a per-usage basis rather than
purchased. The concept is therefore intrinsically linked to a new business model for

418 CHAPTER 9 WEB SERVICES

computing where cloud suppliers offer a range of computational, data and other services
to customers as required for their daily use, for example offering sufficient storage
capacity across the Internet to act as an archival or backup service.

Chapter 1 also comments on the overlap between cloud computing and the Grid.
The development of the Grid preceded the emergence of cloud computing and was a
significant factor in its emergence. They share the same goal of providing resources
(services) out there in the greater Internet. Whereas the Grid tends to focus on high-end
data-heavy or computationally expensive applications, cloud computation is more
general, offering a range of services for individual computer users through to high-end
users. The business model associated with cloud computing is also a distinguishing
characteristic. It is therefore fair to say that the Grid is an early example of cloud
computing, but cloud computing has developed significantly since then.

With the view of everything as a service, web services offer a natural
implementation path for cloud computing, and indeed many vendors go down this path.
The most notable offering in this space is Amazon Web Services (AWS)
[aws.amazon.com], and we look briefly at this technology below. We will see an
alternative approach to cloud computing in Chapter 21, when we look at Google
infrastructure and the associated Google App Engine, which both feature a lighter-
weight, higher-performance approach than web services.

Amazon Web Services are a set of cloud services implemented on the extensive
physical infrastructure owned by Amazon.com. Originally developed for internal
purposes in support of their electronic retail business, Amazon now offers many of the
facilities to external users, enabling them to run independent services on the
infrastructure. The implementation of AWS takes care of key distributed systems issues
such as managing service availability, scalability and performance, allowing developers
to focus on the use of their services. Services are made available using web service
standards described earlier in this chapter. This has the advantage that programmers
familiar with web services can readily use AWS and can develop mashups that
incorporate Amazon Web Services in their construction. More generally, the approach
enables interoperability across the Internet. Amazon also adopts the REST approach, as
advocated by Fielding [2000] and discussed in Section 9.2.

Amazon offers a wide and extensible set of services, the most significant of which
are listed in Figure 9.19. We feature EC2 in more detail. EC2 is an elastic compute
service, where the term ‘elastic’ refers to the ability to offer computing capacity that is
resizeable to the customers needs. Rather than an actual machine, EC2 offers the user a
virtual machine, called an instance, to their desired specification. For example, a user
can request an instance of the following types:

• a standard instance designed to be suitable for most applications;

• a high-memory instance that offers additional memory capacity, for example for
applications involving caching;

• a high-CPU instance designed to support computationally intensive tasks;

• a cluster compute instance offering a cluster of virtual processors with high-
bandwidth interconnection for high-performance computing tasks.

Figure 9.19 A selection of Amazon Web Services

Web service Description

Amazon Elastic Compute Cloud (EC2) Web-based service offering access to virtual
machines of a given performance and storage
capacity

Amazon Simple Storage Service (S3) Web-based storage service for unstructured data

Amazon Simple DB Web-based storage service for querying
structured data

Amazon Simple Queue Service (SQS) Hosted service supporting message queuing (as
discussed in Chapter 6)

Amazon Elastic MapReduce Web-based service for distributed computation
using the MapReduce model (introduced in
Chapter 21)

Amazon Flexible Payments Service (FPS) Web-based service supporting electronic
payments

SECTION 9.8 SUMMARY 419

Several of these can be further refined – for example, for a standard instance it is
possible to request a small, medium or large instance representing different
specifications in terms of processing power, memory, disk storage and so on.

EC2 is built on top of the Xen hypervisor, described in Section 7.7.2. The
instances can be configured to run a variety of operating systems including Windows
Server 2008, Linux or OpenSolaris. They can also be configured with a variety of
software. For example, it is possible to request an installation of Apache HTTP to
support web hosting.

EC2 supports the interesting concept of an elastic IP address, which looks like a
traditional IP address but is associated with the user’s account, not a particular instance.
This means that if a (virtual) machine fails, the IP address can be reassigned to a
different machine without requiring the intervention of a network administrator.

9.8 Summary

In this chapter we have shown that web services have arisen from the need to provide an
infrastructure to support interworking between different organizations. This infrastruc-
ture generally uses the widely used HTTP protocol to transport messages between cli-
ents and servers over the Internet and is based on the use of URIs to refer to resources.
XML, a textual format, is used for data representation and marshalling.

Two separate influences led to the emergence of web services. One of these was
the addition of service interfaces to web servers with a view to allowing the resources
on a site to be accessed by client programs other than browsers and using a richer form

420 CHAPTER 9 WEB SERVICES

of interaction. The other was the desire to provide something like RPC over the Internet,
based on the existing protocols. The resulting web services provide interfaces with sets
of operations that can be called remotely. Like any other form of service, a web service
can be the client of another web service, thus allowing a web service to integrate or
combine a set of other web services.

 SOAP is the communication protocol that is generally used by web services and
their clients. It can be used to transmit request messages and their replies between client
and server, either by the asynchronous exchange of documents or by a form of request-
reply protocol based on a pair of asynchronous message exchanges. In both cases, the
request or reply message is enclosed in an XML-formatted document called an
envelope. The SOAP envelope is generally transmitted over the synchronous HTTP
protocol, although other transports can be used.

XML and SOAP processors are available for all of the widely used programming
languages and operating systems. This enables web services and their clients to be
deployed almost anywhere. This form of interworking is enabled by the facts that web
services are not tied to any particular programming language and do not support the
distributed object model.

In conventional middleware services, interface definitions provide clients with the
details of services. However, in the case of web services, service descriptions are used.
A service description specifies the communication protocol to be used (for example,
SOAP) and the URI of the service, as well as describing its interface. The interface may
be described either as a set of operations or as a set of messages to be exchanged between
client and server.

XML security was designed to provide the necessary protection for the contents
of a document exchanged by members of a group of people, who have different tasks to
perform on that document. Different parts of the document will be available to different
people, some with the ability to add to or alter the content and others only to read it. To
enable complete flexibility in its future use, the security properties are defined within the
document itself. This is achieved by means of XML, which is a self-describing format.
XML elements are used to specify document parts that are encrypted or signed as well
as details of the algorithms used and information to help with finding keys.

Web services have been used for a variety of purposes in distributed systems. For
example, web services provide a natural implementation of the concept of service-
oriented architecture, in which their loose coupling enables interoperability in Internet-
scale applications – including business-to-business (B2B) applications. Their inherent
loose coupling also supports the emergence of a mashup approach to web service
construction. Web services also underpin the Grid, supporting collaborations between
scientists or engineers in organizations in different parts of the world. Their work is very
often based on the use of raw data collected by instruments at different sites and then
processed locally. The Globus toolkit is an implementation of the architecture that has
been used in a variety of data-intensive and computationally intensive applications.
Finally, web services are heavily used in cloud computing. For example Amazon’s
AWS is based entirely on web service standards coupled with the REST philosophy of
service construction.

EXERCISES 421

EXERCISES

9.1 Compare the request-reply protocol as described in Section 5.2 with the implementation
of client-server communication in SOAP. State two reasons why the use of
asynchronous messages by SOAP is more appropriate over the Internet. To what extent
does the use of HTTP by SOAP reduce the difference between the two approaches?

page 388

9.2 Compare the structure of URLs as used for web services with that of remote object
references as specified in Section 4.3.4. State in each case how they are used to execute
a client request. page 393

9.3 Illustrate the contents of a SOAP Request message and corresponding Reply message in
the Election service example of Exercise 5.11, using the pictorial version of XML as
shown in Figure 9.4 and Figure 9.5. page 389

9.4 Outline the five main elements of a WSDL service description. In the case of the
Election service defined in Exercise 5.11, state the type of information to be used by the
Request and Reply messages – does any of this need to be included in the target
namespace? For the vote operation, draw diagrams similar to Figure 9.11 and Figure
9.13. page 402

9.5 Continuing with the example of the Election service, explain why the part of the WSDL
service description defined in Exercise 9.4 is referred to as ‘abstract’. What would need
to be added to the service description to make it completely concrete? page 400

9.6 Define a Java interface for the Election service suitable for use as a web service. State
why you think the interface you defined is suitable. Explain how a WSDL document for
the service is generated and how it is made available to clients. page 396

9.7 Describe the contents of a Java client proxy for the Election service. Explain how the
appropriate marshalling and unmarshalling methods can be obtained for a static proxy.

page 396

9.8 Explain the role of a servlet container in the deploying of a web service and the
execution of a client request. page 396

9.9 In the Java example illustrated in Figure 9.8 and Figure 9.9, both client and server are
dealing with objects, although web services do not support distributed objects. How can
this be the case? What are the limitations imposed on the interfaces of Java web
services? page 395

9.10 Outline the replication scheme used in UDDI. Supposing that vector timestamps are
used to support this scheme, define a pair of operations for use by registries needing to
exchange data. page 406

9.11 Explain why UDDI can be described as being both a name service and a directory
service, mentioning the types of enquiries that can be made. The second ‘D’ in the name
UDDI refers to ‘discovery’ – is UDDI really a discovery service?

Chapter 13 and page 404

422 CHAPTER 9 WEB SERVICES

9.12 Outline the main difference between TLS and XML security. Explain why XML is
particularly suitable for the role it plays, in terms of these differences.

Chapter 11 and page 406

9.13 Documents protected by XML security may be signed or encrypted long before anyone
can predict who will be the ultimate recipients. What measures are taken to ensure that
the latter have access to the algorithms used by the former? page 406

9.14 Explain the relevance of canonical XML to digital signatures. What contextual
information can be included in the canonical form? Give an example of a breach of
security where the context is omitted from the canonical form. page 409

9.15 A coordination protocol could be carried out in order to coordinate the actions of web
services. Outline an architecture for (i) a centralized and (ii) a distributed coordination
protocol. In each case, describe the interactions needed to establish coordination
between a pair of web services. page 411

9.16 Compare RPC call semantics with the semantics of WS-ReliableMessaging:
i) State the entities to which each refers.
ii) Compare the differing meanings of the available semantics (for example, at-

least-once, at-most-once, exactly-once).
Chapter 5 and page 392

 423

10

PEER-TO-PEER SYSTEMS

10.1 Introduction
10.2 Napster and its legacy
10.3 Peer-to-peer middleware
10.4 Routing overlays
10.5 Overlay case studies: Pastry, Tapestry
10.6 Application case studies: Squirrel, OceanStore, Ivy
10.7 Summary

Peer-to-peer systems represent a paradigm for the construction of distributed systems
and applications in which data and computational resources are contributed by many
hosts on the Internet, all of which participate in the provision of a uniform service. Their
emergence is a consequence of the very rapid growth of the Internet, embracing many
millions of computers and similar numbers of users requiring access to shared resources.

A key problem for peer-to-peer systems is the placement of data objects across
many hosts and subsequent provision for access to them in a manner that balances the
workload and ensures availability without adding undue overheads. We describe several
recently developed systems and applications that are designed to achieve this.

Peer-to-peer middleware systems are emerging that have the capacity to share
computing resources, storage and data present in computers ‘at the edges of the Internet’
on a global scale. They exploit existing naming, routing, data replication and security
techniques in new ways to build a reliable resource-sharing layer over an unreliable and
untrusted collection of computers and networks.

 Peer-to-peer applications have been used to provide file sharing, web caching,
information distribution and other services, exploiting the resources of tens of thousands
of machines across the Internet. They are at their most effective when used to store very
large collections of immutable data. Their design diminishes their effectiveness for
applications that store and update mutable data objects.

424 CHAPTER 10 PEER-TO-PEER SYSTEMS

10.1 Introduction

The demand for services in the Internet can be expected to grow to a scale that is limited
only by the size of the world’s population. The goal of peer-to-peer systems is to enable
the sharing of data and resources on a very large scale by eliminating any requirement
for separately managed servers and their associated infrastructure.

The scope for expanding popular services by adding to the number of the
computers hosting them is limited when all the hosts must be owned and managed by
the service provider. Administration and fault recovery costs tend to dominate. The
network bandwidth that can be provided to a single server site over available physical
links is also a major constraint. System-level services such as Sun NFS (Section 12.3),
the Andrew File System (Section 12.4) or video servers (Section 20.6.1) and
application-level services such as Google, Amazon or eBay all exhibit this problem to
varying degrees.

Peer-to-peer systems aim to support useful distributed services and applications
using data and computing resources available in the personal computers and
workstations that are present in the Internet and other networks in ever-increasing
numbers. This is increasingly attractive as the performance difference between desktop
and server machines narrows and broadband network connections proliferate.

But there is another, broader aim: one author [Shirky 2000] has defined peer-to-
peer applications as ‘applications that exploit resources available at the edges of the
Internet – storage, cycles, content, human presence’. Each type of resource sharing
mentioned in that definition is already represented by distributed applications available
for most types of personal computer. The purpose of this chapter is to describe some
general techniques that simplify the construction of peer-to-peer applications and
enhance their scalability, reliability and security.

Traditional client-server systems manage and provide access to resources such as
files, web pages or other information objects located on a single server computer or a
small cluster of tightly coupled servers. With such centralized designs, few decisions are
required about the placement of the resources or the management of server hardware
resources, but the scale of the service is limited by the server hardware capacity and
network connectivity. Peer-to-peer systems provide access to information resources
located on computers throughout a network (whether it be the Internet or a corporate
network). Algorithms for the placement and subsequent retrieval of information objects
are a key aspect of the system design. The aim is to deliver a service that is fully
decentralized and self-organizing, dynamically balancing the storage and processing
loads between all the participating computers as computers join and leave the service.

Peer-to-peer systems share these characteristics:

• Their design ensures that each user contributes resources to the system.

• Although they may differ in the resources that they contribute, all the nodes in a
peer-to-peer system have the same functional capabilities and responsibilities.

• Their correct operation does not depend on the existence of any centrally
administered systems.

SECTION 10.1 INTRODUCTION 425

• They can be designed to offer a limited degree of anonymity to the providers and
users of resources.

• A key issue for their efficient operation is the choice of an algorithm for the
placement of data across many hosts and subsequent access to it in a manner that
balances the workload and ensures availability without adding undue overheads.

Computers and network connections owned and managed by a multitude of different
users and organizations are necessarily volatile resources; their owners do not guarantee
to keep them switched on, connected and fault-free. So the availability of the processes
and computers participating in peer-to-peer systems is unpredictable. Peer-to-peer
services therefore cannot rely on guaranteed access to individual resources, although
they can be designed to make the probability of failure to access a copy of a replicated
object arbitrarily small. It is worth noting that this weakness of peer-to-peer systems can
be turned into a strength if the replication of resources that it calls for is exploited to
achieve a degree of resistance to tampering by malicious nodes (for example, through
Byzantine fault-tolerance techniques; see Chapter 18).

Several early Internet-based services, including DNS (Section 13.2.3) and
Netnews/Usenet [Kantor and Lapsley 1986], adopted a multi-server scalable and fault-
tolerant architecture. The Xerox Grapevine name registration and mail delivery service
[Birrell et al. 1982, Schroeder et al. 1984] provides an interesting early example of a
scalable, fault-tolerant distributed service. Lamport’s part-time parliament algorithm for
distributed consensus [Lamport 1989], the Bayou replicated storage system (see Section
18.4.2) and the classless interdomain IP routing algorithm (see Section 3.4.3) are all
examples of distributed algorithms for the placement or location of information and can
be considered as antecedents of peer-to-peer systems.

But the potential for the deployment of peer-to-peer services using resources at the
edges of the Internet emerged only when a significant number of users had acquired
always-on, broadband connections to the network, making their desktop computers
suitable platforms for resource sharing. This occurred first in the United States around
1999. By mid-2004 the worldwide number of broadband Internet connections had
comfortably exceeded 100 million [Internet World Stats 2004].

Three generations of peer-to-peer system and application development can be
identified. The first generation was launched by the Napster music exchange service
[OpenNap 2001], which we describe in the next section. A second generation of file-
sharing applications offering greater scalability, anonymity and fault tolerance quickly
followed including Freenet [Clarke et al. 2000, freenetproject.org], Gnutella, Kazaa
[Leibowitz et al. 2003] and BitTorrent [Cohen 2003].

Peer-to-peer middleware • The third generation is characterized by the emergence of
middleware layers for the application-independent management of distributed resources
on a global scale. Several research teams have now completed the development,
evaluation and refinement of peer-to-peer middleware platforms and demonstrated or
deployed them in a range of application services. The best-known and most fully
developed examples include Pastry [Rowstron and Druschel 2001], Tapestry [Zhao et

al. 2004], CAN [Ratnasamy et al. 2001], Chord [Stoica et al. 2001] and Kademlia
[Maymounkov and Mazieres 2002].

426 CHAPTER 10 PEER-TO-PEER SYSTEMS

These platforms are designed to place resources (data objects, files) on a set of
computers that are widely distributed throughout the Internet and to route messages to
them on behalf of clients, relieving clients of any need to make decisions about placing
resources and to hold information about the whereabouts of the resources they require.
Unlike the second-generation systems, they provide guarantees of delivery for requests
in a bounded number of network hops. They place replicas of resources on available host
computers in a structured manner, taking account of their volatile availability, their
variable trustworthiness and requirements for load balancing and locality of information
storage and use.

Resources are identified by globally unique identifiers (GUIDs), usually derived
as a secure hash (described in Section 11.4.3) from some or all of the resource’s state.
The use of a secure hash makes a resource ‘self certifying’ – clients receiving a resource
can check the validity of the hash. This protects it against tampering by untrusted nodes
on which it may be stored, but this technique requires that the states of resources are
immutable, since a change to the state would result in a different hash value. Hence peer-
to-peer storage systems are inherently best suited to the storage of immutable objects

Figure 10.1 Distinctions between IP and overlay routing for peer-to-peer applications

IP Application-level routing overlay

Scale IPv4 is limited to 232 addressable
nodes. The IPv6 namespace is much
more generous (2128), but addresses
in both versions are hierarchically
structured and much of the space is
preallocated according to
administrative requirements.

Peer-to-peer systems can address
more objects. The GUID namespace
is very large and flat (>2128),
allowing it to be much more fully
occupied.

Load balancing Loads on routers are determined by
network topology and associated
traffic patterns.

Object locations can be randomized
and hence traffic patterns are
divorced from the network topology.

Network dynamics

(addition/deletion of

objects/nodes)

IP routing tables are updated
asynchronously on a best-effort basis
with time constants on the order of 1
hour.

Routing tables can be updated
synchronously or asynchronously
with fractions-of-a-second delays.

Fault tolerance Redundancy is designed into the IP
network by its managers, ensuring
tolerance of a single router or
network connectivity failure. n-fold
replication is costly.

Routes and object references can be
replicated n-fold, ensuring tolerance
of n failures of nodes or connections.

Target identification Each IP address maps to exactly one
target node.

Messages can be routed to the nearest
replica of a target object.

Security and

anonymity

Addressing is only secure when all
nodes are trusted. Anonymity for the
owners of addresses is not
achievable.

Security can be achieved even in
environments with limited trust. A
limited degree of anonymity can be
provided.

SECTION 10.1 INTRODUCTION 427

(such as music or video files). Their use for objects with changing values is more
challenging, but this can be accommodated by the addition of trusted servers to manage
a sequence of versions and identify the current version (as is done for example in
OceanStore and Ivy, described in Sections 10.6.2 and 10.6.3).

The use of peer-to-peer systems for applications that demand a high level of
availability for the objects stored requires careful application design to avoid situations
in which all of the replicas of an object are simultaneously unavailable. There is a risk
of this for objects stored on computers with the same ownership, geographic location,
administration, network connectivity, country or jurisdiction. The use of randomly
distributed GUIDs assists by distributing the object replicas to randomly located nodes
in the underlying network. If the underlying network spans many organizations across
the globe, then the risk of simultaneous unavailability is much reduced.

Overlay routing versus IP routing • At first sight, routing overlays share many
characteristics with the IP packet routing infrastructure that constitutes the primary
communication mechanism of the Internet (see Section 3.4.3). It is therefore legitimate
to ask why an additional application-level routing mechanism is required in peer-to-peer
systems. The answer lies in several distinctions that are identified in Figure 10.1. It may
be argued that some of these distinctions arise from the ‘legacy’ nature of IP as the
Internet’s primary protocol, but the legacy’s impact is too strong for it to be overcome
in order to support peer-to-peer applications more directly.

Distributed computation • The exploitation of spare computing power on end-user
computers has long been a subject of interest and experiment. Work with the first
personal computers at Xerox PARC [Shoch and Hupp 1982] showed the feasibility of
performing loosely coupled compute-intensive tasks by running background processes
on ~100 personal computers linked by a local network. More recently, much larger
numbers of computers have been put to use to perform several scientific calculations
that require almost unlimited quantities of computing power.

The most widely known effort of this type is the SETI@home project [Anderson
et al. 2002], which is part of a wider project called the Search for Extra-Terrestrial
Intelligence. SETI@home partitions a stream of digitized radio telescope data into 107-
second work units, each of about 350 kbytes and distributes them to client computers
whose computing power is contributed by volunteers. Each work unit is distributed
redundantly to 3–4 personal computers to guard against erroneous or malicious nodes
and is examined for significant signal patterns. The distribution of work units and the
coordination of results is handled by a single server that is responsible for
communication with all of the clients. Anderson et al. [2002] reported that 3.91 million
personal computers had participated in the SETI@home project by August 2002,
resulting in the processing of 221 million work units and representing an average 27.36
teraflops of computational power during the 12 months to July 2002. The work
completed to that date represented the largest single computation on record.

The SETI@home computation is unusual in that it does not involve any
communication or coordination between computers while they are processing the work
units; the results are communicated to a central server in a single short message that may
be delivered whenever the client and server are available. Some other scientific tasks of
this nature have been identified, including the search for large prime numbers and
attempts at brute-force decryption, but the unleashing of the computational power in the

428 CHAPTER 10 PEER-TO-PEER SYSTEMS

Internet for a broader range of tasks will depend upon the development of a distributed
platform that supports data sharing and the coordination of computation between
participating computers on a large scale. That is the goal of the Grid project, discussed
in Chapter 19.

In this chapter we focus on algorithms and systems developed to date for the
sharing of data in peer-to-peer networks. In Section 10.2 we summarize Napster’s
design and review the lessons learned from it. In Section 10.3 we describe the general
requirements for peer-to-peer middleware layers. The following sections cover the
design and application of peer-to-peer middleware platforms, starting with an abstract
specification in Section 10.4, followed by detailed descriptions of two fully developed
examples in Section 10.5 and some applications of them in Section 10.6.

10.2 Napster and its legacy

The first application in which a demand for a globally scalable information storage and
retrieval service emerged was the downloading of digital music files. Both the need for
and the feasibility of a peer-to-peer solution were first demonstrated by the Napster file-
sharing system [OpenNap 2001] which provided a means for users to share files.
Napster became very popular for music exchange soon after its launch in 1999. At its
peak, several million users were registered and thousands were swapping music files
simultaneously.

Napster’s architecture included centralized indexes, but users supplied the files,
which were stored and accessed on their personal computers. Napster’s method of
operation is illustrated by the sequence of steps shown in Figure 10.2. Note that in step 5
clients are expected to add their own music files to the pool of shared resources by

Figure 10.2 Napster: peer-to-peer file sharing with a centralized, replicated index

Napster server

Index1. File location

2. List of peers

request

offering the file

peers

3. File request

4. File delivered
5. Index update

Napster server

Index

SECTION 10.2 NAPSTER AND ITS LEGACY 429

transmitting a link to the Napster indexing service for each available file. Thus the
motivation for Napster and the key to its success was the making available of a large,
widely distributed set of files to users throughout the Internet, fulfilling Shirky’s dictum
by providing access to ‘shared resources at the edges of the Internet’.

Napster was shut down as a result of legal proceedings instituted against the
operators of the Napster service by the owners of the copyright in some of the material
(i.e., digitally encoded music) that was made available on it (see the box below).

Anonymity for the receivers and the providers of shared data and other resources
is a concern for the designers of peer-to-peer systems. In systems with many nodes, the
routing of requests and results can be made sufficiently tortuous to conceal their source
and the contents of files can be distributed across multiple nodes, spreading the
responsibility for making them available. Mechanisms for anonymous communication
that are resistant to most forms of traffic analysis are available [Goldschlag et al. 1999].
If files are also encrypted before they are placed on servers, the owners of the servers
can plausibly deny any knowledge of the contents. But these anonymity techniques add
to the cost of resource sharing, and recent work has shown that the anonymity available
is weak against some attacks [Wright et al. 2002].

The Freenet [Clarke et al. 2000] and FreeHaven [Dingledine et al. 2000] projects
are focused on providing Internet-wide file services that offer anonymity for the
providers and users of the shared files. Ross Anderson has proposed the Eternity Service
[Anderson 1996], a storage service that provides long-term guarantees of data

Peer-to-peer systems and copyright ownership issues

The developers of Napster argued that they were not liable for the infringement of the
copyright owners’ rights because they were not participating in the copying process,
which was performed entirely between users’ machines. Their argument failed
because the index servers were deemed an essential part of the process. Since the
index servers were located at well-known addresses, their operators were unable to
remain anonymous and so could be targeted in lawsuits.

A more fully distributed file-sharing service might have achieved a better
separation of legal responsibilities, spreading the responsibility across all of the users
and thus making the pursuit of legal remedies very difficult, if not impossible.
Whatever view one takes about the legitimacy of file copying for the purpose of
sharing copyright-protected material, there are legitimate social and political
justifications for the anonymity of clients and servers in some application contexts.
The most persuasive justification arises when anonymity is used to overcome
censorship and maintain freedom of expression for individuals in oppressive
societies or organizations.

It is known that email and web sites have played a significant role in achieving
public awareness at times of political crisis in such societies; their role could be
strengthened if the authors could be protected by anonymity. ‘Whistle-blowing’ is a
related case: a ‘whistle-blower’ is an employee who publicizes or reports their
employer’s wrongdoings to authorities without revealing their own identity for fear
of sanctions or dismissal. In some circumstances it is reasonable for such an action
to be protected by anonymity.

430 CHAPTER 10 PEER-TO-PEER SYSTEMS

availability through resistance to all sorts of accidental data loss and denial of service
attacks. He bases the need for such a service on the observation that whereas publication
is a permanent state for printed information – it is virtually impossible to delete material
once it has been published and distributed to a few thousand libraries in diverse
organizations and jurisdictions around the world – electronic publications cannot easily
achieve the same level of resistance to censorship or suppression. Anderson covers the
technical and economic requirements to ensure the integrity of the store and also points
out that anonymity is often an essential requirement for the persistence of information,
since it provides the best defence against legal challenges, as well as illegal actions such
as bribes or attacks on the originators, owners or keepers of the data.

Lessons learned from Napster • Napster demonstrated the feasibility of building a
useful large-scale service that depends almost wholly on data and computers owned by
ordinary Internet users. To avoid swamping the computing resources of individual users
(for example, the first user to offer a chart-topping song) and their network connections,
Napster took account of network locality – the number of hops between the client and
the server – when allocating a server to a client requesting a song. This simple load-
distribution mechanism enabled the service to scale to meet the needs of large numbers
of users.

Limitations: Napster used a (replicated) unified index of all available music files. For the
application in question, the requirement for consistency between the replicas was not
strong, so this did not hamper performance, but for many applications it would
constitute a limitation. Unless the access path to the data objects is distributed, object
discovery and addressing are likely to become a bottleneck.

Application dependencies: Napster took advantage of the special characteristics of the
application for which it was designed in other ways:

• Music files are never updated, avoiding any need to make sure all the replicas of
files remain consistent after updates.

• No guarantees are required concerning the availability of individual files – if a
music file is temporarily unavailable, it can be downloaded later. This reduces the
requirement for dependability of individual computers and their connections to
the Internet.

10.3 Peer-to-peer middleware

A key problem in the design of peer-to-peer applications is providing a mechanism to
enable clients to access data resources quickly and dependably wherever they are
located throughout the network. Napster maintained a unified index of available files for
this purpose, giving the network addresses of their hosts. Second-generation peer-to-
peer file storage systems such as Gnutella and Freenet employ partitioned and
distributed indexes, but the algorithms used are specific to each system.

This location problem existed in several services that predate the peer-to-peer
paradigm as well. For example, Sun NFS addresses this need with the aid of a virtual file
system abstraction layer at each client that accepts requests to access files stored on

SECTION 10.3 PEER-TO-PEER MIDDLEWARE 431

multiple servers in terms of virtual file references (i.e., v-nodes, see Section 12.3). This
solution relies on a substantial amount of preconfiguration at each client and manual
intervention when file distribution patterns or server provision changes. It is clearly not
scalable beyond a service managed by a single organization. AFS (Section 12.4) has
similar properties.

Peer-to-peer middleware systems are designed specifically to meet the need for
the automatic placement and subsequent location of the distributed objects managed by
peer-to-peer systems and applications.

Functional requirements • The function of peer-to-peer middleware is to simplify the
construction of services that are implemented across many hosts in a widely distributed
network. To achieve this it must enable clients to locate and communicate with any
individual resource made available to a service, even though the resources are widely
distributed amongst the hosts. Other important requirements include the ability to add
new resources and to remove them at will and to add hosts to the service and remove
them. Like other middleware, peer-to-peer middleware should offer a simple
programming interface to application programmers that is independent of the types of
distributed resource that the application manipulates.

Non-functional requirements • To perform effectively, peer-to-peer middleware must
also address the following non-functional requirements [cf. Kubiatowicz 2003]:

Global scalability: One of the aims of peer-to-peer applications is to exploit the
hardware resources of very large numbers of hosts connected to the Internet. Peer-to-
peer middleware must therefore be designed to support applications that access
millions of objects on tens of thousands or hundreds of thousands of hosts.

Load balancing: The performance of any system designed to exploit a large number
of computers depends upon the balanced distribution of workload across them. For
the systems we are considering, this will be achieved by a random placement of
resources together with the use of replicas of heavily used resources.

Optimization for local interactions between neighbouring peers: The ‘network dis-
tance’ between nodes that interact has a substantial impact on the latency of individ-
ual interactions, such as client requests for access to resources. Network traffic
loadings are also impacted by it. The middleware should aim to place resources close
to the nodes that access them the most.

Accommodating to highly dynamic host availability: Most peer-to-peer systems are
constructed from host computers that are free to join or leave the system at any time.
The hosts and network segments used in peer-to-peer systems are not owned or
managed by any single authority; neither their reliability nor their continuous
participation in the provision of a service is guaranteed. A major challenge for peer-
to-peer systems is to provide a dependable service despite these facts. As hosts join
the system, they must be integrated into the system and the load must be redistributed
to exploit their resources. When they leave the system whether voluntarily or
involuntarily, the system must detect their departure and redistribute their load and
resources.

 Studies of peer-to-peer applications and systems such as Gnutella and Overnet
have shown a considerable turnover of participating hosts [Saroiu et al. 2002,
Bhagwan et al. 2003]. For the Overnet peer-to-peer file-sharing system, with 85,000

432 CHAPTER 10 PEER-TO-PEER SYSTEMS

active hosts throughout the Internet, Bhagwan et al. measured an average session
length of 135 minutes (and a median of 79 minutes) for a random sample of 1,468
hosts over a 7-day period, with 260 to 650 of the 1,468 hosts available to the service
at any time. (A session represents a period during which a host is available before it
is voluntarily or unavoidably disconnected.)

On the other hand, Microsoft researchers measured a session length of 37.7
hours for a random sample of 20,000 machines connected to the Microsoft corporate
network, with between 14,700 and 15,600 of the machines available for service at
any given time [Castro et al. 2003]. These measurements are based on a feasibility
study for the Farsite peer-to-peer file system [Bolosky et al. 2000]. The huge variance
amongst the figures obtained in these studies is mainly attributable to the differences
in behaviour and network environment between individual Internet users and the
users in a corporate network such as Microsoft’s.

Security of data in an environment with heterogeneous trust: In global-scale sys-
tems with participating hosts of diverse ownership, trust must be built up by the use
of authentication and encryption mechanisms to ensure the integrity and privacy of
information.

Anonymity, deniability and resistance to censorship: We have noted (in the box on
page 429) that anonymity for the holders and recipients of data is a legitimate concern
in many situations demanding resistance to censorship. A related requirement is that
the hosts that hold data should be able to plausibly deny responsibility for holding or
supplying it. The use of large numbers of hosts in peer-to-peer systems can be helpful
in achieving these properties.

How best to design a middleware layer to support global-scale peer-to-peer systems is
therefore a difficult problem. The requirements for scalability and availability make it

Figure 10.3 Distribution of information in a routing overlay

Object:

Node:

D

C’s routing knowledge

D’s routing knowledgeA’s routing knowledge

B’s routing knowledge

C

A

B

SECTION 10.4 ROUTING OVERLAYS 433

infeasible to maintain a database at all client nodes giving the locations of all the
resources (objects) of interest.

Knowledge of the locations of objects must be partitioned and distributed
throughout the network. Each node is made responsible for maintaining detailed
knowledge of the locations of nodes and objects in a portion of the namespace as well
as a general knowledge of the topology of the entire namespace (Figure 10.3). A high
degree of replication of this knowledge is necessary to ensure dependability in the face
of the volatile availability of hosts and intermittent network connectivity. In the systems
we describe below, replication factors as high as 16 are typically used.

10.4 Routing overlays

The development of middleware that meets the functional and non-functional
requirements outlined in the previous section is an active area of research, and several
significant middleware systems have already emerged. In this chapter we describe
several of them in detail.

In peer-to-peer systems a distributed algorithm known as a routing overlay takes
responsibility for locating nodes and objects. The name denotes the fact that the
middleware takes the form of a layer that is responsible for routing requests from any
client to a host that holds the object to which the request is addressed. The objects of
interest may be placed at and subsequently relocated to any node in the network without
client involvement. It is termed an overlay since it implements a routing mechanism in
the application layer that is quite separate from any other routing mechanisms deployed
at the network level such as IP routing. This approach to the management and location
of replicated objects was first analyzed and shown to be effective for networks involving
sufficiently many nodes in a groundbreaking paper by Plaxton et al. [1997].

The routing overlay ensures that any node can access any object by routing each
request through a sequence of nodes, exploiting knowledge at each of them to locate the
destination object. Peer-to-peer systems usually store multiple replicas of objects to
ensure availability. In that case, the routing overlay maintains knowledge of the location
of all the available replicas and delivers requests to the nearest ‘live’ node (i.e. one that
has not failed) that has a copy of the relevant object.

The GUIDs used to identify nodes and objects are an example of the ‘pure’ names
referred to in Section 13.1.1. These are also known as opaque identifiers, since they
reveal nothing about the locations of the objects to which they refer.

The main task of a routing overlay is the following:

Routing of requests to objects: A client wishing to invoke an operation on an object
submits a request including the object’s GUID to the routing overlay, which routes
the request to a node at which a replica of the object resides.

But the routing overlay must also perform some other tasks:

Insertion of objects: A node wishing to make a new object available to a peer-to-peer
service computes a GUID for the object and announces it to the routing overlay,
which then ensures that the object is reachable by all other clients.

434 CHAPTER 10 PEER-TO-PEER SYSTEMS

Deletion of objects: When clients request the removal of objects from the service the
routing overlay must make them unavailable.

Node addition and removal: Nodes (i.e., computers) may join and leave the service.
When a node joins the service, the routing overlay arranges for it to assume some of
the responsibilities of other nodes. When a node leaves (either voluntarily or as a
result of a system or network fault), its responsibilities are distributed amongst the
other nodes.

An object’s GUID is computed from all or part of the state of the object using a function
that delivers a value that is, with very high probability, unique. Uniqueness is verified
by searching for another object with the same GUID. A hash function (such as SHA-1,
see Section 11.4) is used to generate the GUID from the object’s value. Because these
randomly distributed identifiers are used to determine the placement of objects and to
retrieve them, overlay routing systems are sometimes described as distributed hash

tables (DHT). This is reflected by the simplest form of API used to access them, as
shown in Figure 10.4. With this API, the put() operation is used to submit a data item to
be stored together with its GUID. The DHT layer takes responsibility for choosing a
location for it, storing it (with replicas to ensure availability) and providing access to it
via the get() operation.

A slightly more flexible form of API is provided by a distributed object location

and routing (DOLR) layer, as shown in Figure 10.5. With this interface objects can be
stored anywhere and the DOLR layer is responsible for maintaining a mapping between
object identifiers (GUIDs) and the addresses of the nodes at which replicas of the objects
are located. Objects may be replicated and stored with the same GUID at different hosts,
and the routing overlay takes responsibility for routing requests to the nearest available
replica.

With the DHT model, a data item with GUID X is stored at the node whose GUID
is numerically closest to X and at the r hosts whose GUIDs are next-closest to it
numerically, where r is a replication factor chosen to ensure a very high probability of
availability. With the DOLR model, locations for the replicas of data objects are decided
outside the routing layer and the DOLR layer is notified of the host address of each
replica using the publish() operation.

Figure 10.4 Basic programming interface for a distributed hash table (DHT) as implemented by the
PAST API over Pastry

put(GUID, data)

Stores data in replicas at all nodes responsible for the object identified by GUID.

remove(GUID)

Deletes all references to GUID and the associated data.

value = get(GUID)

Retrieves the data associated with GUID from one of the nodes responsible for it.

SECTION 10.4 ROUTING OVERLAYS 435

The interfaces in Figures 10.4 and 10.5 are based on a set of abstract
representations proposed by Dabek et al. [2003] to show that most peer-to-peer routing
overlay implementations developed to date provide very similar functionality.

Research on the design of routing overlay systems began in 2000 and had reached
fruition by 2005, with the development and evaluation of several successful prototypes.
The evaluations demonstrated that their performance and dependability were adequate
for use in many production environments. In the next section we describe two of these
in detail: Pastry, which implements a distributed hash table API similar to the one
presented in Figure 10.4, and Tapestry, which implements an API similar to that shown
in Figure 10.5. Both Pastry and Tapestry employ a routing mechanism known as prefix

routing to determine routes for the delivery of messages based on the values of the
GUIDs to which they are addressed. Prefix routing narrows the search for the next node
along the route by applying a binary mask that selects an increasing number of
hexadecimal digits from the destination GUID after each hop. (This technique is also
employed in classless interdomain routing for IP packets, as outlined in Section 3.4.3.)

Other routing schemes have been developed that exploit different measures of
distance to narrow the search for the next hop destination. Chord [Stoica et al. 2001]
bases the choice on the numerical difference between the GUIDs of the selected node
and the destination node. CAN [Ratnasamy et al. 2001] uses distance in a d-dimensional
hyperspace into which nodes are placed. Kademlia [Maymounkov and Mazieres 2002]
uses the XOR of pairs of GUIDs as a metric for distance between nodes. Because XOR
is symmetric, Kademlia can maintain participants’ routing tables very simply; they
always receive requests from the same nodes contained in their routing tables.

GUIDs are not human-readable, so client applications must obtain the GUIDs for
resources of interest through some form of indexing service using human-readable
names or search requests. Ideally, these indexes are also stored in a peer-to-peer manner
to overcome the weaknesses of centralized indexes evidenced by Napster. But in simple
cases, such as music files or publications available for peer-to-peer download, they can
simply be indexed on web pages (cf. BitTorrent [Cohen 2003]). In BitTorrent a web

Figure 10.5 Basic programming interface for distributed object location and routing (DOLR) as
implemented by Tapestry

publish(GUID)

GUID can be computed from the object (or some part of it, e.g., its name). This
function makes the node performing a publish operation the host for the object
corresponding to GUID.

unpublish(GUID)

Makes the object corresponding to GUID inaccessible.

sendToObj(msg, GUID, [n])

Following the object-oriented paradigm, an invocation message is sent to an object
in order to access it. This might be a request to open a TCP connection for data
transfer or to return a message containing all or part of the object’s state. The final
optional parameter [n], if present, requests the delivery of the same message to n
replicas of the object.

436 CHAPTER 10 PEER-TO-PEER SYSTEMS

index search leads to a stub file containing details of the desired resource, including its
GUID and the URL of a tracker – a host that holds an up-to-date list of network
addresses for providers willing to supply the file (see Chapter 20 for more details of the
BitTorrent protocol).

The foregoing description of routing overlays will probably have raised questions
in the reader’s mind about their performance and reliability. Answers to these questions
will emerge from the descriptions of practical routing overlay systems in the next
section.

10.5 Overlay case studies: Pastry, Tapestry

The prefix routing approach is adopted by both Pastry and Tapestry. Pastry is the
message routing infrastructure deployed in several applications including PAST
[Druschel and Rowstron 2001], an archival (immutable) file storage system
implemented as a distributed hash table with the API in Figure 10.4, and Squirrel, a peer-
to-peer web caching service described in Section 10.6.1. Pastry has a straightforward but
effective design that makes it a good first example for us to study in detail.

Tapestry is the basis for the OceanStore storage system, which we describe in
Section 10.6.2. It has a more complex architecture than Pastry because it aims to support
a wider range of locality approaches. We describe Tapestry in Section 10.5.2.

We also look at alternative unstructured approaches in Section 10.5.3, looking in
detail at the overlay style adopted by Gnutella.

10.5.1 Pastry

Pastry [Rowstron and Druschel 2001, Castro et al. 2002a, freepastry.org] is a routing
overlay with the characteristics that we outlined in Section 10.4. All the nodes and
objects that can be accessed through Pastry are assigned 128-bit GUIDs. For nodes,
these are computed by applying a secure hash function (such as SHA-1; see Section
11.4.3) to the public key with which each node is provided. For objects such as files, the
GUID is computed by applying a secure hash function to the object’s name or to some
part of the object’s stored state. The resulting GUIDs have the usual properties of secure
hash values – that is, they are randomly distributed in the range 0 to 2128–1. They
provide no clues as to the value from which they were computed, and clashes between
GUIDs for different nodes or objects are extremely unlikely. (If a clash occurs, Pastry
detects it and takes remedial action.)

In a network with N participating nodes, the Pastry routing algorithm will
correctly route a message addressed to any GUID in O(log N) steps. If the GUID
identifies a node that is currently active, the message is delivered to that node; otherwise,
the message is delivered to the active node whose GUID is numerically closest to it.
Active nodes take responsibility for processing requests addressed to all objects in their
numerical neighbourhood.

Routing steps involve the use of an underlying transport protocol (normally UDP)
to transfer the message to a Pastry node that is ‘closer’ to its destination. But note that
the closeness referred to here is in an entirely artificial space – the space of GUIDs. The

SECTION 10.5 OVERLAY CASE STUDIES: PASTRY, TAPESTRY 437

real transport of a message across the Internet between two Pastry nodes may require a
substantial number of IP hops. To minimize the risk of unnecessarily extended transport
paths, Pastry uses a locality metric based on network distance in the underlying network
(such as a hop counts or round-trip latency measurements) to select appropriate
neighbours when setting up the routing tables used at each node.

Thousands of hosts located at widely dispersed sites can participate in a Pastry
overlay. It is fully self-organizing: when new nodes join the overlay they obtain the data
needed to construct a routing table and other required state from existing members in
O(log N) messages, where N is the number of hosts participating in the overlay. In the
event of a node failure or departure, the remaining nodes can detect its absence and
cooperatively reconfigure to reflect the required changes in the routing structure in a
similar number of messages.

Routing algorithm • The full routing algorithm involves the use of a routing table at
each node to route messages efficiently, but for the purposes of explanation, we describe
the routing algorithm in two stages. The first stage describes a simplified form of the
algorithm that routes messages correctly but inefficiently without a routing table, and

Figure 10.6 Circular routing alone is correct but inefficient Based on Rowstron and Druschel [2001]

The dots depict live nodes. The space is considered as circular: node 0 is adjacent to node
(2128-1). The diagram illustrates the routing of a message from node 65A1FC to D46A1C
using leaf set information alone, assuming leaf sets of size 8 (l = 4). This is a degenerate type
of routing that would scale very poorly; it is not used in practice.

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D471F1

D467C4
D46A1C

438 CHAPTER 10 PEER-TO-PEER SYSTEMS

the second stage describes the full routing algorithm, which routes a request to any node
in O(log N) messages:

Stage I: Each active node stores a leaf set – a vector L (of size 2l) containing the
GUIDs and IP addresses of the nodes whose GUIDs are numerically closest on either
side of its own (l above and l below). Leaf sets are maintained by Pastry as nodes join
and leave. Even after a node failure, they will be corrected within a short time. (Fault
recovery is discussed below.) It is therefore an invariant of the Pastry system that the
leaf sets reflect a recent state of the system and that they converge on the current state
in the face of failures up to some maximum rate of failure.

The GUID space is treated as circular: GUID 0’s lower neighbour is 2128–1.
Figure 10.6 gives a view of active nodes distributed in this circular address space.
Since every leaf set includes the GUIDs and IP addresses of the current node’s
immediate neighbours, a Pastry system with correct leaf sets of size at least 2 can
route messages to any GUID trivially as follows: any node A that receives a message
M with destination address D routes the message by comparing D with its own GUID
A and with each of the GUIDs in its leaf set and forwarding M to the node amongst
them that is numerically closest to D.

Figure 10.7 First four rows of a Pastry routing table

The routing table is located at a node whose GUID begins 65A1. Digits are in hexadecimal.
The ns represent [GUID, IP address] pairs that act as node handles specifying the next hop
to be taken by messages addressed to GUIDs that match each given prefix. Grey-shaded
entries in the table body indicate that the prefix matches the current GUID up to the given
value of p: the next row down or the leaf set should be examined to find a route. Although
there are a maximum of 128 rows in the table, only log16 N rows will be populated on average
in a network with N active nodes.

 p = GUID prefixes and corresponding node handles n

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

n n n n n n n n n n n n n n n

1 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6F 6E 6F

n n n n n n n n n n n n n n n

2 650 651 652 653 654 655 656 657 658 659 65A 65B 65C 65D 65E 65F

n n n n n n n n n n n n n n n

3 65A0 65A1 65A2 65A3 65A4 65A5 65A6 65A7 65A8 65A9 65AA 65AB 65AC 65AD 65AE 65AF

n n n n n n n n n n n n n n n

SECTION 10.5 OVERLAY CASE STUDIES: PASTRY, TAPESTRY 439

Figure 10.6 illustrates this for a Pastry system with l = 4. (In typical real
installations of Pastry, l = 8.) Based on the definition of leaf sets we can conclude that
at each step M is forwarded to a node that is closer to D than the current node and that
this process will eventually deliver M to the active node closest to D. But such a
routing scheme is clearly very inefficient, requiring ~ N/2l hops to deliver a message
in a network with N nodes.

Stage II: The second part of our explanation describes the full Pastry algorithm and
shows how efficient routing is achieved with the aid of routing tables.

Each Pastry node maintains a tree-structured routing table giving GUIDs and
IP addresses for a set of nodes spread throughout the entire range of 2128 possible
GUID values, with increased density of coverage for GUIDs numerically close to its
own.

Figure 10.7 shows the structure of the routing table for a specific node, and
Figure 10.8 illustrates the actions of the routing algorithm. The routing table is
structured as follows: GUIDs are viewed as hexadecimal values and the table
classifies GUIDs based on their hexadecimal prefixes. The table has as many rows as
there are hexadecimal digits in a GUID, so for the prototype Pastry system that we
are describing, there are 128/4 = 32 rows. Any row n contains 15 entries – one for
each possible value of the nth hexadecimal digit, excluding the value in the local

Figure 10.8 Pastry routing example Based on Rowstron and Druschel [2001]

Routing a message from node 65A1FC to D46A1C. With the aid of a well-populated routing
table the message can be delivered in ~ log16(N) hops.

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D4213F

D462BA

D471F1

D467C4
D46A1C

440 CHAPTER 10 PEER-TO-PEER SYSTEMS

node’s GUID. Each entry in the table points to one of the potentially many nodes
whose GUIDs have the relevant prefix.

The routing process at any node A uses the information in its routing table R
and leaf set L to handle each request from an application and each incoming message
from another node according to the algorithm shown in Figure 10.9.

We can be sure that the algorithm will succeed in delivering M to its destination because
lines 1, 2 and 7 perform the actions described in Stage I of our description above, and
we have shown this to be a complete, although inefficient, routing algorithm. The
remaining steps are designed to use the routing table to improve the algorithm’s
performance by reducing the number of hops required.

Lines 4–5 come into play whenever D does not fall within the numeric range of
the current node’s leaf set and relevant routing table entries are available. The selection
of a destination for the next hop involves comparing the hexadecimal digits of D with
those of A (the GUID of the current node) from left to right to discover the length, p, of
their longest common prefix. This length is then used as a row offset, together with the
first non-matching digit of D as a column offset, to access the required element of the
routing table. The construction of the table ensures that this element (if not empty)
contains the IP address of a node whose GUID has p+1 prefix digits in common with D.

Line 7 is used when D falls outside the numeric range of the leaf set and there isn’t
a relevant routing table entry. This case is rare; it arises only when nodes have recently
failed and the table hasn’t yet been updated. The routing algorithm is able to proceed by
scanning both the leaf set and the routing table and forwarding M to another node whose
GUID has p matching prefix digits but is numerically closer to D. If that node is in L,
then we are following the Stage I procedure illustrated in Figure 10.6. If it is in R, then
it must be closer to D than any node in L, hence we are improving on Stage I.

Host integration • New nodes use a joining protocol in order to acquire their routing
table and leaf set contents and notify other nodes of changes they must make to their

Figure 10.9 Pastry’s routing algorithm

To handle a message M addressed to a node D (where R[p,i] is the element at column i,
row p of the routing table):

1. If (L-l < D < Ll) { // the destination is within the leaf set or is the current node.
2. Forward M to the element Li of the leaf set with GUID closest to D or the

current node A.
3. } else { // use the routing table to despatch M to a node with a closer GUID
4. Find p, the length of the longest common prefix of D and A,. and i, the (p+1)th

hexadecimal digit of D.
5. If (R[p,i] null) forward M to R[p,i] // route M to a node with a longer common pre-

fix.
6. else { // there is no entry in the routing table.
7. Forward M to any node in L or R with a common prefix of length p but a

GUID that is numerically closer.
}

}

SECTION 10.5 OVERLAY CASE STUDIES: PASTRY, TAPESTRY 441

tables. First, the new node computes a suitable GUID (typically by applying the SHA-1
hash function to the node’s public key), then it makes contact with a nearby Pastry node.
(Here we use the term nearby to refer to network distance, i.e., a small number of
network hops or low transmission delay; see the box below.)

Suppose that the new node’s GUID is X and the nearby node it contacts has GUID
A. Node X sends a special join request message to A, giving X as its destination. A

despatches the join message via Pastry in the normal way. Pastry will route the join

message to the existing node whose GUID is numerically closest to X; let us call this
destination node Z.

A, Z and all the nodes (B, C,...) through which the join message is routed on its
way to Z add additional steps to the normal Pastry routing algorithm, which result in the
transmission of the contents of the relevant parts of their routing tables and leaf sets to
X. X examines them and constructs its own routing table and leaf set from them,
requesting some additional information from other nodes if necessary.

To see how X builds its routing table, note that the first row of the table depends
on the value of X’s GUID, and to minimize routing distances, the table should be
constructed to route messages via neighbouring nodes whenever possible. A is a
neighbour of X, so the first row of A’s table is a good initial choice for the first row of
X’s table, X0. On the other hand, A’s table is probably not relevant for the second row,
X1, because X’s and A’s GUIDs may not share the same first hexadecimal digit. The
routing algorithm ensures that X’s and B’s GUIDs do share the same first digit, though,
which implies that the second row of B’s routing table, B1, is a suitable initial value for
X1. Similarly, C2 is suitable for X2, and so on.

Furthermore, recalling the properties of leaf sets, note that since Z’s GUID is
numerically closest to X’s, X’s leaf set should be similar to Z’s. In fact, X’s ideal leaf set
will differ from Z’s by just one member. Z’s leaf set is therefore taken as an adequate
initial approximation, which will eventually be optimized through interaction with its
neighbours as described in the fault tolerance subsection below.

Finally, once X has constructed its leaf set and routing table in the manner outlined
above, it sends their contents to all the nodes identified in the leaf set and the routing
table and they adjust their own tables to incorporate the new node. The entire task of
incorporating a new node into the Pastry infrastructure requires the transmission of
O(log N) messages.

Host failure or departure • Nodes in the Pastry infrastructure may fail or depart without
warning. A Pastry node is considered failed when its immediate neighbours (in GUID
space) can no longer communicate with it. When this occurs, it is necessary to repair the
leaf sets that contain the failed node’s GUID.

Nearest neighbour algorithm

The new node should have the address of at least one existing Pastry node, but it
might not be nearby. To ensure that nearby nodes are known Pastry includes a
‘nearest neighbour’ algorithm to find a nearby node by recursively measuring the
round-trip delay for a probe message sent periodically to each member of the leaf set
of the nearest currently known Pastry node.

442 CHAPTER 10 PEER-TO-PEER SYSTEMS

To repair its leaf set L, the node that discovers the failure looks for a live node
close to the failed node in L and requests a copy of that node’s leaf set, L’. L’ will contain
a sequence of GUIDs that partly overlap those in L, including one with an appropriate
value to replace the failed node. Other neighbouring nodes are then informed of the
failure and they perform a similar procedure. This repair procedure guarantees that leaf
sets will be repaired unless l adjacently numbered nodes fail simultaneously.

Repairs to routing tables are made on a ‘when discovered’ basis. The routing of
messages can proceed with some routing table entries that are no longer live – failed
routing attempts result in the use of a different entry from the same row of a routing
table.

Locality • The Pastry routing structure is highly redundant: there are many routes
between each pair of nodes. The construction of the routing tables aims to take
advantage of this redundancy to reduce actual message transmission times by exploiting
the locality properties of nodes in the underlying transport network (which is normally
a subset of nodes in the Internet).

Recall that each row in a routing table contains 16 entries. The entries in the ith

row give the addresses of 16 nodes with GUIDs with i–1 initial hexadecimal digits that
match the current node’s GUID and an ith digit that takes each of the possible
hexadecimal values. A well-populated Pastry overlay will contain many more nodes
than can be contained in an individual routing table; whenever a new routing table is
being constructed a choice is made for each position between several candidates (taken
from routing information supplied by other nodes) based on a proximity neighbour
selection algorithm [Gummadi et al. 2003]. A locality metric (number of IP hops or
measured latency) is used to compare candidates and the closest available node is
chosen. Since the information available is not comprehensive, this mechanism cannot
produce globally optimal routings, but simulations have shown that it results in routes
that are on average only about 30–50% longer than the optimum.

Fault tolerance • As described above, the Pastry routing algorithm assumes that all
entries in routing tables and leaf sets refer to live, correctly functioning nodes. All nodes
send ‘heartbeat’ messages (i.e., messages sent at fixed time intervals to indicate that the
sender is alive) to neighbouring nodes in their leaf sets, but information about failed
nodes detected in this manner may not be disseminated sufficiently rapidly to eliminate
routing errors. Nor does it account for malicious nodes that may attempt to interfere with
correct routing. To overcome these problems, clients that depend upon reliable message
delivery are expected to employ an at-least-once delivery mechanism (see Section
5.3.1) and repeat their requests several times in the absence of a response. This will
allow Pastry a longer time window to detect and repair node failures.

To deal with any remaining failures or malicious nodes, a small degree of
randomness is introduced into the route selection algorithm described in Figure 10.9.
Essentially, the step in line 5 of Figure 10.9 is modified in a randomly selected small
proportion of cases to yield a common prefix that is less than the maximum length. This
results in the use of a routing taken from an earlier row of the routing table, producing
less optimal but different routing than the standard version of the algorithm. With this
random variation in the routing algorithm, client retransmissions should eventually
succeed even in the presence of a small number of malicious nodes.

SECTION 10.5 OVERLAY CASE STUDIES: PASTRY, TAPESTRY 443

Dependability • The authors of Pastry have developed an updated version called
MSPastry [Castro et al. 2003] that uses the same routing algorithm and similar host
management methods, but also includes some additional dependability measures and
some performance optimizations in the host management algorithms.

Dependability measures include the use of acknowledgements at each hop in the
routing algorithm. If the sending host does not receive an acknowledgement after a
specified timeout, it selects an alternative route and retransmits the message. The node
that failed to send an acknowledgement is then noted as a suspected failure.

As mentioned above, to detect failed nodes each Pastry node periodically sends a
heartbeat message to its immediate neighbour to the left (i.e., with a lower GUID) in the
leaf set. Each node also records the time of the last heartbeat message received from its
immediate neighbour on the right (with a higher GUID). If the interval since the last
heartbeat exceeds a timeout threshold, the detecting node starts a repair procedure that
involves contacting the remaining nodes in the leaf set with a notification about the
failed node and a request for suggested replacements. Even in the case of multiple
simultaneous failures, this procedure terminates with all nodes on the left side of the
failed node having leaf sets that contain the l live nodes with the closest GUIDs.

We have seen that the routing algorithm can function correctly using leaf sets
alone; but the maintenance of the routing tables is important for performance. Suspected
failed nodes in routing tables are probed in a similar manner to that used for the leaf set
and if they fail to respond, their routing table entries are replaced with a suitable
alternative obtained from a nearby node. In addition, a simple gossip protocol (see
Section 18.4.1) is used to periodically exchange routing table information between
nodes in order to repair failed entries and prevent slow deterioration of the locality
properties. The gossip protocol is run about every 20 minutes.

Evaluation work • Castro and his colleagues have carried out an exhaustive
performance evaluation of MSPastry, aimed at determining the impact on performance
and dependability of the host join/leave rate and the associated dependability
mechanisms [Castro et al. 2003].

The evaluation was performed by running the MSPastry system under control of
a simulator running on a single machine that simulates a large network of hosts, with
message passing replaced by simulated transmission delays. The simulation realistically
modelled the join/leave behaviour of hosts and IP transmission delays based on
parameters from real installations.

All of the dependability mechanisms of MSPastry were included, with realistic
intervals for probe and heartbeat messages. The simulation work was validated by
comparison with measurements taken with MSPastry running a real application load
across an internal network with 52 nodes.

Here we summarize the key results.

Dependability: With an assumed IP message loss rate of 0%, MSPastry failed to
deliver 1.5 in 100,000 requests (presumably due to the non-availability of destination
hosts), and all requests that were delivered arrived at the correct node.

With an assumed IP message loss rate of 5%, MSPastry lost about 3.3 in
100,000 requests and 1.6 in 100,000 requests were delivered to the wrong node. The
use of per-hop acknowledgements in MSPastry ensures that all lost or misdirected
messages are eventually retransmitted and reach the correct node.

444 CHAPTER 10 PEER-TO-PEER SYSTEMS

Performance: The metric used to evaluate the performance of MSPastry is called
relative delay penalty (RDP) [Chu et al. 2000], or stretch. RDP is a direct measure
of the extra cost incurred in employing an overlay routing layer. It is the ratio between
the average delay in delivering a request by the routing overlay and in delivering a
similar message between the same two nodes via UDP/IP. The RDP values observed
for MSPastry under simulated loads ranged from ~1.8 with zero network message
loss to ~2.2 with 5% network message loss.

Overheads: The extra network load generated by control traffic – messages involved
in maintaining leaf sets and routing tables – was less than 2 messages per minute per
node. The RDP and control traffic were both increased significantly for session
lengths less than about 60 minutes due to initial setup overheads.

Overall these results show that overlay routing layers can be constructed that achieve
good performance and high dependability with thousands of nodes operating in realistic
environments. Even with mean session lengths shorter than 60 minutes and high
network error rates the system degrades gracefully, continuing to provide an effective
service.

Optimizing overlay lookup latency • Zhang et al. [2005a] have shown that the lookup
performance of an important class of overlay networks (including Pastry, Chord and
Tapestry) can be substantially enhanced by the inclusion of a simple learning algorithm
that measures the latencies actually experienced in accessing the overlay nodes and thus
incrementally modifies the overlay routing tables to optimize access latencies.

10.5.2 Tapestry

Tapestry implements a distributed hash table and routes messages to nodes based on
GUIDs associated with resources using prefix routing in a manner similar to Pastry. But
Tapestry’s API conceals the distributed hash table from applications behind a DOLR
interface like the one shown in Figure 10.5. Nodes that hold resources use the
publish(GUID) primitive to make them known to Tapestry, and the holders of resources
remain responsible for storing them. Replicated resources are published with the same
GUID by each node that holds a replica, resulting in multiple entries in the Tapestry
routing structure.

This gives Tapestry applications additional flexibility: they can place replicas
close (in network distance) to frequent users of resources in order to reduce latency and
minimize network load or to ensure tolerance of network and host failures. But this
distinction between Pastry and Tapestry is not fundamental: Pastry applications can
achieve similar flexibility by making the objects associated with GUIDs simply act as
proxies for more complex application-level objects and Tapestry can be used to
implement a distributed hash table in terms of its DOLR API [Dabek et al. 2003].

In Tapestry 160-bit identifiers are used to refer both to objects and to the nodes
that perform routing actions. Identifiers are either NodeIds, which refer to computers
that perform routing operations, or GUIDs, which refer to the objects. For any resource
with GUID G there is a unique root node with GUID RG that is numerically closest to
G. Hosts H holding replicas of G periodically invoke publish(G) to ensure that newly
arrived hosts become aware of the existence of G. On each invocation of publish(G) a

SECTION 10.5 OVERLAY CASE STUDIES: PASTRY, TAPESTRY 445

publish message is routed from the invoker towards node RG. On receipt of a publish
message RG enters (G, IPH), the mapping between G and the sending host’s IP address
in its routing table, and each node along the publication path caches the same mapping.
This process is illustrated in Figure 10.10. When nodes hold multiple (G, IP) mappings
for the same GUID, they are sorted by the network distance (round-trip time) to the IP
address. For replicated objects this results in the selection of the nearest available replica
of the object as the destination for subsequent messages sent to the object.

Zhao et al. [2004] give full details of the Tapestry routing algorithms and the
management of Tapestry’s routing tables in the face of node arrival and departure. Their
paper includes comprehensive performance evaluation data based on simulation of
large-scale Tapestry networks, showing that its performance is similar to Pastry’s. In
Section 10.6.2 we describe the OceanStore file store, which has been built and deployed
over Tapestry.

10.5.3 From structured to unstructured peer-to-peer

The discussion so far has focused exclusively on what are known as structured peer-to-

peer approaches. In structured approaches, there is an overall global policy governing
the topology of the network, the placement of objects in the network and the routing or
search functions used to locate objects in the network. In other words, there is a specific
(distributed) data structure underpinning the associated overlay and a set of algorithms

Figure 10.10 Tapestry routing From Zhao et al. [2004]

Replicas of the file Phil’s Books (G=4378) are hosted at nodes 4228 and AA93. Node 4377 is
the root node for object 4378. The Tapestry routings shown are some of the entries in routing
tables. The publish paths show routes followed by the publish messages laying down cached
location mappings for object 4378. The location mappings are subsequently used to route
messages sent to 4378.

4228

4377

437A

4361

43FE

4664

4B4F

E791

4A6D

AA9357EC

4378
Phil’s
Books

4378
Phil’s
Books

(Root for 4378)

publish path

Tapestry routings
for 4377

Location mapping
for 4378

Routes actually
taken by send(4378)

446 CHAPTER 10 PEER-TO-PEER SYSTEMS

operating over that data structure. This can clearly be seen in the examples of Pastry and
Tapestry based on the underlying distributed hash table and associated ring structures.
Because of the structure imposed, such algorithms are efficient and offer time bounds
on the location of objects, but at the cost of maintaining the underlying structures, often
in highly dynamic environments.

Because of this maintenance argument, unstructured peer-to-peer approaches
have also been developed. In unstructured approaches, there is no overall control over
the topology or the placement of objects within the network. Rather, the overlay is
created in an ad hoc manner, with each node that joins the network following some
simple, local rules to establish connectivity. In particular, a joining node will establish
contact with a set of neighbours knowing that the neighbours will also be connected to
further neighbours and so on, forming a network that is fundamentally decentralized and
self-organizing and hence resilient to node failure. To locate a given object, it is then
necessary to carry out a search of the resultant network topology; clearly, this approach
cannot offer any guarantees of being able to find the object and performance will be
unpredictable. In addition, there is a real risk of generating excessive message traffic to
locate objects.

A summary of the relative strengths of structured and unstructured peer-to-peer
systems is provided in Figure 10.11. It is interesting to reflect that, despite the apparent
drawbacks of unstructured peer-to-peer systems, this approach is dominant in the
Internet, particularly in supporting peer-to-peer file sharing (with systems such as
Gnutella, FreeNet and BitTorrent all adopting unstructured approaches). As will be
seen, significant advancements have been made in such systems to improve the
performance of unstructured approaches and this work is significant given the amount
of traffic generated by peer-to-peer file sharing in the Internet (for example, a study
carried out in the years 2008/9 indicates that peer-to-peer file-sharing applications
account for between 43% and 70% of all Internet traffic, depending on the part of the
world being considered [www.ipoque.com]).

Strategies for effective search • In peer-to-peer file sharing, all nodes in the network
offer files to the greater environment. As mentioned above, the problem of locating a file
then maps onto a search of the whole network to locate appropriate files. If implemented
naively, this would be implemented by flooding the network with requests. This is
precisely the strategy adopted in early versions of Gnutella. In particular, in Gnutella

Figure 10.11 Structured versus unstructured peer-to-peer systems

Structured peer-to-peer Unstructured peer-to-peer

Advantages Guaranteed to locate objects (assuming
they exist) and can offer time and
complexity bounds on this operation;
relatively low message overhead.

Self-organizing and naturally resilient to
node failure.

Disadvantages Need to maintain often complex
overlay structures, which can be
difficult and costly to achieve,
especially in highly dynamic
environments.

Probabilistic and hence cannot offer
absolute guarantees on locating objects;
prone to excessive messaging overhead
which can affect scalability.

SECTION 10.5 OVERLAY CASE STUDIES: PASTRY, TAPESTRY 447

0.4, every node forwarded a request to each of its neighbours, who then in turn passed
this on to their neighbours, and so on until a match was found. Each search was also
constrained with a time-to-live field limiting the number of hops. At the time Gnutella
0.4 was deployed, the average connectivity was around 5 neighbours per node. This
approach is simple but does not scale and quickly floods the network with search-related
traffic.

A number of refinements have been developed for search in unstructured
networks [Lv et al. 2002, Tsoumakos and Roussopoulos 2006], including:

Expanded ring search: In this approach, the initiating node carries out a series of
searches with increasing values in the time-to-live field, recognizing that a significant
number of the requests will be met locally (especially if coupled with an effective
replication strategy, as discussed below).

Random walks: With random walks, the initiating node sets off a number of walkers
who follow their own random pathways through the interconnected graph offered by
the unstructured overlay.

Gossiping: In gossiping approaches, a node sends a request to a given neighbour with
a certain probability, and hence requests propagate through the network in a manner
similar to a virus through a population (as such, gossip protocols are also referred to
as epidemic protocols). The probability can either be fixed for a given network or
calculated dynamically based on previous experience and/or the current context.
(Note that gossiping is a common technique in distributed systems; further
applications can be found in Chapters 6 and 18).

Such strategies can significantly reduce the overhead of search in unstructured networks
and hence increase the scalability of the algorithms. Such strategies are also often
supported by appropriate replication techniques. By replicating content across a number
of peers, the probability of efficient discovery of particular files is significantly
enhanced. Techniques include whole file replication and the scattering of fragments of
files across the Internet – an approach that is used effectively in BitTorrent, for example,
to reduce the burden on any one peer in downloading large files (see Chapter 20).

Case study: Gnutella • Gnutella was originally launched in 2000 and since then has
grown to be one of the dominant and most influential peer-to-peer file-sharing
applications. As mentioned above, initially the protocol adopted a rather simple flooding
strategy that did not scale particularly well. In response to this, Gnutella 0.6 introduced
a range of modifications that have significantly improved the performance of the
protocol.

The first major amendment was to move from a pure peer-to-peer architecture
where all nodes are equal to one where all peers still cooperate to offer the service but
some nodes, designated to have additional resources, are elected as ultrapeers, and form
the heart of the network, with other peers taking on the role of leaf nodes (or leaves).
Leaves connect themselves to a small number of ultrapeers which are heavily connected
to other ultrapeers (with over 32 connections each). This dramatically reduces the
maximum number of hops required for exhaustive search. This style of peer-to-peer
architecture is referred to as a hybrid architecture and is also the approach adopted in
Skype (as discussed in Section 4.5.2).

448 CHAPTER 10 PEER-TO-PEER SYSTEMS

The other key enhancement was the introduction of a Query Routing Protocol
(QRP) designed to reduce the number of queries issued by nodes. The protocol is based
on exchanging information about files contained on nodes and hence only forwarding
queries down paths where the system thinks there will be a positive outcome. Rather
than sharing information about files directly, the protocol produces a set of numbers
from hashing on the individual words in a file name. For example, a file name such as
“Chapter ten on P2P” will be represented by four numbers, say <65, 47, 09, 76>. A node
produces a Query Routing Table (QRT) containing the hash values representing each of
the files contained on that node which it then sends to all its associated ultrapeers.
Ultrapeers then produce their own Query Routing Tables based on a union of all the
entries from all the connected leaves together with entries for files contained in that
node, and exchange these with other connected ultrapeers. In this way, ultrapeers can
determine which paths offer a valid route for a given query, thus significantly reducing
the amount of unnecessary traffic. More specifically, an ultrapeer will forward a query
to a node if a match is found (indicating that node has the file) and will carry out the
same check before passing it on to another ultrapeer if it is the last hop to the file. Note
that, in order to avoid overloading of ultrapeers, nodes will send a query to one ultrapeer
at a time and then wait for a specified period to see if they get a positive response.

Finally, a query in Gnutella contains the network address of the initiating
ultrapeer, which implies that once a file is found it can be sent directly to the associated
ultrapeer (using UDP), avoiding a reverse traversal through the graph.

The major elements associated with Gnutella 0.6 are summarized in Figure 10.12.

Figure 10.12 Key elements in the Gnutella protocol

File QRT

Ultrapeer

QRT

Leaf node

SECTION 10.6 APPLICATION CASE STUDIES: SQUIRREL, OCEANSTORE, IVY 449

10.6 Application case studies: Squirrel, OceanStore, Ivy

The routing overlay layers described in the preceding section have been exploited in
several application experiments and the resulting applications have been extensively
evaluated. We have chosen three of them for further study, the Squirrel web caching
service based on Pastry, and the OceanStore and Ivy file stores.

10.6.1 Squirrel web cache

The authors of Pastry have developed the Squirrel peer-to-peer web caching service for
use in local networks of personal computers [Iyer et al. 2002]. In medium and large local
networks web caching is typically performed using a dedicated server computer or
cluster. The Squirrel system performs the same task by exploiting storage and
computing resources already available on desktop computers in the local network. We
first give a brief general description of the operation of a web caching service, then we
outline the design of Squirrel and review its effectiveness.

Web caching • Web browsers generate HTTP GET requests for Internet objects like
HTML pages, images, etc. These may be serviced from a browser cache on the client
machine, from a proxy web cache (a service running on another computer in the same
local network or on a nearby node in the Internet) or from the origin web server (the
server whose domain name is included in the parameters of the GET request), depending
on which contains a fresh copy of the object. The local and proxy caches each contain a
set of recently retrieved objects organized for fast lookup by URL. Some objects are
uncacheable because they are generated dynamically by the server in response to each
request.

When a browser cache or proxy web cache receives a GET request, there are three
possibilities: the requested object is uncacheable, there is a cache miss or the object is
found in the cache. In the first two cases the request is forwarded to the next level
towards the origin web server. When the requested object is found in a cache, the cached
copy must be tested for freshness.

Web objects are stored in web servers and cache servers with some additional
metadata values including a timestamp giving a date of last modification (T) and
possibly a time-to-live (t) or an eTag (a hash computed from the contents of a web page).
These metadata items are supplied by the origin server whenever an object is returned
to a client.

Objects that have an associated time-to-live t, are considered fresh if T+t is later
than the current real time. For objects without a time-to-live, an estimated value for t is
used (often only a few seconds). If the result of this freshness evaluation is positive, the
cached object is returned to the client without contacting the origin web server.
Otherwise, a conditional GET (cGET) request is issued to the next level for validation.
There are two basic types of cGET requests: an If-Modified-Since request containing the
timestamp of the last known modification, and an If-None-Match request containing an
eTag representing the object contents. This cGET request can be serviced either by
another web cache or by the origin server. A web cache that receives a cGET request and
does not have a fresh copy of the object forwards the request towards the origin web

450 CHAPTER 10 PEER-TO-PEER SYSTEMS

server. The response contains either the entire object, or a not-modified message if the
cached object is unchanged.

Whenever a newly modified cacheable object is received from the origin server,
it is added to the set of objects in the local cache (displacing older objects that are still
valid if necessary) together with a timestamp, a time-to-live and an eTag if available.

The scheme described above is the basis of operation for the centralized proxy
web caching services deployed in most local networks that support large numbers of
web clients. Proxy web caches are typically implemented as a multi-threaded process
running on a single dedicated host or a set of processes running on a cluster of computers
and require a substantial quantity of dedicated computing resources in both cases.

Squirrel • The Squirrel web caching service performs the same functions using a small
part of the resources of each client computer on a local network. The SHA-1 secure hash
function is applied to the URL of each cached object to produce a 128-bit Pastry GUID.
Since the GUID is not used to validate the contents, it need not be based on the entire
object contents, as it is in other Pastry applications. The authors of Squirrel base their
justification for this on the end-to-end argument (Section 2.3.3), arguing that the
authenticity of a web page may be compromised at many points in its journey from the
host to the client; authentication of cached pages adds little to any overall guarantee of
authenticity and the HTTPS protocol (incorporating end-to-end Transport Layer
Security, discussed in Section 11.6.3) should be used to achieve a much better guarantee
for those interactions that require it.

In the simplest implementation of Squirrel – which proved to be the most effective
one – the node whose GUID is numerically closest to the GUID of an object becomes
that object’s home node, responsible for holding the cached copy of the object when
there is one.

Client nodes are configured to include a local Squirrel proxy process, which takes
responsibility for both local and remote caching of web objects. If a fresh copy of a
required object is not in the local cache, Squirrel routes a Get request or a cGet request
(when there is a stale copy of the object in the local cache) via Pastry to the home node.
If the home node has a fresh copy, it directly responds to the client with a not-modified

message or a fresh copy, as appropriate. If the home node has a stale copy or no copy of
the object, it issues a cGet or a Get to the origin server, respectively. The origin server
may respond with a not-modified message or a copy of the object. In the former case, the
home node revalidates its cache entry and forwards a copy of the object to the client. In
the latter case, it forwards a copy of the new value to the client and places a copy in its
local cache if the object is cacheable.

Evaluation of Squirrel • Squirrel was evaluated by simulation using modelled loads
derived from traces of the activity of existing centralized proxy web caches in two real
working environments within Microsoft, one with 105 active clients (in Cambridge) and
the other with more than 36,000 (in Redmond). The evaluation compared the
performance of a Squirrel web cache with a centralized one in three respects:

The reduction in total external bandwidth used: The total external bandwidth is
inversely related to the hit ratio, since it is only cache misses that generate requests
to external web servers. The hit ratios observed for centralized web cache servers
were 29% (for Redmond) and 38% (for Cambridge). When the same activity logs

SECTION 10.6 APPLICATION CASE STUDIES: SQUIRREL, OCEANSTORE, IVY 451

were used to generate a simulated load for the Squirrel cache, with each client
contributing 100 Mbytes of disk storage, very similar hit ratios of 28% (Redmond)
and 37% (Cambridge) were achieved. It follows that the external bandwidth would
be reduced by a similar proportion.

 The latency perceived by users for access to web objects: The use of a routing
overlay results in several message transfers (routing hops) across the local network
to transmit a request from a client to the host responsible for caching the relevant
object (the home node). The mean numbers of routing hops observed in the
simulation were 4.11 hops to deliver a GET request in the Redmond case and 1.8 hops
in the Cambridge case, whereas only a single message transfer is required to access
a centralized cache service.

However local transfers take only a few milliseconds with modern Ethernet
hardware, including TCP connection setup time, whereas wide area TCP message
transfers across the Internet require 10–100 ms. The Squirrel authors therefore argue
that the latency for access to objects found in the cache is swamped by the much
greater latency of access to objects not found in the cache, giving a similar user
experience to that provided with a centralized cache.

The computational and storage load imposed on client nodes: The average number
of cache requests served for other nodes by each node over the whole period of the
evaluation was extremely low, at only 0.31 per minute (Redmond), indicating that the
overall proportion of system resources consumed is extremely low.

Based on the measurements described above, the authors of Squirrel concluded that its
performance is comparable to that of a centralized cache. Squirrel achieves a reduction
in the observed latency for web page access close to that achievable by a centralized
cache server with a similarly sized dedicated cache. The additional load imposed on
client nodes is low and likely to be imperceptible to users. The Squirrel system was
subsequently deployed as the primary web cache in a local network with 52 client
machines using Squirrel, and the results confirmed their conclusions.

10.6.2 OceanStore file store

The developers of Tapestry have designed and built a prototype for a peer-to-peer file
store. Unlike PAST, it supports the storage of mutable files. The OceanStore design
[Kubiatowicz et al. 2000; Kubiatowicz 2003; Rhea et al. 2001, 2003] aims to provide a
very large scale, incrementally scalable persistent storage facility for mutable data
objects with long-term persistence and reliability in an environment of constantly
changing network and computing resources. OceanStore is intended for use in a variety
of applications including the implementation of an NFS-like file service, electronic mail
hosting, databases and other applications involving the sharing and persistent storage of
large numbers of data objects.

The design includes provision for the replicated storage of both mutable and
immutable data objects. The mechanism for maintaining consistency between replicas
can be tailored to application needs in a manner that was inspired by the Bayou system
(Section 18.4.2). Privacy and integrity are achieved through the encryption of data and
the use of a Byzantine agreement protocol (see Section 15.5) for updates to replicated

452 CHAPTER 10 PEER-TO-PEER SYSTEMS

objects. This is needed because the trustworthiness of individual hosts cannot be
assumed.

An OceanStore prototype, called Pond [Rhea et al. 2003], has been built. It is
sufficiently complete to support applications and its performance has been evaluated
against a variety of benchmarks in order to validate the OceanStore design and compare
its performance with more traditional approaches. In the remainder of this section we
give an overview of the OceanStore/Pond design and summarize the evaluation results.

Pond uses the Tapestry routing overlay mechanism to place blocks of data at
nodes distributed throughout the Internet and to despatch requests to them.

Storage organization • OceanStore/Pond data objects are analogous to files, with their
data stored in a set of blocks. But each object is represented as an ordered sequence of
immutable versions that are (in principle) kept forever. Any update to an object results
in the generation of a new version. The versions share any unchanged blocks, following
the copy-on-write technique for creating and updating objects described in Section
7.4.2. So a small difference between versions requires only a small amount of additional
storage.

Objects are structured in a manner that is reminiscent of the Unix filing system,
with the data blocks organized and accessed through a metadata block called the root
block and additional indirection blocks if necessary (cf. Unix i-nodes). Another level of
indirection is used to associate a persistent textual or other externally visible name (for
example, the pathname for a file) with the sequence of versions of a data object. Figure

Figure 10.13 Storage organization of OceanStore objects

d1 d2 d3 d5d4

root block

version i indirection blocks

d2

version i+1

B
G

U
ID

 (
co

py
 o

n
w

ri
te

)

d1 d3

certificate VGUID of current
version

V
G

U
ID

 o
f

ve
rs

io
n

i

AGUID

Version i +1 has been updated in blocks d1, d2 and d3. The certificate and the root blocks include
some metadata not shown. All unlabelled arrows are BGUIDs.

VGUID of version i–1

data blocks

SECTION 10.6 APPLICATION CASE STUDIES: SQUIRREL, OCEANSTORE, IVY 453

10.13 illustrates this organization. GUIDs are associated with the object (an AGUID),
the root block for each version of the object (a VGUID), the indirection blocks and the
data blocks (BGUIDs). Several replicas of each block are stored at peer nodes selected
according to locality and storage availability criteria, and their GUIDs are published
(using the publish() primitive of Figure 10.5) by each of the nodes that holds a replica
so that Tapestry can be used by clients to access the blocks.

Three types of GUIDs are used, as summarized in Figure 10.14. The first two are
GUIDs of the type normally assigned to objects stored in Tapestry – they are computed
from the contents of the relevant block using a secure hash function so that they can be
used later to authenticate and verify the integrity of the contents. The blocks that they
reference are necessarily immutable, since any change to the contents of a block would
invalidate the use of the GUID as an authentication token.

The third type of identifier used is AGUIDs. These refer (indirectly) to the entire
stream of versions of an object, enabling clients to access the current version of the
object or any previous version. Since the objects stored are mutable, the GUIDs used to
identify them cannot be derived from their contents, because that would render GUIDs
held in indexes, etc., obsolete whenever an object changed.

Instead, whenever a new storage object is created a permanent AGUID is
generated by applying a secure hash function to an application-specific name (e.g., a file
name) supplied by the client creating the object and a public key that represents the
object’s owner (see Section 11.2.5). In a filing system application, an AGUID would be
stored in the directories against each file name.

The association between an AGUID and the sequence of versions of the object
that it identifies is recorded in a signed certificate that is stored and replicated by a
primary copy replication scheme (also called passive replication; see Section 18.3.1).
The certificate includes the VGUID of the current version and the root block for every
version contains the VGUID of the previous version, so there is a chain of references
enabling clients that hold a certificate to traverse the entire chain of versions (Figure
10.13). A signed certificate is needed to ensure that the association is authentic and has
been made by an authorized principal. Clients are expected to check this. Whenever a
new version of an object is created, a new certificate is generated holding the VGUID
of the new version together with a timestamp and a version sequence number.

The trust model for peer-to-peer systems requires that construction of each new
certificate is agreed (as described below) amongst a small set of hosts called the inner

ring. Whenever a new object is stored in OceanStore, a set of hosts is selected to act as
the inner ring for that object. They use Tapestry’s publish() primitive to make the
AGUID for the object known to Tapestry. Clients can then use Tapestry to route requests
for the object’s certificate to one of the nodes in the inner ring.

Figure 10.14 Types of identifier used in OceanStore

Name Meaning Description

BGUID block GUID Secure hash of a data block

VGUID version GUID BGUID of the root block of a version

AGUID active GUID Uniquely identifies all the versions of an object

454 CHAPTER 10 PEER-TO-PEER SYSTEMS

The new certificate replaces the old primary copy held at each inner ring node and
is disseminated to a larger number of secondary copies. It is left to clients to determine
how often they check for a new version (a similar decision has to be taken for cached
copies of files in NFS; most installations operate with a consistency window of 30
seconds between client and server; see Section 12.3).

As usual in peer-to-peer systems, trust cannot be placed in any individual host.
The updating of primary copies requires consensus agreement between the hosts in the
inner ring. They use a version of a state-machine-based Byzantine agreement algorithm
described by Castro and Liskov [2000] to update the object and sign the certificate. The
use of a Byzantine agreement protocol ensures that the certificate is correctly maintained
even if some members of the inner ring fail or behave maliciously. Because the
computational and communication costs of Byzantine agreement rise with the square of
the number of hosts involved, the number of hosts in the inner ring is kept small and the
resulting certificate is replicated more widely using the primary copy scheme mentioned
above.

Performing an update also involves checking access rights and serializing the
update with any other pending writes. Once the update process is completed for the
primary copy, the results are disseminated to secondary replicas stored on hosts outside
the inner ring using a multicast routing tree that is managed by Tapestry.

Because of their read-only nature, data blocks are replicated by a different, more
storage-efficient mechanism. This mechanism is based on the division of each block into
m equal-sized fragments, which are encoded using erasure codes [Weatherspoon and
Kubiatowicz 2002] to n fragments, where n>m. The key property of erasure coding is
that it is possible to reconstruct a block from any m of its fragments. In a system that uses
erasure coding all data objects remain available with the loss of up to n–m hosts. In the
Pond implementation m = 16 and n = 32, so for a doubling of the storage cost, the system
can tolerate the failure of up to 16 hosts without loss of data. Tapestry is used to store
fragments in and retrieve them from the network.

This high level of fault tolerance and data availability is achieved at some cost in
terms of reconstructing blocks from erasure-coded fragments. To minimize the impact
of this, the whole blocks are also stored in the network using Tapestry. Since they can
be reconstructed from their fragments, these blocks are treated as a cache – they are not
fault tolerant and they can be disposed of when storage space is required.

Performance • Pond was developed as a prototype to prove the feasibility of a scalable
peer-to-peer file service, rather than as a production implementation. It is implemented
in Java and includes almost all of the design outlined above. It was evaluated against
several purpose-designed benchmarks and in a simple emulation of an NFS client and
server in terms of OceanStore objects. The developers tested the NFS emulation against
the Andrew benchmark [Howard et al. 1988], which emulates a software development
workload. The table in Figure 10.15 shows the results for the latter. They were obtained
using 1 GHz Pentium III PC running Linux. The LAN tests were performed using a
Gigabit Ethernet and the WAN results were obtained using two sets of nodes linked by
the Internet.

The conclusions drawn by the authors were that the performance of
OceanStore/Pond when operating over a wide area network (i.e., the Internet)
substantially exceeds that of NFS for reading and is within a factor of three of NFS for

SECTION 10.6 APPLICATION CASE STUDIES: SQUIRREL, OCEANSTORE, IVY 455

updating files and directories; the LAN results were substantially worse. Overall, the
results suggest that an Internet-scale peer-to-peer file service based on the OceanStore
design would be an effective solution for the distribution of files that do not change very
rapidly (such as cached copies of web pages). Its potential for use as an alternative to
NFS is questionable even for wide-area networks and is clearly uncompetitive for purely
local use.

These results were obtained with data blocks stored without erasure-code-based
fragmentation and replication. The use of public keys contributes substantially to the
computational cost of Pond’s operation. The figures shown are for 512-bit keys, whose
security is good but less than perfect. The results for 1024-bit keys were substantially
worse for the phases of those benchmarks that involved file updates. Other results
obtained with purpose-designed benchmarks included measurement of the impact of the
Byzantine agreement process on the latency of updates. These were in the range of 100
ms to 10 seconds. A test of update throughput achieved a maximum of 100
updates/second.

10.6.3 Ivy file system

Like OceanStore, Ivy [Muthitacharoen et al. 2002] is a read/write file system supporting
multiple readers and writers implemented over an overlay routing layer and a distributed
hash-addressed data store. Unlike OceanStore, the Ivy file system emulates a Sun NFS
server. Ivy stores the state of files as logs of the file update requests issued by Ivy clients
and reconstructs the files by scanning the logs whenever it is unable to satisfy an access
request from its local cache. The log records are held in the DHash distributed hash-
addressed storage service [Dabek et al. 2001]. (Logs were first used to record file
updates in the Sprite distributed operating system [Rosenblum and Ooosterhout 1992],
as described briefly in Section 12.5, but there they were used simply to optimize the
update performance of the file system.)

Figure 10.15 Performance evaluation of the Pond prototype emulating NFS

The figures show times in seconds to run different phases of the Andrew benchmark. It has
five phases: (1) creates subdirectories recursively, (2) copies a source tree, (3) examines the
status of all the files in the tree without examining their data, (4) examines every byte of data
in all the files and (5) compiles and links the files.

LAN WAN Predominant

operations in

benchmark
Phase Linux

NFS

Pond Linux

NFS

Pond

1 0.0 1.9 0.9 2.8 Read and write

2 0.3 11.0 9.4 16.8 Read and write

3 1.1 1.8 8.3 1.8 Read

4 0.5 1.5 6.9 1.5 Read

5 2.6 21.0 21.5 32.0 Read and write

Total 4.5 37.2 47.0 54.9

456 CHAPTER 10 PEER-TO-PEER SYSTEMS

The design of Ivy resolves several previously unresolved issues arising from the
need to host files in partially trusted or unreliable machines, including:

• The maintenance of consistent file metadata (cf. i-node contents in Unix/NFS file
systems) with potentially concurrent file updates at different nodes. Locking is not
used because the failure of nodes or network connectivity might cause indefinite
blocking.

• Partial trust between participants and vulnerability to attacks of participants’
machines. Recovery from integrity failures caused by such attacks is based on the
notion of views of the file system. A view is a representation of the state
constructed from logs of the updates made by a set of participants. Participants
may be removed and a view recomputed without their updates. Thus a shared file
system is seen as the result of merging all the updates performed by a
(dynamically selected) set of participants.

• Continued operation during partitions in the network, which can result in
conflicting updates to shared files. Conflicting updates are resolved using methods
related to those used in the Coda file system (Section 18.4.3).

Ivy implements an API at each client node that is based on the NFS server protocol
(similar to the set of operations listed in Section 12.3, Figure 12.9). Client nodes include
an Ivy server process that uses DHash to store and access log records at nodes
throughout a local or wide area network based on keys (GUIDs) that are computed as
the hash of the record contents (see Figure 10.16). DHash implements a programming
interface like the one shown in Figure 10.4 and replicates all entries at several nodes for

Figure 10.16 Ivy system architecture

DHash server

Modifled
NFS client

module

Ivy server DHash server

Application

Kernel

Ivy node

DHash server

DHash server

DHash server

Application

SECTION 10.6 APPLICATION CASE STUDIES: SQUIRREL, OCEANSTORE, IVY 457

resilience and availability. The Ivy authors note that DHash could in principle be
replaced by another distributed hash-addressed store such as Pastry, Tapestry or CAN.

An Ivy file store consists of a set of update logs, one log per participant. Each Ivy
participant appends only to its own log but can read from all the logs that comprise the
file system. Updates are stored in separate per-participant logs so that they can be rolled
back in case of security breaches or consistency failures.

An Ivy log is a reverse time-ordered linked list of log entries. Each log entry is a
timestamped record of a client request to change the contents or metadata of a file or
directory. DHash uses the 160-bit SHA-1 hash of a record as a key for placing and
retrieving the record. Each participant also maintains a mutable DHash block (called a
log-head) that points to the participant’s most recent log record. Mutable blocks are
assigned a cryptographic public-key pair by their owner. The contents of the block are
signed with the private key and can therefore be authenticated with the corresponding
public key. Ivy uses version vectors (that is, vector timestamps; see Section 14.4) to
impose a total order on log entries when reading from multiple logs.

DHash stores a log record using a SHA-1 hash of its contents as the key. Log
records are chained in timestamp order using the DHash key as a link. The log-head
holds the key for the most recent log entry. To store and retrieve log-heads, a public key
pair is computed by the owner of the log. The public key value is used as its DHash key
and the private key is used by the owner to sign the log-head. Any participant that has
the public key can retrieve the log-head and use it to access all of the records in the log.

Assuming a file system composed of a single log for the moment, the canonical
execution method for a request to read a sequence of bytes from a file requires a
sequential scan of the log to find the log records that contain updates for the relevant
portion of the file. Logs are of unlimited length, but the scan terminates when the first
record or records are found that cover the required sequence of bytes.

The canonical algorithm to access a multi-user, multiple-log file system involves
the comparison of vector timestamps in log records to determine the order of updates
(since a global clock cannot be assumed).

The time taken to perform this process for an operation as simple as a read request
is potentially very long. It is reduced to a more tolerable and predicable duration through
the use of a combination of local caches and snapshots. Snapshots are representations of
the file system computed and stored locally by each participant as a by-product of their
use of the logs. They constitute a soft representation of the file system in the sense that
they may be invalidated if a participant is ejected from the system.

Update consistency is close-to-open; that is, the updates performed on a file by an
application are not visible to other processes until the file is closed. The use of a close-
to-open consistency model enables write operations on a file to be saved at the client
node until the file is closed; then the entire set of write operations is written as a single
log record and a new log-head record is generated and written (an extension to the NFS
protocol enables the occurrence of a close operation in the application to be notified to
the Ivy server).

Since there is a separate Ivy server at each node and each autonomously stores its
updates in a separate log without coordination with the other servers, the serialization of
updates must be done at the time when logs are read in order to construct the content of
files. The version vectors written into log records can be used to order most updates, but

458 CHAPTER 10 PEER-TO-PEER SYSTEMS

conflicting updates are possible and they must be resolved by application-specific
automatic or manual methods, as is done in Coda (see Section 18.4.3).

Data integrity is achieved by a combination of the mechanisms that we have
already mentioned: log records are immutable and their address is a secure hash of their
contents; log-heads are verified by checking a public-key signature of their contents. But
the trust model allows for the possibility that a malicious participant may gain access to
a file system. For example, they might delete files that they own maliciously. When this
is detected, the malicious participant is ejected from the view; their log is no longer used
to calculate the contents of the file system and files that they have deleted are once again
visible in the new view.

The Ivy authors used a modified Andrew benchmark [Howard et al. 1988] to
compare the performance of Ivy with a standard NFS server in local and wide area
network environments. They considered (a) Ivy using local DHash servers compared to
a single local NFS server and (b) Ivy using DHash servers located at several remote
Internet sites compared to a single remote NFS server. They also considered the
performance characteristics as a function of the numbers of participants in a view, the
number of participants writing concurrently and the number of DHash servers used to
store the logs.

They found that Ivy execution times were within a factor of two of NFS execution
times for most of the tests in the benchmark and within a factor of three for all of them.
The execution times for the wide area network deployment exceeded those for the local
case by a factor of 10 or more, but similar ratios were obtained for a remote NFS server.
Full details of the performance evaluation can be found in the Ivy paper [Muthitacharoen
et al. 2002]. It should be noted, though, that NFS was not designed for wide area use;
the Andrew File System and other more recently developed server-based systems such
as xFS [Anderson et al. 1996] offer higher performance in wide area deployments and
might have made better bases for the comparison. The primary contribution of Ivy is in
its novel approach to the management of security and integrity in an environment of
partial trust – an inevitable feature of very large distributed systems that span many
organizations and jurisdictions.

10.7 Summary

Peer-to-peer architectures were first shown to support very large scale data sharing with
the Internet-wide use of Napster and its descendants for digital music sharing. The fact
that much of their use conflicted with copyright laws doesn’t diminish their technical
significance, although they did also have technical drawbacks that restricted their
deployment to applications in which guarantees of data integrity and availability were
unimportant.

Subsequent research resulted in the development of peer-to-peer middleware
platforms that deliver requests to data objects wherever they are located in the Internet.
In structured approaches, the objects are addressed using GUIDs, which are pure names
containing no IP addressing information. Objects are placed at nodes according to some
mapping function that is specific to each middleware system. Delivery is performed by
a routing overlay in the middleware that maintains routing tables and forwards requests

EXERCISES 459

along a route determined by calculating distance according to the chosen mapping
function. In unstructured approaches, nodes form themselves into an ad hoc network and
then propagate searches through neighbours to find appropriate resources. Several
strategies have been developed to improve the performance of this search function and
increase the overall scalability of the system.

The middleware platforms add integrity guarantees based on the use of a secure
hash function to generate the GUIDs and availability guarantees based on the replication
of objects at several nodes and on fault-tolerant routing algorithms.

The platforms have been deployed in several large-scale pilot applications, refined
and evaluated. Recent evaluation results indicate that the technology is ready for
deployment in applications involving large numbers of users sharing many data objects.
The benefits of peer-to-peer systems include:

• their ability to exploit unused resources (storage, processing) in the host
computers;

• their scalability to support large numbers of clients and hosts with excellent
balancing of the loads on network links and host computing resources;

• the self-organizing properties of the middleware platforms which result in support
costs that are largely independent of the numbers of clients and hosts deployed.

Weaknesses and subjects of current research include:

• their use for the storage of mutable data is relatively costly compared to a trusted,
centralized service;

• the promising basis that they provide for client and host anonymity has not yet
resulted in strong guarantees of anonymity.

EXERCISES

10.1 Early file-sharing applications such as Napster were restricted in their scalability by the
need to maintain a central index of resources and the hosts that hold them. What other
solutions to the indexing problem can you identify?

pages 428– 430, 435, Section 18.4

10.2 The problem of maintaining indexes of available resources is application-dependent.
Consider the suitability of each of your answers to Exercise 10.1 for:

i) music and media file sharing;

ii) long-term storage of archived material such as journal or newspaper content;

iii)network storage of general-purpose read-write files.

10.3 What are the main guarantees that users expect conventional servers (e.g., web servers
or file servers) to offer? Section 1.5.5

10.4 The guarantees offered by conventional servers may be violated as a result of:

i) physical damage to the host;

ii) Errors or inconsistencies introduced by system administrators or their managers;

460 CHAPTER 10 PEER-TO-PEER SYSTEMS

iii)successful attacks on the security of the system software;

iv)hardware or software errors.

Give two examples of possible incidents for each type of violation. Which of them could
be described as a breach of trust or a criminal act? Would they be breaches of trust if
they occurred on a personal computer that was contributing some resources to a peer-to-
peer service? Why is this relevant for peer-to-peer systems? Section 11.1.1

10.5 Peer-to-peer systems typically depend on untrusted and volatile computer systems for
most of their resources. Trust is a social phenomenon with technical consequences.
Volatility (i.e., unpredictable availability) also is often due to human actions. Elaborate
your answers to Exercise 10.4 by discussing the possible ways in which each of them
are likely to differ according to the following attributes of the computers used:

i) ownership;

ii) geographic location;

iii)network connectivity;

iv)country or jurisdiction.

What does this suggest about policies for the placement of data objects in a peer-to-peer
storage service?

10.6 Assess the availability and trustworthiness of the personal computers in your
environment. You should estimate:

Uptime: How many hours per day is the computer operating and connected to the
Internet?

Software consistency: Is the software managed by a competent technician?

Security: Is the computer fully protected against tampering by its users or others?

Based on your assessment, discuss the feasibility of running a datasharing service on the
set of computers you have assessed and outline the problems that must be addressed in
a peer-to-peer data sharing service. pages 431–432

10.7 Explain why using the secure hash of an object to identify and route messages to it is
tamper-proof. What properties are required of the hash function? How can integrity be
maintained, even if a substantial proportion of peer nodes are subverted?

pages 426, 453, Section 11.4.3

10.8 It is often argued that peer-to-peer systems can offer anonymity for:

i) clients accessing resources;

ii) the hosts providing access to resources.

Discuss each of these propositions. Suggest a way in which the resistance to attacks on
anonymity might be improved. page 429

10.9 Routing algorithms choose a next hop according to an estimate of distance in some
addressing space. Pastry and Tapestry both use circular linear address spaces in which a
function based on the approximate numerical difference between GUIDs determines

EXERCISES 461

their separation. Kademlia uses the XOR of the GUIDs. How does this help in the
maintenance of routing tables? Does the XOR operation provide appropriate properties
for a distance metric? pages 435, [Maymounkov and Mazieres 2002]

10.10 When the Squirrel peer-to-peer web caching service was evaluated by simulation, 4.11
hops were required on average to route a request for a cache entry when simulating the
Redmond traffic, whereas only 1.8 were required for the Cambridge traffic. Explain this
and show that it supports the theoretical performance claimed for Pastry.

pages 436, 450

10.11 In unstructured peer-to-peer systems, significant improvements on search results can be
provided by the adoption of particular search strategies. Compare and contrast expanded
ring search and random walk strategies, highlighting when each approach is likely to be
effective. page 446

This page intentionally left blank

 463

11

SECURITY

11.1 Introduction
11.2 Overview of security techniques
11.3 Cryptographic algorithms
11.4 Digital signatures
11.5 Cryptography pragmatics
11.6 Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi
11.7 Summary

There is a pervasive need for measures to guarantee the privacy, integrity and availability
of resources in distributed systems. Security attacks take the forms of eavesdropping,
masquerading, tampering and denial of service. Designers of secure distributed systems
must cope with exposed service interfaces and insecure networks in an environment
where attackers are likely to have knowledge of the algorithms used and to deploy
computing resources.

Cryptography provides the basis for the authentication of messages as well as their
secrecy and integrity; carefully designed security protocols are required to exploit it. The
selection of cryptographic algorithms and the management of keys are critical to the
effectiveness, performance and usability of security mechanisms. Public-key
cryptography makes it easy to distribute cryptographic keys but its performance is
inadequate for the encryption of bulk data. Secret-key cryptography is more suitable for
bulk encryption tasks. Hybrid protocols such as Transport Layer Security (TLS) establish
a secure channel using public-key cryptography and then use it to exchange secret keys
for use in subsequent data exchanges.

Digital information can be signed, producing digital certificates. Certificates enable
trust to be established among users and organizations.

The chapter concludes with case studies on the approaches to security system
design and the security mechanisms deployed in Kerberos, TLS/SSL and 802.11 WiFi.

464 CHAPTER 11 SECURITY

11.1 Introduction

In Section 2.4.3 we introduced a simple model for examining the security requirements
in distributed systems. We concluded that the need for security mechanisms in
distributed systems arises from the desire to share resources. (Resources that are not
shared can generally be protected by isolating them from external access.) If we regard
shared resources as objects, then the requirement is to protect any processes that
encapsulate shared objects and any communication channels that are used to interact
with them against all conceivable forms of attack. The model introduced in Section 2.4.3
provides a good starting point for the identification of security requirements. It can be
summarized as follows:

• Processes encapsulate resources (both programming language–level objects and
system-defined resources) and allow clients to access them through interfaces.
Principals (users or other processes) are authorized to operate on resources.
Resources must be protected against unauthorized access (Figure 2.17).

• Processes interact through a network that is shared by many users. Enemies
(attackers) can access the network. They can copy or attempt to read any message
transmitted through the network and they can inject arbitrary messages, addressed
to any destination and purporting to come from any source, into the network
(Figure 2.18).

The need to protect the integrity and privacy of information and other resources
belonging to individuals and organizations is pervasive in both the physical and the
digital world. It arises from the desire to share resources. In the physical world,
organizations adopt security policies that provide for the sharing of resources within
specified limits. For example, a company may permit entry to its buildings only to its
employees and accredited visitors. A security policy for documents may specify groups
of employees who can access classes of documents, or it may be defined for individual
documents and users.

Security policies are enforced with the help of security mechanisms. For example,
access to a building may be controlled by a reception clerk, who issues badges to
accredited visitors, and enforced by a security guard or by electronic door locks. Access
to paper documents is usually controlled by concealment and restricted distribution. In
the electronic world, the distinction between security policies and mechanisms is
equally important; without it, it would be difficult to determine whether a particular
system was secure. Security policies are independent of the technology used, just as the
provision of a lock on a door does not ensure the security of a building unless there is a
policy for its use (for example, that the door will be locked whenever nobody is guarding
the entrance). The security mechanisms that we describe here do not in themselves
ensure the security of a system. In Section 11.1.2, we outline the requirements for
security in various simple electronic commerce scenarios, illustrating the need for
policies in that context.

The provision of mechanisms for the protection of data and other resources in
distributed systems while allowing interactions between computers that are permitted
by security policies is the concern of this chapter. The mechanisms that we shall describe
are designed to enforce security policies against the most determined attacks.

SECTION 11.1 INTRODUCTION 465

The role of cryptography • Digital cryptography provides the basis for most computer
security mechanisms, but it is important to note that computer security and cryptography
are distinct subjects. Cryptography is the art of encoding information in a format that
only the intended recipients can decode. Cryptography can also be employed to provide
proof of the authenticity of information, in a manner analogous to the use of signatures
in conventional transactions.

Cryptography has a long and fascinating history. The military need for secure
communication and the corresponding need of an enemy to intercept and decrypt it led
to the investment of much intellectual effort by some of the best mathematical brains of
their time. Readers interested in exploring this history will find absorbing reading in
books on the topic by David Kahn [Kahn 1967, 1983, 1991] and Simon Singh [Singh
1999]. Whitfield Diffie, one of the inventors of public-key cryptography, has written
with firsthand knowledge on the recent history and politics of cryptography [Diffie
1988, Diffie and Landau 1998].

It is only in recent times that cryptography has emerged from the wraps previously
placed on it by the political and military establishments that used to control its
development and use. It is now the subject of open research by a large and active
community, with the results presented in many books, journals and conferences. The
publication of Schneier’s book Applied Cryptography [Schneier 1996] was a milestone
in the opening up of knowledge in the field. It was the first book to publish many
important algorithms with source code – a courageous step, because when the first
edition appeared in 1994 the legal status of such publication was unclear. Schneier’s
book remains the definitive reference on most aspects of modern cryptography. A more
recent book co-authored by Schneier [Ferguson and Schneier 2003] provides an
excellent introduction to computer cryptography and a discursive overview of virtually
all the important algorithms and techniques in current use, including several published
since Schneier’s earlier book. In addition, Menezes et al. [1997] provide a good practical
handbook with a strong theoretical basis and the Network Security Library
[www.secinf.net] is an excellent online source of practical knowledge and experience.

Ross Anderson’s Security Engineering [Anderson 2008] is also outstanding. It is
replete with object lessons on the design of secure systems, drawn from real-world
situations and system security failures.

The new openness is largely a result of the tremendous growth of interest in non-
military applications of cryptography and the security requirements of distributed
computer systems, which has led to the existence for the first time of a self-sustaining
community of cryptographic researchers outside the military domain.

Ironically, the opening of cryptography to public access and use has resulted in a
great improvement in cryptographic techniques, both in their strength to withstand
attacks by enemies and in the convenience with which they can be deployed. Public-key
cryptography is one of the fruits of this openness. As another example, we note that the
DES encryption algorithm that was adopted and used by the US military and
government agencies was initially a military secret. Its eventual publication and
successful efforts to crack it resulted in the development of much stronger secret-key
encryption algorithms.

Another useful spin-off has been the development of a common terminology and
approach. An example of the latter is the adoption of a set of familiar names for
protagonists (principals) involved in the transactions that are to be secured. The use of

466 CHAPTER 11 SECURITY

familiar names for principals and attackers helps to clarify and bring to life descriptions
of security protocols and potential attacks on them, which aids in identifying their
weaknesses. The names shown in Figure 11.1

Figure 11.1 Familiar names for the protagonists in security protocols

Alice First participant
Bob Second participant
Carol Participant in three- and four-party protocols
Dave Participant in four-party protocols
Eve Eavesdropper
Mallory Malicious attacker
Sara A server

 are used extensively in the security
literature and we use them freely here. We have not been able to discover their origins;
the earliest occurrence of which we are aware is in the original RSA public-key
cryptography paper [Rivest et al. 1978]. An amusing commentary on their use can be
found in Gordon [1984].

11.1.1 Threats and attacks

Some threats are obvious – for example, in most types of local network it is easy to
construct and run a program on a connected computer that obtains copies of the
messages transmitted between other computers. Other threats are more subtle – if clients
fail to authenticate servers, a program might install itself in place of an authentic file
server and thereby obtain copies of confidential information that clients unwittingly
send to it for storage.

In addition to the danger of loss or damage to information or resources through
direct violations, fraudulent claims may be made against the owner of a system that is
not demonstrably secure. To avoid such claims, the owner must be in a position to
disprove the claim by showing that the system is secure against such violations or by
producing a log of all of the transactions for the period in question. A common instance
is the ‘phantom withdrawal’ problem in automatic cash dispensers (teller machines).
The best answer that a bank can supply to such a claim is to provide a record of the
transaction that is digitally signed by the account holder in a manner that cannot be
forged by a third party.

The main goal of security is to restrict access to information and resources to just
those principals that are authorized to have access. Security threats fall into three broad
classes:

Leakage: Refers to the acquisition of information by unauthorized recipients.

Tampering: Refers to the unauthorized alteration of information.

Vandalism: Refers to interference with the proper operation of a system without gain
to the perpetrator.

SECTION 11.1 INTRODUCTION 467

Attacks on distributed systems depend upon obtaining access to existing communication
channels or establishing new channels that masquerade as authorized connections. (We
use the term channel to refer to any communication mechanism between processes.)
Methods of attack can be further classified according to the way in which a channel is
misused:

Eavesdropping: Obtaining copies of messages without authority.

Masquerading: Sending or receiving messages using the identity of another
principal without their authority.

Message tampering: Intercepting messages and altering their contents before
passing them on to the intended recipient. The man-in-the-middle attack is a form of
message tampering in which an attacker intercepts the very first message in an
exchange of encryption keys to establish a secure channel. The attacker substitutes
compromised keys that enable them to decrypt subsequent messages before re-
encrypting them in the correct keys and passing them on.

Replaying: Storing intercepted messages and sending them at a later date. This
attack may be effective even with authenticated and encrypted messages.

Denial of service: Flooding a channel or other resource with messages in order to
deny access for others.

These are the dangers in theory, but how are attacks carried out in practice? Successful
attacks depend upon the discovery of loopholes in the security of systems.
Unfortunately, these are all too common in today’s systems, and they are not necessarily
particularly obscure. Cheswick and Bellovin [1994] identify 42 weaknesses that they
regard as posing serious risks in widely used Internet systems and components. They
range from password guessing to attacks on the programs that perform the Network
Time Protocol or handle mail transmission. Some of these have led to successful and
well-publicized attacks [Stoll 1989, Spafford 1989], and many of them have been
exploited for mischievous or criminal purposes.

When the Internet and the systems that are connected to it were designed, security
was not a priority. The designers probably had no conception of the scale to which the
Internet would grow, and the basic design of systems such as UNIX predates the advent
of computer networks. As we shall see, the incorporation of security measures needs to
be carefully thought out at the basic design stage, and the material in this chapter is
intended to provide the basis for such thinking.

We focus on the threats to distributed systems that arise from the exposure of their
communication channels and their interfaces. For many systems, these are the only
threats that need to be considered (other than those that arise from human error – security
mechanisms cannot guard against a badly chosen password or one that is carelessly
disclosed). But for systems that include mobile programs and systems whose security is
particularly sensitive to information leakage, there are further threats.

Threats from mobile code • Several recently developed programming languages have
been designed to enable programs to be loaded into a process from a remote server and
then executed locally. In that case, the internal interfaces and objects within an executing
process may be exposed to attack by mobile code.

468 CHAPTER 11 SECURITY

Java is the most widely used language of this type, and its designers paid
considerable attention to the design and construction of the language and the
mechanisms for remote loading in an effort to restrict the exposure (the sandbox model
of protection against mobile code).

The Java virtual machine (JVM) is designed with mobile code in view. It gives
each application its own environment in which to run. Each environment has a security
manager that determines which resources are available to the application. For example,
the security manager might stop an application reading and writing files or give it
limited access to network connections. Once a security manager has been set, it cannot
be replaced. When a user runs a program such as a browser that downloads mobile code
to be run locally on their behalf, they have no very good reason to trust the code to
behave in a responsible manner. In fact, there is a danger of downloading and running
malicious code that removes files or accesses private information. To protect users
against untrusted code, most browsers specify that applets cannot access local files,
printers or network sockets. Some applications of mobile code are able to assume
various levels of trust in downloaded code. In this case, the security managers are
configured to provide more access to local resources.

The JVM takes two further measures to protect the local environment:

1. The downloaded classes are stored separately from the local classes, preventing
them from replacing local classes with spurious versions.

2. The bytecodes are checked for validity. Valid Java bytecode is composed of Java
virtual machine instructions from a specified set. The instructions are also checked
to ensure that they will not produce certain errors when the program runs, such as
accessing illegal memory addresses.

The security of Java has been the subject of much subsequent investigation, in the course
of which it became clear that the original mechanisms adopted were not free of
loopholes [McGraw and Felden 1999]. The identified loopholes were corrected and the
Java protection system was refined to allow mobile code to access local resources when
authorized to do so [java.sun.com V].

Despite the inclusion of type-checking and code-validation mechanisms, the
security mechanisms incorporated into mobile code systems do not yet produce the same
level of confidence in their effectiveness as those used to protect communication
channels and interfaces. This is because the construction of an environment for
execution of programs offers many opportunities for error, and it is difficult to be
confident that all have been avoided. Volpano and Smith [1999] have pointed out that
an alternative approach, based on proofs that the behaviour of mobile code is sound,
might offer a better solution.

Information leakage • If the transmission of a message between two processes can be
observed, some information can be gleaned from its mere existence – for example, a
flood of messages to a dealer in a particular stock might indicate a high level of trading
in that stock. There are many more subtle forms of information leakage, some malicious
and others arising from inadvertent error. The potential for leakage arises whenever the
results of a computation can be observed. Work was done on the prevention of this type
of security threat in the 1970s [Denning and Denning 1977]. The approach taken is to
assign security levels to information and channels and to analyze the flow of information

SECTION 11.1 INTRODUCTION 469

into channels with the aim of ensuring that high-level information cannot flow into
lower-level channels. A method for the secure control of information flows was first
described by Bell and LaPadula [1975]. The extension of this approach to distributed
systems with mutual distrust between components is the subject of recent research
[Myers and Liskov 1997].

11.1.2 Securing electronic transactions

Many uses of the Internet in industry, commerce and elsewhere involve transactions that
depend crucially on security. For example:

Email: Although email systems did not originally include support for security, there
are many uses of email in which the contents of messages must be kept secret (for
example, when sending a credit card number) or the contents and sender of a message
must be authenticated (for example when submitting an auction bid by email).
Cryptographic security based on the techniques described in this chapter is now
included in many mail clients.

Purchase of goods and services: Such transactions are now commonplace. Buyers
select goods and pay for them via the Web and the goods are delivered through an
appropriate delivery mechanism. Software and other digital products (such as
recordings and videos) can be delivered by downloading. Tangible goods such as
books, CDs and almost every other type of product are also sold by Internet vendors;
these are supplied via a delivery service.

Banking transactions: Electronic banks now offer users virtually all of the facilities
provided by conventional banks. They can check their balances and statements,
transfer money between accounts, set up regular automatic payments and so on.

Micro-transactions: The Internet lends itself to the supply of small quantities of
information and other services to many customers. Most web pages currently can be
viewed without charge, but the development of the Web as a high-quality publishing
medium surely depends upon the ability of information providers to obtain payments
from consumers of the information. Voice and videoconferencing on the Internet is
currently also free, but it is charged for when a telephone network is also involved.
The price for such services may amount to only a fraction of a cent, and the payment
overheads must be correspondingly low. In general, schemes based on the
involvement of a bank or credit card server for each transaction cannot achieve this.

Transactions such as these can be safely performed only when they are protected by
appropriate security policies and mechanisms. A purchaser must be protected against the
disclosure of credit codes (card numbers) during transmission and against fraudulent
vendors who obtain payment with no intention of supplying the goods. Vendors must
obtain payment before releasing the goods, and for downloadable products they must
ensure that only paying customers obtain the data in a usable form. The required
protection must be achieved at a cost that is reasonable in comparison with the value of
the transaction.

470 CHAPTER 11 SECURITY

Sensible security policies for Internet vendors and buyers lead to the following
requirements for securing web purchases:

1. Authenticate the vendor to the buyer, so that the buyer can be confident that they
are in contact with a server operated by the vendor with whom they intended to
deal.

2. Keep the buyer’s credit card number and other payment details from falling into
the hands of any third party and ensure that they are transmitted unaltered from
the buyer to the vendor.

3. If the goods are in a form suitable for downloading, ensure that their content is
delivered to the buyer without alteration and without disclosure to third parties.

The identity of the buyer is not normally required by the vendor (except for the purpose
of delivering the goods, if they are not downloaded). The vendor will wish to check that
the buyer has sufficient funds to pay for the purchase, but this is usually done by
demanding payment from the buyer’s bank before delivering the goods.

The security needs of banking transactions using an open network are similar to
those for purchase transactions, with the buyer as the account holder and the bank as the
vendor, but there there is a fourth requirement as well:

4. Authenticate the identity of the account holder to the bank before giving them
access to their account.

Note that in this situation, it is important for the bank to ensure that the account holder
cannot deny that they participated in a transaction. Non-repudiation is the name given
to this requirement.

In addition to the above requirements, which are dictated by security policies,
there are some system requirements. These arise from the very large scale of the
Internet, which makes it impractical to require buyers to enter into special relationships
with vendors (by registering encryption keys for later use, etc.). It should be possible for
a buyer to complete a secure transaction with a vendor even if there has been no previous
contact between buyer and vendor and without the involvement of a third party.
Techniques such as the use of ‘cookies’ – records of previous transactions stored on the
user’s client host – have obvious security weaknesses; desktop and mobile hosts are
often located in insecure physical environments.

Because of the importance of security for Internet commerce and the rapid growth
in Internet commerce, we have chosen to illustrate the use of cryptographic security
techniques by describing in Section 11.6 the de facto standard security protocol used in
most electronic commerce – Transport Layer Security (TLS). A description of Millicent,
a protocol specifically designed for micro-transactions, can be found at
www.cdk5.net/security.

Internet commerce is an important application of security techniques, but it is
certainly not the only one. It is needed wherever computers are used by individuals or
organizations to store and communicate important information. The use of encrypted
email for private communication between individuals is a case in point that has been the
subject of considerable political discussion. We refer to this debate in Section 11.5.2.

SECTION 11.1 INTRODUCTION 471

11.1.3 Designing secure systems

Immense strides have been made in recent years in the development of cryptographic
techniques and their application, yet designing secure systems remains an inherently
difficult task. At the heart of this dilemma is the fact that the designer’s aim is to exclude
all possible attacks and loopholes. The situation is analogous to that of the programmer
whose aim is to exclude all bugs from their program. In neither case is there a concrete
method to ensure this goal is met during the design. One designs to the best available
standards and applies informal analysis and checks. Once a design is complete, formal
validation is an option. Work on the formal validation of security protocols has produced
some important results [Lampson et al. 1992, Schneider 1996, Abadi and Gordon 1999].
A description of one of the first steps in this direction, the BAN logic of authentication
[Burrows et al. 1990], and its application can be found at www.cdk5.net/security.

Security is about avoiding disasters and minimizing mishaps. When designing for
security it is necessary to assume the worst. The box on page 472 shows a set of useful
assumptions and design guidelines. These assumptions underly the thinking behind the
techniques that we describe in this chapter.

To demonstrate the validity of the security mechanisms employed in a system, the
system’s designers must first construct a list of threats – methods by which the security
policies might be violated – and show that each of them is prevented by the mechanisms
employed. This demonstration may take the form of an informal argument or, better, a
logical proof.

No list of threats is likely to be exhaustive, so auditing methods must also be used
in security-sensitive applications to detect violations. These are straightforward to
implement if a secure log of security-sensitive system actions is always recorded with
details of the users performing the actions and their authority.

A security log will contain a sequence of timestamped records of users’ actions.
At a minimum the records will include the identity of a principal, the operation
performed (e.g., delete file, update accounting record), the identity of the object
operated on and a timestamp. Where particular violations are suspected, the records may
be extended to include physical resource utilization (network bandwidth, peripherals),
or the logging process may be targeted at operations on particular objects. Subsequent
analysis may be statistical or search-based. Even when no violations are suspected, the
statistics may be compared over time to help to discover any unusual trends or events.

The design of secure systems is an exercise in balancing costs against the threats.
The range of techniques that can be deployed for protecting processes and securing
interprocess communication are strong enough to withstand almost any attack, but their
use incurs expense and inconvenience:

• A cost (in terms of computational effort and network usage) is incurred for their
use. The costs must be balanced against the threats.

• Inappropriately specified security measures may exclude legitimate users from
performing necessary actions.

Such trade-offs are difficult to identify without compromising security and may seem to
conflict with the advice in the first paragraph of this subsection, but the strength of
security techniques required can be quantified and techniques can be selected based on

Worst-case assumptions and design guidelines

Interfaces are exposed: Distributed systems are composed of processes that offer
services or share information. Their communication interfaces are necessarily open
(to allow new clients to access them) – an attacker can send a message to any
interface.

Networks are insecure: For example, message sources can be falsified – messages can
be made to look as though they came from Alice when they were actually sent by
Mallory. Host addresses can be ‘spoofed’ – Mallory can connect to the network with
the same address as Alice and receive copies of messages intended for her.

Limit the lifetime and scope of each secret: When a secret key is first generated we can
be confident that it has not been compromised. The longer we use it and the more
widely it is known, the greater the risk. The use of secrets such as passwords and
shared secret keys should be time-limited, and sharing should be restricted.

Algorithms and program code are available to attackers: The bigger and the more
widely distributed a secret is, the greater the risk of its disclosure. Secret encryption
algorithms are totally inadequate for today’s large-scale network environments. Best
practice is to publish the algorithms used for encryption and authentication, relying
only on the secrecy of cryptographic keys. This helps to ensure that the algorithms
are strong by throwing them open to scrutiny by third parties.

Attackers may have access to large resources: The cost of computing power is rapidly
decreasing. We should assume that attackers will have access to the largest and most
powerful computers projected in the lifetime of a system, then add a few orders of
magnitude to allow for unexpected developments.

Minimize the trusted base: The portions of a system that are responsible for the
implementation of its security, and all the hardware and software components upon

which they rely, have to be trusted – this is often referred to as the trusted computing

base. Any defect or programming error in this trusted base can produce security
weaknesses, so we should aim to minimize its size. For example, application
programs should not be trusted to protect data from their users.

472 CHAPTER 11 SECURITY

the estimated cost of attacks. The relatively low-cost techniques employed in the
Millicent protocol, described at www.cdk5.net/security provide an example.

As an illustration of the difficulties and mishaps that can arise in the design of
secure systems, we review difficulties that arose with the security design originally
incorporated in the IEEE 802.11 WiFi networking standard in Section 11.6.4.

11.2 Overview of security techniques

The purpose of this section is to introduce the reader to some of the more important
techniques and mechanisms for securing distributed systems and applications. Here we
describe them informally, reserving more rigorous descriptions for Sections 11.3 and
11.4. We use the familiar names for principals introduced in Figure 11.1 and the
notations for encrypted and signed items shown in Figure 11.2.

Figure 11.2 Cryptography notations

KA Alice’s secret key
KB Bob’s secret key
KAB Secret key shared between Alice and Bob
KApriv Alice’s private key (known only to Alice)
KApub Alice’s public key (published by Alice for all to read)
{M}K Message M encrypted with key K
[M]K Message M signed with key K

SECTION 11.2 OVERVIEW OF SECURITY TECHNIQUES 473

11.2.1 Cryptography

Encryption is the process of encoding a message in such a way as to hide its contents.
Modern cryptography includes several secure algorithms for encrypting and decrypting
messages. They are all based on the use of secrets called keys. A cryptographic key is a
parameter used in an encryption algorithm in such a way that the encryption cannot be
reversed without knowledge of the key.

There are two main classes of encryption algorithm in general use. The first uses
shared secret keys – the sender and the recipient must share a knowledge of the key and
it must not be revealed to anyone else. The second class of encryption algorithms uses
public/private key pairs. Here the sender of a message uses a public key – one that has
already been published by the recipient – to encrypt the message. The recipient uses a
corresponding private key to decrypt the message. Although many principals may
examine the public key, only the recipient can decrypt the message, because they have
the private key.

Both classes of encryption algorithm are extremely useful and are used widely in
the construction of secure distributed systems. Public-key encryption algorithms
typically require 100 to 1000 times as much processing power as secret-key algorithms,
but there are situations where their convenience outweighs this disadvantage.

11.2.2 Uses of cryptography

Cryptography plays three major roles in the implementation of secure systems. We
introduce them here in outline by means of some simple scenarios. In later sections of
this chapter, we describe these and other protocols in greater detail, addressing some
unresolved problems that are merely highlighted here.

In all of our scenarios below, we can assume that Alice, Bob and any other
participants have already agreed about the encryption algorithms that they wish to use
and have implementations of them. We also assume that any secret keys or private keys
that they hold can be stored securely to prevent attackers obtaining them.

Secrecy and integrity • Cryptography is used to maintain the secrecy and integrity of
information whenever it is exposed to potential attacks – for example, during
transmission across networks that are vulnerable to eavesdropping and message
tampering. This use of cryptography corresponds to its traditional role in military and

474 CHAPTER 11 SECURITY

intelligence activities. It exploits the fact that a message that is encrypted with a
particular encryption key can only be decrypted by a recipient who knows the
corresponding decryption key. Thus it maintains the secrecy of the encrypted message
as long as the decryption key is not compromised (disclosed to non-participants in the
communication) and provided that the encryption algorithm is strong enough to defeat
any possible attempts to crack it. Encryption also maintains the integrity of the
encrypted information, provided that some redundant information such as a checksum
is included and checked.

Scenario 1. Secret communication with a shared secret key: Alice wishes to send some in-
formation secretly to Bob. Alice and Bob share a secret key KAB.

1. Alice uses KAB and an agreed encryption function E(KAB, M) to encrypt and send
any number of messages {Mi}KAB to Bob. (Alice can go on using KAB as long as
it is safe to assume that KAB has not been compromised.)

2. Bob decrypts the encrypted messages using the corresponding decryption function
D(KAB, M).

Bob can now read the original message M. If the decrypted message makes sense, or
better, if it includes some value agreed between Alice and Bob (such as a checksum of
the message) then Bob knows that the message is from Alice and that it hasn’t been
tampered with. But there are still some problems:

Problem 1: How can Alice send a shared key KAB to Bob securely?

Problem 2: How does Bob know that any {Mi} isn’t a copy of an earlier encrypted
message from Alice that was captured by Mallory and replayed later? Mallory
needn’t have the key KAB to carry out this attack – he can simply copy the bit pattern
that represents the message and send it to Bob later. For example, if the message is a
request to pay some money to someone, Mallory might trick Bob into paying twice.

We show how these problems can be resolved later in this chapter.

Authentication • Cryptography is used in support of mechanisms for authenticating
communication between pairs of principals. A principal who decrypts a message
successfully using a particular key can assume that the message is authentic if it contains
a correct checksum or (if the block-chaining mode of encryption, described in Section
11.3, is used) some other expected value. They can infer that the sender of the message
possessed the corresponding encryption key and hence deduce the identity of the sender
if the key is known only to two parties. Thus if keys are held in private, a successful
decryption authenticates the decrypted message as coming from a particular sender.

Scenario 2. Authenticated communication with a server: Alice wishes to access files held
by Bob, a file server on the local network of the organization where she works. Sara is
an authentication server that is securely managed. Sara issues users with passwords and
holds current secret keys for all of the principals in the system it serves (generated by
applying some transformation to the user’s password). For example, it knows Alice’s
key KA and Bob’s KB. In our scenario we refer to a ticket. A ticket is an encrypted item
issued by an authentication server, containing the identity of the principal to whom it is
issued and a shared key that has been generated for the current communication session.

SECTION 11.2 OVERVIEW OF SECURITY TECHNIQUES 475

1. Alice sends an (unencrypted) message to Sara stating her identity and requesting
a ticket for access to Bob.

2. Sara sends a response to Alice encrypted in KA consisting of a ticket (to be sent to
Bob with each request for file access) encrypted in KB and a new secret key KAB

for use when communicating with Bob. So the response that Alice receives looks
like this: {{Ticket}KB, KAB}KA.

3. Alice decrypts the response using KA (which she generates from her password
using the same transformation; the password is not transmitted over the network,
and once it has been used it is deleted from local storage to avoid compromising
it). If Alice has the correct password-derived key KA, she obtains a valid ticket for
using Bob’s service and a new encryption key for use in communicating with Bob.
Alice can’t decrypt or tamper with the ticket, because it is encrypted in KB. If the
recipient isn’t Alice then they won’t know Alice’s password, so they won’t be able
to decrypt the message.

4. Alice sends the ticket to Bob together with her identity and a request R to access
a file: {Ticket}KB, Alice, R.

5. The ticket, originally created by Sara, is actually: {KAB, Alice}KB. Bob decrypts
the ticket using his key KB. So Bob gets the authentic identity of Alice (based on
the knowledge shared between Alice and Sara of Alice’s password) and a new
shared secret key KAB for use when interacting with Alice. (This is called a session

key because it can safely be used by Alice and Bob for a sequence of interactions.)

This scenario is a simplified version of the authentication protocol originally developed
by Roger Needham and Michael Schroeder [1978] and subsequently used in the
Kerberos system developed and used at MIT [Steiner et al. 1988], which is described in
Section 11.6.2. In our simplified description of their protocol above there is no
protection against the replay of old authentication messages. This and some other
weaknesses are dealt with in our description of the full Needham–Schroeder protocol in
Section 11.6.1.

The authentication protocol we have described depends upon prior knowledge by
the authentication server Sara of Alice’s and Bob’s keys, KA and KB. This is feasible in
a single organization where Sara runs on a physically secure computer and is managed
by a trusted principal who generates initial values of the keys and transmits them to users
by a separate secure channel. But it isn’t appropriate for electronic commerce or other
wide area applications, where the use of a separate channel is extremely inconvenient
and the requirement for a trusted third party is unrealistic. Public-key cryptography
rescues us from this dilemma.

The usefulness of challenges: An important aspect of Needham and Schroeder’s 1978
breakthrough was the realization that a user’s password does not have to be submitted
to an authentication service (and hence exposed in the network) each time it is
authenticated. Instead, they introduced the concept of a cryptographic challenge. This
can be seen in step 2 of our scenario above, where the server, Sara, issues a ticket to
Alice encrypted in Alice’s secret key, KA. This constitutes a challenge because Alice
cannot make use of the ticket unless she can decrypt it, and she can only decrypt it if she

476 CHAPTER 11 SECURITY

can determine KA, which is derived from Alice’s password. An imposter claiming to be
Alice would be defeated at this point.

Scenario 3. Authenticated communication with public keys: Assuming that Bob has gener-
ated a public/private key pair, the following dialogue enables Bob and Alice to establish
a shared secret key, KAB:

1. Alice accesses a key distribution service to obtain a public-key certificate giving
Bob’s public key. It’s called a certificate because it is signed by a trusted authority
– a person or organization that is widely known to be reliable. After checking the
signature, she reads Bob’s public key, KBpub, from the certificate. (We discuss the
construction and use of public-key certificates in Section 11.2.3.)

2. Alice creates a new shared key, KAB, and encrypts it using KBpub with a public-
key algorithm. She sends the result to Bob, along with a name that uniquely
identifies a public/private key pair (since Bob may have several of them) – that is,
Alice sends keyname,{KAB}KBpub.

3. Bob selects the corresponding private key, KBpriv, from his private key store and
uses it to decrypt KAB. Note that Alice’s message to Bob might have been
corrupted or tampered with in transit. The consequence would simply be that Bob
and Alice don’t share the same key KAB. If this is a problem, it can be
circumvented by adding an agreed value or string to the message, such as Bob’s
and Alice’s names or email addresses, which Bob can check after decrypting.

The above scenario illustrates the use of public-key cryptography to distribute a shared
secret key. This technique is known as a hybrid cryptographic protocol and is very
widely used, since it exploits useful features of both public-key and secret-key
encryption algorithms.

Problem: This key exchange is vulnerable to man-in-the-middle attacks. Mallory
may intercept Alice’s initial request to the key distribution service for Bob’s public-
key certificate and send a response containing his own public key. He can then
intercept all the subsequent messages. In our description above, we guard against this
attack by requiring Bob’s certificate to be signed by a well-known authority. To
protect against this attack, Alice must ensure that Bob’s public-key certificate is
signed with a public key (as described below) that she has received in a totally secure
manner.

Digital signatures • Cryptography is used to implement a mechanism known as a
digital signature. This emulates the role of a conventional signature, verifying to a third
party that a message or a document is an unaltered copy of one produced by the signer.

Digital signature techniques are based upon an irreversible binding to the message
or document of a secret known only to the signer. This can be achieved by encrypting
the message – or better, a compressed form of the message called a digest – using a key
that is known only to the signer. A digest is a fixed-length value computed by applying
a secure digest function. A secure digest function is similar to a checksum function, but
it is very unlikely to produce a similar digest value for two different messages. The
resulting encrypted digest acts as a signature that accompanies the message. Public-key
cryptography is generally used for this: the originator generates a signature with their
private key, and the signature can be decrypted by any recipient using the corresponding

SECTION 11.2 OVERVIEW OF SECURITY TECHNIQUES 477

public key. There is an additional requirement: the verifier should be sure that the public
key really is that of the principal claiming to be the signer – this is dealt with by the use
of public-key certificates, described in Section 11.2.3.

Scenario 4. Digital signatures with a secure digest function: Alice wants to sign a document
M so that any subsequent recipient can verify that she is the originator of it. Thus when
Bob later accesses the signed document after receiving it by any route and from any
source (for example, it could be sent in a message or it could be retrieved from a
database), he can verify that Alice is the originator.

1. Alice computes a fixed-length digest of the document, Digest(M).

2. Alice encrypts the digest in her private key, appends it to M and makes the result,
M, {Digest(M)}KApriv, available to the intended users.

3. Bob obtains the signed document, extracts M and computes Digest(M).

4. Bob decrypts {Digest(M)}KApriv using Alice’s public key, KApub, and compares
the result with his calculated Digest(M). If they match, the signature is valid.

11.2.3 Certificates

A digital certificate is a document containing a statement (usually short) signed by a
principal. We illustrate the concept with a scenario.

Scenario 5. The use of certificates: Bob is a bank. When his customers establish contact
with him they need to be sure that they are talking to Bob the bank, even if they have
never contacted him before. Bob needs to authenticate his customers before he gives
them access to their accounts.

For example, Alice might find it useful to obtain a certificate from her bank stating
her bank account number (Figure 11.3

Figure 11.3 Alice’s bank account certificate

1. Certificate type: Account number
2. Name: Alice
3. Account: 6262626
4. Certifying authority: Bob’s Bank
5. Signature: {Digest(field 2 + field 3)}KBpriv

). Alice could use this certificate when shopping
to certify that she has an account with Bob’s Bank. The certificate is signed using Bob’s
private key, KBpriv. A vendor, Carol, can accept such a certificate for charging items to
Alice’s account provided that she can validate the signature in field 5. To do so, Carol
needs to have Bob’s public key and she needs to be sure that it is authentic to guard
against the possibility that Alice might sign a false certificate associating her name with
someone else’s account. To carry out this attack, Alice would simply generate a new key
pair, KB'pub, KB'priv, and use them to generate a forged certificate purporting to come
from Bob’s Bank.

478 CHAPTER 11 SECURITY

What Carol needs is a certificate stating Bob’s public key, signed by a well-known
and trusted authority. Let us assume that Fred represents the Bankers Federation, one of
whose roles is to certify the public keys of banks. Fred could issue a public-key

certificate for Bob (Figure 11.4

Figure 11.4 Public-key certificate for Bob’s Bank

1. Certificate type: Public key
2. Name: Bob’s Bank
3. Public key: KBpub

4. Certifying authority: Fred – The Bankers Federation
5. Signature: {Digest(field 2 + field 3)}KFpriv

).
Of course, this certificate depends upon the authenticity of Fred’s public key,

KFpub, so we have a recursive problem of authenticity – Carol can only rely on this
certificate if she can be sure she knows Fred’s authentic public key, KFpub. We can break
this recursion by ensuring that Carol obtains KFpub by some means in which she can
have confidence – she might be handed it by a representative of Fred or she might
receive a signed copy of it from someone she knows and trusts who says they got it
directly from Fred. Our example illustrates a certification chain – one with two links, in
this case.

We have already alluded to one of the problems arising with certificates – the
difficulty of choosing a trusted authority from which a chain of authentications can start.
Trust is seldom absolute, so the choice of an authority must depend upon the purpose to
which the certificate is to be put. Other problems arise over the risk of private keys being
compromised (disclosed) and the permissible length of a certification chain – the longer
the chain, the greater the risk of a weak link.

Provided that care is taken to address these issues, chains of certificates are an
important cornerstone for electronic commerce and other kinds of real-world
transaction. They help to address the problem of scale: there are six billion people in the
world, so how can we construct an electronic environment in which we can establish the
credentials of any of them?

 Certificates can be used to establish the authenticity of many types of statement.
For example, the members of a group or association might wish to maintain an email list
that is open only to members of the group. A good way to do this would be for the
membership manager (Bob) to issue a membership certificate (S,Bob,{Digest(S)}KBpriv)
to each member, where S is a statement of the form Alice is a member of the Friendly

Society and KBpriv is Bob’s private key. A member applying to join the Friendly Society
email list would have to supply a copy of this certificate to the list management system,
which checks the certificate before allowing the member to join the list.

To make certificates useful, two things are needed:

• a standard format and representation for them so that certificate issuers and
certificate users can successfully construct and interpret them;

SECTION 11.2 OVERVIEW OF SECURITY TECHNIQUES 479

• agreement on the manner in which chains of certificates are constructed, and in
particular the notion of a trusted authority.

We return to these requirements in Section 11.4.4.
There is sometimes a need to revoke a certificate – for example, Alice might

discontinue her membership of the Friendly Society, but she and others would probably
continue to hold stored copies of her membership certificate. It would be expensive, if
not impossible, to track down and delete all such certificates, and it is not easy to
invalidate a certificate – it would be necessary to notify all possible recipients of the
revocation. The usual solution to this problem is to include an expiry date in the
certificate. Anyone receiving an expired certificate should reject it, and the subject of
the certificate must request its renewal. If a more rapid revocation is required, then one
of the more cumbersome mechanisms mentioned above must be resorted to.

11.2.4 Access control

Here we outline the concepts on which the control of access to resources is based in
distributed systems and the techniques by which it is implemented. The conceptual basis
for protection and access control was very clearly set out in a classic paper by Lampson
[1971], and details of non-distributed implementations can be found in many books on
operating systems (see e.g., [Stallings 2008]).

Historically, the protection of resources in distributed systems has been largely
service-specific. Servers receive request messages of the form <op, principal,

resource>, where op is the requested operation, principal is an identity or a set of
credentials for the principal making the request and resource identifies the resource to
which the operation is to be applied. The server must first authenticate the request
message and the principal’s credentials and then apply access control, refusing any
request for which the requesting principal does not have the necessary access rights to
perform the requested operation on the specified resource.

In object-oriented distributed systems there may be many types of object to which
access control must be applied, and the decisions are often application-specific. For
example, Alice may be allowed only one cash withdrawal from her bank account per
day, while Bob is allowed three. Access control decisions are usually left to the
application-level code, but generic support is provided for much of the machinery that
supports the decisions. This includes the authentication of principals, the signing and
authentication of requests, and the management of credentials and access rights data.

Protection domains • A protection domain is an execution environment shared by a
collection of processes: it contains a set of <resource, rights> pairs, listing the resources
that can be accessed by all processes executing within the domain and specifying the
operations permitted on each resource. A protection domain is usually associated with a
given principal – when a user logs in, their identity is authenticated and a protection
domain is created for the processes that they will run. Conceptually, the domain includes
all of the access rights that the principal possesses, including any rights that they acquire
through membership of various groups. For example, in UNIX, the protection domain
of a process is determined by the user and group identifiers attached to the process at
login time. Rights are specified in terms of allowed operations. For example, a file might
be readable and writable by one process and only readable by another.

480 CHAPTER 11 SECURITY

A protection domain is only an abstraction. Two alternative implementations are
commonly used in distributed systems: capabilities and access control lists.

Capabilities: A set of capabilities is held by each process according to the domain in
which it is located. A capability is a binary value that acts as an access key, allowing the
holder access to certain operations on a specified resource. For use in distributed
systems, where capabilities must be unforgeable, they take a form such as:

Resource identifier A unique identifier for the target resource
Operations A list of the operations permitted on the resource
Authentication code A digital signature making the capability unforgeable

Services only supply capabilities to clients when they have authenticated them as
belonging to the claimed protection domain. The list of operations in the capability is a
subset of the operations defined for the target resource and is often encoded as a bit map.
Different capabilities are used for different combinations of access rights to the same
resource.

When capabilities are used, client requests are of the form <op, userid,

capability>. That is, they include a capability for the resource to be accessed instead of
a simple identifier, giving the server immediate proof that the client is authorized to
access the resource identified by the capability with the operations specified by the
capability. An access-control check on a request that is accompanied by a capability
involves only the validation of the capability and a check that the requested operation is
in the set permitted by the capability. This feature is the major advantage of capabilities
– they constitute a self-contained access key, just as a physical key to a door lock is an
access key to the building that the lock protects.

Capabilities share two drawbacks of keys to a physical lock:

Key theft: Anyone who holds the key to a building can use it to gain access, whether
or not they are an authorized holder of the key – they may have stolen the key or
obtained it in some fraudulent manner.

The revocation problem: The entitlement to hold a key changes with time. For
example, the holder may cease to be an employee of the owner of the building, but
they might retain the key, or a copy of it, and use it in an unauthorized manner.

The only available solutions to these problems for physical keys are (a) to put the illicit
key holder in jail – not always feasible on a timescale that will prevent them doing
damage – or (b) to change the lock and reissue keys to all key holders – a clumsy and
expensive operation.

The analogous problems for capabilities are clear:

• Capabilities may, through carelessness or as a result of an eavesdropping attack,
fall into the hands of principals other than those to whom they were issued. If this
happens, servers are powerless to prevent them being used illicitly.

• It is difficult to cancel capabilities. The status of the holder may change and their
access rights should change accordingly, but they can still use their capabilities.

Solutions to both of these problems, based on the inclusion of information identifying
the holder and on timeouts plus lists of revoked capabilities, respectively, have been
proposed and developed [Gong 1989, Hayton et al. 1998]. Although they add

SECTION 11.2 OVERVIEW OF SECURITY TECHNIQUES 481

complexity to an otherwise simple concept, capabilities remain an important technique
– for example, they can be used in conjunction with access control lists to optimize
access control on repeated access to the same resource, and they provide the neatest
mechanism for the implementation of delegation (see Section 11.2.5).

It is interesting to note the similarity between capabilities and certificates.
Consider Alice’s certificate of ownership of her bank account introduced in Section
11.2.3. It differs from capabilities as described here only in that there is no list of
permitted operations and that the issuer is identified. Certificates and capabilities may
be interchangeable concepts in some circumstances. Alice’s certificate might be
regarded as an access key allowing her to perform all the operations permitted to account
holders on her bank account, provided her identity can be proven.

Access control lists: A list is stored with each resource, containing an entry of the form
<domain, operations> for each domain that has access to the resource and giving the
operations permitted to the domain. A domain may be specified by an identifier for a
principal or it may be an expression that can be used to determine a principal’s
membership of the domain. For example, the owner of this file is an expression that can
be evaluated by comparing the requesting principal’s identity with the owner’s identity
stored with a file.

This is the scheme adopted in most file systems, including UNIX and
Windows NT, where a set of access permission bits is associated with each file, and the
domains to which the permissions are granted are defined by reference to the ownership
information stored with each file.

Requests to servers are of the form <op, principal, resource>. For each request,
the server authenticates the principal and checks to see that the requested operation is
included in the principal’s entry in the access control list of the relevant resource.

Implementation • Digital signatures, credentials and public-key certificates provide the
cryptographic basis for secure access control. Secure channels offer performance
benefits, enabling multiple requests to be handled without a need for repeated checking
of principals and credentials [Wobber et al. 1994].

Both CORBA and Java offer Security APIs. Support for access control is one of
their major purposes. Java provides support for distributed objects to manage their own
access control with Principal, Signer and ACL classes and default methods for
authentication and support for certificates, signature validation and access-control
checks. Secret-key and public-key cryptography are also supported. Farley [1998]
provides a good introduction to these features of Java. The protection of Java programs
that include mobile code is based upon the protection domain concept – local code and
downloaded code are provided with different protection domains in which to execute.
There can be a protection domain for each download source, with access rights for
different sets of local resources depending upon the level of trust that is placed in the
downloaded code.

Corba offers a Security Service specification [Blakley 1999, OMG 2002b] with a
model for ORBs to provide secure communication, authentication, access control with
credentials, ACLs and auditing; these are described further in Section 8.3.

482 CHAPTER 11 SECURITY

11.2.5 Credentials

Credentials are a set of evidence provided by a principal when requesting access to a
resource. In the simplest case, a certificate from a relevant authority stating the
principal’s identity is sufficient, and this would be used to check the principal’s
permissions in an access control list (see Section 11.2.4). This is often all that is required
or provided, but the concept can be generalized to deal with many more subtle
requirements.

It is not convenient to require users to interact with the system and authenticate
themselves each time their authority is required to perform an operation on a protected
resource. Instead, the notion that a credential speaks for a principal is introduced. Thus
a user’s public-key certificate speaks for that user – any process receiving a request
authenticated with the user’s private key can assume that the request was issued by that
user.

The speaks for idea can be carried much further. For example, in a cooperative
task, it might be required that certain sensitive actions should only be performed with
the authority of two members of the team; in that case, the principal requesting the action
would submit their own identifying credential and a backing credential from another
member of the team, together with an indication that they are to be taken together when
checking the credentials.

Similarly, to vote in an election, a vote request would be accompanied by an
elector certificate as well as an identifying certificate. A delegation certificate allows a
principal to act on behalf of another, and so on. In general, an access-control check
involves the evaluation of a logical formula combining the certificates supplied.
Lampson et al. [1992] have developed a comprehensive logic of authentication for use
in evaluating the speaks for authority carried by a set of credentials. Wobber et al. [1994]
describe a system that supports this very general approach. Further work on useful forms
of credential for use in real-world cooperative tasks can be found in Rowley [1998].

Role-based credentials seem particularly useful in the design of practical access
control schemes [Sandhu et al. 1996]. Sets of role-based credentials are defined for
organizations or for cooperative tasks, and application-level access rights are
constructed with reference to them. Roles can then be assigned to specific principals by
the generation of role certificates associating principals with named roles in specific
tasks or organizations [Coulouris et al. 1998].

Delegation • A particularly useful form of credential is one that entitles a principal, or
a process acting for a principal, to perform an action with the authority of another
principal. A need for delegation can arise in any situation where a service needs to
access a protected resource in order to complete an action on behalf of its client.
Consider the example of a print server that accepts requests to print files. It would be
wasteful of resources to copy the file, so the name of the file is passed to the print server
and it is accessed by the print server on behalf of the user making the request. If the file
is read-protected, this does not work unless the print server can acquire temporary rights
to read the file. Delegation is a mechanism designed to solve problems such as this.

Delegation can be achieved using a delegation certificate or a capability. The
certificate is signed by the requesting principal and it authorizes another principal (the
print server in our example) to access a named resource (the file to be printed). In
systems that support them, capabilities can achieve the same result without the need to

SECTION 11.2 OVERVIEW OF SECURITY TECHNIQUES 483

identify the principals – a capability to access a resource can be passed in a request to a
server. The capability is an unforgeable, encoded set of rights to access the resource.

When rights are delegated, it is common to restrict them to a subset of the rights
held by the issuing principal, so that the delegated principal cannot misuse them. In our
example, the certificate could be time-limited to reduce the risk of the print server’s code
subsequently being compromised and the file disclosed to third parties. The CORBA
Security Service includes a mechanism for the delegation of rights based on certificates,
with support for the restriction of the rights carried.

11.2.6 Firewalls

Firewalls were introduced and described in Section 3.4.8. They protect intranets,
performing filtering actions on incoming and outgoing communications. Here we
discuss their advantages and drawbacks as security mechanisms.

In an ideal world, communication would always be between mutually trusting
processes and secure channels would always be used. There are many reasons why this
ideal is not attainable, some fixable, but others inherent in the open nature of distributed
systems or resulting from the errors that are present in most software. The ease with
which request messages can be sent to any server, anywhere, and the fact that many
servers are not designed to withstand malicious attacks from hackers or accidental
errors, makes it easy for information that is intended to be confidential to leak out of the
owning organization’s servers. Undesirable items can also penetrate an organization’s
network, allowing worm programs and viruses to enter its computers. See
[web.mit.edu II] for a further critique of firewalls.

Firewalls produce a local communication environment in which all external
communication is intercepted. Messages are forwarded to the intended local recipient
only for communications that are explicitly authorized.

Access to internal networks may be controlled by firewalls, but access to public
services on the Internet is unrestricted because their purpose is to offer services to a wide
range of users. The use of firewalls offers no protection against attacks from inside an
organization, and it is crude in its control of external access. There is a need for finer-
grained security mechanisms, enabling individual users to share information with
selected others without compromising privacy and integrity. Abadi et al. [1998]
describe an approach to the provision of access to private web data for external users
based on a web tunnel mechanism that can be integrated with a firewall. It offers access
for trusted and authenticated users to internal web servers via a secure proxy based on
the HTTPS (HTTP over TLS) protocol.

Firewalls are not particularly effective against denial-of-service attacks such as
the one based on IP spoofing that was outlined in Section 3.4.2. The problem is that the
flood of messages generated by such attacks overwhelms any single point of defence
such as a firewall. Any remedy for incoming floods of messages must be applied well
upstream of the target. Remedies based on the use of quality of service mechanisms to
restrict the flow of messages from the network to a level that the target can handle seem
the most promising.

484 CHAPTER 11 SECURITY

11.3 Cryptographic algorithms

A message is encrypted by the sender applying some rule to transform the plaintext

message (any sequence of bits) to a ciphertext (a different sequence of bits). The
recipient must know the inverse rule in order to transform the ciphertext back into the
original plaintext. Other principals are unable to decipher the message unless they also
know the inverse rule. The encryption transformation is defined with two parts, a
function E and a key K. The resulting encrypted message is written M K .

E K M M K=

The encryption function E defines an algorithm that transforms data items in plaintext
into encrypted data items by combining them with the key and transposing them in a
manner that is heavily dependent on the value of the key. We can think of an encryption
algorithm as the specification of a large family of functions from which a particular
member is selected by any given key. Decryption is carried out using an inverse function
D, which also takes a key as a parameter. For secret-key encryption, the key used for
decryption is the same as that used for encryption:

D K E K M M=

Because of its symmetrical use of keys, secret-key cryptography is often referred to as
symmetric cryptography, whereas public-key cryptography is referred to as asymmetric

because the keys used for encryption and decryption are different, as we shall see below.
In the next section, we describe several widely used encryption functions of both types.

Symmetric algorithms • If we remove the key parameter from consideration by defining
FK M E K M= , then it is a property of strong encryption functions that
FK M is relatively easy to compute, whereas the inverse, FK

1– M , is so hard to
compute that it is not feasible. Such functions are known as one-way functions. The
effectiveness of any method for encrypting information depends upon the use of an
encryption function FK that has this one-way property. It is this that protects against
attacks designed to discover M given M K .

For well-designed symmetric algorithms such as those described in the next
section, their strength against attempts to discover K given a plaintext M and the
corresponding ciphertext M K depends on the size of K. This is because the most
effective general form of attack is the crudest, known as a brute-force attack. The brute-
force approach is to run through all possible values of K, computing E K M until the
result matches the value of M K that is already known. If K has N bits then such an
attack requires 2

N 1–
 iterations on average, and a maximum of 2

N
 iterations, to find K.

Hence the time to crack K is exponential in the number of bits in K.

Asymmetric algorithms • When a public/private key pair is used, one-way functions are
exploited in another way. The feasibility of a public-key scheme was first proposed by
Diffie and Hellman [1976] as a cryptographic method that eliminates the need for trust
between the communicating parties. The basis for all public-key schemes is the
existence of trap-door functions. A trap-door function is a one-way function with a
secret exit – it is easy to compute in one direction but infeasible to compute the inverse
unless a secret is known. It was the possibility of finding such functions and using them

SECTION 11.3 CRYPTOGRAPHIC ALGORITHMS 485

in practical cryptography that Diffie and Hellman first suggested. Since then, several
practical public-key schemes have been proposed and developed. They all depend upon
the use of trap-door functions involving large numbers.

The pair of keys needed for asymmetric algorithms is derived from a common
root. For the RSA algorithm, described in Section 11.3.2, the root is an arbitrarily chosen
pair of very large prime numbers. The derivation of the pair of keys from the root is a
one-way function. In the case of the RSA algorithm, the large primes are multiplied
together – a computation that takes only a few seconds, even for the very large primes
used. The resulting product, N, is of course much larger than the multiplicands. This use
of multiplication is a one-way function in the sense that it is computationally infeasible
to derive the original multiplicands from the product – that is, to factorize the product.

One of the pair of keys is used for encryption. For RSA, the encryption function
obscures the plaintext by treating each block of bits as a binary number and raising it to
the power of the key, modulo N. The resulting number is the corresponding ciphertext
block.

The size of N and at least one of the pair of keys is much larger than the safe key
size for symmetric keys to ensure that N is not factorizable. For this reason, the potential
for brute-force attacks on RSA is small; its resistance to attacks depends on the
infeasibility of factorizing N. We discuss safe sizes for N in Section 11.3.2.

Block ciphers • Most encryption algorithms operate on fixed-size blocks of data; 64 bits
is a popular size for the blocks. A message is subdivided into blocks, the last block is
padded to the standard length if necessary and each block is encrypted independently.
The first block is available for transmission as soon as it has been encrypted.

For a simple block cipher, the value of each block of ciphertext does not depend
upon the preceding blocks. This constitutes a weakness, since an attacker can recognize
repeated patterns and infer their relationship to the plaintext. Nor is the integrity of
messages guaranteed unless a checksum or secure digest mechanism is used. Most block
cipher algorithms employ cipher block chaining (CBC)

n

n+3 n+2

Figure 11.5 Cipher block chaining

n+1 XOR

E(K, M)

n–1n–2n–3

plaintext blocks

ciphertext blocks

 to overcome these weaknesses.

Cipher block chaining: In cipher block chaining mode, each plaintext block is combined
with the preceding ciphertext block using the exclusive-or operation (XOR) before it is
encrypted (Figure 11.5). On decryption, the block is decrypted and then the preceding
encrypted block (which should have been stored for this purpose) is XOR-ed with it to
obtain the new plaintext block. This works because the XOR operation is its own inverse
– two applications of it produce the original value.

CBC is intended to prevent identical portions of plaintext encrypting to identical
pieces of ciphertext. But there is a weakness at the start of each sequence of blocks – if

486 CHAPTER 11 SECURITY

we open encrypted connections to two destinations and send the same message, the
encrypted sequences of blocks will be the same, and an eavesdropper might gain some
useful information from this. To prevent this, we need to insert a different piece of
plaintext in front of each message. Such text is called an initialization vector. A
timestamp makes a good initialization vector, forcing each message to start with a
different plaintext block. This, combined with CBC operation, will result in different
ciphertexts even for two identical plaintexts.

The use of CBC mode is restricted to the encryption of data that is transferred
across a reliable connection. Decryption will fail if any blocks of ciphertext are lost,
since the decryption process will be unable to decrypt any further blocks. It is therefore
unsuitable for use in applications such as those described in Chapter 18, in which some
data loss can be tolerated. A stream cipher should be used in such circumstances.

Stream ciphers • For some applications, such as the encryption of telephone
conversations, encryption in blocks is inappropriate because the data streams are
produced in real time in small chunks. Data samples can be as small as 8 bits or even a
single bit, and it would be wasteful to pad each of these to 64 bits before encrypting and
transmitting them. Stream ciphers are encryption algorithms that can perform
encryption incrementally, converting plaintext to ciphertext one bit at a time.

This sounds difficult to achieve, but in fact it is very simple to convert a block
cipher algorithm for use as a stream cipher. The trick is to construct a keystream

generator. A keystream is an arbitrary-length sequence of bits that can be used to
obscure the contents of a data stream by XOR-ing the keystream with the data stream
(Figure 11.6)

Figure 11.6 Stream cipher

XOR

E(K, M)
number
generator n+3 n+2 n+1

plaintext
stream

ciphertext
stream

buffer
keystream

. If the keystream is secure, then so is the resulting encrypted data stream.
The idea is analogous to a technique used in the intelligence community to foil

eavesdroppers, where ‘white noise’ is played to hide the conversation in a room while
still recording the conversation. If the noisy room sound and the white noise are recorded
separately, the conversation can be played back without noise by subtracting the white
noise recording from the noisy room recording.

A keystream generator can be constructed by iterating a mathematical function
over a range of input values to produce a continuous stream of output values. The output
values are then concatenated to make plaintext blocks, and the blocks are encrypted
using a key shared by the sender and the receiver. The keystream can be further
disguised by applying CBC. The resulting encrypted blocks are used as the keystream.
An iteration of almost any function that delivers a range of different non-integer values
will do for the source material, but a random number generator is generally used with a
starting value for the iteration agreed between the sender and receiver. To maintain
quality of service for the data stream, the keystream blocks should be produced a little

SECTION 11.3 CRYPTOGRAPHIC ALGORITHMS 487

ahead of the time at which they will be used, and the process that produces them should
not demand so much processing effort that the data stream is delayed.

Thus in principle, real-time data streams can be encrypted just as securely as
batched data, provided that sufficient processing power is available to encrypt the
keystream in real time. Of course, some devices that could benefit from real-time
encryption, such as mobile phones, are not equipped with very powerful processors, and
in that case it may be necessary to reduce the security of the keystream algorithm.

Design of cryptographic algorithms • There are many well-designed cryptographic
algorithms such that E K M M K= conceals the value of M and makes it
practically impossible to retrieve K more quickly than by brute force. All encryption
algorithms rely on information-preserving manipulations of M using principles based on
information theory [Shannon 1949]. Schneier [1996] describes Shannon’s principles of
confusion and diffusion to conceal the content of a ciphertext block M, combining it with
a key K of sufficient size to render it proof against brute-force attacks.

Confusion: Non-destructive operations such as XOR and circular shifting are used to
combine each block of plaintext with the key, producing a new bit pattern that obscures
the relationship between the blocks in M and {M}K. If the blocks are larger than a few
characters this will defeat analysis based on a knowledge of character frequencies. (The
WWII German Enigma machine used chained single-letter blocks, and was eventually
defeated by statistical analysis.)

Diffusion: There is usually repetition and redundancy in the plaintext. Diffusion
dissipates the regular patterns that result by transposing portions of each plaintext block.
If CBC is used, the redundancy is also distributed throughout a longer text. Stream
ciphers cannot use diffusion since there are no blocks.

In the next two sections, we describe the design of several important practical
algorithms. All of them have been designed in the light of the above principles have been
subject to rigorous analysis and are considered to be secure against all known attacks
with a considerable margin of safety. With the exception of the TEA algorithm, which
is described for illustrative purposes, the algorithms described here are among those
most widely used in applications where strong security is required. In some of them
there remain some minor weaknesses or areas of concern; space does not allow us to
describe all of those concerns here, and the reader is referred to Schneier [1996] for
further information. We summarize and compare the security and performance of the
algorithms in Section 11.5.1.

Readers who do not require an understanding of the operation of cryptographic
algorithms may omit Sections 11.3.1 and 11.3.2.

11.3.1 Secret-key (symmetric) algorithms

Many cryptographic algorithms have been developed and published in recent years.
Schneier [1996] describes more than 25 symmetric algorithms, many of which he
identifies as secure against known attacks. Here we have room to describe only three of
them. We have chosen the first, TEA, for the simplicity of its design and
implementation, and we use it to give a concrete illustration of the nature of such
algorithms. We go on to discuss the DES and IDEA algorithms in less detail. DES was

488 CHAPTER 11 SECURITY

a US national standard for many years, but it is now largely of historical interest because
its 56-bit keys are too small to resist brute-force attack with modern hardware. IDEA
uses a 128-bit key. It is one of the most effective symmetric block encryption algorithms
and a good all-round choice for bulk encryption.

In 1997, the US National Institute for Standards and Technology (NIST) issued an
invitation for proposals for an algorithm to replace DES as a new US Advanced
Encryption Standard (AES). In October 2000 the winner was selected from 21
algorithms submitted by cryptographers from 11 countries. The winning Rijndael
algorithm was chosen for its combination of strength and efficiency. Further information
on it is given below.

TEA • The design principles for symmetric algorithms outlined above are illustrated
well in the Tiny Encryption Algorithm (TEA) developed at Cambridge University
[Wheeler and Needham 1994]. The encryption function, programmed in C, is given in
its entirety in

Figure 11.7 TEA encryption function

void encrypt(unsigned long k[], unsigned long text[]) {

unsigned long y = text[0], z = text[1]; 1

unsigned long delta = 0x9e3779b9, sum = 0; int n; 2

for (n= 0; n < 32; n++) { 3

sum += delta; 4

y += ((z << 4) + k[0]) ^ (z+sum) ^ ((z >> 5) + k[1]); 5

z += ((y << 4) + k[2]) ^ (y+sum) ^ ((y >> 5) + k[3]); 6

}

text[0] = y; text[1] = z; 7

}

Figure 11.7.
The TEA algorithm uses rounds of integer addition, XOR (the ^ operator) and

bitwise logical shifts (<< and >>) to achieve diffusion and confusion of the bit patterns
in the plaintext. The plaintext is a 64-bit block represented as two 32-bit integers in the
vector text[]. The key is 128 bits long, represented as four 32-bit integers.

On each of the 32 rounds, the two halves of the text are repeatedly combined with
shifted portions of the key and each other in lines 5 and 6. The use of XOR and shifted
portions of the text provides confusion, and the shifting and swapping of the two
portions of the text provides diffusion. The non-repeating constant delta is combined
with each portion of the text on each cycle to obscure the key in case it might be revealed
by a section of text that does not vary. The decryption function is the inverse of that for
encryption and is given in Figure 11.8.

This short program provides secure and reasonably fast secret-key encryption. It
is somewhat faster than the DES algorithm, and the conciseness of the program lends
itself to optimization and hardware implementation. The 128-bit key is secure against
brute-force attacks. Studies by its authors and others have revealed only two very minor
weaknesses, which the authors addressed in a subsequent note [Wheeler and Needham
1997].

Figure 11.8 TEA decryption function

void decrypt(unsigned long k[], unsigned long text[]) {

unsigned long y = text[0], z = text[1];

unsigned long delta = 0x9e3779b9, sum = delta << 5; int n;

for (n= 0; n < 32; n++) {

z -= ((y << 4) + k[2]) ^ (y + sum) ^ ((y >> 5) + k[3]);

y -= ((z << 4) + k[0]) ^ (z + sum) ^ ((z >> 5) + k[1]);

sum -= delta;

}

text[0] = y; text[1] = z;

}

SECTION 11.3 CRYPTOGRAPHIC ALGORITHMS 489

To illustrate its use

Figure 11.9 TEA in use

void tea(char mode, FILE *infile, FILE *outfile, unsigned long k[]) {

/* mode is 'e' for encrypt, 'd' for decrypt, k[] is the key.*/

char ch, Text[8]; int i;

while(!feof(infile)) {

i = fread(Text, 1, 8, infile); /* read 8 bytes from infile into Text */

if (i <= 0) break;

while (i < 8) { Text[i++] = ' ';} /* pad last block with spaces */

switch (mode) {

case 'e':

encrypt(k, (unsigned long*) Text); break;

case 'd':

decrypt(k, (unsigned long*) Text); break;

}

fwrite(Text, 1, 8, outfile); /* write 8 bytes from Text to outfile */

}

}

, Figure 11.9 shows a simple procedure that uses TEA to
encrypt and decrypt a pair of previously opened files (using the C stdio library).

DES • The Data Encryption Standard (DES) [National Bureau of Standards 1977] was
developed by IBM and subsequently adopted as a US national standard for government
and business applications. In this standard, the encryption function maps a 64-bit
plaintext input into a 64-bit encrypted output using a 56-bit key. The algorithm has 16
key-dependent stages known as rounds, in which the data to be encrypted is bit-rotated
by a number of bits determined by the key and three key-independent transpositions.
The algorithm was time-consuming to perform in software on the computers of the
1970s and 1980s, but it was implemented in fast VLSI hardware and can easily be
incorporated into network interface and other communication chips.

490 CHAPTER 11 SECURITY

In June 1997, it was successfully cracked in a widely publicized brute-force
attack. The attack was performed in the context of a competition to demonstrate the lack
of security of encryption with keys shorter than 128 bits [www.rsasecurity.com II]. A
consortium of Internet users ran a client application program on a their PCs and other
workstations, whose numbers reached 14,000 during one 24-hour period [Curtin and
Dolske 1998].

The client program was aimed at cracking the particular key used in a known
plaintext/ciphertext sample and then using it to decrypt a secret challenge message. The
clients interacted with a single server that coordinated their work, issuing each client
with ranges of key values to check and receiving progress reports from them. The typical
client computer ran the client program only as a background activity and had a
performance approximately equal to a 200 MHz Pentium processor. The key was
cracked in about 12 weeks, after approximately 25% of the possible 256 or 6 1016

values had been checked. In 1998 a machine was developed by the Electronic Frontier
Foundation [EFF 1998] that can successfully crack DES keys in around three days.

Although it is still used in many commercial and other applications, DES in its
basic form should be considered obsolete for the protection of all but low-value
information. A solution that is frequently used is known as triple-DES (or 3DES) [ANSI
1985, Schneier 1996]. This involves applying DES three times with two keys, K1 and K2:

E3DES K1 K2 M EDES K1 DDES K2 EDES K1 M=

This gives a strength against brute-force attacks equivalent to a key length of 112 bits –
adequate for the foreseeable future – but it has the drawback of poor performance
resulting from the triple application of an algorithm that is already slow by modern
standards.

IDEA • The International Data Encryption Algorithm (IDEA) was developed in the
early 1990s [Lai and Massey 1990, Lai 1992] as a successor to DES. Like TEA, it uses
a 128-bit key to encrypt 64-bit blocks. Its algorithm is based on the algebra of groups
and has eight rounds of XOR, addition modulo 216 and multiplication. For both DES and
IDEA, the same function is used for encryption and decryption: a useful property for
algorithms that are to be implemented in hardware.

The strength of IDEA has been extensively analyzed, and no significant
weaknesses have been found. It performs encryption and decryption at approximately
three times the speed of DES.

RC4 • RC4 is a stream cipher developed by Ronald Rivest [Rivest 1992b]. Keys can be
of any length up to 256 bytes. RC4 is easy to implement [Schneier 1996, pp. 397–8] and
performs encryption and decryption about 10 times as fast as DES. It was therefore
widely adopted in applications including IEEE 802.11 WiFi networks, but a weakness
was subsequently discovered by Fluhrer et al. [2001] that enabled attackers to crack
some keys. This led to a redesign of 802.11 security (see Section 11.6.4 for further
details).

AES • The Rijndael algorithm selected to become the Advanced Encryption Standard
algorithm by NIST was developed by Joan Daemen and Vincent Rijmen [Daemen and
Rijmen 2000, 2002]. The cipher has a variable block length and key length, with
specifications for keys with a length of 128, 192 or 256 bits to encrypt blocks with a

SECTION 11.3 CRYPTOGRAPHIC ALGORITHMS 491

length of 128, 192 or 256 bits. Both block length and key length can be extended by
multiples of 32 bits. The number of rounds in the algorithm varies from 9 to 13
depending on the key and block sizes. Rijndael can be implemented efficiently on a wide
range of processors and in hardware.

11.3.2 Public-key (asymmetric) algorithms

Only a few practical public-key schemes have been developed to date. They depend
upon the use of trap-door functions of large numbers to produce the keys. The keys Ke
and Kd are a pair of very large numbers, and the encryption function performs an
operation, such as exponentiation on M, using one of them. Decryption is a similar
function using the other key. If the exponentiation uses modular arithmetic, it can be
shown that the result is the same as the original value of M; that is:

D(Kd, E(Ke, M)) = M

A principal wishing to participate in secure communication with others makes a pair of
keys, Ke and Kd, and keeps the decryption key Kd a secret. The encryption key Ke can
be made known publicly for use by anyone who wants to communicate. The encryption
key Ke can be seen as a part of the one-way encryption function E, and the decryption
key Kd is the piece of secret knowledge that enables principal p to reverse the
encryption. Any holder of Ke (which is widely available) can encrypt messages {M}Ke,
but only the principal who has the secret Kd can operate the trapdoor.

The use of functions of large numbers leads to large processing costs in computing
the functions E and D. We shall see later that this is a problem that has to be addressed
by the use of public keys only in the initial stages of secure communication sessions. The
RSA algorithm is certainly the most widely known public-key algorithm and we
describe it in some detail here. Another class of algorithms is based on functions derived
from the behaviour of elliptic curves in a plane. These algorithms offer the possibility of
less costly encryption and decryption functions with the same level of security, but their
practical application is less advanced and we deal with them only briefly.

RSA • The Rivest, Shamir and Adelman (RSA) design for a public-key cipher [Rivest
et al. 1978] is based on the use of the product of two very large prime numbers (greater
than 10100), relying on the fact that the determination of the prime factors of such large
numbers is so computationally difficult as to be effectively impossible.

 Despite extensive investigations no flaws have been found in it, and it is now very
widely used. An outline of the method follows. To find a key pair <e,d>:

1. Choose two large prime numbers, P and Q (each greater than 10100), and form
N = P Q

Z = (P–1) (Q–1)

2. For d, choose any number that is relatively prime with Z (that is, such that d has
no common factors with Z).

We illustrate the computations involved using small integer values for P and Q:
P = 13, Q = 17 N = 221, Z = 192
d = 5

492 CHAPTER 11 SECURITY

3. To find e, solve the equation:
e d = 1 mod Z

That is, e d is the smallest element divisible by d in the series Z+1, 2Z+1, 3Z+1,

e d = 1 mod 192 = 1, 193, 385, ...
385 is divisible by d
e = 385/5 = 77

To encrypt text using the RSA method, the plaintext is divided into equal blocks of
length k bits, where 2k < N (that is, such that the numerical value of a block is always
less than N; in practical applications, k is usually in the range 512 to 1024).

k = 7, since 27 = 128

The function for encrypting a single block of plaintext M is:

E'(e,N,M) = Me mod N

for a message M, the ciphertext is M77 mod 221

The function for decrypting a block of encrypted text c to produce the original plaintext
block is:

D'(d,N,c) = cd mod N

Rivest, Shamir and Adelman proved that E' and D' are mutual inverses (that is,
E'(D'(x)) = D'(E'(x)) = x) for all values of P in the range 0 P N.

The two parameters e,N can be regarded as a key for the encryption function, and
similarly the parameters d,N represent a key for the decryption function. So we can write
Ke = <e,N> and Kd = <d,N>, and we get the encryption functions E(Ke, M) ={M}K (the
notation here indicating that the encrypted message can be decrypted only by the holder
of the private key Kd) and D(Kd, {M}K) = M.

It is worth noting one potential weakness of all public-key algorithms – because
the public key is available to attackers, they can easily generate encrypted messages.
Thus they can attempt to decrypt an unknown message by exhaustively encrypting
arbitrary bit sequences until a match with the target message is achieved. This attack,
which is known as a chosen plaintext attack, is defeated by ensuring that all messages
are longer than the key length, so that this form of brute-force attack is less feasible than
a direct attack on the key.

An intending recipient of secret information must publish or otherwise distribute
the pair <e,N> while keeping d secret. The publication of <e,N> does not compromise
the secrecy of d, because any attempt to determine d requires knowledge of the original
prime numbers P and Q, and these can only be obtained by the factorization of N.
Factoring of large numbers (we recall that P and Q were chosen to be > 10100, so N >
10200) is extremely time-consuming, even on very high-performance computers. In
1978, Rivest et al. concluded that factoring a number as large as 10200 would take more
than four billion years with the best known algorithm on a computer that performs one

SECTION 11.4 DIGITAL SIGNATURES 493

million instructions per second. A similar calculation for today’s computers would
reduce this time to around a million years,

The RSA Corporation has issued a series of challenges to factor numbers of more
than 100 decimal digits [www.rsasecurity.com III]. At the time of writing, numbers of
up to 174 decimal digits (576 binary digits) have been successfully factored, so the use
of the RSA algorithm with 512-bit keys is clearly unacceptably weak for many purposes.
The RSA Corporation (holders of the patents in the RSA algorithm) recommends a key
length of at least 768 bits, or about 230 decimal digits, for long-term (~20 years)
security. Keys as large as 2048 bits are used in some applications.

The above strength calculations assume that the currently known factoring
algorithms are the best available. RSA and other forms of asymmetric cryptography that
use prime number multiplication as their one-way function will be vulnerable if a faster
factorization algorithm is discovered.

Elliptic curve algorithms • A method for generating public/private key pairs based on
the properties of elliptic curves has been developed and tested. Full details can be found
in the book by Menezes devoted to the subject [Menezes 1993]. The keys are derived
from a different branch of mathematics, and unlike RSA their security does not depend
upon the difficulty of factoring large numbers. Shorter keys are secure, and the
processing requirements for encryption and decryption are lower than those for RSA.
Elliptic curve encryption algorithms are likely to be adopted more widely in the future,
especially in systems such as those incorporating mobile devices, which have limited
processing resources. The relevant mathematics involves some quite complex properties
of elliptic curves and is beyond the scope of this book.

11.3.3 Hybrid cryptographic protocols

Public-key cryptography is convenient for electronic commerce because there is no need
for a secure key-distribution mechanism. (There is a need to authenticate public keys,
but this is much less onerous, requiring only a public-key certificate to be sent with the
key.) But the processing costs of public-key cryptography are too high for the encryption
of even the medium-sized messages normally encountered in electronic commerce. The
solution adopted in most large-scale distributed systems is to use a hybrid encryption
scheme in which public-key cryptography is used to authenticate the parties and to
encrypt an exchange of secret keys, which are used for all subsequent communication.
We describe the implementation of a hybrid protocol in the TLS case study in
Section 11.6.3.

11.4 Digital signatures

Strong digital signatures are an essential requirement for secure systems. They are
needed in order to certify certain pieces of information – for example, to provide
trustworthy statements binding users’ identities to their public keys or binding some
access rights or roles to users’ identities.

494 CHAPTER 11 SECURITY

The need for signatures in many kinds of business and personal transaction is
beyond dispute. Handwritten signatures have been used as a means of verifying
documents for as long as documents have existed. Handwritten signatures are used to
meet the needs of document recipients to verify that the document is:

Authentic: It convinces the recipient that the signer deliberately signed the document
and it has not been altered by anyone else.

Unforgeable: It provides proof that the signer, and no one else, deliberately signed
the document. The signature cannot be copied and placed on another document.

Non-repudiable: The signer cannot credibly deny that the document was signed by
them.

In reality, none of these desirable properties of signing is entirely achieved by
conventional signatures – forgeries and copies are hard to detect, documents can be
altered after signing and signers are sometimes deceived into signing a document
involuntarily or unwittingly – but we are willing to live with their imperfection because
of the difficulty of cheating and the risk of detection. Like handwritten signatures,
digital signatures depend upon the binding of a unique and secret attribute of the signer
to a document. In the case of handwritten signatures, the secret is the handwriting pattern
of the signer.

The properties of digital documents held in stored files or messages are
completely different from those of paper documents. Digital documents are trivially
easy to generate, copy and alter. Simply appending the identity of the originator,
whether as a text string, a photograph or a handwritten image, has no value for
verification purposes.

What is needed is a means to irrevocably bind a signer’s identity to the entire
sequence of bits representing a document. This should meet the first requirement above,
for authenticity. As with handwritten signatures, though, the date of a document cannot
be guaranteed by a signature. The recipient of a signed document knows only that the
document was signed before they received it.

Regarding non-repudiation, there is a problem that does not arise with handwritten
signatures. What if the signer deliberately reveals their private key and subsequently
denies having signed, saying that there are others who could have done so, since the key
was not private? Some protocols have been developed to address this problem under the
heading of undeniable digital signatures [Schneier 1996], but they add considerably to
the complexity.

A document with a digital signature can be considerably more resistant to forgery
than a handwritten one. But the word ‘original’ has little meaning with reference to
digital documents. As we shall see in our discussion of the needs of electronic
commerce, digital signatures alone cannot, for example, prevent double-spending of
electronic cash – other measures are needed to prevent that. We now describe two
techniques for signing documents digitally, binding a principal’s identity to the
document. Both depend upon the use of cryptography.

Digital signing • An electronic document or message M can be signed by a principal A
by encrypting a copy of M with a key KA and attaching it to a plaintext copy of M and
A’s identifier. The signed document then consists of: M, A, [M]KA. The signature can be

SECTION 11.4 DIGITAL SIGNATURES 495

verified by a principal that subsequently receives the document to check that it was
originated by A and that its contents, M, have not subsequently been altered.

If a secret key is used to encrypt the document, only principals that share the secret
can verify the signature. But if public-key cryptography is used, then the signer uses
their private key and anyone who has the corresponding public key can verify the
signature. This is a better analogue for conventional signatures and meets a wider range
of user needs. The verification of signatures proceeds differently depending on whether
secret-key or public-key cryptography is used to produce the signature. We describe the
two cases in Sections 11.4.1 and 11.4.2.

Digest functions • Digest functions are also called secure hash functions and denoted
H(M). They must be carefully designed to ensure that H(M) is different from H(M') for
all likely pairs of messages M and M'. If there are any pairs of different messages M and
M' such that H(M) = H(M'), then a duplicitous principal could send a signed copy of M,
but when confronted with it claim that M' was originally sent and that it must have been
altered in transit. We discuss some secure hash functions in Section 11.4.3.

{h }Kpri

M

Signing

Verifying

E(Kpri, h)

128 bits

H(M) h

M

hH(doc)

D(Kpub, {h })
{h}Kpri h'

h = h'?

Figure 11.10 Digital signatures with public keys

M

signed doc

11.4.1 Digital signatures with public keys

Public-key cryptography is particularly well adapted for the generation of digital
signatures because it is relatively simple and does not require any communication
between the recipient of a signed document and the signer or any third party.

The method for A to sign a message M and B to verify it is as follows (and is
illustrated graphically in Figure 11.10):

1. A generates a key pair Kpub and Kpriv and publishes the public key Kpub by
placing it in a well-known location.

496 CHAPTER 11 SECURITY

2. A computes the digest of M, H(M) using an agreed secure hash function H and
encrypts it using the private key Kpriv to produce the signature S = {H(M)}Kpriv.

3. A sends the signed message [M]K = M,S to B.

4. B decrypts S using Kpub and computes the digest of M, H(M). If they match, the
signature is valid.

The RSA algorithm is quite suitable for use in constructing digital signatures. Note that
the private key of the signer is used to encrypt the signature, in contrast to the use of the
recipient’s public key for encryption when the aim is to transmit information in secrecy.
The explanation for this difference is straightforward – a signature must be created using
a secret known only to the signer and it should be accessible to all for verification.

11.4.2 Digital signatures with secret keys – MACs

There is no technical reason why a secret-key encryption algorithm should not be used
to encrypt a digital signature, but in order to verify such signatures the key must be
disclosed, and this causes some problems:

• The signer must arrange for the verifier to receive the secret key used for signing
securely.

• It may be necessary to verify a signature in several contexts and at different times
– at the time of signing, the signer may not know the identities of the verifiers. To
resolve this, verification could be delegated to a trusted third party who holds
secret keys for all signers, but this adds complexity to the security model and
requires secure communication with the trusted third party.

• The disclosure of a secret key used for signing is undesirable because it weakens
the security of signatures made with that key – a signature could be forged by a
holder of the key who is not the owner of it.

For all these reasons, the public-key method for generating and verifying signatures
offers the most convenient solution in most situations.

An exception arises when a secure channel is used to transmit unencrypted
messages but there is a need to verify the authenticity of the messages. Since a secure
channel provides secure communication between a pair of processes, a shared secret key
can be established using the hybrid method outlined in Section 11.3.3 and used to
produce low-cost signatures. These signatures are called message authentication codes

(MACs) to reflect their more limited purpose – they authenticate communication
between pairs of principals based on a shared secret.

A low-cost signing technique based on shared secret keys that has adequate
security for many purposes is illustrated in Figure 11.11 and outlined below. The
method depends upon the existence of a secure channel through which the shared key
can be distributed:

1. A generates a random key K for signing and distributes it using secure channels to
one or more principals who will need to authenticate messages received from A.
The principals are trusted not to disclose the shared key.

Figure 11.11 Low-cost signatures with a shared secret key

M

Signing

Verifying

H(M+K) h

h'H(M+K)

h

h = h'?

K

M

signed doc

M

K

SECTION 11.4 DIGITAL SIGNATURES 497

2. For any document M that A wishes to sign, A concatenates M with K, computes
the digest of the result, h H M K+= , and sends the signed document

M K M h= to anyone wishing to verify the signature. (The digest h is a MAC.)
K will not be compromised by the disclosure of h, since the hash function has
totally obscured its value.

3. The receiver, B, concatenates the secret key K with the received document M and
computes the digest h' H M K+= . The signature is verified if h h'= .

Although this method suffers from the disadvantages listed above, it has a performance
advantage because it involves no encryption. (Secure hashing is typically about 3–10
times faster than symmetric encryption; see Section 11.5.1.) The TLS secure channel
protocol described in Section 11.6.3 supports the use of a wide variety of MACs,
including the scheme described here. The method is also used in the Millicent electronic
cash protocol described at www.cdk5.net/security, where it is important to keep the
processing cost low for low-value transactions.

11.4.3 Secure digest functions

There are many ways to produce a fixed-length bit pattern that characterizes an
arbitrary-length message or document. Perhaps the simplest is to use the XOR operation
iteratively to combine fixed-length pieces of the source document. Such a function is
often used in communication protocols to produce a short fixed-length hash to
characterize a message for error-detection purposes, but it is inadequate as the basis for

498 CHAPTER 11 SECURITY

a digital signature scheme. A secure digest function h = H(M) should have the following
properties:

1. Given M, it is easy to compute h.

2. Given h, it is hard to compute M.

3. Given M, it is hard to find another message M', such that H(M) = H(M').

Such functions are also called one-way hash functions. The reason for this name is self-
evident based on the first two properties. Property 3 demands an additional feature: even
though we know that the result of a hash function cannot be unique (because the digest
is an information-reducing transformation), we need to be sure that an attacker, given a
message M that produces a hash h, cannot discover another message M' that also
produces h. If an attacker could do this, then they could forge a signed document M'

without knowledge of the signing key by copying the signature from the signed
document M and appending it to M'.

Admittedly, the set of messages that hash to the same value is restricted and the
attacker would have difficulty in producing a meaningful forgery, but with patience it
could be done, so it must be guarded against. The feasibility of doing so is considerably
enhanced in the case of a so-called birthday attack:

1. Alice prepares two versions, M and M', of a contract for Bob. M is favourable to
Bob and M' is not.

2. Alice makes several subtly different versions of both M and M' that are visually
indistinguishable from each other by methods such as adding spaces at the ends of
lines. She compares the hashes of all the Ms with all the M's. If she finds two that
are the same, she can proceed to the next step; if not, she goes on producing
visually indistinguishable versions of the two documents until she gets a match.

3. When she has a pair of documents M and M' that hash to the same value, she gives
the favourable document M to Bob for him to sign with a digital signature using
his private key. When he returns it, she substitutes the matching unfavourable
version M', retaining the signature from M.

If our hash values are 64 bits long, we require only 232 versions of M and M' on average.
This is too small for comfort. We need to make our hash values at least 128 bits long to
guard against this type of attack.

The attack relies on a statistical paradox known as the birthday paradox – the
probability of finding a matching pair in a given set is far greater than that for finding a
match for a given individual. Stallings [2005] gives the statistical derivation for the
probability that there will be two people with the same birthday in a set of n people. The
result is that for a set of only 23 people the chances are even, whereas we require a set
of 253 people for an even chance that there will be one with a birthday on a given day.

To satisfy the properties listed above, a secure digest function needs to be
carefully designed. The bit-level operations used and their sequencing are similar to
those found in symmetric cryptography, but in this case the operations need not be
information-preserving, since the function is definitely not intended to be reversible. So
a secure digest function can make use of the full range of arithmetic and bit-wise logical
operations. The length of the source text is usually included in the digested data.

SECTION 11.4 DIGITAL SIGNATURES 499

Two widely used digest functions for practical applications are the MD5
algorithm (so called because it is the fifth in a sequence of message digest algorithms
developed by Ron Rivest) and SHA-1 (the Secure Hash Algorithm), which has been
adopted for standardization by the US National Institute for Standards and Technology
(NIST). Both have been carefully tested and analyzed and can be considered adequately
secure for the foreseeable future, while their implementations are reasonably efficient.
We describe them briefly here. Schneier [1996] and Mitchell et al. [1992] survey digital
signature techniques and message digest functions in depth.

MD5 • The MD5 algorithm [Rivest 1992a] uses four rounds, each applying one of four
nonlinear functions to each of 16 32-bit segments of a 512-bit block of source text. The
result is a 128-bit digest. MD5 is one of the most efficient algorithms currently available.

SHA-1 • SHA-1 [NIST 2002] is an algorithm that produces a 160-bit digest. It is based
on Rivest’s MD4 algorithm (which is similar to MD5), with some additional operations.
It is substantially slower than MD5, but the 160-bit digest does offer greater security
against brute-force and birthday-style attacks. SHA algorithms that deliver longer
digests (224, 256 and 512 bits) are also included in the standard [NIST 2002]. Of course,
their additional length implies additional costs for the generation, storage and
communication of digital signatures and MACs, but following the publication of attacks
on SHA-1’s predecessors, which suggest that SHA-1 is vulnerable [Randall and Szydlo
2004], NIST announced that is to be superseded by the longer SHA digest versions in
US government software by 2010 [NIST 2004].

Using an encryption algorithm to make a digest • It is possible to use a symmetric
encryption algorithm such as those detailed in Section 11.3.1 to produce a secure digest.
In this case, the key should be published so that the digest algorithm can be applied by
anyone wishing to verify a digital signature. The encryption algorithm is used in CBC
mode, and the digest is the result of combining the penultimate CBC value with the final
encrypted block.

11.4.4 Certificate standards and certificate authorities

Figure 11.12 X509 Certificate format

Subject Distinguished Name, Public Key
Issuer Distinguished Name, Signature
Period of validity Not Before Date, Not After Date
Administrative information Version, Serial Number
Extended information

X.509 is the most widely used standard format for certificates [CCITT 1988b]. Although
the X.509 certificate format is a part of the X.500 standard for the construction of global
directories of names and attributes [CCITT 1988a], it is commonly used in
cryptographic work as a format definition for freestanding certificates. We describe the
X.500 naming standard in Chapter 13.

500 CHAPTER 11 SECURITY

The structure and content of an X.509 certificate are illustrated in Figure 11.12.
As can be seen, it binds a public key to a named entity called a subject. The binding is
in the signature, which is issued by another named entity called the issuer. The
certificate has a period of validity, which is defined by a pair of dates. The
<Distinguished Name> entries are intended to be the name of a person, organization or
other entity together with sufficient contextual information to render it unique. In a full
X.500 implementation this contextual information would be drawn from a directory
hierarchy in which the named entity appears, but in the absence of global X.500
implementations it can only be a descriptive string.

This format is included in the TLS protocol for electronic commerce and is widely
used in practice to authenticate the public keys of services and their clients. Certain well-
known companies and organizations have established themselves to act as certificate

authorities (for example, Verisign [www.verisign.com] and CREN [www.cren.net]),
and other companies and individuals can obtain X.509 public-key certificates from them
by submitting satisfactory evidence of their identity. This leads to a two-step verification
procedure for any X.509 certificate:

1. Obtain the public-key certificate of the issuer (a certification authority) from a
reliable source.

2. Validate the signature.

The SPKI approach • The X.509 approach is based on the global uniqueness of
distinguished names. It has been pointed out that this is an impractical goal that does not
reflect the reality of current legal and commercial practice [Ellison 1996], in which the
identities of individuals are not assumed to be unique but are made unique by reference
to other people and organizations. This can be seen in the use of a driving licence or a
letter from a bank to authenticate an individual’s name and address (a name alone is
unlikely to be unique among the world’s population). This leads to longer verification
chains, because there are many possible issuers of public-key certificates, and their
signatures must be validated through a chain of verification that leads back to someone
known and trusted by the principal performing the verification. But the resulting
verification is likely to be more convincing, and many of the steps in such a chain can
be cached to shorten the process on future occasions.

The arguments above are the basis for the recently developed Simple Public-Key
Infrastructure (SPKI) proposals (see RFC 2693 [Ellison et al. 1999]). This is a scheme
for the creation and management of sets of public certificates. It enables chains of
certificates to be processed using logical inference to produce derived certificates. For
example, ‘Bob believes that Alice’s public key is KApub’ and ‘Carol trusts Bob on
Alice’s keys’ implies ‘Carol believes that Alice’s public key is KApub’.

11.5 Cryptography pragmatics

In Section 11.5.1, we compare the performance of the encryption and secure hash
algorithms described or mentioned above. We consider encryption algorithms alongside
secure hash functions because encryption can also be used as a method for digital
signing.

SECTION 11.5 CRYPTOGRAPHY PRAGMATICS 501

In Section 11.5.2, we discuss some non-technical issues surrounding the use of
cryptography. There is not space to do justice to the vast amount of political discussion
that has taken place on this subject since strong cryptographic algorithms first appeared
in the public domain, nor have the debates yet reached many definitive conclusions. Our
aim is merely to give the reader some awareness of this ongoing debate.

11.5.1 Performance of cryptographic algorithms

Figure 11.13 Performance of symmetric encryption and secure digest algorithms

Key size/hash size
(bits)

PRB optimized
90 MHz Pentium 1

(Mbytes/s)

Crypto++
2.1 GHz Pentium 4

(Mbytes/s)

TEA 128 – 23.801
DES 56 2.113 21.340
Triple-DES 112 0.775 9.848
IDEA 128 1.219 18.963
AES 128 – 61.010
AES 192 – 53.145
AES 256 – 48.229
MD5 128 17.025 216.674
SHA-1 160 – 67.977

Figure 11.13 compares the speeds of the symmetric encryption algorithms and secure
digest functions that we have discussed in this chapter. Where available, we give two
speed measurements. In the column labelled PRB optimized we give figures based on
those published by Preneel et al. [1998]. The figures in the column labelled Crypto++

were obtained much more recently by the authors of the Crypto++ open source library
of cryptographic schemes [www.cryptopp.com]. The column headings indicate the
speed of the hardware used for these benchmarks. The PRB implementations were hand-
optimized assembler programs whereas the Crypto++ ones were C++ programs
generated with an optimizing compiler.

The key lengths give an indication of computational cost of a brute-force attack
on the key; the true strength of cryptographic algorithms is much more difficult to
evaluate and rests on reasoning about the success of the algorithm in obscuring the plain
text. Preneel et al. provide a useful discussion on the strength and performance of the
main symmetric algorithms.

What do these performance figures signify for real applications of cryptography,
such as their use in the TLS scheme for secure web interactions (the https protocol,
described in Section 11.6.3)? Web pages are seldom larger than 100 kilobytes, so the
contents of a page can be encrypted using any of the symmetric algorithms in a few
milliseconds, even with a processor that is quite slow by today’s standards. RSA is used
primarily for digital signatures, and that step can also be performed in a few
milliseconds. Thus the impact of algorithm performance on the perceived speed of the
https application is minimal.

502 CHAPTER 11 SECURITY

Asymmetric algorithms such as RSA are seldom used for data encryption, but
their performance for signing is of interest. The Crypto++ library pages indicate that
with the hardware mentioned in the last column of Figure 11.13 it takes about 4.75 ms
using RSA with a 1024-bit key to sign a secure hash (presumably using 160-bit SHA-1)
and about 0.18 ms to verify the signature.

11.5.2 Applications of cryptography and political obstacles

The algorithms described above all emerged during the 1980s and 1990s, when
computer networks were beginning to be used for commercial purposes and it was
becoming evident that their lack of security was a major problem. As we mentioned in
the introduction to this chapter, the emergence of cryptographic software was strongly
resisted by the US government. The resistance had two sources: the US National
Security Agency (NSA), which was thought to have a policy to restrict the strength of
cryptography available to other nations to a level at which the NSA could decrypt any
secret communication for military intelligence purposes; and the US Federal Bureau of
Investigation (FBI) which aimed to ensure that its agents could have privileged access
to the cryptographic keys used by all private organizations and individuals in the US for
law-enforcement purposes.

Cryptographic software was classified as a munition in the United States and was
subject to stringent export restrictions. Other countries, especially allies of the US,
applied similar (or in some cases even more stringent) restrictions. The problem was
compounded by the general ignorance among politicians and the general public as to
what cryptographic software was and its potential non-military applications. US
software companies protested that the restrictions were inhibiting the export of software
such as browsers, and the export restrictions were eventually formulated in a form that
allowed the export of code using keys of no more than 40 bits – hardly strong
cryptography!

The export restrictions may have hindered the growth of electronic commerce, but
they were not particularly effective in preventing the spread of cryptographic expertise
or in keeping cryptographic software out of the hands of users in other countries, since
many programmers inside and outside the US were eager and able to implement and
distribute cryptographic code. The current position is that software that implements
most of the major cryptographic algorithms has been available world-wide for several
years, in print [Schneier 1996] and online, in commercial and freeware versions
[www.rsasecurity.com I, cryptography.org, privacy.nb.ca, www.openssl.org].

An example is the program called PGP (Pretty Good Privacy) [Garfinkel 1994,
Zimmermann 1995], originally developed by Philip Zimmermann and carried forward
by him and others. This is part of a technical and political campaign to ensure that the
availability of cryptographic methods is not controlled by the US government. PGP has
been developed and distributed with the aim of enabling all computer users to enjoy the
level of privacy and integrity afforded by the use of public-key cryptography in their
communications. PGP generates and manages public and secret keys on behalf of a user.
It uses RSA public-key encryption for authentication and to transmit secret keys to the
intended communication partner, and it uses the IDEA or 3DES secret-key encryption
algorithms to encrypt mail messages and other documents. (At the time PGP was first
developed, use of the DES algorithm was controlled by the US government.) PGP is

SECTION 11.6 CASE STUDIES: NEEDHAM–SCHROEDER, KERBEROS, TLS, 802.11 WIFI 503

widely available in both free and commercial versions. It is distributed via separate
distribution sites for North American users [www.pgp.com] and those in other parts of
the world [International PGP] to circumvent (perfectly legally) the US export
regulations.

The US government eventually recognized the futility of the NSA’s position and
the harm that it was causing to the US computer industry (which was unable to market
secure versions of web browsers, distributed operating systems and many other products
world-wide). In January 2000 the US government introduced a new policy
[www.bxa.doc.gov] intended to allow US software vendors to export software that
incorporates strong encryption. But a legal bar was retained on delivery to certain
countries and end-users, see www.rsa.com for further information. Of course, the US
does not have a monopoly on the production or the publication of cryptographic
software; open source implementations are available for all the well-known algorithms
[www.cryptopp.com]. The effect of the regulations is simply to hamper the marketing
of some US-produced commercial software products.

Other political initiatives have aimed to maintain control over the use of
cryptography by introducing legislation insisting on the inclusion of loopholes or trap
doors available only to government law-enforcement and security agencies. Such
proposals spring from the perception that secret communication channels can be very
useful to criminals of all sorts. Before the advent of digital cryptography, governments
always had the means to intercept and analyze communications between members of the
public. Strong digital cryptography radically alters that situation. But these proposals to
legislate to prevent the use of strong, uncompromized cryptography have been strongly
resisted by citizens and civil liberties bodies, who are concerned about their impact on
citizens’ privacy rights. So far, none of these legislative proposals has been adopted, but
political efforts are continuing and the eventual introduction of a legal framework for
the use of cryptography may be inevitable.

11.6 Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi

The authentication protocols originally published by Needham and Schroeder [1978] are
at the heart of many security techniques. We present them in detail in Section 11.6.1.
One of the most important applications of their secret-key authentication protocol is the
Kerberos system [Neuman and Ts’o 1994], which is the subject of our second case study
(Section 11.6.2). Kerberos was designed to provide authentication between clients and
servers in networks that form a single management domain (intranets).

Our third case study (Section 11.6.3) deals with the Transport Layer Security
(TLS) protocol. This was designed specifically to meet the need for secure electronic
transactions. It is now supported by most web browsers and servers and is employed in
most of the commercial transactions that take place via the Web.

Our final case study (Section 11.6.4) illustrates the difficulty of engineering
secure systems. The IEEE 802.11 WiFi standard was published in 1999 with a security
specification included. But subsequent analysis and attacks have shown the
specification to be severely inadequate. We identify the weaknesses and relate them to
the cryptographic principles covered in this chapter.

504 CHAPTER 11 SECURITY

11.6.1 The Needham–Schroeder authentication protocol

The protocols described here were developed in response to the need for a secure means
to manage keys (and passwords) in a network. At the time the work was published
[Needham and Schroeder 1978], network file services were just emerging and there was
an urgent need for better ways to manage security in local networks.

In networks that are integrated for management purposes, this need can be met by
a secure key service that issues session keys in the form of challenges (see Section
11.2.2). That is the purpose of the secret-key protocol developed by Needham and
Schroeder. In the same paper, Needham and Schroeder also set out a protocol based on
the use of public keys for authentication and key distribution that does not depend upon
the existence of secure key servers and is hence more suitable for use in networks with
many independent management domains, such as the Internet. We do not describe the
public-key version here, but the TLS protocol described in Section 11.6.3 is a variation
of it.

Needham and Schroeder proposed a solution to authentication and key
distribution based on an authentication server that supplies secret keys to clients. The
job of the authentication server is to provide a secure way for pairs of processes to obtain
shared keys. To do this, it must communicate with its clients using encrypted messages.

Needham and Schroeder with secret keys • In their model, a process acting on behalf of
a principal A that wishes to initiate secure communication with another process acting
on behalf of a principal B can obtain a key for this purpose. The protocol is described
for two arbitrary processes A and B, but in client-server systems, A is likely to be a client
initiating a sequence of requests to some server B. The key is supplied to A in two forms:
one that A can use to encrypt the messages that it sends to B and one that it can transmit
securely to B. (The latter is encrypted in a key that is known to B but not to A, so that B
can decrypt it and the key is not compromised during transmission.)

The authentication server S maintains a table containing a name and a secret key
for each principal known to the system. The secret key is used only to authenticate client
processes to the authentication server and to transmit messages securely between client
processes and the authentication server. It is never disclosed to third parties and it is
transmitted across the network at most once, when it is generated. (Ideally, a key should
always be transmitted by some other means, such as on paper or in a verbal message,
avoiding any exposure on the network.) A secret key is the equivalent of the password
used to authenticate users in centralized systems. For human principals, the name held
by the authentication service is their username and the secret key is their password. Both
are supplied by the user on request to client processes acting on the user’s behalf.

The protocol is based on the generation and transmission of tickets by the
authentication server. A ticket is an encrypted message containing a secret key for use
in communication between A and B. We tabulate the messages in the Needham and
Schroeder secret-key protocol in Figure 11.14. The authentication server is S.

NA and NB are nonces. A nonce is an integer value that is added to a message to
demonstrate its freshness. Nonces are used only once and are generated on demand. For
example, the nonces may be generated as a sequence of integer values or by reading the
clock at the sending machine.

If the protocol is successfully completed, both A and B can be sure that any
message encrypted in KAB that they receive comes from the other, and that any message

Figure 11.14 The Needham–Schroeder secret-key authentication protocol

Header Message Notes

1. A S: A, B, NA A requests S to supply a key for communication
with B.

2. S A: {NA, B, KAB,

{KAB, A}KB}KA

S returns a message encrypted in A’s secret key,
containing a newly generated key KAB, and a
‘ticket’ encrypted in B’s secret key. The nonce NA

demonstrates that the message was sent in response
to the preceding one. A believes that S sent the
message because only S knows A’s secret key.

3. A B: {KAB, A}KB A sends the ticket to B.

4. B A: {NB}KAB B decrypts the ticket and uses the new key, KAB, to
encrypt another nonce, NB.

5. A B: {NB – 1}KAB A demonstrates to B that it was the sender of the
previous message by returning an agreed
transformation of NB.

SECTION 11.6 CASE STUDIES: NEEDHAM–SCHROEDER, KERBEROS, TLS, 802.11 WIFI 505

encrypted in KAB that they send can be understood only by the other or by S (and S is
assumed to be trustworthy). This is so because the only messages that have been sent
containing KAB were encrypted in A’s secret key or B’s secret key.

There is a weakness in this protocol in that B has no reason to believe that message
3 is fresh. An intruder who manages to obtain the key KAB and make a copy of the ticket
and authenticator {KAB, A}KB

 (both of which might have been left in an exposed storage
location by a careless or a failed client program running under A’s authority) can use
them to initiate a subsequent exchange with B, impersonating A. For this attack to occur
an old value of KAB has to be compromised; in today’s terminology, Needham and
Schroeder did not include this possibility on their threat list, and the consensus of
opinion is that one should do so. The weakness can be remedied by adding a nonce or
timestamp to message 3, so that it becomes: {KAB, A,t}KBpub. B decrypts this message
and checks that t is recent. This is the solution adopted in Kerberos.

11.6.2 Kerberos

Kerberos was developed at MIT in the 1980s [Steiner et al. 1988] to provide a range of
authentication and security facilities for use in the campus computing network at MIT
and other intranets. It has undergone several revisions and enhancements in the light of
experience and feedback from user organizations. Kerberos version 5 [Neuman and Ts’o
1994], which we describe here, is an Internet standard (see RFC 4120 [Neuman et al.

2005]) and is used by many companies and organizations. Source code for an
implementation of Kerberos is available from MIT [web.mit.edu I]; it is included in the
OSF Distributed Computing Environment (DCE) [OSF 1997] and as the default
authentication service in Microsoft Windows [www.microsoft.com II]. An extension

506 CHAPTER 11 SECURITY

was included to incorporate the use of public-key certificates for the initial
authentication of principals (Step A in Figure 11.15) [Neuman et al. 1999].

Figure 11.15

Figure 11.15 System architecture of Kerberos

ServerClient

DoOperation

•
•
•

Authentication
database

Login
session setup

Ticket-
granting

 service T

Kerberos Key Distribution Centre

Server
session setup

Authen-
tication

service A
1. Request for

TGS ticket

2. TGS
ticket

3. Request for
server ticket

4. Server ticket
5. Service

request

Request encrypted with session key

Reply encrypted with session key

Service
function

Step B

Step A

Step C

C S

 shows the process architecture. Kerberos deals with three kinds of
security object:

Ticket: A token issued to a client by the Kerberos ticket-granting service for
presentation to a particular server, verifying that the sender has recently been
authenticated by Kerberos. Tickets include an expiry time and a newly generated
session key for use by the client and the server.

Authenticator: A token constructed by a client and sent to a server to prove the
identity of the user and the currency of any communication with a server. An
authenticator can be used only once. It contains the client’s name and a timestamp
and is encrypted in the appropriate session key.

Session key: A secret key randomly generated by Kerberos and issued to a client for
use when communicating with a particular server. Encryption is not mandatory for
all communication with servers; the session key is used for encrypting
communication with those servers that demand it and for encrypting all
authenticators (see above).

Client processes must possess a ticket and a session key for each server that they use. It
would be impractical to supply a new ticket and key for each client-server interaction,
so most tickets are granted to clients with a lifetime of several hours so that they can be
used for interaction with a particular server until they expire.

A Kerberos server is known as a Key Distribution Centre (KDC). Each KDC
offers an Authentication Service (AS) and a Ticket-Granting Service (TGS). On login,

SECTION 11.6 CASE STUDIES: NEEDHAM–SCHROEDER, KERBEROS, TLS, 802.11 WIFI 507

users are authenticated by the AS, using a network-secure variation of the password
method, and the client process acting on behalf of the user is supplied with a ticket-

granting ticket and a session key for communicating with the TGS. Subsequently, the
original client process and its descendants can use the ticket-granting ticket to obtain
tickets and session keys for specific services from the TGS.

The Needham and Schroeder [1978] protocol is followed quite closely in
Kerberos, with time values (integers representing a date and time) used as nonces. This
serves two purposes:

• to guard against replay of old messages intercepted in the network or the reuse of
old tickets found lying in the memory of machines from which the authorized user
has logged out (nonces were used to achieve this purpose in Needham and
Schroeder);

• to apply a lifetime to tickets, enabling the system to revoke users’ rights when, for
example, they cease to be authorized users of the system.

Below we describe the Kerberos protocols in detail, using the notation defined at the
bottom of the page. First, we describe the protocol by which the client obtains a ticket
and a session key for access to the TGS.

A Kerberos ticket has a fixed period of validity starting at time t1 and ending at
time t2. A ticket for a client C to access a server S takes the form:

Notation:

A Name of Kerberos authentication service.
T Name of Kerberos ticket-granting service.
C Name of client.

n A nonce.
t A timestamp.
t1 Starting time for validity of ticket.
t2 Ending time for validity of ticket.

C S t1 t2 KCS KS

, which we denote as ticket C S KS

The client’s name is included in the ticket to avoid possible use by impostors, as we shall
see later. The step and message numbers in Figure 11.15 correspond to those in tabulated
description A. Note that message 1 is not encrypted and does not include C’s password.
It contains a nonce that is used to check the validity of the reply.

A. Obtain Kerberos session key and TGS ticket, once per login session

Header Message Notes

1. C A:
Request for
TGS ticket

C, T, n Client C requests the Kerberos
authentication server A to supply a
ticket for communication with the
ticket-granting service T.

2. A C:
TGS session
key and
ticket

{KCT, n}
KC

, {ticket(C,T)}
KT

containing

C, T, t1, t2, KCT

A returns a message containing a
ticket encrypted in its secret key
and a session key for C to use with
T. The inclusion of the nonce n
encrypted in KC shows that the
message comes from the recipient
of message 1, who must know KC.

508 CHAPTER 11 SECURITY

Message 2 is sometimes called a ‘challenge’ because it presents the requester with
information that is only useful if it knows C’s secret key, KC. An impostor who attempts
to impersonate C by sending message 1 can get no further, since they cannot decrypt
message 2. For principals that are users, KC is a scrambled version of the user’s
password. The client process will prompt the user to type their password and will
attempt to decrypt message 2 with it. If the user gives the right password, the client
process obtains the session key KCT and a valid ticket for the ticket-granting service; if
not, it obtains gibberish. Servers have secret keys of their own, known only to the
relevant server process and to the authentication server.

When a valid ticket has been obtained from the authentication service, the client
C can use it to communicate with the ticket-granting service to obtain tickets for other
servers any number of times until the ticket expires. Thus to obtain a ticket for any server
S, C constructs an authenticator encrypted in KCT of the form:

{C, t}
KCT

, which we denote as {auth(C)}
KCT

, and sends a request to T:

B. Obtain ticket for a server S, once per client-server session

3. C T:
Request
ticket for
service S

{auth(C)}
KCT

,

{ticket(C,T)}
KT

, S, n

C requests the ticket-granting
server T to supply a ticket for
communication with another
server, S.

4. T C:
Service
ticket

{KCS, n}
KCT

, {ticket(C,S)}
KS

T checks the ticket. If it is valid T
generates a new random session
key, KCS, and returns it with a
ticket for S (encrypted in the
server’s secret key, KS).

C is then ready to issue request messages to the server, S:

C. Issue a server request with a ticket

5. C S:
Service
request

{auth(C)}KCS
, {ticket(C,S)}

KS
,

request, n

C sends the ticket to S with a
newly generated authenticator for
C and a request. The request
would be encrypted in KCS if
secrecy of the data is required.

For the client to be sure of the server’s authenticity, S should return the nonce n to C (to
reduce the number of messages required, this could be included in the messages that
contain the server’s reply to the request):

D. Authenticate server (optional)

6. S C:
Server auth-
entication

{n}KCS
(Optional): S sends the nonce to C,

encrypted in KCS.

SECTION 11.6 CASE STUDIES: NEEDHAM–SCHROEDER, KERBEROS, TLS, 802.11 WIFI 509

Application of Kerberos • Kerberos was developed for use in Project Athena at MIT – a
campus-wide networked computing facility for undergraduate education with many
workstations and servers providing a service to more than 5000 users. The environment
is such that neither the trustworthiness of clients nor the security of the network and the
machines that offer network services can be assumed – for example, workstations are
not protected against the installation of user-developed system software, and server
machines (other than the Kerberos server) are not necessarily secured against physical
interference with their software configuration.

Kerberos provides virtually all of the security in the Athena system. It is used to
authenticate users and other principals. Most of the servers running on the network have
been extended to require a ticket from each client at the start of every client-server
interaction. These include file storage (NFS and Andrew File System), electronic mail,
remote login and printing. Users’ passwords are known only to the user and to the
Kerberos authentication service. Services have secret keys that are known only to
Kerberos and the servers that provide the service.

We describe here the way in which Kerberos is applied to the authentication of
users on login. Its use to secure the NFS file service is described in Chapter 12.

Login with Kerberos • When a user logs into a workstation, the login program sends the
user’s name to the Kerberos authentication service. If the user is known to the
authentication service, it replies with a session key, a nonce encrypted in the user’s
password and a ticket for the TGS. The login program then attempts to decrypt the
session key and the nonce using the password that the user typed in response to the
password prompt. If the password is correct, the login program obtains the session key
and the nonce. It checks the nonce and stores the session key with the ticket for
subsequent use when communicating with the TGS. At this point, the login program can
erase the user’s password from its memory, since the ticket now serves to authenticate
the user. A login session is then started for the user on the workstation. Note that the
user’s password is never exposed to eavesdropping on the network – it is retained in the
workstation and is erased from memory soon after it is entered.

Accessing servers with Kerberos • Whenever a program running on a workstation needs
to access a new service, it requests a ticket for the service from the ticket-granting serv-
ice. For example, when a UNIX user wishes to log into a remote computer, the rlogin

command program on the user’s workstation obtains a ticket from the Kerberos ticket-
granting service for access to the rlogind network service. The rlogin command program
sends the ticket, together with a new authenticator, in a request to the rlogind process on
the computer where the user wishes to log in. The rlogind program decrypts the ticket
with the rlogin service’s secret key and checks the validity of the ticket (that is, that the
ticket’s lifetime has not expired). Server machines must take care to store their secret
keys in storage that is inaccessible to intruders.

The rlogind program then uses the session key included in the ticket to decrypt the
authenticator and checks that the authenticator is fresh (authenticators can be used only
once). Once the rlogind program is satisfied that the ticket and authenticator are valid,
there is no need for it to check the user’s name and password, because the user’s identity
is known to the rlogind program and a login session is established for that user on the
remote machine.

510 CHAPTER 11 SECURITY

Implementation of Kerberos • Kerberos is implemented as a server that runs on a secure
machine. A set of libraries is provided for use by client applications and services. The
DES encryption algorithm is used, but this is implemented as a separate module that can
be easily replaced.

The Kerberos service is scalable – the world is divided into separate domains of
authentication authority, called realms, each with its own Kerberos server. Most
principals are registered in just one realm, but the Kerberos ticket-granting servers are
registered in all of the realms. Principals can authenticate themselves to servers in other
realms through their local ticket-granting server.

Within a single realm, there can be several authentication servers, all of which
have copies of the same authentication database. The authentication database is
replicated by a simple master–slave technique. Updates are applied to the master copy
by a single Kerberos Database Management service (KDBM) that runs only on the
master machine. The KDBM handles requests from users to change their passwords and
requests from system administrators to add or delete principals and to change their
passwords.

To make this scheme transparent to users, the lifetime of TGS tickets ought to be
as long as the longest possible login session, since the use of an expired ticket will result
in the rejection of service requests; the only remedy is for the user to reauthenticate the
login session and then request new server tickets for all of the services in use. In practice,
ticket lifetimes in the region of 12 hours are used.

Critiques of Kerberos • The protocol for Kerberos version 5 described above contains
several improvements designed to deal with criticisms of earlier versions [Bellovin and
Merritt 1990, Burrows et al. 1990]. The most important criticism of version 4 was that
the nonces used in authenticators were implemented as timestamps, and protection
against the replay of authenticators depended upon at least loose synchronization of
clients’ and servers’ clocks. Furthermore, if a synchronization protocol is used to bring
client and server clocks into loose synchrony, the synchronization protocol must itself
be secure against security attacks. See Chapter 14 for information on clock
synchronization protocols.

The protocol definition for version 5 allows the nonces in authenticators to be
implemented as timestamps or as sequence numbers. In both cases, it requires that they
be unique and that servers hold a list of recently received nonces from each client to
check that they are not replayed. This is an inconvenient implementation requirement
and is difficult for servers to guarantee in case of failures. Kehne et al. [1992] have
published a proposed improvement to the Kerberos protocol that does not rely on
synchronized clocks.

The security of Kerberos depends on limited session lifetimes. The period of
validity of TGS tickets is generally limited to a few hours; the period must be chosen to
be long enough to avoid inconvenient interruptions of service but short enough to ensure
that users who have been deregistered or downgraded do not continue to use the
resources for more than a short period. This might cause difficulties in some commercial
environments, because the consequent requirement for the user to supply a new set of
authentication details at an arbitrary point in the interaction might intrude on the
application.

SECTION 11.6 CASE STUDIES: NEEDHAM–SCHROEDER, KERBEROS, TLS, 802.11 WIFI 511

11.6.3 Securing electronic transactions with secure sockets

The Secure Sockets Layer (SSL) protocol was originally developed by the Netscape
Corporation [www.mozilla.org] and proposed as a standard specifically to meet the
needs described below. An extended version of SSL has been adopted as an Internet
standard under the name Transport Layer Security (TLS), described in RFC 2246
[Dierks and Allen 1999]. TLS is supported by most browsers and is widely used in
Internet commerce. We explore its main features below:

Figure 11.16 TLS protocol stack
(Figures 11.16 to 11.19 are based on diagrams in Hirsch [1997] and are used with Frederick Hirsch’s permission)

TLS
Handshake
Protocol

TLS Change
Cipher Spec

TLS Alert
Protocol

Transport layer (usually TCP)

Network layer (usually IP)

TLS Record Protocol

• • • • •HTTP Telnet

TLS protocols: Other protocols:

Negotiable encryption and authentication algorithms • In an open network we should
not assume that all parties use the same client software or that all client and server
software includes a particular encryption algorithm. In fact, the laws of some countries
attempt to restrict the use of certain encryption algorithms to those countries alone. TLS
has been designed so that the algorithms used for encryption and authentication are
negotiated between the processes at the two ends of the connection during the initial
handshake. It may turn out that they do not have sufficient algorithms in common, and
in that case the connection attempt will fail.

Bootstrapped secure communication • To meet the need for secure communication
without previous negotiation or help from third parties, the secure channel is established
using a protocol similar to the hybrid scheme mentioned in Section 11.3.3. Unencrypted
communication is used for the initial exchanges, then public-key cryptography and
finally secret-key cryptography once a shared secret key has been established. Each
switch is optional and preceded by a negotiation.

Thus the secure channel is fully configurable, allowing communication in each
direction to be encrypted and authenticated but not requiring it, so that computing
resources need not be consumed in performing unnecessary encryption.

The details of the TLS protocol are published and standardized, and several
software libraries and toolkits are available to support it [Hirsch 1997,
www.openssl.org], some of them in the public domain. It has been incorporated in a
wide range of application software, and its security has been verified by independent
review.

512 CHAPTER 11 SECURITY

TLS consists of two layers (Figure 11.16): TLS Record Protocol layer, which
implements a secure channel, encrypting and authenticating messages transmitted
through any connection-oriented protocol; and a handshake layer, containing the TLS
handshake protocol and two other related protocols that establish and maintain a TLS
session (that is, a secure channel) between a client and a server. Both are usually
implemented by software libraries at the application level in the client and the server.
The TLS record protocol is a session-level layer; it can be used to transport application-
level data transparently between a pair of processes while guaranteeing its secrecy,
integrity and authenticity. These are exactly the properties we specified for secure
channels in our security model (Section 2.4.3), but in TLS there are options for the
communicating partners to choose whether or not to deploy decryption and
authentication of messages in each direction. Each secure session is given an identifier,
and each partner can store session identifiers in a cache for subsequent reuse, avoiding
the overhead of establishing a new session when another secure session with the same
partner is required.

TLS is widely used to add a secure communication layer below existing
application-level protocols. It is probably most widely used to secure HTTP interactions
for use in Internet commerce and other security-sensitive applications. It is implemented
by virtually all web browsers and web servers: the use of the protocol prefix https: in
URLs initiates the establishment of a TLS secure channel between a browser and a web
server. It has also been widely deployed to provide secure implementations of Telnet,
FTP and many other application protocols. TLS is the de facto standard for use in
applications requiring secure channels; there is a wide choice of available
implementations, both commercial and public-domain, with APIs for CORBA and Java.

The TLS handshake protocol is illustrated in Figure 11.17. The handshake is
performed over an existing connection. It begins in the clear and it establishes a TLS
session by exchanging the agreed options and parameters needed to perform encryption
and authentication. The handshake sequence varies depending on whether client and
server authentication are required. The handshake protocol may also be invoked at a
later time to change the specification of a secure channel – for example, communication
may begin with message authentication using message authentication codes only, and at
a later point, encryption may be added. This is achieved by performing the handshake
protocol again to negotiate a new cipher specification using the existing channel.

The TLS initial handshake is potentially vulnerable to man-in-the-middle attacks,
as described in Section 11.2.2, Scenario 3. To protect against them, the public key used
to verify the first certificate received may be delivered by a separate channel – for
example, browsers and other Internet software delivered on a CD-ROM may include a
set of public keys for some well-known certificate authorities. Another defence for the
clients of well-known services is based on the inclusion of the service’s domain name in
its public-key certificates – clients should only deal with the service at the IP address
corresponding to that domain name.

TLS supports a variety of options for the cryptographic functions to be used.
These are collectively known as a cipher suite. A cipher suite includes a single choice
for each of the features shown in Figure 11.18.

A variety of popular cipher suites are preloaded, with standard identifiers in the
client and the server. During the handshake, the server offers the client a list of the cipher
suite identifiers that it has available, and the client responds by selecting one of them (or

Figure 11.17 TLS handshake protocol

Client Server

ClientHello

ServerHello

Certificate

Certificate Request

ServerHelloDone

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Establish protocol version, session
ID, cipher suite, compression
method, exchange random values

Optionally send server certificate
and request client certificate

Send client certificate response if
requested

Change cipher suite and finish
handshake

Figure 11.18 TLS handshake configuration options

Component Description Example

Key exchange
method

The method to be used for
exchange of a session key

RSA with public-key
certificates

Cipher for data
transfer

The block or stream cipher to be
used for data

IDEA

Message digest
function

For creating message
authentication codes (MACs)

SHA-1

SECTION 11.6 CASE STUDIES: NEEDHAM–SCHROEDER, KERBEROS, TLS, 802.11 WIFI 513

giving an error indication if it has none that match). At this stage they also agree on a
(optional) compression method and a random start value for CBC block encryption
functions (see Section 11.3).

Next, the partners optionally authenticate each other by exchanging signed public-
key certificates in X.509 format. These certificates may be obtained from a public-key
authority or they may simply be generated temporarily for the purpose. In any case, at
least one public key must be available for use in the next stage of the handshake.

One partner then generates a pre-master secret and sends it to the other partner
encrypted with the public key. A pre-master secret is a large random value that is used
by both partners to generate the two session keys (called write keys) for encrypting data

514 CHAPTER 11 SECURITY

in each direction and the message authentication secrets to be used for message
authentication. When all this has been done, a secure session begins. This is triggered
by the ChangeCipherSpec messages exchanged between the partners. These are
followed by Finished messages. Once the Finished messages have been exchanged, all
further communication is encrypted and signed according to the chosen cipher suite with
the agreed keys.

Figure 11.19

abcdefghi

abc def ghi

Figure 11.19 TLS record protocol

Application data

Record protocol units

Compressed units

MAC

Encrypted

TCP packet

Fragment/combine

Compress

Hash

Encrypt

Transmit

 shows the operation of the record protocol. A message for
transmission is first fragmented into blocks of a manageable size, then the blocks are
optionally compressed. Compression is not strictly a feature of secure communication,
but it is provided here because a compression algorithm can usefully share some of the
work of processing the bulk data with the encryption and digital signature algorithms.
In other words, a pipeline of data transformations can be set up within the TLS record
layer that will perform all of the transformations required more efficiently than could be
done independently.

The encryption and message authentication (MAC) transformations deploy the
algorithms specified in the agreed cipher suite exactly as described in Sections 11.3.1
and 11.4.2. Finally, the signed and encrypted block is transmitted to the partner through
the associated TCP connection, where the transformations are reversed to produce the
original data block.

Summary • TLS provides a practical implementation of a hybrid encryption scheme
with authentication and key exchange based on public keys. Because the ciphers are
negotiated in the handshake, it does not depend upon the availability of any particular
algorithms. Nor does it depend upon any secure services at the time of session

SECTION 11.6 CASE STUDIES: NEEDHAM–SCHROEDER, KERBEROS, TLS, 802.11 WIFI 515

establishment. The only requirement is that the public-key certificates are issued by an
authority recognized by both parties.

Because the SSL basis for TLS and its reference implementation were published
[www.mozilla.org], it was the subject of review and debate. Some amendments were
made to the early designs, and it was widely endorsed as a valuable standard. TLS is now
integrated in most web browsers and web servers and is used in other applications such
as secure Telnet and FTP. Commercial and public-domain [www.rsasecurity.com I,
Hirsch 1997, www.openssl.org] implementations are widely available in the form of
libraries and browser plug-ins.

11.6.4 Weaknesses in the original IEEE 802.11 WiFi security design

The IEEE 802.11 standard for wireless LANs described in Section 3.5.2 was first
released in 1999 [IEEE 1999]. It was implemented in base stations, laptops and portable
devices from a similar date and widely used for mobile communication. Unfortunately,
the security design in the standard was subsequently found to be severely inadequate in
several respects. We outline that initial design and its weaknesses as a case study in the
difficulties of security design already referred to in Section 11.1.3.

It was recognized that wireless networks are by their nature more exposed to
attack than wired networks because the network and the transmitted data are available
for eavesdropping and masquerading by any device equipped with a transmitter/receiver
within range. The initial 802.11 design therefore aimed to provide access control for
WiFi networks and privacy and integrity for the data transmitted on them through a
security specification entitled Wired Equivalent Privacy (WEP), which embodies the
following measures, that can optionally be activated by a network administrator:

Access control by a challenge-response protocol (cf. Kerberos, Section 11.6.2), in
which a joining node is challenged by the base station to demonstrate that it has the
correct shared key. A single key, K, is assigned by a network administrator and
shared between the base station and all authorized devices.

Privacy and integrity using an optional encryption mechanism based on the RC4
stream cipher. The same key, K, used for access control is also used in encryption.
There are key length options of 40, 64 or 128 bits. An encrypted checksum is
included in each packet to protect its integrity.

The following deficiencies and design weaknesses were discovered soon after the
standard was deployed:

The sharing of a single key by all users of a network renders the design weak in
practice, since:

– The key is liable to be transmitted to new users on unprotected channels.

– A single careless or malicious user (such as a disgruntled former employee)
who has gained access to the key can compromise the security of the entire
network, and this can go undiscovered.

Solution: Use a public-key-based protocol for negotiating individual keys, as is
done in TLS/SSL (see Section 11.6.3).

516 CHAPTER 11 SECURITY

Base stations are never authenticated, so an attacker who knows the current shared
key could introduce a spoof base station and eavesdrop on, insert or tamper with any
traffic.

Solution: Base stations should supply a certificate that can be authenticated by
the use of a public key obtained from a third party.

Figure 11.20 Use of RC4 stream cipher in IEEE 802.11 WEP

K

Encryption

IV: initial value
K: shared key

IV

plaintext

RC4

Decryption

Increment

XOR

keystream

cipher text IV

K

IV

RC4

XORcipher text IV plaintext

Inappropriate use of a stream cipher rather than a block cipher (see descriptions of
block and stream ciphers in Section 11.3). Figure 11.20 shows the process of
encryption and decyption in 802.11 WEP security. Each packet is encrypted by
XOR-ing its content with a keystream produced by the RC4 algorithm. The receiving
station uses RC4 to generate the same keystream and decrypts the packet with
another XOR. To avoid keystream synchronization errors when packets are lost or
corrupted, RC4 is restarted with a start value consisting of a 24-bit initial value

concatenated with the globally shared key. The initial value is updated and included
(in the clear) in each packet transmitted. The shared key cannot easily be changed in
normal use, so the starting value has only s = 224 (or about 107) different states,
resulting in the repetition of the start value and hence the keystream, after 107 packets
are sent. In practice this can occur within a few hours, and even shorter repetition
cycles can arise if packets are lost. An attacker receiving the encrypted packets can
always detect repetitions since the initial value is sent in the clear.

The RC4 specification explicitly warns against keystream repetition. This is
because an attacker who receives an encrypted packet Ci and knows the plain text Pi
(for example, by guessing that it is a standard enquiry to a server) can calculate the
keystream Ki used to encrypt the packet. The same value of Ki will recur after s

packets are transmitted, and the attacker can use it to decrypt the newly transmitted

SECTION 11.6 CASE STUDIES: NEEDHAM–SCHROEDER, KERBEROS, TLS, 802.11 WIFI 517

packet. The attacker may eventually succeed in decrypting a high proportion of
packets in this manner by guessing plaintext packets correctly. This weakness was
first pointed out by Borisov et al. [2001] and led to a major reappraisal of WEP
security and its replacement in later versions of 802.11.

Solution: Negotiate a new key after a time less than the worst case for repetition.
An explicit termination code would be needed, as is the case in TLS.

Key lengths of 40 bits and 64 bits were included in the standard to enable products to
be shipped abroad by US suppliers at a time when the US government regulations
referred to in Section 11.5.2 restricted key lengths for exported devices to 40 bits (and
subsequently 64 bits). But 40-bit keys are so easily cracked by brute force that they
offer very little security, and even 64-bit keys are potentially crackable with a
determined attack.

Solution: Use 128-bit keys only. This has been adopted in many recent WiFi
products.

The RC4 stream cipher was shown, after publication of the 802.11 standard, to have
weaknesses that enabled the key to be discovered after observation of a substantial
quantity of traffic even without repetition of the keystream [Fluhrer et al. 2001]. This
weakness was demonstrated in practice. It rendered the WEP scheme insecure even
with 128-bit keys and led some companies to ban the use of WiFi networks by their
employees.

Solution: Provide for the negotiation of cipher specifications as is done in TLS,
giving a choice of encryption algorithms. RC4 is hard-wired into the WEP
standard, with no provision for the negotiation of encryption algorithms.

Users often didn’t deploy the protection offered by the WEP scheme, probably
because they didn’t realize just how exposed their data was. This was not a weakness
in the design of the standard but in the marketing of products based on it. Most were
designed to start up with security disabled and their documentation of the security
risks was often weak.

Solution: Better default settings and documentation can help. Users want to
obtain optimum performance, though, and communication was perceptibly slower
with encryption enabled using the hardware available at the time. Attempts to
avoid the use of WEP encryption led to the addition to base stations of features for
the suppression of the identifying packets normally broadcast by base stations and
the rejection of packets not sent from an authorized MAC address (see Section
3.5.1). Neither of these offered much security, since a network can be discovered
by intercepting (‘sniffing’) packets in transmission and MAC addresses can be
spoofed by operating system modifications.

IEEE set up a dedicated task group to create a replacement security solution and their
work led to a completely new security protocol known as Wi-Fi Protected Access
(WPA). This was specified in the IEEE 802.11i draft [IEEE 2004b, Edney and Arbaugh
2003], and started to appear in products in mid-2003. IEEE 802.11i (also known as
WPA2) itself was ratified in June 2004, and uses AES encryption, instead of RC4, which
was used in WEP. Subsequent developments of IEEE 802.11 also incorporate WPA2.

518 CHAPTER 11 SECURITY

11.7 Summary

Threats to the security of distributed systems are pervasive. It is essential to protect the
communication channels and the interfaces of any system that handles information that
could be the subject of attacks. Personal mail, electronic commerce and other financial
transactions are all examples of such information. Security protocols are carefully
designed to guard against loopholes. The design of secure systems starts from a list of
threats and a set of ‘worst case’ assumptions.

Security mechanisms are based on public-key and secret-key cryptography.
Cryptographic algorithms scramble messages in a manner that cannot be reversed
without knowledge of the decryption key. Secret-key cryptography is symmetric – the
same key serves for both encryption and decryption. If two parties share a secret key,
they can exchange encrypted information without risk of eavesdropping or tampering
and with guarantees of authenticity.

Public-key cryptography is asymmetric – separate keys are used for encryption
and decryption, and knowledge of one does not reveal the other. One key is made public,
enabling anyone to send secure messages to the holder of the corresponding private key
and allowing the holder of the private key to sign messages and certificates. Certificates
can act as credentials for the use of protected resources.

Resources are protected by access-control mechanisms. Access-control schemes
assign rights to principals (that is, the holders of credentials) to perform operations on
distributed objects and collections of objects. Rights may be held in access control lists
(ACLs) associated with collections of objects or they may be held by principals in the
form of capabilities – unforgeable keys for access to collections of resources.
Capabilities are convenient for the delegation of access rights but are hard to revoke.
Changes to ACLs take effect immediately, revoking the previous access rights, but they
are more complex and costly to manage than capabilities.

Until recently, the DES encryption algorithm was the most widely used symmetric
encryption scheme, but its 56-bit keys are no longer safe against brute-force attacks. The
triple version of DES gives 112-bit key strength, which is safe, but other modern
algorithms (such as IDEA and AES) are much faster and provide greater strength.

RSA is the most widely used asymmetric encryption scheme. For safety against
factoring attacks, it should be used with 768-bit keys or greater. Public-key
(asymmetric) algorithms are outperformed by secret-key (symmetric) algorithms by
several orders of magnitude, so they are generally used only in hybrid protocols such as
TLS, for the establishment of secure channels that use shared keys for subsequent
exchanges.

The Needham–Schroeder authentication protocol was the first general-purpose,
practical security protocol, and it still provides the basis for many practical systems.
Kerberos is a well-designed scheme for the authentication of users and the protection of
services within a single organization. Kerberos is based on Needham–Schroeder and
symmetric cryptography. TLS is the security protocol designed for and used widely in
electronic commerce. It is a flexible protocol for the establishment and use of secure
channels based on both symmetric and asymmetric cryptography. The weaknesses of
IEEE 802.11 WiFi security provide an object lesson in the difficulties of security design.

EXERCISES 519

EXERCISES

11.1 Describe some of the physical security policies in your organization. Express them in
terms that could be implemented in a computerized door locking system. page 464

11.2 Describe some of the ways in which conventional email is vulnerable to eavesdropping,
masquerading, tampering, replay and denial of service attacks. Suggest methods by
which email could be protected against each of these forms of attack. page 466

11.3 Initial exchanges of public keys are vulnerable to man-in-the-middle attacks. Describe
as many defences against it as you can. pages 473, 511

11.4 PGP is often used to secure email communication. Describe the steps that a pair of users
using PGP must take before they can exchange email messages with privacy and
authenticity guarantees. What scope is there to make the preliminary key negotiation
invisible to users? (The PGP negotiation is an instance of the hybrid scheme.)

pages 493, 502

11.5 How would email be sent to a large list of recipients using PGP or a similar scheme?
Suggest a scheme that is simpler and faster when the list is used frequently.

page 502, Section 4.4

11.6 The implementation of the TEA symmetric encryption algorithm given in Figures
11.7–11.9 is not portable between all machine architectures. Explain why. How could a
message encrypted using the TEA implementation be transmitted to decrypt it correctly
on all other architectures? page 488

11.7 Modify the TEA application program in Figure 11.9 to use cipher block chaining (CBC).
pages 485, 488

11.8 Construct a stream cipher application based on the program in Figure 11.9.
pages 486, 488

11.9 Estimate the time required to crack a 56-bit DES key by a brute-force attack using a
2000 MIPS (million instruction per second) computer, assuming that the inner loop for
a brute-force attack program involves around 10 instructions per key value, plus the time
to encrypt an 8-byte plaintext (see Figure 11.13). Perform the same calculation for a
128-bit IDEA key. Extrapolate your calculations to obtain the cracking time for a
200,000 MIPS parallel processor (or an Internet consortium with similar processing
power).

page 489

11.10 In the Needham and Shroeder authentication protocol with secret keys, explain why the
following version of message 5 is not secure:

A B: {NB}KAB

page 504

11.11 Review the solutions proposed in the discussion of the 802.11 Wireless Equivalent
Privacy protocol design, outlining ways in which each solution could be implemented
and mentioning any drawbacks or inconveniences. (5 answers) page 515

This page intentionally left blank

 521

12

DISTRIBUTED FILE SYSTEMS

12.1 Introduction
12.2 File service architecture
12.3 Case study: Sun Network File System
12.4 Case study: The Andrew File System
12.5 Enhancements and further developments
12.6 Summary

A distributed file system enables programs to store and access remote files exactly as they
do local ones, allowing users to access files from any computer on a network. The
performance and reliability experienced for access to files stored at a server should be
comparable to that for files stored on local disks.

In this chapter we define a simple architecture for file systems and describe two
basic distributed file service implementations with contrasting designs that have been in
widespread use for over two decades:

• the Sun Network File System, NFS;

• the Andrew File System, AFS.

Each emulates the UNIX file system interface, with differing degrees of scalability, fault
tolerance and deviation from the strict UNIX one-copy file update semantics.

Several related file systems that exploit new modes of data organization on disk or
across multiple servers to achieve high-performance, fault-tolerant and scalable file
systems are also reviewed. Other types of distributed storage system are described
elsewhere in the book. These include peer-to-peer storage systems (Chapter 10),
replicated file systems (Chapter 18), multimedia data servers (Chapter 20) and the
particular style of storage service required to support Internet search and other large-
scale, data-intensive applications (Chapter 21).

522 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

12.1 Introduction

In Chapters 1 and 2, we identified the sharing of resources as a key goal for distributed
systems. The sharing of stored information is perhaps the most important aspect of
distributed resource sharing. Mechanisms for data sharing take many forms and are
described in several parts of this book. Web servers provide a restricted form of data
sharing in which files stored locally, in file systems at the server or in servers on a local
network, are made available to clients throughout the Internet. The design of large-scale
wide area read-write file storage systems poses problems of load balancing, reliability,
availability and security, whose resolution is the goal of the peer-to-peer file storage
systems described in Chapter 10. Chapter 18 focuses on replicated storage systems that
are suitable for applications requiring reliable access to data stored on systems where the
availability of individual hosts cannot be guaranteed. In Chapter 20 we describe a media
server that is designed to serve streams of video data to large numbers of users in real
time. Chapter 21 describes a file system designed to support large-scale, data-intensive
applications such as Internet search.

The requirements for sharing within local networks and intranets lead to a need
for a different type of service – one that supports the persistent storage of data and
programs of all types on behalf of clients and the consistent distribution of up-to-date
data. The purpose of this chapter is to describe the architecture and implementation of
these basic distributed file systems. We use the word ‘basic’ here to denote distributed
file systems whose primary purpose is to emulate the functionality of a non-distributed
file system for client programs running on multiple remote computers. They do not
maintain multiple persistent replicas of files, nor do they support the bandwidth and
timing guarantees required for multimedia data streaming – those requirements are
addressed in later chapters. Basic distributed file systems provide an essential
underpinning for organizational computing based on intranets.

File systems were originally developed for centralized computer systems and
desktop computers as an operating system facility providing a convenient programming
interface to disk storage. They subsequently acquired features such as access-control
and file-locking mechanisms that made them useful for the sharing of data and
programs. Distributed file systems support the sharing of information in the form of files
and hardware resources in the form of persistent storage throughout an intranet. A well-
designed file service provides access to files stored at a server with performance and
reliability similar to, and in some cases better than, files stored on local disks. Their
design is adapted to the performance and reliability characteristics of local networks,
and hence they are most effective in providing shared persistent storage for use in
intranets. The first file servers were developed by researchers in the 1970s [Birrell and
Needham 1980, Mitchell and Dion 1982, Leach et al. 1983], and Sun’s Network File
System became available in the early 1980s [Sandberg et al. 1985, Callaghan 1999].

A file service enables programs to store and access remote files exactly as they do
local ones, allowing users to access their files from any computer in an intranet. The
concentration of persistent storage at a few servers reduces the need for local disk
storage and (more importantly) enables economies to be made in the management and
archiving of the persistent data owned by an organization. Other services, such as the
name service, the user authentication service and the print service, can be more easily

SECTION 12.1 INTRODUCTION 523

implemented when they can call upon the file service to meet their needs for persistent
storage. Web servers are reliant on filing systems for the storage of the web pages that
they serve. In organizations that operate web servers for external and internal access via
an intranet, the web servers often store and access the material from a local distributed
file system.

With the advent of distributed object-oriented programming, a need arose for the
persistent storage and distribution of shared objects. One way to achieve this is to
serialize objects (in the manner described in Section 4.3.2) and to store and retrieve the
serialized objects using files. But this method for achieving persistence and distribution
is impractical for rapidly changing objects, so several more direct approaches have been
developed. Java remote object invocation and CORBA ORBs provide access to remote,
shared objects, but neither of these ensures the persistence of the objects, nor are the
distributed objects replicated.

Figure 12.1 Storage systems and their properties

Types of consistency:
1: strict one-copy : slightly weaker guarantees 2: considerably weaker guarantees

Sharing Persistence Distributed
cache/replicas

Consistency
maintenance

Example

Main memory 1 RAM

File system 1 UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (DSM, Ch. 6)

Remote objects (RMI/ORB) 1 CORBA

Persistent object store 1 CORBA Persistent
State Service

Peer-to-peer storage system 2 OceanStore (Ch. 10)

Figure 12.1 provides an overview of types of storage system. In addition to those
already mentioned, the table includes distributed shared memory (DSM) systems and
persistent object stores. DSM was described in Chapter 6. It provides an emulation of a
shared memory by the replication of memory pages or segments at each host, but it does
not necessarily provide automatic persistence. Persistent object stores were introduced
in Chapter 5. They aim to provide persistence for distributed shared objects. Examples
include the CORBA Persistent State Service (see Chapter 8) and persistent extensions
to Java [Jordan 1996, java.sun.com VIII]. Some research projects have developed in
platforms that support the automatic replication and persistent storage of objects (for
example, PerDiS [Ferreira et al. 2000] and Khazana [Carter et al. 1998]). Peer-to-peer
storage systems offer scalability to support client loads much larger than the systems
described in this chaper, but they incur high performance costs in providing secure
access control and consistency between updatable replicas.

524 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

The consistency column indicates whether mechanisms exist for the maintenance
of consistency between multiple copies of data when updates occur. Virtually all storage
systems rely on the use of caching to optimize the performance of programs. Caching
was first applied to main memory and non-distributed file systems, and for those the
consistency is strict (denoted by a ‘1’, for one-copy consistency in Figure 12.1) –
programs cannot observe any discrepancies between cached copies and stored data after
an update. When distributed replicas are used, strict consistency is more difficult to
achieve. Distributed file systems such as Sun NFS and the Andrew File System cache
copies of portions of files at client computers, and they adopt specific consistency
mechanisms to maintain an approximation to strict consistency – this is indicated by a
tick () in the consistency column of Figure 12.1. We discuss these mechanisms and
the degree to which they deviate from strict consistency in Sections 12.3 and 12.4.

The Web uses caching extensively both at client computers and at proxy servers
maintained by user organizations. The consistency between the copies stored at web
proxies and client caches and the original server is only maintained by explicit user
actions. Clients are not notified when a page stored at the original server is updated; they
must perform explicit checks to keep their local copies up-to-date. This serves the
purposes of web browsing adequately, but it does not support the development of
cooperative applications such as a shared distributed whiteboard. The consistency
mechanisms used in DSM systems are discussed in depth on the companion web site to
the book [www.cdk5.net]. Persistent object systems vary considerably in their approach
to caching and consistency. The CORBA and Persistent Java schemes maintain single
copies of persistent objects, and remote invocation is required to access them, so the
only consistency issue is between the persistent copy of an object on disk and the active
copy in memory, which is not visible to remote clients. The PerDiS and Khazana
projects that we mentioned above maintain cached replicas of objects and employ quite
elaborate consistency mechanisms to produce forms of consistency similar to those
found in DSM systems.

Figure 12.2 File system modules

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: performs disk I/O and buffering

Having introduced some wider issues relating to storage and distribution of
persistent and non-persistent data, we now return to the main topic of this chapter – the
design of basic distributed file systems. We describe some relevant characteristics of
(non-distributed) file systems in Section 12.1.1 and the requirements for distributed file
systems in Section 12.1.2. Section 12.1.3 introduces the case studies that will be used
throughout the chapter. In Section 12.2, we define an abstract model for a basic

SECTION 12.1 INTRODUCTION 525

distributed file service, including a set of programming interfaces. Sun NFS is described
in Section 12.3; it shares many of the features of the abstract model. In Section 12.4 we
describe the Andrew File System, a widely used system that employs substantially
different caching and consistency mechanisms. Section 12.5 reviews some recent
developments in the design of file services.

The systems described in this chapter do not cover the full spectrum of distributed
file and data management systems. Several systems with more advanced characteristics
will be described later in the book. Chapter 18 includes a description of Coda, a
distributed file system that maintains persistent replicas of files for reliability,
availability and disconnected working. Bayou, a distributed data management system
that provides a weakly consistent form of replication for high availability, is also
covered in Chapter 18. Chapter 20 covers the Tiger video file server, which is designed
to provide timely delivery of streams of data to large numbers of clients. Chapter 21
describes the Google File System (GFS), a file system designed specifically to support
large-scale, data-intensive applications including Internet search.

12.1.1 Characteristics of file systems

Figure 12.3 File attribute record structure

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

File systems are responsible for the organization, storage, retrieval, naming, sharing and
protection of files. They provide a programming interface that characterizes the file
abstraction, freeing programmers from concern with the details of storage allocation and
layout. Files are stored on disks or other non-volatile storage media.

Files contain both data and attributes. The data consist of a sequence of data items
(typically 8-bit bytes), accessible by operations to read and write any portion of the
sequence. The attributes are held as a single record containing information such as the
length of the file, timestamps, file type, owner’s identity and access control lists. A
typical attribute record structure is illustrated in Figure 12.3. The shaded attributes are
managed by the file system and are not normally updatable by user programs.

526 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

File systems are designed to store and manage large numbers of files, with
facilities for creating, naming and deleting files. The naming of files is supported by the
use of directories. A directory is a file, often of a special type, that provides a mapping
from text names to internal file identifiers. Directories may include the names of other
directories, leading to the familiar hierarchic file-naming scheme and the multi-part
pathnames for files used in UNIX and other operating systems. File systems also take
responsibility for the control of access to files, restricting access to files according to
users’ authorizations and the type of access requested (reading, updating, executing and
so on).

The term metadata is often used to refer to all of the extra information stored by
a file system that is needed for the management of files. It includes file attributes,
directories and all the other persistent information used by the file system.

Figure 12.2 shows a typical layered module structure for the implementation of a
non-distributed file system in a conventional operating system. Each layer depends only
on the layers below it. The implementation of a distributed file service requires all of the
components shown there, with additional components to deal with client-server
communication and with the distributed naming and location of files.

File system operations •

Figure 12.4 UNIX file system operations

filedes = open(name, mode)

filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually
transferred and advance the read-write pointer.

pos = lseek(filedes, offset,

whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).

status = stat(name, buffer) Puts the file attributes for file name into buffer.

Figure 12.4 summarizes the main operations on files that are
available to applications in UNIX systems. These are the system calls implemented by
the kernel; application programmers usually access them through procedure libraries
such as the C Standard Input/Output Library or the Java file classes. We give the
primitives here as an indication of the operations that file services are expected to
support and for comparison with the file service interfaces that we shall introduce below.

SECTION 12.1 INTRODUCTION 527

The UNIX operations are based on a programming model in which some file state
information is stored by the file system for each running program. This consists of a list
of currently open files with a read-write pointer for each, giving the position within the
file at which the next read or write operation will be applied.

The file system is responsible for applying access control for files. In local file
systems such as UNIX, it does so when each file is opened, checking the rights allowed
for the user’s identity in the access control list against the mode of access requested in
the open system call. If the rights match the mode, the file is opened and the mode is
recorded in the open file state information.

12.1.2 Distributed file system requirements

Many of the requirements and potential pitfalls in the design of distributed services were
first observed in the early development of distributed file systems. Initially, they offered
access transparency and location transparency; performance, scalability, concurrency
control, fault tolerance and security requirements emerged and were met in subsequent
phases of development. We discuss these and related requirements in the following
subsections.

Transparency • The file service is usually the most heavily loaded service in an intranet,
so its functionality and performance are critical. The design of the file service should
support many of the transparency requirements for distributed systems identified in
Section 1.5.7. The design must balance the flexibility and scalability that derive from
transparency against software complexity and performance. The following forms of
transparency are partially or wholly addressed by current file services:

Access transparency: Client programs should be unaware of the distribution of files.
A single set of operations is provided for access to local and remote files. Programs
written to operate on local files are able to access remote files without modification.

Location transparency: Client programs should see a uniform file name space. Files
or groups of files may be relocated without changing their pathnames, and user
programs see the same name space wherever they are executed.

Mobility transparency: Neither client programs nor system administration tables in
client nodes need to be changed when files are moved. This allows file mobility –
files or, more commonly, sets or volumes of files may be moved, either by system
administrators or automatically.

Performance transparency: Client programs should continue to perform satisfacto-
rily while the load on the service varies within a specified range.

Scaling transparency: The service can be expanded by incremental growth to deal
with a wide range of loads and network sizes.

Concurrent file updates • Changes to a file by one client should not interfere with the
operation of other clients simultaneously accessing or changing the same file. This is the
well-known issue of concurrency control, discussed in detail in Chapter 16. The need for
concurrency control for access to shared data in many applications is widely accepted
and techniques are known for its implementation, but they are costly. Most current file

528 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

services follow modern UNIX standards in providing advisory or mandatory file- or
record-level locking.

File replication • In a file service that supports replication, a file may be represented by
several copies of its contents at different locations. This has two benefits – it enables
multiple servers to share the load of providing a service to clients accessing the same set
of files, enhancing the scalability of the service, and it enhances fault tolerance by
enabling clients to locate another server that holds a copy of the file when one has failed.
Few file services support replication fully, but most support the caching of files or
portions of files locally, a limited form of replication. The replication of data is
discussed in Chapter 18, which includes a description of the Coda replicated file service.

Hardware and operating system heterogeneity • The service interfaces should be de-
fined so that client and server software can be implemented for different operating sys-
tems and computers. This requirement is an important aspect of openness.

Fault tolerance • The central role of the file service in distributed systems makes it
essential that the service continue to operate in the face of client and server failures.
Fortunately, a moderately fault-tolerant design is straightforward for simple servers. To
cope with transient communication failures, the design can be based on at-most-once

invocation semantics (see Section 5.3.1); or it can use the simpler at-least-once

semantics with a server protocol designed in terms of idempotent operations, ensuring
that duplicated requests do not result in invalid updates to files. The servers can be
stateless, so that they can be restarted and the service restored after a failure without any
need to recover previous state. Tolerance of disconnection or server failures requires file
replication, which is more difficult to achieve and will be discussed in Chapter 18.

Consistency • Conventional file systems such as that provided in UNIX offer one-copy

update semantics. This refers to a model for concurrent access to files in which the file
contents seen by all of the processes accessing or updating a given file are those that they
would see if only a single copy of the file contents existed. When files are replicated or
cached at different sites, there is an inevitable delay in the propagation of modifications
made at one site to all of the other sites that hold copies, and this may result in some
deviation from one-copy semantics.

Security • Virtually all file systems provide access-control mechanisms based on the
use of access control lists. In distributed file systems, there is a need to authenticate
client requests so that access control at the server is based on correct user identities and
to protect the contents of request and reply messages with digital signatures and
(optionally) encryption of secret data. We discuss the impact of these requirements in
the case studies later in this chapter.

Efficiency • A distributed file service should offer facilities that are of at least the same
power and generality as those found in conventional file systems and should achieve a
comparable level of performance. Birrell and Needham [1980] expressed their design
aims for the Cambridge File Server (CFS) in these terms:

We would wish to have a simple, low-level file server in order to share an
expensive resource, namely a disk, whilst leaving us free to design the filing
system most appropriate to a particular client, but we would wish also to have
available a high-level system shared between clients.

SECTION 12.1 INTRODUCTION 529

The changed economics of disk storage have reduced the significance of their first goal,
but their perception of the need for a range of services addressing the requirements of
clients with different goals remains and can best be addressed by a modular architecture
of the type outlined above.

The techniques used for the implementation of file services are an important part
of the design of distributed systems. A distributed file system should provide a service
that is comparable with, or better than, local file systems in performance and reliability.
It must be convenient to administer, providing operations and tools that enable system
administrators to install and operate the system conveniently.

12.1.3 Case studies

We have constructed an abstract model for a file service to act as an introductory
example, separating implementation concerns and providing a simplified model. We
describe the Sun Network File System in some detail, drawing on our simpler abstract
model to clarify its architecture. The Andrew File System is then described, providing a
view of a distributed file system that takes a different approach to scalability and
consistency maintenance.

File service architecture • This is an abstract architectural model that underpins both
NFS and AFS. It is based upon a division of responsibilities between three modules – a
client module that emulates a conventional file system interface for application
programs, and server modules, that perform operations for clients on directories and on
files. The architecture is designed to enable a stateless implementation of the server
module.

SUN NFS • Sun Microsystems’s Network File System (NFS) has been widely adopted
in industry and in academic environments since its introduction in 1985. The design and
development of NFS were undertaken by staff at Sun Microsystems in 1984 [Sandberg
et al. 1985, Sandberg 1987, Callaghan 1999]. Although several distributed file services
had already been developed and used in universities and research laboratories, NFS was
the first file service that was designed as a product. The design and implementation of
NFS have achieved success both technically and commercially.

To encourage its adoption as a standard, the definitions of the key interfaces were
placed in the public domain [Sun 1989], enabling other vendors to produce
implementations, and the source code for a reference implementation was made
available to other computer vendors under licence. It is now supported by many vendors,
and the NFS protocol (version 3) is an Internet standard, defined in RFC 1813
[Callaghan et al. 1995]. Callaghan’s book on NFS [Callaghan 1999] is an excellent
source on the design and development of NFS and related topics.

NFS provides transparent access to remote files for client programs running on
UNIX and other systems. The client-server relationship is symmetrical: each computer
in an NFS network can act as both a client and a server, and the files at every machine
can be made available for remote access by other machines. Any computer can be a
server, exporting some of its files, and a client, accessing files on other machines. But it
is common practice to configure larger installations with some machines as dedicated
servers and others as workstations.

530 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

An important goal of NFS is to achieve a high level of support for hardware and
operating system heterogeneity. The design is operating system–independent: client and
server implementations exist for almost all operating systems and platforms, including
all versions of Windows, Mac OS, Linux and every other version of UNIX.
Implementations of NFS on high-performance multiprocessor hosts have been
developed by several vendors, and these are widely used to meet storage requirements
in intranets with many concurrent users.

Andrew File System • Andrew is a distributed computing environment developed at
Carnegie Mellon University (CMU) for use as a campus computing and information
system [Morris et al. 1986]. The design of the Andrew File System (henceforth
abbreviated AFS) reflects an intention to support information sharing on a large scale by
minimizing client-server communication. This is achieved by transferring whole files
between server and client computers and caching them at clients until the server receives
a more up-to-date version. We shall describe AFS-2, the first ‘production’
implementation, following the descriptions by Satyanarayanan [1989a, 1989b]. More
recent descriptions can be found in Campbell [1997] and [Linux AFS].

AFS was initially implemented on a network of workstations and servers running
BSD UNIX and the Mach operating system at CMU and was subsequently made
available in commercial and public-domain versions. A public-domain implementation
of AFS is available in the Linux operating system [Linux AFS]. AFS was adopted as the
basis for the DCE/DFS file system in the Open Software Foundation’s Distributed
Computing Environment (DCE) [www.opengroup.org]. The design of DCE/DFS went
beyond AFS in several important respects, which we outline in Section 12.5.

12.2 File service architecture

An architecture that offers a clear separation of the main concerns in providing access
to files is obtained by structuring the file service as three components – a flat file service,
a directory service and a client module. The relevant modules and their relationships are
shown in Figure 12.5. The flat file service and the directory service each export an
interface for use by client programs, and their RPC interfaces, taken together, provide a
comprehensive set of operations for access to files. The client module provides a single
programming interface with operations on files similar to those found in conventional
file systems. The design is open in the sense that different client modules can be used to
implement different programming interfaces, simulating the file operations of a variety
of different operating systems and optimizing the performance for different client and
server hardware configurations.

The division of responsibilities between the modules can be defined as follows:

Flat file service • The flat file service is concerned with implementing operations on the
contents of files. Unique file identifiers (UFIDs) are used to refer to files in all requests
for flat file service operations. The division of responsibilities between the file service
and the directory service is based upon the use of UFIDs. UFIDs are long sequences of
bits chosen so that each file has a UFID that is unique among all of the files in a

Figure 12.5 File service architecture

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

SECTION 12.2 FILE SERVICE ARCHITECTURE 531

distributed system. When the flat file service receives a request to create a file, it
generates a new UFID for it and returns the UFID to the requester.

Directory service • The directory service provides a mapping between text names for
files and their UFIDs. Clients may obtain the UFID of a file by quoting its text name to
the directory service. The directory service provides the functions needed to generate
directories, to add new file names to directories and to obtain UFIDs from directories. It
is a client of the flat file service; its directory files are stored in files of the flat file
service. When a hierarchic file-naming scheme is adopted, as in UNIX, directories hold
references to other directories.

Client module • A client module runs in each client computer, integrating and
extending the operations of the flat file service and the directory service under a single
application programming interface that is available to user-level programs in client
computers. For example, in UNIX hosts, a client module would be provided that
emulates the full set of UNIX file operations, interpreting UNIX multi-part file names
by iterative requests to the directory service. The client module also holds information
about the network locations of the flat file server and directory server processes. Finally,
the client module can play an important role in achieving satisfactory performance
through the implementation of a cache of recently used file blocks at the client.

Flat file service interface • Figure 12.6 contains a definition of the interface to a flat file
service. This is the RPC interface used by client modules. It is not normally used directly
by user-level programs. A FileId is invalid if the file that it refers to is not present in the
server processing the request or if its access permissions are inappropriate for the
operation requested. All of the procedures in the interface except Create throw
exceptions if the FileId argument contains an invalid UFID or the user doesn’t have
sufficient access rights. These exceptions are omitted from the definition for clarity.

The most important operations are those for reading and writing. Both the Read

and the Write operation require a parameter i specifying a position in the file. The Read

operation copies the sequence of n data items beginning at item i from the specified file

Figure 12.6 Flat file service operations

Read(FileId, i, n) Data

— throws BadPosition

If 1 i Length(File): Reads a sequence of up to n items
from a file starting at item i and returns it in Data.

Write(FileId, i, Data)

— throws BadPosition

If 1 i Length(File)+1: Writes a sequence of Data to a
file, starting at item i, extending the file if necessary.

Create() FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes the file from the file store.

GetAttributes(FileId) Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not
shaded in Figure 12.3).

532 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

into Data, which is then returned to the client. The Write operation copies the sequence
of data items in Data into the specified file beginning at item i, replacing the previous
contents of the file at the corresponding position and extending the file if necessary.

Create creates a new, empty file and returns the UFID that is generated. Delete

removes the specified file.

GetAttributes and SetAttributes enable clients to access the attribute record.
GetAttributes is normally available to any client that is allowed to read the file. Access
to the SetAttributes operation would normally be restricted to the directory service that
provides access to the file. The values of the length and timestamp portions of the
attribute record are not affected by SetAttributes; they are maintained separately by the
flat file service itself.

Comparison with UNIX: Our interface and the UNIX file system primitives are
functionally equivalent. It is a simple matter to construct a client module that emulates
the UNIX system calls in terms of our flat file service and the directory service
operations described in the next section.

In comparison with the UNIX interface, our flat file service has no open and close

operations – files can be accessed immediately by quoting the appropriate UFID. The
Read and Write requests in our interface include a parameter specifying a starting point
within the file for each transfer, whereas the equivalent UNIX operations do not. In
UNIX, each read or write operation starts at the current position of the read-write
pointer, and the read-write pointer is advanced by the number of bytes transferred after
each read or write. A seek operation is provided to enable the read-write pointer to be
explicitly repositioned.

The interface to our flat file service differs from the UNIX file system interface
mainly for reasons of fault tolerance:

Repeatable operations: With the exception of Create, the operations are
idempotent, allowing the use of at-least-once RPC semantics – clients may repeat
calls to which they receive no reply. Repeated execution of Create produces a
different new file for each call.

SECTION 12.2 FILE SERVICE ARCHITECTURE 533

Stateless servers: The interface is suitable for implementation by stateless servers.
Stateless servers can be restarted after a failure and resume operation without any
need for clients or the server to restore any state.

The UNIX file operations are neither idempotent nor consistent with the requirement for
a stateless implementation. A read-write pointer is generated by the UNIX file system
whenever a file is opened, and it is retained, together with the results of access-control
checks, until the file is closed. The UNIX read and write operations are not idempotent;
if an operation is accidentally repeated, the automatic advance of the read-write pointer
results in access to a different portion of the file in the repeated operation. The read-write
pointer is a hidden, client-related state variable. To mimic it in a file server, open and
close operations would be needed, and the read-write pointer’s value would have to be
retained by the server as long as the relevant file is open. By eliminating the read-write
pointer, we have eliminated most of the need for the file server to retain state
information on behalf of specific clients.

Access control • In the UNIX file system, the user’s access rights are checked against
the access mode (read or write) requested in the open call (Figure 12.4 shows the UNIX
file system API) and the file is opened only if the user has the necessary rights. The user
identity (UID) used in the access rights check is retrieved during the user’s earlier
authenticated login and cannot be tampered with in non-distributed implementations.
The resulting access rights are retained until the file is closed, and no further checks are
required when subsequent operations on the same file are requested.

In distributed implementations, access rights checks have to be performed at the
server because the server RPC interface is an otherwise unprotected point of access to
files. A user identity has to be passed with requests, and the server is vulnerable to
forged identities. Furthermore, if the results of an access rights check were retained at
the server and used for future accesses, the server would no longer be stateless. Two
alternative approaches to the latter problem can be adopted:

• An access check is made whenever a file name is converted to a UFID, and the
results are encoded in the form of a capability (see Section 11.2.4), which is
returned to the client for submission with subsequent requests.

• A user identity is submitted with every client request, and access checks are
performed by the server for every file operation.

Both methods enable stateless server implementation, and both have been used in
distributed file systems. The second is more common; it is used in both NFS and AFS.
Neither of these approaches overcomes the security problem concerning forged user
identities, but we saw in Chapter 11 that this can be addressed by the use of digital
signatures. Kerberos is an effective authentication scheme that has been applied to both
NFS and AFS.

In our abstract model, we make no assumption about the method by which access
control is implemented. The user identity is passed as an implicit parameter and can be
used whenever it is needed.

Directory service interface • Figure 12.7 contains a definition of the RPC interface to a
directory service. The primary purpose of the directory service is to provide a service for
translating text names to UFIDs. In order to do so, it maintains directory files containing

Figure 12.7 Directory service operations

Lookup(Dir, Name) FileId

— throws NotFound

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws an
exception.

AddName(Dir, Name, FileId)

— throws NameDuplicate

If Name is not in the directory, adds (Name, File) to the
directory and updates the file’s attribute record.
If Name is already in the directory, throws an exception.

UnName(Dir, Name)

— throws NotFound

If Name is in the directory, removes the entry containing
Name from the directory.
If Name is not in the directory, throws an exception.

GetNames(Dir, Pattern) NameSeq Returns all the text names in the directory that match the
regular expression Pattern.

534 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

the mappings between text names for files and UFIDs. Each directory is stored as a
conventional file with a UFID, so the directory service is a client of the file service.

We define only operations on individual directories. For each operation, a UFID
for the file containing the directory is required (in the Dir parameter). The Lookup

operation in the basic directory service performs a single Name UFID translation. It
is a building block for use in other services or in the client module to perform more
complex translations, such as the hierarchic name interpretation found in UNIX. As
before, exceptions caused by inadequate access rights are omitted from the definitions.

There are two operations for altering directories: AddName and UnName.
AddName adds an entry to a directory and increments the reference count field in the
file’s attribute record.

UnName removes an entry from a directory and decrements the reference count.
If this causes the reference count to reach zero, the file is removed. GetNames is
provided to enable clients to examine the contents of directories and to implement
pattern-matching operations on file names such as those found in the UNIX shell. It
returns all or a subset of the names stored in a given directory. The names are selected
by pattern matching against a regular expression supplied by the client.

The provision of pattern matching in the GetNames operation enables users to
determine the names of one or more files by giving an incomplete specification of the
characters in the names. A regular expression is a specification for a class of strings in
the form of an expression containing a combination of literal substrings and symbols
denoting variable characters or repeated occurrences of characters or substrings.

Hierarchic file system • A hierarchic file system such as the one that UNIX provides
consists of a number of directories arranged in a tree structure. Each directory holds the
names of the files and other directories that are accessible from it. Any file or directory
can be referenced using a pathname – a multi-part name that represents a path through

SECTION 12.2 FILE SERVICE ARCHITECTURE 535

the tree. The root has a distinguished name, and each file or directory has a name in a
directory. The UNIX file-naming scheme is not a strict hierarchy – files can have several
names, and they can be in the same or different directories. This is implemented by a
link operation, which adds a new name for a file to a specified directory.

A UNIX-like file-naming system can be implemented by the client module using
the flat file and directory services that we have defined. A tree-structured network of
directories is constructed with files at the leaves and directories at the other nodes of the
tree. The root of the tree is a directory with a ‘well-known’ UFID. Multiple names for
files can be supported using the AddName operation and the reference count field in the
attribute record.

A function can be provided in the client module that gets the UFID of a file given
its pathname. The function interprets the pathname starting from the root, using Lookup

to obtain the UFID of each directory in the path.

In a hierarchic directory service, the file attributes associated with files should
include a type field that distinguishes between ordinary files and directories. This is used
when following a path to ensure that each part of the name, except the last, refers to a
directory.

File groups • A file group is a collection of files located on a given server. A server may
hold several file groups, and groups can be moved between servers, but a file cannot
change the group to which it belongs. A similar construct called a filesystem is used in
UNIX and in most other operating systems. (Terminology note: the single word
filesystem refers to the set of files held in a storage device or partition, whereas the words
file system refer to a software component that provides access to files.) File groups were
originally introduced to support facilities for moving collections of files stored on
removable media between computers. In a distributed file service, file groups support
the allocation of files to file servers in larger logical units and enable the service to be
implemented with files stored on several servers. In a distributed file system that
supports file groups, the representation of UFIDs includes a file group identifier
component, enabling the client module in each client computer to take responsibility for
dispatching requests to the server that holds the relevant file group.

File group identifiers must be unique throughout a distributed system. Since file
groups can be moved and distributed systems that are initially separate can be merged
to form a single system, the only way to ensure that file group identifiers will always be
distinct in a given system is to generate them with an algorithm that ensures global
uniqueness. For example, whenever a new file group is created, a unique identifier can
be generated by concatenating the 32-bit IP address of the host creating the new group
with a 16-bit integer derived from the date, producing a unique 48-bit integer:

32 bits 16 bits

file group identifier: IP address date

Note that the IP address cannot be used for the purpose of locating the file group, since
it may be moved to another server. Instead, a mapping between group identifiers and
servers should be maintained by the file service.

536 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

12.3 Case study: Sun Network File System

Figure 12.8

Figure 12.8 NFS architecture

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file system

O
th

er

fil
e

sy
st

em

Virtual file system

 shows the architecture of Sun NFS. It follows the abstract model defined in
the preceding section. All implementations of NFS support the NFS protocol – a set of
remote procedure calls that provide the means for clients to perform operations on a
remote file store. The NFS protocol is operating system–independent but was originally
developed for use in networks of UNIX systems, and we shall describe the UNIX
implementation the NFS protocol (version 3).

The NFS server module resides in the kernel on each computer that acts as an NFS
server. Requests referring to files in a remote file system are translated by the client
module to NFS protocol operations and then passed to the NFS server module at the
computer holding the relevant file system.

The NFS client and server modules communicate using remote procedure calls.
Sun’s RPC system, described in Section 5.3.3, was developed for use in NFS. It can be
configured to use either UDP or TCP, and the NFS protocol is compatible with both. A
port mapper service is included to enable clients to bind to services in a given host by
name. The RPC interface to the NFS server is open: any process can send requests to an
NFS server; if the requests are valid and they include valid user credentials, they will be
acted upon. The submission of signed user credentials can be required as an optional
security feature, as can the encryption of data for privacy and integrity.

Virtual file system • Figure 12.8 makes it clear that NFS provides access transparency:
user programs can issue file operations for local or remote files without distinction.
Other distributed file systems may be present that support UNIX system calls, and if so,
they could be integrated in the same way.

SECTION 12.3 CASE STUDY: SUN NETWORK FILE SYSTEM 537

The integration is achieved by a virtual file system (VFS) module, which has been
added to the UNIX kernel to distinguish between local and remote files and to translate
between the UNIX-independent file identifiers used by NFS and the internal file
identifiers normally used in UNIX and other file systems. In addition, VFS keeps track
of the filesystems that are currently available both locally and remotely, and it passes
each request to the appropriate local system module (the UNIX file system, the NFS
client module or the service module for another file system).

The file identifiers used in NFS are called file handles. A file handle is opaque to
clients and contains whatever information the server needs to distinguish an individual
file. In UNIX implementations of NFS, the file handle is derived from the file’s i-node

number by adding two extra fields as follows (the i-node number of a UNIX file is a
number that serves to identify and locate the file within the file system in which the file
is stored):

File handle: Filesystem identifier i-node number
of file

i-node generation
number

NFS adopts the UNIX mountable filesystem as the unit of file grouping defined in the
preceding section. The filesystem identifier field is a unique number that is allocated to
each filesystem when it is created (and in the UNIX implementation is stored in the
superblock of the file system). The i-node generation number is needed because in the
conventional UNIX file system i-node numbers are reused after a file is removed. In the
VFS extensions to the UNIX file system, a generation number is stored with each file
and is incremented each time the i-node number is reused (for example, in a UNIX creat

system call). The client obtains the first file handle for a remote file system when it
mounts it. File handles are passed from server to client in the results of lookup, create

and mkdir operations (see Figure 12.9) and from client to server in the argument lists of
all server operations.

The virtual file system layer has one VFS structure for each mounted file system
and one v-node per open file. A VFS structure relates a remote file system to the local
directory on which it is mounted. The v-node contains an indicator to show whether a
file is local or remote. If the file is local, the v-node contains a reference to the index of
the local file (an i-node in a UNIX implementation). If the file is remote, it contains the
file handle of the remote file.

Client integration • The NFS client module plays the role described for the client
module in our architectural model, supplying an interface suitable for use by
conventional application programs. But unlike our model client module, it emulates the
semantics of the standard UNIX file system primitives precisely and is integrated with
the UNIX kernel. It is integrated with the kernel and not supplied as a library for loading
into client processes so that:

• user programs can access files via UNIX system calls without recompilation or
reloading;

• a single client module serves all of the user-level processes, with a shared cache
of recently used blocks (described below);

Figure 12.9 NFS server operations (NFS version 3 protocol, simplified)

lookup(dirfh, name) fh, attr Returns file handle and attributes for the file name in the directory dirfh.

create(dirfh, name, attr)

newfh, attr

Creates a new file name in directory dirfh with attributes attr and returns
the new file handle and attributes.

remove(dirfh, name) status Removes file name from directory dirfh.

getattr(fh) attr Returns file attributes of file fh. (Similar to the UNIX stat system call.)

setattr(fh, attr) attr Sets the attributes (mode, user ID, group ID, size, access time and
modify time of a file). Setting the size to 0 truncates the file.

read(fh, offset, count) attr, data Returns up to count bytes of data from a file starting at offset. Also
returns the latest attributes of the file.

write(fh, offset, count, data) attr Writes count bytes of data to a file starting at offset. Returns the
attributes of the file after the write has taken place.

rename(dirfh, name, todirfh,

toname) status

Changes the name of file name in directory dirfh to toname in directory
todirfh.

link(newdirfh, newname, fh)

 status

Creates an entry newname in the directory newdirfh that refers to the file
or directory fh.

symlink(newdirfh, newname, string)

 status

Creates an entry newname in the directory newdirfh of type symbolic

link with the value string. The server does not interpret the string but
makes a symbolic link file to hold it.

readlink(fh) string Returns the string that is associated with the symbolic link file identified
by fh.

mkdir(dirfh, name, attr) newfh,

attr

Creates a new directory name with attributes attr and returns the new
file handle and attributes.

rmdir(dirfh, name) status Removes the empty directory name from the parent directory dirfh.
Fails if the directory is not empty.

readdir(dirfh, cookie, count)

entries

Returns up to count bytes of directory entries from the directory dirfh.
Each entry contains a file name, a file handle and an opaque pointer to
the next directory entry, called a cookie. The cookie is used in
subsequent readdir calls to start reading from the following entry. If the
value of cookie is 0, reads from the first entry in the directory.

statfs(fh) fsstats Returns file system information (such as block size, number of free
blocks and so on) for the file system containing a file fh.

538 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

• the encryption key used to authenticate user IDs passed to the server (see below)
can be retained in the kernel, preventing impersonation by user-level clients.

The NFS client module cooperates with the virtual file system in each client machine. It
operates in a similar manner to the conventional UNIX file system, transferring blocks
of files to and from the server and caching the blocks in the local memory whenever
possible. It shares the same buffer cache that is used by the local input-output system.

SECTION 12.3 CASE STUDY: SUN NETWORK FILE SYSTEM 539

But since several clients in different host machines may simultaneously access the same
remote file, a new and significant cache consistency problem arises.

Access control and authentication • Unlike the conventional UNIX file system, the NFS
server is stateless and does not keep files open on behalf of its clients. So the server must
check the user’s identity against the file’s access permission attributes afresh on each
request, to see whether the user is permitted to access the file in the manner requested.
The Sun RPC protocol requires clients to send user authentication information (for
example, the conventional UNIX 16-bit user ID and group ID) with each request and this
is checked against the access permission in the file attributes. These additional
parameters are not shown in our overview of the NFS protocol in Figure 12.9; they are
supplied automatically by the RPC system.

In its simplest form, there is a security loophole in this access-control mechanism.
An NFS server provides a conventional RPC interface at a well-known port on each host
and any process can behave as a client, sending requests to the server to access or update
a file. The client can modify the RPC calls to include the user ID of any user,
impersonating the user without their knowledge or permission. This security loophole
has been closed by the use of an option in the RPC protocol for the DES encryption of
the user’s authentication information. More recently, Kerberos has been integrated with
Sun NFS to provide a stronger and more comprehensive solution to the problems of user
authentication and security; we describe this below.

NFS server interface • A simplified representation of the RPC interface provided by
NFS version 3 servers (defined in RFC 1813 [Callaghan et al. 1995]) is shown in Figure
12.9. The NFS file access operations read, write, getattr and setattr are almost identical
to the Read, Write, GetAttributes and SetAttributes operations defined for our flat file
service model (Figure 12.6). The lookup operation and most of the other directory
operations defined in Figure 12.9 are similar to those in our directory service model
(Figure 12.7).

The file and directory operations are integrated in a single service; the creation and
insertion of file names in directories is performed by a single create operation, which
takes the text name of the new file and the file handle for the target directory as
arguments. The other NFS operations on directories are create, remove, rename, link,
symlink, readlink, mkdir, rmdir, readdir and statfs. They resemble their UNIX
counterparts with the exception of readdir, which provides a representation-
independent method for reading the contents of directories, and statfs, which gives the
status information on remote file systems.

Mount service • The mounting of subtrees of remote filesystems by clients is supported
by a separate mount service process that runs at user level on each NFS server computer.
On each server, there is a file with a well-known name (/etc/exports) containing the
names of local filesystems that are available for remote mounting. An access list is
associated with each filesystem name indicating which hosts are permitted to mount the
filesystem.

Clients use a modified version of the UNIX mount command to request mounting
of a remote filesystem, specifying the remote host’s name, the pathname of a directory
in the remote filesystem and the local name with which it is to be mounted. The remote
directory may be any subtree of the required remote filesystem, enabling clients to
mount any part of the remote filesystem. The modified mount command communicates

540 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

with the mount service process on the remote host using a mount protocol. This is an
RPC protocol and includes an operation that takes a directory pathname and returns the
file handle of the specified directory if the client has access permission for the relevant
filesystem. The location (IP address and port number) of the server and the file handle
for the remote directory are passed on to the VFS layer and the NFS client.

Figure 12.10

Figure 12.10 Local and remote filesystems accessible on an NFS client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

Note: The file system mounted at /usr/students in the client is actually the subtree located
at /export/people in Server 1; the filesystem mounted at /usr/staff in the client is
actually the subtree located at /nfs/users in Server 2.

(root) (root)

 illustrates a Client with two remotely mounted file stores. The nodes
people and users in filesystems at Server 1 and Server 2 are mounted over nodes students

and staff in Client’s local file store. The meaning of this is that programs running at
Client can access files at Server 1 and Server 2 by using pathnames such as
/usr/students/jon and /usr/staff/ann.

Remote filesystems may be hard-mounted or soft-mounted in a client computer.
When a user-level process accesses a file in a filesystem that is hard-mounted, the
process is suspended until the request can be completed, and if the remote host is
unavailable for any reason the NFS client module continues to retry the request until it
is satisfied. Thus in the case of a server failure, user-level processes are suspended until
the server restarts and then they continue just as though there had been no failure. But if
the relevant filesystem is soft-mounted, the NFS client module returns a failure
indication to user-level processes after a small number of retries. Properly constructed
programs will then detect the failure and take appropriate recovery or reporting actions.
But many UNIX utilities and applications do not test for the failure of file access
operations, and these behave in unpredictable ways in the case of failure of a soft-
mounted filesystem. For this reason, many installations use hard mounting exclusively,
with the consequence that programs are unable to recover gracefully when an NFS
server is unavailable for a significant period.

Pathname translation • UNIX file systems translate multi-part file pathnames to i-node
references in a step-by-step process whenever the open, creat or stat system calls are
used. In NFS, pathnames cannot be translated at a server, because the name may cross a

SECTION 12.3 CASE STUDY: SUN NETWORK FILE SYSTEM 541

‘mount point’ at the client – directories holding different parts of a multi-part name may
reside in filesystems at different servers. So pathnames are parsed, and their translation
is performed in an iterative manner by the client. Each part of a name that refers to a
remote-mounted directory is translated to a file handle using a separate lookup request
to the remote server.

The lookup operation looks for a single part of a pathname in a given directory and
returns the corresponding file handle and file attributes. The file handle returned in the
previous step is used as a parameter in the next lookup step. Since file handles are
opaque to NFS client code, the virtual file system is responsible for resolving file
handles to a local or a remote directory and performing the necessary indirection when
it references a local mount point. Caching of the results of each step in pathname
translations alleviates the apparent inefficiency of this process, taking advantage of
locality of reference to files and directories; users and programs typically access files in
only one or a small number of directories.

Automounter • The automounter was added to the UNIX implementation of NFS in
order to mount a remote directory dynamically whenever an ‘empty’ mount point is
referenced by a client. The original implementation of the automounter ran as a user-
level UNIX process in each client computer. Later versions (called autofs) were
implemented in the kernel for Solaris and Linux. We describe the original version here.

The automounter maintains a table of mount points (pathnames) with a reference
to one or more NFS servers listed against each. It behaves like a local NFS server at the
client machine. When the NFS client module attempts to resolve a pathname that
includes one of these mount points, it passes to the local automounter a lookup() request
that locates the required filesystem in its table and sends a ‘probe’ request to each server
listed. The filesystem on the first server to respond is then mounted at the client using
the normal mount service. The mounted filesystem is linked to the mount point using a
symbolic link, so that accesses to it will not result in further requests to the automounter.
File access then proceeds in the normal way without further reference to the
automounter unless there are no references to the symbolic link for several minutes. In
the latter case, the automounter unmounts the remote filesystem.

The later kernel implementations replaced the symbolic links with real mounts,
avoiding some problems that arose with applications that cached the temporary
pathnames used in user-level automounters [Callaghan 1999].

A simple form of read-only replication can be achieved by listing several servers
containing identical copies of a filesystem or file subtree against a name in the
automounter table. This is useful for heavily used file systems that change infrequently,
such as UNIX system binaries. For example, copies of the /usr/lib directory and its
subtree might be held on more than one server. On the first occasion that a file in /usr/lib

is opened at a client, all of the servers will be sent probe messages, and the first to
respond will be mounted at the client. This provides a limited degree of fault tolerance
and load balancing, since the first server to respond will be one that has not failed and is
likely to be one that is not heavily occupied with servicing other requests.

Server caching • Caching in both the client and the server computer are indispensable
features of NFS implementations in order to achieve adequate performance.

In conventional UNIX systems, file pages, directories and file attributes that have
been read from disk are retained in a main memory buffer cache until the buffer space

542 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

is required for other pages. If a process then issues a read or a write request for a page
that is already in the cache, it can be satisfied without another disk access. Read-ahead

anticipates read accesses and fetches the pages following those that have most recently
been read, and delayed-write optimizes writes: when a page has been altered (by a write
request), its new contents are written to disk only when the buffer page is required for
another page. To guard against loss of data in a system crash, the UNIX sync operation
flushes altered pages to disk every 30 seconds. These caching techniques work in a
conventional UNIX environment because all read and write requests issued by user-
level processes pass through a single cache that is implemented in the UNIX kernel
space. The cache is always kept up-to-date, and file accesses cannot bypass the cache.

NFS servers use the cache at the server machine just as it is used for other file
accesses. The use of the server’s cache to hold recently read disk blocks does not raise
any consistency problems; but when a server performs write operations, extra measures
are needed to ensure that clients can be confident that the results of the write operations
are persistent, even when server crashes occur. In version 3 of the NFS protocol, the
write operation offers two options for this (not shown in Figure 12.9):

1. Data in write operations received from clients is stored in the memory cache at the
server and written to disk before a reply is sent to the client. This is called write-

through caching. The client can be sure that the data is stored persistently as soon
as the reply has been received.

2. Data in write operations is stored only in the memory cache. It will be written to
disk when a commit operation is received for the relevant file. The client can be
sure that the data is persistently stored only when a reply to a commit operation for
the relevant file has been received. Standard NFS clients use this mode of
operation, issuing a commit whenever a file that was open for writing is closed.

Commit is an additional operation provided in version 3 of the NFS protocol; it was
added to overcome a performance bottleneck caused by the write-through mode of
operation in servers that receive large numbers of write operations.

 The requirement for write-through in distributed file systems is an instance of the
independent failure modes discussed in Chapter 1 – clients continue to operate when a
server fails, and application programs may take actions on the assumption that the
results of previous writes are committed to disk storage. This is unlikely to occur in the
case of local file updates, because the failure of a local file system is almost certain to
result in the failure of all the application processes running on the same computer.

Client caching • The NFS client module caches the results of read, write, getattr,
lookup and readdir operations in order to reduce the number of requests transmitted to
servers. Client caching introduces the potential for different versions of files or portions
of files to exist in different client nodes, because writes by a client do not result in the
immediate updating of cached copies of the same file in other clients. Instead, clients are
responsible for polling the server to check the currency of the cached data that they hold.

A timestamp-based method is used to validate cached blocks before they are used.
Each data or metadata item in the cache is tagged with two timestamps:

Tc is the time when the cache entry was last validated.

Tm is the time when the block was last modified at the server.

SECTION 12.3 CASE STUDY: SUN NETWORK FILE SYSTEM 543

A cache entry is valid at time T if T – Tc is less than a freshness interval t, or if the value
for Tm recorded at the client matches the value of Tm at the server (that is, the data has
not been modified at the server since the cache entry was made). Formally, the validity
condition is:

T Tc– t Tmclient Tmserver=

The selection of a value for t involves a compromise between consistency and efficiency.
A very short freshness interval will result in a close approximation to one-copy
consistency, at the cost of a relatively heavy load of calls to the server to check the value
of Tmserver. In Sun Solaris clients, t is set adaptively for individual files to a value in the
range 3 to 30 seconds, depending on the frequency of updates to the file. For directories
the range is 30 to 60 seconds, reflecting the lower risk of concurrent updates.

There is one value of Tmserver for all the data blocks in a file and another for the
file attributes. Since NFS clients cannot determine whether a file is being shared or not,
the validation procedure must be used for all file accesses. A validity check is performed
whenever a cache entry is used. The first half of the validity condition can be evaluated
without access to the server. If it is true, then the second half need not be evaluated; if it
is false, the current value of Tmserver is obtained (by means of a getattr call to the server)
and compared with the local value Tmclient. If they are the same, then the cache entry is
taken to be valid and the value of Tc for that cache entry is updated to the current time.
If they differ, then the cached data has been updated at the server and the cache entry is
invalidated, resulting in a request to the server for the relevant data.

Several measures are used to reduce the traffic of getattr calls to the server:

• Whenever a new value of Tmserver is received at a client, it is applied to all cache
entries derived from the relevant file.

• The current attribute values are sent ‘piggybacked’ with the results of every
operation on a file, and if the value of Tmserver has changed the client uses it to
update the cache entries relating to the file.

• The adaptive algorithm for setting freshness interval t outlined above reduces the
traffic considerably for most files.

The validation procedure does not guarantee the same level of consistency of files that
is provided in conventional UNIX systems, since recent updates are not always visible
to clients sharing a file. There are two sources of time lag; the delay after a write before
the updated data leaves the cache in the updating client’s kernel and the three-second
‘window’ for cache validation. Fortunately, most UNIX applications do not depend
critically upon the synchronization of file updates, and few difficulties have been
reported from this source.

Writes are handled differently. When a cached page is modified it is marked as
‘dirty’ and is scheduled to be flushed to the server asynchronously. Modified pages are
flushed when the file is closed or a sync occurs at the client, and they are flushed more
frequently if bio-daemons are in use (see below). This does not provide the same
persistence guarantee as the server cache, but it emulates the behaviour for local writes.

To implement read-ahead and delayed-write, the NFS client needs to perform
some reads and writes asynchronously. This is achieved in UNIX implementations of

544 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

NFS by the inclusion of one or more bio–daemon processes at each client. (Bio stands
for block input-output; the term daemon is often used to refer to user-level processes that
perform system tasks.) The role of the bio-daemons is to perform read-ahead and
delayed-write operations. A bio-daemon is notified after each read request, and it
requests the transfer of the following file block from the server to the client cache. In the
case of writing, the bio-daemon will send a block to the server whenever a block has
been filled by a client operation. Directory blocks are sent whenever a modification has
occurred.

Bio-daemon processes improve performance, ensuring that the client module does
not block waiting for reads to return or writes to commit at the server. They are not a
logical requirement, since in the absence of read-ahead, a read operation in a user
process will trigger a synchronous request to the relevant server, and the results of writes
in user processes will be transferred to the server when the relevant file is closed or when
the virtual file system at the client performs a sync operation.

Other optimizations • The Sun file system is based on the UNIX BSD Fast File System
which uses 8-kbyte disk blocks, resulting in fewer file system calls for sequential file
access than previous UNIX systems. The UDP packets used for the implementation of
Sun RPC are extended to 9 kilobytes, enabling an RPC call containing an entire block
as an argument to be transferred in a single packet and minimizing the effect of network
latency when reading files sequentially. In NFS version 3, there is no limit on the
maximum size of file blocks that can be handled in read and write operations; clients
and servers can negotiate sizes larger than 8 kbytes if both are able to handle them.

As mentioned above, the file status information cached at clients must be updated
at least every three seconds for active files. To reduce the consequential server load
resulting from getattr requests, all operations that refer to files or directories are taken
as implicit getattr requests, and the current attribute values are ‘piggybacked’ along with
the other results of the operation.

Securing NFS with Kerberos • In Section 11.6.2 we described the Kerberos
authentication system developed at MIT, which has become an industry standard for
securing intranet servers against unauthorized access and imposter attacks. The security
of NFS implementations has been strengthened by the use of the Kerberos scheme to
authenticate clients. In this subsection, we describe the ‘Kerberization’ of NFS as
carried out by the designers of Kerberos.

In the original standard implementation of NFS, the user’s identity is included in
each request in the form of an unencrypted numeric identifier. (The identifier can be
encrypted in later versions of NFS.) NFS does not take any further steps to check the
authenticity of the identifier supplied. This implies a high degree of trust in the integrity
of the client computer and its software by NFS, whereas the aim of Kerberos and other
authentication-based security systems is to reduce to a minimum the range of
components in which trust is assumed. Essentially, when NFS is used in a ‘Kerberized’
environment it should accept requests only from clients whose identity can be shown to
have been authenticated by Kerberos.

One obvious solution considered by the Kerberos developers was to change the
nature of the credentials required by NFS to be a full-blown Kerberos ticket and
authenticator. But because NFS is implemented as a stateless server, each individual file
access request is handled on its face value and the authentication data would have to be

SECTION 12.3 CASE STUDY: SUN NETWORK FILE SYSTEM 545

included in each request. This was considered unacceptably expensive in terms of the
time required to perform the necessary encryptions and because it would have entailed
adding the Kerberos client library to the kernel of all workstations.

Instead, a hybrid approach was adopted in which the NFS mount server is supplied
with full Kerberos authentication data for the users when their home and root
filesystems are mounted. The results of this authentication, including the user’s
conventional numerical identifier and the address of the client computer, are retained by
the server with the mount information for each filesystem. (Although the NFS server
does not retain state relating to individual client processes, it does retain the current
mounts at each client computer.)

On each file access request, the NFS server checks the user identifier and the
sender’s address and grants access only if they match those stored at the server for the
relevant client at mount time. This hybrid approach involves only minimal additional
cost and is safe against most forms of attack, provided that only one user at a time can
log in to each client computer. At MIT, the system is configured so that this is the case.
Recent NFS implementations include Kerberos authentication as one of several options
for authentication, and sites that also run Kerberos servers are advised to use this option.

Performance • Early performance figures reported by Sandberg [1987] showed that the
use of NFS did not normally impose a performance penalty in comparison with access
to files stored on local disks. He identified two remaining problem areas:

• frequent use of the getattr call in order to fetch timestamps from servers for cache
validation;

• relatively poor performance of the write operation because write-through was
used at the server.

He noted that writes are relatively infrequent in typical UNIX workloads (about 5% of
all calls to the server), and the cost of write-through is therefore tolerable except when
large files are written to the server. Further, the version of NFS that he tested did not
include the commit mechanism outlined above, which has resulted in a substantial
improvement in write performance in current versions. His results also show that the
lookup operation accounts for almost 50% of server calls. This is a consequence of the
step-by-step pathname translation method necessitated by UNIX’s file-naming
semantics.

Measurements are taken regularly by Sun and other NFS implementors using an
updated version of an exhaustive set of benchmark programs known as LADDIS [Keith
and Wittle 1993]. Current and past results are available at the SPEC web site
[www.spec.org]. Performance is summarized there for NFS server implementations
from many vendors and different hardware configurations. Single-CPU
implementations based on PC hardware but with dedicated operating systems achieve
throughputs in excess of 12,000 server operations per second and large multi-processor
configurations with many disks and controllers have achieved throughputs of up to
300,000 server operations per second. These figures indicate that NFS offers a very
effective solution to distributed storage needs in intranets of most sizes and types of use,
ranging for example from a traditional UNIX load of development by several hundred
software engineers to a battery of web servers serving material from an NFS server.

546 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

NFS summary • Sun NFS closely follows our abstract model. The resulting design
provides good location and access transparency if the NFS mount service is used
properly to produce similar name spaces at all clients. NFS supports heterogeneous
hardware and operating systems. The NFS server implementation is stateless, enabling
clients and servers to resume execution after a failure without the need for any recovery
procedures. Migration of files or filesystems is not supported, except at the level of
manual intervention to reconfigure mount directives after the movement of a filesystem
to a new location.

The performance of NFS is much enhanced by the caching of file blocks at each
client computer. This is important for the achievement of satisfactory performance but
results in some deviation from strict UNIX one-copy file update semantics.

The other design goals of NFS and the extent to which they have been achieved are
discussed below.

Access transparency: The NFS client module provides an application programming
interface to local processes that is identical to the local operating system’s interface.
Thus in a UNIX client, accesses to remote files are performed using the normal UNIX
system calls. No modifications to existing programs are required to enable them to
operate correctly with remote files.

Location transparency: Each client establishes a file name space by adding mounted
directories in remote filesystems to its local name space. File systems have to be
exported by the node that holds them and remote-mounted by a client before they can
be accessed by processes running in the client (see Figure 12.10). The point in a
client’s name hierarchy at which a remote-mounted file system appears is determined
by the client; NFS does not enforce a single network-wide file name space – each
client sees a set of remote filesystems that is determined locally, and remote files may
have different pathnames on different clients, but a uniform name space can be
established with appropriate configuration tables in each client, achieving the goal of
location transparency.

Mobility transparency: Filesystems (in the UNIX sense, that is, subtrees of files)
may be moved between servers, but the remote mount tables in each client must then
be updated separately to enable the clients to access the filesystems in their new
locations, thus migration transparency is not fully achieved by NFS.

Scalability: The published performance figures show that NFS servers can be built
to handle very large real-world loads in an efficient and cost-effective manner. The
performance of a single server can be increased by the addition of processors, disks
and controllers. When the limits of that process are reached, additional servers must
be installed and the filesystems must be reallocated between them. The effectiveness
of that strategy is limited by the existence of ‘hot spot’ files – single files that are
accessed so frequently that the server reaches a performance limit. When loads
exceed the maximum performance available with that strategy, a distributed file
system that supports replication of updatable files (such as Coda, described in
Chapter 18), or one such as AFS that reduces the protocol traffic by the caching of
whole files, may offer a better solution. We discuss other approaches to scalability in
Section 12.5.

SECTION 12.3 CASE STUDY: SUN NETWORK FILE SYSTEM 547

File replication: Read-only file stores can be replicated on several NFS servers, but
NFS does not support file replication with updates. The Sun Network Information
Service (NIS) is a separate service available for use with NFS that supports the
replication of simple databases organized as key-value pairs (for example, the UNIX
system files /etc/passwd and /etc/hosts). It manages the distribution of updates and
accesses to the replicated files based on a simple master–slave replication model
(also known as the primary copy model, discussed further in Chapter 18) with
provision for the replication of part or all of the database at each site. NIS provides a
shared repository for system information that changes infrequently and does not
require updates to occur simultaneously at all sites.

Hardware and operating system heterogeneity: NFS has been implemented for
almost every known operating system and hardware platform and is supported by a
variety of filing systems.

Fault tolerance: The stateless and idempotent nature of the NFS file access protocol
ensures that the failure modes observed by clients when accessing remote files are
similar to those for local file access. When a server fails, the service that it provides
is suspended until the server is restarted, but once it has been restarted user-level
client processes proceed from the point at which the service was interrupted, unaware
of the failure (except in the case of access to soft-mounted remote file systems). In
practice, hard mounting is used in most instances, and this tends to impede
application programs handling server failures gracefully.

The failure of a client computer or a user-level process in a client has no effect
on any server that it may be using, since servers hold no state on behalf of their
clients.

Consistency: We have described the update behaviour in some detail. It provides a
close approximation to one-copy semantics and meets the needs of the vast majority
of applications, but the use of file sharing via NFS for communication or close
coordination between processes on different computers cannot be recommended.

Security: The need for security in NFS emerged with the connection of most
intranets to the Internet. The integration of Kerberos with NFS was a major step
forward. Other recent developments include the option to use a secure RPC
implementation (RPCSEC_GSS, documented in RFC 2203 [Eisler et al. 1997]) for
authentication and to ensure the privacy and security of the data transmitted with read
and write operations. Installations that have not deployed these mechanisms abound,
though, and they are insecure.

Efficiency: The measured performance of several implementations of NFS and its
widespread adoption for use in situations that generate very heavy loads are clear
indications of the efficiency with which the NFS protocol can be implemented.

548 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

12.4 Case study: The Andrew File System

Like NFS, AFS provides transparent access to remote shared files for UNIX programs
running on workstations. Access to AFS files is via the normal UNIX file primitives,
enabling existing UNIX programs to access AFS files without modification or
recompilation. AFS is compatible with NFS. AFS servers hold ‘local’ UNIX files, but
the filing system in the servers is NFS-based, so files are referenced by NFS-style file
handles rather than i-node numbers, and the files may be remotely accessed via NFS.

AFS differs markedly from NFS in its design and implementation. The differences
are primarily attributable to the identification of scalability as the most important design
goal. AFS is designed to perform well with larger numbers of active users than other
distributed file systems. The key strategy for achieving scalability is the caching of
whole files in client nodes. AFS has two unusual design characteristics:

Whole-file serving: The entire contents of directories and files are transmitted to
client computers by AFS servers (in AFS-3, files larger than 64 kbytes are
transferred in 64-kbyte chunks).

Whole-file caching: Once a copy of a file or a chunk has been transferred to a
client computer it is stored in a cache on the local disk. The cache contains several
hundred of the files most recently used on that computer. The cache is permanent,
surviving reboots of the client computer. Local copies of files are used to satisfy
clients’ open requests in preference to remote copies whenever possible.

Scenario • Here is a simple scenario illustrating the operation of AFS:

1. When a user process in a client computer issues an open system call for a file in
the shared file space and there is not a current copy of the file in the local cache,
the server holding the file is located and is sent a request for a copy of the file.

2. The copy is stored in the local UNIX file system in the client computer. The copy
is then opened and the resulting UNIX file descriptor is returned to the client.

3. Subsequent read, write and other operations on the file by processes in the client
computer are applied to the local copy.

4. When the process in the client issues a close system call, if the local copy has been
updated its contents are sent back to the server. The server updates the file
contents and the timestamps on the file. The copy on the client’s local disk is
retained in case it is needed again by a user-level process on the same workstation.

We discuss the observed performance of AFS below, but we can make some general
observations and predictions here based on the design characteristics described above:

• For shared files that are infrequently updated (such as those containing the code
of UNIX commands and libraries) and for files that are normally accessed by only
a single user (such as most of the files in a user’s home directory and its subtree),
locally cached copies are likely to remain valid for long periods – in the first case
because they are not updated and in the second because if they are updated, the
updated copy will be in the cache on the owner’s workstation. These classes of file
account for the overwhelming majority of file accesses.

SECTION 12.4 CASE STUDY: THE ANDREW FILE SYSTEM 549

• The local cache can be allocated a substantial proportion of the disk space on each
workstation – say, 100 megabytes. This is normally sufficient for the establishment
of a working set of the files used by one user. The provision of sufficient cache
storage for the establishment of a working set ensures that files in regular use on a
given workstation are normally retained in the cache until they are needed again.

• The design strategy is based on some assumptions about average and maximum
file size and locality of reference to files in UNIX systems. These assumptions are
derived from observations of typical UNIX workloads in academic and other
environments [Satyanarayanan 1981, Ousterhout et al. 1985, Floyd 1986]. The
most important observations are:

– Files are small; most are less than 10 kilobytes in size.

– Read operations on files are much more common than writes (about six times
more common).

– Sequential access is common, and random access is rare.

– Most files are read and written by only one user. When a file is shared, it is
usually only one user who modifies it.

– Files are referenced in bursts. If a file has been referenced recently, there is a
high probability that it will be referenced again in the near future.

These observations were used to guide the design and optimization of AFS, not to
restrict the functionality seen by users.

• AFS works best with the classes of file identified in the first point above. There is
one important type of file that does not fit into any of these classes – databases are
typically shared by many users and are often updated quite frequently. The
designers of AFS have explicitly excluded the provision of storage facilities for
databases from their design goals, stating that the constraints imposed by different
naming structures (that is, content-based access) and the need for fine-grained data
access, concurrency control and atomicity of updates make it difficult to design a
distributed database system that is also a distributed file system. They argue that
the provision of facilities for distributed databases should be addressed separately
[Satyanarayanan 1989a].

12.4.1 Implementation

The above scenario illustrates AFS’s operation but leaves many questions about its
implementation unanswered. Among the most important are:

• How does AFS gain control when an open or close system call referring to a file
in the shared file space is issued by a client?

• How is the server holding the required file located?

• What space is allocated for cached files in workstations?

• How does AFS ensure that the cached copies of files are up-to-date when files may
be updated by several clients?

We answer these questions below.

Figure 12.11 Distribution of processes in the Andrew File System

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

550 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

AFS is implemented as two software components that exist as UNIX processes
called Vice and Venus. Figure 12.11 shows the distribution of Vice and Venus processes.
Vice is the name given to the server software that runs as a user-level UNIX process in
each server computer, and Venus is a user-level process that runs in each client computer
and corresponds to the client module in our abstract model.

The files available to user processes running on workstations are either local or
shared. Local files are handled as normal UNIX files. They are stored on a workstation’s
disk and are available only to local user processes. Shared files are stored on servers, and
copies of them are cached on the local disks of workstations. The name space seen by
user processes is illustrated in Figure 12.12. It is a conventional UNIX directory
hierarchy, with a specific subtree (called cmu) containing all of the shared files. This
splitting of the file name space into local and shared files leads to some loss of location
transparency, but this is hardly noticeable to users other than system administrators.
Local files are used only for temporary files (/tmp) and processes that are essential for
workstation startup. Other standard UNIX files (such as those normally found in /bin,
/lib and so on) are implemented as symbolic links from local directories to files held in
the shared space. Users’ directories are in the shared space, enabling users to access their
files from any workstation.

The UNIX kernel in each workstation and server is a modified version of BSD
UNIX. The modifications are designed to intercept open, close and some other file
system calls when they refer to files in the shared name space and pass them to the Venus
process in the client computer (illustrated in Figure 12.13). One other kernel
modification is included for performance reasons, and this is described later.

One of the file partitions on the local disk of each workstation is used as a cache,
holding the cached copies of files from the shared space. Venus manages the cache,
removing the least recently used files when a new file is acquired from a server to make

Figure 12.12 File name space seen by clients of AFS

/ (root)

tmp bin cmuvmunix. . .

bin

SharedLocal

Symbolic
links

Figure 12.13 System call interception in AFS

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

SECTION 12.4 CASE STUDY: THE ANDREW FILE SYSTEM 551

the required space if the partition is full. The workstation cache is usually large enough
to accommodate several hundred average-sized files, rendering the workstation largely
independent of the Vice servers once a working set of the current user’s files and
frequently used system files has been cached.

AFS resembles the abstract file service model described in Section 12.2 in these
respects:

• A flat file service is implemented by the Vice servers, and the hierarchic directory
structure required by UNIX user programs is implemented by the set of Venus
processes in the workstations.

• Each file and directory in the shared file space is identified by a unique, 96-bit file
identifier (fid) similar to a UFID. The Venus processes translate the pathnames
issued by clients to fids.

552 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

Files are grouped into volumes for ease of location and movement. Volumes are
generally smaller than the UNIX filesystems, which are the unit of file grouping in NFS.
For example, each user’s personal files are generally located in a separate volume. Other
volumes are allocated for system binaries, documentation and library code.

The representation of fids includes the volume number for the volume containing
the file (cf. the file group identifier in UFIDs), an NFS file handle identifying the file
within the volume (cf. the file number in UFIDs) and a uniquifier to ensure that file
identifiers are not reused:

32 bits 32 bits 32 bits

Volume number File handle Uniquifier

User programs use conventional UNIX pathnames to refer to files, but AFS uses fids in
the communication between the Venus and Vice processes. The Vice servers accept
requests only in terms of fids. Venus translates the pathnames supplied by clients into
fids using a step-by-step lookup to obtain the information from the file directories held
in the Vice servers.

Figure 12.14 describes the actions taken by Vice, Venus and the UNIX kernel
when a user process issues each of the system calls mentioned in our outline scenario
above. The callback promise mentioned here is a mechanism for ensuring that cached
copies of files are updated when another client closes the same file after updating it. This
mechanism is discussed in the next section.

12.4.2 Cache consistency

When Vice supplies a copy of a file to a Venus process it also provides a callback

promise – a token issued by the Vice server that is the custodian of the file, guaranteeing
that it will notify the Venus process when any other client modifies the file. Callback
promises are stored with the cached files on the workstation disks and have two states:
valid or cancelled. When a server performs a request to update a file it notifies all of the
Venus processes to which it has issued callback promises by sending a callback to each
– a callback is a remote procedure call from a server to a Venus process. When the Venus
process receives a callback, it sets the callback promise token for the relevant file to
cancelled.

Whenever Venus handles an open on behalf of a client, it checks the cache. If the
required file is found in the cache, then its token is checked. If its value is cancelled, then
a fresh copy of the file must be fetched from the Vice server, but if the token is valid,
then the cached copy can be opened and used without reference to Vice.

When a workstation is restarted after a failure or a shutdown, Venus aims to retain
as many as possible of the cached files on the local disk, but it cannot assume that the
callback promise tokens are correct, since some callbacks may have been missed. Before
the first use of each cached file or directory after a restart, Venus therefore generates a
cache validation request containing the file modification timestamp to the server that is
the custodian of the file. If the timestamp is current, the server responds with valid and
the token is reinstated. If the timestamp shows that the file is out of date, then the server
responds with cancelled and the token is set to cancelled. Callbacks must be renewed

Figure 12.14 Implementation of file system calls in AFS

User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding callback
promises on the file.

SECTION 12.4 CASE STUDY: THE ANDREW FILE SYSTEM 553

before an open if a time T (typically on the order of a few minutes) has elapsed since the
file was cached without communication from the server. This is to deal with possible
communication failures, which can result in the loss of callback messages.

This callback-based mechanism for maintaining cache consistency was adopted as
offering the most scalable approach, following the evaluation in the prototype (AFS-1)
of a timestamp-based mechanism similar to that used in NFS. In AFS-1, a Venus process
holding a cached copy of a file interrogates the Vice process on each open to determine
whether the timestamp on the local copy agrees with that on the server. The callback-
based approach is more scalable because it results in communication between client and
server and activity in the server only when the file has been updated, whereas the
timestamp approach results in a client-server interaction on each open, even when there
is a valid local copy. Since the majority of files are not accessed concurrently, and read

operations predominate over writes in most applications, the callback mechanism
results in a dramatic reduction in the number of client-server interactions.

The callback mechanism used in AFS-2 and later versions of AFS requires Vice
servers to maintain some state on behalf of their Venus clients, unlike AFS-1, NFS and
our file service model. The client-dependent state required consists of a list of the Venus

554 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

processes to which callback promises have been issued for each file. These callback lists
must be retained over server failures – they are held on the server disks and are updated
using atomic operations.

Figure 12.15

Figure 12.15 The main components of the Vice service interface

Note: Directory and administrative operations (Rename, Link, Makedir, Removedir, GetTime,
CheckToken and so on) are not shown.

Fetch(fid) attr, data Returns the attributes (status) and, optionally, the contents of
the file identified by fid and records a callback promise on it.

Store(fid, attr, data) Updates the attributes and (optionally) the contents of a
specified file.

Create() fid Creates a new file and records a callback promise on it.

Remove(fid) Deletes the specified file.

SetLock(fid, mode) Sets a lock on the specified file or directory. The mode of the
lock may be shared or exclusive. Locks that are not removed
expire after 30 minutes.

ReleaseLock(fid) Unlocks the specified file or directory.

RemoveCallback(fid) Informs the server that a Venus process has flushed a file from
its cache.

BreakCallback(fid) Call made by a Vice server to a Venus process; cancels the
callback promise on the relevant file.

 shows the RPC calls provided by AFS servers for operations on files
(that is, the interface provided by AFS servers to Venus processes).

Update semantics • The goal of this cache-consistency mechanism is to achieve the
best approximation to one-copy file semantics that is practicable without serious
performance degradation. A strict implementation of one-copy semantics for UNIX file
access primitives would require that the results of each write to a file be distributed to
all sites holding the file in their cache before any further accesses can occur. This is not
practicable in large-scale systems; instead, the callback promise mechanism maintains
a well-defined approximation to one-copy semantics.

For AFS-1, the update semantics can be formally stated in very simple terms. For
a client C operating on a file F whose custodian is a server S, the following guarantees
of currency for the copies of F are maintained:

after a successful open: latest(F, S)

after a failed open: failure(S)

after a successful close: updated(F, S)

after a failed close: failure(S)

where latest(F, S) denotes a guarantee that the current value of F at C is the same as the
value at S, failure(S) denotes that the open or close operation has not been performed at

SECTION 12.4 CASE STUDY: THE ANDREW FILE SYSTEM 555

S (and the failure can be detected by C), and updated(F, S) denotes that C’s value of F
has been successfully propagated to S.

For AFS-2, the currency guarantee for open is slightly weaker, and the
corresponding formal statement of the guarantee is more complex. This is because a
client may open an old copy of a file after it has been updated by another client. This
occurs if a callback message is lost, for example as a result of a network failure. But
there is a maximum time, T, for which a client can remain unaware of a newer version
of a file. Hence we have the following guarantee:

after a successful open: latest(F, S, 0)
or (lostCallback(S, T) and inCache(F) and

latest(F, S, T))

where latest(F, S, T) denotes that the copy of F seen by the client is no more than T
seconds out of date, lostCallback(S, T) denotes that a callback message from S to C has
been lost at some time during the last T seconds, and inCache(F) indicates that the file
F was in the cache at C before the open operation was attempted. The above formal
statement expresses the fact that the cached copy of F at C after an open operation is the
most recent version in the system or a callback message has been lost (due to a
communication failure) and the version that was already in the cache has been used; the
cached version will be no more than T seconds out of date. (T is a system constant
representing the interval at which callback promises must be renewed. At most
installations, the value of T is about 10 minutes.)

In line with its goal – to provide a large-scale, UNIX-compatible distributed file
service – AFS does not provide any further mechanism for the control of concurrent
updates. The cache consistency algorithm described above comes into action only on
open and close operations. Once a file has been opened, the client may access and update
the local copy in any way it chooses without the knowledge of any processes on other
workstations. When the file is closed, a copy is returned to the server, replacing the
current version.

If clients in different workstations open, write and close the same file
concurrently, all but the update resulting from the last close will be silently lost (no error
report is given). Clients must implement concurrency control independently if they
require it. On the other hand, when two client processes in the same workstation open a
file, they share the same cached copy and updates are performed in the normal UNIX
fashion – block by block.

Although the update semantics differ depending on the locations of the concurrent
processes accessing a file and are not precisely the same as those provided by the
standard UNIX file system, they are sufficiently close for the vast majority of existing
UNIX programs to operate correctly.

12.4.3 Other aspects

AFS introduces several other interesting design developments and refinements that we
outline here, together with a summary of performance evaluation results:

UNIX kernel modifications • We have noted that the Vice server is a user-level process
running in the server computer and the server host is dedicated to the provision of an

556 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

AFS service. The UNIX kernel in AFS hosts is altered so that Vice can perform file
operations in terms of file handles instead of the conventional UNIX file descriptors.
This is the only kernel modification required by AFS, and it is necessary if Vice is not
to maintain any client state (such as file descriptors).

Location database • Each server contains a copy of a fully replicated location database
giving a mapping of volume names to servers. Temporary inaccuracies in this database
may occur when a volume is moved, but they are harmless because forwarding
information is left behind in the server from which the volume is moved.

Threads • The implementations of Vice and Venus make use of a non-preemptive
threads package to enable requests to be processed concurrently at both the client (where
several user processes may have file access requests in progress concurrently) and the
server. In the client, the tables describing the contents of the cache and the volume
database are held in memory that is shared between the Venus threads.

Read-only replicas • Volumes containing files that are frequently read but rarely
modified, such as the UNIX /bin and /usr/bin directories of system commands and /man

directory of manual pages, can be replicated as read-only volumes at several servers.
When this is done, there is only one read-write replica and all updates are directed to it.
The propagation of the changes to the read-only replicas is performed after the update
by an explicit operational procedure. Entries in the location database for volumes that
are replicated in this way are one-to-many, and the server for each client request is
selected on the bases of server loads and accessibility.

Bulk transfers • AFS transfers files between clients and servers in 64-kilobyte chunks.
The use of such a large packet size is an important aid to performance, minimizing the
effect of network latency. Thus the design of AFS enables the use of the network to be
optimized.

Partial file caching • The need to transfer the entire contents of files to clients even
when the application requirement is to read only a small portion of the file is an obvious
source of inefficiency. Version 3 of AFS removed this requirement, allowing file data
to be transferred and cached in 64-kbyte blocks while still retaining the consistency
semantics and other features of the AFS protocol.

Performance • The primary goal of AFS is scalability, so its performance with large
numbers of users is of particular interest. Howard et al. [1988] give details of extensive
comparative performance measurements, which were undertaken using a specially
developed AFS benchmark that has subsequently been widely used for the evaluation of
distributed file systems. Not surprisingly, whole-file caching and the callback protocol
led to dramatically reduced loads on the servers. Satyanarayanan [1989a] states that a
server load of 40% was measured with 18 client nodes running a standard benchmark,
against a load of 100% for NFS running the same benchmark. Satyanarayanan attributes
much of the performance advantage of AFS to the reduction in server load deriving from
the use of callbacks to notify clients of updates to files, compared with the timeout
mechanism used in NFS for checking the validity of pages cached at clients.

Wide area support: • Version 3 of AFS supports multiple administrative cells, each
with its own servers, clients, system administrators and users. Each cell is a completely
autonomous environment, but a federation of cells can cooperate in presenting users

SECTION 12.5 ENHANCEMENTS AND FURTHER DEVELOPMENTS 557

with a uniform, seamless file name space. The resulting system was widely deployed by
the Transarc Corporation, and a detailed survey of the resulting performance usage
patterns was published [Spasojevic and Satyanarayanan 1996]. The system was installed
on over 1000 servers at over 150 sites. The survey showed cache hit ratios in the range
of 96 –98% for accesses to a sample of 32,000 file volumes holding 200 Gbytes of data.

12.5 Enhancements and further developments

Several advances have been made in the design of distributed file systems since the
emergence of NFS and AFS. In this section, we describe advances that enhance the
performance, availability and scalability of conventional distributed file systems. More
radical advances are described elsewhere in the book, including the maintenance of
consistency in replicated read-write filesystems to support disconnected operation and
high availability in the Bayou and Coda systems (Sections 18.4.2 and 18.4.3) and a
highly scalable architecture for the delivery of streams of real-time data with quality
guarantees in the Tiger video file server (Section 20.6.1).

NFS enhancements • Several research projects have addressed the need for one-copy
update semantics by extending the NFS protocol to include open and close operations
and adding a callback mechanism to enable the server to notify clients of the need to
invalidate cache entries. We describe two such efforts here; their results seem to indicate
that these enhancements can be accommodated without undue complexity or extra
communication costs.

Some recent efforts by Sun and other NFS developers have been directed at
making NFS servers more accessible and useful in wide-area networks. While the HTTP
protocol supported by web servers offers an effective and highly scalable method for
making whole files available to clients throughout the Internet, it is less useful to
application programs that require access to portions of large files or those that update
portions of files. The WebNFS development (described below) makes it possible for
application programs to become clients of NFS servers anywhere in the Internet (using
the NFS protocol directly instead of indirectly through a kernel module). This, together
with appropriate libraries for Java and other network programming languages, should
offer the possibility of implementing Internet applications that share data directly, such
as multi-user games or clients of large dynamic databases.

Achieving one-copy update semantics: The stateless server architecture of NFS brought
great advantages in terms of robustness and ease of implementation, but it precluded the
achievement of precise one-copy update semantics (the effects of concurrent writes by
different clients to the same file are not guaranteed to be the same as they would be in a
single UNIX system when multiple processes write to a local file). It also prevents the
use of callbacks notifying clients of changes to files, and this results in frequent getattr

requests from clients to check for file modification.
Two research systems have been developed that address these drawbacks. Spritely

NFS [Srinivasan and Mogul 1989, Mogul 1994] is a version of the file system developed
for the Sprite distributed operating system at Berkeley [Nelson et al. 1988]. Spritely
NFS is an implementation of the NFS protocol with the addition of open and close calls.

558 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

Clients’ modules must send an open operation whenever a local user-level process opens
a file that is on the server. The parameters of the Sprite open operation specify a mode
(read, write or both) and include counts of the number of local processes that currently
have the file open for reading and for writing. Similarly, when a local process closes a
remote file, a close operation is sent to the server with updated counts of readers and
writers. The server records these numbers in an open files table with the IP address and
port number of the client.

When the server receives an open, it checks the open files table for other clients
that have the same file open and sends callback messages to those clients instructing
them to modify their caching strategy. If the open specifies write mode, then it will fail
if any other client has the file open for writing. Other clients that have the file open for
reading will be instructed to invalidate any locally cached portions of the file.

For open operations that specify read mode, the server sends a callback message
to any client that is writing, instructing it to stop caching (i.e., to use a strictly write-
through mode of operation), and it instructs all clients that are reading to cease caching
the file (so that all local read calls result in a request to the server).

These measures result in a file service that maintains the UNIX one-copy update
semantics at the expense of carrying some client-related state at the server. They also
enable some efficiency gains in the handling of cached writes. If the client-related state
is held in volatile memory at the server, it is vulnerable to server crashes. Spritely NFS
implements a recovery protocol that interrogates a list of clients that have recently
opened files on the server to recover the full open files table. The list of clients is stored
on disk, is updated relatively infrequently and is ‘pessimistic’ – it may safely include
more clients than those that had files open at the time of a crash. Failed clients may also
result in excess entries in the open files table, but these entries will be removed when the
clients restart.

When Spritely NFS was evaluated against NFS version 2, it showed a modest
performance improvement. This was due to the improved caching of writes. Changes in
NFS version 3 would probably result in at least as great an improvement, but the results
of the Spritely NFS project certainly indicate that it is possible to achieve one-copy
update semantics without substantial loss of performance, albeit at the expense of some
extra implementation complexity in the client and server modules and the need for a
recovery mechanism to restore the state after a server crash.

NQNFS: The NQNFS (Not Quite NFS) project [Macklem 1994] had similar aims to
Spritely NFS – to add more precise cache consistency to the NFS protocol and to
improve performance through better use of caching. An NQNFS server maintains
similar client-related state concerning open files, but it uses leases (Section 5.4.3) to aid
recovery after a server crash. The server sets an upper bound on the time for which a
client may hold a lease on an open file. If the client wishes to continue beyond that time,
it must renew the lease. Callbacks are used in a similar manner to Spritely NFS to
request clients to flush their caches when a write request occurs, but if the clients don’t
reply, the server simply waits until their leases expire before responding to the new write
request.

WebNFS: The advent of the Web and Java applets led to the recognition by the NFS
development team and others that some Internet applications could benefit from direct

SECTION 12.5 ENHANCEMENTS AND FURTHER DEVELOPMENTS 559

access to NFS servers without many of the overheads associated with the emulation of
UNIX file operations included in standard NFS clients.

The aim of WebNFS (described in RFCs 2055 and 2056 [Callaghan 1996a,
1996b]) is to enable web browsers and other applications to access files on an NFS
server that ‘publishes’ them using a public file handle relative to a public root directory.
This mode of use bypasses the mount service and the port mapper service (described in
Chapter 5). WebNFS clients interact with an NFS server at a well-known port number
(2049). To access files by pathname, they issue lookup requests using a public file
handle. The public file handle has a well-known value that is interpreted specially by the
virtual file system at the server. Because of the high latency of wide-area networks, a
multicomponent variant of the lookup operation is used to look up a multi-part pathname
in a single request.

Thus WebNFS enables clients to be written that access portions of files stored in
NFS servers at remote sites with minimal setup overheads. There is provision for access
control and authentication, but in many cases the client will require only read access to
public files, and in that case the authentication option can be turned off. To read a
portion of a single file located on an NFS server that supports WebNFS requires the
establishment of a TCP connection and two RPC calls – a multicomponent lookup and
a read operation. The size of the block of data read is not limited by the NFS protocol.

For example, a weather service might publish a file on its NFS server containing
a large database of frequently updated weather data with a URL such as:

nfs://data.weather.gov/weatherdata/global.data

An interactive WeatherMap client, that displays weather maps could be constructed in
Java or any other language that supports a WebNFS procedure library. The client reads
only those portions of the /weatherdata/global.data file that are needed to construct the
particular maps requested by a user, whereas a similar application that used HTTP to
access a weather data server either would have to transfer the entire database to the client
or would require the support of a special-purpose server program to supply it with the
data it requires.

NFS version 4: A new version of the NFS protocol was introduced in 2000. The goals of
NFS version 4 are described in RFC 2624 [Shepler 1999] and in Brent Callaghan’s book
[Callaghan 1999]. Like WebNFS, it aims to make it practical to use NFS in wide-area
networks and Internet applications. It includes the features of WebNFS, but the
introduction of a new protocol also offers an opportunity to make more radical
enhancements. (WebNFS was restricted to changes to the server that did not involve the
addition of new operations to the protocol.)

NFS version 4 exploits results that have emerged from research in file server
design over the past decade, such as the use of callbacks or leases to maintain
consistency. NFS version 4 supports on-the-fly recovery from server faults by allowing
file systems to be moved to new servers transparently. Scalability is improved by using
proxy servers in a manner analogous to their use in the Web.

AFS enhancements • We have mentioned that DCE/DFS, the distributed file system
included in the Open Software Foundation’s Distributed Computing Environment
[www.opengroup.org], was based on the Andrew File System. The design of DCE/DFS
goes beyond AFS, particularly in its approach to cache consistency. In AFS, callbacks

560 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

are generated only when the server receives a close operation for a file that has been
updated. DFS adopted a similar strategy to Spritely NFS and NQNFS to generating
callbacks as soon as a file is updated. In order to update a file, a client must obtain a write

token from the server, specifying a range of bytes in the file that the client is permitted
to update. When a write token is requested, clients holding copies of the same file for
reading receive revocation callbacks. Tokens of other types are used to achieve
consistency for cached file attributes and other metadata. All tokens have an associated
lifetime, and clients must renew them after their lifetime has expired.

Improvements in storage organization • There has been considerable progress in the
organization of file data stored on disks. The impetus for much of this work arose from
the increased loads and greater reliability that distributed file systems need to support,
and they have resulted in file systems with substantially improved performance. The
principal results of this work are:

Redundant Arrays of Inexpensive Disks (RAID): This is a mode of storage
[Patterson et al. 1988, Chen et al. 1994] in which data blocks are segmented into
fixed-size chunks and stored in ‘stripes’ across several disks, along with redundant
error-correcting codes that enable the data blocks to be reconstructed completely and
operation to continue normally in the event of disk failures. RAID also produces
considerably better performance than a single disk, because the stripes that make up
a block are read and written concurrently.

Log-structured file storage (LFS): Like Spritely NFS, this technique originated in
the Sprite distributed operating system project at Berkeley [Rosenblum and
Ousterhout 1992]. The authors observed that as larger amounts of main memory
became available for caching in file servers, an increased level of cache hits resulted
in excellent read performance, but write performance remained mediocre. This arose
from the high latencies associated with writing individual data blocks to disk and
associated updates to metadata blocks (that is, the blocks known as i-nodes that hold
file attributes and a vector of pointers to the blocks in a file).

The LFS solution is to accumulate a set of writes in memory and then commit
them to disk in large, contiguous, fixed-sized segments. These are called log

segments because the data and metadata blocks are stored strictly in the order in
which they were updated. A log segment is 1 Mbyte or larger in size and is stored in
a single disk track, removing the disk head latencies associated with writing
individual blocks. Fresh copies of updated data and metadata blocks are always
written, requiring the maintenance of a dynamic map (in memory with a persistent
backup) pointing to the i-node blocks. Garbage collection of stale blocks is also
required, with compaction of ‘live’ blocks to leave contiguous areas of storage free
for the storage of log segments. The latter is a fairly complex process; it is carried out
as a background activity by a component called the cleaner. Some sophisticated
cleaner algorithms have been developed for it based on the results of simulations.

Despite these extra costs, the overall performance gain is outstanding;
Rosenblum and Ousterhout measured a write throughput as high as 70% of the
available disk bandwidth, compared with less than 10% for a conventional UNIX file
system. The log structure also simplifies recovery after server crashes. The Zebra file
system [Hartman and Ousterhout 1995], developed as a follow-on to the original LFS

SECTION 12.5 ENHANCEMENTS AND FURTHER DEVELOPMENTS 561

work, combines log-structured writes with a distributed RAID approach – the log
segments are subdivided into sections with error-correcting data and written to disks
on separate network nodes. Performance four to five times better than that of NFS is
claimed for writing large files, with smaller gains for short files.

New design approaches • The availability of high-performance switched networks
(such as ATM and switched high-speed Ethernet) have prompted several efforts to
provide persistent storage systems that distribute file data in a highly scalable and fault-
tolerant manner among many nodes on an intranet, separating the responsibilities for
reading and writing data from the responsibilities for managing the metadata and
servicing client requests. In the following, we outline two such developments.

These approaches scale better than the more centralized servers that we have
described in the preceding sections. They generally demand a high level of trust among
the computers that cooperate to provide the service, because they include a fairly low-
level protocol for communication with the nodes holding data (somewhat analogous to
a ‘virtual disk’ API). Hence their scope is likely to be limited to a single local network.

xFS: A group at the University of California, Berkeley, proposed a serverless network
file system architecture and developed a prototype implementation called xFS
[Anderson et al. 1996]. Their approach was motivated by three factors:

1. the opportunity provided by fast switched LANs for multiple file servers in a local
network to transfer bulk data to clients concurrently;

2. increased demand for access to shared data;

3. the fundamental limitations of systems based on central file servers.

Concerning (3), they refer to the facts that the construction of high-performance NFS
servers requires relatively costly hardware with multiple CPUs, disks and network
controllers, and that there are limits to the process of partitioning the file space – i.e.,
placing shared files in separate filesystems mounted on different servers. They also
point to the fact that a central server represents a single point of failure.

xFS is ‘serverless’ in the sense that it distributes file server processing
responsibilities across a set of available computers in a local network at the granularity
of individual files. Storage responsibilities are distributed independently of management
and other service responsibilities: xFS implements a software RAID storage system,
striping file data across disks on multiple computers (in this regard it is a precursor to
the Tiger video file server described in Chapter 20), together with a log-structuring
technique similar to the Zebra file system.

Responsibility for the management of each file can be allocated to any of the
computers supporting the xFS service. This is achieved through a metadata structure
called the manager map, which is replicated at all clients and servers. File identifiers
include a field that acts as an index into the manager map, and each entry in the map
identifies the computer that is currently responsible for managing the corresponding file.
Several other metadata structures, similar to those found in other log-structured and
RAID storage systems, are used for the management of the log-structured file storage
and the striped disk storage.

Anderson et al. constructed a preliminary prototype of xFS and evaluated its
performance. The prototype was incomplete at the time the evaluation was carried out –

562 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

the implementation of crash recovery was unfinished and the log-structured storage
scheme lacked a cleaner component to recover space occupied by stale logs and compact
files.

The performance evaluations carried out with this preliminary prototype used 32
single-processor and dual-processor Sun SPARCstations connected to a high-speed
network. The evaluations compared the xFS file service running on up to 32
workstations with NFS and with AFS, each running on a single dual-processor Sun
SPARCStation. The read and write bandwidths achieved with xFS with 32 servers
exceeded those of NFS and AFS with a single dual-processor server by approximately
a factor of 10. The difference in performance was much less marked when xFS was
compared with NFS and AFS using the standard AFS benchmark. But overall, the
results indicate that the highly distributed processing and storage architecture of xFS
offers a promising direction for achieving better scalability in distributed file systems.

Frangipani: Frangipani is a highly scalable distributed file system developed and
deployed at the Digital Systems Research Center (now Compaq Systems Research
Center) [Thekkath et al. 1997]. Its goals are very similar to those of xFS, and like xFS,
it approaches them with a design that separates persistent storage responsibilities from
other file service actions. But Frangipani’s service is structured as two totally
independent layers. The lower layer is provided by the Petal distributed virtual disk
system [Lee and Thekkath 1996].

Petal provides a distributed virtual disk abstraction across many disks located on
multiple servers on a switched local network. The virtual disk abstraction tolerates most
hardware and software failures with the aid of replicas of the stored data and
autonomously balances the load on servers by relocating data. Petal virtual disks are
accessed through a UNIX disk driver using standard block input-output operations, so
they can be used to support most file systems. Petal adds between 10 and 100% to the
latency of disk accesses, but the caching strategy results in read and write throughputs
at least as good as those of the underlying disk drives.

Frangipani server modules run within the operating system kernel. As in xFS, the
responsibility for managing files and associated tasks (including the provision of a file-
locking service for clients) is assigned to hosts dynamically, and all machines see a
unified file name space with coherent access (with approximately single-copy
semantics) to shared updatable files. Data is stored in a log-structured and striped format
in the Petal virtual disk store. The use of Petal relieves Frangipani of the need to manage
physical disk space, resulting in a much simpler distributed file system implementation.
Frangipani can emulate the service interfaces of several existing file services, including
NFS and DCE/DFS. Frangipani’s performance is at least as good as that of the Digital
implementation of the UNIX file system.

SECTION 12.6 SUMMARY 563

12.6 Summary

The key design issues for distributed file systems are:

• the effective use of client caching to achieve performance equal to or better than
that of local file systems;

• the maintenance of consistency between multiple cached client copies of files
when they are updated;

• recovery after client or server failure;

• high throughput for reading and writing files of all sizes;

• scalability.

Distributed file systems are very heavily employed in organizational computing, and
their performance has been the subject of much tuning. NFS has a simple stateless
protocol, but it has maintained its early position as the dominant distributed file system
technology with the help of some relatively minor enhancements to the protocol, tuned
implementations and high-performance hardware support.

AFS demonstrated the feasibility of a relatively simple architecture using server
state to reduce the cost of maintaining coherent client caches. AFS outperforms NFS in
many situations. Recent advances have employed data striping across multiple disks and
log-structured writing to further improve performance and scalability.

Current state-of-the-art distributed file systems are highly scalable, provide good
performance across both local and wide-area networks, maintain one-copy file update
semantics and tolerate and recover from failures. Future requirements include support
for mobile users with disconnected operation, and automatic reintegration and quality of
service guarantees to meet the need for the persistent storage and delivery of streams of
multimedia and other time-dependent data. Solutions to these requirements are
discussed in Chapters 18 and 20.

EXERCISES

12.1 Why is there no open or close operation in our interface to the flat file service or the
directory service? What are the differences between our directory service Lookup

operation and the UNIX open? pages 532–534

12.2 Outline methods by which a client module could emulate the UNIX file system interface
using our model file service. pages 532–534

12.3 Write a procedure PathLookup(Pathname, Dir) UFID that implements Lookup for
UNIX-like pathnames based on our model directory service. pages 532–534

12.4 Why should UFIDs be unique across all possible file systems? How is uniqueness for
UFIDs ensured? page 535

564 CHAPTER 12 DISTRIBUTED FILE SYSTEMS

12.5 To what extent does Sun NFS deviate from one-copy file update semantics? Construct
a scenario in which two user-level processes sharing a file would operate correctly in a
single UNIX host but would observe inconsistencies when running in different hosts.

page 542

12.6 Sun NFS aims to support heterogeneous distributed systems by the provision of an
operating system–independent file service. What are the key decisions that the
implementer of an NFS server for an operating system other than UNIX would have to
take? What constraints should an underlying filing system obey to be suitable for the
implementation of NFS servers? page 536

12.7 What data must the NFS client module hold on behalf of each user-level process?
pages 536–537

12.8 Outline client module implementations for the UNIX open() and read() system calls,
using the NFS RPC calls of Figure 12.9, (i) without and (ii) with a client cache.

pages 538, 542

12.9 Explain why the RPC interface to early implementations of NFS is potentially insecure.
The security loophole has been closed in NFS 3 by the use of encryption. How is the
encryption key kept secret? Is the security of the key adequate? pages 539, 544

12.10 After the timeout of an RPC call to access a file on a hard-mounted file system the NFS
client module does not return control to the user-level process that originated the call.
Why? page 539

12.11 How does the NFS automounter help to improve the performance and scalability of
NFS? page 541

12.12 How many lookup calls are needed to resolve a five-part pathname (for example,
/usr/users/jim/code/xyz.c) for a file that is stored on an NFS server? What is the reason
for performing the translation step-by-step? page 540

12.13 What condition must be fulfilled by the configuration of the mount tables at the client
computers for access transparency to be achieved in an NFS-based filing system?

page 540

12.14 How does AFS gain control when an open or close system call referring to a file in the
shared file space is issued by a client? page 549

12.15 Compare the update semantics of UNIX when accessing local files with those of NFS
and AFS. Under what circumstances might clients become aware of the differences?

pages 542, 554

12.16 How does AFS deal with the risk that callback messages may be lost? page 552

12.17 Which features of the AFS design make it more scalable than NFS? What are the limits
on its scalability, assuming that servers can be added as required? Which recent
developments offer greater scalability? pages 545, 556, 561

 565

13

NAME SERVICES

13.1 Introduction
13.2 Name services and the Domain Name System
13.3 Directory services
13.4 Case study: The Global Name Service
13.5 Case study: The X.500 Directory Service
13.6 Summary

This chapter introduces the name service as a distinct service that is used by client
processes to obtain attributes such as the addresses of resources or objects when given
their names. The entities named can be of many types, and they may be managed by
different services. For example, name services are often used to hold the addresses and
other details of users, computers, network domains, services and remote objects. As well
as name services, we describe directory services, which look up services when given
some of their attributes.

Basic design issues for name services, such as the structure and management of
the space of names recognized by the service and the operations that the name service
supports, are outlined and illustrated in the context of the Internet Domain Name
System(DNS).

We also examine how name services are implemented, covering such aspects as
navigation through a collection of name servers when resolving a name, caching naming
data and replicating naming data to increase performance and availability.

Two further case studies are included: the Global Name Service (GNS), and the
X.500 Directory Service, including LDAP.

566 CHAPTER 13 NAME SERVICES

13.1 Introduction

In a distributed system, names are used to refer to a wide variety of resources such as
computers, services, remote objects and files, as well as to users. Naming is an issue that
is easily overlooked but is nonetheless fundamental in distributed system design. Names
facilitate communication and resource sharing. A name is needed to request a computer
system to act upon a specific resource chosen out of many; for example, a name in the
form of a URL is needed to access a specific web page. Processes cannot share particular
resources managed by a computer system unless they can name them consistently. Users
cannot communicate with one another via a distributed system unless they can name one
another, for example, with email addresses.

Names are not the only useful means of identification: descriptive attributes are
another. Sometimes clients do not know the name of the particular entity that they seek,
but they do have some information that describes it. Or they may require a service and
know some of its characteristics but not what entity implements it.

This chapter introduces name services, which provide clients with data about
named objects in distributed systems, and the related concept of directory services,
which provide data about objects that satisfy a given description. We describe
approaches to be taken in the design and implementation of these services, using the
Domain Name Service (DNS), the Global Name Service (GNS) and X500 as case
studies. We begin by examining the fundamental concepts of names and attributes.

13.1.1 Names, addresses and other attributes

Any process that requires access to a specific resource must possess a name or an
identifier for it. Examples of human-readable names are file names such as /etc/passwd,
URLs such as http://www.cdk5.net/ and Internet domain names such as www.cdk5.net.

The term identifier is sometimes used to refer to names that are interpreted only by
programs. Remote object references and NFS file handles are examples of identifiers.
Identifiers are chosen for the efficiency with which they can be looked up and stored by
software.

Needham [1993] makes the distinction between a pure name and other names.
Pure names are simply uninterpreted bit patterns. Non-pure names contain information
about the object that they name; in particular, they may contain information about the
location of the object. Pure names always have to be looked up before they can be of any
use. At the other extreme from a pure name is an object’s address: a value that identifies
the location of the object rather than the object itself. Addresses are efficient for
accessing objects, but objects can sometimes be relocated, so addresses are inadequate
as a means of identification. For example, users’ email addresses usually have to change
when they move between organizations or Internet service providers; they are not in
themselves guaranteed to refer to a specific individual over time.

We say that a name is resolved when it is translated into data about the named
resource or object, often in order to invoke an action upon it. The association between a
name and an object is called a binding. In general, names are bound to attributes of the
named objects, rather than the implementation of the objects themselves. An attribute is

SECTION 13.1 INTRODUCTION 567

the value of a property associated with an object. A key attribute of an entity that is
usually relevant in a distributed system is its address. For example:

• The DNS maps domain names to the attributes of a host computer: its IP address,
the type of entry (for example, a reference to a mail server or another host) and,
for example, the length of time the host’s entry will remain valid.

• The X500 directory service can be used to map a person’s name onto attributes
including their email address and telephone number.

• The CORBA Naming Service and Trading Service were presented in Chapter 8.
The Naming Service maps the name of a remote object onto its remote object
reference, whereas the Trading Service maps the name of a remote object onto its
remote object reference, together with an arbitrary number of attributes describing
the object in terms understandable by human users.

Note that an ‘address’ may be considered just another name that must be looked up, or
it may contain such a name. An IP address must be looked up to obtain a network
address such as an Ethernet address. Similarly, web browsers and email clients make use
of the DNS to interpret the domain names in URLs and email addresses.

Figure 13.1 Composed naming domains used to access a resource from a URL

http://www.cdk5.net:8888/WebExamples/earth.html

URL

Resource ID (IP number, port number, pathname)

Network address

2:60:8c:2:b0:5a

Web server

55.55.55.55 WebExamples/earth.html8888

DNS lookup

Socket

 file

Figure 13.1
shows the domain name portion of a URL resolved first via the DNS into an IP address
and then, at the final hop of Internet routing, via ARP to an Ethernet address for the web
server. The last part of the URL is resolved by the file system on the web server to locate
the relevant file.

Names and services • Many of the names used in a distributed system are specific to
some particular service. For example, users of the social networking web site
twitter.com, have names such as @magmapoetry that no other service resolves. Also, a
client may use a service-specific name when requesting a service to perform an
operation upon a named object or resource that it manages. For example, a file name is
given to the file service when requesting that the file be deleted, and a process identifier
is presented to the process management service when requesting that it be sent a signal.

568 CHAPTER 13 NAME SERVICES

These names are used only in the context of the service that manages the objects named,
except when clients communicate about shared objects.

Names are also sometimes needed to refer to entities in a distributed system that
are beyond the scope of any single service. The major examples of these entities are
users (with proper names and email addresses), computers (with hostnames such as
www.cdk5.net) and services themselves (such as file service or printer service). In
object-based middleware, names refer to remote objects that provide services or
applications. Note that many of these names must be readable by and meaningful to
humans, since users and system administrators need to refer to the major components
and configuration of distributed systems, programmers need to refer to services in
programs, and users need to communicate with each other via the distributed system and
discuss what services are available in different parts of it. Given the connectivity
provided by the Internet, these naming requirements are potentially world-wide in
scope.

Uniform Resource Identifiers • Uniform Resource Identifiers (URIs) [Berners-Lee et al.

2005] came about from the need to identify resources on the Web, and other Internet
resources such as electronic mailboxes. An important goal was to identify resources in
a coherent way, so that they could all be processed by common software such as
browsers. URIs are ‘uniform’ in that their syntax incorporates that of indefinitely many
individual types of resource identifiers (that is, URI schemes), and there are procedures
for managing the global namespace of schemes. The advantage of uniformity is that it
eases the process of introducing new types of identifier, as well as using existing types
of identifier in new contexts, without disrupting existing usage.

For example, if someone was to invent a new type of ‘widget’ URI, then URIs
beginning widget: would have to obey the global URI syntax, as well as any local rules
defined for the widget identifier scheme. These URIs would identify widget resources
in a well-defined way. But even existing software that did not access widget resources
could still process widget URIs – for example, by managing directories containing them.
Turning to an example of incorporating existing identifiers, that has been done for
telephone numbers by prefixing them with the scheme name tel and standardizing their
representation, as in tel:+1-816-555-1212. These tel URIs are intended for uses such as
web links that cause telephone calls to be made when invoked.

Uniform Resource Locators: Some URIs contain information that can be used to locate
and access a resource; others are pure resource names. The familiar term Uniform

Resource Locator (URL) is often used for URIs that provide location information and
specify the method for accessing the resource, including the ‘http’ URLs introduced in
Section 1.6. For example, http://www.cdk5.net/ identifies a web page at the given path
(‘/’) on the host www.cdk5.net, and specifies that the HTTP protocol be used to access
it. Another example is a ‘mailto’ URL, such as mailto:fred@flintstone.org, which
identifies the mailbox at the given address.

URLs are efficient identifiers for accessing resources. But they suffer from the
disadvantage that if a resource is deleted or if it moves, say from one web site to another,
there may be dangling links to the resource containing the old URL. If a user clicks on
a dangling link to a web resource, then the web server will either respond that the
resource is not found or – worse, perhaps – supply a different resource that now occupies
the same location.

SECTION 13.2 NAME SERVICES AND THE DOMAIN NAME SYSTEM 569

Uniform Resource Names: Uniform Resource Names (URNs) are URIs that are used as
pure resource names rather than locators. For example, the URI:

 mid:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com

is a URN that identifies the email message containing it in its ‘Message-Id’ field. The
URI distinguishes that message from any other email message. But it does not provide
the message’s address in any store, so a lookup operation is needed to find it.

A special subtree of URIs beginning with urn: has been reserved for URNs –
although, as the mid: example shows, not all URNs are urn: URIs. The latter urn-
prefixed URIs are all of the form urn:nameSpace:nameSpace-specificName. For
example, urn:ISBN:0-201-62433-8 identifies books that bear the name 0-201-62433-8 in
the standard ISBN naming scheme. For another example, the (invented) name
urn:doi:10.555/music-pop-1234 refers to the publication called music-pop-1234 in the
naming scheme of the publisher known as 10.555 in the Digital Object Identifier (DOI)
scheme [www.doi.org].

There are resolution services (name services, in the terminology of this chapter)
such as the Handle System [www.handle.net] for resolving URNs such as DOIs to
resource attributes, but none is in widespread use. Indeed, there continues to be debate
in the Web and Internet research communities about the extent to which a separate
category of URNs is needed. One school of thought is that ‘cool URLs do not change’
– in other words, that everyone should assign URLs to resources with guarantees about
their continuity of reference. Against that point of view is the observation that not
everyone is in a position to make such guarantees, which require the wherewithal to
maintain control of a domain name and administer resources carefully.

13.2 Name services and the Domain Name System

A name service stores information about a collection of textual names, in the form of
bindings between the names and the attributes of the entities they denote, such as users,
computers, services and objects. The collection is often subdivided into one or more
naming contexts: individual subsets of the bindings that are managed as a unit. The
major operation that a name service supports is to resolve a name – that is, to look up
attributes from a given name. We describe the implementation of name resolution in
Section 13.2.2. Operations are also required for creating new bindings, deleting bindings
and listing bound names, and adding and deleting contexts.

Name management is separated from other services largely because of the
openness of distributed systems, which brings the following motivations:

Unification: It is often convenient for resources managed by different services to use
the same naming scheme. URIs are a good example of this.

Integration: It is not always possible to predict the scope of sharing in a distributed
system. It may become necessary to share and therefore name resources that were
created in different administrative domains. Without a common name service, the
administrative domains may use entirely different naming conventions.

570 CHAPTER 13 NAME SERVICES

General name service requirements • Name services were originally quite simple, since
they were designed only to meet the need to bind names to addresses in a single
management domain, corresponding to a single LAN or WAN. The interconnection of
networks and the increased scale of distributed systems have produced a much larger
name-mapping problem.

Grapevine [Birrell et al. 1982] was one of the earliest extensible, multi-domain
name services. It was designed to be scalable in the number of names and the load of
requests that it could handle.

The Global Name Service, developed at the Digital Equipment Corporation
Systems Research Center [Lampson 1986], is a descendant of Grapevine with ambitious
goals, including:

To handle an essentially arbitrary number of names and to serve an arbitrary number

of administrative organizations: For example, the system should be capable of
handling the names of all the documents in the world.

A long lifetime: Many changes will occur in the organization of the set of names and
in the components that implement the service during its lifetime.

High availability: Most other systems depend upon the name service; they can’t
work when it is broken.

Fault isolation: Local failures should not cause the entire service to fail.

Tolerance of mistrust: A large open system cannot have any component that is
trusted by all of the clients in the system.

Two examples of name services that have concentrated on the goal of scalability to large
numbers of objects such as documents are the Globe name service [van Steen et al.

1998] and the Handle System [www.handle.net]. Far more familiar is the Internet
Domain Name System (DNS), introduced in Chapter 3, which names computers (and
other entities) across the Internet.

In this section, we discuss the main design issues for name services, giving
examples from the DNS. We follow this with a more detailed case study of the DNS.

13.2.1 Name spaces

A name space is the collection of all valid names recognized by a particular service. The
service will attempt to look up a valid name, even though that name may prove not to
correspond to any object – i.e., to be unbound. Name spaces require a syntactic
definition to separate valid names from invalid names. For example, ‘...’ is not
acceptable as the DNS name of a computer, whereas www.cdk99.net is valid (even
though it is unbound).

Names may have an internal structure that represents their position in a hierarchic
name space such as pathnames in a file system, or in an organizational hierarchy such
as Internet domain names; or they may be chosen from a flat set of numeric or symbolic
identifiers. One important advantage of a hierarchy is that it makes large name spaces
more manageable. Each part of a hierarchic name is resolved relative to a separate
context of relatively small size, and the same name may be used with different meanings
in different contexts, to suit different situations of use. In the case of file systems, each

SECTION 13.2 NAME SERVICES AND THE DOMAIN NAME SYSTEM 571

directory represents a context. Thus /etc/passwd is a hierarchic name with two
components. The first, ‘etc’, is resolved relative to the context ‘/’, or root, and the second
part, ‘passwd’, is relative to the context ‘/etc’. The name /oldetc/passwd can have a
different meaning because its second component is resolved in a different context.
Similarly, the same name /etc/passwd may resolve to different files in the contexts of
two different computers.

Hierarchic name spaces are potentially infinite, so they enable a system to grow
indefinitely. By contrast, flat name spaces are usually finite; their size is determined by
fixing a maximum permissible length for names. Another potential advantage of a
hierarchic name space is that different contexts can be managed by different people or
organizations.

The structure of ‘http’ URLs was introduced in Chapter 1. The URL name space
also includes relative names such as ../images/figure1.jpg. When a browser or other web
client encounters such a relative name, it uses the resource in which the relative name is
embedded to determine the server host name and the directory to which this pathname
refers.

DNS names are strings called domain names. Some examples are www.cdk5.net

(a computer), net, com and ac.uk (the latter three are domains).
The DNS name space has a hierarchic structure: a domain name consists of one or

more strings called name components or labels, separated by the delimiter ‘.’. There is
no delimiter at the beginning or end of a domain name, although the root of the DNS
name space is sometimes referred to as ‘.’ for administrative purposes. The name
components are non-null printable strings that do not contain ‘.’. In general, a prefix of
a name is an initial section of the name that contains only zero or more entire
components. For example, in DNS www and www.cdk5 are both prefixes of
www.cdk5.net. DNS names are not case-sensitive, so www.cdk5.net and
WWW.CDK5.NET have the same meaning.

DNS servers do not recognize relative names: all names are referred to the global
root. However, in practical implementations, client software keeps a list of domain
names that are appended automatically to any single-component name before resolution.
For example, the name www presented in the domain cdk5.net probably refers to
www.cdk5.net; client software will append the default domain cdk5.net and attempt to
resolve this name. If this fails, then further default domain names may be appended;
finally, the (absolute) name www will be presented to the root for resolution (an
operation that will of course fail in this case). Names with more than one component,
however, are normally presented intact to the DNS, as absolute names.

Aliases • An alias is a name defined to denote the same information as another name,
similar to a symbolic link between file path names. Aliases allow more convenient
names to be substituted for relatively complicated ones, and allow alternative names to
be used by different people for the same entity. An example is the common use of URL
shorteners, often used in Twitter posts and other situations where space is at a premium.
For example, using web redirection, http://bit.ly/ctqjvH refers to
http://cdk5.net/additional/rmi/programCode/ShapeListClient.java. As another
example, the DNS allows aliases in which one domain name is defined to stand for
another. Aliases are often used to specify the names of machines that run a web server
or an FTP server. For example, the name www.cdk5.net is an alias for cdk5.net. This has

572 CHAPTER 13 NAME SERVICES

the advantage that clients can use either name for the web server, and if the web server
is moved to another computer, only the entry for cdk5.net needs to be updated in the
DNS database.

Naming domains • A naming domain is a name space for which there exists a single
overall administrative authority responsible for assigning names within it. This authority
is in overall control of which names may be bound within the domain, but it is free to
delegate this task.

Domains in DNS are collections of domain names; syntactically, a domain’s name
is the common suffix of the domain names within it, but otherwise it cannot be
distinguished from, for example, a computer name. For example, net is a domain that
contains cdk5.net. Note that the term ‘domain name’ is potentially confusing, since only
some domain names identify domains (others identify computers).

The administration of domains may be devolved to subdomains. The domain
dcs.qmul.ac.uk – the Department of Computer Science at Queen Mary, University of
London in the UK – can contain any name the department wishes. But the domain name
dcs.qmul.ac.uk itself had to be agreed with the college authorities, who manage the
domain qmul.ac.uk. Similarly, qmul.ac.uk had to be agreed with the registered authority
for ac.uk, and so on.

Responsibility for a naming domain normally goes hand in hand with
responsibility for managing and keeping up-to-date the corresponding part of the
database stored in an authoritative name server and used by the name service. Naming
data belonging to different naming domains are in general stored by distinct name
servers managed by the corresponding authorities.

Combining and customizing name spaces • The DNS provides a global and homogene-
ous name space in which a given name refers to the same entity, no matter which process
on which computer looks up the name. By contrast, some name services allow distinct
name spaces – sometimes heterogeneous name spaces – to be embedded into them; and
some name services allow the name space to be customized to suit the needs of individ-
ual groups, users or even processes.

Merging: The practice of mounting file systems in UNIX and NFS (see Section 12.3)
provides an example in which a part of one name space is conveniently embedded in
another. But consider how to merge the entire UNIX file systems of two (or more)
computers called red and blue. Each computer has its own root, with overlapping file
names. For example, /etc/passwd refers to one file on red and a different file on blue.
The obvious way to merge the file systems is to replace each computer’s root with a
‘super root’ and mount each computer’s file system in this super root, say as /red and
/blue. Users and programs can then refer to /red/etc/passwd and /blue/etc/passwd. But
the new naming convention by itself would cause programs on the two computers that
still use the old name /etc/passwd to malfunction. A solution is to leave the old root
contents on each computer and embed the mounted file systems /red and /blue of both
computers (assuming that this does not produce name clashes with the old root
contents).

The moral is that we can always merge name spaces by creating a higher-level root
context, but this may raise a problem of backward-compatibility. Fixing the
compatibility problem, in turn, leaves us with hybrid name spaces and the inconvenience
of having to translate old names between the users of the two computers.

SECTION 13.2 NAME SERVICES AND THE DOMAIN NAME SYSTEM 573

Heterogeneity: The Distributed Computing Environment (DCE) name space [OSF
1997] allows heterogeneous name spaces to be embedded within it. DCE names may
contain junctions, which are similar to mount points in NFS and UNIX (see Section
12.3), except that they allow heterogeneous name spaces to be mounted. For example,
consider the full DCE name /.../dcs.qmul.ac.uk/principals/Jean.Dollimore. The first part
of this name, /.../dcs.qmul.ac.uk, denotes a context called a cell. The next component is
a junction. For example, the junction principals is a context containing security
principals in which the final component, Jean.Dollimore, may be looked up, and in
which these principal names have their own syntax. Similarly, in
/.../dcs.qmul.ac.uk/files/pub/reports/TR2000-99, the junction files is a context
corresponding to a file system directory, in which the final component
pub/reports/TR2000-99 is looked up and in which the file name space has a distinct
syntax. The two junctions principals and files are the roots of heterogeneous name
spaces, implemented by heterogeneous name services.

Customization: We saw in the example of embedding NFS-mounted file systems above
that sometimes users prefer to construct their name spaces independently rather than
sharing a single name space. File system mounting enables users to import files that are
stored on servers and shared, while the other names continue to refer to local, unshared
files and can be administered autonomously. But the same files accessed from two
different computers may be mounted at different points and thus have different names.
Not sharing the entire name space means users must translate names between
computers.

The Spring naming service [Radia et al. 1993] provides the ability to construct
name spaces dynamically and to share individual naming contexts selectively. Even two
different processes on the same computer can have different naming contexts. Spring
naming contexts are first-class objects that can be shared around a distributed system.
For example, suppose a user on computer red wishes to run a program on blue that issues
file pathnames such as /etc/passwd, but these names are to resolve to the files on red’s
file system, not blue’s. This can be achieved in Spring by passing a reference to red’s
local naming context to blue and using it as the program’s naming context. Plan 9 [Pike
et al. 1993] also allows processes to have their own file system name space. A novel
feature of Plan 9 (which can also be implemented in Spring) is that physical directories
can be ordered and merged into a single logical directory. The effect is that a name
looked up in the single logical directory is looked up in the succession of physical
directories until there is a match, when the attributes are returned. This eliminates the
need to supply lists of paths when looking for program or library files.

13.2.2 Name resolution

For the common case of hierarchic name spaces, name resolution is an iterative or
recursive process whereby a name is repeatedly presented to naming contexts in order
to look up the attributes to which it refers. A naming context either maps a given name
onto a set of primitive attributes (such as those of a user) directly, or maps it onto a
further naming context and a derived name to be presented to that context. To resolve a
name, it is first presented to some initial naming context; resolution iterates as long as
further contexts and derived names are output. We illustrated this at the start of Section

574 CHAPTER 13 NAME SERVICES

13.2.1 with the example of /etc/passwd, in which ‘etc’ is presented to the context ‘/’, and
then ‘passwd’ is presented to the context ‘/etc’.

Another example of the iterative nature of resolution is the use of aliases. For
example, whenever a DNS server is asked to resolve an alias such as
www.dcs.qmul.ac.uk, the server first resolves the alias to another domain name (in this
case traffic.dcs.qmul.ac.uk), which must be further resolved to produce an IP address.

In general, the use of aliases makes it possible for cycles to be present in the name
space, in which case resolution may never terminate. Two possible solutions are, to
abandon a resolution process if it passes a threshold number of resolutions, or to leave
administrators to veto any aliases that would introduce cycles.

Name servers and navigation • Any name service, such as DNS, that stores a very large
database and is used by a large population will not store all of its naming information on
a single server computer. Such a server would be a bottleneck and a critical point of
failure. Any heavily used name services should use replication to achieve high
availability. We shall see that DNS specifies that each subset of its database is replicated
in at least two failure-independent servers.

We mentioned above that the data belonging to a naming domain is usually stored
by a local name server managed by the authority responsible for that domain. Although,
in some cases, a name server may store data for more than one domain, it is generally
true to say that data is partitioned into servers according to its domain. We shall see that
in DNS, most of the entries are for local computers. But there are also name servers for
the higher domains, such as yahoo.com and ac.uk, and for the root.

The partitioning of data implies that the local name server cannot answer all
enquiries without the help of other name servers. For example, a name server in the
dcs.qmul.ac.uk domain would not be able to supply the IP address of a computer in the
domain cs.purdue.edu unless it was cached – certainly not the first time it is asked.

The process of locating naming data from more than one name server in order to
resolve a name is called navigation. The client name resolution software carries out
navigation on behalf of the client. It communicates with name servers as necessary to
resolve a name. It may be provided as library code and linked into clients, as for example
in the BIND implementation for DNS (see Section 13.2.3) or in Grapevine [Birrell et al.

1982]. The alternative, used with X500, is to provide name resolution in a separate
process that is shared by all of the client processes on that computer.

One navigation model that DNS supports is known as iterative navigation (see
Figure 13.2). To resolve a name, a client presents the name to the local name server,
which attempts to resolve it. If the local name server has the name, it returns the result
immediately. If it does not, it will suggest another server that will be able to help.
Resolution proceeds at the new server, with further navigation as necessary until the
name is located or is discovered to be unbound.

As DNS is designed to hold entries for millions of domains and is accessed by vast
numbers of clients, it would not be feasible to have all queries starting at a root server,
even if it were replicated heavily. The DNS database is partitioned between servers in
such a way as to allow many queries to be satisfied locally and others to be satisfied
without needing to resolve each part of the name separately. The scheme for resolving
names in DNS is described in more detail in Section 13.2.3.

Client
1

2

3

Figure 13.2 Iterative navigation

A client iteratively contacts name servers NS1–NS3 in order to resolve a name

Name
servers

NS2

NS3

NS1

SECTION 13.2 NAME SERVICES AND THE DOMAIN NAME SYSTEM 575

NFS also employs iterative navigation in the resolution of a file name, on a
component-by-component basis (see Chapter 12). This is because the file service may
encounter a symbolic link when resolving a name. A symbolic link must be interpreted
in the client’s file system name space because it may point to a file in a directory stored
at another server. The client computer must determine which server this is, because only
the client knows its mount points.

In multicast navigation, a client multicasts the name to be resolved and the
required object type to the group of name servers. Only the server that holds the named
attributes responds to the request. Unfortunately, however, if the name proves to be
unbound, the request is greeted with silence. Cheriton and Mann [1989] describe a
multicast-based navigation scheme in which a separate server is included in the group
to respond when the required name is unbound.

Another alternative to the iterative navigation model is one in which a name server
coordinates the resolution of the name and passes the result back to the user agent. Ma
[1992] distinguishes non-recursive and recursive server-controlled navigation (Figure
13.3). Under non-recursive server-controlled navigation, any name server may be
chosen by the client. This server communicates by multicast or iteratively with its peers
in the style described above, as though it were a client. Under recursive server-controlled
navigation, the client once more contacts a single server. If this server does not store the
name, the server contacts a peer storing a (larger) prefix of the name, which in turn
attempts to resolve it. This procedure continues recursively until the name is resolved.

If a name service spans distinct administrative domains, then clients executing in
one administrative domain may be prohibited from accessing name servers belonging to
another such domain. Moreover, even name servers may be prohibited from discovering
the disposition of naming data across name servers in another administrative domain.
Then, both client-controlled and non-recursive server-controlled navigation are
inappropriate, and recursive server-controlled navigation must be used. Authorized
name servers request name service data from designated name servers managed by
different administrations, which return the attributes without revealing where the
different parts of the naming database are stored.

1

2

3

5

1

2

34

4

Figure 13.3 Non-recursive and recursive server-controlled navigation

A name server NS1 communicates with other name servers on behalf of a client

client client

Recursive
server-controlled

Non-recursive
server-controlled

NS2

NS1

NS3

NS2

NS1

NS3

576 CHAPTER 13 NAME SERVICES

Caching • In DNS and other name services, client name resolution software and servers
maintain a cache of the results of previous name resolutions. When a client requests a
name lookup, the name resolution software consults its cache. If it holds a recent result
from a previous lookup for the name, it returns it to the client; otherwise, it sets about
finding it from a server. That server, in turn, may return data cached from other servers.

Caching is key to a name service’s performance and assists in maintaining the
availability of both the name service and other services in spite of name server crashes.
Its role in enhancing response times by saving communication with name servers is
clear. Caching can be used to eliminate high-level name servers – the root server, in
particular – from the navigation path, allowing resolution to proceed despite some server
failures.

Caching by client name resolvers is widely applied in name services and is
particularly successful because naming data are changed relatively rarely. For example,
information such as computer or service addresses is liable to remain unchanged for
months or years. However, the possibility exists of a name service returning out-of-date
attributes – for example, an out-of-date address – during resolution.

13.2.3 The Domain Name System

The Domain Name System is a name service design whose main naming database is
used across the Internet. It was devised principally by Mockapetris and specified in RFC
1034 [Mockapetris 1987] and RFC 1035. DNS replaced the original Internet naming
scheme, in which all host names and addresses were held in a single central master file
and downloaded by FTP to all computers that required them [Harrenstien et al. 1985].
This original scheme was soon seen to suffer from three major shortcomings:

• It did not scale to large numbers of computers.

• Local organizations wished to administer their own naming systems.

• A general name service was needed – not one that serves only for looking up
computer addresses.

SECTION 13.2 NAME SERVICES AND THE DOMAIN NAME SYSTEM 577

The objects named by the DNS are primarily computers – for which mainly IP addresses
are stored as attributes – and what we have referred to in this chapter as naming domains
are called simply domains in the DNS. In principle, however, any type of object can be
named, and its architecture gives scope for a variety of implementations. Organizations
and departments within them can manage their own naming data. Millions of names are
bound by the Internet DNS, and lookups are made against it from around the world. Any
name can be resolved by any client. This is achieved by hierarchical partitioning of the
name database, by replication of the naming data, and by caching.

Domain names • The DNS is designed for use in multiple implementations, each of
which may have its own name space. In practice, however, only one is in widespread
use, and that is the one used for naming across the Internet. The Internet DNS name
space is partitioned both organizationally and according to geography. The names are
written with the highest-level domain on the right. The original top-level organizational
domains (also called generic domains) in use across the Internet were:

com – Commercial organizations

edu – Universities and other educational institutions

gov – US governmental agencies

mil – US military organizations

net – Major network support centres

org – Organizations not mentioned above

int – International organizations

New top-level domains such as biz and mobi have been added since the early 2000s. A
full list of current generic domain names is available from the Internet Assigned
Numbers Authority [www.iana.org I].

In addition, every country has its own domains:

us – United States

uk – United Kingdom

fr – France

... – ...

Countries, particularly those other than the US often use their own subdomains to
distinguish their organizations. The UK, for example, has domains co.uk and ac.uk,
which correspond to com and edu respectively (ac stands for ‘academic community’).

Note that, despite its geographic-sounding uk suffix, a domain such as doit.co.uk

could have data referring to computers in the Spanish office of Doit Ltd., a notional
British company. In other words, even geographic-sounding domain names are
conventional and are completely independent of their physical locations.
DNS queries • The Internet DNS is primarily used for simple host name resolution
and for looking up electronic mail hosts, as follows:

Host name resolution: In general, applications use the DNS to resolve host names
into IP addresses. For example, when a web browser is given a URL containing the

578 CHAPTER 13 NAME SERVICES

domain name www.dcs.qmul.ac.uk, it makes a DNS enquiry and obtains the
corresponding IP address. As was pointed out in Chapter 4, browsers then use HTTP
to communicate with the web server at the given IP address, using a reserved port
number if none is specified in the URL. FTP and SMTP services work in a similar
way; for example, an FTP program may be given the domain name ftp.dcs.qmul.ac.uk

and can make a DNS enquiry to get its IP address and then use TCP to communicate
with it at the reserved port number.

Mail host location: Electronic mail software uses the DNS to resolve domain names
into the IP addresses of mail hosts – i.e., computers that will accept mail for those
domains. For example, when the address tom@dcs.rnx.ac.uk is to be resolved, the
DNS is queried with the address dcs.rnx.ac.uk and the type designation ‘mail’. It
returns a list of domain names of hosts that can accept mail for dcs.rnx.ac.uk, if such
exist (and, optionally, the corresponding IP addresses). The DNS may return more
than one domain name so that the mail software can try alternatives if the main mail
host is unreachable for some reason. The DNS returns an integer preference value for
each mail host, indicating the order in which the mail hosts should be tried.

Some other types of query that are implemented in some installations but are less
frequently used than those just given are:

Reverse resolution: Some software requires a domain name to be returned given an
IP address. This is just the reverse of the normal host name query, but the name server
receiving the query replies only if the IP address is in its own domain.

Host information: The DNS can store the machine architecture type and operating
system with the domain names of hosts. It has been suggested that this option should
not be used in public, because it provides useful information for those attempting to
gain unauthorized access to computers.

In principle, the DNS can be used to store arbitrary attributes. A query is specified by a
domain name, class and type. For domain names in the Internet, the class is IN. The type
of query specifies whether an IP address, a mail host, a name server or some other type
of information is required. A special domain, in-addr.arpa, exists to hold IP addresses for
reverse lookups. The class attribute is used to distinguish, for example, the Internet
naming database from other (experimental) DNS naming databases. A set of types is
defined for a given database; those for the Internet database are given in Figure 13.5.

DNS name servers • The problems of scale are treated by a combination of partitioning
the naming database and replicating and caching parts of it close to the points of need.
The DNS database is distributed across a logical network of servers. Each server holds
part of the naming database – primarily data for the local domain. Queries concerning
computers in the local domain are satisfied by servers within that domain. However,
each server records the domain names and addresses of other name servers, so that
queries pertaining to objects outside the domain can be satisfied.

The DNS naming data are divided into zones. A zone contains the following data:

• Attribute data for names in a domain, less any subdomains administered by lower-
level authorities. For example, a zone could contain data for Queen Mary,
University of London – qmul.ac.uk – less the data held by departments (for
example the Department of Computer Science – dcs.qmul.ac.uk).

SECTION 13.2 NAME SERVICES AND THE DOMAIN NAME SYSTEM 579

• The names and addresses of at least two name servers that provide authoritative

data for the zone. These are versions of zone data that can be relied upon as being
reasonably up-to-date.

• The names of name servers that hold authoritative data for delegated subdomains;
and ‘glue’ data giving the IP addresses of these servers.

• Zone-management parameters, such as those governing the caching and
replication of zone data.

A server may hold authoritative data for zero or more zones. So that naming data are
available even when a single server fails, the DNS architecture specifies that each zone
must be replicated authoritatively in at least two servers.

System administrators enter the data for a zone into a master file, which is the
source of authoritative data for the zone. There are two types of server that are
considered to provide authoritative data. A primary or master server reads zone data
directly from a local master file. Secondary servers download zone data from a primary
server. They communicate periodically with the primary server to check whether their
stored version matches that held by the primary server. If a secondary’s copy is out of
date, the primary sends it the latest version. The frequency of the secondary’s check is
set by administrators as a zone parameter, and its value is typically once or twice a day.

Any server is free to cache data from other servers to avoid having to contact them
when name resolution requires the same data again; it does this on the proviso that
clients are told that such data is non-authoritative as supplied. Each entry in a zone has
a time-to-live value. When a non-authoritative server caches data from an authoritative
server, it notes the time to live. It will only provide its cached data to clients for up to
this time; when queried after the time period has expired, it recontacts the authoritative
server to check its data. This is a useful feature that minimizes the amount of network
traffic while retaining flexibility for system administrators. When attributes are
expected to change rarely, they can be given a correspondingly large time to live. If an
administrator knows that attributes are likely to change soon, they can reduce the time
to live accordingly.

Figure 13.4 shows the arrangement of some of the DNS database as it stood in the
year 2001. This example is equally valid today even if some of the data has altered as
systems have been reconfigured over time. Note that, in practice, root servers such as
a.root-servers.net hold entries for several levels of domain, as well as entries for first-
level domain names. This is to reduce the number of navigation steps required to resolve
domain names. Root name servers hold authoritative entries for the name servers for the
top-level domains. They are also authoritative name servers for the generic top-level
domains, such as com and edu. However, the root name servers are not name servers for
the country domains. For example, the uk domain has a collection of name servers, one
of which is called ns1.nic.net. These name servers know the name servers for the
second-level domains in the United Kingdom such as ac.uk and co.uk. The name servers
for the domain ac.uk know the name servers for all of the university domains in the
country, such as qmul.ac.uk or ic.ac.uk. In some cases, a university domain delegates
some of its responsibilities to a subdomain, such as dcs.qmul.ac.uk.

 The root domain information is replicated by a primary server to a collection of
secondary servers, as described above. In spite of this, root servers serve thousands or

Figure 13.4 DNS name servers

a.root-servers.net
(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmul.ac.uk
(dcs.qmul.ac.uk)

alpha.qmul.ac.uk
(qmul.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk

qmul.ac.uk

dcs.qmul.ac.uk
*.qmul.ac.uk

.ic.ac.uk.dcs.qmul.ac.uk

*.purdue.edu

Name server names are in italics, and the corresponding domains are in
parentheses. Arrows denote name server entries

ns1.nic.uk
(uk)

ac.uk

co.uk

yahoo.com

580 CHAPTER 13 NAME SERVICES

more queries per second. All DNS servers store the addresses of one or more root name
servers, which do not change very often. They also usually store the address of an
authoritative server for the parent domain. A query involving a three-component domain
name such as www.berkeley.edu can be satisfied using at worst two navigation steps:
one to a root server that stores an appropriate name server entry, and a second to the
server whose name is returned.

Referring to Figure 13.4, the domain name jeans-pc.dcs.qmul.ac.uk can be looked
up from within dcs.qmul.ac.uk using the local server dns0.dcs.qmul.ac.uk. This server
does not store an entry for the web server www.ic.ac.uk, but it does keep a cached entry
for ic.ac.uk (which it obtained from the authorized server ns0.ja.net). The server dns0-

doc.ic.ac.uk can be contacted to resolve the full name.

Navigation and query processing • A DNS client is called a resolver. It is normally
implemented as library software. It accepts queries, formats them into messages in the
form expected under the DNS protocol and communicates with one or more name
servers in order to satisfy the queries. A simple request-reply protocol is used, typically
using UDP packets on the Internet (DNS servers use a well-known port number). The
resolver times out and resends its query if necessary. The resolver can be configured to
contact a list of initial name servers in order of preference in case one or more are
unavailable.

Figure 13.5 DNS resource records

Record type Meaning Main contents

A A computer address (IPv4) IPv4 number

AAAA A computer address (IPv6) IPv6 number

NS An authoritative name server Domain name for server

CNAME The canonical name for an alias Domain name for alias

SOA Marks the start of data for a zone Parameters governing the zone

PTR
Domain name pointer (reverse
lookups)

Domain name

HINFO Host information
Machine architecture and operating
system

MX Mail exchange List of <preference, host> pairs

TXT Text string Arbitrary text

SECTION 13.2 NAME SERVICES AND THE DOMAIN NAME SYSTEM 581

The DNS architecture allows for recursive navigation as well as iterative
navigation. The resolver specifies which type of navigation is required when contacting
a name server. However, name servers are not bound to implement recursive navigation.
As was pointed out above, recursive navigation may tie up server threads, meaning that
other requests might be delayed.

In order to save on network communication, the DNS protocol allows for multiple
queries to be packed into the same request message and for name servers
correspondingly to send multiple replies in their response messages.

Resource records • Zone data are stored by name servers in files in one of several fixed
types of resource record. For the Internet database, these include the types given in
Figure 13.5. Each record refers to a domain name, which is not shown. The entries in the
table refer to items already mentioned, except that AAAA records store IPv6 addresses
whereas A records store IPv4 addresses, and TXT entries are included to allow arbitrary
other information to be stored along with domain names.

The data for a zone starts with an SOA-type record, which contains the zone
parameters that specify, for example, the version number and how often secondaries
should refresh their copies. This is followed by a list of records of type NS specifying
the name servers for the domain and a list of records of type MX giving the domain
names of mail hosts, each prefixed by a number expressing its preference. For example,
part of the database for the domain dcs.qmul.ac.uk at one point is shown in Figure 13.6,
where the time to live 1D means 1 day.

Further records of type A later in the database give the IP addresses for the two
name servers dns0 and dns1. The IP addresses of the mail hosts and the third name server
are given in the databases corresponding to their domains.

Figure 13.6 DNS zone data records

domain name time to live class type value

dcs.qmul.ac.uk 1D IN NS dns0

dcs.qmul.ac.uk 1D IN NS dns1

dcs.qmul.ac.uk 1D IN MX 1 mail1.qmul.ac.uk

dcs.qmul.ac.uk 1D IN MX 2 mail2.qmul.ac.uk

582 CHAPTER 13 NAME SERVICES

The majority of the remainder of the records in a lower-level zone like
dcs.qmul.ac.uk will be of type A and map the domain name of a computer onto its IP
address. They may contain some aliases for the well-known services, for example:

domain name time to live class type value

www 1D IN CNAME traffic
traffic 1D IN A 138.37.95.150

If the domain has any subdomains, there will be further records of type NS specifying
their name servers, which will also have individual A entries. For example, at one point
the database for qmul.ac.uk contained the following records for the name servers in its
subdomain dcs.qmul.ac.uk:

domain name time to live class type value

dcs 1D IN NS dns0.dcs

dns0.dcs 1D IN A 138.37.88.249

dcs 1D IN NS dns1.dcs

dns1.dcs 1D IN A 138.37.94.248

Load sharing by name servers: At some sites, heavily used services such as the Web and
FTP are supported by a group of computers on the same network. In this case, the same
domain name is used for each member of the group. When a domain name is shared by
several computers, there is one record for each computer in the group, giving its IP
address. By default, the name server responds to queries for which multiple records
match the requested name by returning the IP addresses according to a round-robin
schedule. Successive clients are given access to different servers so that the servers can
share the workload. Caching has a potential for spoiling this scheme, for once a non-
authoritative name server or a client has the server’s address in its cache it will continue
to use it. To counteract this effect, the records are given a short time to live.

The BIND implementation of the DNS • The Berkeley Internet Name Domain (BIND) is
an implementation of the DNS for computers running UNIX. Client programs link in
library software as the resolver. DNS name server computers run the named daemon.

SECTION 13.2 NAME SERVICES AND THE DOMAIN NAME SYSTEM 583

BIND allows for three categories of name server: primary servers, secondary
servers and caching-only servers. The named program implements just one of these
types, according to the contents of a configuration file. The first two categories are as
described above. Caching-only servers read in from a configuration file sufficient names
and addresses of authoritative servers to resolve any name. Thereafter, they only store
this data and data that they learn by resolving names for clients.

A typical organization has one primary server, with one or more secondary servers
that provide name serving on different local area networks at the site. Additionally,
individual computers often run their own caching-only server, to reduce network traffic
and speed up response times still further.

Discussion of the DNS • The DNS Internet implementation achieves relatively short
average response times for lookups, considering the amount of naming data and the
scale of the networks involved. We have seen that it achieves this by a combination of
partitioning, replicating and caching naming data. The objects named are primarily
computers, name servers and mail hosts. Computer (host) name–to–IP address
mappings change relatively rarely, as do the identities of name servers and mail hosts,
so caching and replication occur in a relatively clement environment.

 The DNS allows naming data to become inconsistent. That is, if naming data is
changed, then other servers may provide clients with stale data for periods on the order
of days. None of the replication techniques explored in Chapter 18 is applied. However,
inconsistency is of no consequence until such time as a client attempts to use stale data.
The DNS does not address itself to how staleness of addresses is detected.

Apart from computers, the DNS also names one particular type of service – the
mail service – on a per-domain basis. DNS assumes there to be only one mail service per
addressed domain, so users do not have to include the name of this service explicitly in
names. Electronic mail applications transparently select this service by using the
appropriate type of query when contacting DNS servers.

In summary, the DNS stores a limited variety of naming data, but this is sufficient
in so far as applications such as electronic mail impose their own naming schemes on
top of domain names. It might be argued that the DNS database represents the lowest
common denominator of what would be considered useful by the many user
communities on the Internet. The DNS was not designed to be the only name service in
the Internet; it coexists with local name and directory services that store data most
pertinent to local needs (such as Sun’s Network Information Service, which stores
encoded passwords, for example, or Microsoft’s Active Directory Services
[www.microsoft.com I], which stores detailed information about all the resources within
a domain).

What remains as a potential problem for the DNS design is its rigidity with respect
to changes in the structure of the name space, and the lack of ability to customize the
name space to suit local needs. These aspects of naming design are taken up by the case
study of the Global Name Service in Section 13.4. But before that, we consider directory
services.

584 CHAPTER 13 NAME SERVICES

13.3 Directory services

We have described how name services store collections of <name, attribute> pairs, and
how the attributes are looked up from a name. It is natural to consider the dual of this
arrangement, in which attributes are used as values to be looked up. In these services,
textual names can be considered to be just another attribute. Sometimes users wish to
find a particular person or resource, but they do not know its name, only some of its other
attributes. For example, a user may ask: ‘What is the name of the user with telephone
number 020-555 9980?’ Likewise, sometimes users require a service, but they are not
concerned with what system entity supplies that service, as long as the service is
conveniently accessible. For example, a user might ask, ‘Which computers in this
building are Macintoshes running the Mac OS X operating system?’ or ‘Where can I
print a high-resolution colour image?’

A service that stores collections of bindings between names and attributes and that
looks up entries that match attribute-based specifications is called a directory service.
Examples are Microsoft’s Active Directory Services, X.500 and its cousin LDAP
(described in Section 13.5), Univers [Bowman et al. 1990] and Profile [Peterson 1988].
Directory services are sometimes called yellow pages services, and conventional name
services are correspondingly called white pages services, in an analogy with the
traditional types of telephone directory. Directory services are also sometimes known as
attribute-based name services.

A directory service returns the sets of attributes of any objects found to match
some specified attributes. So, for example, the request ‘TelephoneNumber = 020 555
9980’ might return {‘Name = John Smith’, ‘TelephoneNumber = 020 555 9980’,
‘emailAddress = john@dcs.gormenghast.ac.uk’, ...}. The client may specify that only a
subset of the attributes is of interest – for example, just the email addresses of matching
objects. X.500 and some other directory services also allow objects to be looked up by
conventional hierarchic textual names. The Universal Directory and Discovery Service
(UDDI), which was presented in Section 9.4, provides both white pages and yellow
pages services to provide information about organizations and the web services they
offer.

UDDI aside, the term discovery service normally denotes the special case of a
directory service for services provided by devices in a spontaneous networking
environment. As Section 1.3.2 described, devices in spontaneous networks are liable to
connect and disconnect unpredictably. One core difference between a discovery service
and other directory services is that the address of a directory service is normally well
known and preconfigured in clients, whereas a device entering a spontaneous
networking environment has to resort to multicast navigation, at least the first time it
accesses the local discovery service. Section 19.2.1 describes discovery services in
detail.

Attributes are clearly more powerful than names as designators of objects:
programs can be written to select objects according to precise attribute specifications
where names might not be known. Another advantage of attributes is that they do not
expose the structure of organizations to the outside world, as do organizationally
partitioned names. However, the relative simplicity of use of textual names makes them
unlikely to be replaced by attribute-based naming in many applications.

SECTION 13.4 CASE STUDY: THE GLOBAL NAME SERVICE 585

13.4 Case study: The Global Name Service

A Global Name Service (GNS) was designed and implemented by Lampson and
colleagues at the DEC Systems Research Center [Lampson 1986] to provide facilities
for resource location, mail addressing and authentication. The design goals of the GNS
have already been listed at the end of Section 13.1; they reflect the fact that a name
service for use in an internetwork must support a naming database that may extend to
include the names of millions of computers and (eventually) email addresses for billions
of users. The designers of the GNS also recognized that the naming database is likely to
have a long lifetime and that it must continue to operate effectively while it grows from
small to large scale and while the network on which it is based evolves. The structure of
the name space may change during that time to reflect changes in organizational
structures. The service should accommodate changes in the names of the individuals,
organizations and groups that it holds, and changes in the naming structure such as those
that occur when one company is taken over by another. In this description, we focus on
those features of the design that enable it to accommodate such changes.

The potentially large naming database and the scale of the distributed environment
in which the GNS is intended to operate make the use of caching essential and render it
extremely difficult to maintain complete consistency between all copies of a database
entry. The cache consistency strategy adopted relies on the assumption that updates to
the database will be infrequent and that slow dissemination of updates is acceptable,
since clients can detect and recover from the use of out-of-date naming data.

The GNS manages a naming database that is composed of a tree of directories
holding names and values. Directories are named by multi-part pathnames referred to a
root, or relative to a working directory, much like file names in a UNIX file system. Each
directory is also assigned an integer, which serves as a unique directory identifier (DI).
In this section, we use names in italics when referring to the DI of a directory, so that
EC is the identifier of the EC directory. A directory contains a list of names and
references. The values stored at the leaves of the directory tree are organized into value

trees, so that the attributes associated with names can be structured values.
Names in the GNS have two parts: <directory name, value name>. The first part

identifies a directory; the second refers to a value tree, or some portion of a value tree.
For example, see Figure 13.7, in which the DIs are illustrated as small integers (although
they are actually chosen from a range of integers to ensure uniqueness). The attributes
of a user Peter.Smith in the directory QMUL would be stored in the value tree named
<EC/UK/AC/QMUL, Peter.Smith>. The value tree includes a password, which can be
referenced as <EC/UK/AC/QMUL, Peter.Smith/password>, and several mail addresses,
each of which would be listed in the value tree as a single node with the name
<EC/UK/AC/QMUL, Peter.Smith/mailboxes>.

The directory tree is partitioned and stored in many servers, with each partition
replicated in several servers. The consistency of the tree is maintained in the face of two
or more concurrent updates – for example, two users may simultaneously attempt to
create entries with the same name, and only one should succeed. Replicated directories
present a second consistency problem; this is addressed by an asynchronous update
distribution algorithm that ensures eventual consistency, but with no guarantee that all
copies are always current.

Figure 13.7 GNS directory tree and value tree for user Peter.Smith

UK FR

AC

QMULDI: 322

Peter.Smith

passwordmailboxes

DI: 599 (EC)

DI: 574DI: 543

DI: 437

Alpha GammaBeta

586 CHAPTER 13 NAME SERVICES

Accommodating change • We now turn to the aspects of the design that are concerned
with accommodating growth and change in the structure of the naming database. At the
level of clients and administrators, growth is accommodated through extension of the
directory tree in the usual manner. But we may wish to integrate the naming trees of two
previously separate GNS services. For example, how could we integrate the database
rooted at the EC directory shown in Figure 13.7 with another database for NORTH

AMERICA? Figure 13.8

Figure 13.8 Merging trees under a new root

EC

UK FR

DI: 599

DI: 574DI: 543

NORTH AMERICA

US

DI: 642

DI: 457DI: 732

#599 = #633/EC
#642 = #633/NORTH AMERICA

Well-known directories:

CANADA

DI: 633 (WORLD)

 shows a new root, WORLD, introduced above the existing roots
of the two trees to be merged. This is a straightforward technique, but how does it affect
clients that continue to use names that are referred to what was ‘the root’ before
integration took place? For example, </UK/AC/QMUL, Peter.Smith> is a name used by
clients before integration. It is an absolute name (since it begins with the symbol for the
root, ‘/’), but the root it refers to is EC, not WORLD. EC and NORTH AMERICA are
working roots – initial contexts against which names beginning with the root ‘/’ are to
be looked up.

SECTION 13.4 CASE STUDY: THE GLOBAL NAME SERVICE 587

The existence of unique directory identifiers can be used to solve this problem.
The working root for each program must be identified as part of its execution
environment (much as is done for a program’s working directory). When a client in the
European Community uses a name of the form </UK/AC/QMUL, Peter.Smith>, its
local user agent, which is aware of the working root, prefixes the directory identifier EC

(#599), thus producing the name <#599/UK/AC/QMUL, Peter.Smith>. The user agent
passes this derived name in the lookup request to a GNS server. The user agent may deal
similarly with relative names referred to working directories. Clients that are aware of
the new configuration may also supply absolute names to the GNS server, which are
referred to the conceptual super-root directory containing all directory identifiers – for
example, <WORLD/EC/UK/AC/QMUL, Peter.Smith> – but the design cannot assume
that all clients will be updated to take account of such a change.

The technique described above solves the logical problem, allowing users and
client programs to continue to use names that are defined relative to an old root even
when a new real root is inserted, but it leaves an implementation problem: in a
distributed naming database that may contain millions of directories, how can the GNS
service locate a directory given only its identifier, such as #599? The solution adopted
by the GNS is to list those directories that are used as working roots, such as EC, in a
table of ‘well-known directories’ held in the current real root directory of the naming
database. Whenever the real root of the naming database changes, as it does in Figure
13.8, all GNS servers are informed of the new location of the real root. They can then
interpret names of the form WORLD/EC/UK/AC/QMUL (referred to the real root) in
the usual way, and they can interpret names of the form #599/UK/AC/QMUL by using
the table of ‘well-known directories’ to translate them to full pathnames beginning at the
real root.

The GNS also supports the restructuring of the database to accommodate
organizational change. Suppose that the United States becomes part of the European
Community (!). Figure 13.9

Figure 13.9 Restructuring the directory

EC

UK FR

DI: 599

DI: 574DI: 543

NORTH AMERICA

US

DI: 642

DI: 457DI: 732

#599 = #633/EC
#642 = #633/NORTH AMERICA

Well-known directories:

CANADA

DI: 633 (WORLD)

#633/EC/US

US

 shows the new directory tree. But if the US subtree is simply
moved to the EC directory, names beginning WORLD/NORTH AMERICA/US will no
longer work. The solution adopted by the GNS is to insert a ‘symbolic link’ in place of
the original US entry (shown in bold in Figure 13.9). The GNS directory lookup
procedure interprets the link as a redirection to the US directory in its new location.

588 CHAPTER 13 NAME SERVICES

Discussion of the GNS • The GNS is descended from Grapevine [Birrell et al. 1982] and
Clearinghouse [Oppen and Dalal 1983], two successful naming systems developed
primarily for the purposes of mail delivery by the Xerox Corporation. The GNS
successfully addresses needs for scalability and reconfigurability, but the solution
adopted for merging and moving directory trees results in a requirement for a database
(the table of well-known directories) that must be replicated at every node. In a large-
scale network, reconfigurations may occur at any level, and this table could grow to a
large size, conflicting with the scalability goal.

13.5 Case study: The X.500 Directory Service

X.500 is a directory service in the sense defined in Section 13.3. It can be used in the
same way as a conventional name service, but it is primarily used to satisfy descriptive
queries and is designed to discover the names and attributes of other users or system
resources. Users may have a variety of requirements for searching and browsing in a
directory of network users, organizations and system resources to obtain information
about the entities that the directory contains. The uses for such a service are likely to be
quite diverse. They range from enquiries that are directly analogous to the use of
telephone directories, such as a simple ‘white pages’ access to obtain a user’s electronic
mail address or a ‘yellow pages’ query aimed, for example, at obtaining the names and
telephone numbers of garages specializing in the repair of a particular make of car, to
the use of the directory to access personal details such as job roles, dietary habits or even
photographic images of the individuals.

Such queries may originate from users, in the ‘yellow pages’example mentioned
above, or from processes, when they may be used to identify services to meet a
functional requirement.

Individuals and organizations can use a directory service to make available a wide
range of information about themselves and the resources that they wish to offer for use
in the network. Users can search the directory for specific information with only partial
knowledge of its name, structure or content.

The ITU and ISO standards organizations defined the X.500 Directory Service

[ITU/ISO 1997] as a network service intended to meet these requirements. The standard
refers to it as a service for access to information about ‘real-world entities’, but it is also
likely to be used for access to information about hardware and software services and
devices. X.500 is specified as an application-level service in the Open Systems
Interconnection (OSI) set of standards, but its design does not depend to any significant
extent on the other OSI standards, and it can be viewed as a design for a general-purpose
directory service. We outline the design of the X.500 directory service and its
implementation here. Readers interested in a more detailed description of X.500 and
methods for its implementation are advised to study Rose’s book on the subject [Rose
1992]. X.500 is also the basis for LDAP (discussed below), and it is used in the DCE
directory service [OSF 1997].

SECTION 13.5 CASE STUDY: THE X.500 DIRECTORY SERVICE 589

The data stored in X.500 servers is organized in a tree structure with named nodes,
as in the case of the other name servers discussed in this chapter, but in X.500 a wide
range of attributes are stored at each node in the tree, and access is possible not just by
name but also by searching for entries with any required combination of attributes.

The X.500 name tree is called the Directory Information Tree (DIT), and the
entire directory structure including the data associated with the nodes, is called the
Directory Information Base (DIB). There is intended to be a single integrated DIB
containing information provided by organizations throughout the world, with portions
of the DIB located in individual X.500 servers. Typically, a medium-sized or large
organization would provide at least one server. Clients access the directory by
establishing a connection to a server and issuing access requests. Clients can contact any
server with an enquiry. If the data required are not in the segment of the DIB held by the
contacted server, it will either invoke other servers to resolve the query or redirect the
client to another server.

Figure 13.10 X.500 service architecture

DSA

DSA

DSA

DSA

DSADSADUA

DUA

DUA

In the terminology of the X.500 standard, servers are Directory Service Agents

(DSAs), and their clients are termed Directory User Agents (DUAs). Figure 13.10
shows the software architecture and one of the several possible navigation models, with
each DUA client process interacting with a single DSA process, which accesses other
DSAs as necessary to satisfy requests.

Each entry in the DIB consists of a name and a set of attributes. As in other name
servers, the full name of an entry corresponds to a path through the DIT from the root of
the tree to the entry. In addition to full or absolute names, a DUA can establish a context,
which includes a base node, and then use shorter relative names that give the path from
the base node to the named entry.

Figure 13.11 shows the portion of the Directory Information Tree that includes the
notional University of Gormenghast in Great Britain, and Figure 13.12 is one of the
associated DIB entries. The data structure for the entries in the DIB and the DIT is very
flexible. A DIB entry consists of a set of attributes, where an attribute has a type and one
or more values. The type of each attribute is denoted by a type name (for example,
countryName, organizationName, commonName, telephoneNumber, mailbox,
objectClass). New attribute types can be defined if they are required. For each distinct

Figure 13.11 Part of the X.500 Directory Information Tree

... France (country) Great Britain (country) Greece (country) ...

BT Plc (organization) University of Gormenghast (organization)...
...

Department of Computer Science (organizationalUnit)

Computing Service (organizationalUnit)

Engineering Department (organizationalUnit)

...

...

X.500 Service (root)

Departmental Staff (organizationalUnit)

Research Students (organizationalUnit)

ely (applicationProcess)

...

...

Alice Flintstone (person) Pat King (person) James Healey (person) Janet Papworth (person)...

590 CHAPTER 13 NAME SERVICES

type name there is a corresponding type definition, which includes a type description
and a syntax definition in the ASN.1 notation (a standard notation for syntax definitions)
defining representations for all permissible values of the type.

DIB entries are classified in a manner similar to the object class structures found
in object-oriented programming languages. Each entry includes an objectClass attribute,
which determines the class (or classes) of the object to which an entry refers.
Organization, organizationalPerson and document are all examples of objectClass

values. Further classes can be defined as they are required. The definition of a class
determines which attributes are mandatory and which are optional for entries of the
given class. The definitions of classes are organized in an inheritance hierarchy in which
all classes except one (called topClass) must contain an objectClass attribute, and the
value of the objectClass attribute must be the names of one or more classes. If there are
several objectClass values, the object inherits the mandatory and optional attributes of
each of the classes.

The name of a DIB entry (the name that determines its position in the DIT) is
determined by selecting one or more of its attributes as distinguished attributes. The
attributes selected for this purpose are referred to as the entry’s Distinguished Name

(DN).

SECTION 13.5 CASE STUDY: THE X.500 DIRECTORY SERVICE 591

Now we can consider the methods by which the directory is accessed. There are
two main types of access request:

read: An absolute or relative name (a domain name in X.500 terminology) for an
entry is given, together with a list of attributes to be read (or an indication that all
attributes are required). The DSA locates the named entry by navigating in the DIT,
passing requests to other DSA servers where it does not hold relevant parts of the tree.
It retrieves the required attributes and returns them to the client.

search: This is an attribute-based access request. A base name and a filter expression
are supplied as arguments. The base name specifies the node in the DIT from which
the search is to commence; the filter expression is a boolean expression that is to be
evaluated for every node below the base node. The filter specifies a search criterion:
a logical combination of tests on the values of any of the attributes in an entry. The
search command returns a list of names (domain names) for all of the entries below
the base node for which the filter evaluates to TRUE.

For example, a filter might be constructed and applied to find the
commonNames of members of staff who occupy room Z42 in the Department of
Computer Science at the University of Gormenghast (Figure 13.12

Figure 13.12 An X.500 DIB Entry

info
Alice Flintstone, Departmental Staff, Department of Computer Science,

University of Gormenghast, GB

commonName

Alice.L.Flintstone
Alice.Flintstone
Alice Flintstone
A. Flintstone

surname

Flintstone
telephoneNumber

+44 986 33 4604

uid

 alf
mail

 alf@dcs.gormenghast.ac.uk
 Alice.Flintstone@dcs.gormenghast.ac.uk
roomNumber

 Z42
userClass

 Research Fellow

). A read request
could then be used to obtain any or all of the attributes of those DIB entries.

Searching can be quite costly when it is applied to large portions of the
directory tree (which may reside in several servers). Additional arguments can be
supplied to search to restrict the scope, the time for which the search is allowed to
continue and the size of the list of entries that is returned.

Administration and updating of the DIB • The DSA interface includes operations for
adding, deleting and modifying entries. Access control is provided for both queries and
updating operations, so access to parts of the DIT may be restricted to certain users or
classes of user.

592 CHAPTER 13 NAME SERVICES

The DIB is partitioned, with the expectation that each organization will provide at
least one server holding the details of the entities in that organization. Portions of the
DIB may be replicated in several servers.

As a standard (or a ‘recommendation’ in CCITT terminology), X.500 does not
address implementation issues. However, it is quite clear that any implementation
involving multiple servers in a wide area network must rely on extensive use of
replication and caching techniques to avoid too much redirection of queries.

One implementation, described by Rose [1992], is a system developed at
University College, London, known as QUIPU [Kille 1991]. In this implementation,
both caching and replication are performed at the level of individual DIB entries, and at
the level of collections of entries descended from the same node. It is assumed that
values may become inconsistent after an update, and the time interval in which the
consistency is restored may be several minutes. This form of update dissemination is
generally considered acceptable for directory service applications.

Lightweight Directory Access Protocol • X.500’s assumption that organizations would
provide information about themselves in public directories within a common system has
proved largely unfounded. Equally, its compexity has meant that its uptake has been
relatively modest.

A group at the University of Michigan proposed a more lightweight approach
called the Lightweight Directory Access Protocol (LDAP), in which a DUA accesses
X.500 directory services directly over TCP/IP instead of the upper layers of the ISO
protocol stack. This is described in RFC 2251 [Wahl et al. 1997]. LDAP also simplifies
the interface to X.500 in other ways: for example, it provides a relatively simple API and
it replaces ASN.1 encoding with textual encoding.

Although the LDAP specification is based on X.500, LDAP does not require it.
An implementation may use any other directory server that obeys the simpler LDAP
specification, as opposed to the X.500 specification. For example, Microsoft’s Active
Directory Services provides an LDAP interface.

Unlike X.500, LDAP has been widely adopted, particularly for intranet directory
services. It provides secure access to directory data through authentication.

13.6 Summary

This chapter has described the design and implementation of name services in
distributed systems. Name services store the attributes of objects in a distributed system
– in particular, their addresses – and return these attributes when a textual name is
supplied to be looked up.

The main requirements for the name service are an ability to handle an arbitrary
number of names, a long lifetime, high availability, the isolation of faults and the
tolerance of mistrust.

The primary design issue is the structure of the name space – the syntactic rules
governing names. A related issue is the resolution model, which sets out the rules by
which a multi-component name is resolved to a set of attributes. The set of bound names
must be managed. Most designs consider the name space to be divided into domains –

SECTION 13.6 SUMMARY 593

discrete sections of the name space, each of which is associated with a single authority
controlling the binding of names within it.

The implementation of the name service may span different organizations and
user communities. The collection of bindings between names and attributes, in other
words, is stored at multiple name servers, each of which stores at least part of the set of
names within a naming domain. The question of navigation therefore arises – by what
procedure can a name be resolved when the necessary information is stored at several
sites? The types of navigation that are supported are iterative, multicast, recursive
server-controlled and non-recursive server-controlled.

Another important aspect of the implementation of a name service is the use of
replication and caching. Both of these assist in making the service highly available, and
both also reduce the time taken to resolve a name.

This chapter has considered two main cases of name service design and
implementation. The Domain Name System is widely used for naming computers and
addressing electronic mail across the Internet; it achieves good response times through
replication and caching. The Global Name Service is a design that has tackled the issue
of reconfiguring the name space as organizational changes occur.

The chapter also considered directory services, which provide data about
matching objects and services when clients supply attribute-based descriptions. X.500
is a model for directory services that can range in scope from individual organizations
to global directories. It has been taken up more widely for use in intranets since the
arrival of the LDAP software.

EXERCISES

13.1 Describe the names (including identifiers) and attributes used in a distributed file service
such as NFS (see Chapter 12). page 566

13.2 Discuss the problems raised by the use of aliases in a name service, and indicate how, if
at all, these may be overcome. page 571

13.3 Explain why iterative navigation is necessary in a name service in which different name
spaces are partially integrated, such as the file-naming scheme provided by NFS.

page 574

13.4 Describe the problem of unbound names in multicast navigation. What is implied by the
installation of a server for responding to lookups of unbound names? page 575

13.5 How does caching help a name service’s availability? page 576

13.6 Discuss the absence of a syntactic distinction (such as the use of a final ‘.’) between
absolute and relative names in the DNS. page 571

13.7 Investigate your local configuration of DNS domains and servers. You may find a
program such as dig or nslookup installed, which enables you to carry out individual
name server queries. page 578

594 CHAPTER 13 NAME SERVICES

13.8 Why do DNS root servers hold entries for two-level names such as yahoo.com and
purdue.edu, rather than one-level names such as edu and com? page 579

13.9 Which other name server addresses do DNS name servers hold by default, and why?
page 579

13.10 Why might a DNS client choose recursive navigation rather than iterative navigation?
What is the relevance of the recursive navigation option to concurrency within a name
server? page 581

13.11 When might a DNS server provide multiple answers to a single name lookup, and why?
page 581

13.12 The GNS does not guarantee that all copies of entries in the naming database are up-to-
date. How are clients of the GNS likely to become aware that they have been given an
out-of-date entry? Under what circumstances might it be harmful? page 585

13.13 Discuss the potential advantages and drawbacks of the use of an X.500 directory service
in place of the DNS and the Internet mail delivery programs. Sketch the design of a mail
delivery system for an internetwork in which all mail users and mail hosts are registered
in an X.500 database. page 588

13.14 What security issues are liable to be relevant to a directory service such as X500
operating within an organization such as a university? page 588

 595

14

TIME AND GLOBAL STATES

14.1 Introduction
14.2 Clocks, events and process states
14.3 Synchronizing physical clocks
14.4 Logical time and logical clocks
14.5 Global states
14.6 Distributed debugging
14.7 Summary

In this chapter, we introduce some topics related to the issue of time in distributed
systems. Time is an important practical issue. For example, we require computers around
the world to timestamp electronic commerce transactions consistently. Time is also an
important theoretical construct in understanding how distributed executions unfold. But
time is problematic in distributed systems. Each computer may have its own physical
clock, but the clocks typically deviate, and we cannot synchronize them perfectly. We
examine algorithms for synchronizing physical clocks approximately and then go on to
explain logical clocks, including vector clocks, which are a tool for ordering events without
knowing precisely when they occurred.

The absence of global physical time makes it difficult to find out the state of our
distributed programs as they execute. We often need to know what state process A is in
when process B is in a certain state, but we cannot rely on physical clocks to know what
is true at the same time. The second half of the chapter examines algorithms to determine
global states of distributed computations despite the lack of global time.

596 CHAPTER 14 TIME AND GLOBAL STATES

14.1 Introduction

This chapter introduces fundamental concepts and algorithms related to monitoring
distributed systems as their execution unfolds, and to timing the events that occur in their
executions.

Time is an important and interesting issue in distributed systems, for several
reasons. First, time is a quantity we often want to measure accurately. In order to know
at what time of day a particular event occurred at a particular computer it is necessary to
synchronize its clock with an authoritative, external source of time. For example, an
eCommerce transaction involves events at a merchant’s computer and at a bank’s
computer. It is important, for auditing purposes, that those events are timestamped
accurately.

Second, algorithms that depend upon clock synchronization have been developed
for several problems in distribution [Liskov 1993]. These include maintaining the
consistency of distributed data (the use of timestamps to serialize transactions is
discussed in Section 16.6), checking the authenticity of a request sent to a server (a
version of the Kerberos authentication protocol, discussed in Chapter 11, depends on
loosely synchronized clocks) and eliminating the processing of duplicate updates (see,
for example, Ladin et al. [1992]).

Measuring time can be problematic due to the existence of multiple frames of
reference. Einstein demonstrated, in his Special Theory of Relativity, the intriguing
consequences that follow from the observation that the speed of light is constant for all
observers, regardless of their relative velocity. He proved from this assumption, among
other things, that two events that are judged to be simultaneous in one frame of reference
are not necessarily simultaneous according to observers in other frames of reference that
are moving relative to it. For example, an observer on the Earth and an observer
travelling away from the Earth in a spaceship will disagree on the time interval between
events, the more so as their relative speed increases.

The relative order of two events can even be reversed for two different observers.
But this cannot happen if one event causes the other to occur. In that case, the physical
effect follows the physical cause for all observers, although the time elapsed between
cause and effect can vary. The timing of physical events was thus proved to be relative
to the observer, and Newton’s notion of absolute physical time was shown to be without
foundation. There is no special physical clock in the universe to which we can appeal
when we want to measure intervals of time.

The notion of physical time is also problematic in a distributed system. This is not
due to the effects of special relativity, which are negligible or nonexistent for normal
computers (unless one counts computers travelling in spaceships!). Rather, the problem
is based on a similar limitation in our ability to timestamp events at different nodes
sufficiently accurately to know the order in which any pair of events occurred, or
whether they occurred simultaneously. There is no absolute, global time to which we
can appeal. And yet we sometimes need to observe distributed systems and establish
whether certain states of affairs occurred at the same time. For example, in object-
oriented systems we need to be able to establish whether references to a particular object
no longer exist – whether the object has become garbage (in which case we can free its
memory). Establishing this requires observations of the states of processes (to find out

SECTION 14.2 CLOCKS, EVENTS AND PROCESS STATES 597

whether they contain references) and of the communication channels between processes
(in case messages containing references are in transit).

In the first half of this chapter, we examine methods whereby computer clocks can
be approximately synchronized, using message passing. We go on to introduce logical
clocks, including vector clocks, which are used to define an order of events without
measuring the physical time at which they occurred.

In the second half, we describe algorithms whose purpose is to capture global
states of distributed systems as they execute.

14.2 Clocks, events and process states

Chapter 2 presented an introductory model of interaction between the processes within
a distributed system. Here we refine that model in order to help us to understand how to
characterize the system’s evolution as it executes, and how to timestamp the events in a
system’s execution that interest users. We begin by considering how to order and
timestamp the events that occur at a single process.

 We take a distributed system to consist of a collection of N processes
pi i 1 2 N.= Each process executes on a single processor, and the processors do
not share memory (Chapter 6 briefly considered the case of processes that share
memory). Each process pi in has a state si that, in general, it transforms as it
executes. The process’s state includes the values of all the variables within it. Its state
may also include the values of any objects in its local operating system environment that
it affects, such as files. We assume that processes cannot communicate with one another
in any way except by sending messages through the network. So, for example, if the
processes operate robot arms connected to their respective nodes in the system, then they
are not allowed to communicate by shaking one another’s robot hands!

As each process pi executes it takes a series of actions, each of which is either a
message send or receive operation, or an operation that transforms pi ’s state – one that
changes one or more of the values in si. In practice, we may choose to use a high-level
description of the actions, according to the application. For example, if the processes in

are engaged in an eCommerce application, then the actions may be ones such as
‘client dispatched order message’ or ‘merchant server recorded transaction to log’.

We define an event to be the occurrence of a single action that a process carries
out as it executes – a communication action or a state-transforming action. The sequence
of events within a single process pi can be placed in a single, total ordering, which we
denote by the relation i between the events. That is, e i e' if and only if the event e
occurs before e at pi . This ordering is well defined, whether or not the process is multi-
threaded, since we have assumed that the process executes on a single processor.

Now we can define the history of process pi to be the series of events that take
place within it, ordered as we have described by the relation i:

history(pi hi <ei
0

ei
1

ei
2

>= =

Clocks • We have seen how to order the events at a process, but not how to timestamp
them – i.e., to assign to them a date and time of day. Computers each contain their own
physical clocks. These clocks are electronic devices that count oscillations occurring in

598 CHAPTER 14 TIME AND GLOBAL STATES

a crystal at a definite frequency, and typically divide this count and store the result in a
counter register. Clock devices can be programmed to generate interrupts at regular
intervals in order that, for example, timeslicing can be implemented; however, we shall
not concern ourselves with this aspect of clock operation.

The operating system reads the node’s hardware clock value, Hi t , scales it and
adds an offset so as to produce a software clock Ci t Hi t += that approximately
measures real, physical time t for process pi . In other words, when the real time in an
absolute frame of reference is t, Ci t is the reading on the software clock. For example,
Ci t could be the 64-bit value of the number of nanoseconds that have elapsed at time
t since a convenient reference time. In general, the clock is not completely accurate, so
Ci t will differ from t. Nonetheless, if Ci behaves sufficiently well (we shall examine
the notion of clock correctness shortly), we can use its value to timestamp any event at
pi . Note that successive events will correspond to different timestamps only if the clock

resolution – the period between updates of the clock value – is smaller than the time
interval between successive events. The rate at which events occur depends on such
factors as the length of the processor instruction cycle.

Clock skew and clock drift • Computer clocks, like any others, tend not to be in perfect
agreement (Figure 14.1

Figure 14.1 Skew between computer clocks in a distributed system

Network

). The instantaneous difference between the readings of any two
clocks is called their skew. Also, the crystal-based clocks used in computers are, like any
other clocks, subject to clock drift, which means that they count time at different rates,
and so diverge. The underlying oscillators are subject to physical variations, with the
consequence that their frequencies of oscillation differ. Moreover, even the same
clock’s frequency varies with temperature. Designs exist that attempt to compensate for
this variation, but they cannot eliminate it. The difference in the oscillation period
between two clocks might be extremely small, but the difference accumulated over
many oscillations leads to an observable difference in the counters registered by two
clocks, no matter how accurately they were initialized to the same value. A clock’s drift

rate is the change in the offset (difference in reading) between the clock and a nominal
perfect reference clock per unit of time measured by the reference clock. For ordinary
clocks based on a quartz crystal this is about 10–6 seconds/second, giving a difference
of 1 second every 1,000,000 seconds, or 11.6 days. The drift rate of ‘high-precision’
quartz clocks is about 10–7 or 10–8.

Coordinated Universal Time • Computer clocks can be synchronized to external sources
of highly accurate time. The most accurate physical clocks use atomic oscillators, whose
drift rate is about one part in 1013. The output of these atomic clocks is used as the

SECTION 14.3 SYNCHRONIZING PHYSICAL CLOCKS 599

standard for elapsed real time, known as International Atomic Time. Since 1967, the
standard second has been defined as 9,192,631,770 periods of transition between the
two hyperfine levels of the ground state of Caesium-133 (Cs133).

Seconds and years and other time units that we use are rooted in astronomical
time. They were originally defined in terms of the rotation of the Earth on its axis and
its rotation about the Sun. However, the period of the Earth’s rotation about its axis is
gradually getting longer, primarily because of tidal friction; atmospheric effects and
convection currents within the Earth’s core also cause short-term increases and
decreases in the period. So astronomical time and atomic time have a tendency to get out
of step.

Coordinated Universal Time – abbreviated as UTC (from the French equivalent)
– is an international standard for timekeeping. It is based on atomic time, but a so-called
‘leap second’ is inserted – or, more rarely, deleted – occasionally to keep it in step with
astronomical time. UTC signals are synchronized and broadcast regularly from land-
based radio stations and satellites covering many parts of the world. For example, in the
USA, the radio station WWV broadcasts time signals on several shortwave frequencies.
Satellite sources include the Global Positioning System (GPS).

Receivers are available commercially. Compared with ‘perfect’ UTC, the signals
received from land-based stations have an accuracy on the order of 0.1–10 milliseconds,
depending on the station used. Signals received from GPS satellites are accurate to about
1 microsecond. Computers with receivers attached can synchronize their clocks with
these timing signals.

14.3 Synchronizing physical clocks

In order to know at what time of day events occur at the processes in our distributed
system – for example, for accountancy purposes – it is necessary to synchronize the
processes’ clocks, Ci , with an authoritative, external source of time. This is external

synchronization. And if the clocks Ci are synchronized with one another to a known
degree of accuracy, then we can measure the interval between two events occurring at
different computers by appealing to their local clocks, even though they are not
necessarily synchronized to an external source of time. This is internal synchronization.
We define these two modes of synchronization more closely as follows, over an interval
of real time I:

External synchronization: For a synchronization bound D 0 , and for a source S of
UTC time, S t Ci t– < D, for i 1 2 N= and for all real times t in I. Another
way of saying this is that the clocks Ci are accurate to within the bound D.

Internal synchronization: For a synchronization bound D 0 , Ci t Cj t– D

for i j 1 2 N= , and for all real times t in I. Another way of saying this is that
the clocks Ci agree within the bound D.

Clocks that are internally synchronized are not necessarily externally synchronized,
since they may drift collectively from an external source of time even though they agree
with one another. However, it follows from the definitions that if the system is

600 CHAPTER 14 TIME AND GLOBAL STATES

externally synchronized with a bound D, then the same system is internally
synchronized with a bound of 2D.

Various notions of correctness for clocks have been suggested. It is common to
define a hardware clock H to be correct if its drift rate falls within a known bound
(a value derived from one supplied by the manufacturer, such as 10–6 seconds/second).
This means that the error in measuring the interval between real times t and t (t t) is
bounded:

1 – t t– H t H t 1 + t t––

This condition forbids jumps in the value of hardware clocks (during normal operation).
Sometimes we also require our software clocks to obey the condition but a weaker
condition of monotonicity may suffice. Monotonicity is the condition that a clock C only
ever advances:

t t C t C t

For example, the UNIX make facility is a tool that is used to compile only those source
files that have been modified since they were last compiled. The modification dates of
each corresponding pair of source and object files are compared to determine this
condition. If a computer whose clock was running fast set its clock back after compiling
a source file but before the file was changed, the source file might appear to have been
modified prior to the compilation. Erroneously, make will not recompile the source file.

We can achieve monotonicity despite the fact that a clock is found to be running
fast. We need only change the rate at which updates are made to the time as given to
applications. This can be achieved in software without changing the rate at which the
underlying hardware clock ticks – recall that Ci t Hi t += , where we are free to
choose the values of and .

A hybrid correctness condition that is sometimes applied is to require that a clock
obeys the monotonicity condition, and that its drift rate is bounded between
synchronization points, but to allow the clock value to jump ahead at synchronization
points.

A clock that does not keep to whatever correctness conditions apply is defined to
be faulty. A clock’s crash failure is said to occur when the clock stops ticking altogether;
any other clock failure is an arbitrary failure. A historical example of an arbitrary failure
is that of a clock with the ‘Y2K bug’, which broke the monotonicity condition by
registering the date after 31 December 1999 as 1 January 1900 instead of 2000; another
example is a clock whose batteries are very low and whose drift rate suddenly becomes
very large.

Note that clocks do not have to be accurate to be correct, according to the
definitions. Since the goal may be internal rather than external synchronization, the
criteria for correctness are only concerned with the proper functioning of the clock’s
‘mechanism’, not its absolute setting.

We now describe algorithms for external synchronization and for internal
synchronization.

SECTION 14.3 SYNCHRONIZING PHYSICAL CLOCKS 601

14.3.1 Synchronization in a synchronous system

We begin by considering the simplest possible case: of internal synchronization between
two processes in a synchronous distributed system. In a synchronous system, bounds are
known for the drift rate of clocks, the maximum message transmission delay, and the
time required to execute each step of a process (see Section 2.4.1).

One process sends the time t on its local clock to the other in a message m. In
principle, the receiving process could set its clock to the time t Ttrans+ , where Ttrans is
the time taken to transmit m between them. The two clocks would then agree (since the
aim is internal synchronization, it does not matter whether the sending process’s clock
is accurate).

Unfortunately, Ttrans is subject to variation and is unknown. In general, other
processes are competing for resources with the processes to be synchronized at their
respective nodes, and other messages compete with m for the network resources.
Nonetheless, there is always a minimum transmission time, min, that would be obtained
if no other processes executed and no other network traffic existed; min can be measured
or conservatively estimated.

In a synchronous system, by definition, there is also an upper bound max on the
time taken to transmit any message. Let the uncertainty in the message transmission time
be u, so that u max min–= . If the receiver sets its clock to be t min+ , then the
clock skew may be as much as u, since the message may in fact have taken time max to
arrive. Similarly, if it sets its clock to t max+ , the skew may again be as large as u. If,
however, it sets its clock to the halfway point, t max min+ 2+ , then the skew is at
most u 2 . In general, for a synchronous system, the optimum bound that can be
achieved on clock skew when synchronizing N clocks is u 1 1 N– [Lundelius and
Lynch 1984].

Most distributed systems found in practice are asynchronous: the factors leading
to message delays are not bounded in their effect, and there is no upper bound max on
message transmission delays. This is particularly so for the Internet. For an
asynchronous system, we may say only that Ttrans min x+= , where x 0. The value
of x is not known in a particular case, although a distribution of values may be
measurable for a particular installation.

14.3.2 Cristian’s method for synchronizing clocks

Cristian [1989] suggested the use of a time server, connected to a device that receives
signals from a source of UTC, to synchronize computers externally. Upon request, the
server process S supplies the time according to its clock, as shown in Figure 14.2

Figure 14.2 Clock synchronization using a time server

m r

m t
Time Server, SP

mr

mt
p Time server, S

.

602 CHAPTER 14 TIME AND GLOBAL STATES

Cristian observed that while there is no upper bound on message transmission delays in
an asynchronous system, the round-trip times for messages exchanged between pairs of
processes are often reasonably short – a small fraction of a second. He describes the
algorithm as probabilistic: the method achieves synchronization only if the observed
round-trip times between client and server are sufficiently short compared with the
required accuracy.

A process p requests the time in a message mr , and receives the time value t in a
message mt (t is inserted in mt at the last possible point before transmission from S’s
computer). Process p records the total round-trip time Tround taken to send the request
mr and receive the reply mt . It can measure this time with reasonable accuracy if its
rate of clock drift is small. For example, the round-trip time should be on the order of
1–10 milliseconds on a LAN, over which time a clock with a drift rate of 10–6

seconds/second varies by at most 10–5 milliseconds.
A simple estimate of the time to which p should set its clock is t Tround 2+ ,

which assumes that the elapsed time is split equally before and after S placed t in mt .
This is normally a reasonably accurate assumption, unless the two messages are
transmitted over different networks. If the value of the minimum transmission time min

is known or can be conservatively estimated, then we can determine the accuracy of this
result as follows.

The earliest point at which S could have placed the time in mt was min after p
dispatched mr . The latest point at which it could have done this was min before mt
arrived at p. The time by S’s clock when the reply message arrives is therefore in the
range t min+ t Tround min–+[,] . The width of this range is Tround 2min– , so the
accuracy is ± Tround 2 min– .

Variability can be dealt with to some extent by making several requests to S

(spacing the requests so that transitory congestion can clear) and taking the minimum
value of Tround to give the most accurate estimate. The greater the accuracy required,
the smaller the probability of achieving it. This is because the most accurate results are
those in which both messages are transmitted in a time close to min – an unlikely event
in a busy network.

Discussion of Cristian’s algorithm • As described, Cristian’s method suffers from the
problem associated with all services implemented by a single server: that the single time
server might fail and thus render synchronization temporarily impossible. Cristian
suggested, for this reason, that time should be provided by a group of synchronized time
servers, each with a receiver for UTC time signals. For example, a client could multicast
its request to all servers and use only the first reply obtained.

Note that a faulty time server that replied with spurious time values, or an imposter
time server that replied with deliberately incorrect times, could wreak havoc in a
computer system. These problems were beyond the scope of the work described by
Cristian [1989], which assumes that sources of external time signals are self-checking.
Cristian and Fetzer [1994] describe a family of probabilistic protocols for internal clock
synchronization, each of which tolerates certain failures. Srikanth and Toueg [1987]
first described an algorithm that is optimal with respect to the accuracy of the
synchronized clocks, while tolerating some failures. Dolev et al. [1986] showed that if
f is the number of faulty clocks out of a total of N, then we must have N 3f if the other,
correct, clocks are still to be able to achieve agreement. The problem of dealing with

SECTION 14.3 SYNCHRONIZING PHYSICAL CLOCKS 603

faulty clocks is partially addressed by the Berkeley algorithm, which is described next.
The problem of malicious interference with time synchronization can be dealt with by
authentication techniques.

14.3.3 The Berkeley algorithm

Gusella and Zatti [1989] describe an algorithm for internal synchronization that they
developed for collections of computers running Berkeley UNIX. In it, a coordinator
computer is chosen to act as the master. Unlike in Cristian’s protocol, this computer
periodically polls the other computers whose clocks are to be synchronized, called
slaves. The slaves send back their clock values to it. The master estimates their local
clock times by observing the round-trip times (similarly to Cristian’s technique), and it
averages the values obtained (including its own clock’s reading). The balance of
probabilities is that this average cancels out the individual clocks’ tendencies to run fast
or slow. The accuracy of the protocol depends upon a nominal maximum round-trip time
between the master and the slaves. The master eliminates any occasional readings
associated with larger times than this maximum.

Instead of sending the updated current time back to the other computers – which
would introduce further uncertainty due to the message transmission time – the master
sends the amount by which each individual slave’s clock requires adjustment. This can
be a positive or negative value.

The Berkeley algorithm eliminates readings from faulty clocks. Such clocks could
have a significant adverse effect if an ordinary average was taken so instead the master
takes a fault-tolerant average. That is, a subset is chosen of clocks that do not differ from
one another by more than a specified amount, and the average is taken of readings from
only these clocks.

Gusella and Zatti describe an experiment involving 15 computers whose clocks
were synchronized to within about 20–25 milliseconds using their protocol. The local
clocks’ drift rates were measured to be less than 2 10–5, and the maximum round-trip
time was taken to be 10 milliseconds.

Should the master fail, then another can be elected to take over and function
exactly as its predecessor. Section 15.3 discusses some general-purpose election
algorithms. Note that these are not guaranteed to elect a new master in bounded time, so
the difference between two clocks would be unbounded if they were used.

14.3.4 The Network Time Protocol

Cristian’s method and the Berkeley algorithm are intended primarily for use within
intranets. The Network Time Protocol (NTP) [Mills 1995] defines an architecture for a
time service and a protocol to distribute time information over the Internet.

NTP’s chief design aims and features are as follows:

To provide a service enabling clients across the Internet to be synchronized

accurately to UTC: Although large and variable message delays are encountered in
Internet communication, NTP employs statistical techniques for the filtering of
timing data and it discriminates between the quality of timing data from different
servers.

604 CHAPTER 14 TIME AND GLOBAL STATES

To provide a reliable service that can survive lengthy losses of connectivity: There
are redundant servers and redundant paths between the servers. The servers can
reconfigure so as to continue to provide the service if one of them becomes
unreachable.

To enable clients to resynchronize sufficiently frequently to offset the rates of drift

found in most computers: The service is designed to scale to large numbers of clients
and servers.

To provide protection against interference with the time service, whether malicious

or accidental: The time service uses authentication techniques to check that timing
data originate from the claimed trusted sources. It also validates the return addresses
of messages sent to it.

The NTP service is provided by a network of servers located across the Internet. Primary

servers are connected directly to a time source such as a radio clock receiving UTC;
secondary servers are synchronized, ultimately, with primary servers. The servers are
connected in a logical hierarchy called a synchronization subnet (see Figure 14.3

Figure 14.3 An example synchronization subnet in an NTP implementation

1

2

3

2

3 3

 Arrows denote synchronization control, numbers denote strata.

),
whose levels are called strata. Primary servers occupy stratum 1: they are at the root.
Stratum 2 servers are secondary servers that are synchronized directly with the primary
servers; stratum 3 servers are synchronized with stratum 2 servers, and so on. The
lowest-level (leaf) servers execute in users’ workstations.

The clocks belonging to servers with high stratum numbers are liable to be less
accurate than those with low stratum numbers, because errors are introduced at each
level of synchronization. NTP also takes into account the total message round-trip
delays to the root in assessing the quality of timekeeping data held by a particular server.

The synchronization subnet can reconfigure as servers become unreachable or
failures occur. If, for example, a primary server’s UTC source fails, then it can become

SECTION 14.3 SYNCHRONIZING PHYSICAL CLOCKS 605

a stratum 2 secondary server. If a secondary server’s normal source of synchronization
fails or becomes unreachable, then it may synchronize with another server.

NTP servers synchronize with one another in one of three modes: multicast,
procedure-call and symmetric mode. Multicast mode is intended for use on a high-speed
LAN. One or more servers periodically multicasts the time to the servers running in
other computers connected by the LAN, which set their clocks assuming a small delay.
This mode can achieve only relatively low accuracies, but ones that nonetheless are
considered sufficient for many purposes.

Procedure-call mode is similar to the operation of Cristian’s algorithm, described
in Section 14.3.2. In this mode, one server accepts requests from other computers, which
it processes by replying with its timestamp (current clock reading). This mode is suitable
where higher accuracies are required than can be achieved with multicast, or where
multicast is not supported in hardware. For example, file servers on the same or a
neighbouring LAN that need to keep accurate timing information for file accesses could
contact a local server in procedure-call mode.

Finally, symmetric mode is intended for use by the servers that supply time
information in LANs and by the higher levels (lower strata) of the synchronization
subnet, where the highest accuracies are to be achieved. A pair of servers operating in
symmetric mode exchange messages bearing timing information. Timing data are
retained as part of an association between the servers that is maintained in order to
improve the accuracy of their synchronization over time.

In all modes, messages are delivered unreliably, using the standard UDP Internet
transport protocol. In procedure-call mode and symmetric mode, processes exchange
pairs of messages. Each message bears timestamps of recent message events: the local
times when the previous NTP message between the pair was sent and received, and the
local time when the current message was transmitted. The recipient of the NTP message
notes the local time when it receives the message. The four times Ti 3– , Ti 2– , Ti 1–
and Ti are shown in Figure 14.4

Figure 14.4 Messages exchanged between a pair of NTP peers

Ti

Ti–1Ti–2

Ti–3

Server B

Server A

Time

m m'

Time

 for the messages m and m' sent between servers A and
B. Note that in symmetric mode, unlike in Cristian’s algorithm, there can be a non-
negligible delay between the arrival of one message and the dispatch of the next. Also,
messages may be lost, but the three timestamps carried by each message are nonetheless
valid.

606 CHAPTER 14 TIME AND GLOBAL STATES

For each pair of messages sent between two servers the NTP calculates an offset

oi , which is an estimate of the actual offset between the two clocks, and a delay di ,
which is the total transmission time for the two messages. If the true offset of the clock
at B relative to that at A is o, and if the actual transmission times for m and m' are t and
t', respectively, then we have:

Ti 2– Ti 3– t o+ += and Ti Ti 1– t o–+=

This leads to:

di t t+ Ti 2– Ti 3–– Ti Ti 1––+= =

and:

o oi t t– 2+= , where oi Ti 2– Ti 3–– Ti 1–+ Ti– 2=

Using the fact that t t 0 , it can be shown that oi di 2– o oi di 2+ . Thus oi is
an estimate of the offset, and di is a measure of the accuracy of this estimate.

NTP servers apply a data filtering algorithm to successive pairs <oi di>, which
estimates the offset o and calculates the quality of this estimate as a statistical quantity
called the filter dispersion. A relatively high filter dispersion represents relatively
unreliable data. The eight most recent pairs <oi di> are retained. As with Cristian’s
algorithm, the value of oj that corresponds to the minimum value dj is chosen to estimate
o.

The value of the offset derived from communication with a single source is not
necessarily used by itself to control the local clock, however. In general, an NTP server
engages in message exchanges with several of its peers. In addition to data filtering
applied to exchanges with each single peer, NTP applies a peer-selection algorithm. This
examines the values obtained from exchanges with each of several peers, looking for
relatively unreliable values. The output from this algorithm may cause a server to
change the peer that it primarily uses for synchronization.

Peers with lower stratum numbers are more favoured than those in higher strata
because they are ‘closer’ to the primary time sources. Also, those with the lowest
synchronization dispersion are relatively favoured. This is the sum of the filter
dispersions measured between the server and the root of the synchronization subnet.
(Peers exchange synchronization dispersions in messages, allowing this total to be
calculated.)

NTP employs a phase lock loop model [Mills 1995], which modifies the local
clock’s update frequency in accordance with observations of its drift rate. To take a
simple example, if a clock is discovered always to gain time at the rate of, say, four
seconds per hour, then its frequency can be reduced slightly (in software or hardware)
to compensate for this. The clock’s drift in the intervals between synchronization is thus
reduced.

Mills quotes synchronization accuracies on the order of tens of milliseconds over
Internet paths, and one millisecond on LANs.

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 607

14.4 Logical time and logical clocks

From the point of view of any single process, events are ordered uniquely by times
shown on the local clock. However, as Lamport [1978] pointed out, since we cannot
synchronize clocks perfectly across a distributed system, we cannot in general use
physical time to find out the order of any arbitrary pair of events occurring within it.

In general, we can use a scheme that is similar to physical causality but that applies
in distributed systems to order some of the events that occur at different processes. This
ordering is based on two simple and intuitively obvious points:

• If two events occurred at the same process pi i 1 2 N= , then they
occurred in the order in which pi observes them – this is the order i that we
defined above.

• Whenever a message is sent between processes, the event of sending the message
occurred before the event of receiving the message.

Lamport called the partial ordering obtained by generalizing these two relationships the
happened-before relation. It is also sometimes known as the relation of causal ordering

or potential causal ordering.
We can define the happened-before relation, denoted by , as follows:

HB1: If process pi : e i e', then e e .

HB2: For any message m, send(m) receive(m)
– where send(m) is the event of sending the message, and receive(m)
is the event of receiving it.

HB3: If e, e and e are events such that e e and e e , then e e .

Thus, if e and e are events, and if e e , then we can find a series of events
e1 e2 en occurring at one or more processes such that e e1= and e en= , and
for i 1 2 N 1–= either HB1 or HB2 applies between ei and ei 1+

·
. That is, either

they occur in succession at the same process, or there is a message m such that ei =
send(m) and ei 1+ = receive(m). The sequence of events e1 e2 en need not be
unique.

The relation is illustrated for the case of three processes, p1 , p2 and p3 , in
Figure 14.5

Figure 14.5 Events occurring at three processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

. It can be seen that a b, since the events occur in this order at process p1
(a i b), and similarly c d. Furthermore, b c, since these events are the sending and

608 CHAPTER 14 TIME AND GLOBAL STATES

reception of message m1 , and similarly d f. Combining these relations, we may also
say that, for example, a f.

It can also be seen from Figure 14.5 that not all events are related by the relation
. For example, a e/ and e a/ , since they occur at different processes, and there is

no chain of messages intervening between them. We say that events such as a and e that
are not ordered by are concurrent and write this a e .

The relation captures a flow of data intervening between two events. Note,
however, that in principle data can flow in ways other than by message passing. For
example, if Smith enters a command to his process to send a message, then telephones
Jones, who commands her process to issue another message, the issuing of the first
message clearly happened-before that of the second. Unfortunately, since no network
messages were sent between the issuing processes, we cannot model this type of
relationship in our system.

Another point to note is that if the happened-before relation holds between two
events, then the first might or might not actually have caused the second. For example,
if a server receives a request message and subsequently sends a reply, then clearly the
reply transmission is caused by the request transmission. However, the relation
captures only potential causality, and two events can be related by even though there
is no real connection between them. A process might, for example, receive a message
and subsequently issue another message, but one that it issues every five minutes
anyway and that bears no specific relation to the first message. No actual causality has
been involved, but the relation would order these events.

Logical clocks • Lamport [1978] invented a simple mechanism by which the happened-
before ordering can be captured numerically, called a logical clock. A Lamport logical
clock is a monotonically increasing software counter, whose value need bear no
particular relationship to any physical clock. Each process pi keeps its own logical
clock, Li , which it uses to apply so-called Lamport timestamps to events. We denote the
timestamp of event e at pi by Li e , and by L e we denote the timestamp of event e
at whatever process it occurred at.

To capture the happened-before relation , processes update their logical clocks
and transmit the values of their logical clocks in messages as follows:

LC1: Li is incremented before each event is issued at process pi :
Li := Li 1.+

LC2: (a) When a process pi sends a message m, it piggybacks on m the value
t Li= .

(b) On receiving (m, t), a process pj computes Lj := max Lj t and then
applies LC1 before timestamping the event receive(m).

Although we increment clocks by 1, we could have chosen any positive value. It can
easily be shown, by induction on the length of any sequence of events relating two
events e and e , that e e L e L e .

Note that the converse is not true. If L e L e , then we cannot infer that
e e . In Figure 14.6 we illustrate the use of logical clocks for the example given in
Figure 14.5. Each of the processes p1 , p2 and p3 has its logical clock initialized to 0.
The clock values given are those immediately after the event to which they are adjacent.
Note that, for example, L b L e but b e .

Figure 14.6 Lamport timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 609

Totally ordered logical clocks • Some pairs of distinct events, generated by different
processes, have numerically identical Lamport timestamps. However, we can create a
total order on the set of events – that is, one for which all pairs of distinct events are
ordered – by taking into account the identifiers of the processes at which events occur.
If e is an event occurring at pi with local timestamp Ti

, and e is an event occurring at
pj with local timestamp Tj , we define the global logical timestamps for these events to
be Ti i and Tj j , respectively. And we define Ti i Tj j if and only if either
Ti Tj , or Ti Tj= and i j . This ordering has no general physical significance
(because process identifiers are arbitrary), but it is sometimes useful. Lamport used it,
for example, to order the entry of processes to a critical section.

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome
the shortcoming of Lamport’s clocks: the fact that from L e L e we cannot
conclude that e e

·
. A vector clock for a system of N processes is an array of N

integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local
events. Like Lamport timestamps, processes piggyback vector timestamps on the
messages they send to one another, and there are simple rules for updating the clocks:

VC1: Initially, Vi j 0= , for i j 1 2 N= .

VC2: Just before pi timestamps an event, it sets Vi i :=Vi i 1.+

VC3: pi includes the value t Vi= in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets
Vi j := max Vi j t j , for j 1 2 N= . Taking the component-
wise maximum of two vector timestamps in this way is known as a merge

operation.

For a vector clock Vi , Vi i is the number of events that pi has timestamped, and
Vi j j i is the number of events that have occurred at pj that have potentially
affected pi . (Process pj may have timestamped more events by this point, but no
information has flowed to pi about them in messages as yet.)

610 CHAPTER 14 TIME AND GLOBAL STATES

We may compare vector timestamps as follows:

V V iff V j V j= = for j 1 2 N=

V V iff V j V j for j 1 2 N=

V V iff V V V V

Figure 14.7 Vector timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Let V e be the vector timestamp applied by the process at which e occurs. It is
straightforward to show, by induction on the length of any sequence of events relating
two events e and e , that e e V e V e . Exercise 10.13 leads the reader to
show the converse: if V e V e , then e e .

Figure 14.7 shows the vector timestamps of the events of Figure 14.5. It can be
seen, for example, that V a V f , which reflects the fact that a f. Similarly, we
can tell when two events are concurrent by comparing their timestamps. For example,
that c e can be seen from the facts that neither V c V e nor V e V c .

Vector timestamps have the disadvantage, compared with Lamport timestamps, of
taking up an amount of storage and message payload that is proportional to N, the
number of processes. Charron-Bost [1991] showed that, if we are to be able to tell
whether or not two events are concurrent by inspecting their timestamps, then the
dimension N is unavoidable. However, techniques exist for storing and transmitting
smaller amounts of data, at the expense of the processing required to reconstruct
complete vectors. Raynal and Singhal [1996] give an account of some of these
techniques. They also describe the notion of matrix clocks, whereby processes keep
estimates of other processes’ vector times as well as their own.

14.5 Global states

In this and the next section we examine the problem of finding out whether a particular
property is true of a distributed system as it executes. We begin by giving the examples
of distributed garbage collection, deadlock detection, termination detection and
debugging:

SECTION 14.5 GLOBAL STATES 611

Distributed garbage collection: An object is considered to be garbage if there are no
longer any references to it anywhere in the distributed system. The memory taken up
by that object can be reclaimed once it is known to be garbage. To check that an
object is garbage, we must verify that there are no references to it anywhere in the
system. In Figure 14.8(a), process p1 has two objects that both have references – one
has a reference within p1 itself, and p2 has a reference to the other. Process p2 has
one garbage object, with no references to it anywhere in the system. It also has an
object for which neither p1 nor p2 has a reference, but there is a reference to it in a
message that is in transit between the processes. This shows that when we consider
properties of a system, we must include the state of communication channels as well
as the state of the processes.

Figure 14.8 Detecting global properties

p2p1

message

garbage object

object
reference

(a) Garbage collection

p2p1 wait-for

wait-for(b) Deadlock

p2p1

activate
passive passive(c) Termination

Distributed deadlock detection: A distributed deadlock occurs when each of a
collection of processes waits for another process to send it a message, and where
there is a cycle in the graph of this ‘waits-for’ relationship. Figure 14.8(b) shows that
processes p1 and p2 are each waiting for a message from the other, so this system
will never make progress.

Distributed termination detection: The problem here is how to detect that a
distributed algorithm has terminated. Detecting termination is a problem that sounds
deceptively easy to solve: it seems at first only necessary to test whether each process
has halted. To see that this is not so, consider a distributed algorithm executed by two
processes p1 and p2 , each of which may request values from the other.
Instantaneously, we may find that a process is either active or passive – a passive
process is not engaged in any activity of its own but is prepared to respond with a
value requested by the other. Suppose we discover that p1 is passive and that p2 is

612 CHAPTER 14 TIME AND GLOBAL STATES

passive (Figure 14.8c). To see that we may not conclude that the algorithm has
terminated, consider the following scenario: when we tested p1 for passivity, a
message was on its way from p2 , which became passive immediately after sending
it. On receipt of the message, p1 became active again – after we had found it to be
passive. The algorithm had not terminated.

The phenomena of termination and deadlock are similar in some ways, but they
are different problems. First, a deadlock may affect only a subset of the processes in
a system, whereas all processes must have terminated. Second, process passivity is
not the same as waiting in a deadlock cycle: a deadlocked process is attempting to
perform a further action, for which another process waits; a passive process is not
engaged in any activity.

Distributed debugging: Distributed systems are complex to debug [Bonnaire et al.
1995], and care needs to be taken in establishing what occurred during the execution.
For example, suppose Smith has written an application in which each process pi
contains a variable xi (i 1 2 N=). The variables change as the program
executes, but they are required always to be within a value of one another.
Unfortunately, there is a bug in the program, and Smith suspects that under certain
circumstances xi xj– for some i and j, breaking her consistency constraints. Her
problem is that this relationship must be evaluated for values of the variables that
occur at the same time.

Each of the problems above has specific solutions tailored to it; but they all illustrate the
need to observe a global state, and so motivate a general approach.

14.5.1 Global states and consistent cuts

It is possible in principle to observe the succession of states of an individual process, but
the question of how to ascertain a global state of the system – the state of the collection
of processes – is much harder to address.

The essential problem is the absence of global time. If all processes had perfectly
synchronized clocks, then we could agree on a time at which each process would record
its state – the result would be an actual global state of the system. From the collection of
process states we could tell, for example, whether the processes were deadlocked. But
we cannot achieve perfect clock synchronization, so this method is not available to us.

So we might ask whether we can assemble a meaningful global state from local
states recorded at different real times. The answer is a qualified ‘yes’, but in order to see
this we must first introduce some definitions.

Let us return to our general system of N processes pi (i 1 2 N=), whose
execution we wish to study. We said above that a series of events occurs at each process,
and that we may characterize the execution of each process by its history:

history(pi hi <ei
0

ei
1

ei
2

>= =

Similarly, we may consider any finite prefix of the process’s history:

hi
k

<ei
0

ei
1

ei
k
>=

SECTION 14.5 GLOBAL STATES 613

Each event either is an internal action of the process (for example, the updating of one
of its variables), or is the sending or receipt of a message over the communication
channels that connect the processes.

In principle, we can record what occurred in ’s execution. Each process can
record the events that take place there, and the succession of states it passes through. We
denote by si

k the state of process pi immediately before the kth event occurs, so that si
0

is the initial state of pi . We noted in the examples above that the state of the
communication channels is sometimes relevant. Rather than introducing a new type of
state, we make the processes record the sending or receipt of all messages as part of their
state. If we find that process pi has recorded that it sent a message m to process
pj i j , then by examining whether pj has received that message we can infer whether
or not m is part of the state of the channel between pi and pj .

We can also form the global history of as the union of the individual process
histories:

H h0 h1 hN 1–=

Mathematically, we can take any set of states of the individual processes to form a global
state S s1 s2 sN= . But which global states are meaningful – that is, which
process states could have occurred at the same time? A global state corresponds to initial
prefixes of the individual process histories. A cut of the system’s execution is a subset
of its global history that is a union of prefixes of process histories:

C h1
c1 h2

c2 hN

cN=

The state si in the global state S corresponding to the cut C is that of pi immediately
after the last event processed by pi in the cut – ei

ci (i 1 2 N=). The set of events
{ei

ci : i 1 2 N= } is called the frontier of the cut.
Consider the events occurring at processes p1 and p2 shown in Figure 14.9

Figure 14.9 Cuts

m1 m2

p1

p2
Physical

time

e 10

Consistent cut
Inconsistent cut

e 11 e 12 e 13

e 20 e 21 e 22

. The
figure shows two cuts, one with frontier <e1

0 e2
0 > and another with frontier <e1

2 e2
2 >.

The leftmost cut is inconsistent. This is because at p2 it includes the receipt of the
message m1 , but at p1 it does not include the sending of that message. This is showing
an ‘effect’ without a ‘cause’. The actual execution never was in a global state
corresponding to the process states at that frontier, and we can in principle tell this by
examining the relation between events. By contrast, the rightmost cut is consistent.

614 CHAPTER 14 TIME AND GLOBAL STATES

It includes both the sending and the receipt of message m1 and the sending but not the
receipt of message m2 . That is consistent with the actual execution – after all, the
message took some time to arrive.

A cut C is consistent if, for each event it contains, it also contains all the events
that happened-before that event:

For all events e C , f e f C

A consistent global state is one that corresponds to a consistent cut. We may
characterize the execution of a distributed system as a series of transitions between
global states of the system:

S0 S1 S2

In each transition, precisely one event occurs at some single process in the system. This
event is either the sending of a message, the receipt of a message or an internal event. If
two events happened simultaneously, we may nonetheless deem them to have occurred
in a definite order – say, ordered according to process identifiers. (Events that occur
simultaneously must be concurrent: neither happened-before the other.) A system
evolves in this way through consistent global states.

A run is a total ordering of all the events in a global history that is consistent with
each local history’s ordering, i i 1 2 N= . A linearization or consistent run is
an ordering of the events in a global history that is consistent with this happened-before
relation on H. Note that a linearization is also a run.

Not all runs pass through consistent global states, but all linearizations pass only
through consistent global states. We say that a state S is reachable from a state S if
there is a linearization that passes through S and then S .

 Sometimes we may alter the ordering of concurrent events within a linearization,
and derive a run that still passes through only consistent global states. For example, if
two successive events in a linearization are the receipt of messages by two processes,
then we may swap the order of these two events.

14.5.2 Global state predicates, stability, safety and liveness

Detecting a condition such as deadlock or termination amounts to evaluating a global

state predicate. A global state predicate is a function that maps from the set of global
states of processes in the system to {True, False}. One of the useful characteristics
of the predicates associated with the state of an object being garbage, of the system being
deadlocked or the system being terminated is that they are all stable: once the system
enters a state in which the predicate is True, it remains True in all future states reachable
from that state. By contrast, when we monitor or debug an application we are often
interested in non-stable predicates, such as that in our example of variables whose
difference is supposed to be bounded. Even if the application reaches a state in which
the bound obtains, it need not stay in that state.

We also note here two further notions relevant to global state predicates: safety
and liveness. Suppose there is an undesirable property that is a predicate of the
system’s global state – for example, could be the property of being deadlocked. Let

S0

SECTION 14.5 GLOBAL STATES 615

 be the original state of the system. Safety with respect to is the assertion that
evaluates to False for all states S reachable from S0 . Conversely, let be a desirable
property of a system’s global state – for example, the property of reaching termination.
Liveness with respect to is the property that, for any linearization L starting in the state
S0 , evaluates to True for some state SL reachable from S0 .

14.5.3 The ‘snapshot’ algorithm of Chandy and Lamport

Chandy and Lamport [1985] describe a ‘snapshot’ algorithm for determining global
states of distributed systems, which we now present. The goal of the algorithm is to
record a set of process and channel states (a ‘snapshot’) for a set of processes pi
(i 1 2 N=) such that, even though the combination of recorded states may never
have occurred at the same time, the recorded global state is consistent.

We shall see that the state that the snapshot algorithm records has convenient
properties for evaluating stable global predicates.

The algorithm records state locally at processes; it does not give a method for
gathering the global state at one site. An obvious method for gathering the state is for all
processes to send the state they recorded to a designated collector process, but we shall
not address this issue further here.

The algorithm assumes that:

• Neither channels nor processes fail – communication is reliable so that every
message sent is eventually received intact, exactly once.

• Channels are unidirectional and provide FIFO-ordered message delivery.

• The graph of processes and channels is strongly connected (there is a path between
any two processes).

• Any process may initiate a global snapshot at any time.

• The processes may continue their execution and send and receive normal
messages while the snapshot takes place.

For each process pi , let the incoming channels be those at pi over which other processes
send it messages; similarly, the outgoing channels of pi are those on which it sends
messages to other processes. The essential idea of the algorithm is as follows. Each
process records its state and also, for each incoming channel, a set of messages sent to
it. The process records, for each channel, any messages that arrived after it recorded its
state and before the sender recorded its own state. This arrangement allows us to record
the states of processes at different times but to account for the differentials between
process states in terms of messages transmitted but not yet received. If process pi has
sent a message m to process pj , but pj has not received it, then we account for m as
belonging to the state of the channel between them.

The algorithm proceeds through use of special marker messages, which are
distinct from any other messages the processes send and which the processes may send
and receive while they proceed with their normal execution. The marker has a dual role:
as a prompt for the receiver to save its own state, if it has not already done so; and as a
means of determining which messages to include in the channel state.

Figure 14.10 Chandy and Lamport’s ‘snapshot’ algorithm

Marker receiving rule for process

On receipt of a marker message at over channel c:
if (has not yet recorded its state) it

records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else

 records the state of c as the set of messages it has received over c
since it saved its state.

end if

Marker sending rule for process

After has recorded its state, for each outgoing channel c:
 sends one marker message over c

(before it sends any other message over c).

pi
pi

pi

pi

pi
pi

pi

616 CHAPTER 14 TIME AND GLOBAL STATES

The algorithm is defined through two rules, the marker receiving rule and the
marker sending rule (Figure 14.10). The marker sending rule obligates processes to send
a marker after they have recorded their state, but before they send any other messages.

The marker receiving rule obligates a process that has not recorded its state to do
so. In that case, this is the first marker that it has received. It notes which messages
subsequently arrive on the other incoming channels. When a process that has already
saved its state receives a marker (on another channel), it records the state of that channel
as the set of messages it has received on it since it saved its state.

Any process may begin the algorithm at any time. It acts as though it has received
a marker (over a nonexistent channel) and follows the marker receiving rule. Thus it
records its state and begins to record messages arriving over all its incoming channels.
Several processes may initiate recording concurrently in this way (as long as the markers
they use can be distinguished).

Figure 14.11 Two processes and their initial states

p1 p2
c2

c1

account widgets

$1000 (none)

account widgets

$50 2000

We illustrate the algorithm for a system of two processes, p1 and p2 , connected
by two unidirectional channels, c1 and c2 . The two processes trade in ‘widgets’.
Process p1 sends orders for widgets over c2 to p2 , enclosing payment at the rate of $10
per widget. Some time later, process p2 sends widgets along channel c1 to p1 . The

SECTION 14.5 GLOBAL STATES 617

processes have the initial states shown in Figure 14.11. Process p2 has already received
an order for five widgets, which it will shortly dispatch to p1 .

Figure 14.12

Figure 14.12 The execution of the processes in Figure 14.11

p1 p2(empty)<$1000, 0> <$50, 2000>

(empty)

c2

c1

1. Global state S0

2. Global state S1

3. Global state S2

4. Global state S3

p1 p2(Order 10, $100), M<$900, 0> <$50, 2000>

(empty)

c2

c1

p1 p2(Order 10, $100), M<$900, 0> <$50, 1995>

(five widgets)

c2

c1

p1 p2(Order 10, $100)<$900, 5> <$50, 1995>

(empty)

c2

c1

(M = marker message)

 shows an execution of the system while the state is recorded. Process
p1 records its state in the actual global state S0 , when the state of p1 is <$1000, 0>.
Following the marker sending rule, process p1 then emits a marker message over its
outgoing channel c2 before it sends the next application-level message: (Order 10,
$100), over channel c2 . The system enters actual global state S1 .

Before p2 receives the marker, it emits an application message (five widgets) over
c1 in response to p1 ’s previous order, yielding a new actual global state S2 .

Now process p1 receives p2 ’s message (five widgets), and p2 receives the
marker. Following the marker receiving rule, p2 records its state as <$50, 1995> and
that of channel c2 as the empty sequence. Following the marker sending rule, it sends a
marker message over c1 .

When process p1 receives p2 ’s marker message, it records the state of channel
c1 as the single message (five widgets) that it received after it first recorded its state.
The final actual global state is S3 .

The final recorded state is p1 : <$1000, 0>; p2 : <$50, 1995>; c1 : <(five
widgets)>; c2 : < >. Note that this state differs from all the global states through which
the system actually passed.

Termination of the snapshot algorithm • We assume that a process that has received a
marker message records its state within a finite time and sends marker messages over
each outgoing channel within a finite time (even when it no longer needs to send
application messages over these channels). If there is a path of communication channels
and processes from a process pi to a process pj j i , then it is clear on these
assumptions that pj will record its state a finite time after pi recorded its state. Since
we are assuming the graph of processes and channels to be strongly connected, it follows

618 CHAPTER 14 TIME AND GLOBAL STATES

that all processes will have recorded their states and the states of incoming channels a
finite time after some process initially records its state.

Characterizing the observed state • The snapshot algorithm selects a cut from the history
of the execution. The cut, and therefore the state recorded by this algorithm, is
consistent. To see this, let ei and ej be events occurring at pi and pj , respectively, such
that ei ej . We assert that if ej is in the cut, then ei is in the cut. That is, if ej occurred
before pj recorded its state, then ei must have occurred before pi recorded its state.
This is obvious if the two processes are the same, so we shall assume that j i . Assume,
for the moment, the opposite of what we wish to prove: that pi recorded its state before
ei occurred. Consider the sequence of H messages m1 m2 mH (H 1), giving rise
to the relation ei ej . By FIFO ordering over the channels that these messages
traverse, and by the marker sending and receiving rules, a marker message would have
reached pj ahead of each of m1 m2 mH . By the marker receiving rule, pj would
therefore have recorded its state before the event ej . This contradicts our assumption
that ej is in the cut, and we are done.

We may further establish a reachability relation between the observed global state
and the initial and final global states when the algorithm runs. Let Sys e0 e1= be
the linearization of the system as it executed (where two events occurred at exactly the
same time, we order them according to process identifiers). Let Sinit be the global state
immediately before the first process recorded its state; let Sfinal be the global state when
the snapshot algorithm terminates, immediately after the last state-recording action; and
let Ssnap be the recorded global state.

We shall find a permutation of Sys, Sys e0 e1 e2= such that all three states
Sinit , Ssnap and Sfinal occur in Sys , Ssnap is reachable from Sinit in Sys , and Sfinal
is reachable from Ssnap in Sys . Figure 14.13 shows this situation, in which the upper
linearization is Sys and the lower linearization is Sys .

Figure 14.13 Reachability between states in the snapshot algorithm

Sinit Sfinal

Ssnap

actual execution e0,e1,...

recording recording
begins ends

pre-snap: e'0,e'1,...e'R-1 post-snap: e'R,e'R+1,...

We derive Sys from Sys by first categorizing all events in Sys as pre-snap

events or post-snap events. A pre-snap event at process pi is one that occurred at pi
before it recorded its state; all other events are post-snap events. It is important to
understand that a post-snap event may occur before a pre-snap event in Sys , if the events
occur at different processes. (Of course, no post-snap event may occur before a pre-snap
event at the same process.)

We shall show how we may order all pre-snap events before post-snap events to
obtain Sys . Suppose that ej is a post-snap event at one process, and ej 1+ is a pre-snap

SECTION 14.6 DISTRIBUTED DEBUGGING 619

event at a different process. It cannot be that ej ej 1+ for then these two events would
be the sending and receiving of a message, respectively. A marker message would have
to have preceded the message, making the reception of the message a post-snap event,
but by assumption ej 1+ is a pre-snap event. We may therefore swap the two events
without violating the happened-before relation (that is, the resultant sequence of events
remains a linearization). The swap does not introduce new process states, since we do
not alter the order in which events occur at any individual process.

We continue swapping pairs of adjacent events in this way as necessary until we
have ordered all pre-snap events e0 e1 e2 eR 1– prior to all post-snap events
eR eR 1+ eR 2+ with Sys the resulting execution. For each process, the set of
events in e0 e1 e2 eR 1– that occurred at it is exactly the set of events that it
experienced before it recorded its state. Therefore the state of each process at that point,
and the state of the communication channels, is that of the global state Ssnap recorded
by the algorithm. We have disturbed neither of the states Sinit or Sfinal with which the
linearization begins and ends. So we have established the reachability relationship.

Stability and the reachability of the observed state • The reachability property of the
snapshot algorithm is useful for detecting stable predicates. In general, any non-stable
predicate we establish as being True in the state Ssnap may or may not have been True

in the actual execution whose global state we recorded. However, if a stable predicate is
True in the state Ssnap then we may conclude that the predicate is True in the state Sfinal ,
since by definition a stable predicate that is True of a state S is also True of any state
reachable from S. Similarly, if the predicate evaluates to False for Ssnap , then it must
also be False for Sinit .

14.6 Distributed debugging

We now examine the problem of recording a system’s global state so that we may make
useful statements about whether a transitory state – as opposed to a stable state –
occurred in an actual execution. This is what we require, in general, when debugging a
distributed system. We gave an example above in which each of a set of processes pi
has a variable xi . The safety condition required in this example is xi xj–
(i j 1 2 N=); this constraint is to be met even though a process may change the
value of its variable at any time. Another example is a distributed system controlling a
system of pipes in a factory where we are interested in whether all the valves (controlled
by different processes) were open at some time. In these examples, we cannot in general
observe the values of the variables or the states of the valves simultaneously. The
challenge is to monitor the system’s execution over time – to capture ‘trace’ information
rather than a single snapshot – so that we can establish post hoc whether the required
safety condition was or may have been violated.

Chandy and Lamport’s [1985] snapshot algorithm collects state in a distributed
fashion, and we pointed out how the processes in the system could send the state they
gather to a monitor process for collection. The algorithm we describe next (due to
Marzullo and Neiger [1991]) is centralized. The observed processes send their states to
a process called a monitor, which assembles globally consistent states from what it
receives. We consider the monitor to lie outside the system, observing its execution.

620 CHAPTER 14 TIME AND GLOBAL STATES

Our aim is to determine cases where a given global state predicate was definitely
True at some point in the execution we observed, and cases where it was possibly True.
The notion ‘possibly’ arises as a natural concept because we may extract a consistent
global state S from an executing system and find that S is True. No single
observation of a consistent global state allows us to conclude whether a non-stable
predicate ever evaluated to True in the actual execution. Nevertheless, we may be
interested to know whether they might have occurred, as far as we can tell by observing
the execution.

The notion ‘definitely’ does apply to the actual execution and not to a run that we
have extrapolated from it. It may sound paradoxical for us to consider what happened in
an actual execution. However, it is possible to evaluate whether was definitely True

by considering all linearizations of the observed events.
We now define the notions of possibly and definitely for a predicate in terms

of linearizations of H, the history of the system’s execution:

possibly The statement possibly means that there is a consistent global state S

through which a linearization of H passes such that S is True.

definitely :The statement definitely means that for all linearizations L of H,
there is a consistent global state S through which L passes such that S is True.

When we use Chandy and Lamport’s snapshot algorithm and obtain the global state
Ssnap , we may assert possibly if Ssnap happens to be True. But in general
evaluating possibly entails a search through all consistent global states derived from
the observed execution. Only if S evaluates to False for all consistent global states
S is it not the case that possibly . Note also that while we may conclude definitely

from possibly , we may not conclude possibly from definitely . The latter
is the assertion that holds at some state on every linearization: may hold for other
states.

We now describe: how the process states are collected; how the monitor extracts
consistent global states; and how the monitor evaluates possibly and definitely in
both asynchronous and synchronous systems.

14.6.1 Collecting the state

The observed processes pi i 1 2 N= send their initial state to the monitor
initially, and thereafter from time to time, in state messages. The monitor records the
state messages from each process pi in a separate queue Qi , for each i 1 2 N= .

The activity of preparing and sending state messages may delay the normal
execution of the observed processes, but it does not otherwise interfere with it. There is
no need to send the state except initially and when it changes. There are two
optimizations to reduce the state-message traffic to the monitor. First, the global state
predicate may depend only on certain parts of the processes’ states – for example, only
on the states of particular variables – so the observed processes need only send the
relevant state to the monitor. Second, they need only send their state at times when the
predicate may become True or cease to be True. There is no point in sending changes
to the state that do not affect the predicate’s value.

SECTION 14.6 DISTRIBUTED DEBUGGING 621

For example, in the example system of processes pi that are supposed to obey the
constraint xi xj– . (i j 1 2 N=), each process need only notify the monitor
when the values of its own variable xi changes. When they send their state, they supply
the value of xi but do not need to send any other variables.

14.6.2 Observing consistent global states

The monitor must assemble consistent global states against which it evaluates . Recall
that a cut C is consistent if and only if for all events e in the cut C, f e f C .

For example,

Figure 14.14 Vector timestamps and variable values for the execution of Figure 14.9

m1 m2

p1

p2
Physical

time

Cut C1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)

x1= 1 x1= 100 x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C2

Figure 14.14 shows two processes p1 and p2 with variables x1 and
x2 , respectively. The events shown on the timelines (with vector timestamps) are
adjustments to the values of the two variables. Initially, x1 x2 0= = . The requirement
is x1 x2– 50 . The processes make adjustments to their variables, but ‘large’
adjustments cause a message containing the new value to be sent to the other process.
When either of the processes receives an adjustment message from the other, it sets its
variable equal to the value contained in the message.

Whenever one of the processes p1 or p2 adjusts the value of its variable (whether
it is a ‘small’ adjustment or a ‘large’ one), it sends the value in a state message to the
monitor. The latter keeps the state messages in the per-process queues for analysis. If the
monitor were to use values from the inconsistent cut C1 in Figure 14.14, then it would
find that x1 1 x2 100= = , breaking the constraint x1 x2– 50 . But this state of
affairs never occurred. On the other hand, values from the consistent cut C2 show
x1 105 x2 90= = .

In order that the monitor can distinguish consistent global states from inconsistent
global states, the observed processes enclose their vector clock values with their state
messages. Each queue Qi is kept in sending order, which can immediately be
established by examining the ith component of the vector timestamps. Of course, the
monitor may deduce nothing about the ordering of states sent by different processes
from their arrival order, because of variable message latencies. It must instead examine
the vector timestamps of the state messages.

Let S s1 s2 sN= be a global state drawn from the state messages that the
monitor has received. Let V si be the vector timestamp of the state si received from
pi . Then it can be shown that S is a consistent global state if and only if:

V si i V sj i

622 CHAPTER 14 TIME AND GLOBAL STATES

for i j 1 2 N= – (Condition CGS)

This says that the number of pi ’s events known at pj when it sent sj is no more than
the number of events that had occurred at pi when it sent si . In other words, if one
process’s state depends upon another (according to happened-before ordering), then the
global state also encompasses the state upon which it depends.

In summary, we now possess a method whereby the monitor may establish
whether a given global state is consistent, using the vector timestamps kept by the
observed processes and piggybacked on the state messages that they send to it.

Figure 14.15 The lattice of global states for the execution of Figure 14.14

Sij= global state after i events at process 1

 and j events at process 2

S00

S10

S20

S21S30

S31

S32

S22

S23

S33

S43

Level 0

1

2

3

4

5

6

7

Figure 14.15 shows the lattice of consistent global states corresponding to the
execution of the two processes in Figure 14.14. This structure captures the relation of
reachability between consistent global states. The nodes denote global states, and the
edges denote possible transitions between these states. The global state S00 has both
processes in their initial state; S10 has p2 still in its initial state and p1 in the next state
in its local history. The state S01 is not consistent, because of the message m1 sent from
p1 to p2 , so it does not appear in the lattice.

The lattice is arranged in levels with, for example, S00 in level 0 and S10 in level
1. In general, Sij is in level i j+ . A linearization traverses the lattice from any global
state to any global state reachable from it on the next level – that is, in each step some
process experiences one event. For example, S22 is reachable from S20 , but S22 is not
reachable from S30 .

The lattice shows us all the linearizations corresponding to a history. It is now
clear in principle how a monitor should evaluate possibly and definitely . To evaluate
possibly , the monitor starts at the initial state and steps through all consistent states
reachable from that point, evaluating at each stage. It stops when evaluates to True.
To evaluate definitely , the monitor must attempt to find a set of states through which
all linearizations must pass, and at each of which evaluates to True. For example, if

S30 and S21 in Figure 14.15 are both True then, since all linearizations pass
through these states, definitely holds.

SECTION 14.6 DISTRIBUTED DEBUGGING 623

14.6.3 Evaluating possibly

To evaluate possibly , the monitor must traverse the lattice of reachable states, starting
from the initial state s1

0 s2
0 sN

0 .

Figure 14.16 Algorithms to evaluate possibly and definitely

1. Evaluating possibly for global history H of N processes

L := 0;
States := { };
while (for all)

L := L + 1;
Reachable := { : reachable in H from some };
States := Reachable

end while

output "possibly ";

2. Evaluating definitely for global history H of N processes

L := 0;
if () then States := {} else States := { };
while (States {})

L := L + 1;
Reachable := { : reachable in H from some };
States := { : }

end while

output "definitely ";

s1
0 s2

0 sN
0

S False= S States

S S S States level S L=

s1
0 s2

0 sN
0 s1

0 s2
0 sN

0

S S S States level S' L=
S Reachable S False=

The algorithm is shown in Figure 14.16. The
algorithm assumes that the execution is infinite. It may easily be adapted for a finite
execution.

The monitor may discover the set of consistent states in level L 1+ reachable
from a given consistent state in level L by the following method. Let
S s1 s2 sN= be a consistent state. Then a consistent state in the next level
reachable from S is of the form S s1 s2 si sN= , which differs from S only by
containing the next state (after a single event) of some process pi . The monitor can find
all such states by traversing the queues of state messages Qi (i 1 2 N=). The
state S is reachable from S if and only if:

for j 1 2 N j i,= : V sj j V si j

This condition comes from condition CGS above and from the fact that S was already a
consistent global state. A given state may in general be reached from several states at the
previous level, so the monitor should take care to evaluate the consistency of each state
only once.

624 CHAPTER 14 TIME AND GLOBAL STATES

14.6.4 Evaluating definitely

To evaluate definitely , the monitor again traverses the lattice of reachable states a level
at a time, starting from the initial state s1

0 s2
0 sN

0 . The algorithm (shown in Figure
14.16) again assumes that the execution is infinite but may easily be adapted for a finite
execution. It maintains the set States, which contains those states at the current level that
may be reached on a linearization from the initial state by traversing only states for
which evaluates to False. As long as such a linearization exists, we may not assert
definitely : the execution could have taken this linearization, and would be False at
every stage along it. If we reach a level for which no such linearization exists, we may
conclude definitely .

Figure 14.17 Evaluating definitely

F = (S False); T = (S True)

 ?

–

Level 0

1

2

3

4

5

F

F

F

F T

F

In Figure 14.17, at level 3 the set States consists of only one state, which is
reachable by a linearization on which all states are False (marked in bold lines). The
only state considered at level 4 is the one marked ‘F’. (The state to its right is not
considered, since it can only be reached via a state for which evaluates to True.) If
evaluates to True in the state at level 5, then we may conclude definitely . Otherwise,
the algorithm must continue beyond this level.

Cost • The algorithms we have just described are combinatorially explosive. Suppose
that k is the maximum number of events at a single process. Then the algorithms we have
described entail O k

N
 comparisons (the monitor compares the states of each of the N

observed processes with one another).
There is also a space cost to these algorithms of O kN . However, we observe

that the monitor may delete a message containing state si from queue Qi when no other
item of state arriving from another process could possibly be involved in a consistent
global state containing si . That is, when:

V sj
last

i V si i for j 1 2 N j i=

where sj
last

 is the last state that the monitor has received from process pj .

SECTION 14.6 DISTRIBUTED DEBUGGING 625

14.6.5 Evaluating possibly and definitely in synchronous systems

The algorithms we have given so far work in an asynchronous system: we have made no
timing assumptions. But the price paid for this is that the monitor may examine a
consistent global state S s1 s2 sN= for which any two local states si and sj
occurred an arbitrarily long time apart in the actual execution of the system. Our
requirement, by contrast, is to consider only those global states that the actual execution
could in principle have traversed.

In a synchronous system, suppose that the processes keep their physical clocks
internally synchronized within a known bound, and that the observed processes provide
physical timestamps as well as vector timestamps in their state messages. Then the
monitor need consider only those consistent global states whose local states could
possibly have existed simultaneously, given the approximate synchronization of the
clocks. With good enough clock synchronization, these will number many less than all
globally consistent states.

We now give an algorithm to exploit synchronized clocks in this way. We assume
that each observed process pi (i 1 2 N=) and the monitor, which we shall call
p0 , keep a physical clock Ci (i 0 1 N=). These are synchronized to within a
known bound D 0 ; that is, at the same real time:

Ci t Cj t– D for i j 0 1 N=

The observed processes send both their vector time and physical time with their state
messages to the monitor. The monitor now applies a condition that not only tests for
consistency of a global state S s1 s2 sN= , but also tests whether each pair of
states could have happened at the same real time, given the physical clock values. In
other words, for i j 1 2 N= :

V si i V sj i and si and sj could have occurred at the same real time.

The first clause is the condition that we used earlier. For the second clause, note that pi
is in the state si from the time it first notifies the monitor, Ci si , to some later local
time Li si – say, when the next state transition occurs at pi . For si and sj to have
obtained at the same real time we thus have, allowing for the bound on clock
synchronization:

Ci si D Cj sj Li si D+– – or vice versa (swapping i and j).

The monitor must calculate a value for Li si , which is measured against pi ’s clock. If
the monitor has received a state message for pi ’s next state si , then Li si is Ci si .
Otherwise, the monitor estimates Li si as C0 – max + D, where C0 is the monitor’s
current local clock value and max is the maximum transmission time for a state message.

626 CHAPTER 14 TIME AND GLOBAL STATES

14.7 Summary

This chapter began by describing the importance of accurate timekeeping for distributed
systems. It then described algorithms for synchronizing clocks despite the drift between
them and the variability of message delays between computers.

The degree of synchronization accuracy that is practically obtainable fulfils many
requirements but is nonetheless not sufficient to determine the ordering of an arbitrary
pair of events occurring at different computers. The happened-before relation is a partial
order on events that reflects a flow of information between them – within a process, or
via messages between processes. Some algorithms require events to be ordered in
happened-before order, for example, successive updates made to separate copies of data.
Lamport clocks are counters that are updated in accordance with the happened-before
relationship between events. Vector clocks are an improvement on Lamport clocks, in
that it is possible to determine by examining their vector timestamps whether two events
are ordered by happened-before or are concurrent.

We introduced the concepts of events, local and global histories, cuts, local and
global states, runs, consistent states, linearizations (consistent runs) and reachability. A
consistent state or run is one that is in accord with the happened-before relation.

We went on to consider the problem of recording a consistent global state by
observing a system’s execution. Our objective was to evaluate a predicate on this state.
An important class of predicates are the stable predicates. We described the snapshot
algorithm of Chandy and Lamport, which captures a consistent global state and allows
us to make assertions about whether a stable predicate holds in the actual execution. We
went on to give Marzullo and Neiger’s algorithm for deriving assertions about whether
a predicate held or may have held in the actual run. This algorithm employs a monitor
process to collect states. The monitor examines vector timestamps to extract consistent
global states, and it constructs and examines the lattice of all consistent global states.
This algorithm involves great computational complexity but is valuable for
understanding and can be of some practical benefit in real systems where relatively few
events change the global predicate’s value. The algorithm has a more efficient variant in
synchronous systems, where clocks may be synchronized.

EXERCISES 627

EXERCISES

14.1 Why is computer clock synchronization necessary? Describe the design requirements
for a system to synchronize the clocks in a distributed system. page 596

14.2 A clock is reading 10:27:54.0 (hr:min:sec) when it is discovered to be 4 seconds fast.
Explain why it is undesirable to set it back to the right time at that point and show
(numerically) how it should be adjusted so as to be correct after 8 seconds have elapsed.

page 600

14.3 A scheme for implementing at-most-once reliable message delivery uses synchronized
clocks to reject duplicate messages. Processes place their local clock value (a
‘timestamp’) in the messages they send. Each receiver keeps a table giving, for each
sending process, the largest message timestamp it has seen. Assume that clocks are
synchronized to within 100 ms, and that messages can arrive at most 50 ms after
transmission.

i) When may a process ignore a message bearing a timestamp T, if it has recorded
the last message received from that process as having timestamp T ?

ii) When may a receiver remove a timestamp 175,000 (ms) from its table? (Hint: use
the receiver’s local clock value.)

iii) Should the clocks be internally synchronized or externally synchronized?
page 601

14.4 A client attempts to synchronize with a time server. It records the round-trip times and
timestamps returned by the server in the table below.

Which of these times should it use to set its clock? To what time should it set it?
Estimate the accuracy of the setting with respect to the server’s clock. If it is known that
the time between sending and receiving a message in the system concerned is at least 8
ms, do your answers change?

Round-trip (ms) Time (hr:min:sec)

22 10:54:23.674

25 10:54:25.450

20 10:54:28.342

page 601

14.5 In the system of Exercise 14.4 it is required to synchronize a file server’s clock to within
±1 millisecond. Discuss this in relation to Cristian’s algorithm. page 601

14.6 What reconfigurations would you expect to occur in the NTP synchronization subnet?
page 604

14.7 An NTP server B receives server A’s message at 16:34:23.480, bearing a timestamp of
16:34:13.430, and replies to it. A receives the message at 16:34:15.725, bearing B’s
timestamp, 16:34:25.7. Estimate the offset between B and A and the accuracy of the
estimate. page 605

628 CHAPTER 14 TIME AND GLOBAL STATES

14.8 Discuss the factors to be taken into account when deciding to which NTP server a client
should synchronize its clock. page 606

14.9 Discuss how it is possible to compensate for clock drift between synchronization points
by observing the drift rate over time. Discuss any limitations to your method. page 607

14.10 By considering a chain of zero or more messages connecting events e and e and using
induction, show that e e L e L e . page 608

14.11 Show that Vj i Vi i . page 609

14.12 In a similar fashion to Exercise 14.10, show that e e V e V e . page 610

14.13 Using the result of Exercise 14.11, show that if events e and e are concurrent then
neither V e V e nor V e V e . Hence show that if V e V e then e e .

page 610

14.14 Two processes P and Q are connected in a ring using two channels, and they constantly
rotate a message m. At any one time, there is only one copy of m in the system. Each
process’s state consists of the number of times it has received m, and P sends m first. At
a certain point, P has the message and its state is 101. Immediately after sending m, P

initiates the snapshot algorithm. Explain the operation of the algorithm in this case,
giving the possible global state(s) reported by it. page 615

Time

p1

p2

14.15 The figure above shows events occurring for each of two processes, p1 and p2. Arrows
between processes denote message transmission.

Draw and label the lattice of consistent states (p1 state, p2 state), beginning with
the initial state (0,0).

page 622

14.16 Jones is running a collection of processes p1 p2 pN . Each process pi contains a
variable vi . She wishes to determine whether all the variables v1 v2 vN were ever
equal in the course of the execution.

i) Jones’ processes run in a synchronous system. She uses a monitor process to
determine whether the variables were ever equal. When should the application
processes communicate with the monitor process, and what should their messages
contain?

ii) Explain the statement possibly (v1 v2 vN= = =). How can Jones determine
whether this statement is true of her execution?

page 623

 629

15

COORDINATION AND AGREEMENT

15.1 Introduction
15.2 Distributed mutual exclusion
15.3 Elections
15.4 Coordination and agreement in group communication
15.5 Consensus and related problems
15.6 Summary

In this chapter, we introduce some topics and algorithms related to the issue of how
processes coordinate their actions and agree on shared values in distributed systems,
despite failures. The chapter begins with algorithms to achieve mutual exclusion among
a collection of processes, so as to coordinate their accesses to shared resources. It goes
on to examine how an election can be implemented in a distributed system – that is, how
a group of processes can agree on a new coordinator of their activities after the previous
coordinator has failed.

The second half of the chapter examines the related problems of group
communication, consensus, Byzantine agreement and interactive consistency. In the
context of group communication, the issue is how to agree on such matters as the order
in which messages are to be delivered. Consensus and the other problems generalize from
this: how can any collection of processes agree on some value, no matter what the domain
of the values in question? We encounter a fundamental result in the theory of distributed
systems: that under certain conditions – including surprisingly benign failure conditions
– it is impossible to guarantee that processes will reach consensus.

630 CHAPTER 15 COORDINATION AND AGREEMENT

15.1 Introduction

This chapter introduces a collection of algorithms whose goals vary but that share an aim
that is fundamental in distributed systems: for a set of processes to coordinate their
actions or to agree on one or more values. For example, in the case of a complex piece
of machinery such as a spaceship, it is essential that the computers controlling it agree
on such conditions as whether the spaceship’s mission is proceeding or has been
aborted. Furthermore, the computers must coordinate their actions correctly with respect
to shared resources (the spaceship’s sensors and actuators). The computers must be able
to do so even where there is no fixed master-slave relationship between the components
(which would make coordination particularly simple). The reason for avoiding fixed
master-slave relationships is that we often require our systems to keep working correctly
even if failures occur, so we need to avoid single points of failure, such as fixed masters.

An important distinction for us, as in Chapter 14, will be whether the distributed
system under study is asynchronous or synchronous. In an asynchronous system we can
make no timing assumptions. In a synchronous system, we shall assume that there are
bounds on the maximum message transmission delay, on the time taken to execute each
step of a process, and on clock drift rates. The synchronous assumptions allow us to use
timeouts to detect process crashes.

Another important aim of the chapter is to consider failures, and how to deal with
them when designing algorithms. Section 2.4.2 introduced a failure model, which we
shall use in this chapter. Coping with failures is a subtle business, so we begin by
considering some algorithms that tolerate no failures and progress through benign
failures before exploring how to tolerate arbitrary failures. Along the way, we encounter
a fundamental result in the theory of distributed systems: even under surprisingly benign
failure conditions, it is impossible to guarantee in an asynchronous system that a
collection of processes can agree on a shared value – for example, for all of a spaceship’s
controlling processes to agree ‘mission proceed’ or ‘mission abort’.

Section 15.2 examines the problem of distributed mutual exclusion. This is the
extension to distributed systems of the familiar problem of avoiding race conditions in
kernels and multi-threaded applications. Since much of what occurs in distributed
systems is resource sharing, this is an important problem to solve. Next, Section 15.3
introduces the related but more general issue of how to ‘elect’ one of a collection of
processes to perform a special role. For example, in Chapter 14 we saw how processes
synchronize their clocks to a designated time server. If this server fails and several
surviving servers can fulfil that role, then for the sake of consistency it is necessary to
choose just one server to take over.

Coordination and agreement related to group communication is the subject of
Section 15.4. As Section 4.4.1 explained, the ability to multicast a message to a group is
a very useful communication paradigm, with applications from locating resources to
coordinating the updates to replicated data. Section 15.4 examines multicast reliability
and ordering semantics, and gives algorithms to achieve the variations. Multicast
delivery is essentially a problem of agreement between processes: the recipients agree
on which messages they will receive, and in which order they will receive them. Section
15.5 discusses the problem of agreement more generally, primarily in the forms known
as consensus and Byzantine agreement.

SECTION 15.1 INTRODUCTION 631

The treatment followed in this chapter involves stating the assumptions and the
goals to be met, and giving an informal account of why the algorithms presented are
correct. There is insufficient space to provide a more rigorous approach. For that, we
refer the reader to a text that gives a thorough account of distributed algorithms, such as
Attiya and Welch [1998] and Lynch [1996].

Before presenting the problems and algorithms, we discuss failure assumptions
and the practical matter of detecting failures in distributed systems.

15.1.1 Failure assumptions and failure detectors

For the sake of simplicity, this chapter assumes that each pair of processes is connected
by reliable channels. That is, although the underlying network components may suffer
failures, the processes use a reliable communication protocol that masks these failures –
for example, by retransmitting missing or corrupted messages. Also for the sake of
simplicity, we assume that no process failure implies a threat to the other processes’
ability to communicate. This means that none of the processes depends upon another to
forward messages.

Note that a reliable channel eventually delivers a message to the recipient’s input
buffer. In a synchronous system, we suppose that there is hardware redundancy where
necessary, so that a reliable channel not only eventually delivers each message despite
underlying failures, but does so within a specified time bound.

Figure 15.1 A network partition

Crashed
router

In any particular interval of time, communication between some processes may
succeed while communication between others is delayed. For example, the failure of a
router between two networks may mean that a collection of four processes is split into
two pairs, such that intra-pair communication is possible over their respective networks;
but inter-pair communication is not possible while the router has failed. This is known
as a network partition (Figure 15.1). Over a point-to-point network such as the Internet,
complex topologies and independent routing choices mean that connectivity may be
asymmetric: communication is possible from process p to process q, but not vice versa.
Connectivity may also be intransitive: communication is possible from p to q and from
q to r, but p cannot communicate directly with r. Thus our reliability assumption entails
that eventually any failed link or router will be repaired or circumvented. Nevertheless,
the processes may not all be able to communicate at the same time.

632 CHAPTER 15 COORDINATION AND AGREEMENT

The chapter assumes, unless we state otherwise, that processes fail only by
crashing – an assumption that is good enough for many systems. In Section 15.5, we
shall consider how to treat the cases where processes have arbitrary (Byzantine) failures.
Whatever the type of failure, a correct process is one that exhibits no failures at any
point in the execution under consideration. Note that correctness applies to the whole
execution, not just to a part of it. So a process that suffers a crash failure is ‘non-failed’
before that point, not ‘correct’ before that point.

One of the problems in the design of algorithms that can overcome process crashes
is that of deciding when a process has crashed. A failure detector [Chandra and Toueg
1996, Stelling et al. 1998] is a service that processes queries about whether a particular
process has failed. It is often implemented by an object local to each process (on the
same computer) that runs a failure-detection algorithm in conjunction with its
counterparts at other processes. The object local to each process is called a local failure

detector. We outline how to implement failure detectors shortly, but first we concentrate
on some of the properties of failure detectors.

A failure ‘detector’ is not necessarily accurate. Most fall into the category of
unreliable failure detectors. An unreliable failure detector may produce one of two
values when given the identity of a process: Unsuspected or Suspected. Both of these
results are hints, which may or may not accurately reflect whether the process has
actually failed. A result of Unsuspected signifies that the detector has recently received
evidence suggesting that the process has not failed; for example, a message was recently
received from it. But of course, the process may have failed since then. A result of
Suspected signifies that the failure detector has some indication that the process may
have failed. For example, it may be that no message from the process has been received
for more than a nominal maximum length of silence (even in an asynchronous system,
practical upper bounds can be used as hints). The suspicion may be misplaced: for
example, the process could be functioning correctly but be on the other side of a network
partition, or it could be running more slowly than expected.

A reliable failure detector is one that is always accurate in detecting a process’s
failure. It answers processes’ queries with either a response of Unsuspected – which, as
before, can only be a hint – or Failed. A result of Failed means that the detector has
determined that the process has crashed. Recall that a process that has crashed stays that
way, since by definition a process never takes another step once it has crashed.

It is important to realize that, although we speak of one failure detector acting for
a collection of processes, the response that the failure detector gives to a process is only
as good as the information available at that process. A failure detector may sometimes
give different responses to different processes, since communication conditions vary
from process to process.

We can implement an unreliable failure detector using the following algorithm.
Each process p sends a ‘p is here’ message to every other process, and it does this every
T seconds. The failure detector uses an estimate of the maximum message transmission
time of D seconds. If the local failure detector at process q does not receive a ‘p is here’
message within T D+ seconds of the last one, then it reports to q that p is Suspected.
However, if it subsequently receives a ‘p is here’ message, then it reports to q that p is
OK.

In a real distributed system, there are practical limits on message transmission
times. Even email systems give up after a few days, since it is likely that communication

SECTION 15.2 DISTRIBUTED MUTUAL EXCLUSION 633

links and routers will have been repaired in that time. If we choose small values for T
and D (so that they total 0.1 second, say), then the failure detector is likely to suspect
non-crashed processes many times, and much bandwidth will be taken up with ‘p is
here’ messages. If we choose a large total timeout value (a week, say), then crashed
processes will often be reported as Unsuspected.

A practical solution to this problem is to use timeout values that reflect the
observed network delay conditions. If a local failure detector receives a ‘p is here’ in 20
seconds instead of the expected maximum of 10 seconds, it can reset its timeout value
for p accordingly. The failure detector remains unreliable, and its answers to queries are
still only hints, but the probability of its accuracy increases.

In a synchronous system, our failure detector can be made into a reliable one. We
can choose D so that it is not an estimate but an absolute bound on message transmission
times; the absence of a ‘p is here’ message within T D+ seconds entitles the local
failure detector to conclude that p has crashed.

The reader may wonder whether failure detectors are of any practical use.
Unreliable failure detectors may suspect a process that has not failed (they may be
inaccurate), and they may not suspect a process that has in fact failed (they may be
incomplete). Reliable failure detectors, on the other hand, require that the system is
synchronous (and few practical systems are).

We have introduced failure detectors because they help us to think about the
nature of failures in a distributed system. And any practical system that is designed to
cope with failures must detect them – however imperfectly. But it turns out that even
unreliable failure detectors with certain well-defined properties can help us to provide
practical solutions to the problem of coordinating processes in the presence of failures.
We return to this point in Section 15.5.

15.2 Distributed mutual exclusion

Distributed processes often need to coordinate their activities. If a collection of
processes share a resource or collection of resources, then often mutual exclusion is
required to prevent interference and ensure consistency when accessing the resources.
This is the critical section problem, familiar in the domain of operating systems. In a
distributed system, however, neither shared variables nor facilities supplied by a single
local kernel can be used to solve it, in general. We require a solution to distributed

mutual exclusion: one that is based solely on message passing.
In some cases shared resources are managed by servers that also provide

mechanisms for mutual exclusion – Chapter 16 describes how some servers synchronize
client accesses to resources. But in some practical cases, a separate mechanism for
mutual exclusion is required.

Consider users who update a text file. A simple means of ensuring that their
updates are consistent is to allow them to access it only one at a time, by requiring the
editor to lock the file before updates can be made. NFS file servers, described in Chapter
12, are designed to be stateless and therefore do not support file locking. For this reason,
UNIX systems provide a separate file-locking service, implemented by the daemon
lockd, to handle locking requests from clients.

634 CHAPTER 15 COORDINATION AND AGREEMENT

A particularly interesting example is where there is no server, and a collection of
peer processes must coordinate their accesses to shared resources amongst themselves.
This occurs routinely on networks such as Ethernets and IEEE 802.11 wireless networks
in ‘ad hoc’ mode, where network interfaces cooperate as peers so that only one node
transmits at a time on the shared medium. Consider, also, a system monitoring the
number of vacancies in a car park with a process at each entrance and exit that tracks the
number of vehicles entering and leaving. Each process keeps a count of the total number
of vehicles within the car park and displays whether or not it is full. The processes must
update the shared count of the number of vehicles consistently. There are several ways
of achieving that, but it would be convenient for these processes to be able to obtain
mutual exclusion solely by communicating among themselves, eliminating the need for
a separate server.

It is useful to have a generic mechanism for distributed mutual exclusion at our
disposal – one that is independent of the particular resource management scheme in
question. We now examine some algorithms for achieving that.

15.2.1 Algorithms for mutual exclusion

We consider a system of N processes pi i 1 2 N= , that do not share variables.
The processes access common resources, but they do so in a critical section. For the sake
of simplicity, we assume that there is only one critical section. It is straightforward to
extend the algorithms we present to more than one critical section.

We assume that the system is asynchronous, that processes do not fail and that
message delivery is reliable, so that any message sent is eventually delivered intact,
exactly once.

The application-level protocol for executing a critical section is as follows:

enter() // enter critical section – block if necessary
resourceAccesses() // access shared resources in critical section
exit() // leave critical section – other processes may now enter

Our essential requirements for mutual exclusion are as follows:

ME1: (safety) At most one process may execute in the critical section
(CS) at a time.

ME2: (liveness) Requests to enter and exit the critical section eventually
succeed.

Condition ME2 implies freedom from both deadlock and starvation. A deadlock would
involve two or more of the processes becoming stuck indefinitely while attempting to
enter or exit the critical section, by virtue of their mutual interdependence. But even
without a deadlock, a poor algorithm might lead to starvation: the indefinite
postponement of entry for a process that has requested it.

The absence of starvation is a fairness condition. Another fairness issue is the
order in which processes enter the critical section. It is not possible to order entry to the
critical section by the times that the processes requested it, because of the absence of
global clocks. But a useful fairness requirement that is sometimes made makes use of
the happened-before ordering (Section 14.4) between messages that request entry to the
critical section:

SECTION 15.2 DISTRIBUTED MUTUAL EXCLUSION 635

ME3: (ordering) If one request to enter the CS happened-before another,
then entry to the CS is granted in that order.

If a solution grants entry to the critical section in happened-before order, and if all
requests are related by happened-before, then it is not possible for a process to enter the
critical section more than once while another waits to enter. This ordering also allows
processes to coordinate their accesses to the critical section. A multi-threaded process
may continue with other processing while a thread waits to be granted entry to a critical
section. During this time, it might send a message to another process, which
consequently also tries to enter the critical section. ME3 specifies that the first process
be granted access before the second.

We evaluate the performance of algorithms for mutual exclusion according to the
following criteria:

• the bandwidth consumed, which is proportional to the number of messages sent in
each entry and exit operation;

• the client delay incurred by a process at each entry and exit operation;

• the algorithm’s effect upon the throughput of the system. This is the rate at which
the collection of processes as a whole can access the critical section, given that
some communication is necessary between successive processes. We measure the
effect using the synchronization delay between one process exiting the critical
section and the next process entering it; the throughput is greater when the
synchronization delay is shorter.

We do not take the implementation of resource accesses into account in our descriptions.
We do, however, assume that the client processes are well behaved and spend a finite
time accessing resources within their critical sections.

The central server algorithm •

Figure 15.2 Server managing a mutual exclusion token for a set of processes

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

p 4

p
3p 2

p
1

2

4

The simplest way to achieve mutual exclusion is to
employ a server that grants permission to enter the critical section. Figure 15.2 shows
the use of this server. To enter a critical section, a process sends a request message to

636 CHAPTER 15 COORDINATION AND AGREEMENT

the server and awaits a reply from it. Conceptually, the reply constitutes a token
signifying permission to enter the critical section. If no other process has the token at the
time of the request, then the server replies immediately, granting the token. If the token
is currently held by another process, then the server does not reply, but queues the
request. When a process exits the critical section, it sends a message to the server, giving
it back the token.

If the queue of waiting processes is not empty, then the server chooses the oldest
entry in the queue, removes it and replies to the corresponding process. The chosen
process then holds the token. In the figure, we show a situation in which p2 ’s request
has been appended to the queue, which already contained p4 ’s request. p3 exits the
critical section, and the server removes p4 ’s entry and grants permission to enter to p4
by replying to it. Process p1 does not currently require entry to the critical section.

Given our assumption that no failures occur, it is easy to see that the safety and
liveness conditions are met by this algorithm. The reader should verify, however, that
the algorithm does not satisfy property ME3.

We now evaluate the performance of this algorithm. Entering the critical section
– even when no process currently occupies it – takes two messages (a request followed
by a grant) and delays the requesting process by the time required for this round-trip.
Exiting the critical section takes one release message. Assuming asynchronous message
passing, this does not delay the exiting process.

The server may become a performance bottleneck for the system as a whole. The
synchronization delay is the time taken for a round-trip: a release message to the server,
followed by a grant message to the next process to enter the critical section.

A ring-based algorithm •

p
n

p
2

p
3

p
4

Token

Figure 15.3 A ring of processes transferring a mutual exclusion token

p
1

One of the simplest ways to arrange mutual exclusion between
the N processes without requiring an additional process is to arrange them in a logical
ring. This requires only that each process pi has a communication channel to the next
process in the ring, p i 1+ mod N . The idea is that exclusion is conferred by obtaining a
token in the form of a message passed from process to process in a single direction –

SECTION 15.2 DISTRIBUTED MUTUAL EXCLUSION 637

clockwise, say – around the ring. The ring topology may be unrelated to the physical
interconnections between the underlying computers.

If a process does not require to enter the critical section when it receives the token,
then it immediately forwards the token to its neighbour. A process that requires the token
waits until it receives it, but retains it. To exit the critical section, the process sends the
token on to its neighbour.

The arrangement of processes is shown in Figure 15.3. It is straightforward to
verify that the conditions ME1 and ME2 are met by this algorithm, but that the token is
not necessarily obtained in happened-before order. (Recall that the processes may
exchange messages independently of the rotation of the token.)

This algorithm continuously consumes network bandwidth (except when a
process is inside the critical section): the processes send messages around the ring even
when no process requires entry to the critical section. The delay experienced by a
process requesting entry to the critical section is between 0 messages (when it has just
received the token) and N messages (when it has just passed on the token). To exit the
critical section requires only one message. The synchronization delay between one
process’s exit from the critical section and the next process’s entry is anywhere from 1
to N message transmissions.

An algorithm using multicast and logical clocks •

Figure 15.4 Ricart and Agrawala’s algorithm

On initialization

state := RELEASED;

To enter the section

state := WANTED;
Multicast request to all processes;
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i j)

if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if

To exit the critical section

state := RELEASED;
reply to any queued requests;

Request processing deferred here

Ricart and Agrawala [1981] devel-
oped an algorithm to implement mutual exclusion between N peer processes that is
based upon multicast. The basic idea is that processes that require entry to a critical sec-
tion multicast a request message, and can enter it only when all the other processes have

638 CHAPTER 15 COORDINATION AND AGREEMENT

replied to this message. The conditions under which a process replies to a request are
designed to ensure that conditions ME1–ME3 are met.

The processes p1 p2 pN bear distinct numeric identifiers. They are assumed
to possess communication channels to one another, and each process pi keeps a
Lamport clock, updated according to the rules LC1 and LC2 of Section 14.4. Messages
requesting entry are of the form <T pi >, where T is the sender’s timestamp and pi is
the sender’s identifier.

Each process records its state of being outside the critical section (RELEASED),
wanting entry (WANTED) or being in the critical section (HELD) in a variable state. The
protocol is given in Figure 15.4.

If a process requests entry and the state of all other processes is RELEASED, then
all processes will reply immediately to the request and the requester will obtain entry. If
some process is in the state HELD, then that process will not reply to requests until it has
finished with the critical section, and so the requester cannot gain entry in the meantime.
If two or more processes request entry at the same time, then whichever process’s
request bears the lowest timestamp will be the first to collect N 1– replies, granting it
entry next. If the requests bear equal Lamport timestamps, the requests are ordered
according to the processes’ corresponding identifiers. Note that, when a process requests
entry, it defers processing requests from other processes until its own request has been
sent and it has recorded the timestamp T of the request. This is so that processes make
consistent decisions when processing requests.

This algorithm achieves the safety property ME1. If it were possible for two
processes pi and pj (i j) to enter the critical section at the same time, then both of
those processes would have to have replied to the other. But since the pairs <Ti pi > are
totally ordered, this is impossible. We leave the reader to verify that the algorithm also
meets requirements ME2 and ME3.

 To illustrate the algorithm, consider a situation involving three processes, p1 , p2
and p3 , shown in Figure 15.5

Figure 15.5 Multicast synchronization

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

. Let us assume that p3 is not interested in entering the
critical section, and that p1 and p2 request entry concurrently. The timestamp of p1’s
request is 41, and that of p2 is 34. When p3 receives their requests, it replies

SECTION 15.2 DISTRIBUTED MUTUAL EXCLUSION 639

immediately. When p2 receives p1’s request, it finds that its own request has the lower
timestamp and so does not reply, holding p1 off. However, p1 finds that p2 ’s request
has a lower timestamp than that of its own request and so replies immediately. On
receiving this second reply, p2 can enter the critical section. When p2 exits the critical
section, it will reply to p1 ’s request and so grant it entry.

Gaining entry takes 2 N 1– messages in this algorithm: N 1– to multicast the
request, followed by N 1– replies. Or, if there is hardware support for multicast, only
one message is required for the request; the total is then N messages. It is thus a more
expensive algorithm, in terms of bandwidth consumption, than the algorithms just
described. However, the client delay in requesting entry is again a round-trip time
(ignoring any delay incurred in multicasting the request message).

The advantage of this algorithm is that its synchronization delay is only one
message transmission time. Both the previous algorithms incurred a round-trip
synchronization delay.

The performance of the algorithm can be improved. First, note that the process
that last entered the critical section and that has received no other requests for it still goes
through the protocol as described, even though it could simply decide locally to reenter
the critical section. Second, Ricart and Agrawala refined this protocol so that it requires
N messages to obtain entry in the worst (and common) case, without hardware support
for multicast. This is described in Raynal [1988].

Maekawa’s voting algorithm • Maekawa [1985] observed that in order for a process to
enter a critical section, it is not necessary for all of its peers to grant it access. Processes
need only obtain permission to enter from subsets of their peers, as long as the subsets
used by any two processes overlap. We can think of processes as voting for one another
to enter the critical section. A ‘candidate’ process must collect sufficient votes to enter.
Processes in the intersection of two sets of voters ensure the safety property ME1, that
at most one process can enter the critical section, by casting their votes for only one
candidate.

Maekawa associated a voting set Vi with each process pi (i 1 2 N=),
where Vi p1 p1 pN . The sets Vi are chosen so that, for all i j 1 2 N= :

• pi Vi

• Vi Vj – there is at least one common member of any two voting sets

• Vi K= – to be fair, each process has a voting set of the same size

• Each process pj is contained in M of the voting sets Vi .

Maekawa showed that the optimal solution, which minimizes K and allows the
processes to achieve mutual exclusion, has K N and M = K (so that each process is
in as many of the voting sets as there are elements in each one of those sets). It is non-
trivial to calculate the optimal sets Ri . As an approximation, a simple way of deriving
sets Ri such that Ri 2 N is to place the processes in a N by N matrix and let
Vi be the union of the row and column containing pi .

Maekawa’s algorithm is shown in Figure 15.6. To obtain entry to the critical
section, a process pi sends request messages to all K members of Vi (including itself).
pi cannot enter the critical section until it has received all K reply messages. When a
process pj in Vi receives pi ’s request message, it sends a reply message immediately,

640 CHAPTER 15 COORDINATION AND AGREEMENT

unless either its state is HELD or it has already replied (‘voted’) since it last received a
release message. Otherwise, it queues the request message (in the order of its arrival)
but does not yet reply. When a process receives a release message, it removes the head
of its queue of outstanding requests (if the queue is nonempty) and sends a reply

message (a ‘vote’) in response to it. To leave the critical section, pi sends release

messages to all K members of Vi (including itself).

Figure 15.6 Maekawa’s algorithm

On initialization

state := RELEASED;
voted := FALSE;

For to enter the critical section

state := WANTED;
Multicast request to all processes in ;
Wait until (number of replies received = K);
state := HELD;

On receipt of a request from at

if (state = HELD or voted = TRUE)
then

queue request from without replying;
else

send reply to ;
voted := TRUE;

end if

For to exit the critical section

state := RELEASED;
Multicast release to all processes in ;

On receipt of a release from at

if (queue of requests is non-empty)
then

remove head of queue – from , say;
send reply to ;
voted := TRUE;

else

voted := FALSE;
end if

pi

Vi

pi pj

pi

pi

pi

Vi

pi pj

pk
pk

This algorithm achieves the safety property, ME1. If it were possible for two
processes pi and pj to enter the critical section at the same time, then the processes in
Vi Vj would have to have voted for both. But the algorithm allows a process to
make at most one vote between successive receipts of a release message, so this
situation is impossible.

Unfortunately, the algorithm is deadlock-prone. Consider three processes, p1 , p2
and p3 , with V1 p1 p2= , V2 p2 p3= and V3 p3 p1= . If the three

SECTION 15.3 ELECTIONS 641

processes concurrently request entry to the critical section, then it is it is possible for p1
to reply to itself and hold off p2 , for p2 to reply to itself and hold off p3 , and for p3 to
reply to itself and hold off p1 . Each process has received one out of two replies, and
none can proceed.

The algorithm can be adapted [Sanders 1987] so that it becomes deadlock-free. In
the adapted protocol, processes queue outstanding requests in happened-before order, so
that requirement ME3 is also satisfied.

The algorithm’s bandwidth utilization is 2 N messages per entry to the critical
section and N messages per exit (assuming no hardware multicast facilities). The total
of 3 N is superior to the 2 N 1– messages required by Ricart and Agrawala’s
algorithm, if N > 4. The client delay is the same as that of Ricart and Agrawala’s
algorithm, but the synchronization delay is worse: a round-trip time instead of a single
message transmission time.

Fault tolerance • The main points to consider when evaluating the above algorithms
with respect to fault tolerance are:

• What happens when messages are lost?

• What happens when a process crashes?

None of the algorithms that we have described would tolerate the loss of messages, if
the channels were unreliable. The ring-based algorithm cannot tolerate a crash failure of
any single process. As it stands, Maekawa’s algorithm can tolerate some process crash
failures: if a crashed process is not in a voting set that is required, then its failure will not
affect the other processes. The central server algorithm can tolerate the crash failure of
a client process that neither holds nor has requested the token. The Ricart and Agrawala
algorithm as we have described it can be adapted to tolerate the crash failure of such a
process, by taking it to grant all requests implicitly.

We invite the reader to consider how to adapt the algorithms to tolerate failures,
on the assumption that a reliable failure detector is available. Even with a reliable failure
detector, care is required to allow for failures at any point (including during a recovery
procedure), and to reconstruct the state of the processes after a failure has been detected.
For example, in the central-server algorithm, if the server fails it must be established
whether it or one of the client processes held the token.

We examine the general problem of how processes should coordinate their actions
in the presence of faults in Section 15.5.

15.3 Elections

An algorithm for choosing a unique process to play a particular role is called an election

algorithm. For example, in a variant of our central-server algorithm for mutual
exclusion, the ‘server’ is chosen from among the processes pi i 1 2 N= that
need to use the critical section. An election algorithm is needed for this choice. It is
essential that all the processes agree on the choice. Afterwards, if the process that plays
the role of server wishes to retire then another election is required to choose a
replacement.

642 CHAPTER 15 COORDINATION AND AGREEMENT

We say that a process calls the election if it takes an action that initiates a
particular run of the election algorithm. An individual process does not call more than
one election at a time, but in principle the N processes could call N concurrent elections.
At any point in time, a process pi is either a participant – meaning that it is engaged in
some run of the election algorithm – or a non-participant – meaning that it is not
currently engaged in any election.

An important requirement is for the choice of elected process to be unique, even
if several processes call elections concurrently. For example, two processes could
decide independently that a coordinator process has failed, and both call elections.

Without loss of generality, we require that the elected process be chosen as the one
with the largest identifier. The ‘identifier’ may be any useful value, as long as the
identifiers are unique and totally ordered. For example, we could elect the process with
the lowest computational load by having each process use <1 load , i > as its identifier,
where load > 0 and the process index i is used to order identifiers with the same load.

 Each process pi (i 1 2 N=) has a variable electedi , which will contain the
identifier of the elected process. When the process first becomes a participant in an
election it sets this variable to the special value ‘ ’ to denote that it is not yet defined.

Our requirements are that, during any particular run of the algorithm:

E1: (safety) A participant process pi has electedi = or electedi = P,
where P is chosen as the non-crashed process at the end of
the run with the largest identifier.

E2: (liveness) All processes pi participate and eventually either set
electedi – or crash.

Note that there may be processes pj that are not yet participants, which record in
electedj the identifier of the previous elected process.

We measure the performance of an election algorithm by its total network
bandwidth utilization (which is proportional to the total number of messages sent), and
by the turnaround time for the algorithm: the number of serialized message transmission
times between the initiation and termination of a single run.

A ring-based election algorithm • The algorithm of Chang and Roberts [1979] is
suitable for a collection of processes arranged in a logical ring. Each process pi has a
communication channel to the next process in the ring, p i 1+ mod N , and all messages
are sent clockwise around the ring. We assume that no failures occur, and that the system
is asynchronous. The goal of this algorithm is to elect a single process called the
coordinator, which is the process with the largest identifier.

Initially, every process is marked as a non-participant in an election. Any process
can begin an election. It proceeds by marking itself as a participant, placing its identifier
in an election message and sending it to its clockwise neighbour.

When a process receives an election message, it compares the identifier in the
message with its own. If the arrived identifier is greater, then it forwards the message to
its neighbour. If the arrived identifier is smaller and the receiver is not a participant, then
it substitutes its own identifier in the message and forwards it; but it does not forward
the message if it is already a participant. On forwarding an election message in any case,
the process marks itself as a participant.

Figure 15.7 A ring-based election in progress

Note: The election was started by process 17. The highest process identifier encountered
so far is 24. Participant processes are shown in a darker tint.

24

15

9

4

3

28

17

24

1

SECTION 15.3 ELECTIONS 643

If, however, the received identifier is that of the receiver itself, then this process’s
identifier must be the greatest, and it becomes the coordinator. The coordinator marks
itself as a non-participant once more and sends an elected message to its neighbour,
announcing its election and enclosing its identity.

When a process pi receives an elected message, it marks itself as a non-

participant, sets its variable electedi to the identifier in the message and, unless it is the
new coordinator, forwards the message to its neighbour.

It is easy to see that condition E1 is met. All identifiers are compared, since a
process must receive its own identifier back before sending an elected message. For any
two processes, the one with the larger identifier will not pass on the other’s identifier. It
is therefore impossible that both should receive their own identifier back.

Condition E2 follows immediately from the guaranteed traversals of the ring
(there are no failures). Note how the non-participant and participant states are used so
that duplicate messages arising when two processes start an election at the same time are
extinguished as soon as possible, and always before the ‘winning’ election result has
been announced.

If only a single process starts an election, then the worst-performing case is when
its anti-clockwise neighbour has the highest identifier. A total of N 1– messages are
then required to reach this neighbour, which will not announce its election until its
identifier has completed another circuit, taking a further N messages. The elected

message is then sent N times, making 3N 1– messages in all. The turnaround time is
also 3N 1– , since these messages are sent sequentially.

644 CHAPTER 15 COORDINATION AND AGREEMENT

An example of a ring-based election in progress is shown in Figure 15.7. The
election message currently contains 24, but process 28 will replace this with its identifier
when the message reaches it.

While the ring-based algorithm is useful for understanding the properties of
election algorithms in general, the fact that it tolerates no failures makes it of limited
practical value. However, with a reliable failure detector it is in principle possible to re-
constitute the ring when a process crashes.

The bully algorithm •

Figure 15.8 The bully algorithm

p
1 p 2

p
3

p
4

p
1

p
2

p
3

p
4

C
coordinator

Stage 4

C

election

election
Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3

p
4

The election of coordinator p2, after the failure of p4 and then p3

election

answer

The bully algorithm [Garcia-Molina 1982] allows processes to
crash during an election, although it assumes that message delivery between processes
is reliable. Unlike the ring-based algorithm, this algorithm assumes that the system is
synchronous: it uses timeouts to detect a process failure. Another difference is that the
ring-based algorithm assumed that processes have minimal a priori knowledge of one
another: each knows only how to communicate with its neighbour, and none knows the
identifiers of the other processes. The bully algorithm, on the other hand, assumes that
each process knows which processes have higher identifiers, and that it can
communicate with all such processes.

There are three types of message in this algorithm: an election message is sent to
announce an election; an answer message is sent in response to an election message and
a coordinator message is sent to announce the identity of the elected process – the new

SECTION 15.3 ELECTIONS 645

‘coordinator’. A process begins an election when it notices, through timeouts, that the
coordinator has failed. Several processes may discover this concurrently.

Since the system is synchronous, we can construct a reliable failure detector.
There is a maximum message transmission delay, Ttrans , and a maximum delay for
processing a message Tprocess . Therefore, we can calculate a time
T 2Ttrans Tprocess+= that is an upper bound on the time that can elapse between
sending a message to another process and receiving a response. If no response arrives
within time T, then the local failure detector can report that the intended recipient of the
request has failed.

The process that knows it has the highest identifier can elect itself as the
coordinator simply by sending a coordinator message to all processes with lower
identifiers. On the other hand, a process with a lower identifier can begin an election by
sending an election message to those processes that have a higher identifier and awaiting
answer messages in response. If none arrives within time T, the process considers itself
the coordinator and sends a coordinator message to all processes with lower identifiers
announcing this. Otherwise, the process waits a further period T for a coordinator

message to arrive from the new coordinator. If none arrives, it begins another election.
If a process pi receives a coordinator message, it sets its variable electedi to the

identifier of the coordinator contained within it and treats that process as the coordinator.
If a process receives an election message, it sends back an answer message and

begins another election – unless it has begun one already.
When a process is started to replace a crashed process, it begins an election. If it

has the highest process identifier, then it will decide that it is the coordinator and
announce this to the other processes. Thus it will become the coordinator, even though
the current coordinator is functioning. It is for this reason that the algorithm is called the
‘bully’ algorithm.

The operation of the algorithm is shown in Figure 15.8. There are four processes,
p1 –p4 . Process p1 detects the failure of the coordinator p4 and announces an election
(stage 1 in the figure). On receiving an election message from p1 , processes p2 and p3
send answer messages to p1 and begin their own elections; p3 sends an answer

message to p2 , but p3 receives no answer message from the failed process p4 (stage
2). It therefore decides that it is the coordinator. But before it can send out the
coordinator message, it too fails (stage 3). When p1 ’s timeout period T expires (which
we assume occurs before p2 ’s timeout expires), it deduces the absence of a coordinator

message and begins another election. Eventually, p2 is elected coordinator (stage 4).
This algorithm clearly meets the liveness condition E2, by the assumption of

reliable message delivery. And if no process is replaced, then the algorithm meets
condition E1. It is impossible for two processes to decide that they are the coordinator,
since the process with the lower identifier will discover that the other exists and defer to
it.

But the algorithm is not guaranteed to meet the safety condition E1 if processes
that have crashed are replaced by processes with the same identifiers. A process that
replaces a crashed process p may decide that it has the highest identifier just as another
process (which has detected p’s crash) decides that it has the highest identifier. Two
processes will therefore announce themselves as the coordinator concurrently.
Unfortunately, there are no guarantees on message delivery order, and the recipients of
these messages may reach different conclusions on which is the coordinator process.

646 CHAPTER 15 COORDINATION AND AGREEMENT

Furthermore, condition E1 may be broken if the assumed timeout values turn out
to be inaccurate – that is, if the processes’ failure detector is unreliable.

Taking the example just given, suppose that either p3 had not failed but was just
running unusually slowly (that is, that the assumption that the system is synchronous is
incorrect), or that p3 had failed but was then replaced. Just as p2 sends its coordinator

message, p3 (or its replacement) does the same. p2 receives p3 ‘s coordinator message
after it has sent its own and so sets elected2 p3= . Due to variable message
transmission delays, p1 receives p2 ’s coordinator message after p3 ’s and so
eventually sets elected1 p2= . Condition E1 has been broken.

With regard to the performance of the algorithm, in the best case the process with
the second-highest identifier notices the coordinator’s failure. Then it can immediately
elect itself and send N 2– coordinator messages. The turnaround time is one message.
The bully algorithm requires O N

2
 messages in the worst case – that is, when the

process with the lowest identifier first detects the coordinator’s failure. For then N 1–
processes altogether begin elections, each sending messages to processes with higher
identifiers.

15.4 Coordination and agreement in group communication

This chapter examines the key coordination and agreement problems related to group
communication – that is, how to achieve the desired reliability and ordering properties
across all members of a group. Chapter 6 introduced group communication as an
example of an indirect communication technique whereby processes can send messages
to a group. This message is propagated to all members of the group with certain
guarantees in terms of reliability and ordering. We are particularly seeking reliability in
terms of the properties of validity, integrity and agreement, and ordering in terms of
FIFO ordering, causal ordering and total ordering.

In this chapter, we study multicast communication to groups of processes whose
membership is known. Chapter 18 will expand our study to fully fledged group
communication, including the management of dynamically varying groups.

System model • The system under consideration contains a collection of processes,
which can communicate reliably over one-to-one channels. As before, processes may
fail only by crashing.

The processes are members of groups, which are the destinations of messages sent
with the multicast operation. It is generally useful to allow processes to be members of
several groups simultaneously – for example, to enable processes to receive information
from several sources by joining several groups. But to simplify our discussion of
ordering properties, we shall sometimes restrict processes to being members of at most
one group at a time.

The operation multicast(g, m) sends the message m to all members of the group g
of processes. Correspondingly, there is an operation deliver(m) that delivers a message
sent by multicast to the calling process. We use the term deliver rather than receive to
make clear that a multicast message is not always handed to the application layer inside

SECTION 15.4 COORDINATION AND AGREEMENT IN GROUP COMMUNICATION 647

the process as soon as it is received at the process’s node. This is explained when we
discuss multicast delivery semantics shortly.

Every message m carries the unique identifier of the process sender(m) that sent
it, and the unique destination group identifier group(m). We assume that processes do
not lie about the origin or destinations of messages.

Some algorithms assume that groups are closed (as defined in Chapter 6).

15.4.1 Basic multicast

It is useful to have at our disposal a basic multicast primitive that guarantees, unlike IP
multicast, that a correct process will eventually deliver the message, as long as the
multicaster does not crash. We call the primitive B-multicast and its corresponding basic
delivery primitive B-deliver. We allow processes to belong to several groups, and each
message is destined for some particular group.

A straightforward way to implement B-multicast is to use a reliable one-to-one
send operation, as follows:

To B-multicast(g, m): for each process p g , send(p, m);

On receive(m) at p: B-deliver(m) at p.

The implementation may use threads to perform the send operations concurrently, in an
attempt to reduce the total time taken to deliver the message. Unfortunately, such an
implementation is liable to suffer from a so-called ack-implosion if the number of
processes is large. The acknowledgements sent as part of the reliable send operation are
liable to arrive from many processes at about the same time. The multicasting process’s
buffers will rapidly fill, and it is liable to drop acknowledgements. It will therefore
retransmit the message, leading to yet more acknowledgements and further waste of
network bandwidth. A more practical basic multicast service can be built using IP
multicast, and we invite the reader to show this in Exercise 15.10.

15.4.2 Reliable multicast

Chapter 6 discussed reliable multicast in terms of validity, integrity and agreement. This
section builds on this informal discussion, presenting a more complete definition.

Following Hadzilacos and Toueg [1994] and Chandra and Toueg [1996], we
define a reliable multicast with corresponding operations R-multicast and R-deliver.
Properties analogous to integrity and validity are clearly highly desirable in reliable
multicast delivery, but we add another: a requirement that all correct processes in the
group must receive a message if any of them does. It is important to realize that this is
not a property of the B-multicast algorithm that is based on a reliable one-to-one send

operation. The sender may fail at any point while B-multicast proceeds, so some
processes may deliver a message while others do not.

A reliable multicast is one that satisfies the following properties:

Integrity: A correct process p delivers a message m at most once. Furthermore,
p group m and m was supplied to a multicast operation by sender(m). (As with
one-to-one communication, messages can always be distinguished by a sequence
number relative to their sender.)

648 CHAPTER 15 COORDINATION AND AGREEMENT

Validity: If a correct process multicasts message m, then it will eventually deliver m.

Agreement: If a correct process delivers message m, then all other correct processes
in group(m) will eventually deliver m.

The integrity property is analogous to that for reliable one-to-one communication. The
validity property guarantees liveness for the sender. This may seem an unusual property,
because it is asymmetric (it mentions only one particular process). But notice that
validity and agreement together amount to an overall liveness requirement: if one
process (the sender) eventually delivers a message m, since the correct processes agree
on the set of messages they deliver, it follows that m will eventually be delivered to all
the group’s correct members.

Figure 15.9 Reliable multicast algorithm

On initialization

Received := {};

For process p to R-multicast message m to group g

B-multicast(g, m); // is included as a destination

On B-deliver(m) at process q with g = group(m)
if ()
then

Received := ;
if () then B-multicast(g, m); end if

R-deliver m;
end if

p g

m Received

Received m

q p

The advantage of expressing the validity condition in terms of self-delivery is
simplicity. What we require is that the message be delivered eventually by some correct
member of the group.

The agreement condition is related to atomicity, the property of ‘all or nothing’,
applied to delivery of messages to a group. If a process that multicasts a message crashes
before it has delivered it, then it is possible that the message will not be delivered to any
process in the group; but if it is delivered to some correct process, then all other correct
processes will deliver it. Many papers in the literature use the term ‘atomic’ to include
a total ordering condition; we define this shortly.

Implementing reliable multicast over B-multicast • Figure 15.9 gives a reliable multi-
cast algorithm, with primitives R-multicast and R-deliver, that allows processes to be-
long to several closed groups simultaneously. To R-multicast a message, a process B-

multicasts the message to the processes in the destination group (including itself). When
the message is B-delivered, the recipient in turn B-multicasts the message to the group
(if it is not the original sender), and then R-delivers the message. Since a message may
arrive more than once, duplicates of the message are detected and not delivered.

This algorithm clearly satisfies the validity property, since a correct process will
eventually B-deliver the message to itself. By the integrity property of the underlying
communication channels used in B-multicast, the algorithm also satisfies the integrity
property.

SECTION 15.4 COORDINATION AND AGREEMENT IN GROUP COMMUNICATION 649

Agreement follows from the fact that every correct process B-multicasts the
message to the other processes after it has B-delivered it. If a correct process does not R-

deliver the message, then this can only be because it never B-delivered it. That in turn
can only be because no other correct process B-delivered it either; therefore none will
R-deliver it.

The reliable multicast algorithm that we have described is correct in an
asynchronous system, since we made no timing assumptions. But the algorithm is
inefficient for practical purposes. Each message is sent g times to each process.

Reliable multicast over IP multicast • An alternative realization of R-multicast is to use
a combination of IP multicast, piggybacked acknowledgements (that is, acknowledge-
ments attached to other messages) and negative acknowledgements. This R-multicast

protocol is based on the observation that IP multicast communication is often successful.
In the protocol, processes do not send separate acknowledgement messages; instead,
they piggyback acknowledgements on the messages that they send to the group. Proc-
esses send a separate response message only when they detect that they have missed a
message. A response indicating the absence of an expected message is known as a neg-

ative acknowledgement.

 The description assumes that groups are closed. Each process p maintains a
sequence number Sg

p
 for each group g to which it belongs. The sequence number is

initially zero. Each process also records Rg
q

, the sequence number of the latest message
it has delivered from process q that was sent to group g.

For p to R-multicast a message to group g, it piggybacks onto the message the
value Sg

p
 and acknowledgements, of the form <q, Rg

q
>. An acknowledgement states, for

some sender q, the sequence number of the latest message from q destined for g that p
has delivered since it last multicast a message. The multicaster p then IP-multicasts the
message with its piggybacked values to g, and increments Sg

p
 by one.

The piggybacked values in a multicast message enable the recipients to learn
about messages that they have not received. A process R-delivers a message destined for
g bearing the sequence number S from p if and only if S Rg

p
1+= , and it increments

Rg
p

 by one immediately after delivery. If an arriving message has S Rg
p

, then r has
delivered the message before and it discards it. If S Rg

p
1+ , or if R Rg

q
 for an

enclosed acknowledgement <q, R>, then there are one or more messages that it has not
yet received (and which are likely to have been dropped, in the first case). It keeps any
message for which S Rg

p
1+ in a hold-back queue (Figure 15.10) – such queues are

often used to meet message delivery guarantees. It requests missing messages by
sending negative acknowledgements, either to the original sender or to a process q from
which it has received an acknowledgement <q, Rg

q
> with Rg

q
 no less than the required

sequence number.
The hold-back queue is not strictly necessary for reliability, but it simplifies the

protocol by enabling us to use sequence numbers to represent sets of delivered
messages. It also provides us with a guarantee of delivery order (see Section 15.4.3).

The integrity property follows from the detection of duplicates and the underlying
properties of IP multicast (which uses checksums to expunge corrupted messages). The
validity property holds because IP multicast has that property. For agreement we
require, first, that a process can always detect missing messages. That in turn means that
it will always receive a further message that enables it to detect the omission. As this

Figure 15.10 The hold-back queue for arriving multicast messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

650 CHAPTER 15 COORDINATION AND AGREEMENT

simplified protocol stands, we guarantee detection of missing messages only in the case
where correct processes multicast messages indefinitely. Second, the agreement
property requires that there is always an available copy of any message needed by a
process that did not receive it. We therefore assume that processes retain copies of the
messages they have delivered – indefinitely, in this simplified protocol.

Neither of the assumptions we made to ensure agreement is practical (see Exercise
15.15). However, agreement is practically addressed in the protocols from which ours is
derived: the Psync protocol [Peterson et al. 1989], Trans protocol [Melliar-Smith et al.

1990] and scalable reliable multicast protocol [Floyd et al. 1997]. Psync and Trans also
provide further delivery ordering guarantees.

Uniform properties • The definition of agreement given above refers only to the
behaviour of correct processes – processes that never fail. Consider what would happen
in the algorithm of Figure 15.9 if a process was not correct and crashed after it had R-

delivered a message. Since any process that R-delivers the message must first B-

multicast it, it follows that all correct processes will still eventually deliver the message.
Any property that holds whether or not processes are correct is called a uniform

property. We define uniform agreement as follows:

Uniform agreement: If a process, whether it is correct or fails, delivers message m,
then all correct processes in group(m) will eventually deliver m.

Uniform agreement allows a process to crash after it has delivered a message, while still
ensuring that all correct processes will deliver the message. We have argued that the
algorithm of Figure 15.9 satisfies this property, which is stronger than the non-uniform
agreement property defined above.

Uniform agreement is useful in applications where a process may take an action
that produces an observable inconsistency before it crashes. For example, suppose that
the processes are servers that manage copies of a bank account, and that updates to the
account are sent using reliable multicast to the group of servers. If the multicast does not
satisfy uniform agreement, then a client that accesses a server just before it crashes may
observe an update that no other server will process.

SECTION 15.4 COORDINATION AND AGREEMENT IN GROUP COMMUNICATION 651

It is interesting to note that if we reverse the lines ‘R-deliver m’ and ‘if (q p)
then B-multicast(g, m); end if’ in Figure 15.9, then the resultant algorithm does not
satisfy uniform agreement.

Just as there is a uniform version of agreement, there are also uniform versions of
any multicast property, including validity and integrity and the ordering properties that
we are about to define.

15.4.3 Ordered multicast

The basic multicast algorithm of Section 15.4.1 delivers messages to processes in an
arbitrary order, due to arbitrary delays in the underlying one-to-one send operations.
This lack of an ordering guarantee is not satisfactory for many applications. For
example, in a nuclear power plant it may be important that events signifying threats to
safety conditions and events signifying actions by control units are observed in the same
order by all processes in the system.

As discussed in Chapter 6, the common ordering requirements are total ordering,
causal ordering and FIFO ordering, together with hybrid solutions (in particular, total-
causal and total-FIFO). To simplify our discussion, we define these orderings under the
assumption that any process belongs to at most one group (later we discuss the
implications of allowing groups to overlap):

FIFO ordering: If a correct process issues multicast(g, m) and then multicast(g, m),
then every correct process that delivers m will deliver m before m .

Causal ordering: If multicast(g, m) multicast(g, m), where is the
happened-before relation induced only by messages sent between the members of g,
then any correct process that delivers m will deliver m before m .

Total ordering: If a correct process delivers message m before it delivers m , then
any other correct process that delivers m will deliver m before m .

Causal ordering implies FIFO ordering, since any two multicasts by the same process
are related by happened-before. Note that FIFO ordering and causal ordering are only
partial orderings: not all messages are sent by the same process, in general; similarly,
some multicasts are concurrent (not ordered by happened-before).

Figure 15.11 illustrates the orderings for the case of three processes. Close
inspection of the figure shows that the totally ordered messages are delivered in the
opposite order to the physical time at which they were sent. In fact, the definition of total
ordering allows message delivery to be ordered arbitrarily, as long as the order is the
same at different processes. Since total ordering is not necessarily also a FIFO or causal
ordering, we define the hybrid of FIFO-total ordering as one for which message delivery
obeys both FIFO and total ordering; similarly, under causal-total ordering message
delivery obeys both causal and total ordering.

The definitions of ordered multicast do not assume or imply reliability. For
example, the reader should check that, under total ordering, if correct process p delivers
message m and then delivers m , then a correct process q can deliver m without also
delivering m or any other message ordered after m.

We can also form hybrids of ordered and reliable protocols. A reliable totally
ordered multicast is often referred to in the literature as an atomic multicast. Similarly,

Figure 15.11 Total, FIFO and causal ordering of multicast messages

Notice the consistent ordering of totally ordered messages T1 and T2, the FIFO-related messages
F1 and F2 and the causally related messages C1 and C3 – and the otherwise arbitrary delivery
ordering of messages

F3

F1

F2

T2

T1

P1 P2 P3

Time

C3

C1

C2

652 CHAPTER 15 COORDINATION AND AGREEMENT

we may form reliable FIFO multicast, reliable causal multicast and reliable versions of
the hybrid ordered multicasts.

Ordering the delivery of multicast messages, as we shall see, can be expensive in
terms of delivery latency and bandwidth consumption. The ordering semantics that we
have described may delay the delivery of messages unnecessarily. That is, at the
application level, a message may be delayed for another message that it does not in fact
depend upon. For this reason, some have proposed multicast systems that use the
application-specific message semantics alone to determine the order of message
delivery [Cheriton and Skeen 1993, Pedone and Schiper 1999].

The example of the bulletin board • To make multicast delivery semantics more
concrete, consider an application in which users post messages to bulletin boards. Each
user runs a bulletin-board application process. Every topic of discussion has its own
process group. When a user posts a message to a bulletin board, the application

SECTION 15.4 COORDINATION AND AGREEMENT IN GROUP COMMUNICATION 653

multicasts the user’s posting to the corresponding group. Each user’s process is a
member of the group for the topic in which that user is interested, so they will receive
just the postings concerning that topic.

Reliable multicast is required if every user is to receive every posting eventually.
The users also have ordering requirements.

Figure 15.12 Display from bulletin board program

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

Figure 15.12 shows the postings as they
appear to a particular user. At a minimum, FIFO ordering is desirable, since then every
posting from a given user – ‘A.Hanlon’, say – will be received in the same order, and
users can talk consistently about A.Hanlon’s second posting.

Note that the messages whose subjects are ‘Re: Microkernels’ (25) and ‘Re:
Mach’ (27) appear after the messages to which they refer. A causally ordered multicast
is needed to guarantee this relationship. Otherwise, arbitrary message delays could mean
that, say, the message ‘Re: Mach’ could appear before the original message about Mach.

If the multicast delivery was totally ordered, then the numbering in the lefthand
column would be consistent between users. Users could refer unambiguously, for
example, to ‘message 24’.

In practice, the USENET bulletin board system implements neither causal nor
total ordering. The communication costs of achieving these orderings on a large scale
outweigh their advantages.

Implementing FIFO ordering • FIFO-ordered multicast (with operations FO-multicast

and FO-deliver) is achieved with sequence numbers, much as we would achieve it for
one-to-one communication. We shall consider only non-overlapping groups. The reader
should verify that the reliable multicast protocol that we defined on top of IP multicast
in Section 15.4.2 also guarantees FIFO ordering, but we shall show how to construct a
FIFO-ordered multicast on top of any given basic multicast. We use the variables Sg

p

and Rg
q

 held at process p from the reliable multicast protocol of Section 15.4.2: Sg
p

 is a
count of how many messages p has sent to g and, for each q, Rg

q
 is the sequence number

of the latest message p has delivered from process q that was sent to group g.

For p to FO-multicast a message to group g, it piggybacks the value Sg
p

 onto the
message, B-multicasts the message to g and then increments Sg

p
 by 1. Upon receipt of a

message from q bearing the sequence number S, p checks whether S Rg
q

1+= . If so,
this message is the next one expected from the sender q and p FO-delivers it, setting

Rg
q

654 CHAPTER 15 COORDINATION AND AGREEMENT

:=S. If S Rg
q

1+ , it places the message in the hold-back queue until the intervening
messages have been delivered and S Rg

q
1+= .

Since all messages from a given sender are delivered in the same sequence, and
since a message’s delivery is delayed until its sequence number has been reached, the
condition for FIFO ordering is clearly satisfied. But this is so only under the assumption
that groups are non-overlapping.

Note that we can use any implementation of B-multicast in this protocol.
Moreover, if we use a reliable R-multicast primitive instead of B-multicast, then we
obtain a reliable FIFO multicast.

Implementing total ordering • The basic approach to implementing total ordering is to
assign totally ordered identifiers to multicast messages so that each process makes the
same ordering decision based upon these identifiers. The delivery algorithm is very
similar to the one we described for FIFO ordering; the difference is that processes keep
group-specific sequence numbers rather than process-specific sequence numbers. We
only consider how to totally order messages sent to non-overlapping groups. We call the
multicast operations TO-multicast and TO-deliver.

We discuss two main methods for assigning identifiers to messages. The first of
these is for a process called a sequencer to assign them (Figure 15.13). A process
wishing to TO-multicast a message m to group g attaches a unique identifier id(m) to it.
The messages for g are sent to the sequencer for g, sequencer(g), as well as to the
members of g. (The sequencer may be chosen to be a member of g.) The process
sequencer(g) maintains a group-specific sequence number sg , which it uses to assign
increasing and consecutive sequence numbers to the messages that it B-delivers.
It announces the sequence numbers by B-multicasting order messages to g (see Figure
15.13 for the details).

A message will remain in the hold-back queue indefinitely until it can be TO-

delivered according to the corresponding sequence number. Since the sequence numbers
are well defined (by the sequencer), the criterion for total ordering is met. Furthermore,
if the processes use a FIFO-ordered variant of B-multicast, then the totally ordered
multicast is also causally ordered. We leave the reader to show this.

The obvious problem with a sequencer-based scheme is that the sequencer may
become a bottleneck and is a critical point of failure. Practical algorithms exist that
address the problem of failure. Chang and Maxemchuk [1984] first suggested a
multicast protocol employing a sequencer (which they called a token site). Kaashoek et

al. [1989] developed a sequencer-based protocol for the Amoeba system. These
protocols ensure that a message is in the hold-back queue at f 1+ nodes before it is
delivered; up to f failures can thus be tolerated. Like Chang and Maxemchuk, Birman et

al. [1991] also employ a token-holding site that acts as a sequencer. The token can be
passed from process to process so that, for example, if only one process sends totally
ordered multicasts that process can act as the sequencer, saving communication.

The protocol of Kaashoek et al. uses hardware-based multicast – available on an
Ethernet, for example – rather than reliable point-to-point communication. In the
simplest variant of their protocol, processes send the message to be multicast to the
sequencer, one-to-one. The sequencer multicasts the message itself, as well as the
identifier and sequence number. This has the advantage that the other members of the

Figure 15.13 Total ordering using a sequencer

1. Algorithm for group member p

On initialization: := 0;

To TO-multicast message m to group g

B-multicast(, <m, i>);

On B-deliver(<m, i>) with g = group(m)
Place <m, i> in hold-back queue;

On B-deliver(= <“order”, i, S>) with g = group()
wait until <m, i> in hold-back queue and ;
TO-deliver m; // (after deleting it from the hold-back queue)

 := ;

2. Algorithm for sequencer of g

On initialization: := 0;

On B-deliver(<m, i>) with g = group(m)
B-multicast(g, <“order”, i, >);

 := ;

rg

g sequencer g

morder morder
S rg=

rg S 1+

sg

sg
sg sg 1+

SECTION 15.4 COORDINATION AND AGREEMENT IN GROUP COMMUNICATION 655

group receive only one message per multicast; its disadvantage is increased bandwidth
utilization. The protocol is described in full at www.cdk5.net/coordination.

The second method that we examine for achieving totally ordered multicast is one
in which the processes collectively agree on the assignment of sequence numbers to
messages in a distributed fashion. A simple algorithm – similar to one that was originally
developed to implement totally ordered multicast delivery for the ISIS toolkit [Birman
and Joseph 1987a] – is shown in Figure 15.14. Once more, a process B-multicasts its
message to the members of the group. The group may be open or closed. The receiving
processes propose sequence numbers for messages as they arrive and return these to the
sender, which uses them to generate agreed sequence numbers.

Each process q in group g keeps Ag
q

, the largest agreed sequence number it has
observed so far for group g, and Pg

q
, its own largest proposed sequence number. The

algorithm for process p to multicast a message m to group g is as follows:

1. p B-multicasts <m, i> to g, where i is a unique identifier for m.

2. Each process q replies to the sender p with a proposal for the message’s agreed
sequence number of Pg

q
:= Max(Ag

q
, Pg

q
) + 1. In reality, we must include process

identifiers in the proposed values Pg
q

to ensure a total order, since otherwise
different processes could propose the same integer value; but for the sake of
simplicity we shall not make that explicit here. Each process provisionally assigns
the proposed sequence number to the message and places it in its hold-back queue,
which is ordered with the smallest sequence number at the front.

Figure 15.14 The ISIS algorithm for total ordering

FE

RM1

1

1

2

2

1

1

2

2

3

3

1 Message

2 Proposed Seq

P2

P3

P1

P4

3 Agreed Seq

656 CHAPTER 15 COORDINATION AND AGREEMENT

3. p collects all the proposed sequence numbers and selects the largest one, a, as the
next agreed sequence number. It then B-multicasts <i, a> to g. Each process q in
g sets Ag

q
:= Max(Ag

q
, a) and attaches a to the message (which is identified by i).

It reorders the message in the hold-back queue if the agreed sequence number
differs from the proposed one. When the message at the front of the hold-back
queue has been assigned its agreed sequence number, it is transferred to the tail of
the delivery queue. Messages that have been assigned their agreed sequence
number but are not at the head of the hold-back queue are not yet transferred,
however.

If every process agrees the same set of sequence numbers and delivers them in the
corresponding order, then total ordering is satisfied. It is clear that correct processes
ultimately agree on the same set of sequence numbers, but we must show that they are
monotonically increasing and that no correct process can deliver a message prematurely.

Assume that a message m1 has been assigned an agreed sequence number and has
reached the front of the hold-back queue. By construction, a message that is received
after this stage will and should be delivered after m1: it will have a larger proposed
sequence number and thus a larger agreed sequence number than m1 . So let m2 be any
other message that has not yet been assigned its agreed sequence number but that is on
the same queue. We have that:

agreedSequence(m2) proposedSequence(m2)

by the algorithm just given. Since m1 is at the front of the queue:

proposedSequence(m2) > agreedSequence(m1)

Therefore:

agreedSequence(m2) > agreedSequence(m1)

SECTION 15.4 COORDINATION AND AGREEMENT IN GROUP COMMUNICATION 657

and total ordering is assured.
This algorithm has higher latency than the sequencer-based multicast algorithm:

three messages are sent serially between the sender and the group before a message can
be delivered.

Note that the total ordering chosen by this algorithm is not also guaranteed to be
causally or FIFO-ordered: any two messages are delivered in an essentially arbitrary
total order, influenced by communication delays.

For other approaches to implementing total ordering, see Melliar-Smith et al.

[1990], Garcia-Molina and Spauster [1991] and Hadzilacos and Toueg [1994].

Implementing causal ordering • Next we give an algorithm for non-overlapping closed
groups based on that developed by Birman et al. [1991], shown in

Figure 15.15 Causal ordering using vector timestamps

Algorithm for group member ()

On initialization

 := 0 ();

To CO-multicast message m to group g

 := ;

B-multicast(g, < , m>);

On B-deliver(< , m>) from (), with g = group(m)

place < , m> in hold-back queue;

wait until and ();

CO-deliver m; // after removing it from the hold-back queue

 := ;

pi i 1 2 N=

Vi
g

j j 1 2 N=

Vi
g

i Vi
g

i 1+

Vi
g

Vj
g

pj j i

Vj
g

Vj
g

j Vi
g

j 1+= Vj
g

k Vi
g

k k j

Vi
g

j Vi
g

j 1+

Figure 15.15, in which
the causally ordered multicast operations are CO-multicast and CO-deliver. The
algorithm takes account of the happened-before relationship only as it is established by
multicast messages. If the processes send one-to-one messages to one another, then
these will not be accounted for.

Each process pi (i 1 2 N=) maintains its own vector timestamp (see
Section 14.4). The entries in the timestamp count the number of multicast messages
from each process that happened-before the next message to be multicast.

To CO-multicast a message to group g, the process adds 1 to its entry in the
timestamp and B-multicasts the message along with its timestamp to g.

When a process pi B-delivers a message from pj , it must place it in the hold-back
queue before it can CO-deliver it – that is, until it is assured that it has delivered any
messages that causally preceded it. To establish this, pi waits until (a) it has delivered
any earlier message sent by pj , and (b) it has delivered any message that pj had
delivered at the time it multicast the message. Both of those conditions can be detected
by examining vector timestamps, as shown in Figure 15.15. Note that a process can
immediately CO-deliver to itself any message that it CO-multicasts, although this is not
described in Figure 15.15.

658 CHAPTER 15 COORDINATION AND AGREEMENT

Each process updates its vector timestamp upon delivering any message, to
maintain the count of causally precedent messages. It does this by incrementing the jth
entry in its timestamp by one. This is an optimization of the merge operation that appears
in the rules for updating vector clocks in Section 14.4. We can make the optimization in
view of the delivery condition in the algorithm of Figure 15.15, which guarantees that
only the jth entry will increase.

We outline the proof of the correctness of this algorithm as follows. Suppose that
multicast(g, m) multicast(g, m). Let V and V be the vector timestamps of m and
m , respectively. It is straightforward to prove inductively from the algorithm that
V V . In particular, if process pk multicast m, then V k V k .

Consider what happens when some correct process pi B-delivers m (as opposed
to CO-delivering it) without first CO-delivering m. By the algorithm, Vi k can increase
only when pi delivers a message from pk , when it increases by 1. But pi has not
received m, and therefore Vi k cannot increase beyond V k 1– . It is therefore not
possible for pi to CO-deliver m , since this would require that Vi k V k , and
therefore that Vi k V k .

The reader should check that if we substitute the reliable R-multicast primitive in
place of B-multicast, then we obtain a multicast that is both reliable and causally
ordered.

Furthermore, if we combine the protocol for causal multicast with the sequencer-
based protocol for totally ordered delivery, then we obtain message delivery that is both
total and causal. The sequencer delivers messages according to the causal order and
multicasts the sequence numbers for the messages in the order in which it receives them.
The processes in the destination group do not deliver a message until they have received
an order message from the sequencer and the message is next in the delivery sequence.

Since the sequencer delivers messages in causal order, and since all other
processes deliver messages in the same order as the sequencer, the ordering is indeed
both total and causal.

Overlapping groups • We have considered only non-overlapping groups in the
preceding definitions and algorithms for FIFO, total and causal ordering semantics. This
simplifies the problem, but it is not satisfactory, since in general processes need to be
members of multiple overlapping groups. For example, a process may be interested in
events from multiple sources and thus join a corresponding set of event-distribution
groups.

We can extend the ordering definitions to global orders [Hadzilacos and Toueg
1994], in which we have to consider that if message m is multicast to g, and if message
m is multicast to g , then both messages are addressed to the members of g g :

Global FIFO ordering: If a correct process issues multicast(g, m) and then
multicast(g , m), then every correct process in g g that delivers m will deliver
m before m .

Global causal ordering: If multicast(g, m) multicast(g , m), where is
the happened-before relation induced by any chain of multicast messages, then any
correct process in g g that delivers m will deliver m before m .

SECTION 15.5 CONSENSUS AND RELATED PROBLEMS 659

Pairwise total ordering: If a correct process delivers message m sent to g before it
delivers m sent to g , then any other correct process in g g that delivers m will
deliver m before m .

Global total ordering: Let ‘<’ be the relation of ordering between delivery events.
We require that ‘<’ obeys pairwise total ordering and that it is acyclic – under
pairwise total ordering, ‘<’ is not acyclic by default.

One way of implementing these orders would be to multicast each message m to the
group of all processes in the system. Each process either discards or delivers the
message according to whether it belongs to group(m). This would be an inefficient and
unsatisfactory implementation: a multicast should involve as few processes as possible
beyond the members of the destination group. Alternatives are explored in Birman et al.

[1991], Garcia-Molina and Spauster [1991], Hadzilacos and Toueg [1994], Kindberg
[1995] and Rodrigues et al. [1998].

Multicast in synchronous and asynchronous systems • In this section, we have described
algorithms for reliable unordered multicast, (reliable) FIFO-ordered multicast, (reliable)
causally ordered multicast and totally ordered multicast. We also indicated how to
achieve a multicast that is both totally and causally ordered. We leave the reader to
devise an algorithm for a multicast primitive that guarantees both FIFO and total
ordering. All the algorithms that we have described work correctly in asynchronous
systems.

We did not, however, give an algorithm that guarantees both reliable and totally
ordered delivery. Surprising though it may seem, while possible in a synchronous

system, a protocol with these guarantees is impossible in an asynchronous distributed
system – even one that has at worst suffered a single process crash failure. We return to
this point in the next section.

15.5 Consensus and related problems

This section introduces the problem of consensus [Pease et al. 1980, Lamport et al.

1982] and the related problems of Byzantine generals and interactive consistency. We
refer to these collectively as problems of agreement. Roughly speaking, the problem is
for processes to agree on a value after one or more of the processes has proposed what
that value should be.

For example, in Chapter 2 we described a situation in which two armies should
decide consistently to attack the common enemy or retreat. Similarly, we may require
that all the correct processes controlling a spaceship’s engines should decide to either
‘proceed’ or ‘abort’ after each has proposed one action or the other, and in a transaction
to transfer funds from one account to another the processes involved must consistently
agree to perform the respective debit and credit. In mutual exclusion, the processes agree
on which process can enter the critical section. In an election, the processes agree on
which is the elected process. In totally ordered multicast, the processes agree on the
order of message delivery.

Protocols exist that are tailored to these individual types of agreement. We
described some of them above, and Chapters 16 and 17 examine transactions. But it is

660 CHAPTER 15 COORDINATION AND AGREEMENT

useful for us to consider more general forms of agreement, in a search for common
characteristics and solutions.

This section defines consensus more precisely and relates it to three related
agreement problems: Byzantine generals, interactive consistency and totally ordered
multicast. We go on to examine under what circumstances the problems can be solved,
and to sketch some solutions. In particular, we discuss the well-known impossibility
result of Fischer et al. [1985], which states that in an asynchronous system a collection
of processes containing only one faulty process cannot be guaranteed to reach
consensus. Finally, we consider how it is that practical algorithms exist despite the
impossibility result.

15.5.1 System model and problem definitions

Our system model includes a collection of processes pi (i 1 2 N=) communicat-
ing by message passing. An important requirement that applies in many practical situa-
tions is for consensus to be reached even in the presence of faults. We assume, as before,
that communication is reliable but that processes may fail. In this section we consider
Byzantine (arbitrary) process failures, as well as crash failures. We sometimes specify
an assumption that up to some number f of the N processes are faulty – that is, they ex-
hibit some specified types of fault; the remainder of the processes are correct.

If arbitrary failures can occur, then another factor in specifying our system is
whether the processes digitally sign the messages that they send (see Section 11.4). If
processes sign their messages, then a faulty process is limited in the harm it can do.
Specifically, during an agreement algorithm it cannot make a false claim about the
values that a correct process has sent to it. The relevance of message signing will
become clearer when we discuss solutions to the Byzantine generals problem. By
default, we assume that signing does not take place.

Definition of the consensus problem • To reach consensus, every process pi begins in
the undecided state and proposes a single value vi , drawn from a set D

(i 1 2 N=). The processes communicate with one another, exchanging values.
Each process then sets the value of a decision variable, di . In doing so it enters the
decided state, in which it may no longer change di (i 1 2 N=). Figure 15.16
shows three processes engaged in a consensus algorithm. Two processes propose
‘proceed’ and a third proposes ‘abort’ but then crashes. The two processes that remain
correct each decide ‘proceed’.

The requirements of a consensus algorithm are that the following conditions
should hold for every execution of it:

Termination: Eventually each correct process sets its decision variable.

Agreement: The decision value of all correct processes is the same: if pi and pj are
correct and have entered the decided state, then di dj= (i j 1 2 N=).

Integrity: If the correct processes all proposed the same value, then any correct
process in the decided state has chosen that value.

Variations on the definition of integrity may be appropriate, according to the
application. For example, a weaker type of integrity would be for the decision value to

Figure 15.16 Consensus for three processes

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed

SECTION 15.5 CONSENSUS AND RELATED PROBLEMS 661

equal a value that some correct process proposed – not necessarily all of them. We use
the definition above except where stated otherwise. Integrity is also known as validity in
the literature.

To help in understanding how the formulation of the problem translates into an
algorithm, consider a system in which processes cannot fail. It is then straightforward to
solve consensus. For example, we can collect the processes into a group and have each
process reliably multicast its proposed value to the members of the group. Each process
waits until it has collected all N values (including its own). It then evaluates the function
majority v1 v2 vN , which returns the value that occurs most often among its
arguments, or the special value D if no majority exists. Termination is guaranteed
by the reliability of the multicast operation. Agreement and integrity are guaranteed by
the definition of majority and the integrity property of a reliable multicast. Every process
receives the same set of proposed values, and every process evaluates the same function
of those values. So they must all agree, and if every process proposed the same value,
then they all decide on this value.

Note that majority is only one possible function that the processes could use to
agree upon a value from the candidate values. For example, if the values are ordered,
then the functions minimum and maximum may be appropriate.

If processes can crash this introduces the complication of detecting failures, and it
is not immediately clear that a run of the consensus algorithm can terminate. In fact, if
the system is asynchronous, then it may not; we shall return to this point shortly.

If processes can fail in arbitrary (Byzantine) ways, then faulty processes can in
principle communicate random values to the others. This may seem unlikely in practice,
but it is not beyond the bounds of possibility for a process with a bug to fail in this way.
Moreover, the fault may not be accidental, but the result of mischievous or malevolent
operation. Someone could deliberately make a process send different values to different
peers in an attempt to thwart the others, which are trying to reach consensus. In case of
inconsistency, correct processes must compare what they have received with what other
processes claim to have received.

662 CHAPTER 15 COORDINATION AND AGREEMENT

The Byzantine generals problem • In the informal statement of the Byzantine generals

problem [Lamport et al. 1982], three or more generals are to agree to attack or to retreat.
One, the commander, issues the order. The others, lieutenants to the commander, must
decide whether to attack or retreat. But one or more of the generals may be ‘treacherous’
– that is, faulty. If the commander is treacherous, he proposes attacking to one general
and retreating to another. If a lieutenant is treacherous, he tells one of his peers that the
commander told him to attack and another that they are to retreat.

The Byzantine generals problem differs from consensus in that a distinguished
process supplies a value that the others are to agree upon, instead of each of them
proposing a value. The requirements are:

Termination: Eventually each correct process sets its decision variable.

Agreement: The decision value of all correct processes is the same: if pi and pj are
correct and have entered the decided state, then di dj= (i j 1 2 N=).

Integrity: If the commander is correct, then all correct processes decide on the value
that the commander proposed.

Note that, for the Byzantine generals problem, integrity implies agreement when the
commander is correct; but the commander need not be correct.

Interactive consistency • The interactive consistency problem is another variant of
consensus, in which every process proposes a single value. The goal of the algorithm is
for the correct processes to agree on a vector of values, one for each process. We call
this the ‘decision vector’. For example, the goal could be for each of a set of processes
to obtain the same information about their respective states.

The requirements for interactive consistency are:

Termination: Eventually each correct process sets its decision variable.

Agreement: The decision vector of all correct processes is the same.

Integrity: If pi is correct, then all correct processes decide on vi as the ith
component of their vector.

Relating consensus to other problems • Although it is common to consider the
Byzantine generals problem with arbitrary process failures, in fact each of the three
problems – consensus, Byzantine generals and interactive consistency – is meaningful
in the context of either arbitrary or crash failures. Similarly, each can be framed
assuming either a synchronous or an asynchronous system.

It is sometimes possible to derive a solution to one problem using a solution to
another. This is a very useful property, both because it increases our understanding of
the problems and because by reusing solutions we can potentially save on
implementation effort and complexity.

Suppose that there exist solutions to consensus (C), Byzantine generals (BG) and
interactive consistency (IC) as follows:

Ci v1 v2 vN returns the decision value of pi in a run of the solution to the
consensus problem, where v1 v2 vN are the values that the processes proposed.

BGi j v returns the decision value of pi in a run of the solution to the Byzantine
generals problem, where pj , the commander, proposes the value v.

ICi v1 v2 vN j

SECTION 15.5 CONSENSUS AND RELATED PROBLEMS 663

 returns the jth value in the decision vector of pi in a run of the
solution to the interactive consistency problem, where v1 v2 vN are the values
that the processes proposed.

The definitions of Ci , BGi and ICi assume that a faulty process proposes a single
notional value, even though it may have given different proposed values to each of the
other processes. This is only a convenience: the solutions will not rely on any such
notional value.

It is possible to construct solutions out of the solutions to other problems. We give
three examples:

IC from BG: We construct a solution to IC from BG by running BG N times, once
with each process pi (i j 1 2 N=) acting as the commander:

ICi v1 v2 vN j BGi j vj= (i j 1 2 N=)

C from IC: For the case where a majority of processes are correct, we construct a
solution to C from IC by running IC to produce a vector of values at each process,
then applying an appropriate function on the vector’s values to derive a single value:

Ci v1 vN majority ICi v1 vN 1 ICi v1 vN N=

where i 1 2 N= and majority is as defined above.

BG from C: We construct a solution to BG from C as follows:

• The commander pj sends its proposed value v to itself and each of the
remaining processes.

• All processes run C with the values v1 v2 vN that they receive (pj may be
faulty).

• They derive BGi j v Ci v1 v2 vN= (i 1 2 N=).

The reader should check that the termination, agreement and integrity conditions are
preserved in each case. Fischer [1983] relates the three problems in more detail.

In systems with crash failures, consensus is equivalent to solving reliable and
totally ordered multicast: given a solution to one, we can solve the other. Implementing
consensus with a reliable and totally ordered multicast operation RTO-multicast is
straightforward. We collect all the processes into a group, g. To achieve consensus, each
process pi performs RTO-multicast(g, vi). Then each process pi chooses di mi= ,
where mi is the first value that pi RTO-delivers. The termination property follows from
the reliability of the multicast. The agreement and integrity properties follow from the
reliability and total ordering of multicast delivery. Chandra and Toueg [1996]
demonstrate how reliable and totally ordered multicast can be derived from consensus.

15.5.2 Consensus in a synchronous system

This section describes an algorithm to solve consensus in a synchronous system,
although it is based on a modified form of the integrity requirement. The algorithm uses
only a basic multicast protocol. It assumes that up to f of the N processes exhibit crash
failures.

664 CHAPTER 15 COORDINATION AND AGREEMENT

To reach consensus, each correct process collects proposed values from the other
processes. The algorithm proceeds in f 1+ rounds, in each of which the correct
processes B-multicast the values between themselves. At most f processes may crash, by
assumption. At worst, all f crashes will occur during the rounds, but the algorithm
guarantees that at the end of the rounds all the correct processes that have survived will
be in a position to agree.

The algorithm, shown in Figure 15.17

Figure 15.17 Consensus in a synchronous system

Algorithm for process ; algorithm proceeds in rounds

On initialization

 := ; = {};

In round r ()

B-multicast(g,); // Send only values that have not been sent

 := ;

while (in round r)
{

On B-deliver() from some

:= ;
}

After rounds

Assign ;

pi g f 1+

Valuesi
1

vi Valuesi
0

1 r f 1+

Valuesi
r

Valuesi
r 1–

–

Valuesi
r 1+

Valuesi
r

Vj pj

Valuesi
r 1+

Valuesi
r 1+

Vj

f 1+

di minimum Valuesi
f 1+

=

, is based on that by Dolev and Strong
[1983] and its presentation by Attiya and Welch [1998]. Their modified form of the
integrity requirement applies to the proposed values of all processes, not just the correct
ones: if all processes, whether correct or not, proposed the same value, then any correct
process in the decided state would chose that value. Given that the algorithm assumes
crash failures at worst, the proposed values of correct and non-correct processes would
not be expected to differ, at least not on the basis of failures. The revised form of
integrity enables the convenient use of the minimum function to choose a decision value
from those proposed.

The variable Valuesi
r holds the set of proposed values known to process pi at the

beginning of round r. Each process multicasts the set of values that it has not sent in
previous rounds. It then takes delivery of similar multicast messages from other
processes and records any new values. Although this is not shown in Figure 15.17, the
duration of a round is limited by setting a timeout based on the maximum time for a
correct process to multicast a message. After f 1+ rounds, each process chooses the
minimum value it has received as its decision value.

Termination is obvious from the fact that the system is synchronous. To check the
correctness of the algorithm, we must show that each process arrives at the same set of
values at the end of the final round. Agreement and integrity (in its modified form) will
then follow, because the processes apply the minimum function to this set.

SECTION 15.5 CONSENSUS AND RELATED PROBLEMS 665

Assume, to the contrary, that two processes differ in their final set of values.
Without loss of generality, some correct process pi possesses a value v that another
correct process pj (i j) does not possess. The only explanation for pi possessing a
proposed value v at the end that pj does not possess is that any third process, pk , say,
that managed to send v to pi crashed before v could be delivered to pj . In turn, any
process sending v in the previous round must have crashed, to explain why pk possesses
v in that round but pj did not receive it. Proceeding in this way, we have to posit at least
one crash in each of the preceding rounds. But we have assumed that at most f crashes
can occur, and there are f 1+ rounds. We have arrived at a contradiction.

It turns out that any algorithm to reach consensus despite up to f crash failures
requires at least f 1+ rounds of message exchanges, no matter how it is constructed
[Dolev and Strong 1983]. This lower bound also applies in the case of Byzantine failures
[Fischer and Lynch 1982].

15.5.3 The Byzantine generals problem in a synchronous system

Now we discuss the Byzantine generals problem in a synchronous system. Unlike the
algorithm for consensus described in the previous section, here we assume that
processes can exhibit arbitrary failures. That is, a faulty process may send any message
with any value at any time; and it may omit to send any message. Up to f of the N
processes may be faulty. Correct processes can detect the absence of a message through
a timeout; but they cannot conclude that the sender has crashed, since it may be silent
for some time and then send messages again.

We assume that the communication channels between pairs of processes are
private. If a process could examine all the messages that other processes sent, then it
could detect the inconsistencies in what a faulty process sends to different processes.
Our default assumption of channel reliability means that no faulty process can inject
messages into the communication channel between correct processes.

Lamport et al. [1982] considered the case of three processes that send unsigned
messages to one another. They showed that there is no solution that guarantees to meet
the conditions of the Byzantine generals problem if one process is allowed to fail. They
generalized this result to show that no solution exists if N 3f. We shall demonstrate
these results shortly. They went on to give an algorithm that solves the Byzantine
generals problem in a synchronous system if N 3f 1+ , for unsigned (they call them
‘oral’) messages.

Impossibility with three processes • Figure 15.18 shows two scenarios in which just one
of three processes is faulty. In the lefthand configuration one of the lieutenants, p3 , is
faulty; on the right the commander, p1 , is faulty. Each scenario in Figure 15.18 shows
two rounds of messages: the values the commander sends, and the values that the
lieutenants subsequently send to each other. The numeric prefixes serve to specify the
sources of messages and to show the different rounds. Read the ‘:’ symbol in messages
as ‘says’; for example, ‘3:1:u’ is the message ‘3 says 1 says u’.

In the lefthand scenario, the commander correctly sends the same value v to each
of the other two processes, and p2 correctly echoes this to p3 . However, p3 sends a
value u v to p2 . All p2 knows at this stage is that it has received differing values; it
cannot tell which were sent out by the commander.

Figure 15.18 Three Byzantine generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown in grey

666 CHAPTER 15 COORDINATION AND AGREEMENT

In the righthand scenario, the commander is faulty and sends differing values to
the lieutenants. After p3 has correctly echoed the value x that it received, p2 is in the
same situation as it was in when p3 was faulty: it has received two differing values.

If a solution exists, then process p2 is bound to decide on value v when the
commander is correct, by the integrity condition. If we accept that no algorithm can
possibly distinguish between the two scenarios, p2 must also choose the value sent by
the commander in the righthand scenario.

Following exactly the same reasoning for p3 , assuming that it is correct, we are
forced to conclude (by symmetry) that p3 also chooses the value sent by the commander
as its decision value. But this contradicts the agreement condition (the commander sends
differing values if it is faulty). So no solution is possible.

Note that this argument rests on our intuition that nothing can be done to improve
a correct general’s knowledge beyond the first stage, where it cannot tell which process
is faulty. It is possible to prove the correctness of this intuition [Pease et al. 1980].
Byzantine agreement can be reached for three generals, with one of them faulty, if the
generals digitally sign their messages.

Impossibility with N 3f • Pease et al. generalized the basic impossibility result for
three processes, to prove that no solution is possible if N 3f. In outline, the argument
is as follows. Assume that a solution exists with N 3f. Let each of three processes p1 ,
p2 and p3 use the solution to simulate the behaviour of n1 , n2 and n3 generals,
respectively, where n1 n2 n3+ + N= and n1 n2 n3 N/3 . Assume, furthermore, that
one of the three processes is faulty. Those of p1 , p2 and p3 that are correct simulate
correct generals: they simulate the interactions of their own generals internally and send
messages from their generals to those simulated by other processes. The faulty process’s
simulated generals are faulty: the messages that it sends as part of the simulation to the
other two processes may be spurious. Since N 3f and n1 n2 n3 N/3 , at most f

simulated generals are faulty.
Because the algorithm that the processes run is assumed to be correct, the

simulation terminates. The correct simulated generals (in the two correct processes)
agree and satisfy the integrity property. But now we have a means for the two correct
processes out of the three to reach consensus: each decides on the value chosen by all of
their simulated generals. This contradicts our impossibility result for three processes,
with one faulty.

SECTION 15.5 CONSENSUS AND RELATED PROBLEMS 667

Solution with one faulty process • There is not sufficient space to describe fully the
algorithm of Pease et al. that solves the Byzantine generals problem in a synchronous
system with N 3f 1+ . Instead, we give the operation of the algorithm for the case
N 4 , f 1= and illustrate it for N 4= , f 1= .

The correct generals reach agreement in two rounds of messages:

• In the first round, the commander sends a value to each of the lieutenants.

• In the second round, each of the lieutenants sends the value it received to its peers.

A lieutenant receives a value from the commander, plus N 2– values from its peers. If
the commander is faulty, then all the lieutenants are correct and each will have gathered
exactly the set of values that the commander sent out. Otherwise, one of the lieutenants
is faulty; each of its correct peers receives N 2– copies of the value that the commander
sent, plus a value that the faulty lieutenant sent to it.

In either case, the correct lieutenants need only apply a simple majority function
to the set of values they receive. Since N 4, N 2– 2. Therefore, the majority

function will ignore any value that a faulty lieutenant sent, and it will produce the value
that the commander sent if the commander is correct.

We now illustrate the algorithm that we have just outlined for the case of four
generals. Figure 15.19 shows two scenarios similar to those in Figure 15.18, but in this
case there are four processes, one of which is faulty.

Figure 15.19 Four Byzantine generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v
3:1:u

Faulty processes are shown in grey

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u
3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

 As in Figure 15.18, in the lefthand
configuration one of the lieutenants, p3 , is faulty; on the right, the commander, p1 , is
faulty.

In the lefthand case, the two correct lieutenant processes agree, deciding on the
commander's value:

p2 decides on majority v u v v=

p4 decides on majority v v w v=

In the righthand case the commander is faulty, but the three correct processes agree:

p2 , p3 and p4 decide on majority u v w = (the special value applies
where no majority of values exists).

668 CHAPTER 15 COORDINATION AND AGREEMENT

The algorithm takes account of the fact that a faulty process may omit to send a message.
If a correct process does not receive a message within a suitable time limit (the system
is synchronous), it proceeds as though the faulty process had sent it the value .

Discussion • We can measure the efficiency of a solution to the Byzantine generals
problem – or any other agreement problem – by asking:

• How many message rounds does it take? (This is a factor in how long it takes for
the algorithm to terminate.)

• How many messages are sent, and of what size? (This measures the total
bandwidth utilization and has an impact on the execution time.)

In the general case (f 1) the Lamport et al. [1982] algorithm for unsigned messages
operates over f 1+ rounds. In each round, a process sends to a subset of the other
processes the values that it received in the previous round. The algorithm is very costly:
it involves sending O N

f 1+
 messages.

Fischer and Lynch [1982] proved that any deterministic solution to consensus
assuming Byzantine failures (and hence to the Byzantine generals problem, as Section
15.5.1 showed) will take at least f 1+ message rounds. So no algorithm can operate
faster in this respect than that of Lamport et al. But there have been improvements in the
message complexity, for example Garay and Moses [1993].

Several algorithms, such as that of Dolev and Strong [1983], take advantage of
signed messages. Dolev and Strong’s algorithm again takes f 1+ rounds, but the
number of messages sent is only O N

2
.

The complexity and cost of the solutions suggest that they are applicable only
where the threat is great. Solutions that are based on more detailed knowledge of the
fault model may be more efficient [Barborak et al. 1993]. If malicious users are the
source of the threat, then a system to counter them is likely to use digital signatures; a
solution without signatures is impractical.

15.5.4 Impossibility in asynchronous systems

We have provided solutions to consensus and the Byzantine generals problem (and
hence, by derivation, to interactive consistency). However, all these solutions relied
upon the system being synchronous. The algorithms assume that message exchanges
take place in rounds, and that processes are entitled to time out and assume that a faulty
process has not sent them a message within the round, because the maximum delay has
been exceeded.

Fischer et al. [1985] proved that no algorithm can guarantee to reach consensus in
an asynchronous system, even with one process crash failure. In an asynchronous
system, processes can respond to messages at arbitrary times, so a crashed process is
indistinguishable from a slow one. Their proof, which is beyond the scope of this book,
involves showing that there is always some continuation of the processes’ execution that
avoids consensus being reached.

We immediately know from the result of Fischer et al. that there is no guaranteed
solution in an asynchronous system to the Byzantine generals problem, to interactive
consistency or to totally ordered and reliable multicast. If there were such a solution

SECTION 15.5 CONSENSUS AND RELATED PROBLEMS 669

then, by the results of Section 15.5.1, we would have a solution to consensus –
contradicting the impossibility result.

Note the word ‘guarantee’ in the statement of the impossibility result. The result
does not mean that processes can never reach distributed consensus in an asynchronous
system if one is faulty. It allows that consensus can be reached with some probability
greater than zero, confirming what we know in practice. For example, despite the fact
that our systems are often effectively asynchronous, transaction systems have been
reaching consensus regularly for many years.

One approach to working around the impossibility result is to consider partially

synchronous systems, which are sufficiently weaker than synchronous systems to be
useful as models of practical systems, and sufficiently stronger than asynchronous
systems for consensus to be solvable in them [Dwork et al. 1988]. That approach is
beyond the scope of this book. However, we shall now outline three other techniques for
working around the impossibility result: fault masking, and reaching consensus by
exploiting failure detectors and by randomizing aspects of the processes’ behaviour.

Masking faults • The first technique is to avoid the impossibility result altogether by
masking any process failures that occur (see Section 2.4.2 for an introduction to fault
masking). For example, transaction systems employ persistent storage, which survives
crash failures. If a process crashes, then it is restarted (automatically, or by an
administrator). The process places sufficient information in persistent storage at critical
points in its program so that if it should crash and be restarted, it will find sufficient data
to be able to continue correctly with its interrupted task. In other words, it will behave
like a process that is correct, but that sometimes takes a long time to perform a
processing step.

Of course, fault masking is generally applicable in system design. Chapter 16
discusses how transactional systems take advantage of persistent storage. Chapter 18
describes how process failures can also be masked by replicating software components.

Consensus using failure detectors • Another method for circumventing the
impossibility result is to employ failure detectors. Some practical systems employ
‘perfect by design’ failure detectors to reach consensus. No failure detector in an
asynchronous system that works solely by message passing can really be perfect.
However, processes can agree to deem a process that has not responded for more than a
bounded time to have failed. An unresponsive process may not really have failed, but
the remaining processes act as if it had done. They make the failure ‘fail-silent’ by
discarding any subsequent messages that they do in fact receive from a ‘failed’ process.
In other words, we have effectively turned an asynchronous system into a synchronous
one. This technique is used in the ISIS system [Birman 1993].

This method relies upon the failure detector usually being accurate. When it is
inaccurate, then the system has to proceed without a group member that otherwise could
potentially have contributed to the system’s effectiveness. Unfortunately, making the
failure detector reasonably accurate involves using long timeout values, forcing
processes to wait a relatively long time (and not perform useful work) before concluding
that a process has failed. Another issue that arises for this approach is network
partitioning, which we discuss in Chapter 18.

A quite different approach is to use imperfect failure detectors, and to reach
consensus while allowing suspected processes to behave correctly instead of excluding

670 CHAPTER 15 COORDINATION AND AGREEMENT

them. Chandra and Toueg [1996] analyzed the properties that a failure detector must
have in order to solve the consensus problem in an asynchronous system. They showed
that consensus can be solved in an asynchronous system, even with an unreliable failure
detector, if fewer than N 2 processes crash and communication is reliable. The weakest
type of failure detector for which this is so is called an eventually weak failure detector.
This is one that is both:

Eventually weakly complete: Each faulty process is eventually suspected
permanently by some correct process.

Eventually weakly accurate: After some point in time, at least one correct process is
never suspected by any correct process.

Chandra and Toueg show that we cannot implement an eventually weak failure detector
in an asynchronous system by message passing alone. However, we described a
message-based failure detector in Section 15.1 that adapts its timeout values according
to observed response times. If a process or the connection to it is very slow, then the
timeout value will grow so that cases of falsely suspecting a process become rare. In the
case of many real systems, this algorithm behaves sufficiently closely to an eventually
weak failure detector for practical purposes.

Chandra and Toueg’s consensus algorithm allows falsely suspected processes to
continue their normal operations and allows processes that have suspected them to
receive messages from them and process those messages normally. This makes the
application programmer’s life complicated, but it has the advantage that correct
processes are not wasted by being falsely excluded. Moreover, timeouts for detecting
failures can be set less conservatively than with the ISIS approach.

Consensus using randomization • The result of Fischer et al. [1985] depends on what
we can consider to be an ‘adversary’. This is a ‘character’ (actually, just a collection of
random events) who can exploit the phenomena of asynchronous systems so as to foil
the processes’ attempts to reach consensus. The adversary manipulates the network to
delay messages so that they arrive at just the wrong time, and similarly it slows down or
speeds up the processes just enough so that they are in the ‘wrong’ state when they
receive a message.

The third technique that addresses the impossibility result is to introduce an
element of chance in the processes’ behaviour, so that the adversary cannot exercise its
thwarting strategy effectively. Consensus might still not be reached in some cases, but
this method enables processes to reach consensus in a finite expected time. A
probabilistic algorithm that solves consensus even with Byzantine failures can be found
in Canetti and Rabin [1993].

SECTION 15.6 SUMMARY 671

15.6 Summary

We began this chapter by discussing the need for processes to access shared resources
under conditions of mutual exclusion. Locks are not always implemented by the servers
that manage the shared resources, and a separate distributed mutual exclusion service is
then required. Three algorithms were considered that achieve mutual exclusion: one
employing a central server, a ring-based algorithm and a multicast-based algorithm
using logical clocks. None of these mechanisms can withstand failure as we described
them, although they can be modified to tolerate some faults.

Next we explored elections, considering a ring-based algorithm and the bully
algorithm, whose common aim is to elect a process uniquely from a given set – even if
several elections take place concurrently. The bully algorithm could be used, for
example, to elect a new master time server, or a new lock server, when the previous one
fails.

The following section described coordination and agreement in group
communication. It discussed reliable multicast, in which the correct processes agree on
the set of messages to be delivered, and multicast with FIFO, causal and total delivery
ordering. We gave algorithms for reliable multicast and for all three types of delivery
ordering.

Finally, we described the three problems of consensus, Byzantine generals and
interactive consistency. We defined the conditions for their solution and we showed
relationships between these problems – including the relationship between consensus
and reliable, totally ordered multicast.

Solutions exist in a synchronous system, and we described some of them. In fact,
solutions exist even when arbitrary failures are possible.We outlined part of the solution
to the Byzantine generals problem of Lamport et al. [1982]. More recent algorithms
have lower complexity, but in principle none can better the f 1+ rounds taken by this
algorithm, unless messages are digitally signed.

The chapter ended by describing the fundamental result of Fischer et al. [1982]
concerning the impossibility of guaranteeing consensus in an asynchronous system. We
discussed how it is that, nonetheless, systems regularly do reach agreement in
asynchronous systems.

EXERCISES

15.1 Is it possible to implement either a reliable or an unreliable (process) failure detector
using an unreliable communication channel? page 632

15.2 If all client processes are single-threaded, is mutual exclusion condition ME3, which
specifies entry in happened-before order, relevant? page 635

15.3 Give a formula for the maximum throughput of a mutual exclusion system in terms of
the synchronization delay. page 635

15.4 In the central server algorithm for mutual exclusion, describe a situation in which two
requests are not processed in happened-before order. page 636

672 CHAPTER 15 COORDINATION AND AGREEMENT

15.5 Adapt the central server algorithm for mutual exclusion to handle the crash failure of any
client (in any state), assuming that the server is correct and given a reliable failure
detector. Comment on whether the resultant system is fault-tolerant. What would
happen if a client that possesses the token is wrongly suspected to have failed? page

636

15.6 Give an example execution of the ring-based algorithm to show that processes are not
necessarily granted entry to the critical section in happened-before order. page 637

15.7 In a certain system, each process typically uses a critical section many times before
another process requires it. Explain why Ricart and Agrawala’s multicast-based mutual
exclusion algorithm is inefficient for this case, and describe how to improve its
performance. Does your adaptation satisfy liveness condition ME2? page 639

15.8 In the bully algorithm, a recovering process starts an election and will become the new
coordinator if it has a higher identifier than the current incumbent. Is this a necessary
feature of the algorithm? page 644

15.9 Suggest how to adapt the bully algorithm to deal with temporary network partitions
(slow communication) and slow processes. page 646

15.10 Devise a protocol for basic multicast over IP multicast. page 647

15.11 How, if at all, should the definitions of integrity, agreement and validity for reliable
multicast change for the case of open groups? page 647

15.12 Explain why reversing the order of the lines ‘R-deliver m’ and ‘if (q p) then B-

multicast(g, m); end if’ in Figure 15.9 makes the algorithm no longer satisfy uniform
agreement. Does the reliable multicast algorithm based on IP multicast satisfy uniform
agreement? page 648

15.13 Explain whether the algorithm for reliable multicast over IP multicast works for open as
well as closed groups. Given any algorithm for closed groups, how, simply, can we
derive an algorithm for open groups? page 649

15.14 Explain how to adapt the algorithm for reliable multicast over IP multicast to eliminate
the hold-back queue – so that a received message that is not a duplicate can be delivered
immediately, but without any ordering guarantees. Hint: use sets of sequence numbers
to represent the messages that have been delivered so far. page 649

15.15 Consider how to address the impractical assumptions we made in order to meet the
validity and agreement properties for the reliable multicast protocol based on IP
multicast. Hint: add a rule for deleting retained messages when they have been delivered
everywhere, and consider adding a dummy ‘heartbeat’ message, which is never
delivered to the application, but which the protocol sends if the application has no
message to send. page 649

15.16 Show that the FIFO-ordered multicast algorithm does not work for overlapping groups,
by considering two messages sent from the same source to two overlapping groups, and
considering a process in the intersection of those groups. Adapt the protocol to work for
this case. Hint: processes should include with their messages the latest sequence
numbers of messages sent to all groups. page 654

EXERCISES 673

15.17 Show that, if the basic multicast that we use in the algorithm of Figure 15.13 is also
FIFO-ordered, then the resultant totally-ordered multicast is also causally ordered. Is it
the case that any multicast that is both FIFO-ordered and totally ordered is thereby
causally ordered? page 655

15.18 Suggest how to adapt the causally ordered multicast protocol to handle overlapping
groups. page 657

15.19 In discussing Maekawa’s mutual exclusion algorithm, we gave an example of three
subsets of a set of three processes that could lead to a deadlock. Use these subsets as
multicast groups to show how a pairwise total ordering is not necessarily acyclic.

page 658

15.20 Construct a solution to reliable, totally ordered multicast in a synchronous system, using
a reliable multicast and a solution to the consensus problem. page 659

15.21 We gave a solution to consensus from a solution to reliable and totally ordered multicast,
which involved selecting the first value to be delivered. Explain from first principles
why, in an asynchronous system, we could not instead derive a solution by using a
reliable but not totally ordered multicast service and the ‘majority’ function. (Note that,
if we could, this would contradict the impossibility result of Fischer et al. [1985]!) Hint:
consider slow/failed processes. page 663

15.22 Consider the algorithm given in Figure 15.17 for consensus in a synchronous system,
which uses the following integrity definition: if all processes, whether correct or not,
proposed the same value, then any correct process in the decided state would chose that
value. Now consider an application in which correct processes may propose different
results, e.g., by running different algorithms to decide which action to take in a control
system’s operation. Suggest an appropriate modification to the integrity definition and
thus to the algorithm. page 664

15.23 Show that Byzantine agreement can be reached for three generals, with one of them
faulty, if the generals digitally sign their messages. page 665

This page intentionally left blank

 675

16

TRANSACTIONS AND

CONCURRENCY CONTROL

16.1 Introduction

16.2 Transactions

16.3 Nested transactions

16.4 Locks

16.5 Optimistic concurrency control

16.6 Timestamp ordering

16.7 Comparison of methods for concurrency control

16.8 Summary

This chapter discusses the application of transactions and concurrency control to shared
objects managed by servers.

A transaction defines a sequence of server operations that is guaranteed by the
server to be atomic in the presence of multiple clients and server crashes. Nested
transactions are structured from sets of other transactions. They are particularly useful in
distributed systems because they allow additional concurrency.

All of the concurrency control protocols are based on the criterion of serial
equivalence and are derived from rules for conflicts between operations. Three methods
are described:

• Locks are used to order transactions that access the same objects according to the
order of arrival of their operations at the objects.

• Optimistic concurrency control allows transactions to proceed until they are ready
to commit, whereupon a check is made to see whether they have performed
conflicting operations on objects.

• Timestamp ordering uses timestamps to order transactions that access the same
objects according to their starting times.

676 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

16.1 Introduction

The goal of transactions is to ensure that all of the objects managed by a server remain
in a consistent state when they are accessed by multiple transactions and in the presence
of server crashes. Chapter 2 introduced a failure model for distributed systems.
Transactions deal with crash failures of processes and omission failures in
communication, but not any type of arbitrary (or Byzantine) behaviour. The failure
model for transactions is presented in Section 16.1.2.

Objects that can be recovered after their server crashes are called recoverable

objects. In general, the objects managed by a server may be stored in volatile memory
(for example, RAM) or persistent memory (for example, a hard disk). Even if objects
are stored in volatile memory, the server may use persistent memory to store sufficient
information for the state of the objects to be recovered if the server process crashes. This
enables servers to make objects recoverable. A transaction is specified by a client as a
set of operations on objects to be performed as an indivisible unit by the servers
managing those objects. The servers must guarantee that either the entire transaction is
carried out and the results recorded in permanent storage or, in the case that one or more
of them crashes, its effects are completely erased. The next chapter discusses issues
related to transactions that involve several servers, in particular how they decide on the
outcome of a distributed transaction. This chapter concentrates on the issues for a
transaction at a single server. A client’s transaction is also regarded as indivisible from
the point of view of other clients’ transactions in the sense that the operations of one
transaction cannot observe the partial effects of the operations of another. Section 16.1.1
discusses simple synchronization of access to objects, and Section 16.2 introduces
transactions, which require more advanced techniques to prevent interference between
clients. Section 16.3 discusses nested transactions. Sections 16.4 to 16.6 discuss three
methods of concurrency control for transactions whose operations are all addressed to a
single server (locks, optimistic concurrency control and timestamp ordering). Chapter
17 discusses how these methods are extended for use with transactions whose operations
are addressed to several servers.

To explain some of the points made in this chapter, we use a banking example,
shown in Figure 16.1. Each account is represented by a remote object whose interface,
Account, provides operations for making deposits and withdrawals and for enquiring
about and setting the balance. Each branch of the bank is represented by a remote object
whose interface, Branch, provides operations for creating a new account, for looking up
an account by name and for enquiring about the total funds at that branch.

16.1.1 Simple synchronization (without transactions)

One of the main issues of this chapter is that unless a server is carefully designed, its
operations performed on behalf of different clients may sometimes interfere with one
another. Such interference may result in incorrect values in the objects. In this section,
we discuss how client operations may be synchronized without recourse to transactions.

Atomic operations at the server • We have seen in earlier chapters that the use of
multiple threads is beneficial to performance in many servers. We have also noted that
the use of threads allows operations from multiple clients to run concurrently and

Figure 16.1 Operations of the Account interface

deposit(amount)

deposit amount in the account

withdraw(amount)

withdraw amount from the account

getBalance() amount

return the balance of the account

setBalance(amount)

set the balance of the account to amount

Operations of the Branch interface

create(name) account

create a new account with a given name

lookUp(name) account

return a reference to the account with the given name

 branchTotal() amount

return the total of all the balances at the branch

SECTION 16.1 INTRODUCTION 677

possibly access the same objects. Therefore, the methods of objects should be designed
for use in a multi-threaded context. For example, if the methods deposit and withdraw

are not designed for use in a multi-threaded program, then it is possible that the actions
of two or more concurrent executions of the method could be interleaved arbitrarily and
have strange effects on the instance variables of the account objects.

Chapter 7 explains the use of the synchronized keyword, which can be applied to
methods in Java to ensure that only one thread at a time can access an object. In our
example, the class that implements the Account interface will be able to declare the
methods as synchronized. For example:

public synchronized void deposit(int amount) throws RemoteException{

// adds amount to the balance of the account
}

If one thread invokes a synchronized method on an object, then that object is effectively
locked, and another thread that invokes one of its synchronized methods will be blocked
until the lock is released. This form of synchronization forces the execution of threads
to be separated in time and ensures that the instance variables of a single object are
accessed in a consistent manner. Without synchronization, two separate deposit

invocations might read the balance before either has incremented it – resulting in an
incorrect value. Any method that accesses an instance variable that can vary should be
synchronized.

Operations that are free from interference from concurrent operations being
performed in other threads are called atomic operations. The use of synchronized

678 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

methods in Java is one way of achieving atomic operations. But in other programming
environments for multi-threaded servers the operations on objects still need to have
atomic operations in order to keep their objects consistent. This may be achieved by the
use of any available mutual exclusion mechanism, such as a mutex.

Enhancing client cooperation by synchronization of server operations • Clients may use
a server as a means of sharing some resources. This is achieved by some clients using
operations to update the server’s objects and other clients using operations to access
them. The above scheme for synchronized access to objects provides all that is required
in many applications – it prevents threads interfering with one another. However, some
applications require a way for threads to communicate with each other.

For example, a situation may arise in which the operation requested by one client
cannot be completed until an operation requested by another client has been performed.
This can happen when some clients are producers and others are consumers – the
consumers may have to wait until a producer has supplied some more of the commodity
in question. It can also occur when clients are sharing a resource – clients needing the
resource may have to wait for other clients to release it. We shall see later in this chapter
that a similar situation arises when locks or timestamps are used for concurrency control
in transactions.

The Java wait and notify methods introduced in Chapter 7 allow threads to
communicate with one another in a manner that solves the above problems. They must
be used within synchronized methods of an object. A thread calls wait on an object so
as to suspend itself and to allow another thread to execute a method of that object. A
thread calls notify to inform any thread waiting on that object that it has changed some
of its data. Access to an object is still atomic when threads wait for one another: a thread
that calls wait gives up its lock and suspends itself as a single atomic action; when a
thread is restarted after being notified it acquires a new lock on the object and resumes
execution from after its wait. A thread that calls notify (from within a synchronized
method) completes the execution of that method before releasing the lock on the object.

Consider the implementation of a shared Queue object with two methods: first

removes and returns the first object in the queue, and append adds a given object to the
end of the queue. The method first will test whether the queue is empty, in which case
it will call wait on the queue. If a client invokes first when the queue is empty, it will not
get a reply until another client has added something to the queue – the append operation
will call notify when it has added an object to the queue. This allows one of the threads
waiting on the queue object to resume and to return the first object in the queue to its
client. When threads can synchronize their actions on an object by means of wait and
notify, the server holds onto requests that cannot immediately be satisfied and the client
waits for a reply until another client has produced whatever it needs.

In Section 16.4, we discuss the implementation of a lock as an object with
synchronized operations. When clients attempt to acquire a lock, they can be made to
wait until the lock is released by other clients.

Without the ability to synchronize threads in this way, a client that cannot be
satisfied immediately – for example, a client that invokes the first method on an empty
queue – is told to try again later. This is unsatisfactory, because it will involve the client
in polling the server and the server in carrying out extra requests. It is also potentially
unfair because other clients may make their requests before the waiting client tries again.

SECTION 16.2 TRANSACTIONS 679

16.1.2 Failure model for transactions

Lampson [1981] proposed a fault model for distributed transactions that accounts for
failures of disks, servers and communication. In this model, the claim is that the
algorithms work correctly in the presence of predictable faults, but no claims are made
about their behaviour when a disaster occurs. Although errors may occur, they can be
detected and dealt with before any incorrect behaviour results. The model states the
following:

• Writes to permanent storage may fail, either by writing nothing or by writing a
wrong value – for example, writing to the wrong block is a disaster. File storage
may also decay. Reads from permanent storage can detect (by a checksum) when
a block of data is bad.

• Servers may crash occasionally. When a crashed server is replaced by a new
process, its volatile memory is first set to a state in which it knows none of the
values (for example, of objects) from before the crash. After that it carries out a
recovery procedure using information in permanent storage and obtained from
other processes to set the values of objects including those related to the two-phase
commit protocol (see Section 17.6). When a processor is faulty, it is made to crash
so that it is prevented from sending erroneous messages and from writing wrong
values to permanent storage – that is, so it cannot produce arbitrary failures.
Crashes can occur at any time; in particular, they may occur during recovery.

• There may be an arbitrary delay before a message arrives. A message may be lost,
duplicated or corrupted. The recipient can detect corrupted messages using a
checksum. Both forged messages and undetected corrupt messages are regarded
as disasters.

The fault model for permanent storage, processors and communications was used to
design a stable system whose components can survive any single fault and present a
simple failure model. In particular, stable storage provided an atomic write operation in
the presence of a single fault of the write operation or a crash failure of the process. This
was achieved by replicating each block on two disk blocks. A write operation was
applied to the pair of disk blocks, and in the case of a single fault, one good block was
always available. A stable processor used stable storage to enable it to recover its
objects after a crash. Communication errors were masked by using a reliable remote
procedure calling mechanism.

16.2 Transactions

In some situations, clients require a sequence of separate requests to a server to be
atomic in the sense that:

1. They are free from interference by operations being performed on behalf of other
concurrent clients.

2. Either all of the operations must be completed successfully or they must have no
effect at all in the presence of server crashes.

680 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

We return to our banking example to illustrate transactions. A client that performs a
sequence of operations on a particular bank account on behalf of a user will first lookUp

the account by name and then apply the deposit, withdraw and getBalance operations
directly to the relevant account. In our examples, we use accounts with names A, B and
C. The client looks them up and stores references to them in variables a, b and c of type
Account. The details of looking up the accounts by name and the declarations of the
variables are omitted from the examples.

Figure 16.2

Figure 16.2 A client’s banking transaction

Transaction T:

a.withdraw(100);

b.deposit(100);

c.withdraw(200);

b.deposit(200);

 shows an example of a simple client transaction specifying a series of
related actions involving the bank accounts A, B and C. The first two actions transfer
$100 from A to B and the second two transfer $200 from C to B. A client achieves a
transfer operation by doing a withdrawal followed by a deposit.

Transactions originate from database management systems. In that context, a
transaction is an execution of a program that accesses a database. Transactions were
introduced to distributed systems in the form of transactional file servers such as XDFS
[Mitchell and Dion 1982]. In the context of a transactional file server, a transaction is an
execution of a sequence of client requests for file operations. Transactions on distributed
objects were provided in several research systems, including Argus [Liskov 1988] and
Arjuna [Shrivastava et al. 1991]. In this last context, a transaction consists of the
execution of a sequence of client requests such as, for example, those in Figure 16.2.
From the client’s point of view, a transaction is a sequence of operations that forms a
single step, transforming the server data from one consistent state to another.

Transactions can be provided as a part of middleware. For example, CORBA
provides the specification for an Object Transaction Service [OMG 2003] with IDL
interfaces allowing clients’ transactions to include multiple objects at multiple servers.
The client is provided with operations to specify the beginning and end of a transaction.
The client maintains a context for each transaction, which it propagates with each
operation in that transaction. In CORBA, transactional objects are invoked within the
scope of a transaction and generally have some persistent store associated with them.

In all of these contexts, a transaction applies to recoverable objects and is intended
to be atomic. It is often called an atomic transaction. There are two aspects to atomicity:

All or nothing: A transaction either completes successfully, in which case the effects
of all of its operations are recorded in the objects, or (if it fails or is deliberately
aborted) has no effect at all. This all-or-nothing effect has two further aspects of its
own:

Failure atomicity: The effects are atomic even when the server crashes.

SECTION 16.2 TRANSACTIONS 681

Durability: After a transaction has completed successfully, all its effects are
saved in permanent storage. We use the term ‘permanent storage’ to refer to files
held on disk or another permanent medium. Data saved in a file will survive if the
server process crashes.

Isolation: Each transaction must be performed without interference from other
transactions; in other words, the intermediate effects of a transaction must not be
visible to other transactions. The box below introduces a mnemonic, ACID, for
remembering the properties of atomic transactions.

ACID properties

Härder and Reuter [1983] suggested the mnemonic ‘ACID’ to remember the
properties of transactions, which are as follows:

Atomicity: a transaction must be all or nothing;

Consistency: a transaction takes the system from one consistent state to another
consistent state;

Isolation;

Durability.

We have not included ‘consistency’ in our list of the properties of transactions
because it is generally the responsibility of the programmers of servers and clients to
ensure that transactions leave the database consistent.

As an example of consistency, suppose that in the banking example, an object
holds the sum of all the account balances and its value is used as the result of
branchTotal. Clients can get the sum of all the account balances either by using
branchTotal or by calling getBalance on each of the accounts. For consistency, they
should get the same result from both methods. To maintain this consistency, the
deposit and withdraw operations must update the object holding the sum of all the
account balances.

To support the requirement for failure atomicity and durability, the objects must be
recoverable; that is, when a server process crashes unexpectedly due to a hardware fault
or a software error, the changes due to all completed transactions must be available in
permanent storage so that when the server is replaced by a new process, it can recover
the objects to reflect the all-or-nothing effect. By the time a server acknowledges the
completion of a client’s transaction, all of the transaction’s changes to the objects must
have been recorded in permanent storage.

A server that supports transactions must synchronize the operations sufficiently to
ensure that the isolation requirement is met. One way of doing this is to perform the
transactions serially – one at a time, in some arbitrary order. Unfortunately, this solution
would generally be unacceptable for servers whose resources are shared by multiple
interactive users. For instance, in our banking example it is desirable to allow several
bank clerks to perform online banking transactions at the same time as one another.

 The aim for any server that supports transactions is to maximize concurrency.
Therefore transactions are allowed to execute concurrently if this would have the same
effect as a serial execution – that is, if they are serially equivalent or serializable.

682 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

Transaction capabilities can be added to servers of recoverable objects. Each
transaction is created and managed by a coordinator, which implements the Coordinator

interface shown in Figure 16.3

Figure 16.3 Operations in the Coordinator interface

openTransaction() trans;

Starts a new transaction and delivers a unique TID trans. This identifier will be used
in the other operations in the transaction.

closeTransaction(trans) (commit, abort);

Ends a transaction: a commit return value indicates that the transaction has
committed; an abort return value indicates that it has aborted.

abortTransaction(trans);

Aborts the transaction.

. The coordinator gives each transaction an identifier, or
TID. The client invokes the openTransaction method of the coordinator to introduce a
new transaction – a transaction identifier or TID is allocated and returned. At the end of
a transaction, the client invokes the closeTransaction method to indicate its end – all of
the recoverable objects accessed by the transaction should be saved. If, for some reason,
the client wants to abort a transaction, it invokes the abortTransaction method – all of
its effects should be removed from sight.

A transaction is achieved by cooperation between a client program, some
recoverable objects and a coordinator. The client specifies the sequence of invocations
on recoverable objects that are to comprise a transaction. To achieve this, the client
sends with each invocation the transaction identifier returned by openTransaction. One
way to make this possible is to include an extra argument in each operation of a
recoverable object to carry the TID. For example, in the banking service the deposit

operation might be defined:

deposit(trans, amount)

Deposits amount in the account for transaction with TID trans

When transactions are provided as middleware, the TID can be passed implicitly
with all remote invocations between openTransaction and closeTransaction or
abortTransaction. This is what the CORBA Transaction Service does. We shall not
show TIDs in our examples.

Normally, a transaction completes when the client makes a closeTransaction

request. If the transaction has progressed normally, the reply states that the transaction
is committed – this constitutes a promise to the client that all of the changes requested in
the transaction are permanently recorded and that any future transactions that access the
same data will see the results of all of the changes made during the transaction.

Alternatively, the transaction may have to abort for one of several reasons related
to the nature of the transaction itself, to conflicts with another transaction or to the
crashing of a process or computer. When a transaction is aborted the parties involved
(the recoverable objects and the coordinator) must ensure that none of its effects are
visible to future transactions, either in the objects or in their copies in permanent storage.

A transaction is either successful or is aborted in one of two ways – the client
aborts it (using an abortTransaction call to the server) or the server aborts it. Figure 16.4

Figure 16.4 Transaction life histories

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

• • server aborts •

• • transaction •

operation operation operation ERROR

reported to client

closeTransaction abortTransaction

SECTION 16.2 TRANSACTIONS 683

shows these three alternative life histories for transactions. We refer to a transaction as
failing in both of the latter cases.

Service actions related to process crashes • If a server process crashes unexpectedly, it
is eventually replaced. The new server process aborts any uncommitted transactions and
uses a recovery procedure to restore the values of the objects to the values produced by
the most recently committed transaction. To deal with a client that crashes unexpectedly
during a transaction, servers can give each transaction an expiry time and abort any
transaction that has not completed before its expiry time.

Client actions related to server process crashes • If a server crashes while a transaction
is in progress, the client will become aware of this when one of the operations returns an
exception after a timeout. If a server crashes and is then replaced during the progress of
a transaction, the transaction will no longer be valid and the client must be informed via
an exception to the next operation. In either case, the client must then formulate a plan,
possibly in consultation with the human user, for the completion or abandonment of the
task of which the transaction was a part.

16.2.1 Concurrency control

This section illustrates two well-known problems of concurrent transactions in the
context of the banking example – the ‘lost update’ problem and the ‘inconsistent
retrievals’ problem. We then show how both of these problems can be avoided by using
serially equivalent executions of transactions. We assume throughout that each of the
operations deposit, withdraw, getBalance and setBalance is a synchronized operation –
that is, that its effects on the instance variable that records the balance of an account are
atomic.

The lost update problem • The lost update problem is illustrated by the following pair
of transactions on bank accounts A, B and C, whose initial balances are $100, $200 and
$300, respectively. Transaction T transfers an amount from account A to account B.
Transaction U transfers an amount from account C to account B. In both cases, the

Figure 16.5 The lost update problem

Transaction T: Transaction U:

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10)

balance = b.getBalance();

b.setBalance(balance*1.1);

c.withdraw(balance/10)

balance = b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

684 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

amount transferred is calculated to increase the balance of B by 10%. The net effects on
account B of executing the transactions T and U should be to increase the balance of
account B by 10% twice, so its final value is $242.

Now consider the effects of allowing the transactions T and U to run concurrently,
as in Figure 16.5. Both transactions get the balance of B as $200 and then deposit $20.
The result is incorrect, increasing the balance of account B by $20 instead of $42. This
is an illustration of the ‘lost update’ problem. U’s update is lost because T overwrites it
without seeing it. Both transactions have read the old value before either writes the new
value.

Figure 16.6 The inconsistent retrievals problem

Transaction V: Transaction W:

a.withdraw(100)

b.deposit(100)

aBranch.branchTotal()

a.withdraw(100); $100

total = a.getBalance() $100

total = total + b.getBalance() $300

total = total + c.getBalance()

b.deposit(100) $300 •

•

In Figure 16.5 onwards, we show the operations that affect the balance of an
account on successive lines down the page, and the reader should assume that an
operation on a particular line is executed at a later time than the one on the line above it.

Inconsistent retrievals • Figure 16.6 shows another example related to a bank account
in which transaction V transfers a sum from account A to B and transaction W invokes
the branchTotal method to obtain the sum of the balances of all the accounts in the bank.

SECTION 16.2 TRANSACTIONS 685

The balances of the two bank accounts, A and B, are both initially $200. The result of
branchTotal includes the sum of A and B as $300, which is wrong. This is an illustration
of the ‘inconsistent retrievals’ problem. W’s retrievals are inconsistent because V has
performed only the withdrawal part of a transfer at the time the sum is calculated.

Serial equivalence • If each of several transactions is known to have the correct effect
when it is done on its own, then we can infer that if these transactions are done one at a
time in some order the combined effect will also be correct. An interleaving of the
operations of transactions in which the combined effect is the same as if the transactions
had been performed one at a time in some order is a serially equivalent interleaving.
When we say that two different transactions have the same effect as one another, we
mean that the read operations return the same values and that the instance variables of
the objects have the same values at the end.

The use of serial equivalence as a criterion for correct concurrent execution
prevents the occurrence of lost updates and inconsistent retrievals.

The lost update problem occurs when two transactions read the old value of a
variable and then use it to calculate the new value. This cannot happen if one transaction
is performed before the other, because the later transaction will read the value written
by the earlier one. As a serially equivalent interleaving of two transactions produces the
same effect as a serial one, we can solve the lost update problem by means of serial
equivalence. Figure 16.7

Figure 16.7 A serially equivalent interleaving of T and U

Transaction T: Transaction U:

balance = b.getBalance()

b.setBalance(balance*1.1)

a.withdraw(balance/10)

balance = b.getBalance()

b.setBalance(balance*1.1)

c.withdraw(balance/10)

balance = b.getBalance() $200

b.setBalance(balance*1.1) $220

balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

 shows one such interleaving in which the operations that affect
the shared account, B, are actually serial, for transaction T does all its operations on B
before transaction U does. Another interleaving of T and U that has this property is one
in which transaction U completes its operations on account B before transaction T starts.

We now consider the effect of serial equivalence in relation to the inconsistent
retrievals problem, in which transaction V is transferring a sum from account A to B and
transaction W is obtaining the sum of all the balances (see Figure 16.6). The inconsistent
retrievals problem can occur when a retrieval transaction runs concurrently with an
update transaction. It cannot occur if the retrieval transaction is performed before or
after the update transaction. A serially equivalent interleaving of a retrieval transaction
and an update transaction, for example as in Figure 16.8, will prevent inconsistent
retrievals occurring.

Figure 16.8 A serially equivalent interleaving of V and W

Transaction V: Transaction W:

a.withdraw(100);

b.deposit(100)

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total + b.getBalance() $400

total = total + c.getBalance()

...

686 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

Conflicting operations • When we say that a pair of operations conflicts we mean that
their combined effect depends on the order in which they are executed. To simplify
matters we consider a pair of operations, read and write. read accesses the value of an
object and write changes its value. The effect of an operation refers to the value of an
object set by a write operation and the result returned by a read operation. The conflict
rules for read and write operations are given in Figure 16.9.

Figure 16.9 Read and write operation conflict rules

Operations of different

transactions

Conflict Reason

read read No
Because the effect of a pair of read operations does

not depend on the order in which they are executed

read write Yes
Because the effect of a read and a write operation

depends on the order of their execution

write write Yes
Because the effect of a pair of write operations

depends on the order of their execution

For any pair of transactions, it is possible to determine the order of pairs of
conflicting operations on objects accessed by both of them. Serial equivalence can be
defined in terms of operation conflicts as follows:

For two transactions to be serially equivalent, it is necessary and sufficient that all
pairs of conflicting operations of the two transactions be executed in the same
order at all of the objects they both access.

SECTION 16.2 TRANSACTIONS 687

Consider as an example the transactions T and U, defined as follows:

T: x = read(i); write(i, 10); write(j, 20);
U: y = read(j); write(j, 30); z = read (i);

Then consider the interleaving of their executions, shown in Figure 16.10

Figure 16.10 A non–serially-equivalent interleaving of operations of transactions T and U

Transaction T: Transaction U:

x = read(i)

write(i, 10)

y = read(j)

write(j, 30)

write(j, 20)

z = read (i)

. Note that
each transaction’s access to objects i and j is serialized with respect to one another,
because T makes all of its accesses to i before U does and U makes all of its accesses to
j before T does. But the ordering is not serially equivalent, because the pairs of
conflicting operations are not done in the same order at both objects. Serially equivalent
orderings require one of the following two conditions:

1. T accesses i before U and T accesses j before U.

2. U accesses i before T and U accesses j before T.

Serial equivalence is used as a criterion for the derivation of concurrency control
protocols. These protocols attempt to serialize transactions in their access to objects.
Three alternative approaches to concurrency control are commonly used: locking,
optimistic concurrency control and timestamp ordering. However, most practical
systems use locking, which is discussed in Section 16.4. When locking is used, the
server sets a lock, labelled with the transaction identifier, on each object just before it is
accessed and removes these locks when the transaction has completed. While an object
is locked, only the transaction that it is locked for can access that object; other
transactions must either wait until the object is unlocked or, in some cases, share the
lock. The use of locks can lead to deadlocks, with transactions waiting for each other to
release locks – for example, when a pair of transactions each has an object locked that
the other needs to access. We discuss the deadlock problem and some remedies for it in
Section 16.4.1.

Optimistic concurrency control is described in Section 16.5. In optimistic
schemes, a transaction proceeds until it asks to commit, and before it is allowed to
commit the server performs a check to discover whether it has performed operations on
any objects that conflict with the operations of other concurrent transactions, in which
case the server aborts it and the client may restart it. The aim of the check is to ensure
that all the objects are correct.

Timestamp ordering is described in Section 16.6. In timestamp ordering, a server
records the most recent time of reading and writing of each object and for each

688 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

operation, the timestamp of the transaction is compared with that of the object to
determine whether it can be done immediately or must be delayed or rejected. When an
operation is delayed, the transaction waits; when it is rejected, the transaction is aborted.

Basically, concurrency control can be achieved either by clients’ transactions
waiting for one another or by restarting transactions after conflicts between operations
have been detected, or by a combination of the two.

16.2.2 Recoverability from aborts

Servers must record all the effects of committed transactions and none of the effects of
aborted transactions. They must therefore allow for the fact that a transaction may abort
by preventing it affecting other concurrent transactions if it does so.

This section illustrates two problems associated with aborting transactions in the
context of the banking example. These problems are called ‘dirty reads’ and ‘premature
writes’, and both of them can occur in the presence of serially equivalent executions of
transactions. These issues are concerned with the effects of operations on objects such
as the balance of a bank account. To simplify things, operations are considered in two
categories: read operations and write operations. In our illustrations, getBalance is a
read operation and setBalance a write operation.

Dirty reads • The isolation property of transactions requires that transactions do not see
the uncommitted state of other transactions. The ‘dirty read’ problem is caused by the
interaction between a read operation in one transaction and an earlier write operation in
another transaction on the same object. Consider the executions illustrated in Figure
16.11

Figure 16.11 A dirty read when transaction T aborts

Transaction T: Transaction U:

a.getBalance()

a.setBalance(balance + 10)

a.getBalance()

a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110

balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

, in which T gets the balance of account A and sets it to $10 more, then U gets the
balance of account A and sets it to $20 more, and the two executions are serially
equivalent. Now suppose that the transaction T aborts after U has committed. Then the
transaction U will have seen a value that never existed, since A will be restored to its
original value. We say that the transaction U has performed a dirty read. As it has
committed, it cannot be undone.

SECTION 16.2 TRANSACTIONS 689

Recoverability of transactions • If a transaction (like U) has committed after it has seen
the effects of a transaction that subsequently aborted, the situation is not recoverable. To
ensure that such situations will not arise, any transaction (like U) that is in danger of
having a dirty read delays its commit operation. The strategy for recoverability is to
delay commits until after the commitment of any other transaction whose uncommitted
state has been observed. In our example, U delays its commit until after T commits. In
the case that T aborts, then U must abort as well.

Cascading aborts • In Figure 16.11, suppose that transaction U delays committing until
after T aborts. As we have said, U must abort as well. Unfortunately, if any other
transactions have seen the effects due to U, they too must be aborted. The aborting of
these latter transactions may cause still further transactions to be aborted. Such
situations are called cascading aborts. To avoid cascading aborts, transactions are only
allowed to read objects that were written by committed transactions. To ensure that this
is the case, any read operation must be delayed until other transactions that applied a
write operation to the same object have committed or aborted. The avoidance of
cascading aborts is a stronger condition than recoverability.

Premature writes • Consider another implication of the possibility that a transaction
may abort. This one is related to the interaction between write operations on the same
object belonging to different transactions. For an illustration, we consider two
setBalance transactions, T and U, on account A, as shown in Figure 16.12

Figure 16.12 Overwriting uncommitted values

Transaction T: Transaction U:

a.setBalance(105) a.setBalance(110)

$100

a.setBalance(105) $105

a.setBalance(110) $110

. Before the
transactions, the balance of account A was $100. The two executions are serially
equivalent, with T setting the balance to $105 and U setting it to $110. If the transaction
U aborts and T commits, the balance should be $105.

Some database systems implement the action of abort by restoring ‘before
images’ of all the writes of a transaction. In our example, A is $100 initially, which is
the ‘before image’ of T’s write; similarly, $105 is the ‘before image’ of U’s write. Thus
if U aborts, we get the correct balance of $105.

Now consider the case when U commits and then T aborts. The balance should be
$110, but as the ‘before image’ of T’s write is $100, we get the wrong balance of $100.
Similarly, if T aborts and then U aborts, the ‘before image’ of U’s write is $105 and we
get the wrong balance of $105 – the balance should revert to $100.

To ensure correct results in a recovery scheme that uses before images, write

operations must be delayed until earlier transactions that updated the same objects have
either committed or aborted.

690 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

Strict executions of transactions • Generally, it is required that transactions delay both
their read and write operations so as to avoid both dirty reads and premature writes. The
executions of transactions are called strict if the service delays both read and write

operations on an object until all transactions that previously wrote that object have either
committed or aborted. The strict execution of transactions enforces the desired property
of isolation.

Tentative versions • For a server of recoverable objects to participate in transactions, it
must be designed so that any updates of objects can be removed if and when a
transaction aborts. To make this possible, all of the update operations performed during
a transaction are done in tentative versions of objects in volatile memory. Each
transaction is provided with its own private set of tentative versions of any objects that
it has altered. All the update operations of a transaction store values in the transaction’s
own private set. Access operations in a transaction take values from the transaction’s
own private set if possible, or failing that, from the objects.

The tentative versions are transferred to the objects only when a transaction
commits, by which time they will also have been recorded in permanent storage. This is
performed in a single step, during which other transactions are excluded from access to
the objects that are being altered. When a transaction aborts, its tentative versions are
deleted.

16.3 Nested transactions

Nested transactions extend the above transaction model by allowing transactions to be
composed of other transactions. Thus several transactions may be started from within a
transaction, allowing transactions to be regarded as modules that can be composed as
required.

The outermost transaction in a set of nested transactions is called the top-level

transaction. Transactions other than the top-level transaction are called subtransactions.
For example, in Figure 16.13, T is a top-level transaction that starts a pair of
subtransactions, T1 and T2. The subtransaction T1 starts its own pair of subtransactions,
T11 and T22. Also, subtransaction T2 starts its own subtransaction, T21, which starts
another subtransaction, T211.

A subtransaction appears atomic to its parent with respect to transaction failures
and to concurrent access. Subtransactions at the same level, such as T1 and T2, can run
concurrently, but their access to common objects is serialized – for example, by the
locking scheme described in Section 16.4. Each subtransaction can fail independently of
its parent and of the other subtransactions. When a subtransaction aborts, the parent
transaction can sometimes choose an alternative subtransaction to complete its task. For
example, a transaction to deliver a mail message to a list of recipients could be structured
as a set of subtransactions, each of which delivers the message to one of the recipients.
If one or more of the subtransactions fails, the parent transaction could record the fact
and then commit, with the result that all the successful child transactions commit. It
could then start another transaction to attempt to redeliver the messages that were not
sent the first time.

Figure 16.13 Nested transactions

T : top-level transaction

T1 = openSubTransaction T2 = openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

T1 : T2 :

T11 : T12 :

T211 :

T21 :

provisional commit

provisional commit

abort

provisional commitprovisional commit

provisional commit

commit

SECTION 16.3 NESTED TRANSACTIONS 691

When we need to distinguish our original form of transaction from nested ones,
we use the term flat transaction. It is flat because all of its work is done at the same level
between an openTransaction and a commit or abort, and it is not possible to commit or
abort parts of it. Nested transactions have the following main advantages:

1. Subtransactions at one level (and their descendants) may run concurrently with
other subtransactions at the same level in the hierarchy. This can allow additional
concurrency in a transaction. When subtransactions run in different servers, they
can work in parallel. For example, consider the branchTotal operation in our
banking example. It can be implemented by invoking getBalance at every account
in the branch. Now each of these invocations may be performed as a
subtransaction, in which case they can be performed concurrently. Since each one
applies to a different account, there will be no conflicting operations among the
subtransactions.

2. Subtransactions can commit or abort independently. In comparison with a single
transaction, a set of nested subtransactions is potentially more robust. The above
example of delivering mail shows that this is so – with a flat transaction, one
transaction failure would cause the whole transaction to be restarted. In fact, a
parent can decide on different actions according to whether a subtransaction has
aborted or not.

The rules for committing of nested transactions are rather subtle:

• A transaction may commit or abort only after its child transactions have
completed.

• When a subtransaction completes, it makes an independent decision either to
commit provisionally or to abort. Its decision to abort is final.

• When a parent aborts, all of its subtransactions are aborted. For example, if T2
aborts then T21 and T211 must also abort, even though they may have provisionally
committed.

• When a subtransaction aborts, the parent can decide whether to abort or not. In our
example, T decides to commit although T2 has aborted.

692 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

• If the top-level transaction commits, then all of the subtransactions that have
provisionally committed can commit too, provided that none of their ancestors has
aborted. In our example, T’s commitment allows T1, T11 and T12 to commit, but
not T21 and T211 since their parent, T2, aborted. Note that the effects of a
subtransaction are not permanent until the top-level transaction commits.

In some cases, the top-level transaction may decide to abort because one or more of its
subtransactions have aborted. As an example, consider the following Transfer

transaction:

Transfer $100 from B to A
a.deposit(100)
b.withdraw(100)

This can be structured as a pair of subtransactions, one for the withdraw operation and
the other for deposit. When the two subtransactions both commit, the Transfer

transaction can also commit. Suppose that a withdraw subtransaction aborts whenever
an account is overdrawn. Now consider the case when the withdraw subtransaction
aborts and the deposit subtransaction commits – and recall that the commitment of a
child transaction is conditional on the parent transaction committing. We presume that
the top-level (Transfer) transaction will decide to abort. The aborting of the parent
transaction causes the subtransactions to abort – so the deposit transaction is aborted and
all its effects are undone.

The CORBA Object Transaction Service supports both flat and nested
transactions. Nested transactions are particularly useful in distributed systems because
child transactions may be run concurrently in different servers. We return to this issue
in Chapter 17. This form of nested transactions is due to Moss [1985]. Other variants of
nested transactions with different serializability properties have been proposed; for
example, see Weikum [1991].

16.4 Locks

Transactions must be scheduled so that their effect on shared data is serially equivalent.
A server can achieve serial equivalence of transactions by serializing access to the
objects. Figure 16.7 shows an example of how serial equivalence can be achieved with
some degree of concurrency – transactions T and U both access account B, but T

completes its access before U starts accessing it.
A simple example of a serializing mechanism is the use of exclusive locks. In this

locking scheme, the server attempts to lock any object that is about to be used by any
operation of a client’s transaction. If a client requests access to an object that is already
locked due to another client’s transaction, the request is suspended and the client must
wait until the object is unlocked.

Figure 16.14 illustrates the use of exclusive locks. It shows the same transactions
as Figure 16.7, but with an extra column for each transaction showing the locking,
waiting and unlocking. In this example, it is assumed that when transactions T and U
start, the balances of the accounts A, B and C are not yet locked. When transaction T is
about to use account B, it is locked for T. When transaction U is about to use B it is still

Figure 16.14 Transactions T and U with exclusive locks

Transaction T: Transaction U:

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

balance = b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction

bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s

lock on B

closeTransaction unlock A, B • • •

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B, C

SECTION 16.4 LOCKS 693

locked for T, so transaction U waits. When transaction T is committed, B is unlocked,
whereupon transaction U is resumed. The use of the lock on B effectively serializes the
access to B. Note that if, for example, T released the lock on B between its getBalance

and setBalance operations, transaction U’s getBalance operation on B could be
interleaved between them.

Serial equivalence requires that all of a transaction’s accesses to a particular object
be serialized with respect to accesses by other transactions. All pairs of conflicting
operations of two transactions should be executed in the same order. To ensure this, a
transaction is not allowed any new locks after it has released a lock. The first phase of
each transaction is a ‘growing phase’, during which new locks are acquired. In the
second phase, the locks are released (a ‘shrinking phase’). This is called two-phase

locking.
We saw in Section 16.2.2 that because transactions may abort, strict executions

are needed to prevent dirty reads and premature writes. Under a strict execution regime,
a transaction that needs to read or write an object must be delayed until other
transactions that wrote the same object have committed or aborted. To enforce this rule,
any locks applied during the progress of a transaction are held until the transaction
commits or aborts. This is called strict two-phase locking. The presence of the locks
prevents other transactions reading or writing the objects. When a transaction commits,
to ensure recoverability, the locks must be held until all the objects it updated have been
written to permanent storage.

A server generally contains a large number of objects, and a typical transaction
accesses only a few of them and is unlikely to clash with other current transactions. The
granularity with which concurrency control can be applied to objects is an important

694 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

issue, since the scope for concurrent access to objects in a server will be limited severely
if concurrency control (for example, locks) can only be applied to all the objects at once.
In our banking example, if locks were applied to all customer accounts at a branch, only
one bank clerk could perform an online banking transaction at any time – hardly an
acceptable constraint!

The portion of the objects to which access must be serialized should be as small
as possible; that is, just that part involved in each operation requested by transactions.
In our banking example, a branch holds a set of accounts, each of which has a balance.
Each banking operation affects one or more account balances – deposit and withdraw

affect one account balance, and branchTotal affects all of them.
The description of concurrency control schemes given below does not assume any

particular granularity. We discuss concurrency control protocols that are applicable to
objects whose operations can be modelled in terms of read and write operations on the
objects. For the protocols to work correctly, it is essential that each read and write

operation is atomic in its effects on objects.
Concurrency control protocols are designed to cope with conflicts between

operations in different transactions on the same object. In this chapter, we use the notion
of conflict between operations to explain the protocols. The conflict rules for read and
write operations are given in Figure 16.9, which shows that pairs of read operations
from different transactions on the same object do not conflict. Therefore, a simple
exclusive lock that is used for both read and write operations reduces concurrency more
than is necessary.

It is preferable to adopt a locking scheme that controls the access to each object so
that there can be several concurrent transactions reading an object, or a single
transaction writing an object, but not both. This is commonly referred to as a ‘many
readers/single writer’ scheme. Two types of locks are used: read locks and write locks.
Before a transaction’s read operation is performed, a read lock should be set on the
object. Before a transaction’s write operation is performed, a write lock should be set on
the object. Whenever it is impossible to set a lock immediately, the transaction (and the
client) must wait until it is possible to do so – a client’s request is never rejected.

As pairs of read operations from different transactions do not conflict, an attempt
to set a read lock on an object with a read lock is always successful. All the transactions
reading the same object share its read lock – for this reason, read locks are sometimes
called shared locks.

The operation conflict rules tell us that:

1. If a transaction T has already performed a read operation on a particular object,
then a concurrent transaction U must not write that object until T commits or
aborts.

2. If a transaction T has already performed a write operation on a particular object,
then a concurrent transaction U must not read or write that object until T commits
or aborts.

To enforce condition 1, a request for a write lock on an object is delayed by the presence
of a read lock belonging to another transaction. To enforce condition 2, a request for
either a read lock or a write lock on an object is delayed by the presence of a write lock
belonging to another transaction.

SECTION 16.4 LOCKS 695

Figure 16.15

Figure 16.15 Lock compatibility

For one object Lock requested

read write

Lock already set none OK OK

read OK wait

write wait wait

 shows the compatibility of read locks and write locks on any
particular object. The entries to the left of the first column in the table show the type of
lock already set, if any. The entries above the first row show the type of lock requested.
The entry in each cell shows the effect on a transaction that requests the type of lock
given above when the object has been locked in another transaction with the type of lock
on the left.

Inconsistent retrievals and lost updates are caused by conflicts between read

operations in one transaction and write operations in another without the protection of a
concurrency control scheme such as locking. Inconsistent retrievals are prevented by
performing the retrieval transaction before or after the update transaction. If the retrieval
transaction comes first, its read locks delay the update transaction. If it comes second,
its request for read locks causes it to be delayed until the update transaction has
completed.

Lost updates occur when two transactions read a value of an object and then use
it to calculate a new value. Lost updates are prevented by making later transactions delay
their reads until the earlier ones have completed. This is achieved by each transaction
setting a read lock when it reads an object and then promoting it to a write lock when it
writes the same object – when a subsequent transaction requires a read lock it will be
delayed until any current transaction has completed.

A transaction with a read lock that is shared with other transactions cannot
promote its read lock to a write lock, because the latter would conflict with the read locks
held by the other transactions. Therefore, such a transaction must request a write lock
and wait for the other read locks to be released.

Lock promotion refers to the conversion of a lock to a stronger lock – that is, a
lock that is more exclusive. The lock compatibility table in Figure 16.15 shows the
relative exclusivity of locks. The read lock allows other read locks, whereas the write
lock does not. Neither allows other write locks. Therefore, a write lock is more exclusive
than a read lock. Locks may be promoted because the result is a more exclusive lock. It
is not safe to demote a lock held by a transaction before it commits, because the result
will be more permissive than the previous one and may allow executions by other
transactions that are inconsistent with serial equivalence.

The rules for the use of locks in a strict two-phase locking implementation are
summarized in Figure 16.16. To ensure that these rules are adhered to, the client has no
access to operations for locking or unlocking items of data. Locking is performed when
the requests for read and write operations are about to be applied to the recoverable
objects, and unlocking is performed by the commit or abort operations of the transaction
coordinator.

Figure 16.16 Use of locks in strict two-phase locking

1. When an operation accesses an object within a transaction:

(a)If the object is not already locked, it is locked and the operation proceeds.

(b)If the object has a conflicting lock set by another transaction, the transaction
must wait until it is unlocked.

(c)If the object has a non-conflicting lock set by another transaction, the lock is
shared and the operation proceeds.

(d)If the object has already been locked in the same transaction, the lock will be
promoted if necessary and the operation proceeds. (Where promotion is
prevented by a conflicting lock, rule b is used.)

2. When a transaction is committed or aborted, the server unlocks all objects it
locked for the transaction.

696 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

For example, the CORBA Concurrency Control Service [OMG 2000b] can be
used to apply concurrency control on behalf of transactions or to protect objects without
using transactions. It provides a means of associating a collection of locks (called a
lockset) with a resource such as a recoverable object. A lockset allows locks to be
acquired or released. A lockset’s lock method will acquire a lock or block until the lock
is free; other methods allow locks to be promoted or released. Transactional locksets
support the same methods as locksets, but their methods require transaction identifiers
as arguments. We mentioned earlier that the CORBA transaction service tags all client
requests in a transaction with the transaction identifier. This enables a suitable lock to
be acquired before each of the recoverable objects is accessed during a transaction. The
transaction coordinator is responsible for releasing the locks when a transaction
commits or aborts.

The rules given in Figure 16.16 ensure strictness, because the locks are held until
a transaction has either committed or aborted. However, it is not necessary to hold read
locks to ensure strictness. Read locks need only be held until the request to commit or
abort arrives.

Lock implementation • The granting of locks will be implemented by a separate object
in the server that we call the lock manager. The lock manager holds a set of locks, for
example in a hash table. Each lock is an instance of the class Lock and is associated with
a particular object. The class Lock is shown in Figure 16.17. Each instance of Lock

maintains the following information in its instance variables:

• the identifier of the locked object;

• the transaction identifiers of the transactions that currently hold the lock (shared
locks can have several holders);

• a lock type.

SECTION 16.4 LOCKS 697

The methods of Lock are synchronized

Figure 16.17 Lock class

public class Lock {

private Object object; // the object being protected by the lock
private Vector holders; // the TIDs of current holders
private LockType lockType; // the current type

public synchronized void acquire(TransID trans, LockType aLockType){

while(/*another transaction holds the lock in conflicting mode*/) {
try {

wait();

}catch (InterruptedException e){/*...*/ }

 }

 if (holders.isEmpty()) { // no TIDs hold lock
 holders.addElement(trans);

lockType = aLockType;

 } else if (/*another transaction holds the lock, share it*/)){

 if (/* this transaction not a holder*/) holders.addElement(trans);

} else if (/* this transaction is a holder but needs a more exclusive lock*/)
 lockType.promote();

 }

}

public synchronized void release(TransID trans){

holders.removeElement(trans); // remove this holder
// set locktype to none
notifyAll();

}

}

 so that the threads attempting to acquire or
release a lock will not interfere with one another. But, in addition, attempts to acquire
the lock use the waitmethod whenever they have to wait for another thread to release it.

The acquire method carries out the rules given in Figure 16.15 and Figure 16.16.
Its arguments specify a transaction identifier and the type of lock required by that
transaction. It tests whether the request can be granted. If another transaction holds the
lock in a conflicting mode, it invokes wait, which causes the caller’s thread to be
suspended until a corresponding notify. Note that the wait is enclosed in a while, because
all waiters are notified and some of them may not be able to proceed. When, eventually,
the condition is satisfied, the remainder of the method sets the lock appropriately:

• if no other transaction holds the lock, just add the given transaction to the holders
and set the type;

• else if another transaction holds the lock, share it by adding the given transaction
to the holders (unless it is already a holder);

• else if this transaction is a holder but is requesting a more exclusive lock, promote
the lock.

698 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

The release method’s arguments specify the transaction identifier of the transaction that
is releasing the lock. It removes the transaction identifier from the holders, sets the lock
type to none and calls notifyAll. The method notifies all waiting threads in case there are
multiple transactions waiting to acquire read locks – all of them may be able to proceed.

The class LockManager is shown in Figure 16.18.

Figure 16.18 LockManager class

public class LockManager {

 private Hashtable theLocks;

 public void setLock(Object object, TransID trans, LockType lockType){

 Lock foundLock;

 synchronized(this){

// find the lock associated with object
 // if there isn’t one, create it and add it to the hashtable
 }

 foundLock.acquire(trans, lockType);

 }

 // synchronize this one because we want to remove all entries
 public synchronized void unLock(TransID trans) {

 Enumeration e = theLocks.elements();

 while(e.hasMoreElements()){

 Lock aLock = (Lock)(e.nextElement());

 if(/* trans is a holder of this lock*/) aLock.release(trans);

 }

 }

}

 All requests to set locks and to release
them on behalf of transactions are sent to an instance of LockManager:

• The setLock method’s arguments specify the object that the given transaction
wants to lock and the type of lock. It finds a lock for that object in its hashtable or,
if necessary, creates one. It then invokes the acquire method of that lock.

• The unLock method’s argument specifies the transaction that is releasing its locks.
It finds all of the locks in the hashtable that have the given transaction as a holder.
For each one, it calls the release method.

Some questions of policy: Note that when several threads wait on the same locked item,
the semantics of wait ensure that each transaction gets its turn. In the above program, the
conflict rules allow the holders of a lock to be either multiple readers or one writer. The
arrival of a request for a read lock is always granted unless the holder has a write lock.

 The reader is invited to consider the following:

What is the consequence for write transactions in the presence of a steady trickle
of requests for read locks? Think of an alternative implementation.

SECTION 16.4 LOCKS 699

When the holder has a write lock, several readers and writers may be waiting. The
reader should consider the effect of notifyAll and think of an alternative
implementation. If a holder of a read lock tries to promote the lock when the lock
is shared, it will be blocked. Is there any solution to this difficulty?

Locking rules for nested transactions • The aim of a locking scheme for nested
transactions is to serialize access to objects so that:

1. Each set of nested transactions is a single entity that must be prevented from
observing the partial effects of any other set of nested transactions.

2. Each transaction within a set of nested transactions must be prevented from
observing the partial effects of the other transactions in the set.

The first rule is enforced by arranging that every lock that is acquired by a successful
subtransaction is inherited by its parent when it completes. Inherited locks are also
inherited by ancestors. Note that this form of inheritance passes from child to parent!
The top-level transaction eventually inherits all of the locks that were acquired by
successful subtransactions at any depth in a nested transaction. This ensures that the
locks can be held until the top-level transaction has committed or aborted, which
prevents members of different sets of nested transactions observing one another’s partial
effects.

The second rule is enforced as follows:

• Parent transactions are not allowed to run concurrently with their child
transactions. If a parent transaction has a lock on an object, it retains the lock
during the time that its child transaction is executing. This means that the child
transaction temporarily acquires the lock from its parent for its duration.

• Subtransactions at the same level are allowed to run concurrently, so when they
access the same objects, the locking scheme must serialize their access.

The following rules describe lock acquisition and release:

• For a subtransaction to acquire a read lock on an object, no other active transaction
can have a write lock on that object, and the only retainers of a write lock are its
ancestors.

• For a subtransaction to acquire a write lock on an object, no other active
transaction can have a read or write lock on that object, and the only retainers of
read and write locks on that object are its ancestors.

• When a subtransaction commits, its locks are inherited by its parent, allowing the
parent to retain the locks in the same mode as the child.

• When a subtransaction aborts, its locks are discarded. If the parent already retains
the locks, it can continue to do so.

Note that subtransactions at the same level that access the same object will take turns to
acquire the locks retained by their parent. This ensures that their access to a common
object is serialized.

As an example, suppose that subtransactions T1, T2 and T11 in Figure 16.13 all
access a common object, which is not accessed by the top-level transaction T. Suppose
that subtransaction T1 is the first to access the object and successfully acquires a lock,

700 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

which it passes on to T11 for the duration of its execution, getting it back when T11
completes. When T1 completes its execution, the top-level transaction T inherits the
lock, which it retains until the set of nested transactions completes. The subtransaction
T2 can acquire the lock from T for the duration of its execution.

16.4.1 Deadlocks

The use of locks can lead to deadlock. Consider the use of locks shown in Figure 16.19

Figure 16.19 Deadlock with write locks

Transaction T Transaction U

Operations Locks Operations Locks
a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

••• waits for U’s a.withdraw(200); waits for T’s

lock on B ••• lock on A

••• •••

••• •••

.
Since the deposit and withdraw methods are atomic, we show them acquiring write locks
– although in practice they read the balance and then write it. Each of them acquires a
lock on one account and then gets blocked when it tries to access the account that the
other one has locked. This is a deadlock situation – two transactions are waiting, and
each is dependent on the other to release a lock so it can resume.

Deadlock is a particularly common situation when clients are involved in an
interactive program, for a transaction in an interactive program may last for a long
period of time. This can result in many objects being locked and remaining so, thus
preventing other clients using them.

Note that the locking of subitems in structured objects can be useful for avoiding
conflicts and possible deadlock situations. For example, a day in a diary could be
structured as a set of timeslots, each of which can be locked independently for updating.
Hierarchic locking schemes are useful if the application requires a different granularity
of locking for different operations, see Section 16.4.2.

Definition of deadlock • Deadlock is a state in which each member of a group of
transactions is waiting for some other member to release a lock. A wait-for graph can
be used to represent the waiting relationships between current transactions. In a wait-for
graph the nodes represent transactions and the edges represent wait-for relationships
between transactions – there is an edge from node T to node U when transaction T is
waiting for transaction U to release a lock. Figure 16.20 illustrates the wait-for graph
corresponding to the deadlock situation illustrated in Figure 16.19. Recall that the
deadlock arose because transactions T and U both attempted to acquire an object held by
the other. Therefore T waits for U and U waits for T. The dependency between

Figure 16.20 The wait-for graph for Figure 16.19

B

A

Waits for

Held by

Held by

T UU T

Waits for

SECTION 16.4 LOCKS 701

transactions is indirect, via a dependency on objects. The diagram on the right shows the
objects held by and waited for by transactions T and U. As each transaction can wait for
only one object, the objects can be omitted from the wait-for graph – leaving the simple
graph on the left.

Suppose that, as in Figure 16.21

Figure 16.21 A cycle in a wait-for graph

U

V

T

, a wait-for graph contains a cycle T U …
V T . Each transaction is waiting for the next transaction in the cycle. All of these

transactions are blocked waiting for locks. None of the locks can ever be released, and
the transactions are deadlocked. If one of the transactions in a cycle is aborted, then its
locks are released and that cycle is broken. For example, if transaction T in Figure 16.21
is aborted, it will release a lock on an object that V is waiting for – and V will no longer
be waiting for T.

Now consider a scenario in which the three transactions T, U and V share a read
lock on an object C, and transaction W holds a write lock on object B, on which
transaction V is waiting to obtain a lock (as shown on the right in Figure 16.22). The
transactions T and W then request write locks on object C, and a deadlock situation arises
in which T waits for U and V, V waits for W, and W waits for T, U and V, as shown on
the left in Figure 16.22. This shows that although each transaction can wait for only one
object at a time, it may be involved in several cycles. For example, transaction V is
involved in two cycles: V W T V and V W V.

In this example, suppose that transaction V is aborted. This will release V’s lock
on C and the two cycles involving V will be broken.

Deadlock prevention • One solution is to prevent deadlock. An apparently simple but
not very good way to overcome the deadlock problem is to lock all of the objects used
by a transaction when it starts. This would need to be done as a single atomic step so as

C

T

U
V

Held by

Held by

Held by

T

U

V

W

W

B

Held by

Waits for

Figure 16.22 Another wait-for graph

702 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

to avoid deadlock at this stage. Such a transaction cannot run into deadlocks with other
transactions, but this approach unnecessarily restricts access to shared resources. In
addition, it is sometimes impossible to predict at the start of a transaction which objects
will be used. This is generally the case in interactive applications, for the user would
have to say in advance exactly which objects they were planning to use – this is
inconceivable in browsing-style applications, which allow users to find objects they do
not know about in advance. Deadlocks can also be prevented by requesting locks on
objects in a predefined order, but this can result in premature locking and a reduction in
concurrency.

Upgrade locks • CORBA’s Concurrency Control Service introduces a third type of
lock, called upgrade, the use of which is intended to avoid deadlocks. Deadlocks are
often caused by two conflicting transactions first taking read locks and then attempting
to promote them to write locks. A transaction with an upgrade lock on a data item is
permitted to read that data item, but this lock conflicts with any upgrade locks set by
other transactions on the same data item. This type of lock cannot be set implicitly by
the use of a read operation, but must be requested by the client.

Deadlock detection • Deadlocks may be detected by finding cycles in the wait-for
graph. Having detected a deadlock, a transaction must be selected for abortion to break
the cycle.

The software responsible for deadlock detection can be part of the lock manager.
It must hold a representation of the wait-for graph so that it can check it for cycles from
time to time. Edges are added to the graph and removed from the graph by the lock
manager’s setLock and unLock operations. At the point illustrated by Figure 16.22 on
the left, it will have the following information:

Transaction Waits for transaction

T U, V

V W

W T, U, V

An edge T U is added whenever the lock manager blocks a request by transaction T
for a lock on an object that is already locked on behalf of transaction U. Note that when

SECTION 16.4 LOCKS 703

a lock is shared, several edges may be added. An edge T U is deleted whenever U
releases a lock that T is waiting for and allows T to proceed. See Exercise 16.14 for a
more detailed discussion of the implementation of deadlock detection. If a transaction
shares a lock, the lock is not released, but the edges leading to a particular transaction
are removed.

The presence of cycles may be checked each time an edge is added, or less
frequently to avoid unnecessary overhead. When a deadlock is detected, one of the
transactions in the cycle must be chosen and then be aborted. The corresponding node
and the edges involving it must be removed from the wait-for graph. This will happen
when the aborted transaction has its locks removed.

The choice of the transaction to abort is not simple. Some factors that may be
taken into account are the age of the transaction and the number of cycles in which it is
involved.

Figure 16.23 Resolution of the deadlock in Figure 16.19

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

••• waits for U’s a.withdraw(200); waits for T’s

lock on B ••• lock on A

 (timeout elapses)

 T’s lock on A becomes vulnerable,

 unlock A, abort T

•••

a.withdraw(200); write lock A

unlock A, B

Timeouts • Lock timeouts are a method for resolution of deadlocks that is commonly
used. Each lock is given a limited period in which it is invulnerable. After this time, a
lock becomes vulnerable. Provided that no other transaction is competing for the object
that is locked, an object with a vulnerable lock remains locked. However, if any other
transaction is waiting to access the object protected by a vulnerable lock, the lock is
broken (that is, the object is unlocked) and the waiting transaction resumes. The
transaction whose lock has been broken is normally aborted.

There are many problems with the use of timeouts as a remedy for deadlocks: the
worst problem is that transactions are sometimes aborted due to their locks becoming
vulnerable when other transactions are waiting for them, but there is actually no
deadlock. In an overloaded system, the number of transactions timing out will increase,
and transactions taking a long time can be penalized. In addition, it is hard to decide on
an appropriate length for a timeout. In contrast, if deadlock detection is used,

704 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

transactions are aborted because deadlocks have occurred and a choice can be made as
to which transaction to abort.

Using lock timeouts, we can resolve the deadlock in Figure 16.19 as shown in
Figure 16.23, in which the write lock for T on A becomes vulnerable after its timeout
period. Transaction U is waiting to acquire a write lock on A. Therefore, T is aborted and
it releases its lock on A, allowing U to resume and complete the transaction.

When transactions access objects located in several different servers, the
possibility of distributed deadlocks arises. In a distributed deadlock, the wait-for graph
can involve objects at multiple locations. We return to this subject in Section 17.5.

16.4.2 Increasing concurrency in locking schemes

Even when locking rules are based on the conflicts between read and write operations
and the granularity at which they are applied is as small as possible, there is still some
scope for increasing concurrency. We discuss two approaches that have been used to
deal with this issue. In the first approach (two-version locking), the setting of exclusive
locks is delayed until a transaction commits. In the second approach (hierarchic locks),
mixed-granularity locks are used.

Two-version locking

Figure 16.24 Lock compatibility (read, write and commit locks)

For one object Lock to be set

read write commit

Lock already set none OK OK OK

read OK OK wait

write OK wait –

commit wait wait –

 • This is an optimistic scheme that allows one transaction to write
tentative versions of objects while other transactions read from the committed versions
of the same objects. read operations only wait if another transaction is currently
committing the same object. This scheme allows more concurrency than read-write
locks, but writing transactions risk waiting or even rejection when they attempt to
commit. Transactions cannot commit their write operations immediately if other
uncompleted transactions have read the same objects. Therefore, transactions that
request to commit in such a situation are made to wait until the reading transactions have
completed. Deadlocks may occur when transactions are waiting to commit. Therefore,
transactions may need to be aborted when they are waiting to commit, to resolve
deadlocks.

This variation on strict two-phase locking uses three types of lock: a read lock, a
write lock and a commit lock. Before a transaction’s read operation is performed, a read
lock must be set on the object – the attempt to set a read lock is successful unless the
object has a commit lock, in which case the transaction waits. Before a transaction’s

SECTION 16.4 LOCKS 705

write operation is performed, a write lock must be set on the object – the attempt to set
a write lock is successful unless the object has a write lock or a commit lock, in which
case the transaction waits.

 When the transaction coordinator receives a request to commit a transaction, it
attempts to convert all that transaction’s write locks to commit locks. If any of the
objects have outstanding read locks, the transaction must wait until the transactions that
set these locks have completed and the locks are released. The compatibility of read,
write and commit locks is shown in Figure 16.24.

There are two main differences in performance between the two-version locking
scheme and an ordinary read-write locking scheme. On the one hand, read operations in
the two-version locking scheme are delayed only while the transactions are being
committed, rather than during the entire execution of transactions – in most cases, the
commit protocol takes only a small fraction of the time required to perform an entire
transaction. On the other hand, read operations of one transaction can cause delays in
committing other transactions.

Hierarchic locks • In some applications, the granularity suitable for one operation is not
appropriate for another operation. In our banking example, the majority of the
operations require locking at the granularity of an account. The branchTotal operation
is different – it reads the values of all the account balances and would appear to require
a read lock on all of them. To reduce locking overhead, it would be useful to allow locks
of mixed granularity to coexist.

Branch

AccountA B C

Figure 16.25 Lock hierarchy for the banking example

Figure 16.26 Lock hierarchy for a diary

Week

Monday Tuesday Wednesday Thursday Friday

9:00–10:00

timeslots

10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00 14:00–15:00 15:00–16:00

Gray [1978] proposed the use of a hierarchy of locks with different granularities.
At each level, the setting of a parent lock has the same effect as setting all the equivalent
child locks. This economizes on the number of locks to be set. In our banking example,
the branch is the parent and the accounts are children (see Figure 16.25).

Mixed-granularity locks could be useful in a diary system in which the data could
be structured with the diary for a week being composed of a page for each day and the

706 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

latter subdivided further into a slot for each hour of the day, as shown in Figure 16.26.
The operation to view a week would cause a read lock to be set at the top of this
hierarchy, whereas the operation to enter an appointment would cause a write lock to be
set on a given time slot. The effect of a read lock on a week would be to prevent write
operations on any of the substructures – for example, the time slots for each day in that
week.

In Gray’s scheme, each node in the hierarchy can be locked, giving the owner of
the lock explicit access to the node and giving implicit access to its children. In our
example, in Figure 16.25 a read-write lock on the branch implicitly read-write locks all
the accounts. Before a child node is granted a read-write lock, an intention to read-write
lock is set on the parent node and its ancestors (if any). The intention lock is compatible
with other intention locks but conflicts with read and write locks according to the usual
rules. Figure 16.27 gives the compatibility table for hierarchic locks. Gray also proposed
a third type of intention lock – one that combines the properties of a read lock with an
intention to write lock.

Figure 16.27 Lock compatibility table for hierarchic locks

For one object Lock to be set

read write I-read I-write

Lock already set none OK OK OK OK

read OK wait OK wait

write wait wait wait wait

I-read OK wait OK OK

I-write wait wait OK OK

In our banking example, the branchTotal operation requests a read lock on the
branch, which implicitly sets read locks on all the accounts. A deposit operation needs
to set a write lock on a balance, but first it attempts to set an intention to write lock on
the branch. These rules prevent these operations running concurrently.

Hierarchic locks have the advantage of reducing the number of locks when mixed-
granularity locking is required. The compatibility tables and the rules for promoting
locks are more complex.

The mixed granularity of locks could allow each transaction to lock a portion
whose size is chosen according to its needs. A long transaction that accesses many
objects could lock the whole collection, whereas a short transaction can lock at finer
granularity.

The CORBA Concurrency Control Service supports variable-granularity locking
with intention to read and intention to write lock types. These can be used as described
above to take advantage the opportunity to apply locks at differing granularities in
hierarchically structured data.

SECTION 16.5 OPTIMISTIC CONCURRENCY CONTROL 707

16.5 Optimistic concurrency control

Kung and Robinson [1981] identified a number of inherent disadvantages of locking and
proposed an alternative optimistic approach to the serialization of transactions that
avoids these drawbacks. We can summarize the drawbacks of locking:

• Lock maintenance represents an overhead that is not present in systems that do not
support concurrent access to shared data. Even read-only transactions (queries),
which cannot possibly affect the integrity of the data, must, in general, use locking
in order to guarantee that the data being read is not modified by other transactions
at the same time. But locking may be necessary only in the worst case.

For example, consider two client processes that are concurrently incrementing the
values of n objects. If the client programs start at the same time and run for about
the same amount of time, accessing the objects in two unrelated sequences and
using a separate transaction to access and increment each item, the chances that
the two programs will attempt to access the same object at the same time are just
1 in n on average, so locking is really needed only once in every n transactions.

• The use of locks can result in deadlock. Deadlock prevention reduces concurrency
severely, and therefore deadlock situations must be resolved either by the use of
timeouts or by deadlock detection. Neither of these is wholly satisfactory for use
in interactive programs.

• To avoid cascading aborts, locks cannot be released until the end of the
transaction. This may reduce significantly the potential for concurrency.

The alternative approach proposed by Kung and Robinson is ‘optimistic’ because it is
based on the observation that, in most applications, the likelihood of two clients’
transactions accessing the same object is low. Transactions are allowed to proceed as
though there were no possibility of conflict with other transactions until the client
completes its task and issues a closeTransaction request. When a conflict arises, some
transaction is generally aborted and will need to be restarted by the client. Each
transaction has the following phases:

Working phase: During the working phase, each transaction has a tentative version
of each of the objects that it updates. This is a copy of the most recently committed
version of the object. The use of tentative versions allows the transaction to abort
(with no effect on the objects), either during the working phase or if it fails validation
due to other conflicting transactions. read operations are performed immediately – if
a tentative version for that transaction already exists, a read operation accesses it;
otherwise, it accesses the most recently committed value of the object. write

operations record the new values of the objects as tentative values (which are
invisible to other transactions). When there are several concurrent transactions,
several different tentative values of the same object may coexist. In addition, two
records are kept of the objects accessed within a transaction: a read set containing the
objects read by the transaction and a write set containing the objects written by the
transaction. Note that as all read operations are performed on committed versions of
the objects (or copies of them), dirty reads cannot occur.

708 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

Validation phase: When the closeTransaction request is received, the transaction is
validated to establish whether or not its operations on objects conflict with operations
of other transactions on the same objects. If the validation is successful, then the
transaction can commit. If the validation fails, then some form of conflict resolution
must be used and either the current transaction or, in some cases, those with which it
conflicts will need to be aborted.

Update phase: If a transaction is validated, all of the changes recorded in its tentative
versions are made permanent. Read-only transactions can commit immediately after
passing validation. Write transactions are ready to commit once the tentative versions
of the objects have been recorded in permanent storage.

Validation of transactions • Validation uses the read-write conflict rules to ensure that
the scheduling of a particular transaction is serially equivalent with respect to all other
overlapping transactions – that is, any transactions that had not yet committed at the time
this transaction started. To assist in performing validation, each transaction is assigned
a transaction number when it enters the validation phase (that is, when the client issues
a closeTransaction). If the transaction is validated and completes successfully, it retains
this number; if it fails the validation checks and is aborted, or if the transaction is read
only, the number is released for reassignment. Transaction numbers are integers
assigned in ascending sequence; the number of a transaction therefore defines its
position in time – a transaction always finishes its working phase after all transactions
with lower numbers. That is, a transaction with the number Ti always precedes a
transaction with the number Tj if i < j. (If the transaction number were to be assigned at
the beginning of the working phase, then a transaction that reached the end of the
working phase before one with a lower number would have to wait until the earlier one
had completed before it could be validated.)

The validation test on transaction Tv is based on conflicts between operations in
pairs of transactions Ti and Tv. For a transaction Tv to be serializable with respect to an
overlapping transaction Ti, their operations must conform to the following rules:

Tv Ti Rule

write read 1. Ti must not read objects written by Tv.

read write 2. Tv must not read objects written by Ti.

write write 3. Ti must not write objects written by Tv and

Tv must not write objects written by Ti.

As the validation and update phases of a transaction are generally short in duration
compared with the working phase, a simplification can be achieved by making the rule
that only one transaction may be in the validation and update phase at one time. When
no two transactions may overlap in the update phase, rule 3 is satisfied. Note that this
restriction on write operations, together with the fact that no dirty reads can occur,
produces strict executions. To prevent overlapping, the entire validation and update
phases can be implemented as a critical section so that only one client at a time can
execute it. In order to increase concurrency, part of the validation and updating may be

SECTION 16.5 OPTIMISTIC CONCURRENCY CONTROL 709

implemented outside the critical section, but it is essential that the assignment of
transaction numbers is performed sequentially. We note that at any instant, the current
transaction number is like a pseudo-clock that ticks whenever a transaction completes
successfully.

The validation of a transaction must ensure that rules 1 and 2 are obeyed by testing
for overlaps between the objects of pairs of transactions Tv and Ti. There are two forms
of validation – backward and forward [Härder 1984]. Backward validation checks the
transaction undergoing validation with other preceding overlapping transactions – those
that entered the validation phase before it. Forward validation checks the transaction
undergoing validation with other later transactions, which are still active.

Backward validation • As all the read operations of earlier overlapping transactions
were performed before the validation of Tv started, they cannot be affected by the writes

of the current transaction (and rule 1 is satisfied). The validation of transaction Tv checks
whether its read set (the objects affected by the read operations of Tv) overlaps with any
of the write sets of earlier overlapping transactions, Ti (rule 2). If there is any overlap,
the validation fails.

Let startTn be the biggest transaction number assigned (to some other committed
transaction) at the time when transaction Tv started its working phase and finishTn be the
biggest transaction number assigned at the time when Tv entered the validation phase.
The following program describes the algorithm for the validation of Tv:

boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Figure 16.28

Figure 16.28 Validation of transactions

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction
being validated

T2

T3

Later active
transactions

active1

active2

 shows overlapping transactions that might be considered in the validation
of a transaction Tv. Time increases from left to right. The earlier committed transactions
are T1, T2 and T3. T1 committed before Tv started. T2 and T3 committed before Tv

finished its working phase. StartTn + 1 = T2 and finishTn = T3. In backward validation,
the read set of Tv must be compared with the write sets of T2 and T3.

710 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

In backward validation, the read set of the transaction being validated is compared
with the write sets of other transactions that have already committed. Therefore, the only
way to resolve any conflicts is to abort the transaction that is undergoing validation.

In backward validation, transactions that have no read operations (only write

operations) need not be checked.
Optimistic concurrency control with backward validation requires that the write

sets of old committed versions of objects corresponding to recently committed
transactions are retained until there are no unvalidated overlapping transactions with
which they might conflict. Whenever a transaction is successfully validated, its
transaction number, startTn and write set are recorded in a preceding transactions list that
is maintained by the transaction service. Note that this list is ordered by transaction
number. In an environment with long transactions, the retention of old write sets of
objects may be a problem. For example, in Figure 16.28 the write sets of T1, T2, T3 and
Tv must be retained until the active transaction active1 completes. Note that the although
the active transactions have transaction identifiers, they do not yet have transaction
numbers.

Forward validation • In forward validation of the transaction Tv, the write set of Tv is
compared with the read sets of all overlapping active transactions – those that are still in
their working phase (rule 1). Rule 2 is automatically fulfilled because the active
transactions do not write until after Tv has completed. Let the active transactions have
(consecutive) transaction identifiers active1 to activeN. The following program describes
the algorithm for the forward validation of Tv:

boolean valid = true;
for (int Tid = active1; Tid <= activeN; Tid++){

if (write set of Tv intersects read set of Tid) valid = false;
}

In Figure 16.28, the write set of transaction Tv must be compared with the read sets of
the transactions with identifiers active1 and active2. (Forward validation should allow
for the fact that read sets of active transactions may change during validation and
writing.) As the read sets of the transaction being validated are not included in the check,
read-only transactions always pass the validation check. As the transactions being
compared with the validating transaction are still active, we have a choice of whether to
abort the validating transaction or to pursue some alternative way of resolving the
conflict. Härder [1984] suggests several alternative strategies:

• Defer the validation until a later time when the conflicting transactions have
finished. However, there is no guarantee that the transaction being validated will
fare any better in the future. There is always the chance that further conflicting
active transactions may start before the validation is achieved.

• Abort all the conflicting active transactions and commit the transaction being
validated.

• Abort the transaction being validated. This is the simplest strategy but has the
disadvantage that future conflicting transactions may be going to abort, in which
case the transaction under validation has aborted unnecessarily.

SECTION 16.6 TIMESTAMP ORDERING 711

Comparison of forward and backward validation • We have already seen that forward
validation allows flexibility in the resolution of conflicts, whereas backward validation
allows only one choice – to abort the transaction being validated. In general, the read
sets of transactions are much larger than the write sets. Therefore, backward validation
compares a possibly large read set against the old write sets, whereas forward validation
checks a small write set against the read sets of active transactions. We see that
backward validation has the overhead of storing old write sets until they are no longer
needed. On the other hand, forward validation has to allow for new transactions starting
during the validation process.

Starvation • When a transaction is aborted, it will normally be restarted by the client
program. But in schemes that rely on aborting and restarting transactions, there is no
guarantee that a particular transaction will ever pass the validation checks, for it may
come into conflict with other transactions for the use of objects each time it is restarted.
The prevention of a transaction ever being able to commit is called starvation.

Occurrences of starvation are likely to be rare, but a server that uses optimistic
concurrency control must ensure that a client does not have its transaction aborted
repeatedly. Kung and Robinson suggest that this could be done if the server detects a
transaction that has been aborted several times. They suggest that when the server
detects such a transaction it should be given exclusive access by the use of a critical
section protected by a semaphore.

16.6 Timestamp ordering

In concurrency control schemes based on timestamp ordering, each operation in a
transaction is validated when it is carried out. If the operation cannot be validated, the
transaction is aborted immediately and can then be restarted by the client. Each
transaction is assigned a unique timestamp value when it starts. The timestamp defines
its position in the time sequence of transactions. Requests from transactions can be
totally ordered according to their timestamps. The basic timestamp ordering rule is
based on operation conflicts and is very simple:

A transaction’s request to write an object is valid only if that object was last read and
written by earlier transactions. A transaction’s request to read an object is valid only
if that object was last written by an earlier transaction.

This rule assumes that there is only one version of each object and restricts access to one
transaction at a time. If each transaction has its own tentative version of each object it
accesses, then multiple concurrent transactions can access the same object. The
timestamp ordering rule is refined to ensure that each transaction accesses a consistent
set of versions of the objects. It must also ensure that the tentative versions of each object
are committed in the order determined by the timestamps of the transactions that made
them. This is achieved by transactions waiting, when necessary, for earlier transactions
to complete their writes. The write operations may be performed after the
closeTransaction operation has returned, without making the client wait. But the client
must wait when read operations need to wait for earlier transactions to finish. This

712 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

cannot lead to deadlock, since transactions only wait for earlier ones (and no cycle could
occur in the wait-for graph).

Timestamps may be assigned from the server’s clock or, as in the previous section,
a ‘pseudo-time’ may be based on a counter that is incremented whenever a timestamp
value is issued. We defer until Chapter 17 the problem of generating timestamps when
the transaction service is distributed and several servers are involved in a transaction.

We will now describe a form of timestamp-based concurrency control following
the methods adopted in the SDD-1 system [Bernstein et al. 1980] and described by Ceri
and Pelagatti [1985].

As usual, the write operations are recorded in tentative versions of objects and are
invisible to other transactions until a closeTransaction request is issued and the
transaction is committed. Every object has a write timestamp and a set of tentative
versions, each of which has a write timestamp associated with it; each object also has a
set of read timestamps. The write timestamp of the (committed) object is earlier than that
of any of its tentative versions, and the set of read timestamps can be represented by its
maximum member. Whenever a transaction’s write operation on an object is accepted,
the server creates a new tentative version of the object with its write timestamp set to the
transaction timestamp. A transaction’s read operation is directed to the version with the
maximum write timestamp less than the transaction timestamp. Whenever a
transaction’s read operation on an object is accepted, the timestamp of the transaction is
added to its set of read timestamps. When a transaction is committed, the values of the
tentative versions become the values of the objects, and the timestamps of the tentative
versions become the timestamps of the corresponding objects.

In timestamp ordering, each request by a transaction for a read or write operation
on an object is checked to see whether it conforms to the operation conflict rules. A
request by the current transaction Tc can conflict with previous operations done by other
transactions, Ti, whose timestamps indicate that they should be later than Tc. These rules
are shown in Figure 16.29

Figure 16.29 Operation conflicts for timestamp ordering

Rule Tc Ti

1. write read Tc must not write an object that has been read by any Ti where Ti > Tc.

This requires that Tc the maximum read timestamp of the object.

2. write write Tc must not write an object that has been written by any Ti where Ti >Tc.

This requires that Tc > the write timestamp of the committed object.

3. read write Tc must not read an object that has been written by any Ti where Ti > Tc.

This requires that Tc > the write timestamp of the committed object.

, in which Ti > Tc means Ti is later than Tc and Ti < Tc means
Ti, is earlier than Tc.

SECTION 16.6 TIMESTAMP ORDERING 713

Timestamp ordering write rule: By combining rules 1 and 2 we get the following rule for
deciding whether to accept a write operation requested by transaction Tc on object D:

if (Tc maximum read timestamp on D &&

Tc > write timestamp on committed version of D)
perform write operation on tentative version of D with write timestamp Tc

else /* write is too late */
Abort transaction Tc

If a tentative version with write timestamp Tc already exists, the write operation is
addressed to it; otherwise, a new tentative version is created and given write timestamp
Tc. Note that any write that ‘arrives too late’ is aborted – it is too late in the sense that a
transaction with a later timestamp has already read or written the object.

Figure 16.30

Figure 16.30 Write operations and timestamps

(a) T3 write (b) T3 write

(c) T3 write (d) T3 write

object produced by transaction Ti

 (with write timestamp Ti)

 T1 < T2 < T3 < T4

Time

Before

After

T2

T2 T3

Time

Before

After

T2

T2 T3

T1

T1

Time

Before

After

T1

T1

T4

T3 T4

Time

Transaction
aborts

Before

After

T4

T4

Key:

TentativeCommitted

Ti Ti

 illustrates the action of a write operation by transaction T3 in cases
where T3 maximum read timestamp on the object (the read timestamps are not
shown). In cases (a) to (c), T3 > write timestamp on the committed version of the object
and a tentative version with write timestamp T3 is inserted at the appropriate place in the
list of tentative versions ordered by their transaction timestamps. In case (d),
T3 < write timestamp on the committed version of the object and the transaction is
aborted.

714 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

Timestamp ordering read rule: By using rule 3 we arrive at the following rule for
deciding whether to accept immediately, to wait or to reject a read operation requested
by transaction Tc on object D:

if (Tc > write timestamp on committed version of D) {
let Dselected be the version of D with the maximum write timestamp ð Tc

if (Dselected is committed)
perform read operation on the version Dselected

else
wait until the transaction that made version Dselected commits or aborts
then reapply the read rule

} else
Abort transaction Tc

Note:

• If transaction Tc has already written its own version of the object, this will be used.

• A read operation that arrives too early waits for the earlier transaction to complete.
If the earlier transaction commits, then Tc will read from its committed version. If
it aborts, then Tc will repeat the read rule (and select the previous version). This
rule prevents dirty reads.

• A read operation that ‘arrives too late’ is aborted – it is too late in the sense that a
transaction with a later timestamp has already written the object.

Figure 16.31 illustrates the timestamp ordering read rule. It includes four cases labelled
(a) to (d), each of which illustrates the action of a read operation by transaction T3. In
each case, a version whose write timestamp is less than or equal to T3 is selected. If such
a version exists, it is indicated with a line. In cases (a) and (b) the read operation is
directed to a committed version – in (a) it is the only version, whereas in (b) there is a
tentative version belonging to a later transaction. In case (c) the read operation is
directed to a tentative version and must wait until the transaction that made it commits
or aborts. In case (d) there is no suitable version to read and transaction T3 is aborted.

When a coordinator receives a request to commit a transaction, it will always be
able to do so because all the operations of transactions are checked for consistency with
those of earlier transactions before being carried out. The committed versions of each
object must be created in timestamp order. Therefore, a coordinator sometimes needs to
wait for earlier transactions to complete before writing all the committed versions of the
objects accessed by a particular transaction, but there is no need for the client to wait. In
order to make a transaction recoverable after a server crash, the tentative versions of
objects and the fact that the transaction has committed must be written to permanent
storage before acknowledging the client’s request to commit the transaction.

Note that this timestamp ordering algorithm is a strict one – it ensures strict
executions of transactions (see Section 16.2). The timestamp ordering read rule delays
a transaction’s read operation on any object until all transactions that had previously
written that object have committed or aborted. The arrangement to commit versions in
order ensures that the execution of a transaction’s write operation on any object is
delayed until all transactions that had previously written that object have committed or
aborted.

Figure 16.31 Read operations and timestamps

(a) T3 read (b) T3 read

(c) T3 read (d) T3 read

object produced by transaction Ti

 (with write timestamp Ti)

 T1 < T2 < T3 < T4

Time

read
proceeds

Selected

T2

Time

read
proceeds

Selected

T2 T4

Time

read waits

Selected

T1 T2

Time

Transaction
abortsT4

Key:

TentativeCommitted

Ti Ti

SECTION 16.6 TIMESTAMP ORDERING 715

In Figure 16.32, we return to our illustration concerning the two concurrent
banking transactions T and U introduced in Figure 16.7. The columns headed A, B and
C refer to information about accounts with those names. Each account has an entry RTS
that records the maximum read timestamp and an entry WTS that records the write
timestamp of each version – with timestamps of committed versions in bold. Initially,
all accounts have committed versions written by transaction S, and the set of read
timestamps is empty. We assume S < T < U. The example shows that when transaction
U is ready to get the balance of B it will wait for T to complete so that it can read the
value set by T if it commits.

The timestamp method just described does avoid deadlocks, but it is quite likely
to cause restarts. A modification known as the ‘ignore obsolete write’ rule is an
improvement. This is a modification to the timestamp ordering write rule:

If a write is too late it can be ignored instead of aborting the transaction, because if it
had arrived in time its effects would have been overwritten anyway. However, if
another transaction has read the object, the transaction with the late write fails due to
the read timestamp on the item.

Multiversion timestamp ordering • In this section, we have shown how the
concurrency provided by basic timestamp ordering is improved by allowing each
transaction to write its own tentative versions of objects. In multiversion timestamp
ordering, which was introduced by Reed [1983], a list of old committed versions as well
as tentative versions is kept for each object. This list represents the history of the values

Figure 16.32 Timestamps in transactions T and U

Timestamps and versions of objects

 T U A B C

 RTS WTS RTS WTS RTS WTS

{} S {} S {} S

openTransaction

bal = b.getBalance() {T}

openTransaction

b.setBalance(bal*1.1) S T

bal = b.getBalance()

wait for T

 a.withdraw(bal/10) ••• S T

commit ••• T T

bal = b.getBalance() {U}

b.setBalance(bal*1.1) T U

c.withdraw(bal/10) S U

716 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

of the object. The benefit of using multiple versions is that read operations that arrive
too late need not be rejected.

Each version has a read timestamp recording the largest timestamp of any
transaction that has read from it in addition to a write timestamp. As before, whenever
a write operation is accepted, it is directed to a tentative version with the write timestamp
of the transaction. Whenever a read operation is carried out, it is directed to the version
with the largest write timestamp less than the transaction timestamp. If the transaction
timestamp is larger than the read timestamp of the version being used, the read
timestamp of the version is set to the transaction timestamp.

When a read arrives late, it can be allowed to read from an old committed version,
so there is no need to abort late read operations. In multiversion timestamp ordering,
read operations are always permitted, although they may have to wait for earlier
transactions to complete (either commit or abort), which ensures that executions are
recoverable. See Exercise 16.22 for a discussion of the possibility of cascading aborts.
This deals with rule 3 in the conflict rules for timestamp ordering.

There is no conflict between write operations of different transactions, because
each transaction writes its own committed version of the objects it accesses. This
removes rule 2 in the conflict rules for timestamp ordering, leaving us with:

Rule 1. Tc must not write objects that have been read by any Ti where Ti > Tc.

This rule will be broken if there is any version of the object with read timestamp > Tc,
but only if this version has a write timestamp less than or equal to Tc. (This write cannot
have any effect on later versions.)

Figure 16.33 Late write operation would invalidate a read

object produced by transaction

Ti (with write timestamp Ti and

read timestamp Tk)

Time

T4 write;T
5

read;T
3

write;T
3

read;

T2

T3 T5
T1

T3

T1 < T2 < T3 < T4 < T5

Key:

TentativeCommitted

Ti Ti

Tk Tk

SECTION 16.6 TIMESTAMP ORDERING 717

Multiversion timestamp ordering write rule: As any potentially conflicting read operation
will have been directed to the most recent version of an object, the server inspects the
version DmaxEarlier with the maximum write timestamp less than or equal to Tc. We have
the following rule for performing a write operation requested by transaction Tc on object
D:

if (read timestamp of DmaxEarlier Tc)
perform write operation on a tentative version of D with write timestamp Tc

else abort transaction Tc

Figure 16.33 illustrates an example where a write is rejected. The object already has
committed versions with write timestamps T1 and T2. The object receives the following
sequence of requests for operations on the object:

T3 read; T3 write; T5 read; T4 write.

1. T3 requests a read operation, which puts a read timestamp T3 on T2’s version.

2. T3 requests a write operation, which makes a new tentative version with write
timestamp T3.

3. T5 requests a read operation, which uses the version with write timestamp T3 (the
highest timestamp that is less than T5).

4. T4 requests a write operation, which is rejected because the read timestamp T5 of
the version with write timestamp T3 is bigger than T4. (If it were permitted, the
write timestamp of the new version would be T4. If such a version were allowed,
then it would invalidate T5’s read operation, which should have used the version
with timestamp T4.)

718 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

When a transaction is aborted, all the versions that it created are deleted. When a
transaction is committed, all the versions that it created are retained, but to control the
use of storage space, old versions must be deleted from time to time. Although it has the
overhead of storage space, multiversion timestamp ordering does allow considerable
concurrency, does not suffer from deadlocks and always permits read operations. For
further information about multiversion timestamp ordering, see Bernstein et al. [1987].

16.7 Comparison of methods for concurrency control

We have described three separate methods for controlling concurrent access to shared
data: strict two-phase locking, optimistic methods and timestamp ordering. All of the
methods carry some overheads in the time and space they require, and they all limit to
some extent the potential for concurrent operation.

The timestamp ordering method is similar to two-phase locking in that both use
pessimistic approaches in which conflicts between transactions are detected as each
object is accessed. On the one hand, timestamp ordering decides the serialization order
statically – when a transaction starts. On the other hand, two-phase locking decides the
serialization order dynamically – according to the order in which objects are accessed.
Timestamp ordering, and in particular multiversion timestamp ordering, is better than
strict two-phase locking for read-only transactions. Two-phase locking is better when
the operations in transactions are predominantly updates.

Some work uses the observation that timestamp ordering is beneficial for
transactions with predominantly read operations and that locking is beneficial for
transactions with more writes than reads as an argument for allowing hybrid schemes in
which some transactions use timestamp ordering and others use locking for concurrency
control. Readers who are interested in the use of mixed methods should read Bernstein
et al. [1987].

The pessimistic methods differ in the strategy used when a conflicting access to
an object is detected. Timestamp ordering aborts the transaction immediately, whereas
locking makes the transaction wait – but with a possible later penalty of aborting to
avoid deadlock.

When optimistic concurrency control is used, all transactions are allowed to
proceed, but some are aborted when they attempt to commit, or in forward validation
transactions are aborted earlier. This results in relatively efficient operation when there
are few conflicts, but a substantial amount of work may have to be repeated when a
transaction is aborted.

Locking has been in use for many years in database systems, but timestamp
ordering has been used in the SDD-1 database system. Both methods have been used in
file servers. However, historically, the predominant method of concurrency control of
access to data in distributed systems is by locking – for example, as mentioned earlier,
the CORBA Concurrency Control Service is based entirely on the use of locks. In
particular, it provides hierarchic locking, which allows for mixed-granularity locking on
hierarchically structured data.

SECTION 16.7 COMPARISON OF METHODS FOR CONCURRENCY CONTROL 719

Several research distributed systems, for example Argus [Liskov 1988] and
Arjuna [Shrivastava et al. 1991], have explored the use of semantic locks, timestamp
ordering and new approaches to long transactions.

Ellis et al. [1991] wrote a review of requirements for multi-user applications in
which all users expect to see common views of objects being updated by any of the
users. Many of the schemes provided notification of changes made by other users, but
this is contrary to the idea of isolation.

Barghouti and Kaiser [1991] wrote a review of what are sometimes described as
‘advanced database applications’ – for example, cooperative CAD/CAM and software
development systems. In such applications, transactions last for a long time, and users
work on independent versions of objects that are checked out from a common database
and checked in when the work is finished. The merging of versions requires cooperation
between users.

Simililarly, the above concurrency control mechanisms are not always adequate
for twenty-first-century applications that enable users to share documents over the
Internet. Many of the latter use optimistic forms of concurrency control followed by
conflict resolution instead of aborting one of any pair of conflicting operations.

The following are some examples.

Dropbox • Dropbox [www.dropbox.com] is a cloud service that provides file backup
and enables users to share files and folders, accessing them from anywhere. Dropbox
uses an optimistic form of concurrency control, keeping track of consistency and
preventing clashes between users’ updates – which are at the granularity of whole files.
Thus if two users make concurrent updates to the same file, the first write will be
accepted and the second rejected. However, Dropbox provides a version history to
enable users to merge their updates manually or restore previous versions.

Google apps • Google Apps [www.google.com I] are listed in Figure 21.2. They
include Google Docs, a cloud service that provides web-based applications (word
processor, spreadsheet and presentation) that allow users to collaborate with one
another by means of shared documents. If several people edit the same document
simultaneously, they will see each other’s changes. In the case of a word processor
document, users can see one another’s cursors and updates are shown at the level of
individual characters as they are typed by any participant. Users are left to resolve any
conflicts that occur, but conflicts are generally avoided because users are continuously
aware of each other’s activities. In the case of a spreadsheet document, users’ cursors
and changes are displayed and updated at the granularity of single cells. If two users
access the same cell simultaneously, the last update wins.

Wikipedia • Concurrency control for editing is optimistic, allowing editors concurrent
access to web pages in which the first write is accepted and a user making a subsequent
write is shown an ‘edit conflict’ screen and asked to resolve the conflicts.

Dynamo • Amazon.com’s key-value storage service uses optimistic concurrency
control with conflict resolution (see the box on the next page).

Dynamo

Dynamo [DeCandia et al. 2007] is one of the storage services used by Amazon.com,
whose platform serves tens of millions of customers at peak times, using tens of
thousands of servers. Such a setting makes very strong demands in terms of
performance, reliability and scalability. Dynamo was designed to support
applications such as the shopping carts and best-seller lists that require only primary
key access to a value in a data store. Data is heavily replicated with a view to
providing the scalability and availability that are key to these services.

Dynamo uses single get and put operations rather than transactions and does
not provide the isolation guarantee specified in the ACID properties. So as to
improve availability, it also provides a weaker form of consistency – which is
acceptable in the applications it supports.

Optimistic methods are used for concurrency control. In cases where versions
differ, they must be reconciled. Application logic can be used to merge versions in
the case of the shopping cart application.

Where application logic cannot be used, timestamp-based reconciliation is
applied. Dynamo uses the rule that ‘last write wins’ – the version with the largest
timestamp becomes the new one.

720 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

16.8 Summary

Transactions provide a means by which clients can specify sequences of operations that
are atomic in the presence of other concurrent transactions and server crashes. The first
aspect of atomicity is achieved by running transactions so that their effects are serially
equivalent. The effects of committed transactions are recorded in permanent storage so
that the transaction service can recover from process crashes. To allow transactions the
ability to abort, without having harmful side effects on other transactions, executions
must be strict – that is, reads and writes of one transaction must be delayed until other
transactions that wrote the same objects have either committed or aborted. To allow
transactions the choice of either committing or aborting, their operations are performed
in tentative versions that cannot be accessed by other transactions. The tentative
versions of objects are copied to the real objects and to permanent storage when a
transaction commits.

Nested transactions are formed by structuring transactions from other sub-
transactions. Nesting is particularly useful in distributed systems because it allows
concurrent execution of subtransactions in separate servers. Nesting also has the
advantage of allowing independent recovery of parts of a transaction.

Operation conflicts form a basis for the derivation of concurrency control
protocols. Protocols must not only ensure serializability but also allow for recovery by
using strict executions to avoid problems associated with transactions aborting, such as
cascading aborts.

Three alternative strategies are possible in scheduling an operation in a
transaction. They are (1) to execute it immediately, (2) to delay it or (3) to abort it.

EXERCISES 721

Strict two-phase locking uses the first two strategies, resorting to abortion only in
the case of deadlock. It ensures serializability by ordering transactions according to
when they access common objects. Its main drawback is that deadlocks can occur.

Timestamp ordering uses all three strategies to ensure serializability by ordering
transactions’ accesses to objects according to the time transactions start. This method
cannot suffer from deadlocks and is advantageous for read-only transactions. However,
transactions must be aborted when they arrive too late. Multiversion timestamp ordering
is particularly effective.

Optimistic concurrency control allows transactions to proceed without any form
of checking until they are completed. Transactions are validated before being allowed
to commit. Backward validation requires the maintenance of multiple write sets of
committed transactions, whereas forward validation must validate against active
transactions and has the advantage that it allows alternative strategies for resolving
conflicts. Starvation can occur due to repeated aborting of a transaction that fails
validation in optimistic concurrency control and even in timestamp ordering.

EXERCISES

16.1 The TaskBag is a service whose functionality is to provide a repository for ‘task
descriptions’. It enables clients running in several computers to carry out parts of a
computation in parallel. A master process places descriptions of subtasks of a
computation in the TaskBag, and worker processes select tasks from the TaskBag and
carry them out, returning descriptions of their results to the TaskBag. The master then
collects the results and combines them to produce the final result.

The TaskBag service provides the following operations:

setTask allows clients to add task descriptions to the bag;

takeTask allows clients to take task descriptions out of the bag.

A client makes the request takeTask, when a task is not available but may be available
soon. Discuss the advantages and drawbacks of the following alternatives:

i) The server can reply immediately, telling the client to try again later.

ii) The server operation (and therefore the client) must wait until a task
becomes available.

iii) Callbacks are used. page 678

16.2 A server manages the objects a1, a2, ..., an. The server provides two operations for its
clients:

 read (i) returns the value of ai;

 write(i, Value) assigns Value to ai.

The transactions T and U are defined as follows:
T: x = read(j); y = read (i); write(j, 44); write(i, 33);

U: x = read(k); write(i, 55); y = read (j); write(k, 66).

Give three serially equivalent interleavings of the transactions T and U. page 685

722 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

16.3 Give serially equivalent interleavings of T and U in Exercise 16.2 with the following
properties:

i) that are strict;

ii) that are not strict but could not produce cascading aborts;

iii) that could produce cascading aborts. page 689

16.4 The operation create inserts a new bank account at a branch. The transactions T and U
are defined as follows:

T: aBranch.create("Z");
U: z.deposit(10); z.deposit(20).

Assume that Z does not yet exist. Assume also that the deposit operation does nothing if
the account given as the argument does not exist. Consider the following interleaving of
transactions T and U:

T U

z.deposit(10);

aBranch.create(Z);

z.deposit(20);

State the balance of Z after their execution in this order. Are these consistent with
serially equivalent executions of T and U? page 685

16.5 A newly created object like Z in Exercise 16.4 is sometimes called a phantom. From the
point of view of transaction U, Z is not there at first and then appears (like a ghost).
Explain, with an example, how a phantom could occur when an account is deleted.

16.6 The ‘transfer’ transactions T and U are defined as:
T: a.withdraw(4); b.deposit(4);
U: c.withdraw(3); b.deposit(3);

Suppose that they are structured as pairs of nested transactions:
T1: a.withdraw(4); T2: b.deposit(4);
U1: c.withdraw(3); U2: b.deposit(3);

Compare the number of serially equivalent interleavings of T1, T2, U1 and U2 with the
number of serially equivalent interleavings of T and U. Explain why the use of these
nested transactions generally permits a larger number of serially equivalent
interleavings than non-nested ones. page 685

16.7 Consider the recovery aspects of the nested transactions defined in Exercise 16.6.
Assume that a withdraw transaction will abort if the account will be overdrawn and that
in this case the parent transaction will also abort. Describe serially equivalent
interleavings of T1, T2, U1 and U2 with the following properties:
i) that are strict;
ii) that are not strict.
To what extent does the criterion of strictness reduce the potential concurrency gain of
nested transactions? page 685

EXERCISES 723

16.8 Explain why serial equivalence requires that once a transaction has released a lock on
an object, it is not allowed to obtain any more locks.

A server manages the objects a1, a2, ..., an. The server provides two operations for
its clients:

read(i) returns the value of ai

write(i, Value) assigns Value to ai

The transactions T and U are defined as follows:

T: x = read(i); write(j, 44);

U: write(i, 55); write(j, 66);

Describe an interleaving of the transactions T and U in which locks are released early
with the effect that the interleaving is not serially equivalent. page 693

16.9 The transactions T and U at the server in Exercise 16.8 are defined as follows:

T: x = read(i); write(j, 44);

U: write(i, 55); write(j, 66);

Initial values of ai and aj are 10 and 20, respectively. Which of the following
interleavings are serially equivalent, and which could occur with two-phase locking?

(a) T U (b) T U

x= read (i); x= read (i);

write(i, 55); write(j, 44);

write(j, 44); write(i, 55);

write(j, 66); write(j, 66);

(c) T U (d) T U

write(i, 55); write(i, 55);

write(j, 66); x= read (i);

x= read (i); write(j, 66);

write(j, 44); write(j, 44);

page 693

16.10 Consider a relaxation of two-phase locks in which read-only transactions can release
read locks early. Would a read-only transaction have consistent retrievals? Would the
objects become inconsistent? Illustrate your answer with the following transactions T
and U at the server in Exercise 16.8:

T: x = read (i); y= read(j);

U: write(i, 55); write(j, 66);

in which initial values of ai and aj are 10 and 20. page 690

724 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

16.11 The executions of transactions are strict if read and write operations on an object are
delayed until all transactions that previously wrote that object have either committed or
aborted. Explain how the locking rules in Figure 16.16 ensure strict executions.

page 696

16.12 Describe how a non-recoverable situation could arise if write locks are released after the
last operation of a transaction but before its commitment. page 690

16.13 Explain why executions are always strict, even if read locks are released after the last
operation of a transaction but before its commitment. Give an improved statement of
rule 2 in Figure 16.16. page 690

16.14 Consider a deadlock detection scheme for a single server. Describe precisely when
edges are added to and removed from the wait-for-graph.

Illustrate your answer with respect to the following transactions T, U and V at the
server of Exercise 16.8.

T U V

write(i, 66)

write(i, 55)

write(i, 77)

commit

When U releases its write lock on ai, both T and V are waiting to obtain write locks on
it. Does your scheme work correctly if T (first come) is granted the lock before V? If your
answer is ‘No’, then modify your description. page 702

16.15 Consider hierarchic locks as illustrated in Figure 16.26. What locks must be set when an
appointment is assigned to a time slot in week w, day d, at time t? In what order should
these locks be set? Does the order in which they are released matter?

What locks must be set when the time slots for every day in week w are viewed? Can
this be done when the locks for assigning an appointment to a time slot are already set?

page 705

16.16 Consider optimistic concurrency control as applied to the transactions T and U defined
in Exercise 16.9. Suppose that transactions T and U are active at the same time as one
another. Describe the outcome in each of the following cases:

i) T’s request to commit comes first and backward validation is used.

ii) U’s request to commit comes first and backward validation is used.

iii) T’s request to commit comes first and forward validation is used.

iv) U’s request to commit comes first and forward validation is used.

In each case describe the sequence in which the operations of T and U are performed,
remembering that writes are not carried out until after validation.

page 707

EXERCISES 725

16.17 Consider the following interleaving of transactions T and U:

T U

openTransaction openTransaction

y = read(k);

write(i, 55);

write(j, 66);

commit

x = read(i);

write(j, 44);

The outcome of optimistic concurrency control with backward validation is that T will
be aborted because its read operation conflicts with U’s write operation on ai, although
the interleavings are serially equivalent. Suggest a modification to the algorithm that
deals with such cases. page 707

16.18 Make a comparison of the sequences of operations of the transactions T and U of
Exercise 16.8 that are possible under two-phase locking (Exercise 16.9) and under
optimistic concurrency control (Exercise 16.16). page 707

16.19 Consider the use of timestamp ordering with each of the example interleavings of
transactions T and U in Exercise 16.9. Initial values of ai and aj are 10 and 20,
respectively, and initial read and write timestamps are t0. Assume that each transaction
opens and obtains a timestamp just before its first operation; for example, in (a) T and U
get timestamps t1 and t2, respectively, where t0 < t1 < t2. Describe in order of increasing
time the effects of each operation of T and U. For each operation, state the following:

i) whether the operation may proceed according to the write or read rule;

ii) when timestamps are assigned to transactions or objects;

iii) when tentative objects are created and when their values are set.

What are the final values of the objects and their timestamps? page 711

16.20 Repeat Exercise 16.19 for the following interleavings of transactions T and U:

T U T U

openTransaction openTransaction

openTransaction openTransaction

write(i, 55); write(i, 55);

write(j, 66); write(j, 66);

x = read (i); commit

write(j, 44); x = read (i);

commit write(j, 44);

page 711

726 CHAPTER 16 TRANSACTIONS AND CONCURRENCY CONTROL

16.21 Repeat Exercise 16.20 using multiversion timestamp ordering.
page 715

16.22 In multiversion timestamp ordering, read operations can access tentative versions of
objects. Give an example to show how cascading aborts can happen if all read

operations are allowed to proceed immediately. page 715

16.23 What are the advantages and drawbacks of multiversion timestamp ordering in
comparison with ordinary timestamp ordering? page 715

 727

17

DISTRIBUTED TRANSACTIONS

17.1 Introduction
17.2 Flat and nested distributed transactions
17.3 Atomic commit protocols
17.4 Concurrency control in distributed transactions
17.5 Distributed deadlocks
17.6 Transaction recovery
17.7 Summary

This chapter introduces distributed transactions – those that involve more than one
server. Distributed transactions may be either flat or nested.

An atomic commit protocol is a cooperative procedure used by a set of servers
involved in a distributed transaction. It enables the servers to reach a joint decision as to
whether a transaction can be committed or aborted. This chapter describes the two-phase
commit protocol, which is the most commonly used atomic commit protocol.

The section on concurrency control in distributed transactions discusses how
locking, timestamp ordering and optimistic concurrency control may be extended for use
with distributed transactions.

The use of locking schemes can lead to distributed deadlocks. Distributed deadlock
detection algorithms are discussed in Section 17.5.

Servers that provide transactions include a recovery manager whose concern is to
ensure that the effects of transactions on the objects managed by a server can be
recovered when it is replaced after a failure. The recovery manager saves the objects in
permanent storage together with intentions lists and information about the status of each
transaction.

728 CHAPTER 17 DISTRIBUTED TRANSACTIONS

17.1 Introduction

In Chapter 16, we discussed flat and nested transactions that accessed objects at a single
server. In the general case, a transaction, whether flat or nested, will access objects
located in several different computers. We use the term distributed transaction to refer
to a flat or nested transaction that accesses objects managed by multiple servers.

When a distributed transaction comes to an end, the atomicity property of
transactions requires that either all of the servers involved commit the transaction or all
of them abort the transaction. To achieve this, one of the servers takes on a coordinator

role, which involves ensuring the same outcome at all of the servers. The manner in
which the coordinator achieves this depends on the protocol chosen. A protocol known
as the ‘two-phase commit protocol’ is the most commonly used. This protocol allows
the servers to communicate with one another to reach a joint decision as to whether to
commit or abort.

Concurrency control in distributed transactions is based on the methods discussed
in Chapter 16. Each server applies local concurrency control to its own objects, which
ensures that transactions are serialized locally. But distributed transactions must also be
serialized globally. How this is achieved varies depending upon whether locking,
timestamp ordering or optimistic concurrency control is in use. In some cases, the
transactions may be serialized at the individual servers, but a cycle of dependencies
between the different servers may occur and a distributed deadlock arise.

Transaction recovery is concerned with ensuring that all the objects involved in
transactions are recoverable. In addition to that, it guarantees that the values of the
objects reflect all the changes made by committed transactions and none of those made
by aborted ones.

17.2 Flat and nested distributed transactions

A client transaction becomes distributed if it invokes operations in several different
servers. There are two different ways that distributed transactions can be structured: as
flat transactions and as nested transactions.

In a flat transaction, a client makes requests to more than one server. For example,
in Figure 17.1(a), transaction T is a flat transaction that invokes operations on objects in
servers X, Y and Z. A flat client transaction completes each of its requests before going
on to the next one. Therefore, each transaction accesses servers’ objects sequentially.
When servers use locking, a transaction can only be waiting for one object at a time.

In a nested transaction, the top-level transaction can open subtransactions, and
each subtransaction can open further subtransactions down to any depth of nesting.
Figure 17.1(b) shows a client transaction T that opens two subtransactions, T1 and T2,
which access objects at servers X and Y. The subtransactions T1 and T2 open further
subtransactions T11, T12, T21, and T22, which access objects at servers M, N and P. In the
nested case, subtransactions at the same level can run concurrently, so T1 and T2 are
concurrent, and as they invoke objects in different servers, they can run in parallel. The
four subtransactions T11, T12, T21 and T22 also run concurrently.

Figure 17.1 Distributed transactions

(a) Flat transaction (b) Nested transactions

Client

X

Y

Z

T

X

Y

M

NT1

T 2

T
11

Client

P

T
T

12

T
21

T
22

T

SECTION 17.2 FLAT AND NESTED DISTRIBUTED TRANSACTIONS 729

Consider a distributed transaction in which a client transfers $10 from account A
to C and then transfers $20 from B to D. Accounts A and B are at separate servers X and
Y and accounts C and D are at server Z. If this transaction is structured as a set of four
nested transactions, as shown in Figure 17.2

Figure 17.2 Nested banking transaction

a.withdraw(10)

c.deposit(10)

b.withdraw(20)

d.deposit(20)

Client A

B

C

T = openTransaction

 openSubTransaction
a.withdraw(10);

 closeTransaction

 openSubTransaction
b.withdraw(20);

 openSubTransaction
c.deposit(10);

 openSubTransaction
d.deposit(20);

T1

T 2

T 3

T 4

T

D

X

Y

Z

, the four requests (two deposits and two
withdraws) can run in parallel and the overall effect can be achieved with better
performance than a simple transaction in which the four operations are invoked
sequentially.

730 CHAPTER 17 DISTRIBUTED TRANSACTIONS

17.2.1 The coordinator of a distributed transaction

Servers that execute requests as part of a distributed transaction need to be able to
communicate with one another to coordinate their actions when the transaction commits.
A client starts a transaction by sending an openTransaction request to a coordinator in
any server, as described in Section 16.2. The coordinator that is contacted carries out the
openTransaction and returns the resulting transaction identifier (TID) to the client.
Transaction identifiers for distributed transactions must be unique within a distributed
system. A simple way to achieve this is for a TID to contain two parts: the identifier (for
example, an IP address) of the server that created it and a number unique to the server.

The coordinator that opened the transaction becomes the coordinator for the
distributed transaction and at the end is responsible for committing or aborting it. Each
of the servers that manages an object accessed by a transaction is a participant in the
transaction and provides an object we call the participant. Each participant is
responsible for keeping track of all of the recoverable objects at that server that are
involved, in the transaction. The participants are responsible for cooperating with the
coordinator in carrying out the commit protocol.

During the progress of the transaction, the coordinator records a list of references
to the participants, and each participant records a reference to the coordinator.

Figure 17.3 A distributed banking transaction

..

BranchZ

BranchX

T = openTransaction
 a.withdraw(4);
 c.deposit(4);
 b.withdraw(3);
 d.deposit(3);

 closeTransaction

participant

participant

C

D

Client

BranchY

B

A

coordinator

participant join

 join

 join

T

 a.withdraw(4);

 c.deposit(4);

 b.withdraw(3);

 d.deposit(3);

openTransaction
 closeTransaction

 b.withdraw(T, 3);

 Note: the coordinator is in one of the servers, e.g., BranchX

The interface for Coordinator shown in Figure 13.3 provides an additional
method, join, which is used whenever a new participant joins the transaction:

join(Trans, reference to participant)

Informs a coordinator that a new participant has joined the transaction Trans.

SECTION 17.3 ATOMIC COMMIT PROTOCOLS 731

The coordinator records the new participant in its participant list. The fact that the
coordinator knows all the participants and each participant knows the coordinator will
enable them to collect the information that will be needed at commit time.

Figure 17.3 shows a client whose (flat) banking transaction involves accounts A,
B, C and D at servers BranchX, BranchY and BranchZ. The client’s transaction, T,

transfers $4 from account A to account C and then transfers $3 from account B to
account D. The transaction described on the left is expanded to show that
openTransaction and closeTransaction are directed to the coordinator, which would be
situated in one of the servers involved in the transaction. Each server is shown with a
participant, which joins the transaction by invoking the join method in the coordinator.
When the client invokes one of the methods in the transaction, for example
b.withdraw(T, 3), the object receiving the invocation (B at BranchY, in this case)
informs its participant object that the object belongs to the transaction T. If it has not
already informed the coordinator, the participant object uses the join operation to do so.
In this example, we show the transaction identifier being passed as an additional
argument so that the recipient can pass it on to the coordinator. By the time the client
calls closeTransaction, the coordinator has references to all of the participants.

Note that it is possible for a participant to call abortTransaction in the coordinator
if for some reason it is unable to continue with the transaction.

17.3 Atomic commit protocols

Transaction commit protocols were devised in the early 1970s, and the two-phase
commit protocol appeared in Gray [1978]. The atomicity property of transactions
requires that when a distributed transaction comes to an end, either all of its operations
are carried out or none of them. In the case of a distributed transaction, the client has
requested operations at more than one server. A transaction comes to an end when the
client requests that it be committed or aborted. A simple way to complete the transaction
in an atomic manner is for the coordinator to communicate the commit or abort request
to all of the participants in the transaction and to keep on repeating the request until all
of them have acknowledged that they have carried it out. This is an example of a one-

phase atomic commit protocol.
This simple one-phase atomic commit protocol is inadequate, though, because it

does not allow a server to make a unilateral decision to abort a transaction when the
client requests a commit. Reasons that prevent a server from being able to commit its
part of a transaction generally relate to issues of concurrency control. For example, if
locking is in use, the resolution of a deadlock can lead to the aborting of a transaction
without the client being aware unless it makes another request to the server. Also if
optimistic concurrency control is in use, the failure of validation at a server would cause
it to decide to abort the transaction. Finally, the coordinator may not know if a server has
crashed and been replaced during the progress of a distributed transaction – such a server
will need to abort the transaction.

732 CHAPTER 17 DISTRIBUTED TRANSACTIONS

The two-phase commit protocol is designed to allow any participant to abort its
part of a transaction. Due to the requirement for atomicity, if one part of a transaction is
aborted, then the whole transaction must be aborted. In the first phase of the protocol,
each participant votes for the transaction to be committed or aborted. Once a participant
has voted to commit a transaction, it is not allowed to abort it. Therefore, before a
participant votes to commit a transaction, it must ensure that it will eventually be able to
carry out its part of the commit protocol, even if it fails and is replaced in the interim. A
participant in a transaction is said to be in a prepared state for a transaction if it will
eventually be able to commit it. To make sure of this, each participant saves in
permanent storage all of the objects that it has altered in the transaction, together with
its status – prepared.

In the second phase of the protocol, every participant in the transaction carries out
the joint decision. If any one participant votes to abort, then the decision must be to abort
the transaction. If all the participants vote to commit, then the decision is to commit the
transaction.

The problem is to ensure that all of the participants vote and that they all reach the
same decision. This is fairly simple if no errors occur, but the protocol must work
correctly even when some of the servers fail, messages are lost or servers are temporarily
unable to communicate with one another.

Failure model for the commit protocols • Section 16.1.2 presents a failure model for
transactions that applies equally to the two-phase (or any other) commit protocol.
Commit protocols are designed to work in an asynchronous system in which servers
may crash and messages may be lost. It is assumed that an underlying request-reply
protocol removes corrupt and duplicated messages. There are no Byzantine faults –
servers either crash or obey the messages they are sent.

The two-phase commit protocol is an example of a protocol for reaching a
consensus. Chapter 15 asserts that consensus cannot be reached in an asynchronous
system if processes sometimes fail. However, the two-phase commit protocol does reach
consensus under those conditions. This is because crash failures of processes are masked
by replacing a crashed process with a new process whose state is set from information
saved in permanent storage and information held by other processes.

17.3.1 The two-phase commit protocol

During the progress of a transaction, there is no communication between the coordinator
and the participants apart from the participants informing the coordinator when they join
the transaction. A client’s request to commit (or abort) a transaction is directed to the
coordinator. If the client requests abortTransaction, or if the transaction is aborted by
one of the participants, the coordinator informs all participants immediately. It is when
the client asks the coordinator to commit the transaction that the two-phase commit
protocol comes into use.

In the first phase of the two-phase commit protocol the coordinator asks all the
participants if they are prepared to commit; in the second, it tells them to commit (or
abort) the transaction. If a participant can commit its part of a transaction, it will agree
as soon as it has recorded the changes it has made (to the objects) and its status in

Figure 17.4 Operations for two-phase commit protocol

canCommit?(trans) Yes / No

Call from coordinator to participant to ask whether it can commit a transaction.
Participant replies with its vote.

doCommit(trans)

Call from coordinator to participant to tell participant to commit its part of a
transaction.

doAbort(trans)

Call from coordinator to participant to tell participant to abort its part of a transaction.

haveCommitted(trans, participant)

Call from participant to coordinator to confirm that it has committed the transaction.

getDecision(trans) Yes / No

Call from participant to coordinator to ask for the decision on a transaction when it
has voted Yes but has still had no reply after some delay. Used to recover from server
crash or delayed messages.

SECTION 17.3 ATOMIC COMMIT PROTOCOLS 733

permanent storage and is therefore prepared to commit. The coordinator in a distributed
transaction communicates with the participants to carry out the two-phase commit
protocol by means of the operations summarized in Figure 17.4. The methods
canCommit, doCommit and doAbort are methods in the interface of the participant. The
methods haveCommitted and getDecision are in the coordinator interface.

The two-phase commit protocol consists of a voting phase and a completion
phase, as shown in Figure 17.5. By the end of step 2, the coordinator and all the
participants that voted Yes are prepared to commit. By the end of step 3, the transaction
is effectively completed. At step 3a the coordinator and the participants are committed,
so the coordinator can report a decision to commit to the client. At 3b the coordinator
reports a decision to abort to the client.

At step 4 participants confirm that they have committed so that the coordinator
knows when the information it has recorded about the transaction is no longer needed.

This apparently straightforward protocol could fail due to one or more of the
servers crashing or due to a breakdown in communication between the servers. To deal
with the possibility of crashing, each server saves information relating to the two-phase
commit protocol in permanent storage. This information can be retrieved by a new
process that is started to replace a crashed server. The recovery aspects of distributed
transactions are discussed in Section 17.6.

The exchange of information between the coordinator and participants can fail
when one of the servers crashes, or when messages are lost. Timeouts are used to avoid
processes blocking forever. When a timeout occurs at a process, it must take an
appropriate action. To allow for this the protocol includes a timeout action for each step
at which a process may block. These actions are designed to allow for the fact that in an
asynchronous system, a timeout may not necessarily imply that a server has failed.

Figure 17.5 The two-phase commit protocol

Phase 1 (voting phase):

1. The coordinator sends a canCommit? request to each of the participants in the
transaction.

2. When a participant receives a canCommit? request it replies with its vote (Yes or
No) to the coordinator. Before voting Yes, it prepares to commit by saving objects
in permanent storage. If the vote is No, the participant aborts immediately.

Phase 2 (completion according to outcome of vote):

3. The coordinator collects the votes (including its own).

(a)If there are no failures and all the votes are Yes, the coordinator decides to
commit the transaction and sends a doCommit request to each of the
participants.

(b)Otherwise, the coordinator decides to abort the transaction and sends doAbort

requests to all participants that voted Yes.

4. Participants that voted Yes are waiting for a doCommit or doAbort request from
the coordinator. When a participant receives one of these messages it acts
accordingly and, in the case of commit, makes a haveCommitted call as
confirmation to the coordinator.

734 CHAPTER 17 DISTRIBUTED TRANSACTIONS

Timeout actions in the two-phase commit protocol • There are various stages in the
protocol at which the coordinator or a participant cannot progress its part of the protocol
until it receives another request or reply from one of the others.

Consider first the situation where a participant has voted Yes and is waiting for the
coordinator to report on the outcome of the vote by telling it to commit or abort the
transaction (step 2 in Figure 17.6

Figure 17.6 Communication in two-phase commit protocol

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)
prepared to commit

committed

statusstepstatus

). Such a participant is uncertain of the outcome and
cannot proceed any further until it gets the outcome of the vote from the coordinator.
The participant cannot decide unilaterally what to do next, and meanwhile the objects

SECTION 17.3 ATOMIC COMMIT PROTOCOLS 735

used by its transaction cannot be released for use by other transactions. The participant
can make a getDecision request to the coordinator to determine the outcome of the
transaction. When it gets the reply, it continues the protocol at step 4 in Figure 17.5. If
the coordinator has failed, the participant will not be able to get the decision until the
coordinator is replaced, which can result in extensive delays for participants in the
uncertain state.

Alternative strategies are available for the participants to obtain a decision
cooperatively instead of contacting the coordinator. These strategies have the advantage
that they may be used when the coordinator has failed. See Exercise 17.5 and Bernstein
et al. [1987] for details. However, even with a cooperative protocol, if all the
participants are in the uncertain state, they will be unable to get a decision until the
coordinator or a participant with the necessary knowledge is available.

Another point at which a participant may be delayed is when it has carried out all
its client requests in the transaction but has not yet received a canCommit? call from the
coordinator. As the client sends the closeTransaction to the coordinator, a participant
can only detect such a situation if it notices that it has not had a request in a particular
transaction for a long time – for example, by the time a timeout period on a lock expires.
As no decision has been made at this stage, the participant can decide to abort

unilaterally.
The coordinator may be delayed when it is waiting for votes from the participants.

As it has not yet decided the fate of the transaction it may decide to abort the transaction
after some period of time. It must then announce doAbort to the participants who have
already sent their votes. Some tardy participants may try to vote Yes after this, but their
votes will be ignored and they will enter the uncertain state as described above.

Performance of the two-phase commit protocol • Provided that all goes well – that is,
that the coordinator, the participants and the communications between them do not fail
– the two-phase commit protocol involving N participants can be completed with N

canCommit? messages and replies, followed by N doCommit messages. That is, the cost
in messages is proportional to 3N, and the cost in time is three rounds of messages. The
haveCommitted messages are not counted in the estimated cost of the protocol, which
can function correctly without them – their role is to enable servers to delete stale
coordinator information.

In the worst case, there may be arbitrarily many server and communication
failures during the two-phase commit protocol. However, the protocol is designed to
tolerate a succession of failures (server crashes or lost messages) and is guaranteed to
complete eventually, although it is not possible to specify a time limit within which it
will be completed.

As noted in the preceding section, the two-phase commit protocol can cause
considerable delays to participants in the uncertain state. These delays occur when the
coordinator has failed and cannot reply to getDecision requests from participants. Even
if a cooperative protocol allows participants to make getDecision requests to other
participants, delays will occur if all the active participants are uncertain.

Three-phase commit protocols have been designed to alleviate such delays, but
they are more expensive in terms of the number of messages and the number of rounds
required for the normal (failure-free) case. For a description of three-phase commit
protocols, see Exercise 17.2 and Bernstein et al. [1987].

736 CHAPTER 17 DISTRIBUTED TRANSACTIONS

17.3.2 Two-phase commit protocol for nested transactions

The outermost transaction in a set of nested transactions is called the top-level

transaction. Transactions other than the top-level transaction are called subtransactions.
In Figure 17.1(b), T is the top-level transaction and T1, T2, T11, T12, T21 and T22 are
subtransactions. T1 and T2 are child transactions of T, which is referred to as their parent.
Similarly, T11 and T12 are child transactions of T1, and T21 and T22 are child transactions
of T2. Each subtransaction starts after its parent and finishes before it. Thus, for example,
T11 and T12 start after T1 and finish before it.

When a subtransaction completes, it makes an independent decision either to
commit provisionally or to abort. A provisional commit is different from being prepared
to commit: nothing is backed up in permanent storage. If the server crashes
subsequently, its replacement will not be able to commit. After all subtransactions have
completed, the provisionally committed ones participate in a two-phase commit
protocol, in which servers of provisionally committed subtransactions express their
intention to commit and those with an aborted ancestor will abort. Being prepared to
commit guarantees a subtransaction will be able to commit, whereas a provisional
commit only means it has finished correctly – and will probably agree to commit when
it is subsequently asked to.

A coordinator for a subtransaction will provide an operation to open a
subtransaction, together with an operation enabling that coordinator to enquire whether
its parent has yet committed or aborted, as shown in Figure 17.7.

Figure 17.7 Operations in coordinator for nested transactions

openSubTransaction(trans) subTrans

Opens a new subtransaction whose parent is trans and returns a unique
subtransaction identifier.

getStatus(trans) committed, aborted, provisional

Asks the coordinator to report on the status of the transaction trans. Returns values
representing one of the following: committed, aborted or provisional.

A client starts a set of nested transactions by opening a top-level transaction with
an openTransaction operation, which returns a transaction identifier for the top-level
transaction. The client starts a subtransaction by invoking the openSubTransaction

operation, whose argument specifies its parent transaction. The new subtransaction
automatically joins the parent transaction, and a transaction identifier for a
subtransaction is returned.

An identifier for a subtransaction must be an extension of its parent’s TID,
constructed in such a way that the identifier of the parent or top-level transaction of a
subtransaction can be determined from its own transaction identifier. In addition, all
subtransaction identifiers should be globally unique. The client makes a set of nested
transactions come to completion by invoking closeTransaction or abortTransaction on
the coordinator of the top-level transaction.

Meanwhile, each of the nested transactions carries out its operations. When they
are finished, the server managing a subtransaction records information as to whether the

SECTION 17.3 ATOMIC COMMIT PROTOCOLS 737

subtransaction committed provisionally or aborted. Note that if its parent aborts, then the
subtransaction will be forced to abort too.

Recall from Chapter 16 that a parent transaction – including a top-level transaction
– can commit even if one of its child subtransactions has aborted. In such cases, the
parent transaction will be programmed to take different actions according to whether a
subtransaction has committed or aborted. For example, consider a banking transaction
that is designed to perform all the ‘standing orders’ at a branch on a particular day. This
transaction is expressed as several nested Transfer subtransactions, each of which
consists of nested deposit and withdraw subtransactions. We assume that when an
account is overdrawn, withdraw aborts and then the corresponding Transfer aborts. But
there is no need to abort all the standing orders just because one Transfer subtransaction
aborts. Instead of aborting, the top-level transaction will note the Transfer

subtransactions that aborted and take appropriate actions.
Consider the top-level transaction T and its subtransactions shown in Figure 17.8

Figure 17.8 Transaction T decides whether to commit

1

2

T
11

T
12

T
22

T21

abort (at M)

provisional commit (at N)

provisional commit (at X)

aborted (at Y)

provisional commit (at N)

provisional commit (at P)

T

T

T

,
which is based on Figure 17.1(b). Each subtransaction has either provisionally
committed or aborted. For example, T12 has provisionally committed and T11 has
aborted, but the fate of T12 depends on its parent T1 and eventually on the top-level
transaction, T. Although T21 and T22 have both provisionally committed, T2 has aborted
and this means that T21 and T22 must also abort. Suppose that T decides to commit in
spite of the fact that T2 has aborted, and that T1 decides to commit in spite of the fact that
T11 has aborted.

When a top-level transaction completes, its coordinator carries out a two-phase
commit protocol. The only reason for a participant subtransaction being unable to
complete is if it has crashed since it completed its provisional commit. Recall that when
each subtransaction was created, it joined its parent transaction. Therefore, the
coordinator of each parent transaction has a list of its child subtransactions. When a
nested transaction provisionally commits, it reports its status and the status of its
descendants to its parent. When a nested transaction aborts, it just reports abort to its
parent without giving any information about its descendants. Eventually, the top-level
transaction receives a list of all the subtransactions in the tree, together with the status
of each. Descendants of aborted subtransactions are omitted from this list.

738 CHAPTER 17 DISTRIBUTED TRANSACTIONS

The information held by each coordinator in the example in Figure 17.8 is shown
in Figure 17.9

Figure 17.9 Information held by coordinators of nested transactions

Coordinator

of transaction

Child

transactions

Participant Provisional

commit list

Abort list

T T1, T2 yes T1, T12 T11, T2

T1 T11, T12 yes T1, T12 T11

T2 T21, T22 no (aborted) T2

T11 no (aborted) T11

T12, T21 T12 but not T21* T21, T12

T22 no (parent aborted) T22

* T21’s parent has aborted

. Note that T12 and T21 share a coordinator as they both run at server N.
When subtransaction T2 aborted, it reported the fact to its parent, T, but without passing
on any information about its subtransactions T21 and T22. A subtransaction is an orphan

if one of its ancestors aborts, either explicitly or because its coordinator crashes. In our
example, subtransactions T21 and T22 are orphans because their parent aborted without
passing information about them to the top-level transaction. Their coordinator can,
however, make enquiries about the status of their parent by using the getStatus

operation. A provisionally committed subtransaction of an aborted transaction should be
aborted, irrespective of whether the top-level transaction eventually commits.

 The top-level transaction plays the role of coordinator in the two-phase commit
protocol, and the participant list consists of the coordinators of all the subtransactions in
the tree that have provisionally committed but do not have aborted ancestors. By this
stage, the logic of the program has determined that the top-level transaction should try
to commit whatever is left, in spite of some aborted subtransactions. In Figure 17.8, the
coordinators of T, T1 and T12 are participants and will be asked to vote on the outcome.
If they vote to commit, then they must prepare their transactions by saving the state of
the objects in permanent storage. This state is recorded as belonging to the top-level
transaction of which it will form a part. The two-phase commit protocol may be
performed in either a hierarchic manner or a flat manner.

The second phase of the two-phase commit protocol is the same as for the non-
nested case. The coordinator collects the votes and then informs the participants as to
the outcome. When it is complete, coordinator and participants will have committed or
aborted their transactions.

Hierarchic two-phase commit protocol • In this approach, the two-phase commit
protocol becomes a multi-level nested protocol. The coordinator of the top-level
transaction communicates with the coordinators of the subtransactions for which it is the
immediate parent. It sends canCommit? messages to each of the latter, which in turn
pass them on to the coordinators of their child transactions (and so on down the tree).
Each participant collects the replies from its descendants before replying to its parent.
In our example, T sends canCommit? messages to the coordinator of T1 and then T1
sends canCommit? messages to T12 asking about descendants of T1. The protocol does
not include the coordinators of transactions such as T2, which has aborted. Figure 17.10

Figure 17.10 canCommit? for hierarchic two-phase commit protocol

canCommit?(trans, subTrans) Yes / No

Call from coordinator to coordinator of child subtransaction to ask whether it can
commit a subtransaction subTrans. The first argument, trans, is the transaction
identifier of the top-level transaction. Participant replies with its vote, Yes / No.

SECTION 17.3 ATOMIC COMMIT PROTOCOLS 739

shows the arguments required for canCommit?. The first argument is the TID of the top-
level transaction, for use when preparing the data. The second argument is the TID of
the participant making the canCommit? call. The participant receiving the call looks in
its transaction list for any provisionally committed transaction or subtransaction
matching the TID in the second argument. For example, the coordinator of T12 is also
the coordinator of T21, since they run in the same server, but when it receives the
canCommit? call, the second argument will be T1 and it will deal only with T12.

 If a participant finds any subtransactions that match the second argument, it
prepares the objects and replies with a Yes vote. If it fails to find any, then it must have
crashed since it performed the subtransaction and it replies with a No vote.

Flat two-phase commit protocol • In this approach, the coordinator of the top-level
transaction sends canCommit? messages to the coordinators of all of the subtransactions
in the provisional commit list – in our example, to the coordinators of T1 and T12. During
the commit protocol, the participants refer to the transaction by its top-level TID. Each
participant looks in its transaction list for any transaction or subtransaction matching
that TID. For example, the coordinator of T12 is also the coordinator of T21, since they
run in the same server (N).

Unfortunately, this does not provide sufficient information to enable correct
actions by participants such as the coordinator at server N that have a mix of
provisionally committed and aborted subtransactions. If N’s coordinator is just asked to
commit T it will end up by committing both T12 and T21, because, according to its local
information, both have provisionally committed. This is wrong in the case of T21,
because its parent, T2, has aborted. To allow for such cases, the canCommit? operation
for the flat commit protocol has a second argument that provides a list of aborted
subtransactions, as shown in Figure 17.11.

Figure 17.11 canCommit? for flat two-phase commit protocol

canCommit?(trans, abortList) Yes / No

Call from coordinator to participant to ask whether it can commit a transaction.
Participant replies with its vote, Yes / No.

 A participant can commit descendants of the
top-level transaction unless they have aborted ancestors. When a participant receives a
canCommit? request, it does the following:

• If the participant has any provisionally committed transactions that are
descendants of the top-level transaction, trans, it:

– checks that they do not have aborted ancestors in the abortList, then prepares
to commit (by recording the transaction and its objects in permanent storage);

740 CHAPTER 17 DISTRIBUTED TRANSACTIONS

– aborts those with aborted ancestors;

– sends a Yes vote to the coordinator.

• If the participant does not have a provisionally committed descendent of the top-
level transaction, it must have failed since it performed the subtransaction and it
sends a No vote to the coordinator.

A comparison of the two approaches • The hierarchic protocol has the advantage that at
each stage, the participant only need look for subtransactions of its immediate parent,
whereas the flat protocol needs to have the abort list in order to eliminate transactions
whose parents have aborted. Moss [1985] preferred the flat algorithm because it allows
the coordinator of the top-level transaction to communicate directly with all of the
participants, whereas the hierarchic variant involves passing a series of messages down
and up the tree in stages.

Timeout actions • The two-phase commit protocol for nested transactions can cause
the coordinator or a participant to be delayed at the same three steps as in the non-nested
version. There is a fourth step at which subtransactions can be delayed. Consider
provisionally committed child subtransactions of aborted subtransactions: they do not
necessarily get informed of the outcome of the transaction. In our example, T22 is such
a subtransaction – it has provisionally committed, but as its parent T2 has aborted, it does
not become a participant. To deal with such situations, any subtransaction that has not
received a canCommit? message will make an enquiry after a timeout period. The
getStatus operation in Figure 17.7 allows a subtransaction to enquire whether its parent
has committed or aborted. To make such enquiries possible, the coordinators of aborted
subtransactions need to survive for a period. If an orphaned subtransaction cannot
contact its parent, it will eventually abort.

17.4 Concurrency control in distributed transactions

Each server manages a set of objects and is responsible for ensuring that they remain
consistent when accessed by concurrent transactions. Therefore, each server is
responsible for applying concurrency control to its own objects. The members of a
collection of servers of distributed transactions are jointly responsible for ensuring that
they are performed in a serially equivalent manner.

This implies that if transaction T is before transaction U in their conflicting access
to objects at one of the servers, then they must be in that order at all of the servers whose
objects are accessed in a conflicting manner by both T and U.

17.4.1 Locking

In a distributed transaction, the locks on an object are held locally (in the same server).
The local lock manager can decide whether to grant a lock or make the requesting
transaction wait. However, it cannot release any locks until it knows that the transaction
has been committed or aborted at all the servers involved in the transaction. When
locking is used for concurrency control, the objects remain locked and are unavailable

SECTION 17.4 CONCURRENCY CONTROL IN DISTRIBUTED TRANSACTIONS 741

for other transactions during the atomic commit protocol, although an aborted
transaction releases its locks after phase 1 of the protocol.

As lock managers in different servers set their locks independently of one another,
it is possible that different servers may impose different orderings on transactions.
Consider the following interleaving of transactions T and U at servers X and Y:

T U

write(A) at X locks A

write(B) at Y locks B

read(B) at Y waits for U

read(A) at X waits for T

The transaction T locks object A at server X, and then transaction U locks object B at
server Y. After that, T tries to access B at server Y and waits for U’s lock. Similarly,
transaction U tries to access A at server X and has to wait for T’s lock. Therefore, we
have T before U in one server and U before T in the other. These different orderings can
lead to cyclic dependencies between transactions, giving rise to a distributed deadlock
situation. The detection and resolution of distributed deadlocks is discussed in Section
17.5. When a deadlock is detected, a transaction is aborted to resolve the deadlock. In
this case, the coordinator will be informed and will abort the transaction at the
participants involved in the transaction.

17.4.2 Timestamp ordering concurrency control

In a single server transaction, the coordinator issues a unique timestamp to each
transaction when it starts. Serial equivalence is enforced by committing the versions of
objects in the order of the timestamps of transactions that accessed them. In distributed
transactions, we require that each coordinator issue globally unique timestamps. A
globally unique transaction timestamp is issued to the client by the first coordinator
accessed by a transaction. The transaction timestamp is passed to the coordinator at each
server whose objects perform an operation in the transaction.

The servers of distributed transactions are jointly responsible for ensuring that
they are performed in a serially equivalent manner. For example, if the version of an
object accessed by transaction U commits after the version accessed by T at one server,
if T and U access the same object as one another at other servers they must commit them
in the same order. To achieve the same ordering at all the servers, the coordinators must
agree as to the ordering of their timestamps. A timestamp consists of a <local

timestamp, server-id> pair. The agreed ordering of pairs of timestamps is based on a
comparison in which the server-id part is less significant.

The same ordering of transactions can be achieved at all the servers even if their
local clocks are not synchronized. However, for reasons of efficiency it is required that
the timestamps issued by one coordinator be roughly synchronized with those issued by
the other coordinators. When this is the case, the ordering of transactions generally

742 CHAPTER 17 DISTRIBUTED TRANSACTIONS

corresponds to the order in which they are started in real time. Timestamps can be kept
roughly synchronized by the use of synchronized local physical clocks (see Chapter 14).

When timestamp ordering is used for concurrency control, conflicts are resolved
as each operation is performed using the rules given in Section 16.6. If the resolution of
a conflict requires a transaction to be aborted, the coordinator will be informed and it
will abort the transaction at all the participants. Therefore any transaction that reaches
the client request to commit should always be able to commit, and participants in the
two-phase commit protocol will normally agree to commit. The only situation in which
a participant will not agree to commit is if it has crashed during the transaction.

17.4.3 Optimistic concurrency control

Recall that with optimistic concurrency control, each transaction is validated before it is
allowed to commit. Transaction numbers are assigned at the start of validation and
transactions are serialized according to the order of the transaction numbers. A
distributed transaction is validated by a collection of independent servers, each of which
validates transactions that access its own objects. This validation takes place during the
first phase of the two-phase commit protocol.

Consider the following interleavings of transactions T and U, which access objects
A and B at servers X and Y, respectively:

T U

read(A) at X read(B) at Y

write(A) write(B)

read(B) at Y read(A) at X

write(B) write(A)

The transactions access the objects in the order T before U at server X and in the order
U before T at server Y. Now suppose that T and U start validation at about the same time,
but server X validates T first and server Y validates U first. Recall that Section 16.5
recommends a simplification of the validation protocol that makes a rule that only one
transaction may perform validation and update phases at a time. Therefore each server
will be unable to validate the other transaction until the first one has completed. This is
an example of commitment deadlock.

The validation rules in Section 16.5 assume that validation is fast, which is true
for single-server transactions. However, in a distributed transaction, the two-phase
commit protocol may take some time to complete, and other transactions will be
prevented from entering validation until a decision on the current transaction has been
obtained. In distributed optimistic transactions, each server applies a parallel validation
protocol. This is an extension of either backward or forward validation to allow multiple
transactions to be in the validation phase at the same time. In this extension, rule 3 must
be checked as well as rule 2 for backward validation. That is, the write set of the
transaction being validated must be checked for overlaps with the write set of earlier
overlapping transactions. Kung and Robinson [1981] describe parallel validation.

SECTION 17.5 DISTRIBUTED DEADLOCKS 743

If parallel validation is used, transactions will not suffer from commitment
deadlock. However, if servers simply perform independent validations, it is possible that
different servers in a distributed transaction may serialize the same set of transactions in
different orders – for example, with T before U at server X and U before T at server Y,
in our example.

The servers of distributed transactions must prevent this happening. One approach
is that after a local validation by each server, a global validation is carried out [Ceri and
Owicki 1982]. The global validation checks that the combination of the orderings at the
individual servers is serializable; that is, that the transaction being validated is not
involved in a cycle.

Another approach is that all of the servers of a particular transaction use the same
globally unique transaction number at the start of the validation [Schlageter 1982]. The
coordinator of the two-phase commit protocol is responsible for generating the globally
unique transaction number and passes it to the participants in the canCommit? messages.
As different servers may coordinate different transactions, the servers must (as in the
distributed timestamp ordering protocol) have an agreed order for the transaction
numbers they generate.

Agrawal et al. [1987] have proposed a variation of Kung and Robinson’s
algorithm that favours read-only transactions, together with an algorithm called MVGV
(multi-version generalized validation). MVGV is a form of parallel validation that
ensures that transaction numbers reflect serial order, but it requires that in some cases,
other transactions are unable to read their effects immediately after they have
committed. It also allows the transaction number to be changed so as to permit some
transactions to validate that otherwise would have failed. The paper also proposes an
algorithm for committing distributed transactions. It is similar to Schlageter’s proposal
in that a global transaction number has to be found. At the end of the read phase, the
coordinator proposes a value for the global transaction number and each participant
attempts to validate its local transactions using that number. However, if the proposed
global transaction number is too small, some participants may not be able to validate
their transactions, and they will have to negotiate with the coordinator for an increased
number. If no suitable number can be found, then those participants will have to abort
their transactions. Eventually, if all of the participants can validate their transactions, the
coordinator will have received proposals for transaction numbers from each of them. If
common numbers can be found then the transaction will be committed.

17.5 Distributed deadlocks

The discussion of deadlocks in Section 16.4 showed that deadlocks can arise within a
single server when locking is used for concurrency control. Servers must either prevent
or detect and resolve deadlocks. Using timeouts to resolve possible deadlocks is a
clumsy approach – it is difficult to choose an appropriate timeout interval, and
transactions may be aborted unnecessarily. With deadlock detection schemes, a
transaction is aborted only when it is involved in a deadlock. Most deadlock detection
schemes operate by finding cycles in the transaction wait-for graph. In a distributed
system involving multiple servers being accessed by multiple transactions, a global

744 CHAPTER 17 DISTRIBUTED TRANSACTIONS

wait-for graph can in theory be constructed from the local ones. There can be a cycle in
the global wait-for graph that is not in any single local one – that is, there can be a
distributed deadlock. Recall that the wait-for graph is a directed graph in which nodes
represent transactions and objects, and edges represent either an object held by a
transaction or a transaction waiting for an object. There is a deadlock if and only if there
is a cycle in the wait-for graph.

Figure 17.12 shows the interleavings of the transactions U, V and W involving the
objects A and B managed by servers X and Y and objects C and D managed by server Z.

Figure 17.12 Interleavings of transactions U, V and W

U V W

d.deposit(10) lock D

b.deposit(10) lock B

a.deposit(20) lock A at Y

at X

c.deposit(30) lock C

b.withdraw(30) wait at Y at Z

c.withdraw(20) wait at Z

a.withdraw(20) wait at X

The complete wait-for graph in Figure 17.13(a) shows that a deadlock cycle
consists of alternate edges, which represent a transaction waiting for an object and an
object held by a transaction. As any transaction can only be waiting for one object at a
time, objects can be left out of wait-for graphs, as shown in Figure 17.13(b).

Detection of a distributed deadlock requires a cycle to be found in the global
transaction wait-for graph that is distributed among the servers that were involved in the
transactions. Local wait-for graphs can be built by the lock manager at each server, as
discussed in Chapter 16. In the above example, the local wait-for graphs of the servers
are:

server Y: U V (added when U requests b.withdraw(30))
server Z: V W (added when V requests c.withdraw(20))
server X: W U (added when W requests a.withdraw(20))

As the global wait-for graph is held in part by each of the several servers involved,
communication between these servers is required to find cycles in the graph.

A simple solution is to use centralized deadlock detection, in which one server
takes on the role of global deadlock detector. From time to time, each server sends the
latest copy of its local wait-for graph to the global deadlock detector, which
amalgamates the information in the local graphs in order to construct a global wait-for
graph. The global deadlock detector checks for cycles in the global wait-for graph.

Figure 17.13 Distributed deadlock

(a) (b)

D

Waits for

Waits
for

Held by

Held
by

B Waits for
Held

by

X

Y

Z

Held by

W

UV

AC

W

V

U

SECTION 17.5 DISTRIBUTED DEADLOCKS 745

When it finds a cycle, it makes a decision on how to resolve the deadlock and tells the
servers which transaction to abort.

Centralized deadlock detection is not a good idea, because it depends on a single
server to carry it out. It suffers from the usual problems associated with centralized
solutions in distributed systems – poor availability, lack of fault tolerance and no ability
to scale. In addition, the cost of the frequent transmission of local wait-for graphs is
high. If the global graph is collected less frequently, deadlocks may take longer to be
detected.

Phantom deadlocks • A deadlock that is ‘detected’ but is not really a deadlock is called
a phantom deadlock. In distributed deadlock detection, information about wait-for
relationships between transactions is transmitted from one server to another. If there is
a deadlock, the necessary information will eventually be collected in one place and a
cycle will be detected. As this procedure will take some time, there is a chance that one
of the transactions that holds a lock will meanwhile have released it, in which case the
deadlock will no longer exist.

Consider the case of a global deadlock detector that receives local wait-for graphs
from servers X and Y, as shown in Figure 17.14. Suppose that transaction U then releases
an object at server X and requests the one held by V at server Y. Suppose also that the
global detector receives server Y’s local graph before server X’s. In this case, it would
detect a cycle T U V T, although the edge T U no longer exists. This is an
example of a phantom deadlock.

The observant reader will have realized that if transactions are using two-phase
locks, they cannot release objects and then obtain more objects, and phantom deadlock

Figure 17.14 Local and global wait-for graphs

 local wait-for graph local wait-for graph global deadlock detector

T

X

UT V

Y

V T

U V

T

746 CHAPTER 17 DISTRIBUTED TRANSACTIONS

cycles cannot occur in the way suggested above. Consider the situation in which a cycle
T U V T is detected: either this represents a deadlock or each of the transactions
T, U and V must eventually commit. It is actually impossible for any of them to commit,
because each of them is waiting for an object that will never be released.

A phantom deadlock could be detected if a waiting transaction in a deadlock cycle
aborts during the deadlock detection procedure. For example, if there is a cycle
T U V T and U aborts after the information concerning U has been collected,
then the cycle has been broken already and there is no deadlock.

Edge chasing • A distributed approach to deadlock detection uses a technique called
edge chasing or path pushing. In this approach, the global wait-for graph is not
constructed, but each of the servers involved has knowledge about some of its edges.
The servers attempt to find cycles by forwarding messages called probes, which follow
the edges of the graph throughout the distributed system. A probe message consists of
transaction wait-for relationships representing a path in the global wait-for graph.

The question is, when should a server send out a probe? Consider the situation at
server X in Figure 17.13. This server has just added the edge W U to its local wait-for
graph, and at this time transaction U is waiting to access object B, which transaction V
holds at server Y. This edge could possibly be part of a cycle such as
V T1 T2 … W U V involving transactions using objects at other
servers. This indicates that there is a potential distributed deadlock cycle, which could
be found by sending out a probe to server Y.

Now consider the situation a little earlier, when server Z added the edge V W

to its local graph. At this point in time W is not waiting, so there is no point in sending
out a probe.

Each distributed transaction starts at a server (called the coordinator of the
transaction) and moves to several other servers (called participants in the transaction),
which can communicate with the coordinator. At any point in time, a transaction can be
either active or waiting at just one of these servers. The coordinator is responsible for
recording whether the transaction is active or is waiting for a particular object, and
participants can get this information from their coordinator. Lock managers inform
coordinators when transactions start waiting for objects and when transactions acquire
objects and become active again. When a transaction is aborted to break a deadlock, its
coordinator will inform the participants and all of its locks will be removed, with the
effect that all edges involving that transaction will be removed from the local wait-for
graphs.

SECTION 17.5 DISTRIBUTED DEADLOCKS 747

Edge-chasing algorithms have three steps:

Initiation: When a server notes that a transaction T starts waiting for another
transaction U, where U is waiting to access an object at another server, it initiates
detection by sending a probe containing the edge < T U > to the server of the
object at which transaction U is blocked. If U is sharing a lock, probes are sent to all
the holders of the lock. Sometimes further transactions may start sharing the lock
later on, in which case probes can be sent to them too.

Detection: Detection consists of receiving probes and deciding whether a deadlock
has occurred and whether to forward the probes.

For example, when a server of an object receives a probe < T U >
(indicating that T is waiting for a transaction U that holds a local object), it checks to
see whether U is also waiting. If it is, the transaction it waits for (for example, V) is
added to the probe (making it < T U V and if the new transaction (V) is
waiting for another object elsewhere, the probe is forwarded.

In this way, paths through the global wait-for graph are built one edge at a time.
Before forwarding a probe, the server checks to see whether the transaction (for
example, T) it has just added has caused the probe to contain a cycle (for example,
< T U V T >). If this is the case, it has found a cycle in the graph and a
deadlock has been detected.

Figure 17.15 Probes transmitted to detect deadlock

V

Held by

W

Waits forHeld by

Waits
for

Waits for
Deadlock
detected

U

C

A

Initiation

W U V W

W

U

W

U

V

Z

Y

X

B

Resolution: When a cycle is detected, a transaction in the cycle is aborted to break
the deadlock.

748 CHAPTER 17 DISTRIBUTED TRANSACTIONS

In our example, the following steps describe how deadlock detection is initiated and the
probes that are forwarded during the corresponding detection phase:

• Server X initiates detection by sending probe < W U > to the server of B (Server
Y).

• Server Y receives probe < W U >, notes that B is held by V and appends V to
the probe to produce < W U V >. It notes that V is waiting for C at server Z.
This probe is forwarded to server Z.

• Server Z receives probe < W U V >, notes C is held by W and appends W to
the probe to produce < W U V W >.

This path contains a cycle. The server detects a deadlock. One of the transactions in the
cycle must be aborted to break the deadlock. The transaction to be aborted can be chosen
according to transaction priorities, which are described shortly.

Figure 17.15 shows the progress of the probe messages from the initiation by the
server of A to the deadlock detection by the server of C. Probes are shown as heavy
arrows, objects as ovals (as usual) and transaction coordinators as rectangles. Each
probe is shown as going directly from one object to another. In reality, before a server
transmits a probe to another server, it consults the coordinator of the last transaction in
the path to find out whether the latter is waiting for another object elsewhere. For
example, before the server of B transmits the probe <W U V> it consults the
coordinator of V to find out that V is waiting for C. In most of the edge-chasing
algorithms, the servers of objects send probes to transaction coordinators, which then
forward them (if the transaction is waiting) to the server of the object for which the
transaction is waiting. In our example, the server of B transmits the probe
<W U V> to the coordinator of V, which then forwards it to the server of C. This
shows that when a probe is forwarded, two messages are required.

The above algorithm should find any deadlock that occurs, provided that waiting
transactions do not abort and there are no failures such as lost messages or servers
crashing. To understand this, consider a deadlock cycle in which the last transaction, W,
starts waiting and completes the cycle. When W starts waiting for an object, the server
initiates a probe that goes to the server of the object held by each transaction for which
W is waiting. The recipients extend and forward the probes to the servers of objects
requested by all waiting transactions they find. Thus every transaction that W waits for,
directly or indirectly, will be added to the probe unless a deadlock is detected. When
there is a deadlock, W is waiting for itself indirectly. Therefore, the probe will return to
the object that W holds.

It might appear that large numbers of messages are sent in order to detect
deadlocks. In the above example, we see two probe messages to detect a cycle involving
three transactions. Each of the probe messages is in general two messages (from object
to coordinator and then from coordinator to object).

A probe that detects a cycle involving N transactions will be forwarded by (N – 1)
transaction coordinators via (N – 1) servers of objects, requiring 2(N – 1) messages.
Fortunately, the majority of deadlocks involve cycles containing only two transactions,
and there is no need for undue concern about the number of messages involved. This
observation has been made from studies of databases. It can also be argued by
considering the probability of conflicting access to objects (see Bernstein et al. [1987]).

SECTION 17.5 DISTRIBUTED DEADLOCKS 749

Transaction priorities • In the above algorithm, every transaction involved in a deadlock
cycle can cause deadlock detection to be initiated. The effect of several transactions in a
cycle initiating deadlock detection is that detection may happen at several different
servers in the cycle, with the result that more than one transaction in the cycle is aborted.

In Figure 17.16(a)

Figure 17.16 Two probes initiated

(a) initial situation (b) detection initiated at object
requested by T

(c) detection initiated at object
requested by W

U

T

V

W

Waits for

Waits
for

V

W

U

T

T

U

W

V T

U

W

T
U

Waits for

U

V

T

W

W

V

T

W

V

T

U

W

V Waits
for

, consider transactions T, U, V and W, where U is waiting for W
and V is waiting for T. At about the same time, T requests the object held by U and W
requests the object held by V. Two separate probes, < T U > and < W V >, are
initiated by the servers of these objects and are circulated until deadlocks are detected
by each of the servers. In Figure 17.16(b), the cycle is < T U W V T and
in Figure 17.16 (c), the cycle is < W V T U W >.

In order to ensure that only one transaction in a cycle is aborted, transactions are
given priorities in such a way that all transactions are totally ordered. Timestamps, for
example, may be used as priorities. When a deadlock cycle is found, the transaction with
the lowest priority is aborted. Even if several different servers detect the same cycle,
they will all reach the same decision as to which transaction is to be aborted. We write
T > U to indicate that T has higher priority than U. In the above example, assume
T > U > V > W. Then the transaction W will be aborted when either of the cycles
< T U W V T > or < W V T U W > is detected.

It might appear that transaction priorities could also be used to reduce the number
of situations that cause deadlock detection to be initiated, by using the rule that detection
is initiated only when a higher-priority transaction starts to wait for a lower-priority one.
In our example in Figure 17.16, as T > U the initiating probe < T U > would be sent,
but as W < V the initiating probe < W V > would not be sent. If we assume that when
a transaction starts waiting for another transaction it is equally likely that the waiting
transaction has higher or lower priority than the waited-for transaction, then the use of
this rule is likely to reduce the number of probe messages by about half.

Transaction priorities could also be used to reduce the number of probes that are
forwarded. The general idea is that probes should travel ‘downhill’ – that is, from
transactions with higher priorities to transactions with lower priorities. To this end,
servers use the rule that they do not forward any probe to a holder that has higher priority
than the initiator. The argument for doing this is that if the holder is waiting for another
transaction, it must have initiated detection by sending a probe when it started waiting.

750 CHAPTER 17 DISTRIBUTED TRANSACTIONS

However, there is a pitfall associated with these apparent improvements. In our
example in Figure 17.15 transactions U, V and W are executed in an order in which U is
waiting for V and V is waiting for W when W starts waiting for U. Without priority rules,
detection is initiated when W starts waiting by sending a probe < W U>. Under the
priority rule, this probe will not be sent because W < U and the deadlock will not be
detected.

The problem is that the order in which transactions start waiting can determine
whether or not a deadlock will be detected. The above pitfall can be avoided by using a
scheme in which coordinators save copies of all the probes received on behalf of each
transaction in a probe queue. When a transaction starts waiting for an object, it forwards
the probes in its queue to the server of the object, which propagates the probes on
downhill routes.

Figure 17.17 Probes travel downhill

(a) V stores probe when U starts waiting (b) Probe is forwarded when V starts waiting

U

W

Vprobe
queue U V

Waits for
B

Waits for
B

Waits
for C

V W
U V probe

queue

V
U V

U
V

U

W

In our example in Figure 17.15, when U starts waiting for V, the coordinator of V
will save the probe < U V > – see Figure 17.17(a). Then when V starts waiting for W,
the coordinator of W will store < V W > and V will forward its probe queue,
< U V >, to W. (See Figure 17.17(b), in which W’s probe queue has < U V > and
< V W >.) When W starts waiting for A it will forward its probe queue,
< U V W >, to the server of A, which notes the new dependency W U and
combines it with the information in the probe received to determine that
U V W U. Deadlock is detected.

When an algorithm requires probes to be stored in probe queues, it also requires
arrangements to pass on probes to new holders and to discard probes that refer to
transactions that have been committed or aborted. If relevant probes are discarded,
undetected deadlocks may occur, and if outdated probes are retained, false deadlocks
may be detected. This adds much to the complexity of any edge-chasing algorithm.
Readers who are interested in the details of such algorithms should see Sinha and
Natarajan [1985] and Choudhary et al. [1989], who present algorithms for use with
exclusive locks. But they will see that Choudhary et al. showed that Sinha and
Natarajan’s algorithm is incorrect: it fails to detect all deadlocks and may even report
false deadlocks. Kshemkalyani and Singhal [1991] corrected the algorithm of
Choudhary et al. and provided a proof of correctness for the corrected algorithm. In a
subsequent paper, Kshemkalyani and Singhal [1994] argued that distributed deadlocks
are not very well understood because there is no global state or time in a distributed

SECTION 17.6 TRANSACTION RECOVERY 751

system. In fact, any cycle that has been collected may contain sections recorded at
different times. In addition, sites may hear about deadlocks but may not hear that they
have been resolved until after random delays. The paper describes distributed deadlocks
in terms of the contents of distributed memory, using causal relationships between
events at different sites.

17.6 Transaction recovery

The atomic property of transactions requires that all the effects of committed
transactions and none of the effects of incomplete or aborted transactions are reflected
in the objects they accessed. This property can be described in terms of two aspects:
durability and failure atomicity. Durability requires that objects are saved in permanent
storage and will be available indefinitely thereafter. Therefore an acknowledgement of
a client’s commit request implies that all the effects of the transaction have been
recorded in permanent storage as well as in the server’s (volatile) objects. Failure
atomicity requires that effects of transactions are atomic even when the server crashes.
Recovery is concerned with ensuring that a server’s objects are durable and that the
service provides failure atomicity.

Although file servers and database servers maintain data in permanent storage,
other kinds of servers of recoverable objects need not do so except for recovery
purposes. In this chapter, we assume that when a server is running it keeps all of its
objects in its volatile memory and records its committed objects in a recovery file or
files. Therefore recovery consists of restoring the server with the latest committed
versions of its objects from permanent storage. Databases need to deal with large
volumes of data. They generally hold the objects in stable storage on disk with a cache
in volatile memory.

The requirements for durability and failure atomicity are not really independent
of one another and can be dealt with by a single mechanism – the recovery manager.
The tasks of a recovery manager are:

• to save objects in permanent storage (in a recovery file) for committed
transactions;

• to restore the server’s objects after a crash;

• to reorganize the recovery file to improve the performance of recovery;

• to reclaim storage space (in the recovery file).

In some cases, we require the recovery manager to be resilient to media failures.
Corruption during a crash, random decay or a permanent failure can lead to failures of
the recovery file, which can result in some of the data on the disk being lost. In such
cases we need another copy of the recovery file. Stable storage, which is implemented
so as to be very unlikely to fail by using mirrored disks or copies at a different location
may be used for this purpose.

Intentions list • Any server that provides transactions needs to keep track of the
objects accessed by clients’ transactions. Recall from Chapter 16 that when a client
opens a transaction, the server first contacted provides a new transaction identifier and

752 CHAPTER 17 DISTRIBUTED TRANSACTIONS

returns it to the client. Each subsequent client request within a transaction up to and
including the commit or abort request includes the transaction identifier as an argument.
During the progress of a transaction, the update operations are applied to a private set of
tentative versions of the objects belonging to the transaction.

At each server, an intentions list is recorded for all of its currently active
transactions – an intentions list of a particular transaction contains a list of the references
and the values of all the objects that are altered by that transaction. When a transaction
is committed, that transaction’s intentions list is used to identify the objects it affected.
The committed version of each object is replaced by the tentative version made by that
transaction, and the new value is written to the server’s recovery file. When a transaction
aborts, the server uses the intentions list to delete all the tentative versions of objects
made by that transaction.

Recall also that a distributed transaction must carry out an atomic commit protocol
before it can be committed or aborted. Our discussion of recovery is based on the two-
phase commit protocol, in which all the participants involved in a transaction first say
whether they are prepared to commit and later, if all the participants agree, carry out the
actual commit actions. If the participants cannot agree to commit, they must abort the
transaction.

Figure 17.18 Types of entry in a recovery file

Type of entry Description of contents of entry

Object A value of an object.

Transaction status
Transaction identifier, transaction status (prepared, committed,
aborted) and other status values used for the two-phase commit
protocol.

Intentions list
Transaction identifier and a sequence of intentions, each of which
consists of <objectID, Pi>, where Pi is the position in the recovery
file of the value of the object.

At the point when a participant says it is prepared to commit a transaction, its
recovery manager must have saved both its intentions list for that transaction and the
objects in that intentions list in its recovery file, so that it will be able to carry out the
commitment later, even if it crashes in the interim.

When all the participants involved in a transaction agree to commit it, the
coordinator informs the client and then sends messages to the participants to commit
their part of the transaction. Once the client has been informed that a transaction has
committed, the recovery files of the participating servers must contain sufficient
information to ensure that the transaction is committed by all of the servers, even if some
of them crash between preparing to commit and committing.

Entries in recovery file • To deal with recovery of a server that can be involved in
distributed transactions, further information in addition to the values of the objects is
stored in the recovery file. This information concerns the status of each transaction –

SECTION 17.6 TRANSACTION RECOVERY 753

whether it is committed, aborted or prepared to commit. In addition, each object in the
recovery file is associated with a particular transaction by saving the intentions list in the
recovery file. Figure 17.18 shows a summary of the types of entry included in a recovery
file.

The transaction status values relating to the two-phase commit protocol are
discussed in Section 17.6.4. We now describe two approaches to the use of recovery
files: logging and shadow versions.

17.6.1 Logging

In the logging technique, the recovery file represents a log containing the history of all
the transactions performed by a server. The history consists of values of objects,
transaction status entries and transaction intentions lists. The order of the entries in the
log reflects the order in which transactions have prepared, committed and aborted at that
server. In practice, the recovery file will contain a recent snapshot of the values of all the
objects in the server followed by a history of transactions postdating the snapshot.

During the normal operation of a server, its recovery manager is called whenever
a transaction prepares to commit, commits or aborts a transaction. When the server is
prepared to commit a transaction, the recovery manager appends all the objects in its
intentions list to the recovery file, followed by the current status of that transaction
(prepared) together with its intentions list. When a transaction is eventually committed
or aborted, the recovery manager appends the corresponding status of the transaction to
its recovery file.

It is assumed that the append operation is atomic in the sense that it writes one or
more complete entries to the recovery file. If the server fails, only the last write can be
incomplete. To make efficient use of the disk, several subsequent writes can be buffered
and then written to disk as a single write. An additional advantage of the logging
technique is that sequential writes to disk are faster than writes to random locations.

After a crash, any transaction that does not have a committed status in the log is
aborted. Therefore when a transaction commits, its committed status entry must be
forced to the log – that is, written to the log together with any other buffered entries.

The recovery manager associates a unique identifier with each object so that the
successive versions of an object in the recovery file may be associated with the server’s
objects. For example, a durable form of a remote object reference such as a CORBA
persistent reference will do as an object identifier.

Figure 17.19 illustrates the log mechanism for the banking service transactions T
and U in Figure 16.7. The log was recently reorganized, and entries to the left of the
double line represent a snapshot of the values of A, B and C before transactions T and U
started. In this diagram, we use the names A, B and C as unique identifiers for objects.
We show the situation when transaction T has committed and transaction U has prepared
but not committed. When transaction T prepares to commit, the values of objects A and
B are written at positions P1 and P2 in the log, followed by a prepared transaction status
entry for T with its intentions list (< A, P1 >, < B, P2 >). When transaction T commits, a
committed transaction status entry for T is put at position P4. Then when transaction U
prepares to commit, the values of objects C and B are written at positions P5 and P6 in
the log, followed by a prepared transaction status entry for U with its intentions list
(< C, P5 >, < B, P6 >).

754 CHAPTER 17 DISTRIBUTED TRANSACTIONS

Each transaction status entry contains a pointer to the position in the recovery file
of the previous transaction status entry to enable the recovery manager to follow the
transaction status entries in reverse order through the recovery file. The last pointer in
the sequence of transaction status entries points to the checkpoint.

Recovery of objects • When a server is replaced after a crash, it first sets default initial
values for its objects and then hands over to its recovery manager. The recovery manager
is responsible for restoring the server’s objects so that they include all the effects of the
committed transactions performed in the correct order and none of the effects of
incomplete or aborted transactions.

The most recent information about transactions is at the end of the log. There are
two approaches to restoring the data from the recovery file. In the first, the recovery
manager starts at the beginning and restores the values of all of the objects from the most
recent checkpoint (discussed in the next section). It then reads in the values of each of
the objects, associates them with their transaction’s intentions lists and for committed
transactions replaces the values of the objects. In this approach, the transactions are
replayed in the order in which they were executed and there could be a large number of
them. In the second approach, the recovery manager will restore a server’s objects by
‘reading the recovery file backwards’. The recovery file has been structured so that there
is a backwards pointer from each transaction status entry to the next. The recovery
manager uses transactions with committed status to restore those objects that have not
yet been restored. It continues until it has restored all of the server’s objects. This has
the advantage that each object is restored once only.

Figure 17.19 Log for banking service

P0 P1 P2 P3 P4 P5 P6 P7

Object:A Object:B Object:C Object:A Object:B Trans:T Trans:T Object:C Object:B Trans:U

100 200 300 80 220 prepared committed 278 242 prepared

<A, P1> <C, P5>

<B, P2> <B, P6>

P0 P3 P4

Checkpoint End
of log

To recover the effects of a transaction, a recovery manager gets the corresponding
intentions list from its recovery file. The intentions list contains the identifiers and
positions in the recovery file of values of all the objects affected by the transaction.

If the server fails at the point reached in Figure 17.19, its recovery manager will
recover the objects as follows. It starts at the last transaction status entry in the log (at
P7) and concludes that transaction U has not committed and its effects should be
ignored. It then moves to the previous transaction status entry in the log (at P4) and
concludes that transaction T has committed. To recover the objects affected by
transaction T, it moves to the previous transaction status entry in the log (at P3) and finds

SECTION 17.6 TRANSACTION RECOVERY 755

the intentions list for T (< A, P1 >, < B, P2 >). It then restores objects A and B from the
values at P1 and P2. As it has not yet restored C, it moves back to P0, which is a
checkpoint, and restores C.

To help with subsequent reorganization of the recovery file, the recovery manager
notes all the prepared transactions it finds during the process of restoring the server’s
objects. For each prepared transaction, it adds an aborted transaction status to the
recovery file. This ensures that in the recovery file, every transaction is eventually
shown as either committed or aborted.

The server could fail again during the recovery procedures. It is essential that
recovery be idempotent, in the sense that it can be done any number of times with the
same effect. This is straightforward under our assumption that all the objects are restored
to volatile memory. In the case of a database, which keeps its objects in permanent
storage with a cache in volatile memory, some of the objects in permanent storage will
be out of date when a server is replaced after a crash. Therefore the recovery manager
has to restore the objects in permanent storage. If it fails during recovery, the partially
restored objects will still be there. This makes idempotence a little harder to achieve.

Reorganizing the recovery file • A recovery manager is responsible for reorganizing its
recovery file so as to make the process of recovery faster and to reduce its use of space.
If the recovery file is never reorganized, then the recovery process must search
backwards through the recovery file until it has found a value for each of its objects.
Conceptually, the only information required for recovery is a copy of the committed
version of each object in the server. This would be the most compact form for the
recovery file. The name checkpointing is used to refer to the process of writing the
current committed values of a server’s objects to a new recovery file, together with
transaction status entries and intentions lists of transactions that have not yet been fully
resolved (including information related to the two-phase commit protocol). The term
checkpoint is used to refer to the information stored by the checkpointing process. The
purpose of making checkpoints is to reduce the number of transactions to be dealt with
during recovery and to reclaim file space.

Checkpointing can be done immediately after recovery but before any new
transactions are started. However, recovery may not occur very often. Therefore,
checkpointing may need to be done from time to time during the normal activity of a
server. The checkpoint is written to a future recovery file, and the current recovery file
remains in use until the checkpoint is complete. Checkpointing consists of ‘adding a
mark’ to the recovery file when the checkpointing starts, writing the server’s objects to
the future recovery file and then copying to that file (1) all entries before the mark that
relate to as-yet-unresolved transactions and (2) all entries after the mark in the recovery
file. When the checkpoint is complete, the future recovery file becomes the recovery
file.

The recovery system can reduce its use of space by discarding the old recovery
file. When the recovery manager is carrying out the recovery process, it may encounter
a checkpoint in the recovery file. When this happens, it can immediately restore all
outstanding objects from the checkpoint.

756 CHAPTER 17 DISTRIBUTED TRANSACTIONS

17.6.2 Shadow versions

The logging technique records transaction status entries, intentions lists and objects all
in the same file – the log. The shadow versions technique is an alternative way to
organize a recovery file. It uses a map to locate versions of the server’s objects in a file
called a version store. The map associates the identifiers of the server’s objects with the
positions of their current versions in the version store. The versions written by each
transaction are ‘shadows’ of the previous committed versions. As we shall see, the
transaction status entries and intentions lists are stored separately. Shadow versions are
described first.

When a transaction is prepared to commit, any of the objects changed by the
transaction are appended to the version store, leaving the corresponding committed
versions unchanged. These new as-yet-tentative versions are called shadow versions.
When a transaction commits, a new map is made by copying the old map and entering
the positions of the shadow versions. To complete the commit process, the new map
replaces the old map.

To restore the objects when a server is replaced after a crash, its recovery manager
reads the map and uses the information in the map to locate the objects in the version
store.

Figure 17.20 illustrates this technique with the same example involving
transactions T and U

Figure 17.20 Shadow versions

Map at start Map when T commits

A P0 A P1

B P0' B P2

C P0" C P0"

P0 P0' P0" P1 P2 P3 P4

Version store 100 200 300 80 220 278 242

Checkpoint

. The first column in the table shows the map before transactions T
and U, when the balances of the accounts A, B and C are $100, $200 and $300,
respectively. The second column shows the map after transaction T has committed.

The version store contains a checkpoint, followed by the versions of A and B at P1
and P2 made by transaction T. It also contains the shadow versions of B and C made by
transaction U, at P3 and P4.

The map must always be written to a well-known place (for example, at the start
of the version store or a separate file) so that it can be found when the system needs to
be recovered.

The switch from the old map to the new map must be performed in a single atomic
step. To achieve this it is essential that stable storage is used for the map, so that there is
guaranteed to be a valid map even when a file write operation fails. The shadow versions
method provides faster recovery than logging because the positions of the current
committed objects are recorded in the map, whereas recovery from a log requires

SECTION 17.6 TRANSACTION RECOVERY 757

searching throughout the log for objects. Logging should be faster than shadow versions
during the normal activity of the system, though. This is because logging requires only
a sequence of append operations to the same file, whereas shadow versions require an
additional stable storage write (involving two unrelated disk blocks).

Shadow versions on their own are not sufficient for a server that handles
distributed transactions. Transaction status entries and intentions lists are saved in a file
called the transaction status file. Each intentions list represents the part of the map that
will be altered by a transaction when it commits. The transaction status file may, for
example, be organized as a log.

The figure below shows the map and the transaction status file for our current
example when T has committed and U is prepared to commit:

Transaction status file (stable storage)

Map T T U

A P1 prepared committed prepared

B P2 A P1 B P3

C P0" B P2 C P4

There is a chance that a server may crash between the time when a committed status is
written to the transaction status file and the time when the map is updated – in which
case the client will not have been acknowledged. The recovery manager must allow for
this possibility when the server is replaced after a crash, for example by checking
whether the map includes the effects of the last committed transaction in the transaction
status file. If it does not, then the latter should be marked as aborted.

17.6.3 The need for transaction status and intentions list entries in a recovery file

It is possible to design a simple recovery file that does not include entries for transaction
status items and intentions lists. This sort of recovery file may be suitable when all
transactions are directed to a single server. The use of transaction status items and
intentions lists in the recovery file is essential for a server that is intended to participate
in distributed transactions. This approach can also be useful for servers of non-
distributed transactions for various reasons, including the following:

• Some recovery managers are designed to write the objects to the recovery file
early, under the assumption that transactions normally commit.

• If transactions use a large number of big objects, the need to write them
contiguously to the recovery file may complicate the design of a server. When
objects are referenced from intentions lists, they can be found wherever they are.

• In timestamp ordering concurrency control, a server sometimes knows that a
transaction will eventually be able to commit and acknowledges the client – at this
time, the objects are written to the recovery file (see Chapter 16) to ensure their
permanence. However, the transaction may have to wait to commit until earlier
transactions have committed. In such situations, the corresponding transaction
status entries in the recovery file will be waiting to commit and then committed to

758 CHAPTER 17 DISTRIBUTED TRANSACTIONS

ensure timestamp ordering of committed transactions in the recovery file. On
recovery, any waiting-to-commit transactions can be allowed to commit, because
the ones they were waiting for will have either just committed or been aborted due
to failure of the server.

17.6.4 Recovery of the two-phase commit protocol

In a distributed transaction, each server keeps its own recovery file. The recovery
management described in the previous section must be extended to deal with any
transactions that are performing the two-phase commit protocol at the time when a
server fails. The recovery managers use two new status values for this purpose: done and
uncertain. These status values are shown in Figure 17.6. A coordinator uses committed

to indicate that the outcome of the vote is Yes and done to indicate that the two-phase
commit protocol is complete. A participant uses uncertain to indicate that it has voted
Yes but does not yet know the outcome of the vote. Two additional types of entry allow
a coordinator to record a list of participants and a participant to record its coordinator:

Type of entry Description of contents of entry

Coordinator Transaction identifier, list of participants

Participant Transaction identifier, coordinator

In phase 1 of the protocol, when the coordinator is prepared to commit (and has already
added a prepared status entry to its recovery file), its recovery manager adds a
coordinator entry to its recovery file. Before a participant can vote Yes, it must have
already prepared to commit (and must have already added a prepared status entry to its
recovery file). When it votes Yes, its recovery manager records a participant entry and
adds an uncertain transaction status to its recovery file as a forced write. When a
participant votes No, it adds an abort transaction status to its recovery file.

In phase 2 of the protocol, the recovery manager of the coordinator adds either a
committed or an aborted transaction status to its recovery file, according to the decision.
This must be a forced write (that is, it is written immediately to the recovery file).
Recovery managers of participants add a commit or abort transaction status to their
recovery files according to the message received from the coordinator. When a
coordinator has received a confirmation from all of its participants, its recovery manager
adds a done transaction status to its recovery file – this need not be forced. The done

status entry is not part of the protocol but is used when the recovery file is reorganized.
Figure 17.21 shows the entries in a log for transaction T, in which the server played the
coordinator role, and for transaction U, in which the server played the participant role.
For both transactions, the prepared transaction status entry comes first. In the case of a
coordinator it is followed by a coordinator entry and a committed transaction status
entry. The done transaction status entry is not shown in Figure 17.21. In the case of a
participant, the prepared transaction status entry is followed by a participant entry
whose state is uncertain and then a committed or aborted transaction status entry.

Figure 17.21 Log with entries relating to two-phase commit protocol

Trans:T Coord’r:T • • Trans:T Trans:U • • Part’pant:U Trans:U Trans:U

prepared
part’pant

list: . . .
committed prepared Coord’r: . . . uncertain committed

intentions

list

intentions

list

SECTION 17.6 TRANSACTION RECOVERY 759

When a server is replaced after a crash, the recovery manager has to deal with the
two-phase commit protocol in addition to restoring the objects. For any transaction
where the server has played the coordinator role, it should find a coordinator entry and
a set of transaction status entries. For any transaction where the server played the
participant role, it should find a participant entry and a set of transaction status entries.
In both cases, the most recent transaction status entry – that is, the one nearest the end
of the log – determines the transaction status at the time of failure. The action of the
recovery manager with respect to the two-phase commit protocol for any transaction
depends on whether the server was the coordinator or a participant and on its status at
the time of failure, as shown in Figure 17.22.

Reorganization of recovery file • Care must be taken when performing a checkpoint to
ensure that coordinator entries of transactions without status done are not removed from
the recovery file. These entries must be retained until all the participants have confirmed
that they have completed their transactions. Entries with status done may be discarded.
Participant entries with transaction state uncertain must also be retained.

Recovery of nested transactions • In the simplest case, each subtransaction of a nested
transaction accesses a different set of objects. As each participant prepares to commit
during the two-phase commit protocol, it writes its objects and intentions lists to the
local recovery file, associating them with the transaction identifier of the top-level
transaction. Although nested transactions use a special variant of the two-phase commit
protocol, the recovery manager uses the same transaction status values as for flat
transactions.

However, abort recovery is complicated by the fact that several subtransactions at
the same and different levels in the nesting hierarchy can access the same object. Section
16.4 describes a locking scheme in which parent transactions inherit locks and
subtransactions acquire locks from their parents. The locking scheme forces parent
transactions and subtransactions to access common data objects at different times and
ensures that accesses by concurrent subtransactions to the same objects must be
serialized.

Objects that are accessed according to the rules of nested transactions are made
recoverable by providing tentative versions for each subtransaction. The relationship
between the tentative versions of an object used by the subtransactions of a nested
transaction is similar to the relationship between the locks. To support recovery from
aborts, the server of an object shared by transactions at multiple levels provides a stack
of tentative versions – one for each nested transaction to use.

Figure 17.22 Recovery of the two-phase commit protocol

Role Status Action of recovery manager

Coordinator prepared No decision had been reached before the server failed. It
sends abortTransaction to all the servers in the participant
list and adds the transaction status aborted in its recovery
file. Same action for state aborted. If there is no participant
list, the participants will eventually time out and abort the
transaction.

Coordinator committed A decision to commit had been reached before the server
failed. It sends a doCommit to all of the participants in its
participant list (in case it had not done so before) and
resumes the two-phase protocol at step 4 (see Figure 17.5).

Participant committed The participant sends a haveCommitted message to the
coordinator (in case this was not done before it failed).
This will allow the coordinator to discard information
about this transaction at the next checkpoint.

Participant uncertain The participant failed before it knew the outcome of the
transaction. It cannot determine the status of the
transaction until the coordinator informs it of the decision.
It sends a getDecision to the coordinator to determine the
status of the transaction. When it receives the reply it will
commit or abort accordingly.

Participant prepared The participant has not yet voted and can abort the
transaction.

Coordinator done No action is required.

760 CHAPTER 17 DISTRIBUTED TRANSACTIONS

When the first subtransaction in a set of nested transactions accesses an object, it
is provided with a tentative version that is a copy of the current committed version of the
object. This is regarded as being at the top of the stack, but unless any of its
subtransactions access the same object, the stack will not materialize.

When one of its subtransactions does access the same object, it copies the version
at the top of the stack and pushes it back onto the stack. All of that subtransaction’s
updates are applied to the tentative version at the top of the stack. When a subtransaction
provisionally commits, its parent inherits the new version. To achieve this, both the
subtransaction’s version and its parent’s version are discarded from the stack and then
the subtransaction’s new version is pushed back onto the stack (effectively replacing its
parent’s version). When a subtransaction aborts, its version at the top of the stack is
discarded. Eventually, when the top-level transaction commits, the version at the top of
the stack (if any) becomes the new committed version.

SECTION 17.7 SUMMARY 761

For example, in Figure 17.23

Figure 17.23 Nested transactions

T 1

A11 A12 A2

A1

T1 T11 T12 T2

A11

A11 A12

A2

top of stack

T1

T2

T11

T12

A11 A2

, suppose that transactions T1, T11, T12 and T2 all
access the same object, A, in the order T1; T11; T12; T2. Suppose that their tentative
versions are called A1, A11, A12 and A2. When T1 starts executing, A1 is based on the
committed version of A and is pushed onto the stack. When T11 starts executing, it bases
its version A11 on A1 and pushes it onto the stack; when it completes, it replaces its
parent’s version on the stack. Transactions T12 and T2 act in a similar way, finally
leaving the result of T2 at the top of the stack.

17.7 Summary

In the most general case, a client’s transaction will request operations on objects in
several different servers. A distributed transaction is any transaction whose activity
involves several different servers. A nested transaction structure may be used to allow
additional concurrency and independent committing by the servers in a distributed
transaction.

The atomicity property of transactions requires that the servers participating in a
distributed transaction either all commit it or all abort it. Atomic commit protocols are
designed to achieve this effect, even if servers crash during their execution. The two-
phase commit protocol allows a server to decide to abort unilaterally. It includes timeout
actions to deal with delays due to servers crashing. The two-phase commit protocol can
take an unbounded amount of time to complete but is guaranteed to complete eventually.

Concurrency control in distributed transactions is modular – each server is
responsible for the serializability of transactions that access its own objects. However,
additional protocols are required to ensure that transactions are serializable globally.
Distributed transactions that use timestamp ordering require a means of generating an
agreed timestamp ordering between the multiple servers. Those that use optimistic
concurrency control require global validation or a means of forcing a global ordering on
committing transactions.

Distributed transactions that use two-phase locking can suffer from distributed
deadlocks. The aim of distributed deadlock detection is to look for cycles in the global
wait-for graph. If a cycle is found, one or more transactions must be aborted to resolve
the deadlock. Edge chasing is a non-centralized approach to the detection of distributed
deadlocks.

762 CHAPTER 17 DISTRIBUTED TRANSACTIONS

Transaction-based applications have strong requirements for the long life and
integrity of the information stored, but they do not usually have requirements for
immediate response at all times. Atomic commit protocols are the key to distributed
transactions, but they cannot be guaranteed to complete within a particular time limit.
Transactions are made durable by performing checkpoints and logging in a recovery
file, which is used for recovery when a server is replaced after a crash. Users of a
transaction service will experience some delay during recovery. Although it is assumed
that the servers of distributed transactions exhibit crash failures and run in an
asynchronous system, they are able to reach consensus about the outcome of
transactions because crashed servers are replaced with new processes that can acquire
all the relevant information from permanent storage or from other servers.

EXERCISES

17.1 In a decentralized variant of the two-phase commit protocol the participants
communicate directly with one another instead of indirectly via a coordinator. In phase
1, the coordinator sends its vote to all the participants. In phase 2, if the coordinator’s
vote is No, the participants just abort the transaction; if it is Yes, each participant sends
its vote to the coordinator and the other participants, each of which decides on the
outcome according to the vote and carries it out. Calculate the number of messages and
the number of rounds it takes. What are its advantages and disadvantages in comparison
with the centralized variant? page 732

17.2 A three-phase commit protocol has the following parts:

Phase 1: Is the same as for two-phase commit.

Phase 2: The coordinator collects the votes and makes a decision. If it is No, it
aborts and informs participants that voted Yes; if the decision is Yes, it sends a
preCommit request to all the participants. Participants that voted Yes wait for a
preCommit or doAbort request. They acknowledge preCommit requests and carry
out doAbort requests.

Phase 3: The coordinator collects the acknowledgements. When all are received,
it commits and sends doCommit requests to the participants. Participants wait for
a doCommit request. When it arrives, they commit.

Explain how this protocol avoids delay to participants during their ‘uncertain’ period
due to the failure of the coordinator or other participants. Assume that communication
does not fail. page 735

17.3 Explain how the two-phase commit protocol for nested transactions ensures that if the
top-level transaction commits, all the right descendants are committed or aborted.

page 736

17.4 Give an example of the interleaving, of two transactions that is serially equivalent at
each server but is not serially equivalent globally. page 740

EXERCISES 763

17.5 The getDecision procedure defined in Figure 17.4 is provided only by coordinators.
Define a new version of getDecision to be provided by participants for use by other
participants that need to obtain a decision when the coordinator is unavailable.

 Assume that any active participant can make a getDecision request to any other
active participant. Does this solve the problem of delay during the ‘uncertain’ period?
Explain your answer. At what point in the two-phase commit protocol would the
coordinator inform the participants of the other participants’ identities (to enable this
communication)? page 732

17.6 Extend the definition of two-phase locking to apply to distributed transactions. Explain
how this is ensured by distributed transactions using strict two-phase locking locally.

page 740, Chapter 16

17.7 Assuming that strict two-phase locking is in use, describe how the actions of the two-
phase commit protocol relate to the concurrency control actions of each individual
server. How does distributed deadlock detection fit in? pages 732, 740

17.8 A server uses timestamp ordering for local concurrency control. What changes must be
made to adapt it for use with distributed transactions? Under what conditions could it be
argued that the two-phase commit protocol is redundant with timestamp ordering?

pages 732, 741

17.9 Consider distributed optimistic concurrency control in which each server performs local
backward validation sequentially (that is, with only one transaction in the validate and
update phase at one time), in relation to your answer to Exercise 17.4. Describe the
possible outcomes when the two transactions attempt to commit. What difference does
it make if the servers use parallel validation? Chapter 16, page 742

17.10 A centralized global deadlock detector holds the union of local wait-for graphs. Give an
example to explain how a phantom deadlock could be detected if a waiting transaction
in a deadlock cycle aborts during the deadlock detection procedure. page 745

17.11 Consider the edge-chasing algorithm (without priorities). Give examples to show that it
could detect phantom deadlocks. page 746

17.12 A server manages the objects a1, a2 , ... an. It provides two operations for its clients:

read(i) returns the value of ai
write(i, Value) assigns Value to ai

The transactions T, U and V are defined as follows:

T: x = read(i); write(j, 44);

U: write(i, 55); write(j, 66);

V: write(k, 77); write(k, 88);

Describe the information written to the log file on behalf of these three transactions if
strict two-phase locking is in use and U acquires ai and aj before T. Describe how the
recovery manager would use this information to recover the effects of T, U and V when
the server is replaced after a crash. What is the significance of the order of the commit
entries in the log file? pages 753–754

17.13 The appending of an entry to the log file is atomic, but append operations from different
transactions may be interleaved. How does this affect the answer to Exercise 17.12?

pages 753–754

764 CHAPTER 17 DISTRIBUTED TRANSACTIONS

17.14 The transactions T, U and V of Exercise 17.12 use strict two-phase locking and their
requests are interleaved as follows:

T U V

x = read(i);

write(k, 77);

write(i, 55)

write(j, 44)

write(k,88)

write(j, 66)

Assuming that the recovery manager appends the data entry corresponding to each write

operation to the log file immediately instead of waiting until the end of the transaction,
describe the information written to the log file on behalf of the transactions T, U and V.
Does early writing affect the correctness of the recovery procedure? What are the
advantages and disadvantages of early writing? pages 753–754

17.15 Transactions T and U are run with timestamp ordering concurrency control. Describe the
information written to the log file on behalf of T and U, allowing for the fact that U has
a later timestamp than T and must wait to commit after T. Why is it essential that the
commit entries in the log file be ordered by timestamps? Describe the effect of recovery
if the server crashes (i) between the two Commits; (ii) after both of them.

T U

x= read(i);

write(i, 55);

write(j, 66);

write(j, 44);

Commit

Commit

What are the advantages and disadvantages of early writing with timestamp ordering?
page 757

17.16 The transactions T and U in Exercise 17.15 are run with optimistic concurrency control
using backward validation and restarting any transactions that fail. Describe the
information written to the log file on their behalf. Why is it essential that the commit
entries in the log file be ordered by transaction numbers? How are the write sets of
committed transactions represented in the log file? pages 753–754

17.17 Suppose that the coordinator of a transaction crashes after it has recorded the intentions
list entry but before it has recorded the participant list or sent out the canCommit?

requests. Describe how the participants resolve the situation. What will the coordinator
do when it recovers? Would it be any better to record the participant list before the
intentions list entry? page 758

 765

18

REPLICATION

18.1 Introduction

18.2 System model and the role of group communication

18.3 Fault-tolerant services

18.4 Case studies of highly available services:
The gossip architecture, Bayou and Coda

18.5 Transactions with replicated data

18.6 Summary

Replication is a key to providing high availability and fault tolerance in distributed
systems. High availability is of increasing interest with the tendency towards mobile
computing and consequently disconnected operation. Fault tolerance is an abiding
concern for services provided in safety-critical and other important systems.

The first part of this chapter considers systems that apply a single operation at a
time to collections of replicated objects. It begins with a description of architectural
components and a system model for services that employ replication. We describe the
implementation of group membership management as part of group communication,
which is particularly important for fault-tolerant services.

The chapter then describes approaches to achieving fault tolerance. It introduces
the correctness criteria of linearizability and sequential consistency, then explores two
approaches: passive (primary-backup) replication, in which clients communicate with a
distinguished replica; and active replication, in which clients communicate by multicast
with all replicas.

Case studies of three systems for highly available services are considered. In the
gossip and Bayou architectures, updates are propagated lazily between replicas of shared
data. In Bayou, the technique of operational transformation is used to enforce
consistency. Coda is an example of a highly available file service.

The chapter ends by considering transactions – sequences of operations – upon
replicated objects. It considers the architectures of replicated transactional systems and
how these systems handle server failures and network partitions.

766 CHAPTER 18 REPLICATION

18.1 Introduction

In this chapter, we study the replication of data: the maintenance of copies of data at
multiple computers. Replication is a key to the effectiveness of distributed systems in
that it can provide enhanced performance, high availability and fault tolerance.
Replication is used widely. For example, the caching of resources from web servers in
browsers and web proxy servers is a form of replication, since the data held in caches
and at servers are replicas of one another. The DNS naming service, described in
Chapter 13, maintains copies of name-to-attribute mappings for computers and is relied
on for day-to-day access to services across the Internet.

Replication is a technique for enhancing services. The motivations for replication
include:

Performance enhancement: The caching of data at clients and servers is by now
familiar as a means of performance enhancement. For example, Chapter 2 pointed
out that browsers and proxy servers cache copies of web resources to avoid the
latency of fetching resources from the originating server. Furthermore, data are
sometimes replicated transparently between several originating servers in the same
domain. The workload is shared between the servers by binding all the server IP
addresses to the site’s DNS name, say www.aWebSite.org. A DNS lookup of
www.aWebSite.org results in one of the several servers’ IP addresses being returned,
in a round-robin fashion (see Section 13.2.3). More sophisticated load-balancing
strategies are required for more complex services based on data replicated between
thousands of servers. As an example, Dilley et al. [2002] describe the approach to
DNS name resolution adopted in the Akamai content distribution network.

Replication of immutable data is trivial: it increases performance with little
cost to the system. Replication of changing data, such as that of the Web, incurs
overheads in the form of protocols designed to ensure that clients receive up-to-date
data (see Section 2.3.1). Thus there are limits to the effectiveness of replication as a
performance-enhancement technique.

Increased availability: Users require services to be highly available. That is, the
proportion of time for which a service is accessible with reasonable response times
should be close to 100%. Apart from delays due to pessimistic concurrency control
conflicts (due to data locking), the factors that are relevant to high availability are:

• server failures;

• network partitions and disconnected operation (communication disconnections
that are often unplanned and are a side effect of user mobility).

To take the first of these, replication is a technique for automatically maintaining the
availability of data despite server failures. If data are replicated at two or more
failure-independent servers, then client software may be able to access data at an
alternative server should the default server fail or become unreachable. That is, the
percentage of time during which the service is available can be enhanced by
replicating server data. If each of n servers has an independent probability p of failing

SECTION 18.1 INTRODUCTION 767

or becoming unreachable, then the availability of an object stored at each of these
servers is:

1 – probability(all managers failed or unreachable) = 1 p
n

–

For example, if there is a 5% probability of any individual server failing over a given
time period and if there are two servers, then the availability is 1 – 0.052 = 1 – 0.0025
= 99.75%. An important difference between caching systems and server replication
is that caches do not necessarily hold collections of objects such as files in their
entirety. So caching does not necessarily enhance availability at the application level
– a user may have one needed file but not another.

Network partitions (see Section 15.1) and disconnected operation are the
second factor that militate against high availability. Mobile users may deliberately
disconnect their computers or become unintentionally disconnected from a wireless
network as they move around. For example, a user on a train with a laptop may have
no access to networking (wireless networking may be interrupted, or they may have
no such capability). In order to be able to work in these circumstances – so-called
disconnected working or disconnected operation – the user will often prepare by
copying heavily used data, such as the contents of a shared diary, from their usual
environment to the laptop. But there is often a trade-off to availability during such a
period of disconnection: when the user consults or updates the diary, they risk
reading data that someone else has altered in the meantime. For example, they may
make an appointment in a slot that has since been occupied. Disconnected working
is only feasible if the user (or the application, on the user’s behalf) can cope with stale
data and can later resolve any conflicts that arise.

Fault tolerance: Highly available data is not necessarily strictly correct data. It may
be out of date, for example; or two users on opposite sides of a network partition may
make updates that conflict and need to be resolved. A fault-tolerant service, by
contrast, always guarantees strictly correct behaviour despite a certain number and
type of faults. The correctness concerns the freshness of data supplied to the client
and the effects of the client’s operations upon the data. Correctness sometimes also
concerns the timeliness of the service’s responses – such as, for example, in the case
of a system for air traffic control, where correct data are needed on short timescales.

The same basic technique used for high availability – that of replicating data
and functionality between computers – is also applicable for achieving fault
tolerance. If up to f of f + 1 servers crash, then in principle at least one remains to
supply the service. And if up to f servers can exhibit Byzantine failures, then in
principle a group of 2f + 1 servers can provide a correct service, by having the correct
servers outvote the failed servers (who may supply spurious values). But fault
tolerance is subtler than this simple description makes it seem. The system must
manage the coordination of its components precisely to maintain the correctness
guarantees in the face of failures, which may occur at any time.

A common requirement when data are replicated is for replication transparency. That
is, clients should not normally have to be aware that multiple physical copies of data
exist. As far as clients are concerned, data are organized as individual logical objects
and they identify only one item in each case when they request an operation to be
performed. Furthermore, clients expect operations to return only one set of values. This

768 CHAPTER 18 REPLICATION

is despite the fact that operations may be performed upon more than one physical copy
in concert.

The other general requirement for replicated data – one that can vary in strength
between applications – is that of consistency. This concerns whether the operations
performed upon a collection of replicated objects produce results that meet the
specification of correctness for those objects.

We saw in the example of the diary that during disconnected operation data may
be allowed to become inconsistent, at least temporarily. But when clients remain
connected it is often not acceptable for different clients (using different physical copies
of data) to obtain inconsistent results when they make requests affecting the same
logical objects. That is, it is not acceptable if the results break the application’s
correctness criteria.

We now examine in more detail the design issues raised when we replicate data to
achieve highly available and fault-tolerant services. We also examine some standard
solutions and techniques for dealing with those issues. First, Sections 18.2 to 18.4 cover
the case where clients make individual invocations upon shared data. Section 18.2
presents a general architecture for managing replicated data and introduces group
communication as an important tool. Group communication is particularly useful for
achieving fault tolerance, which is the subject of Section 18.3. Section 18.4 describes
techniques for high availability, including disconnected operation. It includes case
studies of the gossip architecture, Bayou and the Coda file system. Section 18.5
examines how to support transactions on replicated data. As Chapters 16 and 17
explained, transactions are made up of sequences of operations, rather than single
operations.

18.2 System model and the role of group communication

The data in our system consist of a collection of items that we shall call objects. An
‘object’ could be a file, say, or a Java object. But each such logical object is
implemented by a collection of physical copies called replicas. The replicas are physical
objects, each stored at a single computer, with data and behaviour that are tied to some
degree of consistency by the system’s operation. The ‘replicas’ of a given object are not
necessarily identical, at least not at any particular point in time. Some replicas may have
received updates that others have not received.

In this section, we provide a general system model for managing replicas and then
describe the role of group communication systems in achieving fault tolerance through
replication, highlighting the importance of view-synchronous group communication.

18.2.1 System model

We assume an asynchronous system in which processes may fail only by crashing. Our
default assumption is that network partitions may not occur, but we shall sometimes
consider what happens if they do occur. Network partitions make it harder to build
failure detectors, which we use to achieve reliable and totally ordered multicast.

SECTION 18.2 SYSTEM MODEL AND THE ROLE OF GROUP COMMUNICATION 769

For the sake of generality, we describe architectural components by their roles and
do not mean to imply that they are necessarily implemented by distinct processes (or
hardware). The model involves replicas held by distinct replica managers (see Figure
18.1),

Figure 18.1 A basic architectural model for the management of replicated data

FE

Requests and
replies

C

Replica
C

ServiceClients Front ends

managers

RM

RMFE

RM

 which are components that contain the replicas on a given computer and perform
operations upon them directly. This general model may be applied in a client-server
environment, in which case a replica manager is a server. We shall sometimes simply
call them servers instead. Equally, it may be applied to an application and application
processes can in that case act as both clients and replica managers. For example, the
user’s laptop on a train may contain an application that acts as a replica manager for their
diary.

We shall always require that a replica manager applies operations to its replicas
recoverably. This allows us to assume that an operation at a replica manager does not
leave inconsistent results if it fails part way through. We sometimes require each replica
manager to be a state machine [Lamport 1978, Schneider 1990]. Such a replica manager
applies operations to its replicas atomically (indivisibly), so that its execution is
equivalent to performing operations in some strict sequence. Moreover, the state of its
replicas is a deterministic function of their initial states and the sequence of operations
that it applies to them. Other stimuli, such as the reading on a clock or an attached
sensor, have no bearing on these state values. Without this assumption, consistency
guarantees between replica managers that accept update operations independently could
not be made. The system can only determine which operations to apply at all replica
managers and in what order – it cannot reproduce non-deterministic effects. The
assumption implies that it may not be possible, depending upon the threading
architecture, for the servers to be multi-threaded.

Often each replica manager maintains a replica of every object, and we assume
this is so unless we state otherwise. However, the replicas of different objects may be
maintained by different sets of replica managers. For example, one object may be
needed mostly by clients on one network and another by clients on another network.
There is little to be gained by replicating them at managers on the other network.

The set of replica managers may be static or dynamic. In a dynamic system, new
replica managers may appear (for example, if a second secretary copies a diary onto their
laptop); this is not allowed in a static system. In a dynamic system, replica managers

770 CHAPTER 18 REPLICATION

may crash, and they are then deemed to have left the system (although they may be
replaced). In a static system, replica managers do not crash (crashing implies never

executing another step), but they may cease operating for an indefinite period. We return
to the issue of failure in Section 18.4.2.

 The general model of replica management is shown in Figure 18.1. A collection
of replica managers provides a service to clients. The clients see a service that gives
them access to objects (for example, diaries or bank accounts), which in fact are
replicated at the managers. Each client requests a series of operations – invocations upon
one or more of the objects. An operation may involve a combination of reads of objects
and updates to objects. Requested operations that involve no updates are called read-

only requests; requested operations that update an object are called update requests

(these may also involve reads).
Each client’s requests are first handled by a component called a front end. The role

of the front end is to communicate by message passing with one or more of the replica
managers, rather than forcing the client to do this itself explicitly. It is the vehicle for
making replication transparent. A front end may be implemented in the client’s address
space, or it may be a separate process.

In general, five phases are involved in the performance of a single request upon
the replicated objects [Wiesmann et al. 2000]. The actions in each phase vary according
to the type of system, as will become clear in the next two sections. For example, a
service that supports disconnected operation behaves differently from one that provides
a fault-tolerant service. The phases are as follows:

Request: The front end issues the request to one or more replica managers:

– either the front end communicates with a single replica manager, which in turn
communicates with other replica managers;

– or the front end multicasts the request to the replica managers.

Coordination: The replica managers coordinate in preparation for executing the
request consistently. They agree, if necessary at this stage, on whether the request is
to be applied (it might not be applied at all if failures occur at this stage). They also
decide on the ordering of this request relative to others. All of the types of ordering
defined for multicast in Section 15.4.3 also apply to request handling and we define
those orders again for this context:

FIFO ordering: If a front end issues request r and then request r , any correct
replica manager that handles r handles r before it.

Causal ordering: If the issue of request r happened-before the issue of request r ,
then any correct replica manager that handles r handles r before it.

Total ordering: If a correct replica manager handles r before request r , then any
correct replica manager that handles r handles r before it.

Most applications require FIFO ordering. We discuss the requirements for causal and
total ordering – and the hybrid orderings that are both FIFO and total, or both causal
and total – in the next two sections.

Execution: The replica managers execute the request – perhaps tentatively: that is, in
such a way that they can undo its effects later.

SECTION 18.2 SYSTEM MODEL AND THE ROLE OF GROUP COMMUNICATION 771

Agreement: The replica managers reach consensus on the effect of the request – if
any – that will be committed. For example, in a transactional system the replica
managers may collectively agree to abort or commit the transaction at this stage.

Response: One or more replica managers responds to the front end. In some systems,
one replica manager sends the response. In others, the front end receives responses
from a collection of replica managers and selects or synthesizes a single response to
pass back to the client. For example, it could pass back the first response to arrive, if
high availability is the goal. If tolerance of Byzantine failures is the goal, then it could
give the client the response that a majority of the replica managers provides.

Different systems may make different choices about the ordering of the phases, as well
as their contents. For example, in a system that supports disconnected operation, it is
important to give the client (the application on the user’s laptop, say) as early a response
as possible. The user does not want to wait until the replica manager on the laptop and
the replica manager back in the office can coordinate. By contrast, in a fault-tolerant
system the client is not given the response until the end, when the correctness of the
result can be guaranteed.

18.2.2 The role of group communication

Chapter 6 introduced the concept of group communication and Section 15.4 expanded
on this discussion by covering algorithms for reliability and ordering of message
delivery in group communication systems. In this chapter, we look at the role of groups
in managing replicated data. The discussion in Section 15.4 took the membership of
groups to be statically defined, although group members may crash. In replication, and
indeed in many other practical circumstances, there is a strong requirement for dynamic
membership, in which processes join and leave the group as the system executes. In a
service that manages replicated data, for example, users may add or withdraw a replica
manager, or a replica manager may crash and thus need to be withdrawn from the
system’s operation. Group membership management, which was introduced in Section
6.2.2, is therefore particularly important in this context.

Systems that can adapt as processes join, leave and crash – fault-tolerant systems,
in particular – require the more advanced features of failure detection and notification
of membership changes. A full group membership service maintains group views, which
are lists of the current group members, identified by their unique process identifiers. The
list is ordered, for example, according to the sequence in which the members joined the
group. A new group view is generated each time that a process is added or excluded.

It is important to understand that a group membership service may exclude a
process from a group because it is Suspected, even though it may not have crashed. A
communication failure may have made the process unreachable, while it continues to
execute normally. A membership service is always free to exclude such a process. The
effect of exclusion is that no messages will be delivered to that process henceforth.
Moreover, in the case of a closed group, if that process becomes connected again, any
messages it attempts to send will not be delivered to the group members. That process
will have to rejoin the group (as a ‘reincarnation’ of itself, with a new identifier), or abort
its operations.

772 CHAPTER 18 REPLICATION

A false suspicion of a process and the consequent exclusion of the process from
the group may reduce the group’s effectiveness. The group has to manage without the
extra reliability or performance that the withdrawn process could potentially have
provided. The design challenge, apart from designing failure detectors to be as accurate
as possible, is to ensure that a system based on group communication does not behave
incorrectly if a process is falsely suspected.

An important consideration is how a group management service treats network
partitions. Disconnection or the failure of components such as a router in a network may
split a group of processes into two or more subgroups, with communication between the
subgroups impossible. Group management services differ in whether they are primary-

partition or partitionable. In the first case, the management service allows at most one
subgroup (a majority) to survive a partition; the remaining processes are informed that
they should suspend operations. This arrangement is appropriate for cases where the
processes manage important data and the costs of inconsistencies between two or more
subgroups outweigh any advantage of disconnected working.

On the other hand, in some circumstances it is acceptable for two or more
subgroups to continue to operate – a partitionable group membership service allows this.
For example, in an application in which users hold an audio or video conference to
discuss some issues, it may be acceptable for two or more subgroups of users to continue
their discussions independently despite a partition. They can merge their results when
the partition heals and the subgroups are connected again.

View delivery • Consider the task of a programmer writing an application that runs in
each process in a group and that must cope with new and lost members. The programmer
needs to know that the system treats each member in a consistent way when the
membership changes. It would be awkward if the programmer had to query the state of
all the other members and reach a global decision whenever a membership change
occurred, rather than being able to make a local decision on how to respond to the
change. The programmer’s life is made harder or easier according to the guarantees that
apply when the system delivers views to the group members.

For each group g the group management service delivers to any member process
p g a series of views v0 g , v1 g , v2 g , etc. For example, a series of views could
be v0 g p= , v1 g p p= and v2 g p= – p joins an empty group, then p
joins the group, then p leaves it. Although several membership changes may occur
concurrently, such as when one process joins the group just as another leaves, the system
imposes an order on the sequence of views given to each process.

We speak of a member delivering a view when a membership change occurs and
the application is notified of the new membership, just as we speak of a process
delivering a multicast message. As with multicast delivery, delivering a view is distinct
from receiving a view. Group membership protocols keep proposed views on a hold-
back queue until all extant members can agree to their delivery.

We also speak of an event as occurring in a view v(g) at process p if, at the time
of the event’s occurrence, p has delivered v(g) but has not yet delivered the next view,
v (g).

Some basic requirements for view delivery are as follows:

Order: If a process p delivers view v(g) and then view v (g), then no other process
q p delivers v (g) before v(g).

SECTION 18.2 SYSTEM MODEL AND THE ROLE OF GROUP COMMUNICATION 773

Integrity: If process p delivers view v(g), then p v(g).

Non-triviality: If process q joins a group and is or becomes indefinitely reachable
from process p q, then eventually q is always in the views that p delivers. Similarly,
if the group partitions and remains partitioned, then eventually the views delivered in
any one partition will exclude any processes in another partition.

The first of these requirements goes some way to giving the programmer a consistency
guarantee by ensuring that view changes always occur in the same order at different
processes. The second requirement is a ‘sanity check’. The third guards against trivial
solutions. For example, a membership service that tells every process, regardless of its
connectivity, that it is in a group all by itself is not of great interest. The non-triviality
condition states that if two processes that have each joined the same group can
eventually communicate indefinitely, then they should each be deemed members of that
same group. Similarly, it requires that, when a partition occurs, the membership service
should eventually reflect the partition. The condition does not state how the group
membership service should behave in the problematic case of intermittent connectivity.

View-synchronous group communication • A view-synchronous group communication
system makes guarantees additional to those above about the delivery ordering of view
notifications with respect to the delivery of multicast messages. View-synchronous
communication extends the reliable multicast semantics that we described in Chapter 15
to take account of changing group views. For the sake of simplicity, we restrict our
discussion to the case where partitions may not occur. The guarantees provided by view-
synchronous group communication are as follows:

Agreement: Correct processes deliver the same sequence of views (starting from the
view in which they join the group) and the same set of messages in any given view.
That is, if a correct process delivers message m in view v(g), then all other correct
processes that deliver m also do so in the view v(g).

Integrity: If a correct process p delivers message m, then it will not deliver m again.
Furthermore, p group(m) and the process that sent m is in the view in which p
delivers m.

Validity (closed groups): Correct processes always deliver the messages that they
send. If the system fails to deliver a message to any process q, then it notifies the
surviving processes by delivering a new view with q excluded, immediately after the
view in which any of them delivered the message. That is, let p be any correct process
that delivers message m in view v(g). If some process q v(g) does not deliver m in
view v(g), then the next view v (g) that p delivers has q v (g).

Consider a group with three processes, p, q and r (see Figure 18.2). Suppose that p sends
a message m while in view (p, q, r) but that p crashes soon after sending m, while q and
r are correct. One possibility is that p crashes before m has reached any other process.
In this case, q and r each deliver the new view (q, r), but neither ever delivers m (Figure
18.2a). The other possibility is that m has reached at least one of the two surviving
processes when p crashes. Then q and r both deliver first m and then the view (q, r)
(Figure 18.2b). It is not allowed for q and r to deliver first the view (q, r) and then m
(Figure 18.2c), since then they would deliver a message from a process that they have

Figure 18.2 View-synchronous group communication

p

q

r

p crashes

view (q, r)view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

(a) allowed (b) allowed

p

q

r

view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

(c) disallowed (d) disallowed

p crashes

view (q, r)

774 CHAPTER 18 REPLICATION

been informed has failed; nor can the two deliver the message and the new view in
opposite orders (Figure 18.2d).

In a view-synchronous system, the delivery of a new view draws a conceptual line
across the system and every message that is delivered at all is consistently delivered on
one side or the other of that line. This enables the programmer to draw useful
conclusions about the set of messages that other correct processes have delivered when
it delivers a new view, based only on the local ordering of message delivery and view
delivery events.

An illustration of the usefulness of view-synchronous communication is how it
can be used to achieve state transfer – the transfer of the working state from a current
member of a process group to a new member of the group. For example, if the processes
are replica managers that each hold the state of a diary, then a replica manager that joins
the group for that diary needs to acquire the diary’s current state when it joins. But the
diary may be updated concurrently while the state is being captured. It is important that
the replica manager does not miss any update messages that are not reflected in the state
it acquires and that it does not reapply update messages that are already reflected in the
state (unless those updates are idempotent).

To achieve this state transfer, we can use view-synchronous communication in a
simple scheme such as the following. Upon delivery of the first view containing the new
process, some distinct process from amongst the pre-existing members – say, the oldest
– captures its state, sends it one-to-one to the new member and suspends its execution.
All other pre-existing processes suspend their execution. Note that precisely the set of
updates reflected in this state has, by definition, been applied at all other members. Upon

SECTION 18.3 FAULT-TOLERANT SERVICES 775

receipt of the state, the new process integrates it and multicasts a ‘commence!’ message
to the group, at which point all proceed once more.

Discussion • The notion of view-synchronous group communication that we have
presented is a formulation of the ‘virtually synchronous’ communication paradigm
originally developed in the ISIS system [Birman 1993, Birman et al. 1991, Birman and
Joseph 1987b]. Schiper and Sandoz [1993] describe a protocol for achieving view-
synchronous (or as they call it, view-atomic) communication. Note that a group
membership service achieves consensus, but it does so without flouting the impossibility
result of Fischer et al. [1985]. As we discussed in Section 15.5.4, a system can
circumvent that result by using an appropriate failure detector.

Schiper and Sandoz also provide a uniform version of view-synchronous
communication in which the agreement condition covers the case of processes that
crash. This is similar to uniform agreement for multicast communication, which we
described in Section 15.4.2. In the uniform version of view-synchronous
communication, even if a process crashes after it delivers a message, all correct
processes are forced to deliver the message in the same view. This stronger guarantee is
sometimes needed in fault-tolerant applications, since a process that has delivered a
message may have had an effect on the outside world before crashing. For the same
reason, Hadzilacos and Toueg [1994] consider uniform versions of the reliable and
ordered multicast protocols described in Chapter 15.

The V system [Cheriton and Zwaenepoel 1985] was the first system to include
support for process groups. After ISIS, process groups with some type of group
membership service were developed in several other systems, including Horus [van
Renesse et al. 1996], Totem [Moser et al. 1996] and Transis [Dolev and Malki 1996].

Variations on view synchrony have been proposed for partitionable group
membership services, including support for partition-aware applications [Babaoglu et

al. 1998] and extended virtual synchrony [Moser et al. 1994].
Finally, Cristian [1991] discusses a group membership service for synchronous

distributed systems.

18.3 Fault-tolerant services

In this section, we examine how to provide a service that is correct despite up to f process
failures, by replicating data and functionality at replica managers. For the sake of
simplicity, we assume that communication remains reliable and that no partitions occur.

Each replica manager is assumed to behave according to a specification of the
semantics of the objects it manages, when they have not crashed. For example, a
specification of bank accounts would include an assurance that funds transferred
between bank accounts can never disappear, and that only deposits and withdrawals
affect the balance of any particular account.

Intuitively, a service based on replication is correct if it keeps responding despite
failures and if clients cannot tell the difference between the service they obtain from an
implementation with replicated data and one provided by a single correct replica
manager. Care is needed in meeting these criteria. If precautions are not taken, then

776 CHAPTER 18 REPLICATION

anomalies can arise when there are several replica managers – even bearing in mind that
we are considering the effects of individual operations, not transactions.

Consider a naive replication system, in which a pair of replica managers at
computers A and B each maintain replicas of two bank accounts, x and y. Clients read
and update the accounts at their local replica manager but try another replica manager if
the local one fails. Replica managers propagate updates to one another in the
background after responding to the clients. Both accounts initially have a balance of $0.

Client 1 updates the balance of x at its local replica manager B to be $1 and then
attempts to update y’s balance to be $2, but discovers that B has failed. Client 1 therefore
applies the update at A instead. Now client 2 reads the balances at its local replica
manager A. It finds first that y has $2 and then that x has $0 – the update to bank account
x from B has not arrived, since B failed. The situation is shown below, where the
operations are labelled by the computer at which they first took place and lower
operations happen later:

Client 1: Client 2:

setBalanceB x 1

setBalanceA y 2

getBalanceA y 2

getBalanceA x 0

This execution does not match a common-sense specification for the behaviour of bank
accounts: client 2 should have read a balance of $1 for x, given that it read the balance
of $2 for y, since y’s balance was updated after that of x. The anomalous behaviour in
the replicated case could not have occurred if the bank accounts had been implemented
by a single server. We can construct systems that manage replicated objects without the
anomalous behaviour produced by the naive protocol in our example. First, we need to
understand what counts as correct behaviour for a replicated system.

Linearizability and sequential consistency • There are various correctness criteria for
replicated objects. The most strictly correct systems are linearizable, and this property
is called linearizability. In order to understand linearizability, consider a replicated
service implementation with two clients. Let the sequence of read and update operations
that client i performs in some execution be oi0 oi1 oi2 . Each operation oij in these
sequences is specified by the operation type and the arguments and return values as they
occurred at runtime. We assume that every operation is synchronous. That is, clients
wait for one operation to complete before requesting the next.

A single server managing a single copy of the objects would serialize the
operations of the clients. In the case of an execution with only client 1 and client 2, this
interleaving of the operations could be o20 o21 o10 o

22
o11 o12 , say. We define

our correctness criteria for replicated objects by referring to a virtual interleaving of the
clients’ operations, which does not necessarily physically occur at any particular replica
manager but that establishes the correctness of the execution.

 A replicated shared object service is said to be linearizable if for any execution

there is some interleaving of the series of operations issued by all the clients that satisfies
the following two criteria:

SECTION 18.3 FAULT-TOLERANT SERVICES 777

• The interleaved sequence of operations meets the specification of a (single)
correct copy of the objects.

• The order of operations in the interleaving is consistent with the real times at
which the operations occurred in the actual execution.

This definition captures the idea that for any set of client operations there is a virtual
canonical execution – the interleaved operations that the definition refers to – against a
virtual single image of the shared objects. And each client sees a view of the shared
objects that is consistent with that single image: that is, the results of the client’s
operations make sense as they occur within the interleaving.

The service that gave rise to the execution of the bank account clients in the
preceding example is not linearizable. Even ignoring the real time at which the
operations took place, there is no interleaving of the two clients’ operations that would
satisfy any correct bank account specification: for auditing purposes, if one account
update occurred after another, then the first update should be observed if the second has
been observed.

Note that linearizability concerns only the interleaving of individual operations
and is not intended to be transactional. A linearizable execution may break application-
specific notions of consistency if concurrency control is not applied.

The real-time requirement in linearizability is desirable in an ideal world, because
it captures our notion that clients should receive up-to-date information. But, equally,
the presence of real time in the definition raises the issue of linearizability’s practicality,
because we cannot always synchronize clocks to the required degree of accuracy. A
weaker correctness condition is sequential consistency, which captures an essential
requirement concerning the order in which requests are processed without appealing to
real time. The definition keeps the first criterion from the definition for linearizability
but modifies the second.

A replicated shared object service is said to be sequentially consistent if for any

execution there is some interleaving of the series of operations issued by all the clients
that satisfies the following two criteria:

• The interleaved sequence of operations meets the specification of a (single)
correct copy of the objects.

• The order of operations in the interleaving is consistent with the program order in
which each individual client executed them.

Note that absolute time does not appear in this definition. Nor does any other total order
on all operations. The only notion of ordering that is relevant is the order of events at
each separate client – the program order. The interleaving of operations can shuffle the
sequence of operations from a set of clients in any order, as long as each client’s order
is not violated and the result of each operation is consistent, in terms of the objects’
specification, with the operations that preceded it. This is similar to shuffling together
several packs of cards so that they are intermingled in such a way as to preserve the
original order of each pack.

Every linearizable service is also sequentially consistent, since real-time order
reflects each client’s program order. The converse does not hold. An example execution

778 CHAPTER 18 REPLICATION

for a service that is sequentially consistent but not linearizable follows:

Client 1: Client 2:

setBalanceB x 1

getBalanceA y 0

getBalanceA x 0

setBalanceA y 2

This execution is possible under a naive replication strategy even if neither of the
computers A or B fails but if the update of x that client 1 made at B has not reached A
when client 2 reads it. The real-time criterion for linearizability is not satisfied, since
getBalanceA x 0 occurs later than setBalanceB x 1 ; but the following
interleaving satisfies both criteria for sequential consistency: getBalanceA y 0 ,

getBalanceA x 0 , setBalanceB x 1 , setBalanceA y 2 .
Lamport conceived of both sequential consistency [1979] and linearizability

[1986] in relation to shared memory registers (although he used the term ‘atomicity’
instead of ‘linearizability’). Herlihy and Wing [1990] generalized the idea to cover
arbitrary shared objects. Distributed shared memory systems also feature weaker
consistency models, as discussed on the companion website for the book
[www.cdk5.net/dsm].

18.3.1 Passive (primary-backup) replication

In the passive or primary-backup model of replication for fault tolerance (Figure 18.3),
there is at any one time a single primary replica manager and one or more secondary
replica managers – ‘backups’ or ‘slaves’. In the pure form of the model, front ends
communicate only with the primary replica manager to obtain the service. The primary
replica manager executes the operations and sends copies of the updated data to the
backups. If the primary fails, one of the backups is promoted to act as the primary.

The sequence of events when a client requests an operation to be performed is as
follows:

1. Request: The front end issues the request, containing a unique identifier, to the
primary replica manager.

2. Coordination: The primary takes each request atomically, in the order in which it
receives it. It checks the unique identifier, in case it has already executed the request,
and if so it simply resends the response.

3. Execution: The primary executes the request and stores the response.

4. Agreement: If the request is an update, then the primary sends the updated state,
the response and the unique identifier to all the backups. The backups send an
acknowledgement.

5. Response: The primary responds to the front end, which hands the response back
to the client.

Figure 18.3 The passive (primary-backup) model for fault tolerance

FEC

FEC

RM

Primary

Backup

Backup

RM

RM

SECTION 18.3 FAULT-TOLERANT SERVICES 779

This system obviously implements linearizability if the primary is correct, since the
primary sequences all the operations upon the shared objects. If the primary fails, then
the system retains linearizability if a single backup becomes the new primary and if the
new system configuration takes over exactly where the last left off. That is if:

• The primary is replaced by a unique backup (if two clients began using two
backups, then the system could perform incorrectly).

• The replica managers that survive agree on which operations had been performed
at the point when the replacement primary takes over.

Both of these requirements are met if the replica managers (primary and backups) are
organized as a group and if the primary uses view-synchronous group communication
to send the updates to the backups. The first of the above two requirements is then easily
satisfied. When the primary crashes, the communication system eventually delivers a
new view to the surviving backups, one that excludes the old primary. The backup that
replaces the primary can be chosen by any function of that view. For example, the
backups can choose the first member in that view as the replacement. That backup can
register itself as the primary with a name service that the clients consult when they
suspect that the primary has failed (or when they require the service in the first place).

The second requirement is also satisfied, by the ordering property of view-
synchrony and the use of stored identifiers to detect repeated requests. The view-
synchronous semantics guarantee that either all the backups or none of them will deliver
any given update before delivering the new view. Thus the new primary and the
surviving backups all agree on whether any particular client’s update has or has not been
processed.

Consider a front end that has not received a response. The front end retransmits
the request to whichever backup takes over as the primary. The primary may have
crashed at any point during the operation. If it crashed before the agreement stage (4),
then the surviving replica managers cannot have processed the request. If it crashed
during the agreement stage, then they may have processed the request. If it crashed after
that stage, then they have definitely processed it. But the new primary does not have to
know what stage the old primary was in when it crashed. When it receives a request, it
proceeds from stage 2 above. By view-synchrony, no consultation with the backups is
necessary, because they have all processed the same set of messages.

780 CHAPTER 18 REPLICATION

Discussion of passive replication • The primary-backup model may be used even where
the primary replica manager behaves in a non-deterministic way, for example due to
multi-threaded operation. Since the primary communicates the updated state from the
operations rather than a specification of the operations themselves, the backups slavishly
record the state determined by the primary’s actions alone.

To survive up to f process crashes, a passive replication system requires f +1
replica managers (such a system cannot tolerate Byzantine failures). The front end
requires little functionality to achieve fault tolerance. It just needs to be able to look up
the new primary when the current primary does not respond.

Passive replication has the disadvantage of providing relatively large overheads.
View-synchronous communication requires several rounds of communication per
multicast, and if the primary fails then yet more latency is incurred while the group
communication system agrees upon and delivers the new view.

In a variation of the model presented here, clients may be able to submit read
requests to the backups, thus offloading work from the primary. The guarantee of
linearizability is thereby lost, but the clients receive a sequentially consistent service.

Passive replication is used in the Harp replicated file system [Liskov et al. 1991].
The Sun Network Information Service (NIS, formerly Yellow Pages) uses passive
replication to achieve high availability and good performance, although with weaker
guarantees than sequential consistency. The weaker consistency guarantees are still
satisfactory for many purposes, such as storing certain types of system administration
records. The replicated data is updated at a master server and propagated from there to
slave servers using one-to-one (rather than group) communication. Clients may
communicate with either a master or a slave server to retrieve information. In NIS,
however, clients may not request updates: updates are made to the master’s files.

18.3.2 Active replication

In the active model of replication for fault tolerance (see Figure 18.4), the replica
managers are state machines that play equivalent roles and are organized as a group.
Front ends multicast their requests to the group of replica managers and all the replica
managers process the request independently but identically and reply. If any replica
manager crashes, this need have no impact upon the performance of the service, since
the remaining replica managers continue to respond in the normal way. We shall see that
active replication can tolerate Byzantine failures, because the front end can collect and
compare the replies it receives.

Under active replication, the sequence of events when a client requests an
operation to be performed is as follows:

1. Request: The front end attaches a unique identifier to the request and multicasts it
to the group of replica managers, using a totally ordered, reliable multicast primitive.
The front end is assumed to fail by crashing at worst. It does not issue the next request
until it has received a response.

2. Coordination: The group communication system delivers the request to every
correct replica manager in the same (total) order.

FE C

Figure 18.4 Active replication

FEC RM

RM

RM

SECTION 18.3 FAULT-TOLERANT SERVICES 781

3. Execution: Every replica manager executes the request. Since they are state
machines and since requests are delivered in the same total order, correct replica
managers all process the request identically. The response contains the client’s
unique request identifier.

4. Agreement: No agreement phase is needed, because of the multicast delivery
semantics.

5. Response: Each replica manager sends its response to the front end. The number
of replies that the front end collects depends upon the failure assumptions and the
multicast algorithm. If, for example, the goal is to tolerate only crash failures and the
multicast satisfies uniform agreement and ordering properties, then the front end
passes the first response to arrive back to the client and discards the rest (it can
distinguish these from responses to other requests by examining the identifier in the
response).

This system achieves sequential consistency. All correct replica managers process the
same sequence of requests. The reliability of the multicast ensures that every correct
replica manager processes the same set of requests and the total order ensures that they
process them in the same order. Since they are state machines, they all end up with the
same state as one another after each request. Each front end’s requests are served in
FIFO order (because the front end awaits a response before making the next request),
which is the same as ‘program order’. This ensures sequential consistency.

If clients do not communicate with other clients while waiting for responses to
their requests, then their requests are processed in happened-before order. If clients are
multi-threaded and can communicate with one another while awaiting responses from
the service, then to guarantee request processing in happened-before order we would
have to replace the multicast with one that is both causally and totally ordered.

The active replication system does not achieve linearizability. This is because the
total order in which the replica managers process requests is not necessarily the same as
the real-time order in which the clients made their requests. Schneider [1990] describes
how, in a synchronous system with approximately synchronized clocks, the total order
in which the replica managers process requests can be based on the order of physical

782 CHAPTER 18 REPLICATION

timestamps that the front ends supply with their requests. This does not guarantee
linearizability, because the timestamps are not perfectly accurate; but it approximates it.

Discussion of active replication • We have assumed a solution to totally ordered and
reliable multicast. As Chapter 15 pointed out, solving reliable and totally ordered
multicast is equivalent to solving consensus. Solving consensus in turn requires either
that the system is synchronous or that a technique such as employing failure detectors is
used in an asynchronous system, to work around the impossibility result of Fischer et al.

[1985].
Some solutions to consensus, such as that of Canetti and Rabin [1993], work even

with the assumption of Byzantine failures. Given such a solution, and therefore a
solution to totally ordered and reliable multicast, the active replication system can mask
up to f Byzantine failures, as long as the service incorporates at least 2f + 1 replica
managers. Each front end waits until it has collected f + 1 identical responses and passes
that response back to the client. It discards other responses to the same request. To be
strictly sure of which response is really associated with which request (given Byzantine
behaviour), we require that the replica managers digitally sign their responses.

It may be possible to relax the system that we have described. First, we have
assumed that all updates to the shared replicated objects must occur in the same order.
However, in practice some operations may commute: that is, the effect of two operations
performed in the order o1 o2; may be the same as if they were performed in the reverse
order, o2 o1; . For example, any two read-only operations (from different clients)
commute, and any two operations that do not perform reads but update distinct objects
commute. An active replication system may be able to exploit knowledge of
commutativity in order to avoid the expense of ordering all the requests. We pointed out
in Chapter 15 that some have proposed application-specific multicast ordering
semantics [Cheriton and Skeen 1993, Pedone and Schiper 1999].

Finally, front ends may send read-only requests only to individual replica
managers. In doing so, they lose the fault tolerance that comes with multicasting
requests, but the service remains sequentially consistent. Moreover, the front end can
easily mask the failure of a replica manager in this case, simply by submitting the read-
only request to another replica manager.

18.4 Case studies of highly available services:
The gossip architecture, Bayou and Coda

In this section, we consider how to apply replication techniques to make services highly
available. Our emphasis now is on giving clients access to the service – with reasonable
response times – for as much of the time as possible, even if some results do not conform
to sequential consistency. For example, the user on the train described at the beginning
of this chapter may be willing to cope with temporary inconsistencies between copies of
data such as diaries if they can continue to work while disconnected and fix any
problems later.

In Section 18.3, we saw that fault-tolerant systems transmit updates to the replica
managers in an ‘eager’ fashion: all correct replica managers receive the updates as soon

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 783

as possible and they reach collective agreement before passing control back to the client.
This behaviour is undesirable for highly available operation. Instead, the system should
provide an acceptable level of service using a minimal set of replica managers connected
to the client. And it should minimize how long the client is tied up while replica
managers coordinate their activities. Weaker degrees of consistency generally require
less agreement and so allow shared data to be more available.

We now examine the design of three systems that provide highly available
services: the gossip architecture, Bayou and Coda.

18.4.1 The gossip architecture

Ladin et al. [1992] developed what we call the gossip architecture as a framework for
implementing highly available services by replicating data close to the points where
groups of clients need it. The name reflects the fact that the replica managers exchange
‘gossip’ messages periodically in order to convey the updates they have each received
from clients (see Figure 18.5

Figure 18.5 Query and update operations in a gossip service

Query Val

FE

RM RM

RM

Query, prev Val, new

Update

FE

Update, prev Update id

Service

Clients

gossip

). The architecture is based upon earlier work on databases
by Fischer and Michael [1982] and Wuu and Bernstein [1984]. It may be used, for
example, to create a highly available electronic bulletin board or diary service.

A gossip service provides two basic types of operation: queries are read-only
operations and updates modify but do not read the state (the latter is a more restricted
definition than the one we have been using). A key feature is that front ends send queries
and updates to any replica manager they choose, provided it is available and can provide
reasonable response times. The system makes two guarantees, even though replica
managers may be temporarily unable to communicate with one another:

Each client obtains a consistent service over time: In answer to a query, replica
managers only ever provide a client with data that reflects at least the updates that the

784 CHAPTER 18 REPLICATION

client has observed so far. This is even though clients may communicate with
different replica managers at different times, and therefore could in principle
communicate with a replica manager that is ‘less advanced’ than one they used
before.

Relaxed consistency between replicas: All replica managers eventually receive all
updates and they apply updates with ordering guarantees that make the replicas
sufficiently similar to suit the needs of the application. It is important to realize that
while the gossip architecture can be used to achieve sequential consistency, it is
primarily intended to deliver weaker consistency guarantees. Two clients may
observe different replicas even though the replicas include the same set of updates,
and a client may observe stale data.

To support relaxed consistency, the gossip architecture supports causal update ordering,
as we defined it in Section 15.2.1. It also supports stronger ordering guarantees in the
form of forced (total and causal) and immediate ordering. Immediate-ordered updates
are applied in a consistent order relative to any other update at all replica managers,
whether the other update ordering is specified as causal, forced or immediate. Immediate
ordering is provided in addition to forced ordering, because a forced-order update and a
causal-order update that are not related by the happened-before relation may be applied
in different orders at different replica managers.

The choice of which ordering to use is left to the application designer and reflects
a trade-off between consistency and operation costs. Causal updates are considerably
less costly than the others and are expected to be used whenever possible. Note that
queries, which can be satisfied by any single replica manager, are always executed in
causal order with respect to other operations.

Consider an electronic bulletin board application, in which a client program
(which incorporates the front end) executes on the user’s computer and communicates
with a local replica manager. The client sends the user’s postings to the local replica
manager and the replica manager sends new postings in gossip messages to other replica
managers. Readers of bulletin boards experience slightly out-of-date lists of posted
items, but this does not usually matter if the delay is on the order of minutes or hours
rather than days. Causal ordering could be used for posting items. This would mean that
in general postings could appear in different orders at different replica managers but
that, for example, a posting whose subject is ‘Re: oranges’ will always be posted after
the message about ‘oranges’ to which it refers. Forced ordering could be used for adding
a new subscriber to a bulletin board, so that there is an unambiguous record of the order
in which users joined. Immediate ordering could be used for removing a user from a
bulletin board’s subscription list, so that messages could not be retrieved by that user via
some tardy replica manager once the deletion operation had returned.

The front end for a gossip service handles operations that the client makes using
an application-specific API and turns them into gossip operations. In general, client
operations can either read the replicated state, modify it or both. Since in gossip updates
purely modify the state, the front end converts an operation that both reads and modifies
the state into a separate query and update.

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 785

In terms of our basic replication model, an outline of how a gossip service
processes queries and update operations is as follows:

1. Request: The front end normally sends requests to only a single replica manager
at a time. However, a front end will communicate with a different replica manager
when the one it normally uses fails or becomes unreachable, and it may try one or
more others if the normal manager is heavily loaded. Front ends, and thus clients,
may be blocked on query operations. The default arrangement for update operations,
on the other hand, is to return to the client as soon as the operation has been passed
to the front end; the front end then propagates the operation in the background.
Alternatively, for increased reliability, clients may be prevented from continuing
until the update has been delivered to f + 1 replica managers, ensuring that it will be
delivered everywhere despite up to f failures.

2. Update response: If the request is an update, then the replica manager replies as
soon as it has received the update.

3. Coordination: The replica manager that receives a request does not process it until
it can apply the request according to the required ordering constraints. This may
involve receiving updates from other replica managers, in gossip messages. No other
coordination between replica managers is involved.

4. Execution: The replica manager executes the request.

5. Query response: If the request is a query, then the replica manager replies at this
point.

6. Agreement: The replica managers update one another by exchanging gossip

messages, which contain the most recent updates they have received. They are said
to update one another in a lazy fashion, in that gossip messages may be exchanged
only occasionally, after several updates have been collected, or when a replica
manager finds out that it is missing an update sent to one of its peers that it needs to
process a request.

We now describe the gossip system in more detail. We begin by considering the
timestamps and data structures that front ends and replica managers maintain in order to
maintain update ordering guarantees. Then, in terms of these, we explain how replica
managers process queries and updates. Much of the processing of vector timestamps
needed to maintain causal updates is similar to the causal multicast algorithm of Section
15.4.3.

The front end’s version timestamp • In order to control the ordering of operation
processing, each front end keeps a vector timestamp that reflects the version of the latest
data values accessed by the front end (and therefore accessed by the client). This
timestamp, denoted prev in Figure 18.5, contains an entry for every replica manager.
The front end sends it in every request message to a replica manager, together with a
description of the query or update operation itself. When a replica manager returns a
value as a result of a query operation, it supplies a new vector timestamp (new in Figure
18.5), since the replicas may have been updated since the last operation. Similarly, an
update operation returns a vector timestamp (Update ID in Figure 18.5) that is unique to
the update. Each returned timestamp is merged with the front end’s previous timestamp

Figure 18.6 Front ends propagate their timestamps whenever clients communicate directly

FE

Clients

FE

Service

Vector
timestamps

RM RM

RM

gossip

786 CHAPTER 18 REPLICATION

to record the version of the replicated data that has been observed by the client. (See
Section 14.4 for a definition of vector timestamp merging.)

Clients exchange data by accessing the same gossip service and by
communicating directly with one another. Since client-to-client communication can also
lead to causal relationships between operations applied to the service, it also occurs via
the clients’ front ends. That way, the front ends can piggyback their vector timestamps
on messages to other clients. The recipients merge them with their own timestamps in
order that causal relationships can be inferred correctly. The situation is shown in Figure
18.6.

Replica manager state • Regardless of the application, a replica manager contains the
following main state components (Figure 18.7):

Value: This is the value of the application state as maintained by the replica
manager. Each replica manager is a state machine, which begins with a specified
initial value and is thereafter solely the result of applying update operations to that
state.

Value timestamp: This is the vector timestamp that represents the updates that are
reflected in the value. It contains one entry for every replica manager. It is updated
whenever an update operation is applied to the value.

Update log: All update operations are recorded in this log as soon as they are
received. A replica manager keeps updates in a log for one of two reasons. The first
is that the replica manager cannot yet apply the update because it is not yet stable. A
stable update is one that may be applied consistently with its ordering guarantees
(causal, forced or immediate). An update that is not yet stable must be held back and
not yet processed. The second reason for keeping an update in the log is that, even
though the update has become stable and has been applied to the value, the replica

Figure 18.7 A gossip replica manager, showing its main state components

Replica timestamp

Update log

Value timestamp

Value

Executed operation table

Stable

updates

Updates

Gossip
messages

FE

Replica
timestamp Replica log

OperationID Update Prev

FE

Replica manager

Other replica managers

Timestamp table

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 787

manager has not received confirmation that this update has been received at all other
replica managers. In the meantime, it propagates the update in gossip messages.

Replica timestamp: This vector timestamp represents those updates that have been
accepted by the replica manager – that is, placed in the manager’s log. It differs from
the value timestamp in general, of course, because not all updates in the log are stable.

Executed operation table: The same update may arrive at a given replica manager
from a front end and in gossip messages from other replica managers. To prevent an
update being applied twice, the ‘executed operation’ table is kept, containing the
unique front-end-supplied identifiers of updates that have been applied to the value.
The replica managers check this table before adding an update to the log.

Timestamp table: This table contains a vector timestamp for each other replica
manager, filled with timestamps that arrive from them in gossip messages. Replica
managers use the table to establish when an update has been applied at all replica
managers.

The replica managers are numbered 0, 1, 2, .., : the ith element of a vector timestamp
held by replica manager i corresponds to the number of updates received from front ends
by i, and the jth component (j i) equals the number of updates received by j and
propagated to i in gossip messages. So, for example, in a three-manager gossip system
a value timestamp of (2,4,5) at manager 0 would represent the fact that the value there
reflects the first two updates accepted from front ends at manager 0, the first four at
manager 1 and the first five at manager 2. The following sections look in more detail at
how the timestamps are used to enforce the ordering.

788 CHAPTER 18 REPLICATION

Query operations • The simplest operation to consider is that of a query. Recall that a
query request q contains a description of the operation and a timestamp q.prev sent by
the front end. The latter reflects the latest version of the value that the front end has read
or submitted as an update. Therefore the task of the replica manager is to return a value
that is at least as recent as this. If valueTS is the replica’s value timestamp, then q can be
applied to the replica’s value if:

q.prev valueTS

The replica manager keeps q on a list of pending query operations (that is, a hold-back
queue) until this condition is fulfilled. It can either wait for the missing updates, which
should eventually arrive in gossip messages, or request the updates from the replica
managers concerned. For example, if valueTS is (2,5,5) and q.prev is (2,4,6), it can be
seen that just one update is missing – from replica manager 2. (The front end that
submitted q must have contacted a different replica manager previously for it to have
seen this update, which the replica manager has not seen.)

Once the query can be applied, the replica manager returns valueTS to the front
end as the timestamp new shown in Figure 18.5. The front end then merges this with its
timestamp: frontEndTS := merge(frontEndTS, new). The update at replica manager 1
that the front end has not seen before the query in the example just given (q.prev has 4
where the replica manager has 5) will be reflected in the update to frontEndTS (and
potentially in the value returned, depending on the query).

Processing update operations in causal order • A front end submits an update request to
one or more replica managers. Each update request u contains a specification of the
update (its type and parameters) u.op, the front end’s timestamp u.prev, and a unique
identifier that the front end generates, u.id. If the front end sends the same request u to
several replica managers, it uses the same identifier in u each time – so that it will not
be processed as several different but identical requests.

When replica manager i receives an update request from a front end it checks that
it has not already processed this request by looking up its operation identifier in the
executed operation table and in the records in its log. The replica manager discards the
update if it has already seen it; otherwise, it increments the ith element in its replica
timestamp by one, to keep count of the number of updates it has received directly from
front ends. Then the replica manager assigns to the update request u a unique vector
timestamp whose derivation is given shortly, and a record for the update is placed in the
replica manager’s log. If ts is the unique timestamp that the replica manager assigns to
the update, then the update record is constructed and stored in the log as the following
tuple:

logRecord := <i, ts, u.op, u.prev, u.id>

Replica manager i derives the timestamp ts from u.prev by replacing u.prev’s ith
element with the ith element of its replica timestamp (which it has just incremented).
This action makes ts unique, thus ensuring that all system components will correctly
record whether or not they have observed the update. The remaining elements in ts are
copied from u.prev, since it is these values sent by the front end that must be used to
determine when the update is stable. The replica manager then immediately passes ts

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 789

back to the front end, which merges it with its existing timestamp. Note that a front end
can submit its update to several replica managers and receive different timestamps in
return, all of which have to be merged into its timestamp.

The stability condition for an update u is similar to that for queries:

u.prev valueTS

This condition states that all the updates on which this update depends – that is, all the
updates that have been observed by the front end that issued the update – have already
been applied to the value. If this condition is not met at the time the update is submitted,
it will be checked again when gossip messages arrive. When the stability condition has
been met for an update record r, the replica manager applies the update to the value and
updates the value timestamp and the executed operation table, executed:

value := apply(value, r.u.op)
valueTS := merge(valueTS, r.ts)
executed := executed r.u.id

The first of these three statements represents the application of the update to the value.
In the second statement, the update’s timestamp is merged with that of the value. In the
third, the update’s operation identifier is added to the set of identifiers of operations that
have been executed – which is used to check for repeated operation requests.

Forced and immediate update operations • Forced and immediate updates require
special treatment. Recall that forced updates are totally as well as causally ordered. The
basic method for ordering forced updates is for a unique sequence number to be
appended to the timestamps associated with them, and to process them in order of this
sequence number. As Chapter 15 explained, a general method for generating sequence
numbers is to use a single sequencer process. But reliance upon a single process is
inadequate in the context of a highly available service. The solution is to designate a so-
called primary replica manager as the sequencer and to ensure that another replica
manager can be elected to take over consistently as the sequencer should the primary
fail. What is required is for a majority of replica managers (including the primary) to
record which update is next in sequence before the operation can be applied. Then, as
long as a majority of replica managers survive failure, this ordering decision will be
honoured by a new primary elected from among the surviving replica managers.

Immediate updates are ordered with respect to forced updates by using the primary
replica manager to order them in this sequence. The primary also determines which
causal updates are deemed to have preceded an immediate update. It does this by
communicating and synchronizing with the other replica managers in order to reach
agreement. Further details are provided in Ladin et al. [1992].

Gossip messages • Replica managers send gossip messages containing information
concerning one or more updates so that other replica managers can bring their state up-
to-date. A replica manager uses the entries in its timestamp table to estimate which
updates any other replica manager has not yet received (it is an estimate because that
replica manager may have received more updates by now).

790 CHAPTER 18 REPLICATION

A gossip message m consists of two items sent by the source replica manager: its
log, m.log, and its replica timestamp, m.ts (see Figure 18.7). The replica manager that
receives a gossip message has three main tasks:

• to merge the arriving log with its own (it may contain updates not seen by the
receiver before);

• to apply any updates that have become stable and have not been executed before
(stable updates in the arrived log may in turn make pending updates become
stable);

• to eliminate records from the log and entries in the executed operation table when
it is known that the updates have been applied everywhere and for which there is
no danger of repeats. Clearing redundant entries from the log and from the
executed operation table is an important task, since they would otherwise grow
without limit.

Merging the log contained in an arrived gossip message with the receiver’s log is
straightforward. Let replicaTS denote the recipient’s replica timestamp. A record r in
m.log is added to the receiver’s log unless r.ts replicaTS – in which case it is already
in the log or it has been applied to the value and then discarded.

The replica manager merges the timestamp of the incoming gossip message with
its own replica timestamp replicaTS, so that it corresponds to the additions to the log:

replicaTS := merge(replicaTS, m.ts)

When new update records have been merged into the log, the replica manager collects
the set S of any updates in the log that are now stable. These can be applied to the value
but care must be taken over the order in which they are applied so that the happened-
before relation is observed. The replica manager sorts the updates in the set according
to the partial order ‘ ’ between vector timestamps. It then applies the updates in this
order, smallest first. That is, each r S is applied only when there is no s S such that
s.prev < r.prev.

 The replica manager then looks for records in the log that can be discarded. If the
gossip message was sent by replica manager j and if tableTS is the table of replica
timestamps of the replica managers, then the replica manager sets

tableTS[j] := m.ts

The replica manager can now discard any record r in the log for an update that has been
received everywhere. That is, if c is the replica manager that created the record, then we
require for all replica managers i:

tableTS i c r.ts c

The gossip architecture also defines how replica managers can discard entries in the
executed operation table. It is important not to discard these entries too early; otherwise,
a much-delayed operation could mistakenly be applied twice. Ladin et al. [1992]
provide details of the scheme. In essence, front ends issue acknowledgements to the

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 791

replies to their updates, so replica managers know when a front end will stop sending the
update. They assume a maximum update propagation delay from that point.

Update propagation • The gossip architecture does not specify when replica managers
exchange gossip messages, or how a replica manager decides where to send its gossip
messages. A robust update-propagation strategy is needed if all replica managers are to
receive all updates in an acceptable time.

The time it takes for all replica managers to receive a given update depends upon
three factors:

• the frequency and duration of network partitions;

• the frequency with which replica managers send gossip messages;

• the policy for choosing a partner with which to exchange gossip.

The first factor is beyond the system’s control, although users can to some extent
determine how often they work disconnectedly.

The desired gossip-exchange frequency may be tuned to the application. Consider
a bulletin board system shared between several sites. It seems unnecessary for every
item to be dispatched immediately to all sites. But what if gossip is only exchanged after
long periods, say once a day? If only causal updates are used, then it is quite possible for
clients at each site to have their own consistent debates over the same bulletin board,
oblivious to the discussions at the other sites. Then at, say, midnight, all the debates will
be merged; but debates on the same topic are likely to be incongruous, when it would
have been preferable for them to take account of one another. A gossip-exchange period
of minutes or hours seems more appropriate in this case.

There are several types of partner-selection policy. Golding and Long [1993]
consider random, deterministic and topological policies for their ‘timestamped anti-
entropy protocol’, which uses a gossip-style update propagation scheme.

Random policies choose a partner randomly but with weighted probabilities so as
to favour some partners over others – for example, near partners over far partners.
Golding and Long found that such a policy works surprisingly well under simulations.
Deterministic policies utilize a simple function of the replica manager’s state to make
the choice of partner. For example, a replica manager could examine its timestamp table
and choose the replica manager that appears to be the furthest behind in the updates it
has received.

Topological policies arrange the replica managers into a fixed graph. One
possibility is a mesh: replica managers send gossip messages to the four replica
managers to which it is connected. Another is to arrange the replica managers in a circle,
with each passing on gossip only to its neighbour (in the clockwise direction, say), so
that updates from any replica manager eventually traverse the circle. There are many
other possible topologies, including trees.

Different partner-seclection policies such as these trade off the amount of
communication against higher transmission latencies and the possibility that a single
failure will affect other replica managers. The choice depends in practice on the relative
importance of these factors. For example, the circle topology produces relatively little
communication but is subject to high transmission latencies since gossip generally has
to traverse several replica managers. Moreover, if one replica manager fails then the
circle cannot function and needs to be reconfigured. By contrast, the random selection

792 CHAPTER 18 REPLICATION

policy is not susceptible to failures but may produce more variable update propagation
times.

Discussion of the gossip architecture • The gossip architecture is aimed at achieving
high availability for services. In its favour, this architecture ensures that clients can
continue to obtain a service even when they are partitioned from the rest of the network,
as long as at least one replica manager continues to function in their partition. But this
type of availability is achieved at the expense of enforcing only relaxed consistency
guarantees. For objects such as bank accounts, where sequential consistency is required,
a gossip architecture can do no better than the fault-tolerant systems studied in Section
18.3 and supply the service only in a majority partition.

Its lazy approach to update propagation makes a gossip-based system
inappropriate for updating replicas in near-real time, such as when users take part in a
‘real-time’ conference and update a shared document. A multicast-based system would
be more appropriate for that case.

The scalability of a gossip system is another issue. As the number of replica
managers grows, so does the number of gossip messages that have to be transmitted and
the size of the timestamps used. If a client makes a query, then this normally takes two
messages (between front end and replica manager). If a client makes a causal update
operation and if each of the R replica managers normally collects G updates into a gossip
message, then the number of messages exchanged is 2 R 1– G+ . The first term
represents communication between the front end and replica manager and the second is
the update’s share of a gossip message sent to the other replica managers. Increasing G
improves the number of messages but worsens the delivery latencies, because the replica
manager waits for more updates to arrive before propagating them.

One approach to making gossip-based services scalable is to make most of the
replicas read-only. In other words, these replicas are updated by gossip messages but do
not receive updates directly from front ends. This arrangement is potentially useful
where the update/query ratio is small. Read-only replicas can be situated close to client
groups and updates can be serviced by relatively few central replica managers. Gossip
traffic is reduced since read-only replicas have no gossip to propagate, and vector
timestamps need only contain entries for the updateable replicas.

18.4.2 Bayou and the operational transformation approach

The Bayou system [Terry et al. 1995, Petersen et al. 1997] provides data replication for
high availability with weaker guarantees than sequential consistency, like the gossip
architecture and the timestamped anti-entropy protocol. As in those systems, Bayou
replica managers cope with variable connectivity by exchanging updates in pairs, in
what the designers also call an anti-entropy protocol. But Bayou adopts a markedly
different approach in that it enables domain-specific conflict detection and conflict
resolution to take place.

Consider the user who needs to update a diary while working disconnectedly. If
strict consistency is required, in the gossip architecture updates would have to be
performed using a forced (totally ordered) operation. But then only users in a majority
partition could update the diary. The users’ access to the diary might thus be limited,
regardless of whether they in fact are making updates that would break the diary’s

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 793

integrity. Users who want to fill in a non-conflicting appointment are treated the same
as users who might have unwittingly double-booked a time slot.

In Bayou, by contrast, the users on the train and at work may make any updates
they like. All the updates are applied and recorded at whatever replica manager they
reach. When updates received at any two replica managers are merged during an anti-
entropy exchange, however, the replica managers detect and resolve conflicts. Any
domain-specific criterion for resolving conflicts between operations may be applied. For
example, if an executive working offsite, and her secretary have added appointments in
the same time slot, then a Bayou system detects this after the executive has reconnected
their laptop. Moreover, it resolves the conflict according to a domain-specific policy. In
this case, it could, for example, confirm the executive’s appointment and remove the
secretary’s booking in the slot. Such an effect, in which one or more of a set of
conflicting operations are undone or altered in order to resolve them, is called an
operational transformation.

The state that Bayou replicates is held in the form of a database, supporting
queries and updates (that may insert, modify or delete items in the database). Although
we shall not concentrate on this aspect here, a Bayou update is a special case of a
transaction. It consists of a single operation, an invocation of a ‘stored procedure’, that
affects several objects within each replica manager but is carried out with the ACID
guarantees. Bayou may undo and redo updates to the database as execution proceeds.

The Bayou guarantee is that, eventually, every replica manager receives the same
set of updates and it eventually applies those updates in such a way that the replica
managers’ databases are identical. In practice, there may be a continuous stream of
updates and the databases may never become identical; but they would become identical
if the updates ceased.

Committed and tentative updates • Updates are marked as tentative when they are first
applied to a database. Bayou arranges that tentative updates are eventually placed in a
canonical order and marked as committed. While updates are tentative, the system may
undo and reapply them as necessary to produce a consistent state. Once committed, they
remain applied in their allotted order. In practice, the committed order can be achieved
by designating some replica manager as the primary replica manager. In the usual way,
this decides the committed order as that in which it receives the tentative updates and it
propagates that ordering information to other replica managers. For the primary, users
can choose, for example, a fast machine that is usually available, or the replica manager
on an executive’s laptop, if that user’s updates take priority.

At any one time, the state of a database replica derives from a (possibly empty)
sequence of committed updates followed by a (possibly empty) sequence of tentative
updates. If the next committed update arrives, or if one of the tentative updates that has
been applied becomes the next committed update, then a reordering of the updates must
take place. In Figure 18.8, ti has become committed. All tentative updates after cN need
to be undone; ti is then applied after cN and t0 to ti 1– and ti 1+ etc. reapplied after ti .

Dependency checks and merge procedures • An update may conflict with some other
operation that has already been applied. Because of this possibility, every Bayou update
contains a dependency check and a merge procedure in addition to the operation’s
specification (the operation type and parameters). All these components of an update are
domain-specific.

Figure 18.8 Committed and tentative updates in Bayou

c0 c1 c2 cN t0 t1 ti

Committed Tentative

t2

Tentative update ti becomes the next committed update
and is inserted after the last committed update cN.

ti+1

794 CHAPTER 18 REPLICATION

A replica manager calls the dependency check procedure before applying the
operation. It checks whether a conflict would occur if the update was applied and it may
examine any part of the database to do that. For example, consider the case of booking
an appointment in a diary. The dependency check could, most simply, test for a write-

write conflict: that is, whether another client has filled the required slot. But the
dependency check could also test for a read-write conflict. For example, it could test that
the desired slot is empty and that the number of appointments on that day is fewer than
six.

If the dependency check indicates a conflict, then Bayou invokes the operation’s
merge procedure. That procedure alters the operation that will be applied so that it
achieves something similar to the intended effect but avoids a conflict. For example, in
the case of the diary the merge procedure could choose another slot at a nearby time
instead or, as we mentioned above, it could use a simple priority scheme to decide which
appointment is more important and impose that one. The merge procedure may fail to
find a suitable alteration of the operation, in which case the system indicates an error.
The effect of a merge procedure is deterministic, however – Bayou replica managers are
state machines.

Discussion • Bayou differs from the other replication schemes that we have considered
in that it makes replication non-transparent to the application. It exploits knowledge of
the application’s semantics in order to increase the availability of data while maintaining
a replicated state that is what we might call eventually sequentially consistent.

This approach has a few disadvantages. The first is the increased complexity for
the application programmer, who must supply dependency checks and merge
procedures. Both may be complex to produce, given the potentially large number of
possible conflicts that need to be detected and resolved. The second disadvantage is the
increased complexity for the user. Users are expected to deal not only with data that are
read while they are still tentative but also with the fact that the operations they specify
may turn out to have been altered later. For example, the user may book a slot in a diary,
only to find later that the booking has ‘jumped’ to a nearby slot. It is very important that
the user be given a clear indication of which data are tentative and which are committed.

The operational transformation approach used by Bayou appears particularly in
systems to support computer-supported cooperative working (CSCW), where
conflicting updates between geographically separated users may occur [Kindberg et al.

1996, Sun and Ellis 1998]. The approach is limited, in practice, to applications where
conflicts are relatively rare, where the underlying data semantics are relatively simple;
and where users can cope with tentative information.

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 795

18.4.3 The Coda file system

The Coda file system is a descendent of AFS (see Section 12.4) that aims to address
several requirements that AFS does not meet – particularly the requirement to provide
high availability despite disconnected operation. It was developed in a research project
undertaken by Satyanarayanan and his coworkers at Carnegie-Mellon University
[Satyanarayanan et al. 1990, Kistler and Satyanarayanan 1992]. The design
requirements for Coda were derived from experience with AFS at CMU and elsewhere
involving its use in large-scale distributed systems on both local and wide area
communication networks.

While the performance and ease of administration of AFS were found to be
satisfactory under the conditions of use at CMU, it was felt that the limited form of
replication (restricted to read-only volumes) offered by AFS was bound to become a
limiting factor at some scale, especially for accessing widely shared files such as
electronic bulletin boards and other system-wide databases.

In addition, there was room for improvement in the availability of the service
offered by AFS. The most common difficulties experienced by users of AFS arose from
the failure (or scheduled interruption) of servers and network components. The scale of
the system at CMU was such that a few service failures occurred every day and they
could seriously inconvenience many users for periods ranging from a few minutes to
many hours.

Finally, a mode of computer use was emerging that AFS did not cater for – the
mobile use of portable computers. This led to a requirement to make all of the files
needed for a user to continue their work available while disconnected from the network
without resorting to manual methods for managing the locations of files.

Coda aims to meet all three of these requirements under the general heading of
constant data availability. The aim was to provide users with the benefits of a shared file
repository but to allow them to rely entirely on local resources when the repository is
partially or totally inaccessible. In addition to these aims, Coda retains the original goals
of AFS with regard to scalability and the emulation of UNIX file semantics.

In contrast to AFS, where read-write volumes are stored on just one server, the
design of Coda relies on the replication of file volumes to achieve a higher throughput
of file access operations and a greater degree of fault tolerance. In addition, Coda relies
on an extension of the mechanism used in AFS for caching copies of files at client
computers to enable those computers to operate when they are not connected to the
network.

Coda is like Bayou in so far as it follows an optimistic strategy. That is, it allows
clients to update data while the system is partitioned, on the basis that conflicts are
relatively unlikely and that they can be fixed if they do occur. Like Bayou, it detects
conflicts, but unlike Bayou it performs these checks without regard to the semantics of
the data stored in files. Also unlike Bayou, it provides only limited system support for
resolving conflicting replicas.

The Coda architecture • Coda runs what it calls ‘Venus’ processes at the client
computers and ‘Vice’ processes at file server computers, adopting the AFS terminology.
The Vice processes are what we have called replica managers. The Venus processes are
a hybrid of front ends and replica managers. They play the front end’s role of hiding the
service implementation from local client processes, but since they manage a local cache

796 CHAPTER 18 REPLICATION

of files they are also replica managers (although of a different type to the Vice
processes).

The set of servers holding replicas of a file volume is known as the volume storage

group (VSG). At any instant, a client wishing to open a file in such a volume can access
some subset of the VSG, known as the available volume storage group (AVSG). The
membership of the AVSG varies as servers become accessible or are made inaccessible
by network or server failures.

Normally, Coda file access proceeds in a similar manner to AFS, with cached
copies of files being supplied to the client computers by any one of the servers in the
current AVSG. As in AFS, clients are notified of changes via a callback promise

mechanism, but this now depends on an additional mechanism for the distribution of
updates to each replica. On close, copies of modified files are broadcast in parallel to all
of the servers in the AVSG.

In Coda, disconnected operation is said to occur when the AVSG is empty. This
may be due to network or server failures, or it may be a consequence of the deliberate
disconnection of the client computer, as in the case of a laptop. Effective disconnected
operation relies on the presence in the client computer’s cache of all of the files that are
required for the user’s work to proceed. To achieve this, the user must cooperate with
Coda to generate a list of files that should be cached. A tool is provided that records a
historical list of file usage while connected, and this serves as a basis for predicting
usage while disconnected.

It is a principle of the design of Coda that the copies of files residing on servers
are more reliable than those residing in the caches of client computers. Although it might
be possible logically to construct a file system that relies entirely on cached copies of
files in client computers, it is unlikely that a satisfactory quality of service would be
achieved. The Coda servers exist to provide the necessary quality of service. The copies
of files residing in client computer caches are regarded as useful only as long as their
currency can be periodically revalidated against the copies residing in servers. In the
case of disconnected operation, revalidation occurs when disconnected operation ceases
and the cached files are reintegrated with those in the servers. In the worst case, this may
require some manual intervention to resolve inconsistencies or conflicts.

The replication strategy • Coda’s replication strategy is optimistic – it allows
modification of files to proceed when the network is partitioned or during disconnected
operation. It relies on the attachment to each version of a file of a Coda version vector

(CVV). A CVV is a vector timestamp with one element for each server in the relevant
VSG. Each element of the CVV is an estimate of the number of modifications performed
on the version of the file that is held at the corresponding server. The purpose of the
CVVs is to provide sufficient information about the update history of each file replica
to enable potential conflicts to be detected and submitted for manual intervention and
for stale replicas to be updated automatically.

If the CVV at one of the sites is greater than or equal to all the corresponding
CVVs at the other sites (Section 14.4 defines the meaning of v1 v2 for vector
timestamps v1 and v2), then there is no conflict. Older replicas (with strictly smaller
timestamps) include all the updates in a newer replica and they can automatically be
brought up-to-date with it.

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 797

When this is not the case – that is, when neither v1 v2 nor v2 v1 holds for two
CVVs – then there is a conflict: each replica reflects at least one update that the other
does not reflect. Coda does not, in general, resolve conflicts automatically. The file is
marked as ‘inoperable’ and the owner of the file is informed of the conflict.

When a modified file is closed, each site in the current AVSG is sent an update
message by the Venus process at the client, containing the current CVV and the new
contents for the file. The Vice process at each site checks the CVV and, if it is greater
than the one currently held, stores the new contents for the file and returns a positive
acknowledgement. The Venus process then computes a new CVV with modification
counts increased for the servers that responded positively to the update message and
distributes the new CVV to the members of the AVSG.

Since the message is sent only to the members of the AVSG and not the VSG,
servers that are not in the current AVSG do not receive the new CVV. Any CVV will
therefore always contain an accurate modification count for the local server, but the
counts for non-local servers will in general be lower bounds, since they will be updated
only when the server receives an update message.

Example: Consider a sequence of modifications to a file F in a volume that is
replicated at three servers, S

1
, S

2
 and S

3
. The VSG for F is {S

1
, S

2
, S

3
}. F is modified

at about the same time by two clients, C
1

and C
2
. Because of a network fault, C

1
 can

access only S
1
 and S

2
 (C

1
’s AVSG is {S

1
, S

2
}) and C

2
 can access only S

3
(C

2
’s

AVSG is {S
3
}).

1. Initially, the CVVs for F at all three servers are the same – say, [1,1,1].

2. C
1
 runs a process that opens F, modifies it and then closes it. The Venus process

at C
2
 broadcasts an update message to its AVSG, {S

1
, S

2
}, finally resulting in

new versions of F and a CVV [2,2,1] at S
1

and S
2
 but no change at S

3
.

3. Meanwhile, C
2
 runs two processes, each of which opens F, modifies it and then

closes it. The Venus process at C
2
 broadcasts an update message to its AVSG,

{S
3
}, after each modification, finally resulting in a new version of F and a CVV

[1,1,3] at S
3
.

4. At some later time, the network fault is repaired, and C
2
 makes a routine check

to see whether the inaccessible members of the VSG have become accessible
(the process by which such checks are made is described later) and discovers that
S

1
and S

2
 are now accessible. It modifies its AVSG to {S

1
, S

2
, S

3
} for the volume

containing F and requests the CVVs for F from all members of the new AVSG.
When they arrive, C

2
discovers that S

1
and S

2
 each have CVVs [2,2,1] whereas

S
3
 has [1,1,3]. This represents a conflict requiring manual intervention to bring

F up-to-date in a manner that minimizes the loss of update information.

On the other hand, consider a similar but simpler scenario that follows the same
sequence of events as the one above, but omitting item (3), so that F is not modified
by C

2
. The CVV at S

3
 therefore remains unchanged as [1,1,1], and when the network

fault is repaired, C
2
 discovers that the CVVs at S

1
and S

2
 ([2,2,1]) dominate that at

S
3
. The version of the file at S

1
or S

2
 should replace that at S

3
.

The box below contains an example illustrating the use of CVVs to manage the
updating of a file replicated at three sites. Further details on the use of CVVs for the

798 CHAPTER 18 REPLICATION

management of updates can be found in Satyanarayanan et al. [1990]. CVVs are based
on the replication techniques used in the Locus system [Popek and Walker 1985].

In normal operation, the behaviour of Coda appears similar to that of AFS. A
cache miss is transparent to users and only imposes a performance penalty. The
advantages deriving from the replication of some or all file volumes on multiple servers
are:

• The files in a replicated volume remain accessible to any client that can access
at least one of the replicas.

• The performance of the system can be improved by sharing some of the load
of servicing client requests on a replicated volume between all of the servers
that hold replicas.

In disconnected operation (when none of the servers for a volume can be accessed by
the client) a cache miss prevents further progress and the computation is suspended until
the connection is resumed or the user aborts the process. It is therefore important to load
the cache before disconnected operation commences so that cache misses can be
avoided.

In summary, compared with AFS, Coda enhances availability both by the
replication of files across servers and by the ability of clients to operate entirely out of
their caches. Both methods depend upon the use of an optimistic strategy for the
detection of update conflicts in the presence of network partitions. The mechanisms are
complementary and independent of each other. For example, a user can exploit the
benefits of disconnected operation even though the required file volumes are stored on
a single server.

Update semantics • The currency guarantees offered by Coda when a client opens a file
are weaker than for AFS, reflecting the optimistic update strategy. The single server S
referred to in the currency guarantees for AFS is replaced by a set of servers S (the file’s
VSG) and the client C can access a subset of servers s (the AVSG for the file seen by C).

Informally, the guarantee offered by a successful open in Coda is that it provides
the most recent copy of F from the current AVSG, and if no server is accessible, a locally
cached copy of F is used if one is available. A successful close guarantees that the file
has been propagated to the currently accessible set of servers, or, if no server is
available, that the file has been marked for propagation at the earliest opportunity.

A more precise definition of these guarantees, taking into account the effect of lost
callbacks, can be made using an extension of the notation used for AFS. In each
definition except the last there are two cases: the first, beginning s Ø, refers to all
situations in which the AVSG is not empty, and the second deals with disconnected
operation:

after a successful open: (s Ø and (latest(F, s , 0)

 or (latest(F, s , T) and lostCallback(s , T) and

 inCache(F))))

or (s = Ø and inCache(F))

after a failed open: (s Ø and conflict(F, s))

or (s = Ø and ¬ inCache(F))

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES 799

after a successful close: (s Ø and updated(F, s))

or (s = Ø)

after a failed close: s Ø and conflict(F, s)

This model assumes a synchronous system: T is the longest time for which a client can
remain unaware of an update elsewhere to a file that is in its cache; latest(F, s , T)
denotes the fact that the current value of F at C was the latest across all the servers in s
at some instant in the last T seconds and that there were no conflicts among the copies
of F at that instant; lostCallback(s , T) means that a callback was sent by some member
of s in the last T seconds and was not received at C; and conflict(F, s) means that the
values of F at some servers in s are currently in conflict.

Accessing replicas • The strategy used on open and close to access the replicas of a file
is a variant of the read-one/write-all approach described in Section 18.5. On open, if a
copy of the file is not present in the local cache the client identifies a preferred server
from the AVSG for the file. The preferred server may be chosen at random, or on the
basis of performance criteria such as physical proximity or server load. The client
requests a copy of the file attributes and contents from the preferred server, and on
receiving it, it checks with all the other members of the AVSG to verify that the copy is
the latest available version. If not, a member of the AVSG with the latest version is made
the preferred site, the file contents are refetched and the members of the AVSG are
notified that some members have stale replicas. When the fetch has been completed, a
callback promise is established at the preferred server.

When a file is closed at a client after modification, its contents and attributes are
transmitted in parallel to all the members of the AVSG using a multicast remote
procedure calling protocol. This maximizes the probability that every replication site for
a file has the current version at all times. It doesn’t guarantee it, because the AVSG does
not necessarily include all the members of the VSG. It minimizes the server load by
giving clients the responsibility for propagating changes to the replication sites in the
normal case (servers are involved only when a stale replica is discovered on open).

Since maintaining callback state in all the members of an AVSG would be
expensive, the callback promise is maintained only at the preferred server. But this
introduces a new problem: the preferred server for one client need not be in the AVSG
of another client. If this is the case, an update by the second client will not cause a
callback to the first client. The solution adopted to this problem is discussed in the next
subsection.

Cache coherence • The Coda currency guarantees stated above mean that the Venus
process at each client must detect the following events within T seconds of their
occurrence:

• enlargement of an AVSG (due to the accessibility of a previously inaccessible
server);

• shrinking of an AVSG (due to a server becoming inaccessible);

• a lost callback event.

To achieve this, Venus sends a probe message to all the servers in VSGs of the files that
it has in its cache every T seconds. Responses will be received only from accessible

800 CHAPTER 18 REPLICATION

servers. If Venus receives a response from a previously inaccessible server it enlarges
the corresponding AVSG and drops the callback promises on any files that it holds from
the relevant volume. This is done because the cached copy may no longer be the latest
version available in the new AVSG.

If it fails to receive a response from a previously accessible server Venus shrinks
the corresponding AVSG. No callback changes are required unless the shrinkage is
caused by the loss of a preferred server, in which case all callback promises from that
server must be dropped. If a response indicates that a callback message was sent but not
received, the callback promise on the corresponding file is dropped.

We are now left with the problem, mentioned above, of updates that are missed by
a server because it is not in the AVSG of a different client that performs an update. To
deal with this case, Venus is sent a volume version vector (volume CVV) in response to
each probe message. The volume CVV contains a summary of the CVVs for all of the
files in the volume. If Venus detects any mismatch between the volume CVVs then some
members of the AVSG must have some file versions that are not up-to-date. Although
the outdated files may not be the ones that are in its local cache, Venus makes a
pessimistic assumption and drops the callback promises on all of the files that it holds
from the relevant volume.

Note that Venus only probes servers in the VSGs of files for which it holds cached
copies and that a single probe message serves to update the AVSGs and check the
callbacks for all of the files in a volume. This, combined with a relatively large value for
T (on the order of 10 minutes in the experimental implementation), means that the
probes are not an obstacle to the scalability of Coda to large numbers of servers and wide
area networks.

Disconnected operation • During brief disconnections, such as those that may occur
because of unexpected service interruptions, the least recently used cache replacement
policy normally adopted by Venus may be sufficient to avoid cache misses on the
disconnected volumes. But it is unlikely that a client could operate in disconnected mode
for extended periods without generating references to files or directories that are not in
the cache unless a different policy is adopted.

Coda therefore allows users to specify a prioritized list of files and directories that
Venus should strive to retain in the cache. Objects at the highest level are identified as
sticky and these must be retained in the cache at all times. If the local disk is large enough
to accommodate all of them, the user is assured that they will remain accessible. Since
it is often difficult to know exactly what file accesses are generated by any sequence of
user actions, a tool is provided that enables the user to bracket a sequence of actions;
Venus notes the file references generated by the sequence and flags them with a given
priority.

When disconnected operation ends, a process of reintegration begins. For each
cached file or directory that has been modified, created or deleted during disconnected
operation, Venus executes a sequence of update operations to make the AVSG replicas
identical to the cached copy. Reintegration proceeds top-down from the root of each
cached volume.

Conflicts may be detected during reintegration due to updates to AVSG replicas
by other clients. When this occurs, the cached copy is stored in a temporary location on
the server, and the user that initiated the reintegration is informed. This approach is

SECTION 18.4 CASE STUDIES OF HIGHLY AVAILABLE SERVICES: THE GOSSIP ARCHITECTURE, BAYOU AND

based on the design philosophy adopted in Coda, which assigns priority to server-based
replicas over cached copies. The temporary copies are stored in a covolume, which is
associated with each volume on a server. Covolumes resemble the lost+found

directories found in conventional UNIX systems. They mirror just those parts of the file
directory structure needed to hold the temporary data. Little additional storage is
required, because the covolumes are almost empty.

Performance • Satyanarayanan et al. [1990] compared the performance of Coda with
AFS under benchmark loads designed to simulate user populations ranging from 5 to 50
typical AFS users.

With no replication, there is no significant difference between the performance of
AFS and that of Coda. With threefold replication, the time taken for Coda to perform a
benchmark load equivalent to 5 typical users exceeds that of AFS without replication by
only 5%. However, with threefold replication and a load equivalent to 50 users, the time
required to complete the benchmark is increased by 70%, whereas that for AFS without
replication is increased by only 16%. This difference is attributed only in part to the
overheads associated with replication – differences in the tuning of the implementation
are said to account for part of the difference in performance.

Discussion • We pointed out above that Coda is similar to Bayou in that it also employs
an optimistic approach to achieving high availability (although they differ in several
other ways, not least because one manages files and the other databases). We also
described how Coda uses CVVs to check for conflicts, without regard to the semantics
of the data stored in files. The approach can detect potential write-write conflicts but not
read-write conflicts. These are ‘potential’ write-write conflicts because at the level of
the application semantics there may be no actual conflict: clients may have updated
different objects in the file compatibly such that a simple automatic merge would be
possible.

Coda’s overall approach of semantics-free conflict detection and manual
resolution is sensible in many cases, especially in applications that require human
judgement or in systems with no knowledge of the data’s semantics.

Directories are a special case in Coda. Automatically maintaining the integrity of
these key objects through conflict resolution is sometimes possible, since their
semantics are relatively simple: the only changes that can be made to directories are the
insertion or deletion of directory entries. Coda incorporates its own method for resolving
directories. It has the same effect as Bayou’s approach of operational transformation, but
Coda merges the state of conflicting directories directly, since it has no record of the
operations that clients performed.

Replication in Dynamo • Section 16.7 introduced Dynamo, the storage service that
Amazon uses for applications such as shopping carts that require only key/value access.
In Dynamo [DeCandia et al. 2007], data is partitioned and replicated; all updates reach
all replicas eventually.

Like Bayou and Coda, Dynamo uses optimistic replication techniques; changes
are allowed to propagate to replicas in the background and concurrent, disconnected
work is tolerated. This approach can lead to conflicting changes that must be detected
and resolved.

In Dynamo, writes are always accepted and written as immutable versions, so that
customers can always add and remove items to and from their shopping carts.

802 CHAPTER 18 REPLICATION

Vector timestamps are used to determine causal ordering between different
versions of the same object. The timestamps are compared as described in Section 14.4.
When the vector timestamp of one version is less than that of another, the earlier version
is discarded. Otherwise, the two versions conflict and must be resolved. Both versions
of the data are stored and then given to a client as the results of a read operation.

This client is responsible for resolving the conflict. Dynamo provides both the
application-level approach of Bayou and the system-level approach of Coda. The former
approach is used for shopping carts, where all the add item operations in conflicting
versions are merged and sometimes a deleted item can reappear. When application
semantics cannot be used, Dynamo uses simple timestamp-based resolution – the object
with the largest physical timestamp value is chosen as the correct version.

18.5 Transactions with replicated data

So far in this chapter we have considered systems in which clients request single
operations at a time on replicated sets of objects. Chapters 16 and 17 explained that
transactions are sequences of one or more operations, applied in such a way as to enforce
the ACID properties. As with the systems in Section 18.4, objects in transactional
systems may be replicated to increase both availability and performance.

From a client’s viewpoint, a transaction on replicated objects should appear the
same as one with non-replicated objects. In a non-replicated system, transactions appear
to be performed one at a time in some order. This is achieved by ensuring a serially
equivalent interleaving of clients’ transactions. The effect of transactions performed by
clients on replicated objects should be the same as if they had been performed one at a
time on a single set of objects. This property is called one-copy serializability. It is
similar to, but not to be confused with, sequential consistency. Sequential consistency
considers valid executions without any notion of aggregating the client operations into
transactions.

Each replica manager provides concurrency control and recovery of its own
objects. In this section, we assume that two-phase locking is used for concurrency
control.

Recovery is complicated by the fact that a failed replica manager is a member of
a collection and that the other members continue to provide a service during the time that
it is unavailable. When a replica manager recovers from a failure, it uses information
obtained from the other replica mangers to restore its objects to their current values,
taking into account all the changes that have occurred during the time it was unavailable.

This section first introduces the architecture for transactions with replicated data.
Architectural questions are whether a client request can be addressed to any of the
replica managers; how many replica managers are required for the successful
completion of an operation; whether the replica manager contacted by a client can defer
the forwarding of requests until a transaction is committed; and how to carry out a two-
phase commit protocol.

The implementation of one-copy serializability is illustrated by read-one/write-all

– a simple replication scheme in which read operations are performed by a single replica
manager and write operations are performed by all of them.

SECTION 18.5 TRANSACTIONS WITH REPLICATED DATA 803

The section then discusses the problems of implementing replication schemes in
the presence of server crashes and recovery. It introduces available copies replication,
a variant of the read-one/write-all replication scheme in which read operations are
performed by any single replica manager and write operations are performed by all of
those that are available.

Finally, the section presents three replication schemes that work correctly when
the collection of replica managers is divided into subgroups by a network partition:

• Available copies with validation: Available copies replication is applied in each
partition. When a partition is repaired, a validation procedure is applied and any
inconsistencies are dealt with.

• Quorum consensus: A subgroup must have a quorum (meaning that it has
sufficient members) in order to be allowed to continue providing a service in the
presence of a partition. When a partition is repaired (and when a replica manager
restarts after a failure), replica managers get their objects up-to-date by means of
recovery procedures.

• Virtual partition: A combination of quorum consensus and available copies. If a
virtual partition has a quorum, it can use available copies replication.

18.5.1 Architectures for replicated transactions

As with the range of systems we have already considered in previous sections, a front
end may either multicast client requests to groups of replica managers or send each
request to a single replica manager, which is then responsible for processing the request
and responding to the client. Wiesmann et al. [2000] and Schiper and Raynal [1996]
consider the case of multicast requests, and we shall not deal with it here. Henceforth,
we assume that a front end sends client requests to one of the group of replica managers
of a logical object. In the primary copy approach, all front ends communicate with a
distinguished ‘primary’ replica manager to perform an operation, and that replica
manager keeps the backups up-to-date. Alternatively, front ends may communicate with
any replica manager to perform an operation – but coordination between the replica
managers is consequently more complex.

The replica manager that receives a request to perform an operation on a particular
object is responsible for getting the cooperation of the other replica managers in the
group that have copies of that object. Different replication schemes have different rules
as to how many of the replica managers in a group are required for the successful
completion of an operation. For example, in the read-one/write-all scheme, a read

request can be performed by a single replica manager, whereas a write request must be
performed by all the replica managers in the group, as shown in Figure 18.9 (there can
be different numbers of replicas of the various objects). Quorum consensus schemes are
designed to reduce the number of replica managers that must perform update operations,
but at the expense of increasing the number of replica managers required to perform
read-only operations.

Another issue is whether the replica manager contacted by a front end should defer
the forwarding of update requests to other replica managers in the group until after a
transaction commits – the so-called lazy approach to update propagation – or,

Figure 18.9 Transactions on replicated data

B

A

Client + front end

BB BA A

getBalance(A)

Client + front end

Replica managers
Replica managers

deposit(B,3);

UT

804 CHAPTER 18 REPLICATION

conversely, whether replica managers should forward each update request to all the
necessary replica managers within the transaction and before it commits – the eager

approach. The lazy approach is an attractive alternative because it reduces the amount
of communication between the replica managers that takes place before responding to
the updating client. However, concurrency control must also be considered. The lazy
approach is sometimes used in primary copy replication (see below), where a single
primary replica manager serializes the transactions. But if several different transactions
may attempt to access the same objects at different replica managers in a group, to
ensure that the transactions are correctly serialized at all the replica managers in the
group, each replica manager needs to know about the requests performed by the others.
The eager approach is the only one available in that case.

The two-phase commit protocol • The two-phase commit protocol becomes a two-level
nested two-phase commit protocol. As before, the coordinator of a transaction
communicates with the workers. But if either the coordinator or a worker is a replica
manager, it will communicate with the other replica managers to which it passed
requests during the transaction.

That is, in the first phase, the coordinator sends canCommit? requests to the
workers, which pass them on to the other replica managers and collect their replies
before replying to the coordinator. In the second phase, the coordinator sends the
doCommit or doAbort request, which is passed on to the members of the groups of
replica managers.

Primary copy replication • Primary copy replication may be used in the context of
transactions. In this scheme, all client requests (whether or not they are read-only) are
directed to a single primary replica manager (see Figure 18.3). For primary copy
replication, concurrency control is applied at the primary. To commit a transaction, the
primary communicates with the backup replica managers and then, in the eager
approach, replies to the client. This form of replication allows a backup replica manager
to take over consistently if the primary fails. In the lazy alternative, the primary responds
to front ends before it has updated its backups. In that case, a backup that replaces a
failed front end will not necessarily have the latest state of the database.

SECTION 18.5 TRANSACTIONS WITH REPLICATED DATA 805

Read-one/write-all • We use this simple replication scheme to illustrate how two-phase
locking at each replica manager can be used to achieve one-copy serializability, where
front ends may communicate with any replica manager. Every write operation must be
performed at all of the replica managers, each of which sets a write lock on the object
affected by the operation. Each read operation is performed by a single replica manager,
which sets a read lock on the object affected by the operation.

Consider pairs of operations of different transactions on the same object: any pair
of write operations will require conflicting locks at all of the replica managers, while a
read operation and a write operation will require conflicting locks at a single replica
manager. Thus one-copy serializability is achieved.

18.5.2 Available copies replication

Simple read-one/write-all replication is not a realistic scheme, because it cannot be
carried out if some of the replica managers are unavailable, either because they have
crashed or because of a communication failure. The available copies scheme is designed
to allow for some replica managers being temporarily unavailable. The strategy is that a
client’s read request on a logical object may be performed by any available replica
manager but that a client’s update request must be performed by all available replica
managers in the group with copies of the object. The idea of the ‘available members of
a group of replica managers’ is similar to Coda’s available volume storage group,
described in Section 18.4.3.

In the normal case, client requests are received and performed by a functioning
replica manager. read requests can be performed by the replica manager that receives
them. write requests are performed by the receiving replica manager and all the other
available replica managers in the group. For example, in Figure 18.10, the getBalance

operation of transaction T is performed by X, whereas its deposit operation is performed
by M, N and P. Concurrency control at each replica manager affects the operations
performed locally. For example, at X, transaction T has read A and therefore transaction
U is not allowed to update A with the deposit operation until transaction T has
completed. So long as the set of available replica managers does not change, local
concurrency control achieves one-copy serializability in the same way as in read-
one/write-all replication. Unfortunately, this is not the case if a replica manager fails or
recovers during the progress of the conflicting transactions.

Replica manager failure • We assume that replica managers fail benignly by crashing.
However, a crashed replica manager is replaced by a new process, which recovers the
committed state of the objects from a recovery file. Front ends use timeouts to decide
that a replica manager is not currently available. When a client makes a request to a
replica manager that has crashed, the front end times out and retries the request at
another replica manager in the group. If the request is received by a replica manager at
which the object is out of date because the replica manager has not completely recovered
from failure, the replica manager rejects the request and the front end retries the request
at another replica manager in the group.

One-copy serializability requires that crashes and recoveries be serialized with
respect to transactions. According to whether it can access an object or not, a transaction
observes that a failure occurs after it has finished or before it started. One-copy

806 CHAPTER 18 REPLICATION

serializability is not achieved when different transactions make conflicting failure
observations.

Consider the case in Figure 18.10 where the replica manager X fails just after T
has performed getBalance and replica manager N fails just after U has performed
getBalance. Assume that both of these replica managers fail before T and U have
performed their deposit operations. This implies that T’s deposit will be performed at
replica managers M and P and U’s deposit will be performed at replica manager Y.
Unfortunately, the concurrency control on A at replica manager X does not prevent
transaction U from updating A at replica manager Y. Neither does the concurrency
control on B at replica manager N prevent transaction T updating B at replica managers
M and P.

Figure 18.10 Available copies

A
X

Client + front end

P

B

Client + front end

Replica managers

deposit(A,3);

UT

deposit(B,3);

getBalance(B)

getBalance(A)

Replica managers

Y

M

B

N
A

B

This is contrary to the requirement for one-copy serializability. If these operations
were to be performed on single copies of the objects, they would be serialized either with
transaction T before U or with transaction U before T. This ensures that one of the
transactions will read the value set by the other. Local concurrency control on copies of
objects is not sufficient to ensure one-copy serializability in the available copies
replication scheme.

As write operations are directed to all available copies, local concurrency control
does ensure that conflicting writes on an object are serialized. In contrast, a read by one
transaction and a write by another do not necessarily affect the same copy of an object.
Therefore, the scheme requires additional concurrency control to prevent the
dependencies between a read operation of one transaction and a write operation of
another transaction forming a cycle. Such dependencies cannot arise if the failures and
recoveries of replicas of objects are serialized with respect to transactions.

Local validation • We refer to the additional concurrency control procedure as local
validation. The local validation procedure is designed to ensure that any failure or
recovery event does not appear to happen during the progress of a transaction. In our
example, as T has read from an object at X, X’s failure must be after T. Similarly, as T
observes the failure of N when it attempts to update the object, N’s failure must be before
T. That is:

SECTION 18.5 TRANSACTIONS WITH REPLICATED DATA 807

N fails T reads object A at X; T writes object B at M and P T commits X fails

It can also be argued for transaction U that:

X fails U reads object B at N; U writes object A at Y U commits N fails

The local validation procedure ensures that two such incompatible sequences cannot
both occur. Before a transaction commits it checks for any failures (and recoveries) of
replica managers of objects it has accessed. In the example, transaction T would check
that N is still unavailable and X, M and P are still available. If this is the case, T can
commit. This implies that X fails after T validated and before U validated. In other
words, U’s validation is after T’s validation. U’s validation fails because N has already
failed.

Whenever a transaction has observed a failure, the local validation procedure
attempts to communicate with the failed replica managers to ensure that they have not
yet recovered. The other part of the local validation, which is testing that replica
managers have not failed since objects were accessed, can be combined with the two-
phase commit protocol.

Available copies algorithms cannot be used in environments in which functioning
replica managers are unable to communicate with one another.

18.5.3 Network partitions

Replication schemes need to take into account the possibility of network partitions. A
network partition separates a group of replica managers into two or more subgroups in
such a way that the members of one subgroup can communicate with one another but
members of different subgroups cannot communicate with one another. For example, in
Figure 18.11

Figure 18.11 Network partition

Client + front end

B

withdraw(B, 4)

Client + front end

Replica managers

deposit(B,3);

UT
Network
partition

B

B B

, the replica managers receiving the deposit request cannot send it to the
replica managers receiving the withdraw request.

Replication schemes are designed with the assumption that partitions will
eventually be repaired. Therefore, the replica managers within a single partition must
ensure that any requests that they execute during a partition will not make the set of
replicas inconsistent when the partition is repaired.

808 CHAPTER 18 REPLICATION

Davidson et al. [1985] discuss many different approaches, which they categorize
as being either optimistic or pessimistic with regard to whether inconsistencies are likely
to occur. The optimistic schemes do not limit availability during a partition, whereas
pessimistic schemes do.

The optimistic approaches allow updates in all partitions – this can lead to
inconsistencies between partitions, which must be resolved when the partition is
repaired. An example of this approach is a variant of the available copies algorithm in
which updates are allowed in partitions and, after the partition has been repaired, the
updates are validated – any updates that break the one-copy serializability criterion are
aborted.

The pessimistic approach limits availability even when there are no partitions, but
it prevents any inconsistencies occurring during partitions. When a partition is repaired,
all that needs to be done is to update the copies of the objects. The quorum consensus
approach is pessimistic. It allows updates in the partition that has the majority of replica
managers and propagates the updates to the other replica managers when the partition is
repaired.

18.5.4 Available copies with validation

The available copies algorithm is applied within each partition. This optimistic approach
maintains the normal level of availability for read operations, even during partitions.
When a partition is repaired, the possibly conflicting transactions that have taken place
in the separate partitions are validated. If the validation fails, then some steps must be
taken to overcome the inconsistencies. If there had been no partition, one of a pair of
transactions with conflicting operations would have been delayed or aborted.
Unfortunately, as there has been a partition, pairs of conflicting transactions have been
allowed to commit in different partitions. The only choice after the event is to abort one
of them. This requires making changes in the objects and in some cases, compensating
effects in the real world, such as dealing with overdrawn bank accounts. The optimistic
approach is only feasible with applications where such compensating actions can be
taken.

Version vectors can be used to validate conflicts between pairs of write

operations. These are used in the Coda file system and are described in Section 18.4.3.
This approach cannot detect read-write conflicts but works well in file systems where
transactions tend to access a single file and read-write conflicts are unimportant. It is not
suitable for applications such as our banking example where read-write conflicts are
important.

Davidson [1984] used precedence graphs to detect inconsistencies between
partitions. Each partition maintains a log of the objects affected by the read and write

operations of transactions. This log is used to construct a precedence graph whose nodes
are transactions and whose edges represent conflicts between the read and write

operations of transactions. Such a graph will not contain any cycles, since concurrency
control has been applied within the partition. The validation procedure takes the
precedence graphs from the partitions and adds edges, representing conflicts, between
transactions in different partitions. If the resulting graph contains cycles, then the
validation fails.

SECTION 18.5 TRANSACTIONS WITH REPLICATED DATA 809

18.5.5 Quorum consensus methods

One way of preventing transactions in different partitions from producing inconsistent
results is to make a rule that operations can be carried out within only one of the
partitions. As the replica managers in different partitions cannot communicate with one
another, the subgroup of replica managers within each partition must be able to decide
independently whether they are allowed to carry out operations. A quorum is a subgroup
of replica managers whose size gives it the right to carry out operations. For example, if
having a majority is the criterion, a subgroup that has the majority of the members of a
group would form a quorum because no other subgroup could have a majority.

In quorum consensus replication schemes an update operation on a logical object
may be completed successfully by a subgroup of its group of replica managers. The
other members of the group will therefore have out-of-date copies of the object. Version
numbers or timestamps may be used to determine whether copies are up-to-date. If
versions are used, the initial state of an object is the first version, and after each change
we have a new version. Each copy of an object has a version number, but only the copies
that are up-to-date have the current version number, whereas out-of-date copies have
earlier version numbers. Operations should be applied only to copies with the current
version number.

Gifford [1979] developed a file replication scheme in which a number of ‘votes’
are assigned to each physical copy at a replica manager of a single logical file. A vote
can be regarded as a weighting related to the desirability of using a particular copy. Each
read operation must first obtain a read quorum of R votes before it can proceed to read
from any up-to-date copy, and each write operation must obtain a write quorum of W
votes before it can proceed with an update operation. R and W are set for a group of
replica managers such that

W > half the total votes

R + W > total number of votes for the group

This ensures that any pair consisting of a read quorum and a write quorum or two write
quora must contain common copies. Therefore if there is a partition, it is not possible to
perform conflicting operations on the same copy, but in different partitions.

To perform a read operation, a read quorum is collected by making sufficient
version number enquiries to find a set of copies, the sum of whose votes is not less than
R. Not all of these copies need be up-to-date. Since each read quorum overlaps with
every write quorum, every read quorum is certain to include at least one current copy.
The read operation may be applied to any up-to-date copy.

To perform a write operation, a write quorum is collected by making sufficient
version number enquiries to find a set of replica managers with up-to-date copies, the
sum of whose votes is not less than W. If there are insufficient up-to-date copies, then a
non-current file is replaced with a copy of the current file, to enable the quorum to be
established. The updates specified in the write operation are then applied by each replica
manager in the write quorum, the version number is incremented and completion of the
write is reported to the client.

The files at the remaining available replica managers are then updated by
performing the write operation as a background task. Any replica manager whose copy
of the file has an older version number than the one used by the write quorum updates it

810 CHAPTER 18 REPLICATION

by replacing the entire file with a copy obtained from a replica manager that is up-to-
date.

Two-phase read-write locking may be used for concurrency control in Gifford’s
replication scheme. The preliminary version number enquiry to obtain the read quorum,
R, causes read locks to be set at each replica manager contacted. When a write operation
is applied to the write quorum, W, a write lock is set at each replica manager involved.
(Locks are applied with the same granularity as version numbers.) The locks ensure one-
copy serializability, as any read quorum overlaps with any write quorum and any two
write quora overlap.

Configurability of groups of replica managers • An important property of the weighted
voting algorithm is that groups of replica managers can be configured to provide
different performance or reliability characteristics. Once the general reliability and
performance of a group of replica managers is established by its voting configuration,
the reliability and performance of write operations may be increased by decreasing W
and similarly for reads by decreasing R.

The algorithm can also allow for the use of copies of files on local disks at client
computers as well as those at file servers. The copies of files in client computers are
regarded as weak representatives and are always allocated zero votes. This ensures that
they are not included in any quorum. A read operation may be performed at any up-to-
date copy, once a read quorum has been obtained. Therefore a read operation may be
carried out on the local copy of the file if it is up-to-date. Weak representatives can be
used to speed up read operations.

An example from Gifford • Gifford gives three examples showing the range of
properties that can be achieved by allocating weights to the various replica managers in
a group and assigning R and W appropriately. We now reproduce Gifford’s examples,
which are based on the table below.

Example 1 Example 2 Example 3

Latency Replica 1 75 75 75

(milliseconds) Replica 2 65 100 750

Replica 3 65 750 750

Voting Replica 1 1 2 1

configuration Replica 2 0 1 1

Replica 3 0 1 1

Quorum R 1 2 1

sizes W 1 3 3

Derived performance of file suite:

Read Latency 65 75 75
Blocking probability 0.01 0.0002 0.000001

Write Latency 75 100 750
Blocking probability 0.01 0.0101 0.03

 The blocking probabilities give an indication of the
probability that a quorum cannot be obtained when a read or write request is made. They

SECTION 18.5 TRANSACTIONS WITH REPLICATED DATA 811

are calculated assuming that there is a 0.01 probability that any single replica manager
will be unavailable at the time of a request.

Example 1 is configured for a file with a high read-to-write ratio in an application
with several weak representatives and a single replica manager. Replication is used to
enhance the performance of the system, not the reliability. There is one replica manager
on the local network that can be accessed in 75 milliseconds. Two clients have chosen
to make weak representatives on their local disks, which they can access in 65
milliseconds, resulting in lower latency and less network traffic.

Example 2 is configured for a file with a moderate read-to-write ratio, which is
accessed primarily from one local network. The replica manager on the local network is
assigned two votes and the replica managers on the remote networks are assigned one
vote apiece. Reads can be satisfied from the local replica manager, but writes must
access the local replica manager and one remote replica manager. The file will remain
available in read-only mode if the local replica manager fails. Clients could create local
weak representatives for lower read latency.

Example 3 is configured for a file with a very high read-to-write ratio, such as a
system directory in a three-replica-manager environment. Clients can read from any
replica manager, and the probability that the file will be unavailable is small. Updates
must be applied to all copies. Once again, clients could create weak representatives on
their local machines for lower read latency.

The main disadvantage of quorum consensus is that the performance of read

operations is degraded by the need to collect a read quorum from R replica managers.
Herlihy [1986] proposed an extension of the quorum consensus method for

abstract data types. This method allows the semantics of operations to be taken into
account, to increase the availability of objects. Herlihy’s method uses timestamps
instead of version numbers. This has the advantage that there is no need to make version
number enquiries in order to get a new version number before performing a write
operation. The main advantage claimed by Herlihy is that the use of semantic knowledge
can increase the number of choices for a quorum.

Quorum consensus in Dynamo • Dynamo uses a quorum-like approach for maintaining
consistency amongst the replicas. As with Gifford’s scheme, read and write operations
must use R and W nodes respectively and R + W > N. In Dynamo, N is the number of
nodes with replicas. The values of W and R affect availability, durability and
consistency. DeCandia et al. [2007] state that a common configuration in Dynamo has
[N,R,W] = [3,2,2].

In the case of partition, Gifford’s quorum can operate only in a ‘majority’
partition. But Dynamo uses a ‘sloppy quorum’ that involves N nodes, where replicas
may be stored at substitute nodes that will pass on the values when the intended node
recovers.

18.5.6 Virtual partition algorithm

This algorithm, which was proposed by El Abbadi et al. [1985], combines the quorum
consensus approach with the available copies algorithm. Quorum consensus works
correctly in the presence of partitions but the available copies algorithm is less
expensive for read operations. A virtual partition is an abstraction of a real partition and
contains a set of replica managers. Note that the term ‘network partition’ refers to the

812 CHAPTER 18 REPLICATION

barrier that divides replica managers into several parts, whereas the term ‘virtual
partition’ refers to the parts themselves. Although they are not connected with multicast
communication, virtual partitions are similar to group views, which we introduced in
Section 18.2.2. A transaction can operate in a virtual partition if it contains sufficient
replica managers to have a read quorum and a write quorum for the objects accessed. In
this case, the transaction uses the available copies algorithm. This has the advantage that
read operations need only ever access a single copy of an object and may enhance
performance by choosing the ‘nearest’ copy. If a replica manager fails and the virtual
partition changes during a transaction, then the transaction is aborted. This ensures one-
copy serializability of transactions because all transactions that survive see the failures
and recoveries of replica managers in the same order.

Whenever a member of a virtual partition detects that it cannot access one of the
other members – for example, when a write operation is not acknowledged – it attempts
to create a new virtual partition with a view to obtaining a virtual partition with read and
write quora.

Suppose, for example, that we have four replica managers, V, X, Y and Z, each of
which has one vote, and that the read and write quora are R = 2 and W = 3. Initially, all
the managers can contact one another. So long as they remain in contact, they can use
the available copies algorithm. For example, a transaction T consisting of a read

followed by a write operation will perform the read at a single replica manager (for
example, V) and the write operation at all four of them.

Suppose that transaction T starts by performing its read at V at a time when V is
still in contact with X, Y and Z. Now suppose that a network partition occurs as in Figure
18.12

Replica managers

Network partition

VX Y Z

TTransaction

Figure 18.12 Two network partitions

, in which V and X are in one part and Y and Z are in different ones. Then when
transaction T attempts to apply its write, V will notice that it cannot contact Y and Z.

When a replica manager cannot contact managers that it could previously contact,
it keeps on trying until it can create a new virtual partition. For example, V will keep on
trying to contact Y and Z until one or both of them replies – as, for example, in Figure
18.13, when Y can be accessed. The group of replica managers V, X and Y comprise a
virtual partition because they are sufficient to form read and write quora.

When a new virtual partition is created during a transaction that has performed an
operation at one of the replica managers (such as transaction T), the transaction must be
aborted. In addition, the replicas within a new virtual partition must be brought up-to-
date by copying them from other replicas. Version numbers can be used as in Gifford’s
algorithm to determine which copies are up-to-date. It is essential that all replicas be up-
to-date, because read operations are performed on any single replica.

Figure 18.13 Virtual partition

X V Y Z

Replica managers

Virtual partition Network partition

SECTION 18.5 TRANSACTIONS WITH REPLICATED DATA 813

Implementation of virtual partitions • A virtual partition has a creation time, a set of
potential members and a set of actual members. Creation times are logical timestamps.
The actual members of a particular virtual partition have the same idea as to its creation
time and membership (a shared view of the replica managers with which they can
communicate). For example, in Figure 18.13 the potential members are V, X, Y, and Z

and the actual members are V, X and Y.
The creation of a new virtual partition is achieved by a cooperative protocol

carried out by those of the potential members that can be accessed by the replica
managers that initiated it. Several replica managers may attempt to create a new virtual
partition simultaneously. For example, suppose that the replica managers Y and Z shown
in Figure 18.12 keep making attempts to contact the others, and after a while the network
partition is partially repaired so that Y cannot communicate with Z but the two groups V,
X, Y and V, X, Z can communicate among themselves. Then there is a danger that two
overlapping virtual partitions, such as V1 and V2 shown in Figure 18.14

Figure 18.14 Two overlapping virtual partitions

Virtual partition V1 Virtual partition V2

Y X V Z

, might both be
created.

Consider the effect of executing different transactions in the two virtual partitions.
The read operation of the transaction in V, X, Y might be applied at the replica manager
Y, in which case its read lock will not conflict with write locks set by a write operation
of a transaction in the other virtual partition. Overlapping virtual partitions are contrary
to one-copy serializability.

The aim of the protocol is to create new virtual partitions consistently, even if real
partitions occur during the protocol. The protocol for creating a new virtual partition has
two phases, as shown in Figure 18.15.

A replica manager that replies Yes in phase 1 does not belong to a virtual partition
until it receives the corresponding Confirmation message in phase 2.

Figure 18.15 Creating a virtual partition

Phase 1:
• The initiator sends a Join request to each potential member. The argument of Join

is a proposed logical timestamp for the new virtual partition.

• When a replica manager receives a Join request, it compares the proposed logical
timestamp with that of its current virtual partition.

– If the proposed logical timestamp is greater it agrees to join and replies Yes;

– If it is less, it refuses to join and replies No.

Phase 2:
• If the initiator has received sufficient Yes replies to have read and write quora, it
may complete the creation of the new virtual partition by sending a Confirmation

message to the sites that agreed to join. The creation timestamp and list of actual
members are sent as arguments.

• Replica managers receiving the Confirmation message join the new virtual
partition and record its creation timestamp and list of actual members.

814 CHAPTER 18 REPLICATION

In our example above, the replica managers Y and Z shown in Figure 18.12 each
attempt to create a virtual partition, and whichever one has the higher logical timestamp
will be the one that is used in the end.

This is an effective method when partitions are not a common occurrence. Each
transaction uses the available copies algorithm within a virtual partition.

18.6 Summary

Replicating objects is an important means of achieving services with good performance,
high availability and fault tolerance in a distributed system. We described architectures
for services in which replica managers hold replicas of objects, and in which front ends
make this replication transparent. Clients, front ends and replica managers may be
separate processes or exist in the same address space.

The chapter began by describing a system model in which each logical object is
implemented by a set of physical replicas. Often, updates to these replicas can be made
conveniently by group communication. We expanded our account of group
communication to include group views and view-synchronous communication.

We defined linearizability and sequential consistency as correctness criteria for
fault-tolerant services. These criteria express how the services must provide the
equivalent of a single image of the set of logical objects, even though those objects are
replicated. The most practically significant of the criteria is sequential consistency.

In passive (primary-backup) replication, fault tolerance is achieved by directing
all requests through a distinguished replica manager and having a backup replica
manager take over if this fails. In active replication, all replica managers process all
requests independently. Both forms of replication can be conveniently implemented
using group communication.

SECTION 18.6 SUMMARY 815

Next we considered highly available services. Gossip and Bayou both allow
clients to make updates to local replicas while partitioned. In each system, replica
managers exchange updates with one another when they become reconnected. Gossip
provides its highest availability at the expense of relaxed, causal consistency. Bayou
provides stronger eventual consistency guarantees, employing automatic conflict
detection and the technique of operational transformation to resolve conflicts. Coda is a
highly available file system that uses version vectors to detect potentially conflicting
updates.

Finally, we considered the performance of transactions against replicated data.
Both primary-backup architectures and architectures in which front ends may
communicate with any replica manager exist for this case. We discussed how
transactional systems allow for replica manager failures and network partitions. The
techniques of available copies, quorum consensus and virtual partitions enable
operations within transactions to make progress even in some circumstances where not
all replicas are reachable.

EXERCISES

18.1 Three computers together provide a replicated service. The manufacturers claim that
each computer has a mean time between failure of five days; a failure typically takes
four hours to fix. What is the availability of the replicated service? page 766

18.2 Explain why a multi-threaded server might not qualify as a state machine. page 768

18.3 In a multi-user game, the players move figures around a common scene. The state of the
game is replicated at the players’ workstations and at a server, which contains services
controlling the game as a whole, such as collision detection. Updates are multicast to all
replicas. Consider the following conditions:

i) The figures may throw projectiles at one another, and a hit debilitates the
unfortunate recipient for a limited time. What type of update ordering is required
here? Hint: consider the ‘throw’, ‘collide’ and ‘revive’ events.

ii) The game incorporates magic devices that may be picked up by a player to assist
them. What type of ordering should be applied to the ‘pick-up-device’ operation?

page 770

18.4 A router separating process p from two others, q and r, fails immediately after p initiates
the multicasting of message m. If the group communication system is view-
synchronous, explain what happens to p next. page 773

18.5 You are given a group communication system with a totally ordered multicast operation
and a failure detector. Is it possible to construct view-synchronous group
communication from these components alone? page 773

18.6 A sync-ordered multicast operation is one whose delivery ordering semantics are the
same as those for delivering views in a view-synchronous group communication system.
In a thingumajig service, operations upon thingumajigs are causally ordered. The
service supports lists of users able to perform operations on each particular thingumajig.
Explain why removing a user from a list should be a sync-ordered operation. page 773

18.7 What is the consistency issue raised by state transfer? page 774

816 CHAPTER 18 REPLICATION

18.8 An operation X upon an object o causes o to invoke an operation upon another object o .
It is now proposed to replicate o but not o . Explain the difficulty that this raises
concerning invocations upon o , and suggest a solution. page 773

18.9 Explain the difference between linearizability and sequential consistency, and why the
latter is more practical to implement, in general. page 777

18.10 Explain why allowing backups to process read operations leads to sequentially
consistent rather than linearizable executions in a passive replication system. page 780

18.11 Could the gossip architecture be used for a distributed computer game like the one
described in Exercise 18.3? page 783

18.12 In the gossip architecture, why does a replica manager need to keep both a ‘replica’
timestamp and a ‘value’ timestamp? page 786

18.13 In a gossip system, a front end has the vector timestamp (3, 5, 7) representing the data it
has received from members of a group of three replica managers. The three replica
managers have vector timestamps (5, 2, 8), (4, 5, 6) and (4, 5, 8), respectively. Which
replica manager(s) could immediately satisfy a query from the front end, and what
would the resultant timestamp of the front end be? Which could incorporate an update
from the front end immediately? page 788

18.14 Explain why making some replica managers read-only may improve the performance of
a gossip system. page 792

18.15 Write pseudo-code for dependency checks and merge procedures (as used in Bayou)
suitable for a simple room-booking application. page 793

18.16 In the Coda file system, why is it sometimes necessary for users to intervene manually
in the process of updating the copies of a file at multiple servers? page 800

18.17 Devise a scheme for integrating two replicas of a file system directory that underwent
separate updates during disconnected operation. Either use Bayou’s operational
transformation approach, or supply a solution for Coda. page 801

18.18 Available copies replication is applied to data items A and B with replicas Ax, Ay and
Bm, Bn. The transactions T and U are defined as:

T: Read(A); Write(B, 44). U: Read(B); Write(A, 55).

Show an interleaving of T and U, assuming that two-phase locks are applied to the
replicas. Explain why locks alone cannot ensure one-copy serializability if one of the
replicas fails during the progress of T and U. Explain with reference to this example how
local validation ensures one-copy serializability. page 805

18.19 Gifford’s quorum consensus replication is in use at servers X, Y and Z, which all hold
replicas of data items A and B. The initial values of all replicas of A and B are 100 and
the votes for A and B are 1 at each of X, Y and Z. Also, R = W = 2 for both A and B. A
client reads the value of A and then writes it to B.

i) At the time the client performs these operations, a partition separates servers X and
Y from server Z. Describe the quora obtained and the operations that take place if
the client can access servers X and Y.

ii) Describe the quora obtained and the operations that take place if the client can
access only server Z.

iii) The partition is repaired and then another partition occurs so that X and Z are
separated from Y. Describe the quora obtained and the operations that take place
if the client can access servers X and Z. page 810

 817

19

MOBILE AND

UBIQUITOUS COMPUTING

19.1 Introduction
19.2 Association
19.3 Interoperation
19.4 Sensing and context awareness
19.5 Security and privacy
19.6 Adaptation
19.7 Case study: Cooltown
19.8 Summary

This chapter surveys the fields of mobile and ubiquitous computing, which have come
about due to advances in device miniaturization and wireless connectivity. Broadly
speaking, mobile computing is concerned with exploiting the connectedness of portable
devices; ubiquitous computing is about exploiting the increasing integration of computing
devices with our everyday physical world.

The chapter introduces a common system model that stresses the volatility of
mobile and ubiquitous systems – i.e., that the set of users, devices and software
components in any given environment is liable to change frequently. The chapter then
surveys some of the chief areas of research that come about because of this volatility and
the physical bases for it. We explore topics including: how software components come to
associate and interoperate with one another as entities move, fail or spontaneously
appear; how systems become integrated with the physical world through sensing and
context awareness; the security and privacy issues that arise in volatile, physically
integrated systems; and techniques for adapting to small devices’ lack of computational
and I/O resources. The chapter ends with a case study of the Cooltown project, a
human-oriented, web-based architecture for mobile and ubiquitous computing.

818 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

19.1 Introduction

Mobile and ubiquitous computing have come about due to device miniaturization and
wireless connectivity. Broadly speaking, mobile computing is concerned with
exploiting the connectedness of devices that move around in the everyday physical
world; ubiquitous computing is about exploiting the increasing integration of computing
devices with our everyday physical world. As devices become smaller, we are better
able to carry them around with us or wear them, and we can embed them into many parts
of the physical world – not just the familiar desktop or a server rack. And as wireless
connectivity becomes more prevalent, we are better able to connect these new small
devices to one another, and to conventional personal and server computers.

This chapter surveys aspects of mobile computing (a subject already touched upon
in Chapter 18’s treatment of disconnected operation) and ubiquitous computing. The
chapter concentrates on their common properties, and on the differences they share from
more conventional distributed systems. Given progress to date, the focus is more on
open issues than solutions.

The chapter first outlines the beginnings of mobile and ubiquitous computing, and
introduces the subfields known as wearable, handheld and context-aware computing. It
then describes a system model that encompasses all of those fields and subfields through
their volatility – that is, the fact that the set of users, devices and software components
in any given environment is liable to change frequently. We survey the system
components that have emerged to deal with volatility and the physical bases for
volatility, including how software components come to associate and interoperate with
one another as entities move, fail or spontaneously appear in environments; how
systems become integrated with the physical world through sensing and context
awareness; the security and privacy issues that arise in systems integrated in the physical
world; and techniques for adapting to small devices’ limited computational and
input/output resources. The chapter ends with a case study of the Cooltown project, a
human-oriented, web-based architecture for mobile and ubiquitous computing.

Mobile and hand-held computing • Mobile computing arose as a paradigm in which
users could carry their personal computers and retain some connectivity to other
machines. In about 1980 it became possible to build personal computers that were just
about light enough to carry, and that could be connected to other computers over
telephone lines via a modem. Technological evolution has led to more or less the same
idea but with far better functionality and performance: the present-day equivalent is a
laptop, netbook or tablet computer, each with several forms of wireless connectivity
including cellular networks, WiFi and Bluetooth.

A different path of technological evolution has led to handheld computing: the use
of devices that fit in the hand, including ‘smart’ mobile phones (smart phones), personal
digital assistants (PDAs) and other, more specialized hand-operated devices. Smart
phones and PDAs are capable of running many different types of applications, but
compared to laptops they trade off their smaller size and better battery running time
against correspondingly limited processing power, a smaller screen and other resource
restrictions. Manufacturers are increasingly equipping handheld devices with the same
range of wireless connectivity as laptops and their somewhat smaller equivalents.

SECTION 19.1 INTRODUCTION 819

An interesting trend in handheld computing has been the blurring of distinctions
between PDAs, mobile phones and purpose-built handheld devices such as cameras and
GPS-based navigation units. Smart phones have PDA-like computing functionality by
virtue of running operating systems such as Symbian from Nokia and other
manufacturers, Google’s Android, Apple’s iOS or Windows Phone 7 from Microsoft.
They have cameras built in and either incorporate or can be equipped with other types
of specialized attachment, making them an alternative to purpose-built handheld
devices. For example, a user can read a barcode via a smart phone’s camera to obtain
price-comparison information. Smart phones also often have built-in GPS units for
navigation and other location-specific purposes.

Stojmenovic [2002] covers principles and protocols for wireless communication,
including coverage of two major network-layer problems that need to be solved for the
systems studied in this chapter. The first problem is how to provide continuous
connectivity for mobile devices that pass in and out of range of base stations, which are
infrastructure components that provide regions of wireless coverage. The second
problem is how to enable collections of devices to wirelessly communicate with one
another in places where there is no infrastructure (see the brief treatment of ad hoc
networks in Section 19.4.2). Both problems arise because direct wireless connectivity is
often not available between two given devices. Communication then has to be achieved
over several wireless or wired network segments. Two main factors lead to this
subdivided wireless coverage. First, the greater the range of a wireless network is, the
more devices will compete for its limited bandwidth. Second, energy considerations
apply: the energy needed to transmit a wireless signal is proportional to the square of its
range, but many of the devices we shall consider have limited energy capacity.

Ubiquitous computing • Mark Weiser coined the term ubiquitous computing in 1988
[Weiser 1991]. Ubiquitous computing is also sometimes known as pervasive computing,
and the two terms are usually taken to be synonymous. ‘Ubiquitous’ means ‘to be found
everywhere’. Weiser saw the increasing prevalence of computing devices as leading to
revolutionary shifts in the way we would use computers.

First, he predicted that each person in the world would utilize many computers.
We can compare this to the personal computing revolution before it, which pursued the
goal of one computer to each person. Although it sounds simple, that change had a
dramatic effect on the way we use computers compared to the mainframe era before it,
when there was one computer to many people. Weiser’s idea of ‘one person, many
computers’ means something very different to the common situation in which we each
have several computers that are more or less alike – one at work, one at home, a laptop
and perhaps a smart phone we carry with us. Rather, in ubiquitous computing,
computers multiply in form and function, not just in number, to suit different tasks.

For example, suppose that all the inert display and writing surfaces in a room –
whiteboards, books, pieces of paper, Post-it notes, etc. – were replaced by tens or
hundreds of individual computers with electronic displays. Books already appear in an
electronic form, viewable on devices that allow readers to read and search their text,
look up the meaning of words, search for related ideas on the Web and experience linked
multimedia content. Now suppose we embed computing functionality in all the writing
implements. For example, pens and markers become able to store what the user has
written and drawn, and to collect, copy and move multimedia content between the many

820 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

computers lying around. That scenario raises usability and economic issues, and it
touches on only one small part of our lives; but it gives us an idea of what ‘computing
everywhere’ might be like.

The second shift that Weiser predicted was that computers would ‘disappear’ –
that they would ‘weave themselves into the fabric of everyday life until they are
indistinguishable from it’. This is largely a psychological notion, comparable to how
people take furniture for granted and barely notice it. It reflects the idea that computing
will become embedded in what we think of as everyday items – ones we don’t normally
think of as having computational capabilities, any more than we think of washing
machines or vehicles as ‘computing devices’, even though embedded microprocessors
control them (about 100 microprocessors, in the case of some cars).

While the invisibility of certain devices is appropriate – for example, in cases such
as the computer systems embedded in a car – that is not the case for all the devices we
shall consider, particularly the devices that mobile users typically carry. For example,
mobile phones are some of the most pervasive devices at the time of writing, but their
computational ability is hardly invisible and neither, arguably, should it be.

Figure 19.1 A room responding to a user wearing an active badge

2. Infrared sensor detects user’s ID

Hello Roy 1. User enters room wearing
 active badge

User’s ID

3. Display responds
 to user

Infrared

Wearable computing • Users carry wearable computing devices on their person, either
attached to or within the fabric of their clothes, or worn like watches, jewellery or
spectacles on their body. Unlike the handheld devices we mentioned above, these
devices often operate without the user having to manipulate them. They typically have
specialized functionality. An early example is the ‘active badge’, a small computing
device clipped to the user’s clothing that regularly broadcasts its identity (which is
associated with a user) via an infrared transmitter [Want et al. 1992, Harter and Hopper
1994]. Devices in the environment respond to the badge’s transmissions, and so respond
to the presence of a user; the infrared transmissions have a limited range, so they will be
picked up only if the user is nearby. For example, an electronic display could adapt to
the presence of a user by customizing its behaviour according to that user’s preferences,
perhaps altering the default drawing colour and line thickness (Figure 19.1). Similarly,
a room could adapt the air conditioning and lighting settings according to the recorded
preferences of the person within it.

Context-aware computing • The active badge – or rather, other devices’ reactions to its
presence – exemplifies context-aware computing, which is an important subfield of
mobile and ubiquitous computing. This is where computer systems automatically adapt

SECTION 19.1 INTRODUCTION 821

their behaviour according to physical circumstances. Those circumstances can in
principle be anything physically measurable or detectable, such as the presence of a user,
the time of day or atmospheric conditions. Some of the dependent conditions are
relatively straightforward to determine, such as whether it is nighttime (discernable from
the time, day of the year and geographic position). But others require sophisticated
processing to detect. For example, consider a context-aware mobile phone that is to ring
only when it is appropriate. In particular, it should automatically switch itself to
‘vibrate’ instead of ‘ring’ when it is in the cinema. But detecting that the user is watching
a film inside a cinema, as opposed to standing in the cinema lobby, is non-trivial given
the inaccuracies in position sensor measurements. Section 19.4 examines context in
more detail.

19.1.1 Volatile systems

From the point of view of distributed systems, there is no essential difference between
mobile and ubiquitous computing or the subfields we have introduced (or indeed the
subfields we have left out, such as tangible computing [Ishii and Ullmer 1997] and
augmented reality, as exemplified by Wellner’s digital desk [Wellner 1991]). In this
section we give a model of what we shall call volatile systems that encompasses the
essential distributed systems features of all of them.

We call the systems described in this chapter ‘volatile’ because, unlike most of the
systems described elsewhere in this book, certain changes are common rather than
exceptional. The set of users, hardware and software in mobile and ubiquitous systems
is highly dynamic and changes unpredictably. Another word we shall sometimes use for
these systems is spontaneous, which appears in the literature in the phrase spontaneous

networking. The relevant forms of volatility include:

• failures of devices and communication links;

• changes in the characteristics of communication such as bandwidth;

• the creation and destruction of associations – logical communication relationships
– between software components resident on the devices.

Here the term ‘component’ encompasses any software unit, such as objects or processes,
regardless of whether it interoperates as a client or server or peer.

Chapter 18 has already provided ways of dealing with some of those changes,
namely processing failures and disconnected operation. But the solutions considered
there were predicated on processing and communication failures being the exception
rather than the rule, and on the existence of redundant processing resources. Volatile
systems not only break those assumptions but also add yet more change phenomena,
notably the frequent changes in associations between components.

 It is worth clearing up a possible misunderstanding before we go further.
Volatility is not a defining property of mobile and ubiquitous systems: there are other
types of system that demonstrate one or more forms of volatility but are neither mobile
nor ubiquitous. A good example is peer-to-peer computing, such as file-sharing
applications (Chapter 10), in which the set of participating processes and the
associations between them are subject to high rates of change. What is different about
mobile and ubiquitous computing is that they exhibit all of the above forms of volatility,

822 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

due to the way they are integrated with the physical world. We shall have much to say
about this physical integration and how it causes volatility. But physical integration is
not itself a distributed systems property, whereas volatility is. Hence, that is the term we
adopt.

In the remainder of this section we describe smart spaces, which are environments
within which volatile systems subsist, and we characterize mobile and ubiquitous
devices, their physical and logical connectivity, and the consequences in terms of
lowered trust and privacy.

Smart spaces • Physical spaces are important in that they form the background to
mobile and ubiquitous computing. Mobility takes place between physical spaces;
ubiquitous computing is embedded in physical spaces. A smart space is any physical
place with embedded services – that is, services provided only or principally within that
physical space. It is possible to introduce computing devices into the wild, where no
infrastructure exists, to perform an application such as environmental monitoring. But
more typically mobile devices and ubiquitous systems exist at any one time in a
computationally enhanced part of a built or vehicular environment such as a room,
building, town square or train carriage. In those cases, the smart space typically contains
a relatively stable computing infrastructure, which may include conventional server
computers; devices such as printers, displays, sensors and a wireless networking
infrastructure, including a connection to the Internet.

There are several types of movement or ‘appearance and disappearance’ that can
occur in smart spaces. First, there is physical mobility. Smart spaces act as environments
for devices that visit and leave them. Users bring in and depart with devices they carry
or wear; robotic devices may even move themselves into and out of the space. Second,
there is logical mobility. A mobile process or agent may move into or out of a smart
space, or to or from a user’s personal device. Also, a device’s physical movement may
cause the logical movement of components within it. However, whether or not a
component moves due to its device’s physical movement, logical mobility has not
occurred in any interesting sense unless the component changes some of its associations
with other components as a result. Third, users may add relatively static devices such as
media players as longer-term additions to the space, and correspondingly withdraw
older devices from it. Consider, for example, the evolution of a smart home whose
occupants vary the set of devices within it [Edwards and Grinter 2001] in a relatively
unplanned way over time. Fourth and finally, devices may fail and thus ‘disappear’ from
a space.

Some of those phenomena seem similar from the distributed systems perspective.
In each case, either a software component appears in a pre-existing smart space and, if
anything of interest is to result, becomes integrated (at least temporarily) into that space;
or a component disappears from the space, either through mobility or because it is
simply switched off or fails. It may or may not be possible for any particular component
to distinguish ‘infrastructure’ devices from ‘visiting’ devices.

However, there are significant distinctions to be drawn when designing a system.
An important difference that may arise between volatile systems is the rate of change.
Algorithms that have to cope with a handful of appearing or disappearing components a
day (e.g., in a smart home) may be very differently designed from those for which there
is at least one such change occurring at any one time (e.g., a system implemented using

SECTION 19.1 INTRODUCTION 823

Bluetooth communication between mobile phones in a crowded city). Moreover, while
all the above appearance and disappearance phenomena appear similar to a first
approximation, there are of course important differences. For example, from the security
point of view, it is one thing for a user’s device to enter a smart space and another for an
outside software component to move to an infrastructure device belonging to the space.

Device model • With the rise of mobile and ubiquitous computing, a new class of
computing device is becoming a part of distributed systems. This device is limited in its
energy supply and computing resources, and it may have ways of interfacing with the
physical world: sensors such as light detectors, and/or actuators such as a programmable
means of movement. Our device model must therefore take into accout the following
characteristics:

Limited energy: A device that is portable or embedded in the physical world
typically has to run on batteries, and the smaller and lighter the device needs to be,
the lower its battery capacity will be. Replacing or recharging those batteries is liable
to be inconvenient in terms of time (there may be hundreds of such devices per user)
and physical access. Computation and access to memory and other forms of storage
all consume precious energy. Wireless communication is particularly
energy-intensive. Moreover, the energy consumed by receiving a message can
amount to a substantial fraction of that required to transmit it; even when in ‘standby’
mode, in which a network interface is ready to receive a message, can require
appreciable power consumption [Shih et al. 2002]. So, if a device is to last as long as
possible on a given level of battery charge, algorithms need to be sensitive to the
energy they consume, especially in terms of their message complexity. But
ultimately, the probability of device failure is increased because of battery discharge.

Resource constraints: Mobile and ubiquitous devices have limited computational
resources in terms of processor speed, storage capacity and network bandwidth. This
is in part because energy consumption increases as we improve those characteristics.
But also, making devices portable or embedding them into everyday physical objects
entails making them physically small, which, given limitations imposed by
manufacturing processes, restricts the number of transistors in the nodes. Two issues
spring from this: how to design algorithms that can execute on the node in reasonable
time despite the resource limitations; and how to augment the node’s meagre
resources using resources in its environment.

Sensors and actuators: To enable their integration with the physical world – in
particular, to make them context-aware – devices are equipped with sensors and
actuators. Sensors are devices that measure physical parameters and supply their
values to software. Conversely, actuators are software-controllable devices that
affect the physical world. A wide variety of each type of component exists. On the
sensor side, for example, there are sensors that measure position, orientation, load,
and light and sound levels. Actuators include programmable air-conditioning
controllers and motors. An important issue for sensors is accuracy, which is quite
limited and so can lead to spurious behaviour, such as an inappropriate response to
what turns out to be the wrong location. Inaccuracy is likely to remain a characteristic
of devices that are cheap enough to deploy ubiquitously.

824 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

The devices described above may sound somewhat exotic. However, not only are they
commercially available, but they are even mass-produced. Two examples are motes and
smart phones.

Motes: Motes [Hill et al. 2000, www.xbow.com] are small devices intended for
autonomous operation in applications such as environmental sensing. They are
designed to be embedded in an environment, programmed so that they wirelessly
discover one another and transfer sensed values amongst themselves. If, for example,
there is a forest fire, then one or more motes scattered around the forest could sense
abnormally high temperatures and communicate those, via their peers, to a more
powerful device capable of communicating the situation to the emergency services.
The most basic form of mote has a low-power processor (a microcontroller) that runs
the TinyOS operating system [Culler et al. 2001] on internal flash memory, memory
for data-logging and a short-range, two-way ‘Industrial, Scientific and Medical’
(ISM) band radio transceiver. A variety of sensor modules may be added. Motes are
also known as ‘smart dust’, reflecting the tiny size ultimately intended for these
devices, although their size at the time of writing is around 6 3 1 cm, excluding
battery pack and sensors. Smart-its provide similar functionality to motes in a similar
form-factor [www.smart-its.org]. Section 19.4.2 discusses the uses of mote-like
devices in wireless sensor networks.

Smart phones: Smart phones are a quite different example of a device in the systems
we are considering. Their principal functions are human communication and
imaging. But, running an operating system such as Symbian, Android or iOS, they
are programmable for quite a wide variety of applications. In addition to their wide
area data connectivity, they often have infrared (IrDA) or Bluetooth short-range
wireless network interfaces that enable them to connect to one another, to PCs and to
auxiliary devices. They often contain sensing devices, such as GPS sensors for
determining their location, magnetometers to sense their orientation, and
accelerometers to sense their state of motion. Moreover, they may run software to
recognize symbols such as barcodes from their camera images, making them sensors
of ‘coded values’ on physical objects such as products, which can be used to access
associated services. For example, a user could use their camera phone to discover the
specifications of a product in a shop from the barcode on its box [Kindberg 2002].

Volatile connectivity • The devices of interest in this chapter all have some form of
wireless connectivity, and may have several. The connection technologies (Bluetooth,
WiFi, 3G, etc.) vary in their nominal bandwidth and latency, in their energy costs and in
whether there are financial costs to communication. But the volatility of connectivity –
the variability at runtime of the state of connection or disconnection between devices,
and the quality of service between them – also has a strong impact on system properties.
Connectivity issues include:

Disconnection: Wireless disconnections are far more likely than wired
disconnections. Many of the devices we have described are mobile, and so may
exceed their operating distance from other devices or encounter radio occlusions
between them, e.g. from buildings. Even when the devices are static, there may be
moving users and vehicles that cause disconnection by occlusion. There is also the
question of multi-hop wireless routing between devices. In ad hoc routing, a

SECTION 19.1 INTRODUCTION 825

collection of devices communicate with one another without reliance on any other
device: they collaborate to route all packets between themselves. Taking our example
of motes in a forest, a mote might continue to be able to communicate with all other
motes in immediate radio range, but fail to be able to communicate its
high-temperature reading to the emergency services because of the failure of more
distant motes through which all packets had to pass.

Variable bandwidth and latency: The factors that can lead to complete disconnec-
tion can also lead to highly varying bandwidth and latency, because they entail
changing error rates. As the error rate increases, more and more packets are dropped.
That leads intrinsically to low throughput rates. But the situation may be exacerbated
by timeouts in higher-layer protocols. Timeout values are difficult to adapt to dramat-
ically changing conditions. If they are too big compared to current error conditions,
latency and throughput suffer. If they are too small, they may increase congestion and
waste energy.

Figure 19.2 Examples of preconfigured versus spontaneous association

Preconfigured Spontaneous

Service-driven:
 email client and server

Human-driven:
 web browser and web servers

Data-driven:
 P2P file-sharing applications

Physically driven:
 mobile and ubiquitous systems

Spontaneous interoperation • In a volatile system, components routinely change the set
of components they communicate with, as they move or as other components appear in
their environment. We use the term association for the logical relationship formed when
at least one of a given pair of components communicates with the other over some
well-defined period of time, and interoperation for their interactions during their
association. Note that association is distinct from connectivity: two components (e.g., an
email client on a laptop and an email server) may be currently disconnected while they
remain associated.

In a smart space, associations change because components take advantage of
opportunities to interact with local components. A simple example of such an
opportunity is for a device to use a local printer wherever the device happens to be.
Similarly, a device may want to offer services to clients in its local environment – such
as a ‘personal server’ [Want et al. 2002] that the user wears (for example, on a belt),
which supplies data about the user or belonging to the user to nearby devices. Of course,
certain static associations still make sense even in a volatile system; we have given the
example of a laptop computer that travels with its owner around the world but only ever
communicates with a fixed email server.

826 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

To place this type of association into a bigger picture of services on the Internet,
Figure 19.2 shows examples of three types of spontaneous association (on the right), as
compared with pre-configured associations (on the left).

Preconfigured associations are service-driven: that is, clients having a long-term
need to use a specific service are preconfigured to be associated with it. The effort of
configuring the clients (including setting them up with the address of the required
service) is small compared to the long-term value of using that particular service.

On the righthand side of the figure are types of association that vary routinely,
driven by a human operator, by the need for specific data or by changing physical
circumstances. We can regard associations between a web browser and web services as
spontaneous and human-driven: the user makes dynamic and (from the system’s point
of view) unpredictable choices of link to click on and thus service instance to access.
The Web is a truly volatile system, and important to its success is the fact that changing
the associations typically involves negligible effort – the authors of web pages have
done the configuration work.

Peer-to-peer applications on the Internet, such as file-sharing programs, are also
volatile systems, but they are primarily data-driven. That data often originates from the
human (e.g., the name of the content to be sought), but it is the value of the data provided
to it that causes a peer to make associations with a peer it may never have associated
with before and whose address it has not formerly stored, via a data-based distributed
discovery algorithm.

The mobile and ubiquitous systems described in this chapter are distinguished by
exhibiting largely physically driven spontaneity of associations. The associations are
made and broken – sometimes by humans – according to the current physical
circumstances of the components, and in particular their proximity.

Lowered trust and privacy • As Chapter 11 explained, security in distributed systems is
ultimately based on trusted hardware and software – the trusted computing base. But
trust in volatile systems is problematic because of spontaneous interoperation: what
basis of trust can there be between components that are able to associate spontaneously?
Components moving between smart spaces may belong to disparate individuals or
organizations and have little or no prior knowledge of one another or of a trusted third
party.

Privacy is a major issue for users, who may distrust systems because of their
sensing capabilities. The presence of sensors in smart spaces means that it becomes
possible to track users electronically on a potentially massive scale not seen before. In
benefiting from context-aware services – as in the example of rooms that set the air
conditioning according to the preferences of users within them – users may enable
others to learn where they have been and what they were doing there. To make matters
worse, they may not always be aware that they are being sensed. Even if the user does
not disclose their identity, it may be possible for others to learn it and so find out what
a particular individual does – for example, by observing regular journeys between a
home and a place of work, and correlating those with the use of a credit card somewhere
in between.

SECTION 19.2 ASSOCIATION 827

19.2 Association

As explained above, devices are liable to appear in and disappear from smart spaces
unpredictably. Despite this, volatile components need to interoperate – preferably
without user intervention. In other words, a device that appears in a smart space needs
to be able to bootstrap itself onto the local network to enable communication with other
devices, and associate appropriately in the smart space:

Network bootstrapping: Typically, communication takes place over a local network.
The device must first acquire an address on the local network (or register a
pre-existing address such as a mobile IP address); it may also acquire or register a
name.

Association: Components on the device either associate to services in the smart
space, provide services to components elsewhere in the smart space, or both.

Network bootstrapping • There are well-established solutions to the problem of
integrating a device into a network. Some of those solutions rely on servers accessible
within the smart space. For example, a DHCP server (see Section 3.4.3) can supply an
IP address and other networking and DNS parameters, which the device obtains by
issuing a query to a well-known broadcast address. Servers in the smart space may also
assign a unique domain name to the device; or if there is access to the open Internet the
device can use a dynamic DNS update service to register its new IP address against a
static domain name.

A more interesting case is to assign networking parameters in the absence of any
service infrastructure in the smart space or beyond it. That is desirable both to simplify
the smart space and to avoid dependencies on services that might fail. The IPv6 standard
includes a protocol for serverless address assignment. The Zero Configuration
Networking working group of the IETF [www.zeroconf.org] is developing standards for
serverless address assignment, domain name lookup, multicast address assignment and
discovery of services (see the next subsection). Apple’s Bonjour [www.apple.com I] is
a commercial implementation of much of that functionality. As with DHCP access, all
such methods utilize broadcasts or multicasts over the local network, using a
well-known address. Any device can listen on or transmit to such an address.

The association problem and the boundary principle • Once a device can communicate
in the smart space, it is faced with the association problem: how to associate
appropriately within it. Solutions to the association problem must address two main
aspects: scale and scope. First, there may be many devices within the smart space, and
perhaps orders of magnitude more software components on those devices. With which
of these, if any, should components on the appearing device interoperate, and how can
the choice be made efficiently?

Second, how can we constrain the scope when solving that problem, so as to
consider only components from the smart space – and all the components in the smart
space – rather than the potential trillions of components that lie beyond? Scoping is
partly but not only a type of scaling issue. A smart space typically has administrative and
territorial boundaries, which can make a large difference to users and administrators. For
example, if a device is to discover a service such as a printer in a hotel room, it must find

828 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

a printer in its user’s room, and not the room next door. Equally, if there is an appropriate
printer in the user’s room, then a solution should include it as a candidate for association.

The boundary principle states that smart spaces need to have system boundaries
that correspond accurately to meaningful spaces as they are normally defined
territorially and administratively [Kindberg and Fox 2001]. Those ‘system boundaries’
are system-defined criteria that scope but do not necessarily constrain association.

One attempt at a solution to the association problem is to use a discovery service,
described next. Discovery services are normally based on subnet multicast, which has
the disadvantage that the subnet’s reach may not coincide with the services that are
available in a smart space – i.e., that they break the boundary principle – as we shall
explain. Section 19.2.2 then describes some solutions that provide more accurately
scoped associations by relying on physical parameters and human input.

19.2.1 Discovery services

Clients find out about the services provided in a smart space using a discovery service.
A discovery service is a directory service (see Section 13.3) in which services in a smart
space are registered and looked up by their attributes, but one whose implementation
takes account of volatile system properties. First, the directory data required by a
particular client – i.e., the set of service attributes against which queries are to be run –
is determined at runtime. The directory data is dynamically determined as a function of
the client’s context – in this case, the particular smart space where the queries take place.
Second, there may be no infrastructure in the smart space to host a directory server.
Third, services registered in the directory may spontaneously disappear. Fourth, the
protocols used for accessing the directory need to be sensitive to the energy and
bandwidth they consume.

Both device discovery and service discovery services exist; Bluetooth includes
both. With device discovery, clients discover the names and addresses of co-present
devices. Typically, they then choose an individual device on the basis of out-of-band
information (such as selection by a human) and query it for the services it offers. On the
other hand, a service discovery service is used where clients are not concerned with
which device provides the service they need, but with the attributes of the service alone.
This description will concentrate on service discovery services, and unless stated
otherwise, that is what we mean by ‘discovery services’ henceforth.

A discovery service has an interface for automatically registering and
deregistering the services that are available for association, as well as an interface for
clients to look up services from those that are currently available, so as to go on to
associate with an appropriate service. Figure 19.3 gives a fictitious, simplified example
of those interfaces. First, there are calls to register a service’s availability with a given
address and attributes, and to manage its registration subsequently. Then there is a call
to look up the services that match a specification of required attributes. Zero or more
services may match the specification; each is returned with its address and attributes.
Note that a discovery service does not enable association by itself: service selection –
the choice of one service from the returned set – is also required. That may occur
programatically, or by listing the matching services from which the user may choose.

Developments in discovery services include the Jini discovery service (discussed
in the next section), the service location protocol [Guttman 1999], the Intentional

Figure 19.3 The interface to a discovery service

Methods for
service registration and deregistration

Explanation

lease := register(address, attributes) Register the service at the given address
with the given attributes; a lease is
returned

refresh(lease) Refresh the lease returned at registration

deregister(lease) Remove the service record registered
under the given lease

Method to look up a service

serviceSet := query(attributeSpecification) Return a set of registered services whose
attributes match the given specification

SECTION 19.2 ASSOCIATION 829

Naming System [Adjie-Winoto et al. 1999], the simple service discovery protocol
(which is at the heart of the Universal Plug and Play initiative [www.upnp.org]) and the
Secure Service Discovery Service [Czerwinski et al. 1999]. There are also link-layer
discovery services, such as that of Bluetooth.

The issues to be dealt with in the design of a discovery service are as follows:

Low-effort, appropriate association: Ideally, appropriate associations would be
made without any human effort. First, the set of services returned by the query

operation (Figure 19.3) would be appropriate – they would be precisely the services
existing in the smart space that matched the query. Second, service selection could
be made programatically or with minimal human input so as to meet the users’ needs.

Service description and query language: The overall goal is to match services to
clients’ requests for services. That presupposes a language for describing available
services, and one for expressing service requirements. The query and description
languages have to agree (or be translatable), and their expressiveness has to keep
pace with the development of new devices and services.

Smart-space-specific discovery: We require a mechanism for devices to access an
instance (or scope) of the discovery service that is appropriate to their current
physical circumstances – a mechanism that doesn’t rely on the device knowing the
particular name or address for that service a priori. In practice, discovery services are
related to a particular smart space only through the limited reach of multicast over a
subnet that intersects with it, as we shall explain.

Directory implementation: Logically, each instance of a discovery service involves
a queryable directory of available services. There are several ways of implementing
such a directory, with varying implications for network bandwidth, timeliness of
service discovery and energy consumption.

Service volatility: Any service in a volatile system has to efficiently and gracefully
handle the disappearance of a client. A discovery service has services as clients, and
it needs to handle service disappearance appropriately.

830 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

As an example of association by discovery, consider an occasional or first-time visitor
to a host organization or a hotel, who needs to print a document from a laptop. The user
cannot reasonably be expected to have the names of particular local printers configured
in their laptop, or to guess their names (such as \\myrtle\titus, or \\lionel\frederick).
Rather than forcing the user to configure their machine while they visit, it would be
preferable for the laptop to use the query call of a discovery service to find the set of
available network printers that match the user’s needs. A particular printer can be
selected via interaction with the user or by consulting a record of the user’s preferences.

The required attributes of the printing service may, for example, specify whether
it is ‘laser’ or ‘inkjet’, whether or not it provides colour printing and its physical location
with respect to the user (for example, the room number).

Correspondingly, services provide their address and attributes to the discovery
service with the register call. For example, a printer (or a service that manages it) may
register its address and attributes with the discovery service as follows:

serviceAddress=http://www.hotelDuLac.com/services/printer57; resource-

Class=printer, type=laser, colour=yes, resolution=600dpi, location=room101

The usual way to bootstrap access to the local discovery service at runtime without
manual configuration is to use the reach of the local subnet; specifically, to multicast (or
broadcast) queries to a well-known IP multicast address over the local subnet. The
well-known IP multicast address is known a priori by all devices that need to access the
discovery service. Discovery services based only on network reach are sometimes
explicitly known as network discovery services.

 Note that some networks, such as Bluetooth, use frequency hopping and cannot
communicate with all neighbouring devices simultaneously at a physical level.
Bluetooth achieves discovery using a counterpart to one ‘well-known address’: a
well-known frequency-hopping sequence. Discoverable devices cycle through the
frequencies more slowly than devices attempting to discover them, so that senders
(discoverers) and receivers eventually coincide in frequency and establish
communication.

There are several design choices to be made when implementing a discovery
service, which can have a considerable effect on the ways it can be used.

The first is whether the discovery service should be implemented by a directory

server, or be serverless. A directory server holds a set of descriptions of services that
have registered with it, and responds to clients issuing queries for services. Any
component (server or client) wanting to use the local directory service issues a multicast
request to locate it, and the directory server responds with its unicast address. The
component then communicates with it point-to-point, saving the interruption of
uninvolved devices that occurs with multicast communication. This works well in smart
spaces that provide infrastructure. The directory service can often be run from mains
power on a robust machine. But in simpler smart spaces such as basic meeting rooms,
there may be no facilities for a directory server. In principle it would be possible to elect
a server from whatever devices happened to be present (Section 15.3), but any such
server might disappear spontaneously. This would lead to complexity in the
implementation of clients of the discovery service, which would then have to adapt to a

SECTION 19.2 ASSOCIATION 831

changing registry server. Moreover, the overheads due to re-election may be great in a
highly volatile system.

An alternative is serverless discovery, where the participating devices collaborate
to implement a distributed discovery service, in lieu of a directory server. As with any
distributed directory, there are two main implementation variants. In the push model,
services multicast (‘advertise’) their descriptions regularly. Clients listen for the
multicasts and run their queries against them, possibly caching descriptions in case they
are needed later. In the pull model, clients multicast their queries. Devices providing
services run the queries against their descriptions, and only respond with any
descriptions that match. Clients repeat their queries at intervals if there is no response.

Both push and pull models have implications for bandwidth and energy usage.
Every time a device issues a multicast message, bandwidth is consumed and all listening
devices expend energy receiving the message. In a pure push model, devices need to
advertise their services regularly so that appearing clients can discover them. But this is
wasteful of bandwidth and energy if there are no clients needing to discover a particular
service. And the time that an appearing client waits to hear about services has to be
traded off against the bandwidth and energy costs, which increase with the frequency of
advertisements.

In a pure pull model, a client can discover available services as soon as it appears,
and there are no wasted multicasts if there are no discovery needs in a given interval.
But the client may receive several responses when a single response would do. Also, no
advantage is taken, by default, of requests bearing the same query (for frequently
required services).

It is possible to design hybrid protocols that address the above shortcomings, and
Exercise 19.2 deals with this.

A service may invoke the deregister call (Figure 19.3) before it disappears, but
equally it may disappear spontaneously. Service volatility is handled in different ways
according to the architecture of the directory implementation. A directory server needs
to become aware as soon as possible after a registered service disappears, so that it does
not give out its description misleadingly. That is normally accomplished using a general
mechanism called leases. A lease is a temporary allocation of some resource by a server
to a client, which can only be renewed by a further request from the client before the
lease’s deadline has expired. If the client fails to renew it (for example, with the refresh

call of Figure 19.3), the server withdraws (and may reallocate) the resource. We
introduced leases as part of our discussion of Jini in Section 5.4.3; DHCP servers also
use leases when allocating IP addresses. A directory server maintains a service’s
registration only if the service periodically communicates with the directory server to
renew its lease on the entry. Here we see a similar trade-off of timeliness against
bandwidth and energy consumption – the shorter the lease period, the faster a service’s
disappearance will be noticed, but the more networking and energy resources will be
required. In a serverless architecture, no steps need be taken (except to clear stale entries
in devices that cache services), since a service that has disappeared will no longer
advertise itself and a client using a pull-based protocol can only discover present
services.

832 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

Jini • Jini [Waldo 1999, Arnold et al. 1999] is a system designed to be used for mobile
and ubiquitous systems. It is entirely Java-based – it assumes that Java virtual machines
run in all of the computers, allowing them to communicate with one another by means
of RMI or events (see Chapters 5 and 6) and to download code as necessary. Here we
describe Jini’s discovery system.

The discovery-related components in a Jini system are lookup services, Jini
services and Jini clients (see Figure 19.4

Figure 19.4 Service discovery in Jini

admin

admin

admin, finance

finance

Client

Client 1. ‘finance’
 lookup service?

2. Here I am:

3. Request
 ‘printing’

4. Use printing
 service

Network
 service
Lookup

 service
Lookup

Printing
service

Corporate
infoservice

Printing
service

). The lookup service implements what we have
termed a discovery service, although Jini uses the term ‘discovery’ only for discovering
the lookup service itself. The lookup service allows Jini services to register the services
they offer and Jini clients to request services that match their requirements. A Jini
service, such as a printing service, may be registered with one or more lookup services.
A Jini service provides, and the lookup services store, an object that provides the service,
as well as the attributes of the service. Jini clients query lookup services to find Jini
services that match their requirements; if a match is found, they download an object that
provides access to the service from the lookup service. The matching of service offers
to clients’ requests can be based on attributes or on Java typing, for example allowing a
client to request a colour printer for which it has the corresponding Java interface.

When a Jini client or service starts up, it sends a request to a well-known IP
multicast address. Any lookup service that receives the request and can respond to it
sends its address, enabling the requester to perform a remote invocation to look up or
register a service with it (registration is called joining in Jini). Lookup services also
announce their existence in datagrams sent to the same multicast address. Jini clients and
services may listen on the multicast address to learn about new lookup services.

There may be several instances of the lookup service reachable by multicast
communication from a given Jini client or service. Every such service instance is
configured with one or more group names, such as ‘admin’, ‘finance’ and ‘sales’, which

SECTION 19.2 ASSOCIATION 833

act as scoping labels. Figure 19.4 shows a Jini client discovering and using a printing
service. The client requires a lookup service in the ‘finance’ group, so it multicasts a
request bearing that group name (message 1 in the figure). Only one lookup service is
bound to the ‘finance’ group (the service that is also bound to the ‘admin’ group), and
that service responds (2). The lookup service’s response includes its address, and the
client communicates directly with it by RMI to locate all services of type ‘printing’ (3).
Only one printing service has registered itself with that lookup service under the
‘finance’ group, and an object to access that particular service is returned. The client
then uses the printing service directly, using the returned object (4). The figure also
shows another printing service, one that is in the ‘admin’ group. There is also a corporate
information service that is not bound to any particular group (and that may be registered
with all lookup services).

Discussion of network discovery services • The discovery services based only on
network reach that we have just described – network discovery services – go some way
towards solving the association problem. Efficient directory implementations exist,
including ones that do not rely on infrastructure. In many cases, the number of clients
and services that can be reached over a subnet is manageable in terms of computation
and network costs, so scale is often not a problem. We have described measures to cope
with system volatility.

But network discovery services raise two difficulties when looked at from the
perspective of the boundary principle: the use of a subnet, and inadequacies in the way
services are described.

 The subnet may be a poor approximation to a smart space. First, network
discovery may mistakenly include services that are not in the smart space. Consider a
hotel room, for example. Transmissions based on radio frequency (RF) signals such as
802.11 or Bluetooth will typically penetrate the walls to other guests’ rooms. Following
the Jini example, services could be logically partitioned by groups – one group per hotel
room. But that begs the question of how the user’s hotel room is to become a parameter
for the discovery service. Second, network discovery may mistakenly discount services
that are ‘in’ the smart space in the sense of being eligible for discovery there, but are
hosted beyond its subnet. The Cooltown case study illustrates how non-electronic
entities such as printed documents in a smart space may be associated with services
hosted outside the smart space (see Section 19.7.1).

Moreover, network discovery services do not always lead to appropriate
associations because the language used to describe services may be inadequate in two
respects. First, discovery may be brittle: even slight variations in the service-description
vocabulary used by disparate organizations could cause it to fail (for example, the hotel
room has a service called ‘Print’ whereas the guest’s laptop searches for ‘Printing’).
Variations in which human language is used for the vocabulary tend to exacerbate that
problem. Second, there may be lost opportunities for service access. For example,
suppose there is a ‘digital picture frame’ on the hotel room’s wall, which will display
holiday snaps in JPEG format. The guest’s camera has a wireless connection and
produces images in that format, but it has no description for the service – it has not been
upgraded with that relatively recent development. So the camera is incapable of taking
advantage of it.

834 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

19.2.2 Physical association

The shortcomings of network discovery systems can be solved to some extent using
physical means, although the solutions often require a greater degree of human
involvement. The following techniques have been developed.

Human input to scope discovery • This case is where a human provides input to the
device to set the scope of discovery. A simple example of this would be to type in or
select the smart space’s identifier, such as the room number in the case of the hotel guest.
The device can then use the identifier as an extra service ‘group’ attribute (as in Jini).

Sensing and physically constrained channels to scope discovery • A less laborious
possibility is for the user to employ a sensor on their device. For example, the smart
space might have an identifier presented in identifier-encoding symbols called glyphs on
documents and surfaces in the space – e.g., displayed on the TV screen in the guest’s
hotel room. The guest uses a camera phone or other imaging device to decode such a
symbol, and the device uses the resultant identifier in the way we described for direct
human input. Another possibility, for use with outdoor smart spaces where satellite
navigation signals are available, is to use a sensor to obtain the position of the smart
space in latitude and longitude coordinates, and to send those coordinates to a
well-known wide area service that returns the address of the local discovery service.
However, given the inaccuracies in satellite navigation, that method may be less precise
in identifying the smart space if there are other spaces close by.

Another technique that avoids human input is to use a physically constrained

channel (see also Section 19.5.2) – a communication channel that, to some degree of
approximation, permeates only the physical span of the smart space. For example, in the
guest room the TV could be playing background music at low volume, with a digital
encoding of the room’s identifier superimposed as an inaudible perturbation of the
signal [Madhavapeddy et al. 2003], or there could be an infrared transmitter (a beacon)
in the room that propagates the identifier [Kindberg et al. 2002a]. Both of those channels
are significantly attenuated by the materials at the boundaries of the room (assuming the
doors and windows are closed).

Direct association • The final set of techniques we shall consider here is for the human
to use a physical mechanism to directly associate two devices, without using a discovery
service. Typically, this is where the devices involved offer just one or a small set of
human-selectable services. In each of the following techniques, the human enables the
device they are carrying to learn the network address (e.g., Bluetooth or IP address) of
a ‘target’ device.

Address-sensing: One device can be used to sense the network address of the target
device directly. Possibilities include reading a barcode on the device that encodes its
network address, or bringing one device very close to the other and using a short-range
wireless channel to read its address. Two examples of such short-range channels are
Near Field Communication [www.nfc-forum.org] – a standard for bidirectional radio
communication that spans several short ranges but has a variant for only up to about 3
centimetres – and very short range infrared transmissions.

Physical stimulus: A physical stimulus can be used to cause the target device to send its
address. An example here is to shine a digitally modulated laser beam (another

SECTION 19.3 INTEROPERATION 835

physically constrained channel) onto the target device [Patel and Abowd 2003], thus
transmitting its address to the target, which responds with its address.

Temporal or physical correlation: Temporally or physically correlated stimuli can be used
to associate devices. The SWAP-CA specification [SWAP-CA 2002] for wireless
networking in a home environment introduced a protocol, sometimes referred to as the
two-button protocol, for humans to associate two wireless devices with each other. Each
device listens on a well-known multicast address. The users press buttons on their
respective devices more or less simultaneously, at which point the devices send their
network addresses to the multicast address. It is unlikely that another round of this
protocol will occur at the same time in the same subnet. The devices therefore associate
using any address that arrives within a small interval of the button press. There is an
interesting, if rarely practical, physical counterpart to this approach in which a user
holds two devices in the same hand and shakes them together [Holmquist et al. 2001].
Each device has an accelerometer for sensing its state of motion. The device records the
shaking pattern, computes an identifier from it, and multicasts that identifier together
with its unicast address to a well-known multicast address. Only the two devices
experiencing exactly that acceleration pattern – and within direct communication range
– will recognize each other’s identifier and hence learn each other’s address.

19.2.3 Summary and perspective

This section has described the association problem for components in volatile systems
and some attempts at solving that problem, ranging from network discovery to more
human-supervised techniques. Mobile and ubiquitous systems raise unique difficulties
because they are integrated with our everyday, messy physical world of spaces such as
domestic rooms and offices, making it hard to scope the solutions. Humans tend to have
strong territorial and administrative considerations in mind when they consider what is
in a particular smart space and what is outside it. The boundary principle says that
solutions to the association problem need to match the underlying physical spaces to a
degree that is acceptable to humans. We have seen that some degree of human
supervision is often entailed, because of the deficiencies of network discovery systems.
The Cooltown case study (Section 19.7) describes a particular model of human
involvement.

We have largely ignored scale as a factor in solutions to the association problem,
on the basis that the world is broken up into smart spaces that are, typically, of
manageable size. However, there is research into scalable discovery services – after all,
some applications might consider the entire planet to be a smart space. An example is
INS/Twine [Balazinska et al. 2002], which divides directory data between a collection
of peer resolvers.

19.3 Interoperation

We have described ways in which two or more components in a volatile system come to
be associated; now we turn to the question of how they interoperate. Components
associate on the basis of certain attributes or data that one or both of them possesses. But

836 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

that leaves the questions of what protocol they use to communicate and, at a higher level,
what programming model is best suited for interaction between them. This section deals
with those questions.

Chapters 4, 5 and 6 describe models for interoperation including various forms of
interprocess communication, method invocation and procedure invocation. An implicit
assumption underlying some of those models is that the interoperating components are
designed to work together in a specific system or application, and that changes to the set
of interoperating components are either a long-term configuration issue or a runtime
error condition to be handled occasionally. But those assumptions are invalid in mobile
and ubiquitous systems. Fortunately, as we explain in this section, some of the methods
for interoperation from Chapters 4, 5 and 6, in addition to some new methods, are better
suited to these volatile systems.

Ideally, a component in a mobile or ubiquitous system could associate with
varying classes of services, and not just a varying set of instances of the same service
class. That is, it is best to avoid the ‘lost opportunity’ problem described in the previous
section where, for example, a digital camera is unable to send its images to a digital
picture frame because it cannot interoperate with the frame’s picture-consuming service.

Put another way, one goal for ubiquitous and mobile computing is that a
component should have a reasonable chance of interoperating with a functionally
compatible component, even if the latter is in a different type of smart space from the
one for which it was originally developed. That entails some global agreement between
software developers. Given the effort needed to reach agreement, it is best to minimize
what needs to be agreed upon.

The main difficulty that stands in the way of volatile interoperation is software
interface incompatibility. If, for example, a digital camera expects to invoke an
operation pushImage and there is no such operation in the digital picture frame’s
interface, then they cannot interoperate – at least, not directly.

There are two main approaches to this problem. The first is to allow interfaces to
be heterogeneous, but to adapt interfaces to one another. For example, if the digital
picture frame were to have an operation sendImage with the same parameters and
semantics as pushImage, then it would be straightforward to construct a component that
acted as a proxy for the digital picture frame, converting the camera’s pushImage

invocation into a sendImage invocation for the picture frame.
However, it is very hard to realize this approach. Often the semantics of operations

may vary as well as the syntax, and overcoming semantic incompatibility is in general
difficult and error-prone. Then there is the scale of the problem: if there are N interfaces,
then potentially N2 adaptors have to be written, and more and more interfaces will be
created over time. Moreover, there is the question of how components are to acquire
suitable interface adaptors as they reassociate in a volatile system. Components (or the
devices that host them) cannot come preloaded with all possible N2 adaptors, so the
correct adaptor has to be determined and loaded at runtime. Despite all of these
difficulties, there is research into how to make interface adaptation practical. See, for
example, Ponnekanti and Fox [2004].

Another approach to interoperability is to constrain interfaces to be identical in
syntax across as wide a class of components as possible. That may sound unrealistic at
first, but in fact it has been widely and successfully practised for several decades. The
simplest example is pipes in UNIX. A pipe has only two operations, read and write, for

SECTION 19.3 INTEROPERATION 837

the transport of data between components (processes) at its two ends. Over the years,
UNIX programmers have created many programs that can read data from a pipe and/or
write data to a pipe. Because of their standardized interfaces and generic text-processing
functionalities, the output of any of those programs can be fed into the input of another.
Users and programmers have found many useful ways of combining programs in that
way – programs that were written independently, without knowledge of the specific
functionality of the other programs.

A yet more successful example of a system that achieves a high degree of
interoperability through a fixed interface is the Web. The set of methods defined by the
HTTP specification (see Section 5.2) is small and fixed; typically, a web client uses only
the GET and POST operations to access a web server. The consequence of the fixed
interface is that a relatively stable piece of software – often the browser – is able to
interoperate with an evolving set of services. What changes between services is the type
and values of the content that is exchanged, and the server’s processing semantics. Every
interaction is still a GET or POST operation.

19.3.1 Data-oriented programming for volatile systems

We call systems that use an unvarying service interface, such as UNIX pipes and the
Web, data-oriented (or, equivalently, content-oriented). The term is chosen in
distinction to object-oriented. A component in a data-oriented system can be invoked by
any other component that knows the fixed interface. An object or collection of
procedures, on the other hand, has one of a widely varying set of possible interfaces and
can only be invoked by those components that know its particular interface. Distributing
and exploiting an indefinite number of specialized interface definitions is a much more
problematic proposition than publishing and using one interface specification, such as
the HTTP specification. That helps explain why the most widely used, heterogeneous
distributed system we have known is the Web, rather than a similarly scaled collection
of, say, CORBA objects.

But the flexibility of data-oriented systems is traded off against robustness. It does
not always make sense for two particular components to interoperate, and yet there is
little basis for programs to check for compatibility. In an object- or procedure-oriented
system, programs can at least check that their particular interface signatures match. But
a data-oriented component can enforce compatibility only by verifying the type of data
that is sent to it. It must either do that through standardized data-type descriptors
supplied as metadata (such as MIME types for web content), or by checking the data
values passed to it; for example, JPEG data begins with recognizable header
information.

We now examine some programming models that have been used for volatile
systems because of their data-oriented interoperability features. We begin with two
models for interoperation between indirectly associated components: event systems and
tuple spaces. We go on to describe two designs for interoperation between directly
associated devices: JetSend and Speakeasy.

Event systems • We introduced event systems [Bates et al. 1996] in Section 6.3. Event
systems provide instances of event services. Each system offers a fixed, generic
interface by which components called publishers publish structured data known as

838 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

events and, correspondingly, components called subscribers receive events. Each event
service is associated with some physical or logical scope of event delivery. Subscribers
only receive (‘handle’) events that (1) are published at the same event service and (2)
match their registered specifications of which events interest them.

Events are a natural programming paradigm for announcing and handling the
changes experienced by components while they are in a volatile system or when they
move between volatile systems. Events can be constructed to specify new states of
affairs, such as changes in a device’s location. A recent example of a system that uses
events for ubiquitous computing is one.world [Grimm 2004], but events have been used
in ubiquitous systems from early in their development. In the Active Badge system
[Harter and Hopper 1994], applications could subscribe to location-change events that
occur when users move around. Location events also present the issue of detecting
patterns of events that occur together or in close succession, also known as composite

events. For example, consider the problem of detecting when two users are co-located,
when all that is known is when individual users enter or leave a particular location. A
location system does not detect such occurrences by itself: there is a need for rules that
specify, in terms of primitive events such as ‘Arrive(user, location, time)’ and
‘Leave(user, location, time)’, when composite events such as co-location occur.

Although the publishing, subscription and handling interface for events is a given
(with relatively minor variations between event systems), publishers and subscribers can
interoperate correctly only if they agree on the event service they use (there may be
many instances) and the types and attributes of events – that is, their syntax and
semantics. Thus event systems shift rather than solve the problem of ubiquitous
interoperability. For a given component to interoperate in a wide variety of smart spaces
would require standards for event types, and events would ideally be described in a
programming language–independent markup language such as XML or JSON.

On the other hand, event producers and consumers do not need to identify one
another. That can be an advantage in a volatile system, where keeping track of which
other components are present can be difficult. Two components come to communicate
by virtue of publishing and subscribing to matching events, and by agreement on the
scope of event delivery – in other words, they associate indirectly.

The scope of event delivery is itself an interesting topic in mobile and ubiquitous
systems. As with service discovery, the question arises of how the scope of an event
service is related to the physical extent of the smart space. This point is the topic of
Exercise 19.7.

Tuple spaces • Like event systems, tuple spaces are a mature programming paradigm
that has found application in volatile systems. The tuple space paradigm was introduced
in Section 6.5.2 as an indirect communication paradigm that supports the addition and
retrieval of structured data, called tuples, to and from a tuple space. Tuple space systems
allow application-specific tuples to be exchanged, and the basis for association and
interoperation is the components’ agreement about structures for tuples and values
contained within them.

As an example of the support they can offer ubiquitous computing, a digital
camera could discover the tuple space for the local smart space – a hotel room, say – and
place its images in the tuple space using a tuple such as:

SECTION 19.3 INTEROPERATION 839

< 'The leaning tower', 'image/jpeg', <jpeg data>>

The designers of the camera software have a model only of a tuple space into
which images may be placed in a certain format, and no model of the particular forms
of processing to which those images will be subject.

Correspondingly, an image-consuming device such as a digital picture frame
could be programmed to discover its local tuple space and to attempt to retrieve from it
tuples with the form of the following template, in which ‘*’ represents a wildcard value:

<*, 'image/jpeg', *>

The camera’s tuple matches the template required by the picture frame – it has
three fields and its second field contains the required MIME type string. The picture
frame will thus retrieve the camera’s tuple and can display the image and associated title.
As another example, the user could have activated a printer to consume the image from
the tuple space and print it.

Several programming systems based on tuple spaces have been developed
specifically for mobile and ubiquitous systems, as discussed below.

The event heap: Despite its name, the event heap [Johanson and Fox 2004] is a
tuple-based programming system developed for a type of smart space known as the
‘iRoom’, which contains multiple large displays and other infrastructure devices. For
each iRoom there is a corresponding event heap, which components in the iRoom –
including those on mobile devices brought into the room – can discover or can be
configured to use. Components interoperate by exchanging tuples via the event heap,
and it provides a level of indirection that facilitates dynamic association between the
devices. An example is where a remote control device kept in the iRoom can be
associated dynamically to different displays, and a video can be presented on any of
these displays. When a user presses the ‘pause’ button on the remote control, the control
places a ‘pause’ tuple in the event heap. Whatever device is displaying the video is
programmed to look for and retrieve ‘pause’ tuples, and thus respond. The remote
control could be made to work with an audio output device in exactly the same way,
without reprogramming it.

LIME: The LIME system (Linda in a Mobile Environment) [Murphy et al. 2001] was
developed as a programming model for mobile systems. In LIME, participating devices
host tuple spaces and there is no reliance on infrastructure. Each device hosts its own
tuple space. LIME shares the individual tuple spaces when their host devices become
associated, forming the union of the sets of tuples in the aggregate of shared spaces. This
could be used for service discovery, for example. A component that requires a service
could be programmed to attempt to retrieve a tuple describing an instance of the service
it requires; a device implementing a corresponding service would be programmed to
place a descriptive tuple in its local tuple space. When the two became connected, LIME
would establish the match and the would-be client would obtain the service’s details.

While the LIME model is simple to state, it is non-trivial to implement suitable
consistency semantics in the face of arbitrary connections and disconnections. LIME’s
implementors made arguably unrealistic assumptions to simplify their design, including
that multicast connectivity holds uniformly between the devices whose tuple spaces are

840 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

aggregated and that connections and disconnections to and from an aggregated set are
serialized and orderly.

TOTA: The TOTA (Tuples On The Air) Project [Mamei and Zambonelli 2009] provides
a rather interesting twist to the standard implementation of tuple spaces. In this
approach, tuples are injected into the network by placing them on a local node and then
allowing the tuples to be cloned and propagated throughout the network in a manner
similar to gossip protocols (see Section 18.4.1). The end result is a tuple field

representing a spatial dissemination of a given tuple. A process can then read the tuple
in the usual manner using associative matching. To support this style of programming,
a tuple T is defined as T=(C,P,M), where C is the content of the tuple, P is the
propagation rule for that tuple and M is a maintenance rule that defines how the tuple
should react to events from the environment or to the passing of time. For example,
Mamei and Zambonelli [2009] describe an art museum application where different
rooms in the museum have fixed wireless devices and visitors have wireless-enabled
smart phones, which together form an ad hoc network. The smart phone of a visitor
interested in a particular piece of art places a query tuple into the system whose content
is a description of the piece of art together with a distance field. The propagation rule is
to propagate the tuple to all nodes in the vicinity, increasing the distance by one each
time; the maintenance rule is to delete the tuple after a time-to-live period. Once this
tuple arrives at a particular room where the piece of art resides, an answer tuple is
injected into the system containing a description of the artwork, the location of the
artwork and a distance field; the propagation rule this time is to follow the path
backwards to the visitor, increasing the distance each time, and the maintenance rule
again is to implement a time-to-live policy. The end result is a highly flexible
programming model that is particularly useful for operation in spatially connected ad
hoc environments and in ubiquitous computing more generally.

L2imbo: L2imbo is a replicated tuple space implementation designed to operate in a
mobile environment [Davies et al. 1998]. Whereas the most common motivation for
replication is to achieve high availability and fault tolerance, L2imbo exploits
replication to deal with device disconnection. L2imbo adopts a fully replicated approach
where every node maintains a replica. The goal is then to ensure the consistency of this
set of replicas. To this end, L2imbo adopts the approach of reliable multicast over IP

multicast, as discussed in Section 15.4.2, specifically using the scalable reliable
multicast approach featured in that section [Floyd et al. 1997]. L2imbo supports the
creation of multiple tuple spaces, and each tuple space maps uniquely onto an IP
multicast address. The implementations of read and write are relatively straightforward,
with read often being satisfied locally and write mapping onto a (reliable) multicast
operation. The implementation of take is more complex given the requirement for global
withdrawal. The approach builds on a concept of ownership in L2imbo, with only the
owner being able to remove the tuple. The owner is normally the creator of the tuple, but
ownership can subsequently be transferred to other processes.

Comparing event systems and tuple spaces • If we identify ‘event’ with ‘tuple’ and
‘specification of interest’ with ‘tuple-matching template’, there is a correspondence
between the two models of interoperation. Both provide a level of indirection that is
useful for volatile systems, since the identities of the components that produce and
consume events or tuples are hidden from one another by default. The set of components

SECTION 19.3 INTEROPERATION 841

can thus change transparently. However, there are important differences. First, the event
model is exclusively asynchronous, whereas tuple space systems supply a synchronous
operation to retrieve a matching tuple. It can be easier to program with synchronous
operations. On the other hand, it is a bad idea to expect that a particular component (for
example, an image-producing device that has been dynamically encountered) will
eventually supply a matching tuple, since disconnection may occur at any time.

The second important difference is the lifetime of events and tuples. By default,
an event does not outlast its propagation between publishers and subscribers. A tuple in
a tuple space, however, may outlast the component that placed it there – and any
component that reads (as opposed to destructively consumes) it. That persistence can be
an advantage; for example, the batteries in a user’s camera might fail after they have
uploaded pictures to a hotel room’s tuple space but before they have assigned them to
another device. At the same time, persistence can be a disadvantage: what if an
uncontrollable set of devices places tuples in a space, but they are never consumed
because the components expected to consume them have become disconnected? The set
of tuples in such a space might grow uncontrollably. Without global knowledge of a
volatile set of components, it would be impossible to determine which tuples were
garbage.

The designers of the event heap recognized the persistence problem for iRooms.
They chose to allow tuples to expire (that is, to be garbage-collected) after being in an
event heap for a specified time, which is usually chosen to correspond with a human
interaction timespan. That prevents, for example, an unconsumed pause event from a
remote control to cause a nuisance when a user tries to play a video the next day.

Direct device interoperation • The previous programming models were for interopera-
tion between indirectly associated components. JetSend and Speakeasy are systems de-
signed for interoperation between two devices that a human has brought into direct
association.

JetSend: The JetSend protocol [Williams 1998] was designed for interaction between
appliances such as cameras, printers, scanners and TVs. JetSend was explicitly designed
to be data-oriented, so that no appliance had to be loaded with specialized drivers
according to the specific devices with which it would interact. For example, a JetSend
camera can send an image to a JetSend image-consuming device such as a printer or TV,
regardless of the specific functionality of the consumer. The central generic operation
between connected JetSend devices is to synchronize the state that one presents to the
other. That means transferring the state, in a format negotiated by the devices. For
example, an image-producing device such as a scanner could synchronize with an
image-consuming device such as a digital picture frame by consuming an image from
the producer in JPEG format, chosen from several image formats that the producer could
provide. The same scanner might equally synchronize with a TV, perhaps using a
different image format.

JetSend’s designers recognized that their synchronization operation benefited
only simple interoperation – essentially, data transfer – between heterogeneous devices.
That begs the question of how to achieve more complex interactions between specific
devices. For example, how should a choice be made between monochrome and colour
when transferring an image to be printed? By assumption, the source device has no
driver for a specific printer. And it is not possible for that device to be programmed a

842 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

priori with the semantics of any arbitrary device (including devices yet to be invented)
with which it might connect. The JetSend answer to that problem was to rely on a human
to select the specific functions of the target device (say, a printer), using a user interface
specified by the target device but rendered on their source device (say, a camera). That
is how interoperation happens routinely on the Web, as users interact with highly
heterogeneous services via their browser: each service they interact with sends its
interface in the form of markup script to the browser, which renders it to the user as a
generic set of widgets, without knowledge of the service’s specific semantics. Web
services (see Chapter 9) are an attempt to replace the human by programs even for
complex interactions.

Speakeasy: The Speakeasy project [Edwards et al. 2002] later applied the same design
principles as JetSend to device-device interoperation, but with one difference: they
utilize mobile code. There are two motivations for using mobile code. The first is that a
device such as a printer can send any user interface to a user of another device such as a
smart phone. A mobile code implementation of a user interface can perform local
processing such as input validation, and it can provide interaction modes not available
in user interfaces that have to be specified in a markup language. However, against this
advantage has to be set the implications for security of executing mobile code, which
requires sophisticated protection mechanisms against Trojan horses, and the resource
implications of running mobile code on a virtual machine as opposed to processing
much more restricted markup script.

The second motivation for mobile code in device interoperation is optimization of
data transfer. While Speakeasy’s mobile code has to work within the constraints of the
host device’s API, it may perform arbitrary interactions with the remote device that sent
it. Thus, for example, the mobile code can implement an optimized protocol for
transferring content that is specific to the type of content – e.g., video could be
compressed on the fly before transmission. By contrast, JetSend can use only predefined
content transfer protocols.

19.3.2 Indirect associations and soft state

When a service (such as an infrastructure service) is resourced well enough to be highly
available, then it makes sense for components to associate with it explicitly – that is, to
learn its address. When components later use that address to interoperate with the
service – say, 10 minutes after association – then they can reasonably expect it to be
reachable still and to respond. However, in general, system volatility makes it
undesirable to rely on a service provided by a particular component since that
component could leave or fail at any time. One lesson from that distinction is that it is
useful for programmers to be told which services are highly available, and which are
volatile. In addition, to cope with volatility, they need to be provided with programming
techniques that do not involve reliance on a specific component.

Some of the above examples of data-oriented programming systems involved
indirect, anonymous associations. Specifically, components that interoperate via an
event system or tuple space do not necessarily know one another’s names or addresses.
As long as the event service or the tuple space persists, the individual components can
come and go and be replaced. Care is needed to maintain the correct operation of the

SECTION 19.3 INTEROPERATION 843

system overall, but at least the programmers of the components do not have to manage
individual associations with routinely disappearing peers.

 An example of a client-server system that uses indirect association is the
Intentional Name System (INS) [Adjie-Winoto et al. 1999]. Components issue requests
that specify the attributes of the required service, the operation to be invoked and its
parameters. The components do not need to specify the name or address of an instance
of the required service, because the INS automatically routes the operation and
parameters to an appropriate – e.g. local – service instance that matches the required
attributes. Since successive operations directed to the same attribute specification could
be handled by different server components, the INS assumes that those servers either are
stateless or replicate their state using one of the techniques described in Chapter 18.

That leads to a general question: how are programmers supposed to manage state
in a volatile system? The replication techniques from Chapter 18 assume a redundancy
of resources, which may not be available in a volatile system – at least, not continuously.
The replication techniques also entail extra communication that may not be practical
because of the associated energy consumption and performance degradation.

Lamport’s ‘Paxos’ or ‘Part-time Parliament’ algorithm [1998] provides a way of
reaching distributed agreement despite volatility – the participating processes are
assumed to disappear and reappear regularly and independently. However, the algorithm
depends on each process having access to its own persistent store.

By contrast, some implementations use soft state to provide more relaxed but still
useful consistency guarantees, even in the absence of continuously available persistent
storage. Clark [1988] introduced the notion of soft state as a way of managing the
configuration of Internet routers despite failures. The collection of routers is a volatile
system that has to continue to function even though no routers in the system can be
assumed always to be available. The definition of soft state has been the subject of
debate [Raman and McCanne 1999], but broadly speaking it is data that provides a hint
(that is, it might be stale and should not be relied upon for its strict currency), and, most
importantly, the sources of soft state automatically update it. Some discovery systems
(see Section 19.2) exemplify the use of soft state to manage the collection of service
registration entries. The entries are only hints – there may be an entry for a service that
has disappeared – and the entries are automatically updated by multicasts from services,
to add new entries and keep existing entries current.

19.3.3 Summary and perspective

This section has described models of interoperation between components in volatile
systems. If each smart space was to develop its own programming interface, then the
benefits of mobility would be limited. If a component did not originate in a given smart
space but moved there, the only way it could interoperate with services within the smart
space would be via a way of adapting its interface spontaneously to that of its new
surroundings. Achieving that would require very sophisticated runtime support, which
is as yet unrealized outside a few examples in the laboratory.

A different approach, described through several examples above, is data-oriented
programming. On the one hand, the Web has shown the extensibility and mass
applicability of that paradigm. On the other hand, there is no ‘silver bullet’ that will
solve all of the problems of interoperation for volatile systems. Data-oriented systems

844 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

trade agreement on the set of functions in an interface against agreement on the types of
data that are passed as arguments to those functions. While XML (see Section 4.3.3) is
sometimes touted as a way of facilitating data interoperation by enabling data to be
‘self-describing’, in fact it merely provides a framework for expressing structure and
vocabulary. In itself, XML has nothing to contribute to what is a semantic problem.
Some authors consider the ‘Semantic Web’ [www.w3.org XX] to be the way to achieve
interoperability between machines, without human interpretation.

19.4 Sensing and context awareness

The foregoing sections have concentrated on aspects of the volatility of mobile and
ubiquitous systems. This section will concentrate on the other chief characterization of
those systems: that of being integrated with the physical world. Specifically, it will
consider architectures for processing data collected from sensors, and context-aware
systems that can respond to their (sensed) physical circumstances. The sensing of
location, an important physical parameter, will be examined in more detail.

Since users and the devices we are considering are often mobile, and since the
physical world presents different opportunities for rich interactions across locations and
times, their physical circumstances are often relevant as a determinant of system
behaviour. The context-aware braking system of a car could adjust its behaviour
according to whether the road conditions are icy. A personal device could automatically
harness resources detected in its environment, such as a large display. The Active Badge
system provides a historical example: the location of a user – that is, the location of the
badge they wore – was used to identify which phone their calls should be routed to
[Want et al. 1992], in the days before mobile phones.

The context of an entity (person, place or thing, whether electronic or otherwise)
is an aspect of its physical circumstances of relevance to system behaviour. The context
includes relatively simple values such as the location, time and temperature, the identity
of an associated user – e.g., one operating a device – or other users nearby; and the
presence and state of an object such as another device, e.g., a display. Context can be
codified and acted upon through rules, such as ‘If the user is Fred and he is in an IQ Labs
meeting room, and if there is a display within 1 m, then show information from the
device on the display – unless a non-IQ Labs employee is also present’. Context is also
taken to include more complex attributes such as the user’s activity. For example, a
context-aware phone that has to decide whether to ring requires answers to questions
such as ‘Is the user in a cinema watching a film or are they chatting to their friends before
the screening?’

19.4.1 Sensors

The determination of a contextual value begins with sensors, which are combinations of
hardware and/or software used to measure contextual values. Some examples are:

Location, velocity and orientation sensors: Satellite navigation (GPS) units for
providing global coordinates and velocities; accelerometers to detect movement;
magnetometers and gyroscopes to provide orientation data.

SECTION 19.4 SENSING AND CONTEXT AWARENESS 845

Ambient condition sensors: Thermometers; sensors that measure light intensity; mi-
crophones for sound intensity.

Presence sensors: Sensors that measure physical load, e.g. to detect the presence of
a person sitting on a chair or walking across a floor; devices that read electronic
identifiers on tags brought near to them, such as RFID (Radio Frequency
IDentification, a subset of NFC) readers [Want 2004], or infrared readers such as
those used to sense active badges; software used to detect key presses on a computer.

The above categories are meant only as examples of sensors used for particular
purposes. A given sensor may be put to various purposes. For example, the presence of
humans could be detected using microphones in a meeting room and an object’s location
could be determined by detecting the presence of its active badge in a known place.

An important aspect of a sensor is its error model. All sensors produce values with
some degree of error. Some sensors, e.g. thermometers, can be manufactured so that the
errors fall within the bounds of a fairly well known tolerance, and with a known (e.g.,
Gaussian) distribution. Others, such as satellite navigation units, have complicated error
modes that depend on their current circumstances. First, they may fail to produce a value
at all in certain circumstances. Satellite navigation units are dependent on the set of
satellites currently visible. They typically do not work at all inside buildings, whose
walls attenuate the satellite signals too much for the units to operate. Second, the
calculation of the unit’s location depends on dynamic factors including satellite
positions, the existence of nearby occlusions and ionospheric conditions. Even outside
buildings, a unit will typically provide different values at different times for the same
location, with only a best-effort estimate of the current accuracy. Near to buildings or
other tall objects that occlude or reflect radio signals, just enough satellites may be
visible to produce a reading, but the accuracy may be low and the reading may even be
spurious.

A useful way to state a sensor’s error behaviour is to quote an accuracy that it
reaches for a specified proportion of measurements, for example: ‘Within the given area,
the satellite navigation unit was found to be accurate to within 10 m for 90% of
measurements’. Another approach is to state a confidence value for a particular
measurement – a number (usually between 0 and 1) chosen according to uncertainties
encountered in deriving the measurement.

19.4.2 Sensing architectures

Salber et al. [1999] identify four functional challenges to be overcome in designing
context-aware systems:

Integration of idiosyncratic sensors: Some of the sensors needed for context-aware
computing are unusual in their construction and programming interfaces. Specialized
knowledge may be needed to correctly deploy them in the physical scenario of
interest (e.g., where should accelerometers be attached to measure the user’s arm
gestures?), and there may be system issues such as the availability of drivers for
standard operating systems.

Abstracting from sensor data: Applications require abstractions of contextual
attributes, to avoid concern with the peculiarities of individual sensors. The problem

846 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

is that even sensors that can be put to similar purposes typically provide different raw
data. For example, a given location may either be sensed as a latitude/longitude pair
by a satellite navigation sensor, or sensed as the string ‘Joe’s Café’ read from a
nearby infrared source. Either, both or neither might be what the application needs to
function. There needs to be agreement on the meaning of contextual attributes, and
software to infer those attributes from raw sensor values.

Sensor outputs may need to be combined: Reliably sensing a phenomenon may
entail combining values from several error-prone sources. For example, detecting the
presence of a person might require a microphone (to detect voice – but nearby sounds
might interfere), floor pressure sensors (to detect human movement – but different
users’ patterns are hard to distinguish) and video (to detect human forms – but facial
features are hard to distinguish). Combining sensor sources to reduce errors is known
as sensor fusion. Equally, an application may require output from sensors of different
types in order to gather several contextual attributes that it needs to operate. For
example, a context-aware smart phone that decides whether to present data on a
nearby display requires data from different sensor sources, including ones to detect
who and which devices are present, and one or more to sense the location.

Context is dynamic: A context-aware application typically needs to respond to
changes in context, and not simply to read a snapshot of it. For example, the
context-aware smart phone needs to blank its data from the room’s display if a non-
employee enters, or if Fred (the device’s owner) leaves the room.

Researchers have devised various software architectures to support context-aware
applications while dealing with some or all of the above issues. We give examples of
architectures for situations in which the set of available sensors is more or less known
and static, and architectures for determining contextual attributes from volatile
collections of sensors (where non-functional requirements such as energy-saving also
become prominent).

Sensing in the infrastructure • Active badge sensors were originally deployed in the
laboratory of Olivetti Research in Cambridge, England, at known, fixed locations in the
building. One of the original context-aware applications was as an aid for a telephone
receptionist. If someone called for, say, Roy Want, the receptionist would look for Roy’s
room location on the screen, so they could put the call through to an appropriate
extension. The system determined Roy’s location from information about where the
badge he wore was last sensed, and displayed that information to the receptionist.
Systems for processing active badge data and other contextual data were refined at
Olivetti Research Labs and at Xerox PARC. Harter and Hopper [1994] describe an
entire system for processing location events. Schilit et al. [1994] also describe a system
that can process active badge sensing events, through what they call context-triggered

actions. For example, the specification:

Coffee Kitchen arriving 'play -v 50 /sounds/rooster.au'

would cause a sound to be played whenever a badge was sensed arriving at the
sensor mounted by the coffee machine in the kitchen.

Figure 19.5 The IdentityPresence widget class of the Context Toolkit

Attributes (accessible by polling) Explanation

Location Location the widget is monitoring

Identity ID of the last user sensed

Timestamp Time of the last arrival

Callbacks

PersonArrives(location, identity, timestamp) Triggered when a user arrives

PersonLeaves(location, identity, timestamp) Triggered when a user leaves

SECTION 19.4 SENSING AND CONTEXT AWARENESS 847

The Context Toolkit [Salber et al. 1999] is an example of a system architecture for
more general context-aware applications than those based around a specific technology
such as active badges. It was the designers of the Context Toolkit who stated the four
challenges for context-aware systems listed above. Their architecture follows the model
of how graphical user interfaces are constructed from reusable widget libraries, which
hide most of the concerns of dealing with the underlying hardware – and much of the
interaction management – from the application developer. The Context Tzoolkit defines
context widgets. Those reusable software components present an abstraction of some
type of context attribute while hiding the complexity of the actual sensors used. For
example, Figure 19.5 shows the interface to an IdentityPresence widget. It provides
contextual attributes to software polling the widget, and it raises callbacks when the
contextual information changes (i.e., a user arrives or leaves). As indicated above, the
presence information could be derived from any of several combinations of sensors in a
given implementation; the abstraction enables the application writer to ignore those
details.

Widgets are constructed from distributed components. Generators acquire raw
data from sensors such as floor pressure sensors, and provide that data to widgets.
Widgets use the services of interpreters, which abstract contextual attributes from the
generator’s low-level data, deriving higher-level values such as the identity of a person
who is present from their distinctive footsteps. Finally, widgets called servers provide
further levels of abstraction by collecting, storing and interpreting contextual attributes
from other widgets. For example, a PersonFinder widget for a building could be
constructed from the IdentityPresence widgets for each room in the building (Figure
19.6), which in turn could be implemented using footstep interpretation from floor
pressure readings or face recognition from video capture. The PersonFinder widget
encapsulates the complexity of a building for the application writer.

Looked at in relation to the four challenges that the Context Toolkit’s designers
stated, their architecture does accommodate a variety of sensor types; it is geared
towards the production of abstract contextual attributes from raw sensor data; and,
through polling or callbacks, a context-aware application can learn about changes in its
context. However, the toolkit goes only a limited way towards a practical solution. It
does not of itself help users and programmers to integrate idiosyncratic sensors; neither

Figure 19.6 A PersonFinder widget constructed using IdentityPresence widgets

IdentityPresenceRoom A IdentityPresence Room B

PersonFinder

Floor pressure (generators) Video (generator)

Face recognition
Footstep recognition

(interpreter)
(interpreter)

Widgets

848 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

does it solve any of the hard problems inherent in the processes of interpretation and
combination for a specific case.

Wireless sensor networks • We have discussed architectures for applications in which
the set of sensors is relatively stable – for example, where the sensors are installed in
rooms in a building, often with external power and wired network connections. We now
turn to cases where the set of sensors forms a volatile system. A wireless sensor network

consists of a (typically large) number of small, low-cost devices or nodes, each with
facilities for sensing, computing and wireless communication [Culler et al. 2004]. It is
a special case of an ad hoc network: the nodes are physically arranged more or less
randomly, but they can communicate over multiple wireless hops between their peers.
An important design goal for these networks is to function without any global control;
each node bootstraps itself by discovering its wireless neighbours and communicating
via them alone. Section 3.5.2 describes ad hoc configurations of 802.11 networks, but
lower-power technologies such as ZigBee (IEEE 802.15.4) are more relevant here.

One reason why nodes communicate not in a single hop to all other nodes but only
with nodes located nearby is that wireless communication is costly in terms of power
consumption, which increases as the square of radio range. The other main reason for
restricting the range of individual radios is to reduce network contention.

 Wireless sensor networks are designed to be added to an existing natural or built
environment and to function independently of it – i.e., without reliance on infrastructure.
Given their limited radio and sensing range, the nodes are installed at a sufficient density
to make it probable both that multihop communication will be possible between any pair
of nodes, and that significant phenomena can be sensed.

For example, consider devices placed throughout a forest whose job is to monitor
for fires and perhaps other environmental conditions, such as the presence of animals.
These nodes are very much the devices introduced in Section 19.1.1. They each have
sensors attached, e.g. for temperature, sound and light; they run on batteries; and they
communicate with other devices in a peer-to-peer fashion via short-range radio
communication. The volatility stems from the fact that these devices can fail due to
battery exhaustion or accidents such as fires; and their connectivity may change due to

SECTION 19.4 SENSING AND CONTEXT AWARENESS 849

node failures (nodes relay packets between other nodes) or environmental conditions
affecting radio propagation.

Another example is where the nodes are attached to vehicles to monitor traffic and
road conditions. A node that has observed a poor condition can relay information about
it via nodes on passing vehicles. With sufficient overall connectivity, this system can
warn other nearby drivers headed in the direction of the problem. Here the volatility
arises principally because of the nodes’ movement, which rapidly changes each node’s
state of connectivity with other nodes. This is an example of a mobile ad hoc network.

In general, wireless sensor networks are dedicated to an application-specific
purpose that amounts to detecting certain alarms – conditions of interest such as fires or
poor road conditions. At least one more powerful device, a root node, is usually included
in the network, for longer-range communication with a conventional system that reacts
to the alarms – for example, by calling the emergency services when there is a fire.

One approach to software architectures for sensor networks is to treat them
similarly to conventional networks by separating the network layer from higher layers.
In particular, it is possible to adapt existing routing algorithms to the graph of nodes as
they dynamically discover themselves to be connected by their direct radio links, with
each node able to act as a router for communications from other nodes. Adaptive
routing, which attempts to accommodate the volatility of the network, has been the
subject of much study, and Milanovic et al. [2004] provide an overview of some
techniques.

However, limiting concern to the network layer raises issues. First, adaptive
routing algorithms are not necessarily tuned to low energy (and bandwidth)
consumption. Second, volatility undermines some of the assumptions in traditional
layers above the network layer. An alternative, first-principles approach to software
architectures for wireless sensor networks is driven by two main requirements: energy
conservation and continuous operation despite volatility. Those two factors lead to three
main architectural features: in-network processing, disruption-tolerant networking and
data-oriented programming models.

In-network processing: Not only is wireless communication absolutely costly in energy
consumption, but it is relatively expensive compared to processing. Pottie and Kaiser
[2000] calculated energy consumption and found that a general-purpose processor could
execute 3 million instructions for the same amount of energy (3J) used to transmit 1 kbit
of data 100 m by radio. So, in general, processing is preferable to communication: it is
better to spend some processor cycles determining whether communication is (yet)
necessary, than to blindly transmit sensed data. Indeed, that is why the nodes in sensor
networks have a processing capability – otherwise, they could have consisted simply of
sensing modules and communication modules that would send sensed values to root
nodes for processing.

The phrase in-network processing refers to processing within the sensor network;
that is, on the network nodes. The nodes in a sensor network perform tasks such as
aggregating or averaging values from nearby nodes so as to examine values for an area
rather than a single sensor filtering out data of no interest or repeated data, examining
data to detect alarms and switching sensors on or off according to the values being
sensed. For example, if low-power light sensors indicate the possible presence of
animals (due to the casting of shadows), then the nodes near to where the shadows were

850 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

cast could switch on their higher-power sensors, such as microphones, to try to detect
animal sounds. That scheme enables the microphones to be turned off otherwise, to
conserve energy.

Disruption-tolerant networking: The end-to-end argument (Section 2.3.3) has been an
important architectural principle for distributed systems. However, in volatile systems
such as sensor networks, it may be that no end-to-end path exists continuously for long
enough to achieve an operation such as the movement of data in bulk across a system.
The terms disruption tolerant networking and delay tolerant networking are used for
protocols to achieve higher-layer transfers across volatile (and typically heterogeneous)
networks [www.dtnrg.org]. The techniques are intended not only for sensor networks
but also other volatile networks, such as interplanetary communication systems needed
for space research [www.ipnsig.org]. Rather than relying on continuous connectivity
between two fixed endpoints, communication becomes opportunistic: data are
transferred as and when they can be, and nodes take on successive responsibilities to
move data in a store-and-forward fashion until an end-to-end goal such as bulk transport
has been attained. The unit of transfer between nodes is known as a bundle [Fall 2003],
which contains a source’s application data and data describing how to manage and
process it both at the endpoint and at intermediate nodes. For example, a bundle might
be transferred with hop-by-hop reliable transports; once a bundle has been handed over,
the recipient node assumes responsibility for its subsequent delivery over the next hop,
and so on. This procedure does not rely on any continuous route; also, resource-poor
nodes are relieved from storing the data as soon as they have transferred it to the next
hop. To guard against failure, data can be forwarded redundantly to several
neighbouring nodes.

Data-oriented programming models: Turning to interoperation in the application layers,
data-oriented techniques including directed diffusion and distributed query processing,
described shortly, have been developed for applications of sensor networks. These
techniques recognize the need for in-network processing by incorporating methods for
distributing the processing across the nodes. Moreover, the techniques recognize the
volatility of sensor networks by eliminating node identities – and any other names for
components such as processes or objects associated with a node. As we discussed in
Section 19.3.2, any program that relies on the continuous existence of a node or a
component will not work robustly in a volatile system, since there is a significant chance
that communication with that node or component will become impossible.

In directed diffusion [Heidemann et al. 2001], the programmer specifies interests,
which are declarations of tasks injected into the system at certain nodes called sinks. For
example, a node might express an interest in the presence of animals. Each interest
contains attribute-value pairs, which are the ‘names’ of the nodes that will perform the
task. Thus nodes are referred to not through their identity but through characteristics
required to perform the required task, such as values in a certain range that are being
sensed there.

The runtime system propagates interests from a sink through the network in a
process called diffusion (Figure 19.7a). The sink forwards the interest to neighbouring
nodes. Any node that receives an interest stores a record of it, along with information
needed to pass data back to the sink node, before propagating it further in the search for
nodes that match the interest. A source node is one that matches an interest by virtue of

SECTION 19.4 SENSING AND CONTEXT AWARENESS 851

characteristics that match the attribute-value pairs specified in the interest – for example,
it may be equipped with appropriate sensors. There may be several source nodes for a
given interest (just as there may be several sinks at which the interest was injected).
When the runtime system finds a matching source node, it passes the interest to the
application, which turns on its sensors as required and generates the data needed by the
sink node. The runtime system ferries that data back to the sink along a reverse path
made up of nodes that forwarded the interest from the sink.

Figure 19.7 Directed diffusion

(a) Interest propagation

source

source

sink

(b) Gradients set up (c) Data delivery

source

source

sink

source

source

sink

Since, in general, no node has a priori knowledge of which other node can act as
a source, directed diffusion may involve considerable redundant communication. At
worst, the entire network may be flooded with an interest. However, sometimes the
interest concerns only a certain physical region, such as a specific area in a forest. If
sensor nodes know their locations, then the interest need be propagated only to the target
area. In principle, nodes could be equipped with satellite navigation receivers for that
purpose, although natural coverage such as dense trees may obstruct readings.

The flow of data back from source to sink is controlled by gradients, which are
(direction, value) pairs between nodes that are set up for each particular interest as it
diffuses through the network (Figure 19.7b). The direction is that in which the data is to
flow, and the value is application-specific but can be used to control the rate of flow. For
example, the sink might require data about animal sightings only a certain number of
times per hour. There may be several paths from a given source to a given sink. The
system can apply various strategies for choosing among them, including using paths
redundantly in case of failure, or applying heuristics to find a path of minimum length
(Figure 19.7c).

The application programmer can also supply software called filters that run on
each of the nodes to intercept the flow of matching data passing through the node. For
example, a filter could suppress duplicate animal-detection alarms that derive from
different nodes sensing the same animal (possibly the node between the sources and sink
in Figure 19.7c).

Another data-oriented approach to programming sensor networks is distributed
query processing [Gehrke and Madden 2004]. In this case, however, an SQL-like
language is used to declare queries that will be executed collectively by the nodes. The
optimum plan for executing a query is typically processed on the user’s PC or base

station outside the network, taking into account any known costs associated with the use

852 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

of particular sensor nodes. The base station distributes the optimized query to the nodes
in the network along dynamically discovered routes, taking into account the
communication patterns that processing the query entails, such as sending data to
collection points for averaging. As with directed diffusion, data can be aggregated in the
network to amortize communication costs. The results flow back to the base station for
further processing.

19.4.3 Location sensing

Of all the types of sensing used in ubiquitous computing, location sensing has received
the most attention. Location is an obvious parameter for mobile, context-aware
computing. It seems natural to make applications and devices behave in a way that
depends on where the user is, as in our example of the context-aware phone. But location
sensing has many other uses, from assisting users in navigating through urban or rural
areas to determining network routes by geography [Imielinski and Navas 1999].

Location-sensing systems are designed to obtain data about the position of
entities, including objects and humans, within some type of region of interest. Here we
concentrate on entities’ locations, but some technologies also derive values for their
orientation and higher-order values such as their velocities.

An important distinction, especially when it comes to privacy, is whether an object
or user determines its own location, or whether something else determines its location.
The latter case is known as tracking.

Figure 19.8 (based on a similar figure in Hightower and Borriello [2001]) shows
some types of location technologies, and some of their principal characteristics. One
characteristic is the mechanism used to derive a location. That mechanism sometimes
imposes limitations on where the technology can be deployed, such as whether the
technology works indoors or outdoors, and what installations are required in the local
infrastructure. The mechanism is also associated with an accuracy, given in Figure 19.8
to an order of magnitude. Next, different technologies yield different types of data about
an object’s location. Finally, technologies differ in what information, if any, is supplied
about the entity being located, which is relevant to users’ concerns about privacy.
Additional technologies are surveyed in Hightower and Borriello.

The US Global Positioning System (GPS) is the most well-known instance of a
satellite navigation system – a system for determining the approximate position of a
receiver or unit from satellite signals. Other satellite navigation systems are the Russian
GLONASS system and the planned European Galileo system. GPS, which functions
only outdoors because of signal attenuation inside buildings, is used routinely in
vehicles and in handheld navigation devices, and increasingly for less conventional
applications such as the delivery of location-dependent media to people in urban areas
[Hull et al. 2004]. The receiver’s position is calculated with respect to a subset of 24
satellites that are orbiting the Earth in six planes, 4 satellites per plane. Each satellite
orbits the Earth about twice per day, broadcasting the current time from an on-board
atomic clock and information about its locations over a range of times (as judged by
observations from ground stations). The receiver whose location is to be determined
calculates its distance from each of several visible satellites using the difference between
the time of arrival of the signal and the time it was broadcast – that is, the time encoded
in the signal – and an estimate of the speed of radio propagation from the satellite to

Figure 19.8 Some location-sensing technologies

Type Mechanism Limitations Accuracy Type of location data Privacy

GPS Multilateration
from satellite radio
sources

Outdoors
only (satellite
visibility)

1–10 m Absolute geographic
coordinates (latitude,
longitude, altitude)

Yes

Radio
beaconing

Broadcasts from
wireless base
stations (cellular,
802.11, Bluetooth)

Areas with
wireless
coverage

10 m–1 km Proximity to known
entity (usually
semantic)

Yes

Active Bat Multilateration
from radio and
ultrasound

Ceiling-
mounted
sensors

10 cm Relative (room)
coordinates

Bat
identity
disclosed

Ultra Wide
Band

Multilateration
from reception of
radio pulses

Receiver
installations

15 cm Relative (room)
coordinates

Tag
identity
disclosed

Active
Badge

Infrared sensing Sunlight or
fluorescent
light

room size Proximity to known
entity (usually
semantic)

Badge
identity
disclosed

Automatic
identification
tag

RFID, Near Field
Communication,
visual tag (e.g.
barcode)

Reader
installations

1 cm–10 m Proximity to known
entity (usually
semantic)

Tag
identity
disclosed

Easy Living Vision,
triangulation

Camera
installations

Variable Relative (room)
coordinates

No

SECTION 19.4 SENSING AND CONTEXT AWARENESS 853

Earth. The receiver then calculates its position using a trigonometric calculation known
as multilateration. At least three satellites must be visible from the receiver to obtain a
position. The receiver can calculate only its latitude and longitude if just three satellites
are visible; with more satellites visible, altitude can also be calculated.

Another positioning method that potentially works over a wide area, at least in
highly populated regions, is to identify nearby beacons in the form of fixed wireless
nodes with a limited transmission range. Devices can compare signal strengths as a
measure of which beacon is nearest. Cellular base stations for mobile phones (also
known as cell towers) each have a cell ID; 802.11 access points have a Basic Service Set
Identifier (BSSID). Some beacons broadcast identifying information; others are
discovered. For example, many 802.11 access points broadcast their identifiers, while a
Bluetooth device provides its identifier upon discovery by another device.

Radio beaconing does not determine an entity’s position per se, only its proximity
to another entity. If the beacon’s position is known, then the target entity’s position is
known to within the beacon’s radio range. Absolute positioning requires looking up the
beaconed identifier in a database of locations. Telecommunication providers disclose
positioning information using the locations of their cell towers, either directly or via
third parties. Some companies, such as Google, use vehicles to systematically trawl

854 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

areas for 802.11 access points, which they map using GPS positioning. A smart phone’s
location can be determined to within tens of metres when in range of such a mapped
access point (assuming that the access point has not been relocated, which sometimes
occurs).

Proximity can be a useful property in itself. For example, using proximity it is
possible to create location-aware applications that are triggered by the return to a
previously visited location – a user waiting at a train station could create an alert
reminding them to buy a new monthly train ticket when they enter the proximity of the
train station (that is, when their device receives the same beaconed identifier) on the first
of the month. Bluetooth, an alternative radio technology, has the interesting property
that some radio beacons – for example, ones integrated with mobile phones – are
themselves mobile. This can be useful too. For example, train commuters could receive
data from people they frequently travel with – ‘familiar strangers’ – provided via their
mobile phones.

Figure 19.9 Locating an active bat within a room

3. Ultrasound receivers

 2. Active bat

1. Base station sends timing signal
 to ultrasound receivers and radio
 signal to bat simultaneously

 emits ultrasound signal
 on receipt of radio signal

 report times of flight of
 ultrasound pulse

4. Base station computes distances
 to ultrasound receivers from
 times of flight, and thus position
 of bat

Turning back to more definite forms of positioning, GPS derives an object’s
absolute (that is, global) coordinates outdoors. By contrast, the Active Bat system
[Harter et al. 2002] was designed to determine an object’s or human’s location indoors,
in relative coordinates – that is, with respect to the room in which the object or user is
located (Figure 19.9). The Active Bat system is accurate to about 10 cm. Relatively
accurate indoor location information is useful for applications such as detecting which
screen a user is nearest to and ‘teleporting’ their PC’s desktop to that screen using the
VNC protocol (see ‘Thin client implementations’ in Section 2.3.2). A bat is a device that
is attached to the user or object whose location is to be found, and that receives radio
signals and emits ultrasound signals. The system relies on a grid of ultrasound receivers
at known locations in the ceiling, wired to a base station. To locate a bat, the base station
simultaneously emits a radio signal to the bat containing its identifier, and a wired signal
to the ceiling-mounted ultrasound receivers. When the bat with the given identifier
receives the base station’s signal, it emits a short ultrasound pulse. When a receiver in
the ceiling receives the base station’s signal, it starts a timer. Since the speed of
electromagnetic propagation is so much greater than the speed of sound, the emission of
the ultrasound pulse and the start of the timer are effectively simultaneous. When a
ceiling receiver receives the corresponding ultrasound pulse (from the bat), it reads the
elapsed time and forwards it to the base station, which uses an estimate of the speed of

SECTION 19.4 SENSING AND CONTEXT AWARENESS 855

sound to deduce the receiver’s distance from the bat. If the base station receives
distances from at least three non-colinear ultrasound receivers, it can compute the bat’s
position in 3D space.

Ultra Wide Band (UWB) is a wireless communication technology for propagating
data at high bit rates (100 Mbps or more) over short ranges (up to 10 m). The bits are
propagated at very low power but over a very wide frequency spectrum, using thin
pulses – on the order of 1 ns in width. Given the size and shape of the pulse, it is possible
to measure times of flight with great accuracy. By arranging receivers in the
environment and using multilateration it is possible to determine a UWB tag’s
coordinates to an accuracy of about 15cm. Unlike the above technologies, UWB signals
propagate through walls and other typical objects found in the built environment. Its low
power consumption is another advantage.

Some researchers have experimented with the use of existing wireless nodes such
as 802.11 wireless access points to go beyond simple beaconing, and to attempt to infer
the location of a wireless client by measuring signal strength with respect to several
access points. In practice, the presence of other entities in the environment that
attenuate, reflect or refract the signal means that signal strength is not a simple function
of distance from the transmitter. One approach to dealing with that issue is
fingerprinting, which probabilistically determines locations from signal strength
characteristics as measured throughout the space. As part of the Place Lab project,
Cheng et al. [2005] consider some techniques for determining locations from signal
strengths, the accuracy that can be obtained and the amount of calibration that is
involved.

The preceding technologies provide data about an object’s physical location: its
coordinates in a physical region. One advantage of knowing a physical location is that,
through databases including geographical information systems (GIS) and world models

of built spaces, a single location can be related to many types of information about the
object or its relationship to other objects. However, considerable effort is required to
produce and maintain those databases, which can be subject to high rates of change.

By contrast, the Active Badge system (Section 19.1) produces an object’s
semantic location: the location’s name or description. For example, if a badge is sensed
by the infrared receiver in room ‘101’, then the location of that badge is determined to
be ‘Room 101’. (Unlike with most radio signals, building materials strongly attenuate
infrared signals so the badge is unlikely to be outside the room.) That data tells us
nothing explicitly about the location in space, but it does provide users with information
that relates to their knowledge of the world they live in. By contrast, the latitude and
longitude of the same place, such as 51° 27.010 N, 002° 37.107 W, is useful for, say,
calculating distances to other places; but it is difficult for humans to work with. Note
that radio beacons – which invert Active Badge technologies by placing the receiver on
the target to be located rather than in the infrastructure – can be used to provide either
semantic or physical locations.

Active Badges are a specialized form of automatic identification tags:
electronically readable identifiers designed typically for mass industrial applications.
Automatic identification tags include RFID [Want 2004], Near Field Communication
(NFC) tags [www.nfc-forum.org] and glyphs or other visual symbols such as barcodes
– especially those designed to be readable at a distance by cameras [de Ipiña et al. 2002].
These tags are attached to the object whose location is to be determined. When they are

856 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

read by a reader with a limited range and at a known location, the target object’s location
becomes known.

Finally, computer vision techniques may be used to locate an object such as a
human viewed by one or more cameras. The Easy Living project [Krumm et al. 2000]
used vision algorithms on feeds from several cameras. A target object can be located if
it can be recognized by a camera at a known location. With several cameras at known
locations, in principle the differences between the object’s appearances in their images
can be used to determine the object’s location more acurately. More specialized devices
combine visible light imaging with infrared range-finding to determine the presence of
humans and the placement of their hands and limbs as gestural inputs, for example to
games.

As demonstrated in the Cooltown case study (Section 19.7.2), some of the above
location technologies – especially automatic identification tags and infrared beacons –
can also be used to provide access to information and services concerning the entity to
which they are attached, through the identifiers they make available.

How do the above technologies compare with respect to privacy? The GPS
solution provides absolute privacy: at no point in the GPS’s operation is information
about the receiving device transmitted elsewhere. Radio beaconing can also provide
absolute privacy but it depends on how it is used. If a device simply listens for beacons
and never otherwise communicates with the infrastructure, then it maintains privacy. By
contrast, the other technologies are tracking technologies. Active Bats, UWB, Active
Badges and automatic identification methods each yield an identifier to the
infrastructure indicating presence in a known location at a known time. Even if the
associated user does not disclose their identity, it might be possible to infer it. Finally,
Easy Living’s vision techniques rely on recognizing users in order to locate them, so the
user’s identity is much more directly disclosed.

Architectures for location-sensing • Two of the key characteristics required for location
systems are: generality with respect to the types of sensor used for location-sensing, and
scalability with respect to the number of objects to be located and the rate of location
update events occurring when mobile objects such as people and vehicles change their
locations. Researchers and developers have produced architectures for location sensing
in the small – in individual smart spaces such as rooms, buildings, or natural
environments covered by sensor networks – and for highly scalable geographic
information systems intended to cover large areas and include the locations of very
many objects.

The location stack [Hightower et al. 2002, Graumann et al. 2003] is aimed at
meeting the requirement for generality. It divides location-sensing systems for
individual smart spaces into layers. The sensor layer contains drivers for extracting raw
data from a variety of location sensors. The measurements layer then turns that raw data
into common measurement types including distance, angle and velocity. The fusion

layer is the lowest layer available to applications. It combines the measurements from
different sensors (typically of different types) to infer the location of an object and
provide it through a uniform interface. Since sensors produce uncertain data, the
inferences of the fusion layer are probabilistic. Fox et al. [2003] survey some of the
Bayesian techniques available. The arrangements layer deduces relationships between
objects, such as whether they are co-located. Above those are layers for combining

SECTION 19.5 SECURITY AND PRIVACY 857

location data with data from other types of sensors to determine more complex
contextual attributes, such as whether a group of people located in a house are all asleep.

Scalability is a major concern in geographic information systems.
Spatio-temporal queries such as ‘Who has been in this building in the last 60 days?’, ‘Is
someone following me?’ or ‘Which moving objects in this region are most in danger of
colliding?’ illustrate the need for scalability. The number of objects – in particular, the
number of mobile objects – to be located and the number of concurrent queries may be
large. Moreover, in the last of those example queries, real-time responsiveness is
required. The obvious approach to making location systems scalable is to divide the
region of interest recursively into subregions, using data structures such as quadtrees.
Such indexing of spatial and temporal databases is an active area of research.

19.4.4 Summary and perspective

This section has described some of the infrastructures that have been devised for
context-aware computing. We have concentrated primarily on the ways in which sensors
are harnessed to produce the contextual attributes on which applications depend for their
behaviour. We looked at architectures for relatively static collections of sensors, and
architectures for highly volatile sensor networks. Finally, we described some
technologies for the particularly important case of location sensing, some of which are
in widespread use. The World Wide Web Consortium’s (W3C) geolocation API
[www.w3.org XXIV] includes support for presenting location-specific web content to a
user by automatically sensing their location with a mobile device using GPS or
proximity of a cell tower or 802.11 access point, as discussed above.

 Through context awareness, we integrate the everyday physical world with com-
puter systems. A key problem remaining is that, compared to the subtle understanding
that humans have of their physical world, the systems we have described are quite crude.
Not only are sensors (at least, those cheap enough to deploy widely) inevitably inaccu-
rate, but the final stage of producing semantically rich information accurately from raw
sensor data is extremely difficult. The world of robotics (which involves actuation, a
topic we have ignored, in addition to sensing) has been tackling this difficulty for many
years. In tightly restricted domains such as domestic vacuum cleaning or industrial pro-
duction, robots can perform reasonably well. But generalization from those domains re-
mains elusive.

19.5 Security and privacy

Volatile systems raise many new issues for both security and privacy. First, users and
administrators of volatile systems require security for their data and resources
(confidentiality, integrity and availability). However, as we pointed out when describing
the model of volatile systems in Section 19.1, trust – the basis for all security – is often
lowered in volatile systems, because the principals whose components interact
spontaneously may have little, if any, prior knowledge of one another, and may not have
a trusted third party in common. Second, many users are concerned about their privacy

– roughly speaking, their ability to control the accessibility of information about

858 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

themselves. But privacy is potentially more threatened than ever before due to sensing
in the smart spaces users pass through.

Despite these challenges, measures to ensure people’s security and privacy must
be lightweight – partly to preserve the spontaneity of interactions, and partly because of
the restricted user interfaces of many devices. People will not want, for example, to ‘log
in’ to a smart pen before they use it in their host’s office!

In this section we outline some of the main security and privacy problems for
volatile systems. Stajano [2002] gives a more detailed treatment of some of these issues.
Langheinrich [2001] examines the topic of privacy in ubiquitous computing, starting
from its historical and legal context.

19.5.1 Background

Security and privacy are complicated in volatile systems by hardware-related issues
such as resource poverty, and because their spontaneity leads to new types of resource
sharing.

Hardware-related issues • Conventional security protocols tend to make assumptions
about devices and connectivity that often do not hold in volatile systems. First, portable
devices such as smart phones and sensor nodes can, in general, be more easily stolen and
tampered with than devices such as PCs in locked rooms. A security design for volatile
systems should not rely on the integrity of any subset of devices that could feasibly be
compromised. For example, if a smart space spans a large enough physical area, then
one way to help protect the system’s overall integrity is to make it necessary for an
attacker to visit many locations within it at more or less the same time if their attack is
to succeed [Anderson et al. 2004].

Second, devices in volatile systems sometimes do not have sufficient computing
resources for asymmetric (public-key) cryptography – even when using elliptic curve
cryptography (Section 11.3.2). SPINS [Perrig et al. 2002] provides security guarantees
for the data that low-power nodes in wireless sensor networks exchange in a potentially
hostile environment. Their protocols use only symmetric-key cryptography, which,
unlike asymmetric-key cryptography, is feasible on such low-power devices. However,
that begs the question of which nodes in a wireless sensor network should share the same
symmetric key. At one extreme, if all nodes share the same key, then a successful attack
on one node will compromise the entire system. At the other extreme, if each node
shares a distinct key with every other node, then there may be too many keys for nodes
with limited memory to store. A compromise position is for nodes to share keys only
with their nearest neighbours, and to rely on chains of mutually trusting nodes that
encrypt messages hop-by-hop, rather than using end-to-end encryption.

Third, as always, energy is an issue. Not only must security protocols be designed
to minimize communication overheads to preserve battery life, but in addition limited
energy is the basis for a new type of denial of service attack. Stajano and Anderson
[1999] describe the ‘sleep deprivation torture attack’ on battery-powered nodes: an
attacker can deny service by sending spurious messages to run down devices’ batteries
as they waste energy receiving them. Martin et al. [2004] describe other ‘sleep
deprivation’ attacks, including more covertly providing devices with code or data that
causes them to waste energy through processing. For example, an attacker could provide

SECTION 19.5 SECURITY AND PRIVACY 859

an animated GIF image that appears static to the user but actually causes constant
re-rendering.

Finally, disconnected operation means that it is preferable to avoid security
protocols that rely on continuous online access to a server. For example, suppose that
vending machines at rest stops are to dispense certain refreshments for free, but only to
bona fide passengers of a specific bus company. Rather than assuming that such a
machine is always connected to the company headquarters to verify authorization, it is
better to design a protocol whereby the user’s device (such as a phone) is given a
certificate enabling the vending machine to verify authorization using only Bluetooth or
other short-range communication [Zhang and Kindberg 2002]. Unfortunately, the
absence of an online server also means that a certificate cannot be revoked and can only
be constructed to expire by a given time – begging the question of how offline devices
are to keep securely accurate time.

New types of resource-sharing: example problems • Volatile systems give rise to new
types of resource sharing that require new security designs, such as the following
examples:

• The administrators of a smart space expose a service accessible to visitors over a
wireless network – such as sending slides to the projection service in a seminar
room or using a printer in a café.

• Two employees of the same company who encounter one another at a conference
wirelessly exchange a document between their mobile phones or other portable
devices.

• A nurse takes a wireless heart-rate monitor from a box of similar devices, attaches
it to a patient and associates it to the clinical data-logging service for that patient.

Each of these cases is an example of spontaneous interoperation; each raises security
and/or privacy issues. None is quite like the resource-sharing patterns normally
encountered within firewall-protected intranets or on the open Internet.

The projection and printing services are intended only for visitors, but the wireless
network might extend beyond the building’s boundaries, from where attackers could
eavesdrop, disrupt presentations or send bogus print jobs. So the services require
protection, similarly to a web server intended only for members of a club. But logging
in – typing a username and password – and the registration procedure that preceded it
would require too much effort, and users might object on privacy grounds.

The document exchange between two employees is similar in some ways to
sending an email within a corporate intranet, yet the interaction takes place over a public
wireless network in a place filled mostly with unknown people. A trusted third party
(their company) exists in principle, but in practice it may not be reachable (they may not
be able to obtain a good enough wireless telecommunications signal for their phones in
the conference hall) or it may not be configured in all the users’ devices.

What the nurse does is in some ways similar to the first example: she appropriates
a trusted device temporarily but securely, as a visitor might appropriate a projector or
printer. But this example is intended to show more emphatically the issue of reuse. There
may be a confusing number of wireless sensors used for different patients at different
times, and it is essential to securely make and break associations between the devices
and the respective patient logs.

860 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

19.5.2 Some solutions

We now examine some attempts to solve the problems of providing security and privacy
in volatile systems: secure spontaneous device association, location-based
authentication and privacy protection. The security techniques we describe depart
markedly from standard approaches in distributed systems. They exploit the fact that the
systems we are considering are integrated into our everyday physical world, by using
physical evidence rather than cryptographic evidence to bootstrap security properties.

Secure spontaneous device association • An important question raised by the examples
in the preceding section is how to secure a spontaneous association between two devices
connected via wireless radio network, W. This is the secure spontaneous device

association problem, also known as the secure transient association problem. The goal
is to create a secure channel between two devices by securely exchanging a session key
between those two devices and using it to encrypt their communication over W. The
starting assumptions are that, since the association is spontaneous, neither device

Figure 19.10 Secure device association using physical contact

1. Fresh secret key K exchanged by physical contact 2. Devices communicate using secure channel

W

 constructed over W using K

K

(or its
user) shares a secret with the other, that neither possesses the other’s public key and that
the devices do not have access to a trusted third party. An attacker can attempt to
eavesdrop on W and to replay and synthesize messages. In particular, an attacker may
attempt to launch a man-in-the-middle attack (described in Section 11.1.1).

 A solution to this problem would enable a visitor to make a secure connection to
a projector or printer service, participants at a conference to securely exchange a
document between their portable devices and a nurse to securely connect a wireless
heart-rate monitor to a data-logging unit by the patient’s bed.

No amount of communication over W will enable secure key exchange by itself,
so out-of-band communication is required. In particular, the standard method for
establishing a link-level key between two devices connected by Bluetooth relies on the
out-of-band actions of one or more users. A digit string chosen on one device must be
entered by a user at the other device. But this method is often not carried out securely,
since simple, short digit strings such as ‘0000’ tend to be used, which attackers can learn
by exhaustive search.

Another approach to solving the secure association problem is to use a side
channel with certain physical properties. Specifically, the propagation of signals over
this side channel is constrained in angle, range or timing (or a combination of those). To
a first degree of approximation, we can infer properties about the sender or receiver of
messages on such channels that enable us to establish secure association with a

SECTION 19.5 SECURITY AND PRIVACY 861

physically demonstrable device, as we show shortly. Kindberg et al. [2002b] call them
physically constrained channels, the term we shall use here; Balfanz et al. [2002] refer
to location-limited channels. Stajano and Anderson [1999] first exploited such a side
channel in the form of physical contact. We introduced some examples of these channels
for the purposes of physical device association in Section 19.2.2.

In one scenario, one of the devices generates a fresh session key and sends it to the
other over a receive-constrained channel that provides a degree of secrecy – that is, it
constrains which devices can receive the key. Some examples of technologies for
receive-constrained channels are:

Physical contact: Each device has terminals for direct electrical connection [Stajano
and Anderson 1999]. See Figure 19.10.

Infrared: Infrared beams can be made directional to within about 60 degrees and are
largely attenuated by walls and windows. A user can ‘beam’ a key to the required
receiver device over a distance of up to about a metre [Balfanz et al. 2002].

Audio: Data can be transmitted as modulations of an audio signal, such as music
playing softly throughout a room, but with little reach beyond it [Madhavapeddy et

al. 2003]

Laser: One user points their device’s narrow data-carrying laser beam onto a
receiver on the other device [Kindberg and Zhang 2003a]. This method allows for
more precision than the other long-range techniques.

Barcode and camera: One device displays the secret key as a barcode (or other
decodable image) on its display, which another device, that is, one equipped with a
camera – such as a camera phone – reads and decodes. This method’s precision is
inversely related to the distance between the devices.

In general, physically constrained channels provide only a limited degree of security. An
attacker with a sufficiently sensitive receiver can eavesdrop on infrared or audio signals;
an attacker with a powerful camera may be able to read a barcode even on a small
display. Laser light is subject to atmospheric scattering, although quantum modulation
techniques can make the scattered signal useless to an eavesdropper [Gibson et al.
2004]. However, when the technologies are deployed in appropriate circumstances, the
attacks entail considerable effort and the security obtained may be good enough for
everyday purposes.

A second approach for securely exchanging a session key is to use a constrained
channel to physically authenticate one device’s public key, which it sends to the other
device. The devices then engage in a standard protocol to exchange a session key using
the authenticated public key. Of course, this method assumes that the devices are
powerful enough to perform public-key cryptography.

The simplest way of authenticating the public key is for the device to send it over
a send-constrained channel, which enables a user to authenticate the key as deriving
from that physical device. There are several ways to implement suitable
send-constrained channels. For example, physical contact provides a send-constrained
channel since only a directly connected device can send on the channel. Exercise 19.14
invites the reader to consider which of the other techniques for receive-constrained
channels described above also provide send-constrained channels. Moreover, it is

862 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

possible to implement a send-constrained channel using a receive-constrained channel,
or vice versa (see Exercise 19.15).

A third approach utilizing physically constrained channels is for the devices to
exchange a session key optimistically but insecurely, and then to use a physically
constrained channel to validate the key – that is, to verify that the key is possessed solely
by the required physical source.

First we consider how to exchange a session key spontaneously but possibly with
the wrong principal, and then we go on to examine some technologies for validating the
exchange. If validation fails, then the process can be repeated.

In Section 19.2.2 we described physical and human-mediated techniques for
associating two devices, such as the two-button protocol in which devices exchange
their network addresses when humans press buttons on them more or less
simultaneously. It is straightforward to adapt that protocol so that the devices also

Figure 19.11 Detecting a man in the middle

K1

K2

Man in the middle

hash=0x6F9E...

hash=0xD57C...

2. User(s) compare hashes of keys displayed on
 devices, by sight or with an integrated imaging
 device. Since they differ, they conclude that
 there is a man in the middle or that accidental

1. Keys exchanged by
 Diffie-Hellman
 protocol

 misassociation has occurred

Device displaying hash of key

exchange session keys using the Diffie–Hellman protocol [Diffie and Hellman 1976].
But, as it stands, that method is not secure: it is still possible for separate groups of users
to accidentally misassociate devices by running the protocol concurrently, and for
malicious parties to launch man-in-the-middle attacks.

It is a property of the Diffie–Hellman protocol that a man in the middle cannot
(except with negligible probability) exchange the same key with each device, so we can
validate the association by comparing the secure hashes of the keys obtained by the two
devices after running the Diffie–Hellman protocol (Figure 19.11). The following
techniques enable us to validate a key before using it. They involve send-constrained
channels, although receive-constrained channels could also be used (see Exercise
19.15):

Displayed hashes: Stajano and Anderson [1999] pointed out that each device could
display the hash of its public key as hexadecimal characters or in some other form
that humans can compare. However, they argued that this type of human involvement
is too error-prone. The barcode method mentioned above would be more reliable.
That method is another example of using a send-constrained channel: the optical path
between the display of one device and the camera of the other brought close to it
securely propagates the secure hash from the required device.

SECTION 19.5 SECURITY AND PRIVACY 863

Ultrasound: An ultrasound signal, in combination with a radio signal, can be used to
infer the distance and direction of the device that sent a hash, using techniques similar
to those used for the Active Bat system described in Section 19.4.3 [Kindberg and
Zhang 2003b].

The above methods vary in the degree of security they provide because of the properties
of constrained channels, but all are suitable for spontaneous association. None requires
online access to any other component, and none requires users to authenticate
themselves or to find out electronic names or identifiers for the devices – instead, the
users are provided with physical evidence about which devices have been securely
associated. By assumption, the users have established trust in those devices (and their
users). Of course, the security that has been achieved is only as good as the
trustworthiness of the devices involved: it is possible to ‘securely associate’ a device
with another that in fact launches an attack.

Stajano and Anderson [1999, Stajano 2002] used physically constrained channels
in the context of the ‘resurrecting duckling’ protocol. That protocol is relevant to the
example of the wireless heart-rate monitor, where several identical devices are to be
associated and reassociated securely between patients. The name of the protocol refers
to the fact that (actual) ducklings begin life in the imprintable state and come under the
control of whatever entity they first recognize (ideally, their biological mothers!) – a
process known as imprinting. In our case, the ‘duckling’ device comes under the control
of the first device associated with it and then refuses requests from any other entity –
that is, any principal that does not know the secret key that the ‘duckling’ exchanged
with its ‘mother’ at the point of imprinting. Reassociation can only occur by first ‘killing
the duckling’s soul’ – for example, when the ‘mother’ instructs the ‘duckling’ to
reassume the imprintable state, in at which point its memory is securely wiped. From
that point, the ‘duckling’ is prepared to be controlled by the next device that associates
with it.

Location-based authentication • The examples of a visitor using a seminar room’s
projection service and a user printing documents in a café can be looked at from both the
visitors’ and the administrators’ perspectives. From the visitors’ point of view, they can
securely associate their devices to the projector or printer using one of the
aforementioned physically constrained channels, so as to protect the privacy and
integrity of their data (although printing a sensitive document in a café may be unwise).

But the administrators of each of those smart spaces has an additional
requirement: as well as wanting their visitors to enjoy security, they need to implement
access control. Only people physically in their spaces (speakers in their seminar room,
people drinking the café’s coffee) should be able to use their services. And yet, as we
have explained, authenticating users’ identities may be inappropriate because of the
visitors’ requirements for privacy and the administrators’ need to integrate a stream of
users and devices that spontaneously appear and disappear.

An approach to authorization that meets those requirements is to base access
control on the location of the services’ clients, rather than their identity. Kindberg et al.
[2002b] describe a protocol for authenticating the clients’ locations using a physically
constrained channel that pervades the smart space but does not reach beyond it. For
example, that channel could be constructed using music playing in a café or infrared in
a meeting room. There is also a location authentication proxy embedded in the

864 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

corresponding smart space – that is, directly connected to the same constrained channel
– which the location-specific services trust. For example, the Acme café company might
want to reward customers throughout its chain with free media downloads, but wants to
ensure that no one outside an Acme café can access the media, even though the
download service is centralized and connected to the Internet. The protocol assumes that
users access services through a web browser and uses web redirection so that the
visitors’ devices transparently obtain proof from the location authentication proxy that
they are where they claim to be, and forwards this proof to the target service.

Sastry et al. [2003] use temporally constrained channels implemented using
ultrasound to verify location claims. The basis of their protocol is that, since the speed
of sound is physically constrained, only a device that is where it claims to be can
transmit a message quickly enough by ultrasound to a destination at the location, when
echoing a nonce contained in a request packet.

As with secure device association, location authentication only secures a system
to a limited extent. Even though a service has verified a client to be in a bona fide

location, that client could nonetheless be malicious and act as a proxy for clients at other
locations.

Privacy protection • Location-based authentication demonstrates a trade-off that makes
it difficult to protect privacy in volatile systems: even though the user withholds their
identity, they disclose a location that may be unwittingly associated with other types of
potentially identifying information. Safeguards are needed on all channels through
which information about the user may flow. For example, even if a user accesses an
electronic service anonymously in a café, their privacy may be destroyed if a camera
captures them. And if a user needs to pay for a service, they will have to supply
electronic payment details, even if they do so via a third party. They may also buy goods
that have to be physically delivered to their home or work address.

At the system level, the basic threat is that, wittingly or unwittingly, users provide
identifiers of various kinds to smart spaces when they visit them and access services
there. First, they may provide names and addresses in service accesses. Second, the
Bluetooth or IEEE 802.11 network interfaces on their personal devices each maintain a
constant MAC-level address that is visible to other devices such as access points. Third,
if users carry tags such as RFID tags (for example, ones embedded in their clothes so
that their smart washing machines can automatically choose an appropriate washing
cycle), then smart spaces could potentially sense those tags at doorways and other
‘pinch-points’. The RFIDs are globally unique and may be used both to identify what
the user has with them (e.g., as the type of clothes they are wearing) and for tracking
purposes.

Whatever their source, identifiers can become associated with a location and an
activity at a given time, and thus may potentially be linked to the user’s personal
information. Users in a smart space may eavesdrop and gather the identifiers. If smart
spaces (or services embedded in smart spaces) collude, they could track identifiers
across locations and infer movements, all potentially leading to loss of privacy.

Research is underway into how to make what are currently hard-wired identifiers
(such as wireless MAC addresses and RFIDs) into ‘soft’ addresses that may be replaced
from time to time to inhibit tracking. The difficulty with MAC addresses (as well as
higher-level network addresses such as IP addresses) is that changing them causes

SECTION 19.5 SECURITY AND PRIVACY 865

disruptions to communication, which must be traded off against privacy [Gruteser and
Grunwald 2003]. The difficulty with RFIDs is that, while an RFID-bearing user does not
want to be tracked by the ‘wrong’ sensors, in general the user does want the tags to be
read by certain ‘right’ sensors (such as the one in their washing machine). A technique
to address that problem is for the tag to use (one-way) hash functions both to replace the
stored identifier and to generate the emitted identifier each time it is read [Ohkubo et al.
2003]. Only a trusted party that knows the tag’s original unique identifier can use an
emitted identifier to verify which tag was read. Moreover, since tags pass their stored
identifier through a one-way hash function before emitting them, attackers are unable
(unless they can tamper with the tag) to learn the stored identifier and thus spoof the tag
– for example, with the intention of falsely claiming that a tagged user was present at the
scene of a crime.

Turning to the software identifiers that clients provide to services, an obvious
approach to help safeguard privacy is to substitute either an anonymous identifier – one
randomly chosen for every service request – or a pseudonym: a false identifier that is
nonetheless used consistently for the same client principal for some period of time. The
advantage of a pseudonym over an anonymous identifier is that it enables a client to
build a relationship of trust or a good reputation with a given service, but without
necessarily disclosing a true identity.

It would be far too laborious for a user to manage anonymous or pseudonymous
identifiers, so that is normally done by a system component called a privacy proxy. The
privacy proxy is a component that the user trusts to forward all service requests
anonymously. Each of the user’s devices has a secure, private channel to the privacy
proxy. That proxy substitutes anonymous identifiers or pseudonyms for all of the true
identifiers in service requests.

One problem with a privacy proxy is that it is a central point of vulnerability: if
the proxy is successfully attacked then all of the client’s service usage becomes
disclosed. Another problem is that proxies do not hide which services the user accesses.
An eavesdropper or a colluding set of eavesdroppers could employ traffic analysis: that
is, they could observe correlations in traffic between messages flowing to or from a
particular user’s device and messages flowing to or from a particular service –
examining such factors as the timing and sizes of the messages.

Mixing is a statistical technique for combining communications from many users
in such a way that attackers cannot easily disentangle one user’s actions from another,
and thus helping to safeguard the users’ privacy. One application of mixing is to
construct an overlay network of proxies that encrypt, aggregate, reorder and forward
messages between themselves for several hops after they have entered the network, in a
way that makes it hard to correlate any message entering the network from a client or
service with any message leaving it, to a particular service or client [Chaum 1981]. Each
proxy trusts and shares keys only with its neighbours. It would be difficult to
compromise the network without the collusion of all proxies. Al-Muhtadi et al. [2002]
describe an architecture for anonymously routing messages from a client in a smart
space to services.

Another application of mixing is to obscure users’ locations by exploiting the
presence of many users in each location. Beresford and Stajano [2003] describe a system
for obscuring users’ locations through the use of mix zones, which are regions where
users do not access location-aware services, such as hallways between smart rooms. The

866 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

idea is that users change their pseudonymous identities in mix zones, where no user’s
location is known. If mix zones are sufficiently small and if enough people pass through
them, they can play a role akin to a mix network of anonymizing proxies. Exercise 19.16
considers mix zones in more depth.

19.5.3 Summary and perspective

This section has provided an introduction to the problems of providing security and
privacy in volatile systems, and a brief look at some attempts at solutions, including
secure spontaneous association, location-based authentication and various techniques
aimed at privacy protection. Widespread sensing, hardware-related issues such as
resource poverty, and spontaneous association are at the root of the difficulties. Sensing
heightens users’ privacy concerns, since not only can their service accesses be
monitored but such basic information as their locations can, too; and hardware-related
issues and spontaneity challenge our ability to provide security solutions. This is an
important area of research: security and, especially, privacy may turn out to be barriers
to the use of volatile systems.

19.6 Adaptation

The devices in the volatile systems studied in this chapter are much more heterogeneous
than PCs in terms of processing power, input/output capabilities such as screen size,
network bandwidth, memory and energy capacity. Heterogeneity is unlikely to ease
significantly because of the multiple purposes we have for devices. The demands of
carrying and embedding devices mean that the devices that are poorest and richest in
resources such as energy and screen size are likely to continue to differ by orders of
magnitude. (The only overall positive trend in resources is in increasingly dense but
affordable persistent storage [Want and Pering 2003].) And what is certain not to alter,
looking forward, is the presence of runtime change itself: runtime conditions such as the
available bandwidth and energy are prone dramatic changes.

This section introduces adaptive systems: ones that are based on a model of
varying resources and that adapt their runtime behaviour to the current resource
availability. The aim of adaptive systems is to accommodate heterogeneity by allowing
software reuse across contexts that vary in factors such as device capabilities and user
preferences, and to accommodate changing runtime resource conditions by adapting
application behaviour without sacrificing crucial application properties. But achieving
those goals can be extremely difficult. This section gives a flavour of both those areas
of adaptation.

19.6.1 Context-aware adaptation of content

In Section 19.3.1 we saw that some devices in volatile systems supply multimedia
content to one another. Multimedia applications (see Chapter 20) operate by exchanging
or streaming multimedia data such as images, audio and video.

SECTION 19.6 ADAPTATION 867

A simple approach to exchanging content would be for content producers to send
the same content regardless of the content-consuming device, and for that device to
render the content appropriately for its needs and limitations. Indeed, that approach
sometimes works, as long as the content can be specified sufficiently abstractly that the
recipient device can always find a concrete representation to fit its needs.

However, it turns out that factors such as bandwidth limitations and device
heterogeneity make that approach impractical in general. The capabilities of devices in
volatile systems to receive, process, store and display multimedia content vary widely,
unlike those of PCs. Their screen sizes vary – some do not even have screens – so
sending fixed-size images and text in a fixed font size, all in a fixed layout, will often
lead to unsatisfactory results. The devices may or may not have all of the other forms of
I/O that are taken for granted on PCs: keyboards, microphones, audio output, etc. Even
if a device has I/O hardware to render a form of content such as video, it may not have
the software needed for a given encoding (for example, MPEG or QuickTime), or it may
have insufficient memory or processing resources to render media at full fidelity, such
as video at full resolution or frame rate. Finally, a device may have all the resources to
render given content, but if the bandwidth to the device is too low, then it cannot be sent
to it unless it is suitably compressed.

More generally, the content that a service needs to deliver to a given device is a
function of the context: the media producer should take account not only of the
consuming device’s capabilities, but also of such factors as the preferences of the
device’s user and the nature of the user’s task. For example, one user might prefer text
to images on a small screen; another might prefer audio output to visual output.
Moreover, the items that the service delivers within a piece of content may need to be a
function of the user’s task. For example, the features required in a map of a given region
will depend on whether the user is a tourist looking for attractions or a worker looking
for infrastructure access points [Chalmers et al. 2004]. On a screen-limited device, the
map is more likely to be legible if it contains just one type of feature.

It would be too much effort for multimedia content authors to hand-craft
individual solutions for many different contexts. The alternative is to adapt the original
data programatically into a suitable form, by selecting from it, generating content from
it or transforming it – or any combination of those three processes. Sometimes the
original data is expressed independently of how it should be presented – for example,
data might be held in XML form, and scripts in the eXtensible Style Language
Transformations (XSLT) used to create renderable forms for a given context. In other
cases, the original data is already a type of multimedia data, such as images; in that case,
the process of adapting it is known as transcoding. Adaptation can occur within media
types (for example, selecting from map data or reducing the resolution of an image) and
across media types (for example, converting text to speech or vice versa, according to
the user’s preferences or whether the consuming device has a display or supports audio
output).

The problem of content adaptation has received a lot of attention for client-server
systems on the Internet, and especially the Web. The web model is for adaptation to take
place in the resource-rich infrastructure – either in the service itself or in a proxy – and
not in the resource-poor client. The HTTP protocol allows a type of content negotiation
(see Section 5.2): a client specifies preferences for the MIME types of the content it can
accept in its request headers, and the server can try to match those preferences in the

868 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

content it returns. But that mechanism is too limited for context-aware adaptation – for
example, the client can specify acceptable image encodings but not the device’s screen
size. The W3C, through its Device Independence working group [www.w3.org XIX],
and the Open Mobile Alliance (OMA) [www.openmobilealliance.org] are developing
standards whereby device capabilities and configurations can be expressed in some
detail. The W3C produced the Composite Capabilities/Preferences Profile (CC/PP) to
enable devices of different classes to specify their capabilities and configurations such
as screen size and bandwidth. The OMA’s user agent profile specification provides a
CC/PP vocabulary for mobile phones. It can be so detailed for a given device as to
extend to over 10 kbytes. Such a profile would be too expensive in bandwidth and
energy to send along with requests, so a mobile phone sends only the URI of its profile
in a request header. The server retrieves the specification to provide matching content,
and caches the specification for future use.

An important type of adaptation for bandwidth-limited devices is type-specific
compression. Fox et al. [1998] describe an architecture in which proxies perform
compression on the fly between services (which may or may not be part of the Web) and
clients. They argue for three main features in their architecture:

• To accommodate limited bandwidth, compression should be lossy but specific to
the media type, so that semantic information can be used to decide which media
features it is important to retain. For example, an image can be compressed by
throwing away colour information.

• Transcoding should be performed on the fly because statically pre-prepared
content forms will not provide sufficient flexibility to cope with dynamic data and
an increasing set of permutations of clients and services.

• Transcoding should be performed in proxy servers so that both clients and services
are transparently separated from transcoding concerns. No code has to be
rewritten, and the compute-intensive transcoding activity can be run on suitably
scalable hardware such as clusters of rack-mounted computers, to keep latencies
within acceptable bounds.

When it comes to volatile systems such as smart spaces, we have to revisit some of the
assumptions made for web and other Internet-scale adaptation. Volatile systems are
more demanding in that they may require adaptation between any pair of dynamically
associated devices, so adaptation is not restricted to clients of particular services in the
infrastructure. There are now potentially many more providers whose content needs to
be adapted. Moreover, those providers may be too resource-poor to perform certain
types of adaptation themselves.

One implication is for smart spaces to provide proxies in their infrastructure for
adapting content between the volatile components they host [Kiciman and Fox 2000,
Ponnekanti et al. 2001]. The second implication is the need to look more closely at
which types of content adaptation can and should be performed on small devices – in
particular, compression is an important example.

Even if there is a powerful adaptation proxy in the infrastructure, a device still has
to send its data to that proxy. We discussed above how communication is expensive
compared to processing. In principle, it may be most energy-efficient to compress data
prior to transmission. However, the pattern of memory accesses made during

SECTION 19.6 ADAPTATION 869

compression has a strong effect on energy consumption. Barr and Asanovic [2003] show
that it may cost more energy to first compress data using default implementations, but
that careful optimization of compression and decompression algorithms, especially with
respect to memory accesses patterns, can lead to overall energy savings compared to
transmission of uncompressed data.

19.6.2 Adapting to changing system resources

While hardware resources such as screen size are heterogeneous across devices, they are
at least stable and well known. By contrast, applications also rely on resources that are
subject to change at runtime and that may be hard to predict, such as available energy
and network bandwidth. In this subsection we discuss techniques for dealing with those
changes to resource levels at runtime. We discuss operating system support for
applications running in volatile systems, and support in the smart space infrastructure
for enhancing the resources available to applications.

OS support for adaptation to volatile resources • Satyanarayanan [2001] describes three
approaches to adaptation. One approach is for applications to request and obtain
resource reservations. While resource reservation can be convenient for applications
(Chapter 20), satisfactory QoS guarantees are sometimes difficult to achieve in volatile
systems and are impossible in cases such as energy depletion. A second approach is to
notify the user of changed levels of resource availability so they can react appropriately.
For example, if bandwidth becomes low, the user of a video player could operate a slider
in the application to switch the frame rate or resolution. The third approach is for the OS
to notify the application of changing resource conditions, and for the application to adapt
according to its particular needs.

Odyssey [Noble and Satyanarayanan 1999] provides operating system support for
applications that adapt to changes in the available levels of resources such as network
bandwidth. For example, if the bandwidth drops, a video player could switch to a video
stream with fewer colours, or adjust the resolution or frame rate. In the Odyssey
architecture, applications manage data types such as video or images, and as resource
conditions change they adjust the fidelity – the type-specific quality – with which those
data are rendered. A system component called the viceroy divides the device’s total
resources between each of several applications running on it. At any time, each
application runs with a window of tolerance to changes in resource conditions. The
window of tolerance is an interval of resource levels that is chosen to be wide enough to
be realistic in terms of actual resource variations, but narrow enough for the application
to behave more or less consistently within those limits. When the viceroy has to change
resource levels to a value outside the window of tolerance, it makes an upcall into the
application, which then reacts accordingly. For example, a video player might change to
black and white if bandwidth hits a very low level; above that, it might smoothly adjust
the frame rate and/or resolution.

Taking advantage of smart space resources • Cyber foraging [Satyanarayanan 2001,
Goyal and Carter 2004, Balan et al. 2003] is where a processing-limited device
discovers a compute server in a smart space and offloads some of its processing load to
it. For example, converting the user’s speech to text is a processing-intensive activity,
and one that few portable devices are able to carry out satisfactorily. One aim is to

870 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

increase application responsiveness for the user – a computer in the infrastructure can
have many times the processing power of a portable device. But this is also an example
of energy-aware adaptation: the other aim is to save the portable device’s batteries by
allocating work to the mains-powered compute server.

There are challenging requirements associated with cyber foraging. The
application needs to be decomposed in such a way that part of it can be processed
efficiently on a compute server, but the application should still function correctly (albeit
more slowly or with reduced fidelity) if no compute server is available. The compute
server should run a part of the application that involves relatively little communication
with the portable device – otherwise, the time taken by communication over a
low-bandwidth connection could outweigh the processing gains. Moreover, the overall
energy consumption for the portable device must be satisfactory. Since communication
is energy-intensive, it does not automatically follow that energy will be saved by using
a compute server; it may be that the energy costs of communication with the compute
server outweigh the energy savings from offloading processing.

Balan et al. [2003] discuss the problem of partitioning an application to meet the
foregoing challenges and describe a system for monitoring resource levels (such as
compute server availability, bandwidth and energy) and consequently adapting the
application’s partitioning between the portable device and compute servers using one of
a small set of decomposition options. For example, consider a situation in which a user
speaks into a mobile device to dictate text, which is then translated into a foreign
language (that of the country they are visiting). There are various ways of splitting this
application between the mobile device and compute servers, with different implications
for resource utilization. If several compute servers are available, then the various stages
of recognition and translation could be split between them; if only one compute server
is available, then they could be run together at that machine or split between the mobile
device and the compute server.

Goyal and Carter [2004] take a more static approach to dividing up the
application, which is assumed to have been decomposed into separate communicating
programs. For example, a mobile device could perform speech recognition in two ways.
In the first mode, the application runs entirely – and very slowly – on the mobile device.
In the second mode, the mobile device runs only the user interface, which ships the
digital audio of the user’s voice to a program running on a compute server; that program
sends the recognized text back for the mobile device to display. It would be very costly
in energy for the mobile device to send the recognition program to a computer server, so
the device sends the URL of the program instead, which the compute server downloads
from an external source and runs.

19.6.3 Summary and perspective

This section has described two main categories of adaptation in volatile systems, which
are motivated by their heterogeneity and the volatility of their runtime conditions: there
is adaptation of multimedia data to the context of the media consumer, such as the
characteristics of the device and the task of the device’s user, and there is adaptation to
the dynamic levels of system resources such as energy and bandwidth.

We argued that, in principle, it would be better to produce adaptive software that
can accommodate varying conditions according to a well-understood model of

SECTION 19.7 CASE STUDY: COOLTOWN 871

variation, rather than to evolve software and hardware in an ad hoc fashion as the need
presses. However, making such adaptive software is difficult, and there is no general
agreement on how to do so. First, the models of variation themselves – of how
resourcing levels change and of how to react when they change – can be hard to derive
with any generality. Second, there are software engineering challenges. Finding suitable
points of adaptation in existing software requires intimate knowledge of its workings,
and attempts may not always be successful. However, when creating new adaptive
software from scratch, there are techniques from the software engineering community,
such as aspect-oriented programming [Elrad et al. 2001], that can help programmers
manage adaptation.

19.7 Case study: Cooltown

The goal of Hewlett-Packard’s Cooltown project [Kindberg et al. 2002a, Kindberg and
Barton 2001] was to provide infrastructure for nomadic computing [Kleinrock 1997], a
term the project used for human-oriented mobile and ubiquitous computing. ‘Nomadic’
refers to humans moving between places such as their homes, work-places and shops as
they go about their everyday lives. ‘Computing’ refers here to services provided to those
nomadic users – not just services such as email that can be provided anywhere there is
connectivity, but more particularly services integrated with entities in the everyday
physical world through which the users move. To access those services, humans are
assumed to carry or wear wirelessly connected sensor-equipped devices. This
description often refers to the most prevalent form of those devices at the time of the
project: PDAs. However, smart phones and more experimental devices such as smart
watches were also considered.

More specifically, the project’s aim was to apply lessons learned from the success
of the Web to nomadic computing, via two objectives. First, since the Web provides a
rich and extensible set of resources in the virtual world, much can potentially be gained
by extending the Web’s architecture and existing resources to the physical world. One
objective for the Cooltown design was expressed in the maxim ‘everything has a web
page’: each entity in our physical world, whether electronic or not, is to have an
associated web resource called a web presence, which the user is to be able to access
conveniently when in the presence of that entity. A web presence could simply be a web
page containing information about the entity, or it could be any service provided in
association with the entity. For example, the web presence of a physical product could
be a service for obtaining replacement parts.

The second objective was to achieve the Web’s high degree of interoperability for
interactions with devices. Nomadic users may need to interact in places they have never
visited before, with web presences they have never encountered before. It would not be
acceptable for users to have to load new software or reconfigure existing software on
their portable devices in order to benefit from those services.

The aspects of the Cooltown architecture that we concentrate on (Figure 19.12)
are: web presences; physical hyperlinks, which are links from physical entities to web
presences and thus to the hyperlinked resources of the Web; and eSquirt, a protocol for
interoperation with web-present devices.

Figure 19.12 Cooltown layers

Web presences

Direct URL sensing
ID resolution

ID sensing

Network service
Discovery

 Context (aggregated web presences) eSquirt: URL exchange

Physical hyperlinks

872 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

19.7.1 Web presences

Cooltown considers physical entities to be divided into three categories: people, places
and things. The web presence of a person, place or thing is potentially any web resource
chosen to suit a specific application; but Cooltown adopts certain roles for the web
presences of people and places. The web presences of things and people are collected in
the web presences of places, so the description follows that order.

Things: A ‘thing’ is either a device or a non-electronic physical entity. Things
become web-present by having web servers embedded in them or by hosting their
web presence within a web server. If the thing is a device, then its URL is that of the
service it implements. For example, an ‘Internet radio’ is a music-playing device that
hosts its own web presence. A user who has discovered the URL of an Internet radio
retrieves a web page with controls that enables them to ‘tune’ it to an Internet
broadcasting source, adjust its settings (such as the volume) and perhaps upload the
user’s own sound file. But even non-electronic things may have a web presence – i.e.,
a web resource associated with the thing but hosted by a web server somewhere else.
For example, a printed document’s web presence could be its electronic document
counterpart: instead of having to photocopy the printed document (with a consequent
reduction in quality), a user can discover its web presence from the physical artefact
– as we explain in Section 19.7.2 – and request a new print. The web presence of a
music CD could be some associated digital content such as extra music clips and
photographs, hosted in its owner’s personal media collection.

People: People become web-present by offering global web home pages with
services to facilitate communications with them and by offering information about
their current context. For example, users without mobile phones could make their
local phone number available via their web presence – a value that their web presence
automatically updates as they move around. They might also choose for their web
presence to register their current location explicitly, through a link to the web
presence of the place in which they are physically present.

Places: Places are smart spaces, to use the terminology of this chapter. Places
become web-present by registering the web presences of people and things within

SECTION 19.7 CASE STUDY: COOLTOWN 873

them – and even the web presences of nested or otherwise related places – with a
place-specific directory service (Section 13.3). A place’s directory also contains
relatively static information such as a description of the place’s physical properties
and function. The directory service enables components to discover and thus interact
with the dynamic set of web presences within the place. It is also used as a source of
information about the place and its contents to be presented to humans, in the form
of web pages.

The directory entries for the web presences within a place can be established in
two main ways. First, a network discovery service (Section 19.2.1) can be used to
automatically register any web presences that are implemented by devices within the
place’s subnet – devices that have wirelessly connected within the place, or the place’s
infrastructure servers. However, while network discovery services are useful, they
suffer from the problem that not all web presences are hosted by devices in the place’s
subnet. The web presences of non-electronic physical entities such as humans, printed
documents and music CDs that move into the place or are brought into it may be hosted
anywhere. Those web presences have to be registered there manually or via sensing
mechanisms, in a process called physical registration [Barton et al. 2002] – for example,
by sensing their RFID tags.

A service called a web presence manager [Debaty and Caswell 2001] manages
web-present places – for example, for all the rooms within a building – and it can also
manage the web presences of people and things. Places are a particular instance of the
Cooltown abstraction of a context: a set of related web-present entities linked together
for purposes such as browsing. The web presence manager relates each web-present
entity to the web presences of entities in its context. For example, if the entity is a thing,
its related entities could be the person who carries it and the place where it is located. If
the entity is a person, its related entities could be the things carried by the person, the
place where the person is currently located and possibly the directly surrounding
persons.

19.7.2 Physical hyperlinks

Web presences are web resources like any other, so web pages can contain text or image
links to web presences like any other links. But in that standard web-linking model the
user comes across the web presence of a person, place or thing via an information

source: the web page. The Cooltown design enables humans additionally to go directly
to web presences from their physical sources: namely, the specific physical people,
places or things that they have encountered in their everyday movements through the
physical world.

A physical hyperlink is any means by which a user can retrieve the URL of an
entity’s web presence from the physical entity itself or its immediate surroundings. We
now consider ways of implementing physical hyperlinks. First, consider the HTML
markup for a typical link in a web page, say:

Hopper’s painting Chop Suey

That links the text ‘Hopper’s painting Chop Suey’ in a web page to a page at
http://cdk4.net/Hopper.html about the referenced Edward Hopper painting, Chop Suey.

874 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

Now, consider the question of how a visitor to a museum who encounters the painting
there could ‘click on’ the painting to obtain information about it in the browser on their
mobile phone, PDA or other portable device. That would require a way of discovering
the URL from the physical configuration of the painting itself or its physical
surroundings. One way would be to write the URL on the wall by the painting so that
the user could type it into their device’s browser. But that would be inelegant and
laborious.

Instead, Cooltown utilizes the fact that users have sensors integrated with their
mobile devices. The project investigated two main approaches to discovering the URLs
of entities via those sensors: direct sensing and indirect sensing.

Direct sensing: In this model, the user’s device senses a URL directly from a tag (an
‘automatic identification’ tag) or beacon attached to the entity of interest or positioned
next to it (see Section 19.4.3). A relatively large entity such as a room could have several
tags or beacons located in highly visible places. A tag is a passive device or artefact that
presents the URL when the user places their device’s sensor near it. For example, a
camera phone could in principle perform optical character recognition against the URL
written on a sign, or it could read the URL encoded in a two-dimensional barcode. A
beacon, on the other hand, regularly emits the entity’s URL, typically over (directional)
infrared rather than radio, which is typically omnidirectional and thus can lead to
ambiguity as to which URL belongs to which entity.

In particular, the Cooltown project developed beacons in the form of small devices
(a few centimetres across) that emit a string every few seconds over infrared using a
one-shot, connectionless protocol (Figure 19.13a). The emitted string is an XML-like
document consisting of the URL of the entity’s web presence and a short title. Many
portable devices available at the time of the project, such as mobile phones and PDAs,
had integrated infrared transceivers and so were capable of receiving those strings.
When a client program receives the string, it can, for example, either cause the device’s
browser to go to the received URL directly or create a hyperlink from the received title
to the received URL and add that hyperlink to a list of received hyperlinks, which the
user can click on when they choose.

Indirect sensing: Indirect sensing is where the user’s device obtains an identifier from a
tag or beacon, which is looked up to obtain a URL. The sensing device knows the URL
of a resolver – a name server that maintains a collection of bindings from identifiers to
URLs (a naming context, in the terminology of Chapter 13) and returns the URL bound
to the given identifier [Kindberg 2002]. Ideally, the namespace used for entity identifiers
would be sufficiently large to enable every physical entity to have a unique identifier,
removing the possibility of ambiguity. However, in principle, local identifiers could be
used as long as they were only ever looked up using a local resolver – otherwise,
spurious results might be obtained since someone else might have used the same
identifier for a different entity.

Indirect sensing is sometimes used because constraints in the tag technology mean
that direct URL sensing is impossible. For example, linear barcodes do not have
sufficient capacity to store an arbitrary URL, and cheap RFID tags store only a
fixed-length binary identifier. In each case, the stored identifier has to be looked up to
obtain the web presence’s URL.

Figure 19.13 Capturing and printing the web presence of a painting

(a) User captures URL of

<link title=“Chop Suey” href= “http..”>

 painting’s web presence

beacon

(b) User sends URL to printer
 using eSquirt, to print

<link title=“Chop Suey” href= “http..”>

PDA or phone

 painting’s web presence

painting

SECTION 19.7 CASE STUDY: COOLTOWN 875

But there is also a positive reason to use indirect sensing: it allows a given physical
entity to have a set of web presences instead of just one. Just as the phrase ‘Hopper’s
painting Chop Suey’ could appear in several web pages with each instance linked to a
different web page or respurce, so a given physical painting could lead to different web
presences according to the choice of resolver. For example, one web presence of the
painting could be a link to a service that prints a copy on a nearby printer in the museum;
another web presence for the same painting could be a page providing information about
the painting from an independent third party with no connection to the museum.

The implementation of resolution follows the web architecture in that each
resolver is an independent web site. The client software is a browser augmented by a
simple plug-in. Resolvers provide web forms that contain a field that the client fills in
as a side-effect of sensing, rather than presenting the field to the user for manual entry.
When the user, say, scans a barcode, the resultant identifier is automatically filled into
the form and the client posts the form to the resolver. The resolver returns the
corresponding URL, if one exists.

Since resolvers are themselves web resources, the user navigates to them as they
would any other web page [Kindberg 2002] and updates the client with which resolver
it is to use. In particular, the user may pick up the URL of a local resolver using a local
physical hyperlink. For example, the museum’s administrators could set up Cooltown
beacons emitting the local resolver’s URL, so that the visitors could use that resolver to
obtain locally relevant web presences for the paintings within the museum. Equally, if
the identifiers of the paintings are well known and globally established, then the visitors
could utilize other resolvers anywhere on the Web – for example, a Spanish visitor might
utilize the bookmarked resolver of a Spanish art commentary site while visiting a
museum in North America.

Finally, although we have pointed out some advantages of indirect sensing over
direct sensing, it does have a disadvantage: the client must make an extra round-trip to
a resolver, which has consequences in terms of latency and energy consumption.

19.7.3 Interoperation and the ‘eSquirt’ protocol

One method for interoperation between a web-present target device and the user’s
portable device is to use standard web protocols. The user’s portable device issues an

876 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

HTTP GET or POST operation and the target device responds with a user interface in
the form of a web page, which the portable device renders for the user. Returning to a
previous example, a web-present Internet radio can present the URL of its web service
via a beacon facing out to its users. The user walks in front of the radio and points the
infrared receiver on their portable device – say, their PDA – at it; the client on their PDA
receives the URL from the radio and passes the URL to its browser. The result is that the
radio’s ‘home’ page appears on the PDA, with controls to adjust its volume, upload and
play sound files on the PDA, etc.

A web-present printer in a museum could behave similarly. The user obtains the
printer’s home page via its beacon, and thus can upload content to the printer and specify
the printer’s settings via the web page. Of course, devices such as printers may have
physical user interfaces; but simpler appliances such as digital picture frames may not,
and a virtual user interface is then essential.

 The above form of interoperation is data-oriented and thus device-independent,
like the Web in general. Since the target device provides its own user interface, a user
can control the device through their browser without requiring target-specific software.
For example, a user with an image file on their PDA can render it on an arbitrary
image-rendering device, whether it be a printer or a digital picture frame, say; and a user
with a sound file on their PDA can hear it on an arbitrary audio-consuming device,
whether it be, for example, an Internet radio or a ‘smart’ HiFi system.

A problem with those scenarios is that the user’s relatively resource-poor portable
device, which may have a low-bandwidth wireless connection, is in the content pathway
between the content’s source and sink. Suppose that the user has obtained an image of a
painting in a Cooltown-enhanced museum, or has obtained an audio clip of someone
talking about the painting. In each case, the adaptation techniques discussed in Section
19.6 may have been applied because of limited resources such as screen size and
bandwidth, resulting in somewhat low fidelity versions of the image or sound clip on the
portable device. When the user passes the image to a printer in the museum, or the sound
clip to the Internet radio in their hotel room, they will be presented with low-quality
versions even though those devices are capable of high-quality rendering and may have
a high-bandwidth wired network connection.

Cooltown’s eSquirt protocol for interoperation between devices removes the
low-fidelity problem – and avoids precious bandwidth and energy consumption – by
passing the URL of the content from one device to another, instead of the content itself.
In fact, the protocol is identical to the one used to send a URL (and title) from a
Cooltown beacon to a device over infrared (Figure 19.13b). The devices pass that small
amount of data over the low-energy infrared medium, and that is the only network
operation in which each device is involved during the eSquirt protocol itself. However,
the recipient device can then act as a web client to retrieve the content using the URL,
and perform an operation such as rendering the resultant data.

For example, a user who has obtained the URL of an image of a Hopper painting
from a beacon beside the painting sends that URL to a printer using their eSquirt-capable
PDA. The protocol that eSquirt uses is unreliable but, as with a TV remote control, if
transmission fails the user can simply press the ‘squirt’ button again until feedback at
the printer confirms success. The printer (rather, the printing service, which may be
implemented in the infrastructure) then acts as a web client to retrieve the content from
the URL – in its full-fidelity form – and prints it.

SECTION 19.7 CASE STUDY: COOLTOWN 877

The user’s portable device thus can act like a device-independent clipboard for
URLs, similar to an application-independent clipboard for data in copy-and-paste
operations on a desktop user interface. The user employs the device to ‘copy and paste’
URLs between sources and sinks to transfer content between them.

Device independence is the most important advantage of the eSquirt paradigm.
The eSquirt protocol always works the same way; what differs is the processing of the
URL by the recipient. However, the user has to have a reasonable idea of what
combinations of squirted URLs and receiving devices make sense. The receiving
device’s designer must also expect some mistakes: a user may mistakenly squirt a URL
of an audio file into a printer. However, it is inadvisable to design away such mistakes
in advance. The prevention measures, such as type-checking, may lead to the
phenomena of lost opportunities and brittle interoperation that we identified in Section
19.2.2.

While simplicity is a strength of the eSquirt protocol, a disadvantage is that it
relies on using default settings in the recipient device, or using physical controls to input
its settings. That is, eSquirt does not enable the interoperation paradigm with which we
began this subsection, in which a client device obtains a virtual user interface for
controlling the settings of a target device. For example, after squirting the URL of a
sound file or a streaming radio station to an Internet radio, how does the user control the
volume from their portable device? Exercise 19.19 explores this issue.

19.7.4 Summary and perspective

We have outlined the main features of the Cooltown architecture. The goal of that
project was to benefit nomadic users by extending the Web, a virtual collection of
hyperlinked content, to entities in the physical world, regardless of whether those
entities have electronic functionality of their own. The architecture considered physical
entities, including people, places and things, to be associated with web presences. Next
are the physical hyperlinks – the mechanisms for sensing the web presence’s URL from
a physical entity. The project implemented physical hyperlinks using infrared beacons,
tags such as barcodes and RFID tags, and resolvers to turn identifiers into URLs.
Support for infrared has declined with the move from PDAs to smart phones, but support
for reading 2D and 1D barcodes and, in some countries, NFC and its subset RFID, has
increased. Finally, eSquirt is a device-independent interoperation protocol, which
relieves low-powered portable devices from the need to be in the content pathway
between sources and sinks of content.

Cooltown largely achieved its objectives, but only on the assumption that the
human is very much ‘in the loop’. Humans physically discover the services associated
with the entities they encounter, via physical hyperlinks. Humans may also have to
physically register the web presences of tagged non-electronic entities such as music
CDs when they are placed in the context of a web-present place such as a house, so that
they become electronically discoverable there. Finally, humans not only associate their
portable devices to web-present entities by ‘clicking’ on physical hyperlinks but, via the
eSquirt protocol, they bring about device-independent interoperation. The involvement
of the human makes for great flexibility, and eliminates the problem of lost opportunities
for interaction. However, the simple eSquirt interoperation model does not give users
control over what a recipient device does with a URL that they have squirted into it.

878 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

An alternative development would be for automated association and
interoperation of web-present entities. Each physical entity could have an instance of a
uniform type of web presence, which would record details of that entity’s semantics
(perhaps using semantic web technologies), including relationships between that entity
and others – in particular, the relationship between a web-present person or thing and
the web presence of the place that contains them. Thus all web presences within a given
place could discover one another and interoperate. For example, the web presence of the
secretary in a meeting could discover documents within a meeting room that needed to
be printed, discover which members were present, discover a nearby printer and cause
the requisite number of a copies to be printed. Cooltown’s web presence manager
[Debaty and Caswell 2001] made a start at realizing that vision, through uniform
management not just of places but of web-present things and people that have links to
related entities such as the web-present place they are in. For example, when an entity
enters a new place and is registered there, the entity is automatically updated with a link
to the web presence of its new host place. Ideally, entity relationships would all be
programatically established, instead of the limited support available today. But the
complicated semantics of our everyday world make it likely that realizing an application
such as automated meeting support in a practically useful rather than error-prone way is
still a long way off. In the meantime, involving humans in the loop enables progress to
be made.

19.8 Summary

This chapter has presented the main challenges raised by mobile and ubiquitous
computer systems, and rather fewer solutions since not many are available. Most of the
challenges stem from the fact that those systems are volatile, which in turn is largely due
to the fact that they are integrated with our everyday physical world. The systems are
volatile in that the set of users, hardware and software components in a given smart
space is subject to unpredictable change. Components tend to make and break
associations routinely, either as they move from smart space to smart space or because
of failure. Connection bandwidth can vary widely over time. Components can fail as
batteries die or for other reasons. Sections 19.1 to 19.3 discussed those aspects of
volatility in full, and some techniques for associating components and enabling them to
interoperate despite the difficulties of ‘constant change’.

 The integration of devices with our physical world involves sensing and context
awareness (Section 19.4), and we described some architectures for processing sensed
data. But there remains a challenge that we might describe as physical fidelity: how
accurately can a system with sensing and computation behave in accordance with the
subtle semantics we humans associate with the physical world in which we live? Does
a ‘context aware phone’ really behave as we would want in inhibiting rings
appropriately as we move between places? Does the web presence of a place such as a
hotel room in Cooltown actually record all the web-present entities that a human would
say were in that place – and not, for example, some in an adjacent room?

Security and privacy (Section 19.5) feature strongly in research on mobile and
ubiquitous systems. Volatility complicates security because it begs the question of what

EXERCISES 879

basis there can be for trust between components that wish to establish a secure channel.
Fortunately, the existence of physically constrained channels goes some way to enabling
secure channels where there is a human present. Physical integration has implications
for privacy: if the user is being tracked to provide them with context-aware services,
then there may be a severe loss of privacy. We described some approaches to identifier
management and outlined statistical techniques aimed at reducing that problem.

Physical integration also means new degrees of constraint in terms of such factors
as device energy capacity, wireless bandwidth and user interfaces – a node in a sensor
network has little of the first two and none of the last; a mobile phone has more of all
three, but still much less than a desktop machine. Section 19.6 discussed some of the
architectures by which components can adapt to resource constraints.

Section 19.7 described the architecture of the Cooltown project as a case study.
The architecture is distinctive in that it applies lessons learned from the Web to
ubiquitous computing. The advantage is a high degree of interoperability. But as a result,
the Cooltown design applies mainly to situations in which humans supervise
interactions.

Finally, this chapter has concentrated on the differences between mobile and
ubiquitous systems and the more conventional distributed systems that appear elsewhere
in this book – largely to do with aspects of volatility and physical integration. Exercise
19.20 invites the reader to list some of the similarities, and to consider the extent to
which conventional distributed systems solutions apply to mobile and ubiquitous
systems.

EXERCISES

19.1 What is a volatile system? List the main types of changes that occur in a ubiquitous
system. page 821

19.2 Discuss whether it is possible to improve upon the ‘pull’ model of service discovery by
multicasting (or broadcasting) and caching replies to queries. page 831

19.3 Explain the use of leases in a discovery service to cope with the problem of service
volatility. page 831

19.4 The Jini lookup service matches service offers to client requests based on attributes or
on Java typing. Explain with examples the difference between these two methods of
matching. What is the advantage of allowing both sorts of matching? page 832

19.5 Describe the use of IP multicast and group names in the Jini ‘discovery’ service, which
allows clients and servers to locate lookup servers. page 832

19.6 What is data-oriented programming and how does it differ from object-oriented
programming? page 837

19.7 Discuss the issue of how the scope of an event system can and should be related to the
physical extent of a smart space in which it is used. page 838

19.8 Compare and contrast the persistence requirements associated with event systems and
tuple spaces in the infrastructure of smart spaces. page 840

880 CHAPTER 19 MOBILE AND UBIQUITOUS COMPUTING

19.9 Describe three ways of sensing the presence of a user beside a display and thus motivate
some features required in an architecture for context-aware systems. page 844

19.10 Explain and motivate in-network processing for wireless sensor networks. page 849

19.11 In the Active Bat location system, only three ultrasound receivers are used by default to
obtain a 3D position, whereas four satellites are required to obtain a 3D position in
satellite navigation. Why is there a difference? page 854

19.12 In some location systems, tracked objects give up their identifiers to the infrastructure.
Explain how this may give rise to concerns about privacy, even if the identifiers are
anonymous. page 856

19.13 Many sensor nodes are to be scattered throughout a region. The nodes are to
communicate securely. Explain the problem of key distribution and outline a
probabilistic strategy for distributing keys. page 858

19.14 We described several technologies that provide receive-constrained channels for use in
secure spontaneous device association. Which of those technologies also provide
send-constrained channels? page 861

19.15 Show how to construct a send-constrained channel from a receive-constrained channel,
and vice versa. Hint: use a trusted node connected to the given channel. page 861

19.16 A group of smart spaces are connected only by a space between them. such as a hallway
or square. Discuss the factors that determine whether that intervening space can act as a
mix zone. page 865

19.17 Explain the contextual factors to be taken into account when adapting multimedia
content. page 866

19.18 Assume that a device can execute 3 million instructions for the same amount of energy
(3J) used to transmit or receive 1kbit of data a distance of 100 m by radio. The device
has the option of sending a 100-kbyte binary program to a compute server 100 m away,
which when run will execute 60 billion instructions and exchange 10,000 x 1 kbit
messages with the device. If energy is the only consideration, should the device offload
the computation or execute it itself? Assume computation on the device is negligible in
the offloaded case. page 869

19.19 A Cooltown user squirts the URL of a sound file or a streaming radio station to an
Internet radio. Suggest a modification to the eSquirt protocol that would enable the user
to control the volume from their portable device. Hint: consider what extra data the
squirting device should provide. page 877

19.20 Discuss the applicability to mobile and ubiquitous systems of techniques drawn from the
areas of:

i) peer-to-peer systems (Chapter 10);

ii) coordination and agreement protocols (Chapter 15);

iii) replication (Chapter 18). page 879

 881

20

DISTRIBUTED

MULTIMEDIA SYSTEMS

20.1 Introduction
20.2 Characteristics of multimedia data
20.3 Quality of service management
20.4 Resource management
20.5 Stream adaptation
20.6 Case studies: Tiger, BitTorrent and End System Multicast
20.7 Summary

Multimedia applications generate and consume continuous streams of data in real time.
They contain large quantities of audio, video and other time-based data elements, and the
timely processing and delivery of the individual data elements (audio samples, video
frames) is essential. Elements delivered late are of no value and are normally dropped.

A flow specification for a multimedia stream is expressed in terms of acceptable
values for the rate at which data passes from a source to a destination (the bandwidth),
the delivery delay for each element (latency) and the rate at which elements are lost or
dropped. The latency is particularly important in interactive applications. Some small
degree of data loss from multimedia streams is often acceptable provided that the
application can resynchronize the elements following those that are lost.

The planned allocation and scheduling of resources to meet the needs of multimedia
and other applications is referred to as quality of service management. The allocation of
processing capacity, network bandwidth and memory (for the buffering of data elements
that are delivered early) are all important. They are allocated in response to quality of
service requests from applications. A successful QoS request delivers a QoS guarantee to
the application and results in the reservation and subsequent scheduling of the resources
requested.

This chapter draws substantially on a tutorial paper by Ralf Herrtwich [1995] and we are grateful to him for
permission to use his material.

882 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

20.1 Introduction

Modern computers can handle streams of continuous, time-based data such as digital
audio and video. This capability has led to the development of distributed multimedia
applications such as networked video libraries, Internet telephony and video
conferencing. Such applications are viable with current general-purpose networks and
systems, although the quality of the resulting audio and video is often less than
satisfactory. More demanding applications such as large-scale video conferencing,
digital TV production, interactive TV and video surveillance systems are beyond the
capabilities of current networking and distributed system technologies.

Multimedia applications demand the timely delivery of streams of multimedia
data to end users. Audio and video streams are generated and consumed in real time, and
the timely delivery of the individual elements (audio samples, video frames) is essential
to the integrity of the application. In short, multimedia systems are real-time systems:
they must perform tasks and deliver results according to a schedule that is externally
determined. The degree to which this is achieved by the underlying system is known as
the quality of service (QoS) enjoyed by an application.

Although the problems of real-time system design had been studied before the
advent of multimedia systems, and many successful real-time systems were developed
(see, for example, Kopetz and Verissimo [1993]), they have not generally been
integrated into more general-purpose operating systems and networks. The nature of the
tasks performed by these existing real-time systems, such as avionics, air traffic control,
manufacturing process control and telephone switching, differs from those performed in
multimedia applications. The former generally deal with relatively small quantities of
data and have relatively infrequent hard deadlines, but failure to meet any deadline can
have serious or even disastrous consequences. In such cases, the solution adopted has
been to over-specify the computing resources and to allocate them on a fixed schedule
that ensures that worst-case requirements are always met. This type of solution is not
available for most Internet multimedia streaming applications on desktop computers,
resulting in a ‘best-effort’ quality of service using the available resources.

The planned allocation and scheduling of resources to meet the needs of
multimedia and other applications is referred to as quality of service management. Most
current operating systems and networks do not include the QoS management facilities
needed for a guaranteed quality of service for multimedia applications.

The consequences of failure to meet deadlines in multimedia applications can be
serious, especially in commercial environments such as video-on-demand services,
business conferencing applications and remote medicine, but the requirements differ
significantly from those of other real-time applications:

• Multimedia applications are often highly distributed and operate within general-
purpose distributed computing environments. They therefore compete with other
distributed applications for network bandwidth and for computing resources at
users’ workstations and servers.

• The resource requirements of multimedia applications are dynamic. A video
conference will require more or less network bandwidth as the number of
participants grows or shrinks. Its use of computing resources at each user’s

SECTION 20.1 INTRODUCTION 883

workstation will also vary, since, for example, the number of video streams that
have to be displayed varies. Multimedia applications may involve other variable
or intermittent loads as well. For example, a networked multimedia lecture might
include a processor-intensive simulation activity.

• Users often wish to balance the resource costs of a multimedia application with
other activities. Thus they may be willing to reduce their demands for video
bandwidth in a conferencing application in order to allow a separate voice
conversation to proceed, or they may wish a program development or word-
processing activity to proceed while they are participating in a conference.

Figure 20.1 A distributed multimedia system

Wide area gateway Video
server

Digital
TV/radio
server

Video camera
and mike

Local network Local network

QoS management systems are intended to meet all of these needs, managing the
available resources dynamically and varying the allocations in response to changing
demands and user priorities. A QoS management system must manage all of the
computing and communication resources needed to acquire, process and transmit
multimedia data streams, especially where the resources are shared between
applications.

Figure 20.1 illustrates a typical distributed multimedia system capable of
supporting a variety of applications, such as desktop conferencing or providing access
to stored video sequences, broadcast digital TV and radio. The resources for which QoS
management is required include network bandwidth, processor cycles and memory
capacity. Disk bandwidth at the video server may also be included. We shall adopt the
generic term resource bandwidth to refer to the capacity of any hardware resource
(network, central processor, disk subsystem) to transmit or process multimedia data.

884 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

In an open distributed system, multimedia applications can be started up and used
without prior arrangement. Several applications may coexist in the same network and
even on the same workstation. The need for QoS management therefore arises
regardless of the total quantity of resource bandwidth or memory capacity in the system.
QoS management is needed in order to guarantee that applications will be able to obtain
the necessary quantity of resources at the required times, even when other applications
are competing for the resources.

Some multimedia applications have been deployed even in today’s QoS-less, best-
efforts computing and network environments. These include:

Web-based multimedia: These are applications that provide best-efforts quality of
service for access to streams of audio and video data published via the Web. They
have been successful when there is little or no need for the synchronization of the data
streams at different locations. Their performance varies with the bandwidth and
latencies in networks and is hampered by the inability of current operating systems
to support real-time resource scheduling. Nevertheless, applications such as
YouTube, Hulu and BBC iPlayer provide an effective and popular demonstration of
the feasibility of streamed multimedia playback on lightly loaded personal
computers. They exploit extensive buffering at the destination to smooth out the
variations in bandwidth and latency and they achieve continuous smooth playback of
high quality audio and medium-resolution video sequences, although with a source-
to-destination delay that may reach several seconds.

Video-on-demand services: These services supply video information in digital form,
retrieving the data from large online storage systems and delivering them to the end
user’s display. They are successful where sufficient dedicated network bandwidth is
available and where the video server and the receiving stations are dedicated. They
also employ considerable buffering at the destination.

Highly interactive applications pose much greater problems. Many multimedia
applications are cooperative (involving several users) and synchronous (requiring the
users’ activities to be closely coordinated). They span a wide spectrum of application
contexts and scenarios. For example:

• Internet telephony. See the box on the next page.

• A simple video conference involving two or more users, each using a workstation
equipped with a digital video camera, microphone, sound output and video
display capability. Application software to support simple teleconferencing
emerged more than a decade ago (CU-SeeMe [Dorcey 1995]) and is now widely
deployed (for example: Skype, NetMeeting [www.microsoft.com III], iChat AV

[www.apple.com II]).

• A music rehearsal and performance
facility enabling musicians at different
locations to perform in an ensemble
[Konstantas et al. 1997]. This is a
particularly demanding multimedia
application because the synchronization
constraints are so tight.

Internet telephony – VoIP

The Internet was not designed for real-time interactive applications such as
telephony, but it has become possible to use it for that purpose as a result of the
increases in the capacity and performance of the Internet’s core components – its
backbone of network links run at 10–40 Gbps and the routers that interconnect them
have comparable performance. These components typically run at low load factors
(< 10% bandwidth utilization) and IP traffic is therefore seldom delayed or dropped
as a result of contention for resources.

This has resulted in the feasibility of building telephony applications over the
public Internet by transmitting streams of digitized voice samples from source to
destination as UDP packets with no special provision for quality of service. Voice
over IP (VoIP) applications such as Skype and Vonage rely on this technique, as do
the voice features of instant-messaging applications such as AOL Instant Messaging,
Apple iChat AV and Microsoft NetMeeting.

Of course, these are real-time interactive applications, and latency remains an
issue. As discussed in Chapter 3, the routing of IP packets incurs an inevitable delay
at each router they pass through. For long routes these delays can easily total in
excess of 150 ms, and users will observe this in the form of delays in conversational
interaction. For this reason, long-distance (especially intercontinental) Internet
telephone calls suffer from delays to a much greater extent than those using the
conventional telephone network.

Nevertheless, much voice traffic is carried on the Internet and integration with
the conventional telephone network is underway. The Session Initiation Protocol
(SIP, defined in RFC 2543 [Handley et al. 1999]) is an application-level protocol for
the establishment of voice calls (as well as other services such as instant messaging)
over the Internet. Gateways to the conventional telephone network exist in many
locations throughout the world, enabling calls to be initiated from Internet-connected
devices that are routed over the Internet and terminate at conventional telephones or
personal computers.

SECTION 20.1 INTRODUCTION 885

Applications such as these require:

Low-latency communication: Round-trip delays should not exceed 100–300 ms, so
that interaction between users appears to be synchronous.

Synchronous distributed state: If one user stops a video on a given frame, the other
users should see it stopped at the same frame.

Media synchronization: All participants in a music performance should hear the
performance at approximately the same time (Konstantas et al. [1997] identified a
requirement for synchronization within 50 ms). Separate soundtrack and video
streams should maintain ‘lip sync’, e.g., for a user commenting live on a video
playback or a distributed karaoke session.

External synchronization: In conferencing and other cooperative applications, there
may be active data in other formats, such as computer-generated animations, CAD
data, electronic whiteboards and shared documents. Updates to these must be
distributed and acted upon in a manner that appears at least approximately
synchronized with the time-based multimedia streams.

886 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

In Section 20.2 we review the characteristics of multimedia data. Section 20.3 describes
approaches to the allocation of scarce resources in order to achieve QoS, and Section
20.4 discusses methods for scheduling them. Section 20.5 discusses methods for
optimizing the flow of data in multimedia systems. Section 20.6 describes three case
studies of multimedia systems: the Tiger video file server, a low-cost scalable system
for the delivery of stored video streams to large numbers of clients concurrently;
BitTorrent as an example of a peer-to-peer file-sharing application supporting the
downloading of large multimedia files; and CMU’s End System Multicast as an example
of a system supporting broadcasting of video content over the Internet.

20.2 Characteristics of multimedia data

Figure 20.2 Characteristics of typical multimedia streams

Data rate

(approximate)

 Sample or frame

 size frequency

Telephone speech 64 kbps 8 bits 8000/sec

CD-quality sound 1.4 Mbps 16 bits 44,000/sec

Standard TV video (uncompressed) 120 Mbps up to 640 480
pixels 16 bits

24/sec

Standard TV video (MPEG-1 compression) 1.5 Mbps variable 24/sec

HDTV video (uncompressed) 1000–3000 Mbps up to 1920 1080
pixels 24 bits

24–60/sec

HDTV video
(MPEG-2/MPEG-4 compression)

6–20 Mbps variable 24–60/sec

We have referred to video and audio data as continuous and time-based. How can we
define these characteristics more precisely? The term ‘continuous’ refers to the user’s
view of the data. Internally, continuous media are represented as sequences of discrete
values that replace each other over time. For example, the value of an image array is
replaced 25 times per second to give the impression of a TV-quality view of a moving
scene; a sound amplitude value is replaced 8000 times per second to convey telephone-
quality speech.

Multimedia streams are said to be time-based (or isochronous) because timed data
elements in audio and video streams define the semantics or ‘content’ of the stream. The
times at which the values are played or recorded affect the validity of the data. Hence
systems that support multimedia applications need to preserve the timing when they
handle continuous data.

SECTION 20.3 QUALITY OF SERVICE MANAGEMENT 887

Multimedia streams are often bulky. Hence systems that support multimedia
applications need to move data with greater throughput than conventional systems.
Figure 20.2 shows some typical data rates and frame/sample frequencies. We note that
the resource bandwidth requirements for some are very large. This is especially so for
video of reasonable quality. For example, an uncompressed standard TV video stream
requires more than 120 Mbps, which exceeds the capacity of a 100-Mbps Ethernet
network. A program that copies or applies a simple data transformation to each frame of
a standard TV video stream requires less than 10% of the CPU capacity of a PC. The
figures for high-definition television streams are higher, and we should note that in
many applications, such as video conferencing, there is a need to handle multiple video
and audio streams concurrently. The use of compressed representations to overcome
these problems is therefore essential, although transformations such as video mixing and
editing are difficult to accomplish with compressed streams.

Compression can reduce bandwidth requirements by factors of between 10 and
100, but the timing requirements of continuous data are unaffected. There is intensive
research and standardization activity aimed at producing efficient, general-purpose
representations and compression methods for multimedia data streams. This work has
resulted in various compressed data formats, such as GIF, TIFF and JPEG for still
images and MPEG-1, MPEG-2 and MPEG-4 for video sequences.

Although the use of compressed video and audio data reduces bandwidth
requirements in communication networks, it imposes substantial additional loads on
processing resources at the source and destination. This need has often been met through
the use of special-purpose hardware to process and dispatch video and audio
information, i.e., the video and audio coders/decoders (codecs) found on video cards
manufactured for personal computers. But the increasing power of personal computers
and multiprocessor architectures now enable them to perform much of this work in
software using software coding and decoding filters. This approach offers greater
flexibility, with better support for application-specific data formats, special-purpose
application logic and the simultaneous handling of multiple media streams.

The compression method used for the MPEG video formats is asymmetric, with a
complex compression algorithm and simpler decompression. This tends to help its use
in desktop conferencing, where compression is often performed by a hardware codec but
decompression of the several streams arriving at each user’s computer is performed in
software, enabling the number of conference participants to vary without regard to the
number of codecs in each user’s computer.

20.3 Quality of service management

When multimedia applications run in networks of personal computers, they compete for
resources at the workstations running the applications (processor cycles, bus cycles,
buffer capacity) and in the networks (physical transmission links, switches, gateways).
Workstations and networks may have to support several multimedia and conventional
applications. There is competition between the multimedia and conventional
applications, between different multimedia applications and even between the media
streams within individual applications.

Figure 20.3 Typical infrastructure components for multimedia applications

Microphones

Camera

Screen

Window system

PC/workstation PC/workstation

Video
store

Network
connections

K

L

M

: multimedia stream

Window system

White boxes represent media processing components,
many of which are implemented in software, including: codec: coding/decoding filter

mixer: sound-mixing component

Video file system

Codec
A

B
Mixer

Codec
D

G
Codec

C

H

888 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

The concurrent use of physical resources for a variety of tasks has long been
possible with multitasking operating systems and shared networks. In multitasking
operating systems, the central processor is allocated to individual tasks (or processes) in
a round-robin or other scheduling scheme that shares the processing resources on a best-
effort basis among all of the tasks currently competing for the central processor.

Networks are designed to enable messages from different sources to be
interleaved, allowing many virtual communication channels to exist on the same
physical channels. The predominant local area network technology, Ethernet, manages
a shared transmission medium in a best-effort manner. Any node may use the medium
when it is quiet, but packet collisions can occur, and when they do sending nodes wait
for random backoff periods in order to prevent repeated collisions. Collisions are likely
to occur when the network is heavily loaded, and this scheme cannot provide any
guarantees regarding the bandwidth or latency in such situations.

The key feature of these resource-sallocation schemes is that they handle increases
in demand by spreading the available resources more thinly between the competing
tasks. Round-robin and other best-efforts methods for sharing processor cycles and
network bandwidth cannot meet the needs of multimedia applications. As we have seen,
the timely processing and transmission of multimedia streams is crucial for them. Late
delivery is valueless. In order to achieve timely delivery, applications need guarantees
that the necessary resources will be allocated and scheduled at the required times.

The management and allocation of resources to provide such guarantees is
referred to as quality of service management. Figure 20.3 shows the infrastructure

SECTION 20.3 QUALITY OF SERVICE MANAGEMENT 889

components for a simple multimedia conferencing application running on two personal
computers, using software data compression and format conversion. The white boxes
represent software components whose resource requirements may affect the quality of
service of the application.

The figure shows the most commonly used abstract architecture for multimedia
software, in which continuously flowing streams of media data elements (video frames,
audio samples) are processed by a collection of processes and transferred between the
processes by interprocess connections. The processes produce, transform and consume
continuous streams of multimedia data. The connections link the processes in a
sequence from a source of media elements to a target, at which it is rendered or
consumed. The connections between the processes may be implemented by networked
connections or by in-memory transfers when processes reside on the same machine. For
the elements of multimedia data to arrive at their target on time, each process must be
allocated adequate CPU time, memory capacity and network bandwidth to perform its
designated task and must be scheduled to use the resources sufficiently frequently to
enable it to deliver the data elements in its stream to the next process on time.

In Figure 20.4,

Figure 20.4 QoS specifications for components of the application shown in Figure 20.3

Component Bandwidth Latency Loss rate Resources required

Camera Out: 10 frames/sec, raw video
640x480x16 bits

– Zero –

A Codec In:

Out:

10 frames/sec, raw video

MPEG-1 stream

Interactive Low 10 ms CPU each 100 ms;

10 Mbytes RAM

B Mixer In:

Out:
2 44 kbps audio

1 44 kbps audio

Interactive Very low 1 ms CPU each 100 ms;

1 Mbytes RAM

H Window
 system

In:

Out:

Various

50 frame/sec framebuffer

Interactive Low 5 ms CPU each 100 ms;

5 Mbytes RAM

K Network
connection

In/Out: MPEG-1 stream,
approx. 1.5 Mbps

Interactive Low 1.5 Mbps, low-loss
stream protocol

L Network
connection

In/Out: Audio 44 kbps Interactive Very low 44 kbps, very low-loss
stream protocol

 we set out resource requirements for the main software components
and network connections in Figure 20.3 (note the corresponding letters against
components in these two figures). Clearly, the required resources can be guaranteed only
if there is a system component responsible for the allocation and scheduling of those
resources. We shall refer to that component as the quality of service manager.

Figure 20.5 shows the QoS manager’s responsibilities in the form of a flowchart.
In the next two subsections we describe the QoS manager’s two main subtasks:

Quality of service negotiation: The application indicates its resource requirements
to the QoS manager. The QoS manager evaluates the feasibility of meeting the
requirements against a database of the available resources and current resource

890 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

commitments and gives a positive or negative response. If it is negative, the
application may be reconfigured to use reduced resources, and the process is repeated.

Admission control: If the result of the resource evaluation is positive, the requested
resources are reserved and the application is given a resource contract, stating the
resources that have been reserved. The contract includes a time limit. The application
is then free to run. If it changes its resource requirements it must notify the QoS
manager. If the requirements decrease, the resources released are returned to the
database as available resources. If they increase, a new round of negotiation and
admission control is initiated.

In the remainder of this section we describe techniques for performing these subtasks in
further detail. Of course, while an application is running, there is a need for fine-grained
scheduling of resources such as processor time and network bandwidth to ensure that
real-time processes receive their allocated resources on time. Techniques for this are
discussed in Section 20.4.

20.3.1 Quality of service negotiation

To negotiate QoS between an application and its underlying system, the application
must specify its QoS requirements to the QoS manager. This is done by the transmission
of a set of parameters. Three parameters are of primary interest when it comes to
processing and transporting multimedia streams:

Bandwidth: The bandwidth of a multimedia stream or component is the rate at which
data flows through it.

Latency: Latency is the time required for an individual data element to move through
a stream from the source to the destination.This may vary depending on the volume
of other data in the system and other characteristics of the system load. This variation
is termed jitter – formally, jitter is the first derivative of the latency.

Loss rate: Since the late delivery of multimedia data is of no value, data elements
will be dropped when it is impossible to deliver them before their scheduled delivery
time. In a perfectly managed QoS environment, this should never happen, but as yet
few such environments exist, for reasons outlined earlier. Furthermore, the resource
cost of guaranteeing on-time delivery for every media element is often unacceptable
– it is likely to involve the reservation of resources far exceeding the average
requirement in order to deal with occasional peaks. The alternative that is adopted is
to accept a certain rate of data loss – i.e., dropped video frames or audio samples. The
acceptable ratios are usually kept low – seldom more than 1% and much lower for
quality-critical applications.

The three parameters can be used:

1. To describe the characteristics of a multimedia stream in a particular environment.
For example, a video stream may require an average bandwidth of 1.5 Mbps, and
because it is used in a conferencing application it needs to be transferred with at
most 150 ms delay to avoid conversation gaps. The decompression algorithm used
at the target may still yield acceptable pictures with a loss rate of one frame out
of 100.

Figure 20.5 The QoS manager’s task

Yes No

Yes No

Flow spec.

Resource contract

Admission control QoS negotiation

Application components specify their QoS
requirements to QoS manager

QoS manager evaluates new requirements against
the available resources.

Sufficient?

Reserve the requested resources

Allow application to proceed

Application runs with resources as
per-resource contract

Application notifies QoS manager of
increased resource requirements

Negotiate reduced resource provision with application.

Agreement?

Do not allow application to proceed

SECTION 20.3 QUALITY OF SERVICE MANAGEMENT 891

2. To describe the capabilities of resources to transport a stream. For example, a
network may provide connections of 64 kbps bandwidth, its queuing algorithms
may guarantee delays of less than 10 ms and the transmission system may
guarantee a loss rate smaller than 1 in 106.

The parameters are interdependent. For example:

• Loss rate in modern systems rarely depends on actual bit errors due to noise or
malfunction; it results from buffer overflow and from time-dependent data
arriving too late. Hence, the larger bandwidth and the lower delay can be, the more
likely is a low loss rate.

• The smaller the overall bandwidth of a resource is compared with its load, the
more messages will accumulate in front of it and the larger the buffers for this
accumulation will need to be to avoid loss. The larger the buffers become, the
more likely it is that messages will need to wait for other messages in front of them
to be serviced – that is, the larger the delay will become.

Specifying the QoS parameters for streams • The values of QoS parameters can be
stated explicitly (e.g., for the camera output stream in Figure 20.3 we might require
bandwidth: 50 Mbps, delay: 150 ms, loss: < 1 frame in 103) or implicitly (e.g., the
bandwidth of the input stream to the network connection K is the result of applying
MPEG-1 compression to the camera output).

892 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

But the more usual case is that we need to specify a value and a range of
permissible variation. Here we consider this requirement for each of the parameters:

Bandwidth: Most video compression techniques produce a stream of frames of differing
sizes depending on the original content of the raw video. For MPEG, the average
compression ratio is between 1:50 and 1:100, but this will vary dynamically depending
on content; for example, the required bandwidth will be highest when the content is
changing most rapidly. Because of this, it is often useful to quote QoS parameters as
maximum, minimum or average values, depending on the type of QoS management
regime that will be used.

Another problem that arises in the specification of the bandwidth is the
characterization of burstiness. Consider three streams of 1 Mbps. One stream transfers
a single frame of 1 Mbit every second, the second is an asynchronous stream of
computer-generated animation elements with an average bandwidth of 1 Mbps and the
third sends a 100-bit sound sample every microsecond. Whereas all three streams
require the same bandwidth, their traffic patterns are very different.

One way to take care of irregularities is to define a burst parameter in addition to
rate and frame size. The burst parameter specifies the maximum number of media
elements that may arrive early – that is, before they should arrive according to the
regular arrival rate. The model of linear-bounded arrival processes (LBAP) used in
Anderson [1993] defines the maximum number of messages in a stream during any time
interval t as Rt + B, where R is the rate and B is the maximum size of burst. The
advantage of using this model is that it nicely reflects the characteristics of multimedia
sources: multimedia data read from disks are usually delivered in large blocks, and data
received from networks often arrive in the form of sequences of smaller packets. In this
case, the burst parameter defines the amount of buffer space required to avoid loss.

Latency: Some timing requirements in multimedia result from the stream itself: if a
frame of a stream does not get processed with the same rate at which frames arrive, a
backlog builds up and buffer capacity may be exceeded. If this is to be avoided, a frame
must on average not remain in a buffer for longer than 1/R, where R is the frame rate of
a stream. If backlogs do occur, the number and size of the backlogs will affect the
maximum end-to-end delay of a stream, in addition to the processing and propagation
times.

Other latency requirements arise from the application environment. In
conferencing applications, the need for apparently instantaneous interaction between the
participants makes it necessary to achieve absolute end-to-end delays of no more than
150 ms to avoid problems in the human perception of the conversation, whereas for the
replay of stored video, to ensure a proper system response to commands such as Pause

and Stop, the maximum latency should be on the order of 500 ms.
A third consideration for the delivery time of multimedia messages is jitter –

variation in the period between the delivery of two adjacent frames. Whereas most
multimedia devices make sure that they present data at its regular rate without variation,
software presentations (for example, in a software decoder for video frames) need to
take extra care to avoid jitter. Jitter is essentially solved by buffering, but the scope for
jitter removal is limited, because total end-to-end delay is constrained by the
consideration mentioned above. Thus the playback of media sequences also requires
media elements to arrive before fixed deadlines.

SECTION 20.3 QUALITY OF SERVICE MANAGEMENT 893

Loss rate: Loss rate is the most difficult QoS parameter to specify. Typical loss rate
values result from probability calculations about overflowing buffers and delayed
messages. These calculations are based either on worst-case assumptions or on standard
distributions. Neither of these is necessarily a good match for practical situations.
However, loss rate specifications are necessary to qualify the bandwidth and latency
parameters: two applications may have the same bandwidth and latency characteristics;
but they will look dramatically different if one application loses every fifth media
element and the other loses only one in a million.

As with bandwidth specifications, where not just the volume of data sent in a time
interval but its distribution over the time interval is important, a loss rate specification
needs to determine the time interval during which to expect a certain level of loss. In
particular, loss rates given for infinite timespans are not useful, as any loss over a short
time may exceed the long-term rate significantly.

Traffic shaping • Traffic shaping is the term used to describe the use of output buffering
to smooth the flow of data elements. The bandwidth parameter of a multimedia stream
typically provides an idealistic approximation of the actual traffic pattern that will occur
when the stream is transmitted. The closer the actual traffic pattern matches the
description, the better a system will be able to handle the traffic, in particular when it
uses scheduling methods that are designed for periodic requests.

The LBAP model of bandwidth variations calls for regulation of the burstiness of
multimedia streams. Any stream can be regulated by inserting a buffer at the source and
by defining a method by which data elements leave the buffer. A good illustration of this
method is the image of a leaky bucket (Figure 20.6a): the bucket can be filled arbitrarily
with water until it is full; through a leak at the bottom of the bucket water will flow
continuously. The leaky bucket algorithm ensures that a stream will never flow with a
rate higher than R. The size of the buffer B defines the maximum burst a stream can incur
without losing elements. B also bounds the time for which an element will remain in the
bucket.

Figure 20.6 Traffic shaping algorithms

Token generator

(a) Leaky bucket (b) Token bucket

The leaky bucket algorithm completely eliminates bursts. Such elimination is not
always necessary as long as bandwidth is bounded over any time interval. The token
bucket algorithm achieves this while allowing larger bursts to occur when a stream has

894 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

been idle for a while (Figure 20.6b). It is a variation of the leaky bucket algorithm in
which tokens to send data are generated at a fixed rate, R. They are collected in a bucket
of size B. Data of size S can be sent only if at least S tokens are in the bucket. The send
process then removes these S tokens. The token bucket algorithm ensures that over any
interval t the amount of data sent is not larger than Rt + B. It is, hence, an implementation
of the LBAP model.

High peaks of size B can only occur in a token bucket system when a stream has
been idle for a while. To avoid these bursts, a simple leaky bucket can be placed behind
the token bucket. The flow rate F of this bucket needs to be significantly larger than R
for this scheme to make sense. Its only purpose is to break up really large bursts.

Flow specifications • A collection of QoS parameters is typically known as a flow
specification, or flow spec for short. Several examples of flow specs exist and all are
similar. In Internet RFC 1363 [Partridge 1992], a flow spec is defined as 11 16-bit
numeric values (Figure 20.7), which reflect the QoS parameters discussed above in the
following way:

• The maximum transmission unit and maximum transmission rate determine the
maximum bandwidth required by the stream.

• The token bucket size and rate determine the burstiness of the stream.

• The delay characteristics are specified by the minimum delay that an application
can notice (since we wish to avoid overoptimization for short delays) and the
maximum jitter it can accept.

• The loss characteristics are defined by the total number of losses acceptable over
a certain interval and the maximum number of consecutive losses acceptable.

Figure 20.7 The RFC 1363 flow spec

Protocol version

Bandwidth:

Maximum transmission unit

Token bucket rate

Token bucket size

Maximum transmission rate

Delay:
Minimum delay noticed

Maximum delay variation

Loss:

Loss sensitivity

Burst loss sensitivity

Loss interval

Quality of service guarantee

SECTION 20.3 QUALITY OF SERVICE MANAGEMENT 895

There are many alternatives for expressing each parameter group. In SRP [Anderson et

al. 1990], the burstiness of a stream is given by a maximum workahead parameter,
which defines the number of messages a stream may be ahead of its regular arrival rate
at any point in time. In Ferrari and Verma [1990], a worst-case delay bound is given: if
the system cannot guarantee to transport data within this timespan, the data transport
will be useless for the application. In RFC 1190, the specification of the ST-II protocol
[Topolcic 1990], loss is represented as the probability of each packet being dropped.

All the above examples provide a continuous spectrum of QoS values. If the set
of applications and streams to be supported is limited, it may be sufficient to define a
discrete set of QoS classes: for example, telephone-quality and high-fidelity audio, live
and playback video, etc. The requirements of all classes must be implicitly known by all
system components; the system may even be configured for a certain traffic mix.

Negotiation procedures • For distributed multimedia applications, the components of a
stream are likely to be located in several nodes. There will be a QoS manager at each
node. A straightforward approach to QoS negotiation is to follow the flow of data along
each stream from the source to the target. A source component initiates the negotiation
by sending out a flow spec to its local QoS manager. The manager can check against its
database of available resources whether the requested QoS can be provided. If other
systems are involved in the application, the flow spec is forwarded to the next node
where resources are required. The flow spec traverses all the nodes until the final target
is reached. Then the information on whether the desired QoS can be provided by the
system is passed back to the source. This simple approach to negotiation is satisfactory
for many purposes, but it does not consider the possibilities for conflict between
concurrent QoS negotiations starting at different nodes. A distributed transactional QoS
negotiation procedure would be required for a full solution to this problem.

Applications rarely have fixed QoS requirements. Instead of returning a boolean
value indicating whether a certain QoS can be provided or not, it is more appropriate for
the system to determine what kind of QoS it can provide and let the application decide
whether it is acceptable. In order to avoid over-optimized QoS or to abort the negotiation
when it becomes clear that the desired quality is not achievable, it is common to specify
a desired and worst-case value for each QoS parameter. That is, an application may
specify that it desires a bandwidth of 1.5 Mbps but would also be able to handle 1 Mbps,
or that delay should be 200 ms, but 300 ms would be the worst case that is still
acceptable. As only one parameter can be optimized at a time, systems such as HeiRAT
[Vogt et al. 1993] expect the user to define values for only two parameters and leave it
to the system to optimize the third.

If a stream has multiple sinks, the negotiation path forks according to the data
flow. As a straightforward extension to the above scheme, intermediate nodes can
aggregate QoS feedback messages from the targets to produce worst-case values for the
QoS parameters. The available bandwidth then becomes the smallest available
bandwidth of all targets, the delay becomes the longest of all targets, and the loss rate
becomes the largest of all targets. This is the procedure practised by sender-initiated
negotiation protocols such as SRP, ST-II and RCAP [Banerjea and Mah 1991].

In situations with heterogeneous targets, it is usually inappropriate to assign a
common worst-case QoS to all targets. Instead, each target should receive the best
possible QoS. This calls for a receiver-initiated negotiation process rather then a sender-

896 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

oriented one. RSVP [Zhang et al. 1993] is an alternative QoS negotiation protocol in
which targets connect to streams. Sources communicate the existence of streams and
their inherent characteristics to all targets. Targets can then connect to the closest node
through which the stream passes and derive data from there. In order for them to obtain
data with the appropriate QoS, they may need to use techniques such as filtering
(discussed in Section 20.5).

20.3.2 Admission control

Admission control regulates access to resources to avoid resource overload and to
protect resources from requests that they cannot fulfil. It involves turning down service
requests should the resource requirements of a new multimedia stream violate existing
QoS guarantees.

An admission control scheme is based on some knowledge of both the overall
system capacity and the load generated by each application. The bandwidth requirement
specification for an application may reflect the maximum amount of bandwidth that an
application will ever require, the minimum bandwidth it will need to function, or some
average value in between. Correspondingly, an admission control scheme may base its
resource allocation on any of these values.

For resources that have a single allocator, admission control is straightforward.
Resources that have distributed access points, such as many local area networks, require
either a centralized admission control entity or some distributed admission control
algorithm that avoids conflicting concurrent admissions. Bus arbitration within
workstations falls into this category; however, even multimedia systems that perform
bandwidth allocation extensively do not control bus admission, as bus bandwidth is not
considered to be in the window of scarcity.

Bandwidth reservation • A common way to ensure a certain QoS level for a multimedia
stream is to reserve some portion of resource bandwidth for its exclusive use. In order
to fulfil the requirements of a stream at all times, a reservation needs to be made for its
maximum bandwidth. This is the only possible way to provide guaranteed QoS to an
application – at least, as long as no catastrophic system failures occur. It is used for
applications that cannot adapt to different QoS levels or become useless when quality
drops occur. Examples include some medical applications (a symptom may appear in an
x-ray video just at the time when video frames are dropped) and video recording (where
dropped frames will result in a flaw in the recording that is visible every time the video
is played).

Reservation based on maximum requirements can be straightforward: when
controlling access to a network of a certain bandwidth B, multimedia streams s of a
bandwidth bs can be admitted as long as bs <= B. Thus a token ring of 16 Mbps may
support up to 10 digital video streams of 1.5 Mbps each.

Unfortunately, capacity calculations are not always as simple as in the network
case. Allocating CPU bandwidth in the same way requires the execution profile of each
application process to be known. Execution times, however, depend on the processor
used and often cannot be determined precisely. While several proposals for automatic
execution time calculation exist [Mok 1985, Kopetz et al. 1989], none of them has

SECTION 20.4 RESOURCE MANAGEMENT 897

achieved widespread use. Execution times are usually determined through measure-
ments that often have wide error margins and limited portability.

For typical media encodings such as MPEG, the actual bandwidth consumed by
an application may be significantly lower than its maximum bandwidth. Reservations
based on maximum requirements may then lead to wasted resource bandwidth: requests
for new admissions are turned down although they could be satisfied with the bandwidth
that is reserved for, but not actually used by existing applications.

Statistical multiplexing • Because of the potential under-utilization that can occur, it is
common to overbook resources. The resulting guarantees, often called statistical or soft
guarantees to distinguish them from the deterministic or hard guarantees introduced
before, are only valid with some (usually very high) probability. Statistical guarantees
tend to provide better resource utilization as they do not consider the worst case. But just
as when resource allocation is based on minimum or average requirements,
simultaneous peak loads can cause drops in service quality; applications have to be able
to handle these drops.

Statistical multiplexing is based on the hypothesis that for a large number of
streams the aggregate bandwidth required remains nearly constant regardless of the
bandwidth of individual streams. It assumes that when one stream sends a large quantity
of data, there will also be another stream that sends a small quantity, and overall the
requirements will balance out. This, however, is only the case for uncorrelated streams.

As experiments show [Leland et al. 1993], multimedia traffic in typical
environments does not obey this hypothesis. Given a larger number of bursty streams,
the aggregate traffic still remains bursty. The term self-similar has been applied to this
phenomenon, meaning that the aggregate traffic shows similarity to the individual
streams of which it is composed.

20.4 Resource management

To provide a certain QoS level to an application, not only does a system need to have
sufficient resources (performance), but it also needs to make these resources available
to an application when they are needed (scheduling).

20.4.1 Resource scheduling

Processes need to have resources assigned to them according to their priority. A resource
scheduler determines the priority of processes based on certain criteria. Traditional CPU
schedulers in time-sharing systems often base their priority assignments on
responsiveness and fairness: I/O-intensive tasks get high priority to guarantee fast
response to user requests, CPU-bound tasks get lower priorities, and overall, processes
in the same class are treated equally.

Both criteria remain valid for multimedia systems, but the existence of deadlines
for the delivery of individual multimedia data elements changes the nature of the
scheduling problem. Real-time scheduling algorithms can be applied to this problem, as
discussed below. As multimedia systems have to handle both discrete and continuous

898 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

media, it becomes a challenge to provide sufficient service to time-dependent streams
without causing starvation of discrete-media access and other interactive applications.

Scheduling methods need to be applied to (and coordinated for) all resources that
affect the performance of a multimedia application. In a typical scenario, a multimedia
stream would be retrieved from disk and then sent through a network to a target station,
where it is synchronized with a stream coming from another source and finally
displayed. The resources required in this example include disk, network and CPU
resources as well as memory and bus bandwidth on all systems involved.

Fair scheduling • If several streams compete for the same resource, it becomes
necessary to consider fairness and to prevent ill-behaved streams taking too much
bandwidth. A straightforward approach ensuring fairness is to apply round-robin
scheduling to all streams in the same class. Whereas in Nagle [1987] such a method was
introduced on a packet-by-packet basis, in Demers et al. [1989] the method is used on a
bit-by-bit basis, which provides more fairness with respect to varying packet sizes and
packet arrival times. These methods are known as fair queuing.

Packets cannot actually be sent on a bit-by-bit basis, but given a certain frame rate
it is possible to calculate for each packet when it should have been sent completely. If
packet transmissions are ordered based on this calculation, one achieves almost the same
behaviour as with actual bit-by-bit round robin, except that when a large packet is sent,
it may block the transmission of a smaller packet, which would have been preferred
under the bit-by-bit scheme. However, no packet is delayed for longer than the
maximum packet transmission time.

All basic round-robin schemes assign the same bandwidth to each stream. To take
the individual bandwidth of streams into account, the bit-by-bit scheme can be extended
so that for certain streams a larger number of bits can be transmitted per cycle. This
method is called weighted fair queuing.

Real-time scheduling • Several real-time scheduling algorithms have been developed
to meet the CPU scheduling needs of applications such as avionics industrial process
control. Assuming that the CPU resources have not been overallocated (which is the task
of the QoS manager), they assign CPU timeslots to a set of processes in a manner that
ensures that they complete their tasks on time.

Traditional real-time scheduling methods suit the model of regular continuous
multimedia streams very well. Earliest-deadline-first (EDF) scheduling has almost
become a synonym for these methods. An EDF scheduler uses a deadline that is
associated with each of its work items to determine the next item to be processed: the
item with the earliest deadline goes first. In multimedia applications, we identify each
media element arriving at a process as a work item. EDF scheduling is proven to be
optimal for allocating a single resource based on timing criteria: if there is a schedule
that fulfils all timing requirements, EDF scheduling will find it [Dertouzos 1974].

EDF scheduling requires one scheduling decision per message (i.e., per
multimedia element). It would be more efficient to base scheduling on elements that
exist for a longer time. Rate-monotonic (RM) scheduling is a prominent technique for
real-time scheduling of periodic processes that achieves just this. Streams are assigned
priorities according to their rate: the higher the rate of work items on a stream, the higher
the priority of a stream. RM scheduling has been shown to be optimal for situations that
utilize a given bandwidth by less than 69% [Liu and Layland 1973]. Using such an

SECTION 20.5 STREAM ADAPTATION 899

allocation scheme, the remaining bandwidth could be given to non-real-time
applications.

To cope with bursty real-time traffic, the basic real-time scheduling methods
should be adjusted to distinguish between time-critical and non-critical continuous-
media work items. In Govindan and Anderson [1991], deadline/workahead scheduling
is introduced. It allows messages in a continuous stream to arrive ahead of time in bursts
but applies EDF scheduling to a message only at its regular arrival time.

20.5 Stream adaptation

Whenever a certain QoS cannot be guaranteed or can be guaranteed only with a certain
probability, an application needs to adapt to changing QoS levels, adjusting its
performance accordingly. For continuous-media streams, the adjustment translates into
different levels of media presentation quality.

The simplest form of adjustment is to drop pieces of information. This is easily
done in audio streams, where samples are independent of each other, but it may be
noticed immediately by the listener. Dropouts in a video stream encoded in Motion
JPEG, where each frame is freestanding, are more tolerable. Encoding mechanisms such
as MPEG, where the interpretation of a frame depends on the values of several adjacent
frames, are less robust against omissions: it takes a longer time to recover from errors,
and the encoding mechanism may in fact amplify errors.

If there is insufficient bandwidth and data is not dropped, the delay of a stream will
increase over time. For non-interactive applications this may be acceptable, although it
can eventually lead to buffer overflows as data is accumulated between the source and
sink. For conferencing and other interactive applications, increasing delays are not
acceptable, or must exist only for a short period. If a stream is behind its assigned
playout time, its playout rate should be increased until it gets back on schedule: while a
stream is delayed, frames should be output as soon as they are available.

20.5.1 Scaling

If adaptation is performed at the target of a stream, the load on any bottleneck in the
system is not decreased and the overload situation persists. It is useful to adapt a stream
to the bandwidth available in the system before it enters a bottleneck resource in order
to resolve contention. This is known as scaling.

Scaling is best applied when live streams are sampled. For stored streams, how
easy it is to generate a downgraded stream depends on the encoding method. Scaling
may be too cumbersome if the entire stream has to be decompressed and encoded again
just for scaling purposes. Scaling algorithms are media-dependent, although the overall
scaling approach is the same: to subsample a given signal. For audio information, such
subsampling can be achieved by reducing the rate of audio sampling. It can also be
achieved by dropping a channel in a stereo transmission. As this example shows,
different scaling methods can work at different granularities.

900 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

For video, the following scaling methods are appropriate:

Temporal scaling: Reduces the resolution of the video stream in the time domain by
decreasing the number of video frames transmitted within an interval. Temporal
scaling is best suited to video streams in which individual frames are self-contained
and can be accessed independently. Delta compression techniques are more difficult
to handle as not all frames can easily be dropped. Hence, temporal scaling is more
suitable for Motion JPEG than for MPEG streams.

Spatial scaling: Reduces the number of pixels of each image in a video stream. For
spatial scaling, hierarchical arrangement is ideal because the compressed video is
immediately available in various resolutions. Therefore the video can be transferred
over the network using different resolutions without recoding each picture before
finally transmitting it. JPEG and MPEG-2 support different spatial resolutions of
images and are well suited to this kind of scaling.

Figure 20.8 Filtering

Source
Targets

High bandwidth

Medium bandwidth

Low bandwidth

Frequency scaling: Modifies the compression algorithm applied to an image. This
results in some loss of quality, but in a typical picture compression can be increased
significantly before a reduction of image quality becomes visible.

Amplitudinal scaling: Reduces the colour depths for each image pixel. This scaling
method is in fact used in H.261 encodings to arrive at a constant throughput as image
content varies.

Colour-space scaling: Reduces the number of entries in the colour space. One way
to realize colour-space scaling is to switch from colour to greyscale presentation.

Combinations of these scaling methods can be used if necessary.
A system to perform scaling consists of a monitor process at the target and a scaler

process at the source. The monitor keeps track of the arrival times of messages in a
stream. Delayed messages are an indication of a bottleneck in the system. The monitor
then sends a scale-down message to the source and the source reduces the bandwidth of
the stream. After some period of time, the source scales the stream up again. Should the
bottleneck still exist, the monitor will again detect a delay and scale the stream down

SECTION 20.6 CASE STUDIES: TIGER, BITTORRENT AND END SYSTEM MULTICAST 901

[Delgrossi et al. 1993]. A problem for the scaling system is to avoid unnecessary scale-

up operations and to prevent the system from oscillating.

20.5.2 Filtering

As scaling modifies a stream at the source, it is not always suitable for applications that
involve several receivers: when a bottleneck occurs on the route to one target, this target
sends a scale-down message to the source and all targets receive the degraded quality,
although some would have no problem in handling the original stream.

Filtering is a method that provides the best possible QoS to each target by applying
scaling at each relevant node on the path from the source to the target (Figure 20.8).
RSVP [Zhang et al. 1993] is an example of a QoS negotiation protocol that supports
filtering. Filtering requires that a stream be partitioned into a set of hierarchical
substreams, each adding a higher level of quality. The capacity of nodes on a path
determines the number of substreams a target receives. All other substreams are filtered
out as close to the source as possible (perhaps even at the source) to avoid transfer of
data that is later thrown away. A substream is not filtered at an intermediate node if
somewhere downstream a path exists that can carry the entire substream.

20.6 Case studies: Tiger, BitTorrent and End System Multicast

As discussed in Chapter 1, multimedia is a key trend in modern distributed systems.
Rather than an area in its own right, multimedia is best considered as pervading all
distributed systems and hence offering challenges that have to be taken into account in
the design of all aspects of distributed systems. In this section, we present case studies
that illustrate how multimedia influences three key areas of distributed system
development:

• the design of a distributed file system to support video files (the Tiger video file

server);

• the design of a peer-to-peer download system designed to support very large
multimedia files (BitTorrent);

• the design of a real-time multicast streaming service (End System Multicast).

Note that we have already seen one other example of a multimedia service when we
examined the overlay network structure adopted by Skype (see Section 4.5.2).

20.6.1 The Tiger video file server

A video storage system that supplies multiple real-time video streams simultaneously is
seen as an important system component to support consumer-oriented multimedia
applications. Several prototype systems of this type have been developed, and some
have evolved into products (see [Cheng 1998]). One of the most advanced of these is the
Tiger video file server developed at the Microsoft Research Labs [Bolosky et al. 1996].

902 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

Design goals • The following were the main design goals for the system:

Video-on-demand for a large number of users The typical application is a service
that supplies movies to paying clients. The movies are selected from a large stored
digital movie library. Clients should receive the first frames of their selected movies
within a few seconds of issuing a request, and they should be able to perform pause,
rewind and fast-forward operations at will. Although the library of available movies
is large, a few movies may be very popular and they will be the subject of multiple
unsynchronized requests, resulting in several concurrent but time-shifted playings of
them.

Figure 20.9 Tiger video file server hardware configuration

Controller

Cub 0 Cub 1 Cub 2 Cub 3 Cub n

ATM switching network

video distribution to clients
Start/Stop

requests from clients

low-bandwidth network

high-bandwidth

0 n+1 1 n+2 2 n+3 3 n+4 n 2n+1

Quality of service: Video streams must be supplied at a constant rate with a
maximum jitter that is determined by the (assumed small) amount of buffering
available at the clients and a very low loss rate.

Scalable and distributed: The aim was to design a system with an architecture that
is extensible (by the addition of computers) to support up to 10,000 clients
simultaneously.

Low-cost hardware: The system was to be built using low-cost hardware
(‘commodity’ PCs with standard disk drives).

Fault tolerant: The system should continue to operate without noticeable
degradation after the failure of any single server computer or disk drive.

Taken together, these requirements demand a radical approach to the storage and
retrieval of video data and an effective scheduling algorithm that balances the workload
across a large number of similar servers. The primary task is the transfer of high-
bandwidth streams of video data from disk storage to a network, and it is this load that
has to be shared between the servers.

Architecture • The Tiger hardware architecture is shown in Figure 20.9. All of the
components are off-the-shelf products. The cub computers shown in the figure are

SECTION 20.6 CASE STUDIES: TIGER, BITTORRENT AND END SYSTEM MULTICAST 903

identical PCs with the same number of standard hard disk drives (typically between two
and four) attached to each. They are also equipped with Ethernet and ATM network
cards (see Chapter 3). The controller is another PC. It is not involved in the handling of
multimedia data and is responsible only for the handling of client requests and the
management of the work schedules of the cubs.

Storage organization • The key design issue is the distribution of the video data among
the disks attached to cubs in order to enable them to share the load. Since the load may
involve the supply of multiple streams from the same movie as well as the supply of
streams from many different movies, any solution based on the use of a single disk to
store each movie is unlikely to achieve this goal. Instead, movies are stored in a striped
representation across all disks. This leads to a failure model in which the loss of a disk
or a cub results in a gap in the sequence of every movie. This is dealt with by a storage
mirroring scheme that replicates the data and the fault-tolerance mechanism, described
below.

Striping: A movie is divided into blocks (chunks of video of equal play time, typically
around 1 second, occupying about 0.5 Mbytes), and the set of blocks that make up a
movie (typically about 7000 of them for a two-hour movie) is stored on disks attached
to different cubs in a sequence indicated by the disk numbers shown in Figure 20.9. A
movie can start on any disk. Whenever the highest-numbered disk is reached, the movie
is ‘wrapped around’ so that the next block is stored on disk 0 and the process continues.

Mirroring: The mirroring scheme divides each block into several portions, called
secondaries. This ensures that when a cub fails, the extra workload of supplying data for
blocks on the failed cub falls on several of the remaining cubs and not just one of them.
The number of secondaries per block is determined by a decluster factor, d, with typical
values in the range 4 to 8. The secondaries for a block stored on disk i are stored on disks
i+1 to i+d. Note that, provided that there are more than d cubs, none of these disks is
attached to the same cub as disk i. With a decluster factor of 8, approximately 7/8 of the
processing capacity and disk bandwidth of cubs can be allocated to fault-free tasks. The
remaining 1/8 of its resources should be enough to serve secondaries when needed.

Distributed schedule • The heart of Tiger’s design is the scheduling of the workload for
the cubs. The schedule is organized as a list of slots, where each slot represents the work
that must be done to play one block of a movie – that is, to read it from the relevant disk
and transfer it to the ATM network. There is exactly one slot for each potential client
receiving a movie (called a viewer), and each occupied slot represents one viewer
receiving a real-time video data stream. The viewer state is represented in the schedule
by:

• the address of the client computer;

• the identity of the file being played;

• the viewer’s position in the file (the next block to be delivered in the stream);

• the viewer’s play sequence number (from which a delivery time for the next block
can be calculated);

• some bookkeeping information.

904 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

The schedule is illustrated in Figure 20.10

Figure 20.10 Tiger schedule

012

slot 0
viewer 4

slot 1
free

slot 2
free

slot 3
viewer 0

slot 4
viewer 3

slot 5
viewer 2

slot 6
free

slot 7
viewer 1

block play time T
block service

time t

state state state state state

. The block play time, T, is the time that will
be required for a viewer to display a block on the client computer – this is typically about
1 second and is assumed to be the same for all the stored movies. Tiger must therefore
maintain a time interval T between the delivery times of the blocks in each stream, with
a small allowable jitter that is determined by the available buffering at the client
computers.

Each cub maintains a pointer into the schedule for each disk that it controls.
During each block play time it must process all of the slots with block numbers that fall
on the disks it controls and delivery times that fall within the current block play time.
The cub steps through the schedule in real-time processing slots as follows:

1. Read the next block into buffer storage at the cub.

2. Packetize the block and deliver it to the cub’s ATM network controller with the
address of the client computer.

3. Update viewer state in the schedule to show the new next block and play sequence
number and pass the updated slot to the next cub.

These actions are assumed to occupy a maximum time t, which is known as the block

service time. As can be seen in Figure 20.10, t is substantially less than the block play
time. The value of t is determined by the disk bandwidth or the network bandwidth,
whichever is smaller. (The processing resources in a cub are adequate to perform the
scheduled work for all the attached disks.) When a cub has completed the schedule tasks
for the current block play time it is available for unscheduled tasks until the start of the
next play time. In practice, disks do not provide blocks with a fixed delay, and to
accommodate their uneven delivery the disk read is initiated at least one block service
time before the block is needed for packetizing and delivery.

A disk can handle the work to service T/t streams, and the values of T and t

typically result in a value > 4 for this ratio. This and the number of disks in the entire
system determines the number of viewers that a Tiger system can service. For example,
a Tiger system with five cubs and three disks attached to each can deliver approximately
70 video streams simultaneously.

Fault tolerance • Because of the striping of all the movie files across all of the disks in
a Tiger system, failure of any component (a disk drive or a cub) would result in a
disruption of service to all clients. The Tiger design remedies this by retrieving data

SECTION 20.6 CASE STUDIES: TIGER, BITTORRENT AND END SYSTEM MULTICAST 905

from the mirrored secondary copies when a primary block is unavailable because of the
failure of a cub or a disk drive. Recall that secondary blocks are smaller than primary
blocks in the ratio of the decluster factor d and that the secondaries are distributed so that
they fall on several disks that are attached to different cubs.

When a cub or a disk fails, the schedule is modified by an adjacent cub to show
several mirror viewer states, representing workload for the d disks that hold the
secondaries for those movies. A mirror viewer state is similar to a normal viewer state
but with different block numbers and timing requirements. Because this extra workload
is shared among d disks and d cubs, it can be accommodated without disrupting the tasks
in other slots, provided that there is a small amount of spare capacity in the schedule.
The failure of a cub is equivalent to the failure of all of the disks attached to it and is
handled in a similar manner.

Network support • The blocks of each movie are simply passed to the ATM network by
the cubs that hold them, together with the address of the relevant client. The QoS
guarantees of ATM network protocols are relied upon to deliver blocks to client
computers in sequence and in time. The client needs sufficient buffer storage to hold two
primary blocks; the one that is currently playing on the client’s screen and one that is
arriving from the network. When primary blocks are being served, the client need only
check the sequence number of each arriving block and pass it to the display handler.
When secondaries are being served, the d cubs responsible for a declustered block
deliver their secondaries to the network in sequence, and it is the client’s responsibility
to collect and assemble them in its buffer storage.

Other functions • We have described the time-critical activities of a Tiger server. The
design requirements called for the provision of fast-forward and rewind functions. These
functions call for the delivery of some fraction of the blocks in the movie to the client in
order to give the visual feedback typically provided by video recorders. This is done on
a best-effort basis by the cubs in unscheduled time.

The remaining tasks include managing and distributing the schedule, and
managing the database of movies, deleting old and writing new movies onto the disks
and maintaining an index of movies.

In the initial Tiger implementation, schedule management and distribution were
handled by the controller computer. Because this constitutes a single point of failure and
a potential performance bottleneck, schedule management was subsequently redesigned
as a distributed algorithm [Bolosky et al. 1997]. Management of the movie database is
performed by cubs in unscheduled time in response to commands from the controller.

Performance and scalability • The initial prototype was developed in 1994 and used
five 133-MHz Pentium PCs, each equipped with 48 Mbytes of RAM, three 2-Gbyte
SCSI disk drives and an ATM network controller, running over Windows NT. This
configuration was measured under a simulated client load. When serving movies to 68
clients with no faults in the Tiger system, the delivery of the data was perfect – no blocks
were lost or delivered to clients late. With one cub failed (and hence three disks) the
service was maintained with a data loss rate of only 0.02%, well within the design goal.

Another measurement that was taken was the startup latency to deliver the first
block of a movie after receipt of a client request. This will be highly dependent on the
number and the position of free slots in the schedule. The algorithm used for this initially
would place a client request in the nearest free slot to the disk holding block 0 of the

906 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

requested movie. This resulted in measured values for the startup latency in the range of
2 to 12 seconds. Recent work has resulted in a slot allocation algorithm that reduces
clustering of occupied slots in the schedule, leaving free slots distributed more evenly in
the schedule and improving average startup latency [Douceur and Bolosky 1999].

Although the initial experiments were made with a small configuration, later
measurements were made with a 14-cub, 56-disk configuration and the distributed
scheduling scheme described by Bolosky et al. [1997]. The load that could be serviced
by this system scaled successfully to deliver 602 simultaneous 2-Mbps data streams with
a loss rate of less than one block in 180,000 when all cubs were functioning. With one
cub failed, less than 1 in 40,000 blocks was lost. These results are impressive and appear
to bear out the claim that a Tiger system could be configured with up to 1000 cubs
servicing up to 30,000–40,000 simultaneous viewers.

20.6.2 BitTorrent

BitTorrent [www.bittorrent.com] is a popular peer-to-peer file-sharing application
designed particularly for downloading large files (including video files). It is not
intended for the real-time streaming of content but rather for the initial downloading of
files to be played back later. BitTorrent was mentioned briefly in Chapter 10 as an
example of a peer-to-peer file-sharing protocol. In this chapter, we look in more detail
at the design of BitTorrent with emphasis on the support provided for downloading
video files.

The principal design feature in BitTorrent is the splitting of files into fixed-sized
chunks and the subsequent availability of chunks at various sites across the peer-to-peer
network. Clients can then download a number of chunks in parallel from different sites,
reducing the burden on any one particular site to service the download (remembering
that BitTorrent relies on the capabilities of ordinary user machines and also that there
may be many simultaneous requests for popular files). This compares favourably to
more centralized strategies where a client would download a file from a server using, for
example, HTTP.

In more detail, the BitTorrent protocol operates as follows. When a file is made
available in BitTorrent, a .torrent file is created that holds metadata associated with that
file including:

• the name and length of the file;

• the location of a tracker (specified as a URL), which is a centralized server that
manages downloads of that particular file;

• a checksum associated with each chunk, generated using the SHA-1 hashing
algorithm, that enables content to be verified following download.

The use of trackers is a compromise against pure peer-to-peer principles, but this allows
the system to easily maintain the above information in a centralized manner.

Trackers are responsible for keeping track of the download status associated with
a particular file. To understand the information held by the tracker, it is necessary to
stand back and consider the lifecycle of a given file.

Any peer with a complete version of a file (in terms of all its chunks) is known as
a seeder in BitTorrent terminology. For example, the peer that initially creates the file

SECTION 20.6 CASE STUDIES: TIGER, BITTORRENT AND END SYSTEM MULTICAST 907

will provide the initial seed for the file distribution. Peers that want to download a file
are known as leechers, and a given leecher at any given time will contain a number of
chunks associated with that file. Once a leecher downloads all the chunks associated
with a file, it can become a seeder for subsequent downloads. In this way, files spread
virally through the network, with the spread stimulated by demand. Based on this, the
tracker maintains information about the current state of downloads of a given file in
terms of the associated seeders and leechers. The tracker together with the associated
seeders and leechers in BitTorrent are referred to as the torrent (or swarm) for that file.
(A summary of BitTorrent terminology can be found in Figure 20.11

Figure 20.11 BitTorrent terminology

Term Meaning

.torrent file A file that maintains metadata about an available file

tracker A server containing information about the downloads in progress

chunk A fixed size portion of a given file

seeder A peer that holds a complete copy of a file (consisting of all its chunks)

leecher A peer involved in downloading a file that currently holds only a portion of
its chunks

torrent (or swarm) A set of sites involved with downloading a file including the tracker, seeders
and leechers

tit-for-tat An incentive mechanism that governs the scheduling of downloads in
BitTorrent

optimistic unchoking A mechanism to allow new peers to establish their credentials

rarest first A scheduling scheme whereby BitTorrent prioritizes frames that are rare
within its set of connected peers

.)
When a peer wants to download a file, it first contacts the tracker and is given a

partial view of the torrent in terms of a set of peers that can support the download. After
that, the job of the tracker is done – it does not get involved in subsequent scheduling of
downloads. This is a matter for the various peers involved and hence this part of the
protocol is decentralized. Chunks are then requested and transmitted to the requesting
peer in any order (compare this to CoolStreaming, as featured in the box on page 910).

BitTorrent, along with many peer-to-peer protocols, relies on peers to behave as
good citizens, contributing to as well as taking from the system. Crucially, the system
has an inbuilt incentive mechanism to reward such cooperation, known as the tit-for-tat

mechanism [Cohen 2003]. Informally, this approach gives preference to downloading
peers who have previously or who are currently uploading to that site. As well as acting
as an incentive mechanism, tit-for-tat also encourages patterns of communication where
downloading and uploading proceed concurrently, making optimum use of bandwidth.

In more detail, a given peer supports downloading from n simultaneous peers by
unchoking these peers. Decisions of which peers to unchoke are based on rolling
calculations of download rates from these peers with this decision revisited every 10

908 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

seconds. The algorithm also applies optimistic unchoking on a random peer every 30
seconds in order to allow new peers to participate and establish their credentials. Note
that the incentive scheme has been the subject of significant research, with alternative
schemes also proposed – for example, see Sirivianos et al. [2007]. BitTorrent couples
this with a rarest first policy for scheduling downloads whereby a peer will prioritize the
chunk that is rarest amongst its set of connected peers, ensuring that chunks that are not
yet readily available will spread rapidly.

20.6.3 End System Multicast (ESM)

One of the biggest technical challenges in distributed multimedia systems is to support
the real-time broadcasting of video over the Internet. Such systems are demanding for a
variety of reasons [Liu et al. 2008]:

• Systems must scale to potentially very large numbers of users.

• They are particularly demanding in terms of resource usage, imposing significant
bandwidth, storage and processing constraints on the system.

• Stringent real-time requirements must be met for the user experience to be
satisfactory.

• Systems must be resilient and able to adapt to changing conditions in the network.

Despite these challenges, significant advances have been made and a number of
commercial-strength services are now available, including the BBC iPlayer, BoxeeTV
[boxee.tv] and Hulu [hulu.com]. In this section, we feature one example of an influential
system in this area: End System Multicast [Liu et al. 2008], developed at CMU and now
commercialized by Conviva [www.conviva.com]. Before examining the technical
approach advocated by ESM, it is helpful to place this work in context.

ESM in context • The earliest experiments in video streaming over the Internet were
constructed directly on top of IP multicast, as described in Section 4.4.1. This approach
has the advantage that support for multicast can be directly offered at a low layer in the
system, hence contributing to overall performance. However, the approach suffers from
a number of drawbacks, including the lack of support for IP multicast in many routers
and the need to maintain soft state in routers to support multicast. More fundamentally,
this also contravenes the end-to-end principle discussed in Section 2.3.3, which
advocates that support for communication functions (in this case, multimedia streaming)
can only be completely and reliably implemented with the knowledge and help of the
application standing at the endpoints of the communication system.

As a result, most systems now advocate end-system approaches to video
streaming, where control and intelligence reside at the edges of the network and not in
the network itself. This approach is also referred to as application-level multicast and
implies the formation of an overlay network to support the associated multimedia traffic
(see Section 4.5 for a discussion of overlay networks).

Taking this a step further, there is considerable interest in peer-to-peer approaches
to supporting multimedia broadcasting in the Internet, and ESM is a leading example of
such a system. More specifically, ESM employs structured peer-to-peer techniques
whereby the peers form themselves into a tree structure for subsequent real-time

Figure 20.12 Approaches to real-time video streaming

Real-time video streaming

IP multicast–based End-system approaches

Infrastructure–based Peer-to-peer solutions

UnstructuredStructured

ESM CoolStreaming

(CDNs)

Akamai

Coral

Kontiki

SECTION 20.6 CASE STUDIES: TIGER, BITTORRENT AND END SYSTEM MULTICAST 909

delivery of the media. As an alternative to the structured approach advocated by ESM,
CoolStreaming offers an unstructured approach building on the insights of BitTorrent as
discussed in Section 20.6.2 (see the box on page 910 for details).

A number of systems adopt the end-system methodology but, instead of a peer-to-
peer approach, offer a fixed infrastructure to maintain multiple copies of multimedia (or
other) content located at nodes throughout the Internet, thus supporting faster delivery.
These systems are referred to as content distribution networks (CDN); leading examples
being Akamai [www.akamai.com], Coral [www.coralcdn.org] and Kontiki
[www.kontiki.com]. Such systems support a variety of styles of content delivery
including web acceleration (improved performance in accessing web content) and video
streaming – for example, Kontiki was used in the original version of the BBC iPlayer.

The range of techniques to support real-time multimedia streaming is summarized
in Figure 20.12.

ESM architecture • ESM is a structured peer-to-peer solution for the real-time
multicasting of video over the Internet. The approach was initially developed at
Carnegie Mellon University as part of research investigating the properties of the end-

system approach to multicast, and the initial prototype was used to stream videos in real
time from a variety of leading conferences, including SIGCOMM, INFOCOM and
NOSSDAV [esm.cs.cmu.edu]. As mentioned above, the approach has now been
commercialized by Conviva [www.conviva.com], who recently agreed a deal with NBC
Universal to use the Conviva platform (called C3) to deliver its content over the Internet.

CoolStreaming: An unstructured P2P approach to video streaming

Many approaches to video streaming are based on a structured peer-to-peer approach,
constructing a tree, as in ESM, or an alternative overlay structure such as a forest (a
disjoint union of trees) or a mesh. CoolStreaming [Zhang et al. 2005b] takes a
radically different, unstructured approach to video streaming referred to by its
creators as a data-centric approach. In CoolStreaming, nodes maintain a partial view
of membership that is updated periodically using a gossip protocol (as in ESM).
When a new peer joins, it first contacts the source node of the desired video stream
(which is assumed to be advertised), and this node picks one node at random from its
set of known members to act as a deputy (thus balancing the load across all the
members). The new node then obtains an initial set of partners from the deputy,
bootstrapping them into the system. It should be stressed that, unlike in a tree-based
approach, this set of partners does not imply any parent-child relationships for
download; rather, the download schedule is determined dynamically and driven by
the availability of data, as explained below.

In CoolStreaming, a video file is broken into a number of fixed-sized segments,
as in BitTorrent. Each peer creates a buffer map to indicate the local availability of a
segment or segments of a file and then exchanges this information with its known
partners. This information is then used to obtain all the necessary segments of a given
video source. So far, this looks very similar to BitTorrent, but with two key
differences driven by the need for real-time streaming. First, whereas BitTorrent can
download chunks in any order, CoolStreaming must meet the desired real-time
constraints for the video playback. Second, at any given time, CoolStreaming is only
interested in a sliding window of time from the present to a period in the near future
(in practice, a sliding window of 120 1-second segments) rather than the whole file.
The calculation of the associated schedule is critical to the operation of
CoolStreaming, and although finding an optimal solution is known to be an NP-hard

problem, CoolStreaming has adopted a successful set of heuristics based on factors
including the number of potential suppliers of a segment, the bandwidth to the
suppliers and the available time to process the request.

The end result is an distributed systems architecture that can meet the real-time
requirements of video streaming and that is more naturally resilient to node failure
and changes in network performance or availability.

910 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

As well as investigating the end-system approach, the other key goal of ESM is to
seek resilience to change through self-organization. In particular, the underlying
protocols are designed to deal gracefully with dynamic joining and leaving by nodes,
failure of nodes and changes in the configuration and performance of the underlying
network. They promote, in particular, performance-aware adaptation, whereby the
overlay structures associated with the peer-to-peer system are frequently re-evaluated to
maximize overall performance. We discuss how this is achieved below.

ESM works by constructing a tree for each video stream, rooted in the source of
that particular stream. The key algorithmic elements to support this are:

• how to maintain membership information;

• how to deal with new peers joining the tree;

SECTION 20.6 CASE STUDIES: TIGER, BITTORRENT AND END SYSTEM MULTICAST 911

• how to deal with peers leaving the tree (whether gracefully or through failure);

• how to adapt the tree structures for performance (performance-aware adaptation
as mentioned above).

We deal with each of these elements below. In each of the descriptions, we refer to the
example tree structure in Figure 20.13

Figure 20.13 An example tree in ESM

S

EA

B DC F

 which is transmitting a live streaming
performance from our aforementioned musicians (Section 20.1).

Membership management • Each node maintains a partial view of membership of the
tree, with this view periodically updated using a gossip protocol (a popular method of
maintaining group membership in peer-to-peer structures, described in Section 18.4).
This operates by each member periodically picking a group member and sending this
member a subset of its view of group membership, annotated with information about
when it last heard from each member (in the form of a timestamp). There is therefore no
attempt to have a consistent global view of group membership information, but this
partial view is sufficient for the operation of the protocol, as will become apparent
below.

Joining a tree • It is assumed that the source node (the root of the tree) is advertised and
hence known to the system. A new node that wants to join contacts the source and is
given a randomly selected set of nodes taken from the group view maintained by the
source. These are effectively candidate parents for the new node, which must select an
appropriate parent from this set of possibilities.

The parent selection protocol is crucial to the operation of ESM, with the overall
goal being to optimize the tree for performance (in particular, as we shall see, for
throughput, with latency being a secondary consideration).

The first phase of parent selection is to probe the set of members provided by the
source and to collect the following information on each candidate:

912 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

• the performance that node is currently receiving in terms of the throughput and
latency from the source;

• the saturation of that node in terms of the number of children it already supports.

From a parameter obtained by probing, it is also possible to determine the round-trip
latency between the new node and the various candidate nodes.

The new node eliminates candidates that it deems saturated (defined by a built-in
constant) and then calculates the service it can expect from each of the other candidates
in terms of throughput and delay. Throughput is estimated as the minimum of the
reported throughput achieved by that node and historical data from the new node to that
candidate (this data may be available if, for example, the new node has previously
connected to this particular candidate). Delay can be estimated based on the summation
of the reported delay from the source and the latency experienced by the probe. Node
selection is based on the best available bandwidth to the new node; if bandwidth
information is not available, the selection is made on the basis of latency figures.

Returning to the example tree in Figure 20.13, suppose a new node G wants to join
this video stream. G contacts the source node S and is (randomly) given the following
set of nodes: {A, C, E and F}. A is immediately eliminated because it is deemed saturated
(supposing the definition of saturation is having three children), and C reports poor
throughput characteristics, perhaps because A is saturated. This leaves a choice between
nodes E and F. E is chosen as reporting the best available throughput figures (perhaps
the link between E and F is over a relatively low-bandwidth connection), and also G has
previously connected to E and experienced good throughput characteristics.

Dealing with nodes leaving • Members can leave a tree either through an explicit leave
request or through failure. In the former case, to avoid disruption, the leaving member
notifies children that it is leaving and is then expected to keep forwarding data for a
period to avoid disruption of service further down the tree. In the latter case, members
periodically send alive messages to their children and failure is detected when these
messages are not received.

In both cases, all the children must invoke the parent selection procedure as
defined above, with extra checks carried out to ensure candidates are not already
descendants of the given nodes.

Suppose shortly after G joins the tree, node E fails. In this case, both F and G must
run the parent selection algorithm to re-establish connectivity.

Performance-aware adaptation • Each node continually monitors the service it is
getting from its parent node (and, as mentioned above, keeps this historical information
for future reference). Adaptation is triggered if the detected rate drops significantly
below the expected rate from the source. To avoid thrashing, a node must wait for a
particular period, known as the detection time, before electing to adapt.

Once a decision is made to adapt, the node will invoke the parent selection
algorithm to determine a new, more optimal parent. In this way, the tree construction is
constantly re-evaluated and will self-organize to optimize overall performance.

For example, after a period of time, C may decide that the throughput received via
A is unsatisfactory and run the parent selection algorithm, resulting in C becoming a
child of E instead.

SECTION 20.7 SUMMARY 913

20.7 Summary

Multimedia applications require new system mechanisms to enable them to handle large
volumes of time-dependent data. The most important of these mechanisms are
concerned with quality of service management. They must allocate bandwidth and other
resources in a manner that ensures that application resource requirements can be met,
and they must schedule the use of the resources so that the many fine-grained deadlines
of multimedia applications are met.

Quality of service management handles QoS requests from applications,
specifying the bandwidth, latency and loss rates acceptable for multimedia streams, and
it performs admission control, determining whether sufficient unreserved resources are
available to meet each new request and negotiating with the application if necessary.
Once a QoS request is accepted, the resources are reserved and a guarantee is issued to
the application.

The processor capacity and network bandwidth allocated to an application must
then be scheduled to meet the application’s needs. A real-time processor scheduling
algorithm such as earliest-deadline-first or rate-monotonic is required to ensure that
each stream element is processed in time.

Traffic shaping is the name given to algorithms that buffer real-time data to
smooth out the timing irregularities that inevitably arise. Streams can be adapted to
utilize fewer resources by reducing the bandwidth of the source (scaling) or at points
along the way (filtering).

The Tiger video file server is an excellent example of a scalable system that
provides stream delivery on a potentially very large scale with strong quality of service
guarantees. Its resource scheduling is highly specialized, and it offers an excellent
example of the changed design approach that is often required for such systems. The
other two case studies, BitTorrent and ESM, also provide strong examples of how to
support the downloading and real-time streaming of video data, respectively, again
highlighting the impact that multimedia has on systems design.

EXERCISES

20.1 Outline a system to support a distributed music rehearsal facility. Suggest suitable QoS
requirements and a hardware and software configuration that might be used.

pages 884, 889

20.2 The Internet does not currently offer any resource reservation or quality of service
management facilities. How do the existing Internet-based audio and video streaming
applications achieve acceptable quality? What limitations do the solutions they adopt
place on multimedia applications? pages 884, 893, 899

20.3 Explain the distinctions between the three forms of synchronization (synchronous
distributed state, media synchronization and external synchronization) that may be
required in distributed multimedia applications. Suggest mechanisms by which each of
them could be achieved, for example in a video conferencing application. page 885

914 CHAPTER 20 DISTRIBUTED MULTIMEDIA SYSTEMS

20.4 Outline the design of a QoS manager to enable desktop computers connected by an
ATM network to support several concurrent multimedia applications. Define an API for
your QoS manager, giving the main operations with their parameters and results.

pages 889–891

20.5 In order to specify the resource requirements of software components that process
multimedia data, we need estimates of their processing loads. How can this information
be obtained without undue effort? pages 889–891

20.6 How does the Tiger system cope with a large number of clients all requesting the same
movie at random times? pages 901–906

20.7 The Tiger schedule is potentially a large data structure that changes frequently, but each
cub needs an up-to-date representation of the portions it is currently handling. Suggest
a mechanism for the distribution of the schedule to the cubs. pages 901–906

20.8 When Tiger is operating with a failed disk or cub, secondary data blocks are used in
place of missing primaries. Secondary blocks are n times smaller than primaries (where
n is the decluster factor). How does the system accommodate this variability in block
size? page 905

20.9 Discuss the relative merits of the rarest-first download policy in BitTorrent in
comparison to the more traditional sequential download approach. pages 906–908

20.10 In addition to Tiger (see Exercise 20.6), both ESM and CoolStreaming also support
streaming access to the same movie by potentially large numbers of users. Discuss the
strategies adopted by both ESM and CoolStreaming for managing such simultaneous
access and compare the approaches to those advocated by Tiger.

pages 901–906, 908–912

 915

21

DESIGNING DISTRIBUTED SYSTEMS:

GOOGLE CASE STUDY

21.1 Introduction

21.2 Introducing the case study: Google

21.3 Overall architecture and design philosophy

21.4 Underlying communication paradigms

21.5 Data storage and coordination services

21.6 Distributed computation services

21.7 Summary

The ability to create an effective design is an important skill in distributed systems,
requiring an awareness of the different technological choices featured throughout this
book and a thorough understanding of the requirements of the relevant application
domain. The eventual goal is to come up with a consistent distributed system architecture
incorporating a consistent and complete set of design choices able to address the overall
requirements. This is a demanding task and one that requires considerable experience
with distributed systems development.

We illustrate distributed design through a substantial case study, examining in
detail the design of the Google infrastructure, a platform and associated middleware that
supports both Google search and a set of associated web services and applications
including Google Apps. This includes the study of key underlying components including
the physical infrastructure underpinning Google, the communication paradigms offered
by the Google infrastructure and the associated core services for storage and
computation.

Emphasis is placed on the key design principles behind the Google infrastructure
and how they pervade the overall system architecture, resulting in a consistent and
effective design.

916 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

21.1 Introduction

This book has focused on the key concepts that underpin the development of distributed
systems, with an emphasis on addressing the main challenges of distributed systems,
including heterogeneity, openness, security, scalability, failure handling, concurrency,
transparency and quality of service. The subsequent treatment focuses inevitably on the
constituent parts of a distributed system, including: communication paradigms such as
remote invocation and its indirect alternatives; the programming abstractions offered by
objects, components or web services; specific distributed systems services for security,
naming and file system support; and algorithmic solutions such as coordination and
agreement. It is equally important, however, to consider the overall design of distributed
systems and how the constituent parts come together, addressing the inevitable trade-
offs between the different challenges to derive an overall system architecture that meets
the requirements of a large-scale application domain and operating environment. A
fuller treatment of distributed systems design methods would necessarily take us into the
field of software engineering methodologies for distributed systems. That is beyond the
scope of this book; those interested should see the box below for some relevant topics
and sources.

Software engineering for distributed systems

We refer the reader to the significant advances that have been made in areas such as:

• object-oriented design, including the use modelling notations such as UML
[Booch et al. 2005];

• component-based software engineering (CBSE) and its relationship to
enterprise architectures [Szyperski 2002];

• architectural patterns targeting distributed systems [Bushmann et al. 2007];

• model-driven engineering that seeks to generate complex systems (including
distributed systems from higher-level abstractions (models) [France and
Rumpe 2007].

 Instead, we elect to provide insight into this area by presenting a case study
of a complex distributed system, highlighting the key decisions and trade-offs involved
in this design.

To motivate the studies in the book, Chapter 1 outlined three examples of key
application domains that represent many of the major challenges in distributed systems:
web search, massively multiplayer online games and financial trading. We could have
picked any one of these areas and presented an enticing and illuminating case study, but
we have chosen to focus on the first: web search (and indeed, we look beyond web
search to more general support for web-based cloud services). In particular, in this
chapter we present a case study on the distributed systems infrastructure that underpins
Google (hereafter referred to as the Google infrastructure). Google is one of the largest
distributed systems in use today, and the Google infrastructure has successfully dealt
with a variety of demanding requirements, as discussed below. The underlying
architecture and choice of concepts are also very interesting, picking up on many of the
core topics presented in this book. A study of the Google infrastructure therefore

SECTION 21.2 INTRODUCING THE CASE STUDY: GOOGLE 917

provides a perfect way to round off our study of distributed systems. Note that, as well
as providing an example of how to support web search, the Google infrastructure has
emerged as a leading example of cloud computing, as will become apparent in the
descriptions that follow.

Section 21.2 introduces the case study, providing background information on
Google. Section 21.3 then presents the overall design of the Google infrastructure,
considering both the underlying physical model and the associated system architecture.
Section 21.4 examines the lowest level of the system architecture, the communication
paradigms supported by the Google infrastructure; the subsequent two sections,
Sections 21.5 and 21.6, discuss the core services provided by the Google infrastructure,
featuring the services for storage and processing of massive quantities of data. Sections
21.3 to 21.6 together describe a complete middleware solution for web search and cloud
computing. Finally, Section 21.7 summarizes the key points emerging from our
discussion of the Google infrastructure. Throughout the presentation, an emphasis will
be placed on identifying and justifying the core design decisions and the associated
trade-offs that are inherent in the design.

21.2 Introducing the case study: Google

Google [www.google.com III] is a US-based corporation with its headquarters in
Mountain View, California (the Googleplex), offering Internet search and broader web
applications and earning revenue largely from advertising associated with such services.
The name is a play on the word googol, the number 10100 (or 1 followed by a hundred
zeros), emphasizing the sheer scale of information available in the Internet today.
Google’s mission is to tame this huge body of information: ‘to organize the world’s
information and make it universally accessible and useful’ [www.google.com III].

Google was born out of a research project at Stanford University, with the
company launched in 1998. Since then, it has grown to have a dominant share of the
Internet search market, largely due to the effectiveness of the underlying ranking
algorithm used in its search engine (discussed further below). Significantly, Google has
diversified, and as well as providing a search engine is now a major player in cloud
computing.

 From a distributed systems perspective, Google provides a fascinating case study
with extremely demanding requirements, particularly in terms of scalability, reliability,
performance and openness (see the discussion of these challenges in Section 1.5). For
example, in terms of search, it is noteworthy that the underlying system has successfully
scaled with the growth of the company from its initial production system in 1998 to
dealing with over 88 billion queries a month by the end of 2010, that the main search
engine has never experienced an outage in all that time and that users can expect query
results in around 0.2 seconds [googleblog.blogspot.com I]. The case study we present
here will examine the strategies and design decisions behind that success, and provide
insight into design of complex distributed systems.

Before proceeding to the case study, though, it is instructive to look in more detail
at the search engine and also at Google as a cloud provider.

918 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

The Google search engine • The role of the Google search engine is, as for any web
search engine, to take a given query and return an ordered list of the most relevant results
that match that query by searching the content of the Web. The challenges stem from the
size of the Web and its rate of change, as well as the requirement to provide the most
relevant results from the perspective of its users.

We provide a brief overview of the operation of Google search below; a fuller
description of the operation of the Google search engine can be found in Langville and
Meyer [2006]. As a running example, we consider how the search engine responds to
the query ‘distributed systems book’.

The underlying search engine consists of a set of services for crawling the Web
and indexing and ranking the discovered pages, as discussed below.

Crawling: The task of the crawler is to locate and retrieve the contents of the Web and
pass the contents onto the indexing subsystem. This is performed by a software service
called Googlebot, which recursively reads a given web page, harvesting all the links
from that web page and then scheduling further crawling operations for the harvested
links (a technique known as deep searching that is highly effective in reaching
practically all pages in the Web).

In the past, because of the size of the Web, crawling was generally performed once
every few weeks. However, for certain web pages this was insufficient. For example, it
is important for search engines to be able to report accurately on breaking news or
changing share prices. Googlebot therefore took note of the change history of web pages
and revisited frequently changing pages with a period roughly proportional to how often
the pages change. With the introduction of Caffeine in 2010 [googleblog.blogspot.com
II], Google has moved from a batch approach to a more continuous process of crawling
intended to offer more freshness in terms of search results. Caffeine is built using a new
infrastructure service called Percolator that supports the incremental updating of large
datasets [Peng and Dabek 2010].

Indexing: While crawling is an important function in terms of being aware of the content
of the Web, it does not really help us with our search for occurrences of ‘distributed
systems book’. To understand how this is processed, we need to have a closer look at
indexing.

The role of indexing is to produce an index for the contents of the Web that is
similar to an index at the back of a book, but on a much larger scale. More precisely,
indexing produces what is known as an inverted index mapping words appearing in web
pages and other textual web resources (including documents in .pdf, .doc and other
formats) onto the positions where they occur in documents, including the precise
position in the document and other relevant information such as the font size and
capitalization (which is used to determine importance, as will be seen below). The index
is also sorted to support efficient queries for words against locations.

As well as maintaining an index of words, the Google search engine also
maintains an index of links, keeping track of which pages link to a given site. This is
used by the PageRank algorithm, as discussed below.

Let us return to our example query. This inverted index will allow us to discover
web pages that include the search terms ‘distributed’, ‘systems’ and ‘book’ and, by
careful analysis, we will be able to discover pages that include all of these terms. For
example, the search engine will be able to identify that the three terms can all be found

SECTION 21.2 INTRODUCING THE CASE STUDY: GOOGLE 919

in amazon.com, www.cdk5.net and indeed many other web sites. Using the index, it is
therefore possible to narrow down the set of candidate web pages from billions to
perhaps tens of thousands, depending on the level of discrimination in the keywords
chosen.

Ranking: The problem with indexing on its own is that it provides no information about
the relative importance of the web pages containing a particular set of keywords – yet
this is crucial in determining the potential relevance of a given page. All modern search
engines therefore place significant emphasis on a system of ranking whereby a higher
rank is an indication of the importance of a page and it is used to ensure that important
pages are returned nearer to the top of the list of results than lower-ranked pages. As
mentioned above, much of the success of Google can be traced back to the effectiveness
of its ranking algorithm, PageRank [Langville and Meyer 2006].

PageRank is inspired by the system of ranking academic papers based on citation
analysis. In the academic world, a paper is viewed as important if it has a lot of citations
by other academics in the field. Similarly, in PageRank, a page will be viewed as
important if it is linked to by a large number of other pages (using the link data
mentioned above). PageRank also goes beyond simple ‘citation’ analysis by looking at
the importance of the sites that contain links to a given page. For example, a link from
bbc.co.uk will be viewed as more important than a link from Gordon Blair’s personal
web page.

Ranking in Google also takes a number of other factors into account, including the
proximity of keywords on a page and whether they are in a large font or are capitalized
(based on the information stored in the inverted index).

Returning to our example, after performing an index lookup for each of the three
words in the query, the search function ranks all the resulting page references according
to perceived importance. For example, the ranking will pick out certain page references
under amazon.com and www.cdk5.net because of the large number of links to those
pages from other ‘important’ sites. The ranking will also prioritize pages where the
terms ‘distributed’, ‘systems’ and ‘book’ appear in close proximity. Similarly, the
ranking should pull out pages where the words appear near the start of the page or in
capitals, perhaps indicating a list of distributed systems textbooks. The end result should
be a ranked list of results where the entries at the top are the most important results.

Anatomy of a search engine: The founders of Google, Sergey Brin and Larry Page, wrote
a seminal paper on the ‘anatomy’ of the Google search engine in 1998 [Brin and Page
1998], providing interesting insights into how their search engine was implemented. The
overall architecture described in this paper is illustrated in Figure 21.1, redrawn from the
original. In this diagram, we distinguish between services directly supporting web
search, drawn as ovals, and the underlying storage infrastructure components, illustrated
as rectangles.

While it is not the purpose of this chapter to present this architecture in detail, a
brief overview will aid comparison with the more sophisticated Google infrastructure
available today. The core function of crawling was described above. This takes as input
lists of URLs to be fetched, provided by the URL server, with the resultant fetched pages
placed into the store server. This data is then compressed and placed in the repository

for further analysis, in particular creating the index for searching. The indexing function
is performed in two stages. Firstly, the indexer uncompresses the data in the repository

Figure 21.1 Outline architecture of the original Google search engine [Brin and Page 1998]

URL server Crawlers Store server

Repository

Indexer

Lexicon

Anchors

URL resolver

Storage barrels

Doc
indexLinks

PageRank Searcher

Sorter

920 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

and produces a set of hits, where a hit is represented by the document ID, the word, the
position in the document and other information such as word size and capitalization.
This data is then stored in a set of barrels, a key storage element in the initial
architecture. This information is sorted by the document ID. The sorter then takes this
data and sorts it by word ID to produce the necessary inverted index (as discussed
above). The indexer also performs two other crucial functions as it parses the data: it
extracts information about links in documents storing this information in an anchors

file, and it produces a lexicon for the analyzed data (which at the time the initial
architecture was used,consisted of 14 million words). The anchors file is processed by a
URL resolver, which performs a number of functions on this data including resolving
relative URLs into absolute URLs before producing a links database, as an important
input into PageRank calculations. The URL resolver also create a doc index, which
provides input to the URL server in terms of further pages to crawl. Finally, the searcher

implements the core Google search capability, taking input from the doc index,
PageRank, the inverted index held in the barrels and also the lexicon.

One thing that is striking about this architecture is that, while specific details of
the architecture have changed, the key services supporting web search – that is,
crawling, indexing (including sorting) and ranking (through PageRank) – remain the
same.

SECTION 21.2 INTRODUCING THE CASE STUDY: GOOGLE 921

Equally striking is that, as will become apparent below, the infrastructure has
changed dramatically from the early attempts to identify an architecture for web search
to the sophisticated distributed systems support provided today, both in terms of
identifying more reusable building blocks for communication, storage and processing
and in terms of generalizing the architecture beyond search.

Google as a cloud provider • Google has diversified significantly beyond search and
now offers a wide range of web-based applications, including the set of applications
promoted as Google Apps [www.google.com I]. More generally, Google is now a major
player in the area of cloud computing. Recall that cloud computing was introduced in
Chapter 1 and defined as ‘a set of Internet-based application, storage and computing
services sufficient to support most users’ needs, thus enabling them to largely or totally
dispense with local data storage and application software’. This is exactly what Google
now strives to offer, in particular with significant offerings in the software as a service

and platform as a service areas (as introduced in Section 7.7.1). We look at each area in
turn below.

Software as a service: This area is concerned with offering application-level software
over the Internet as web applications. A prime example is Google Apps, a set of web-
based applications including Gmail, Google Docs, Google Sites, Google Talk and
Google Calendar. Google’s aim is to replace traditional office suites with applications
supporting shared document preparation, online calendars, and a range of collaboration
tools supporting email, wikis, Voice over IP and instant messaging.

Several other innovative web-based applications have recently been developed;
these and the original Google Apps are summarized in Figure 21.2

Figure 21.2 Example Google applications

Application Description

Gmail Mail system with messages hosted by Google but desktop-like message management.

Google Docs Web-based office suite supporting shared editing of documents held on Google servers.

Google Sites Wiki-like web sites with shared editing facilities.

Google Talk Supports instant text messaging and Voice over IP.

Google Calendar Web-based calendar with all data hosted on Google servers.

Google Wave Collaboration tool integrating email, instant messaging, wikis and social networks.

Google News Fully automated news aggregator site.

Google Maps Scalable web-based world map including high-resolution imagery and unlimited user-
generated overlays.

Google Earth Scalable near-3D view of the globe with unlimited user-generated overlays.

Google App
Engine

Google distributed infrastructure made available to outside parties as a service (platform as
a service).

. One of the key
observations for the purposes of this chapter is that Google encourages an open approach
to innovation within the organization, and hence new applications are emerging all the

922 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

time. This places particular demands on the underlying distributed systems
infrastructure, a point that is revisited in Section 21.3.2.

Platform as a service: This area is concerned with offering distributed system APIs as
services across the Internet, with these APIs used to support the development and
hosting of web applications (note that the use of the term ‘platform’ in this context is
unfortunately inconsistent with the way it is used elsewhere in this book, where it refers
to the hardware and operating system level). With the launch of the Google App Engine,
Google went beyond software as a service and now offers its distributed systems
infrastructure as discussed throughout this chapter as a cloud service. More specifically,
the Google business is already predicated on using this cloud infrastructure internally to
support all its applications and services, including its web search engine. The Google
App Engine now provides external access to a part of this infrastructure, allowing other
organizations to run their own web applications on the Google platform.

We will see further details of the Google infrastructure as this chapter unfolds;
refer to the Google web site for further details of the Google App Engine
[code.google.com IV].

21.3 Overall architecture and design philosophy

This section looks at the overall architecture of the Google system, examining:

• the physical architecture adopted by Google;

• the associated system architecture that offers common services to the Internet
search engine and the many web applications offered by Google.

21.3.1 Physical model

The key philosophy of Google in terms of physical infrastructure is to use very large
numbers of commodity PCs to produce a cost-effective environment for distributed
storage and computation. Purchasing decisions are based on obtaining the best
performance per dollar rather than absolute performance with a typical spend on a single
PC unit of around $1,000. A given PC will typically have around 2 terabytes of disk
storage and around 16 gigabytes of DRAM (dynamic random access memory) and run
a cut-down version of the Linux kernel. (This philosophy of building systems from
commodity PCs reflects the early days of the original research project, when Sergey
Brin and Larry Page built the first Google search engine from spare hardware scavenged
from around the lab at Stanford University.)

In electing to go down the route of commodity PCs, Google has recognized that
parts of its infrastructure will fail and hence, as we will see below, has designed the
infrastructure using a range of strategies to tolerate such failures. Hennessy and
Patterson [2006] report the following failure characteristics for Google:

• By far the most common source of failure is due to software, with about 20
machines needing to be rebooted per day due to software failures. (Interestingly,
the rebooting process is entirely manual.)

SECTION 21.3 OVERALL ARCHITECTURE AND DESIGN PHILOSOPHY 923

• Hardware failures represent about 1/10 of the failures due to software with around
2–3% of PCs failing per annum due to hardware faults. Of these, 95% are due to
faults in disks or DRAM.

This vindicates the decision to procure commodity PCs; given that the vast majority of
failures are due to software, it is not worthwhile to invest in more expensive, more
reliable hardware. A further paper by Pinheiro et al. [2007] also reports on the failure
characteristics of commodity disks as used in the Google physical infrastructure,
providing an interesting insight into failure patterns of disk storage in large-scale
deployments.

The physical architecture is constructed as follows [Hennessy and Patterson
2006]:

• Commodity PCs are organized in racks with between 40 and 80 PCs in a given
rack. The racks are double-sided with half the PCs on each side. Each rack has an
Ethernet switch that provides connectivity across the rack and also to the external
world (see below). This switch is modular, organized as a number of blades with
each blade supporting either 8 100-Mbps network interfaces or a single 1-Gbps
interface. For 40 PCs, five blades each containing eight network interfaces are
sufficient to ensure connectivity within the rack. Two further blades, each
supporting a 1-Gbps network interface, are used for connection to the outside
world.

• Racks are organized into clusters (as discussed in Section 1.3.4), which are a key
unit of management, determining for example the placement and replication of
services. A cluster typically consists of 30 or more racks and two high-bandwidth
switches providing connectivity to the outside world (the Internet and other
Google centres). Each rack is connected to both switches for redundancy; in
addition, for further redundancy, each switch has redundant links to the outside
world.

• Clusters are housed in Google data centres that are spread around the world. In
2000, Google relied on key data centres in Silicon Valley (two centres) and in
Virginia. At the time of writing, the number of data centres has grown
significantly and there are now centres in many geographical locations across the
US and in Dublin (Ireland), Saint-Ghislain (Belgium), Zurich (Switzerland),
Tokyo (Japan) and Beijing (China). (A map of known data centres as of 2008 can
be found here [royal.pingdom.com].)

A simplified view of this overall organization is provided in Figure 21.3. This physical
infrastructure provides Google with enormous storage and computational capabilities,
together with the necessary redundancy to build fault-tolerant, large-scale systems (note
that, to avoid clutter, this figure only shows the Ethernet connections from one of the
clusters to the external links).

Storage capacity: Let us consider the storage capacity available to Google. If each
PC offers 2 terabytes of storage, then a rack of 80 PCs will provide 160 terabytes,
with a cluster of 30 racks offering 4.8 petabytes. It is not known exactly how many
machines Google has in total as the company maintains strict secrecy over this aspect
of its business, but we can assume Google has on the order of 200 clusters, offering

Figure 21.3 Organization of the Google physical infrastructure

Racks

......

Cluster

Racks

......

Cluster

Racks

......

Cluster

Data centre architecture

To other data centres and the Internet

XSwitches

Switches

XX XX XX

XX XX XXXX XX XX XX XX

(To avoid clutter the Ethernet connections are shown from only one of the clusters to the external links)

924 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

total storage capacity of 960 petabytes or just under 1 exabyte of storage (1018 bytes).
This is likely to be a conservative figure, as Google VP Marissa Mayer is already
talking about the data explosion taking us well into the exascale range
[www.parc.com].

We shall see how Google uses this extensive storage and computational capability
and the associated redundancy to offer core services in the remainder of this chapter.

21.3.2 Overall system architecture

Before examining the overall system architecture, it is helpful to examine the key
requirements in more detail:

Scalability: The first and most obvious requirement for the underlying Google
infrastructure is to master scalability and, in particular, to have approaches that scale
to what is an Ultra-Large Scale (ULS) distributed system as featured in Chapter 2.
For the search engine, Google views the scalability problem in terms of three
dimensions: i) being able to deal with more data (for example, as the amount of
information in the Web grows through initiatives such as the digitizing of libraries),
ii) being able to deal with more queries (as the number of people using Google in their

SECTION 21.3 OVERALL ARCHITECTURE AND DESIGN PHILOSOPHY 925

homes and workplaces grows) and iii) seeking better results (particularly important
as this is a key determining factor in uptake of a web search engine). This view of the
scalability problem is illustrated in Figure 21.4

Figure 21.4 The scalability problem in Google

More data

More queries

Better results

.
Scalability demands the use of (sophisticated) distributed systems strategies.

Let us illustrate this with a simple analysis taken from Jeff Dean’s keynote at
PACT’06 [Dean 2006]. He assumed that the Web consists of around 20 billion web
pages at 20 kilobytes each. This implies a total size of around 400 terabytes. To crawl
this amount of data it would take a single computer over 4 months assuming that the
computer can read 30 megabytes per second. In contrast, 1,000 machines can read
this amount of data in less than 3 hours. In addition, as we saw in Section 21.2,
searching is not only about crawling. The other functions, including indexing,
ranking and searching, all require highly distributed solutions in order to be able to
scale.

Reliability: Google has stringent reliability requirements, especially with regard to
availability of services. This is particularly important for the search functionality,
where there is a need to provide 24/7 availability (noting, however that it is
intrinsically easy to mask failures in search as the user has no way of knowing if all
search results are returned). This requirement also applies to other web applications,
and it is interesting to note that Google offers a 99.9% service level agreement
(effectively, a system guarantee) to paying customers of Google Apps covering
Gmail, Google Calendar, Google Docs, Google Sites and Google Talk. The company
has an excellent overall record in terms of availability of services, but the well-
reported outage of Gmail on 1 September 2009 acts as a reminder of the continuing
challenges in this area. (This outage, which lasted 100 minutes, was caused by a
cascading problem of overloading servers during a period of routine maintenance).
Note that the reliability requirement must be met in the context of the design choices
in the physical architecture, which imply that (software and hardware) failures are
anticipated with reasonable frequency. This demands both detecting failures and
adopting strategies to mask or tolerate such failures. Such strategies rely heavily on
the redundancy in the underlying physical architecture. We shall see examples of
such strategies as the details of the system architecture emerge.

926 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

Performance: The overall performance of the system is critical for Google,
especially in achieving low latency of user interactions. The better the performance,
the more likely it is that a user will return with more queries that, in turn, increase
their exposure to ads hence potentially increasing revenue. The importance of
performance is exemplified by the target of completing web search operations in 0.2
seconds (as mentioned above) and achieving the required throughput to respond to
all incoming requests while dealing with very large datasets. This applies to a wide
range of functions associated with the operation of Google, including web crawling,
indexing and sorting. It is also important to note that performance is an end-to-end
property requiring all associated underlying resources to work together, including
network, storage and computational resources.

Openness: The above requirements are in many ways the obvious ones for Google
to support its core services and applications. There is also a strong requirement for
openness, particularly to support further development in the range of web
applications on offer. It is well known that Google as an organization encourages and
nurtures innovation, and this is most evident in the development of new web
applications. This is only possible with an infrastructure that is extensible and
provides support for the development of new applications.

Figure 21.5 The overall Google systems architecture

Google applications and services

Google platform

Google infrastructure (middleware)

Google has responded to these needs by developing the overall system
architecture shown in Figure 21.5. This figure shows the underlying computing
platform at the bottom (that is, the physical architecture as described above) and the
well-known Google services and applications at the top. The middle layer defines a
common distributed infrastructure providing middleware support for search and
cloud computing. This is crucial to the success of Google. The infrastructure provides
the common distributed system services for developers of Google services and
applications and encapsulates key strategies for dealing with scalability, reliability
and performance. The provision of a well-designed common infrastructure such as
this can bootstrap the development of new applications and services through reuse of
the underlying system services and, more subtly, provides an overall coherence to the
growing Google code base by enforcing common strategies and design principles.

SECTION 21.3 OVERALL ARCHITECTURE AND DESIGN PHILOSOPHY 927

Google infrastructure • The system is constructed as a set of distributed services
offering core functionality to developers (see Figure 21.6). This set of services naturally
partitions into the following subsets

Figure 21.6 Google infrastructure

Publish-subscribe

GFS Chubby Bigtable

Sawzall

Communication paradigms

Data and coordination

Distributed computation MapReduce

Protocol buffers

:

• the underlying communication paradigms, including services for both remote
invocation and indirect communication:

– the protocol buffers component offers a common serialization format for
Google, including the serialization of requests and replies in remote invocation.

– the Google publish-subscribe service supports the efficient dissemination of
events to potentially large numbers of subscribers.

• data and coordination services providing unstructured and semi-structured
abstractions for the storage of data coupled with services to support coordinated
access to the data:

– GFS offers a distributed file system optimized for the particular requirements
of Google applications and services (including the storage of very large files).

– Chubby supports coordination services and the ability to store small volumes
of data.

– Bigtable provides a distributed database offering access to semi-structured
data.

• distributed computation services providing means for carrying out parallel and
distributed computation over the physical infrastructure:

– MapReduce supports distributed computation over potentially very large
datasets (for example, stored in Bigtable).

928 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

– Sawzall provides a higher-level language for the execution of such distributed
computations.

We step through each of these components in turn in Sections 21.4 through 21.6. First,
however, it is instructive to reflect on key design principles associated with the
architecture as a whole.

Associated design principles • To fully understand the design of Google infrastructure,
it is important to also have an understanding of key design philosophies that pervade the
organization:

• The most important design principle behind Google software is that of simplicity:
software should do one thing and do it well, avoiding feature-rich designs
wherever possible. For example, Bloch [2006] discusses how this principle
applies to API design implying that API designs should be as small as possible and
no smaller (an example of the application of Occam’s Razor).

• Another key design principle is a strong emphasis on performance in the
development of systems software, captured in the phrase ‘every millisecond
counts’ [www.google.com IV]. In a keynote at LADIS’09, Jeff Dean (a member
of the Google Systems Infrastructure Group) emphasized the importance of being
able to estimate the performance of a system design through awareness of
performance costs of primitive operations such as accessing memory and disk,
sending packets over a network, locking and unlocking a mutex and so on,
coupled with what he referred to as ‘back of the envelope’ calculations
[www.cs.cornell.edu].

• A final principle is advocating stringent testing regimes on software, captured by
the slogan ‘if it ain’t broke, you are not trying hard enough’
[googletesting.blogspot.com]. This is complemented by a strong emphasis on
logging and tracing to detect and resolve faults in the system.

With this background, we are now ready to examine the various constituent parts of the
Google infrastructure, starting with the underlying communication paradigms. For each
area, we present the overall design and highlight the key design decisions and associated
trade-offs.

21.4 Underlying communication paradigms

Looking back at Chapters 3 to 6, it is clear that the choice of underlying communication
paradigm(s) is crucial to the success of an overall system design. Options include:

• using an underlying interprocess communication service directly, such as that
offered by socket abstractions (described in Chapter 4 and supported by all
modern operating systems);

• using a remote invocation service (such as a request-reply protocol, remote
procedure calls or remote method invocation, as discussed in Chapter 5) offering
support for client-server interactions;

SECTION 21.4 UNDERLYING COMMUNICATION PARADIGMS 929

• using an indirect communication paradigm such as group communication,
distributed event-based approaches, tuple spaces or distributed shared memory
approaches (as discussed in Chapter 6).

In keeping with the design principles identified in Section 21.3, Google adopts a simple,
minimal and efficient remote invocation service that is a variant of a remote procedure
call approach.

 Readers will recall that remote procedure call communication requires a
serialization component to convert the procedure invocation data (procedure name and
parameters, possibly structured) from their internal binary representation to a flattened

or serialized processor-neutral format ready for transmission to the remote partner.
Serialization for Java RPC is described in Section 4.3.2. XML has emerged more
recently as a ‘universal’ serialized data format, but its generality brings substantial
overheads. Google has therefore developed a simplified and high-performance
serialization component known as protocol buffers that is used for a substantial majority
of interactions within the infrastructure. This can be used over any underlying
communication mechanism to provide an RPC capability. An open source version of
protocol buffers is available [code.google.com I].

A separate publish-subscribe service is also used, recognizing the key role that
this paradigm can offer in many areas of distributed system design, including the
efficient and real-time dissemination of events to multiple participants. In common with
many other distributed system platforms, the Google infrastructure therefore offers a
hybrid solution allowing developers to select the best communication paradigm for their
requirements. Publish-susbcribe is not an alternative to protocol buffers in the Google
infrastructure, but rather an augmentation offering an added-value service for where it
is most appropriate.

We examine the design of these two approaches below, with emphasis on protocol
buffers (full details of the publish-subscribe protocol are not yet publicly available).

21.4.1 Remote invocation

Protocol buffers place emphasis on the description and subsequent serialization of data,
and hence the concept is best compared to direct alternatives such as XML. The goal is
to provide a language- and platform-neutral way to specify and serialize data in a
manner that is simple, highly efficient and extensible; the serialized data can then be
used for subsequent storage of data or transmission using an underlying
communications protocol, or indeed for any other purpose that demands a serialization
format for structured data. We will see later how this can be used as the basis for RPC-
style exchange.

In protocol buffers, a language is provide for the specification of messages. We
introduce the key features of this (simple) language by example, with Figure 21.7
showing how a book message might be specified.

As can be seen, the overall Book message consists of a series of uniquely
numbered fields, each represented by a field name and the type of the associated value.
The type can be one of:

• a primitive data type (including integer, floating-point, boolean, string or raw
bytes);

Figure 21.7 Protocol buffers example

message Book {

required string title = 1;

repeated string author = 2;

enum Status {

IN_PRESS = 0;

 PUBLISHED = 1;

 OUT_OF_PRINT = 2;

}

message BookStats {

required int32 sales = 1;

optional int32 citations = 2;

optional Status bookstatus = 3 [default = PUBLISHED];

}

optional BookStats statistics = 3;

repeated string keyword = 4;

}

930 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

• an enumerated type;

• a nested message allowing a hierarchical structuring of data.

We can see examples of each in Figure 21.7.
Fields are annotated with one of three labels:

• required fields must be present in the message;

• optional fields may be present in the message;

• repeated fields can exist zero or more times in the message (the developers of
protocol buffers view this as a type of dynamically sized array).

Again, we can see uses of each annotation in the Book message format illustrated in
Figure 21.7.

The unique number (=1, =2 and so on) represents the tag that a particular field has
in the binary encoding of the message.

This specification is contained in a .proto file and compiled by a protoc tool. The
output of this tool is generated code that allows programmers to manipulate the
particular message type, in particular assigning/extracting values to/from messages. In
more detail, the protoc tool generates a builder class that provides getter and setter

methods for each field together with additional methods to test if a method has been set
and to clear a field to the associated null value. For example, the following methods
would be generated for the title field:

public boolean hasTitle();

public java.lang.String getTitle();

public Builder setTitle(String value);

public Builder clearTitle();

SECTION 21.4 UNDERLYING COMMUNICATION PARADIGMS 931

The importance of the builder class is that while messages are immutable in protocol
buffers, builders are mutable and are used to construct and manipulate new messages.

For repeated fields the generated code is slightly more complicated, with methods
provided to return a count of the number of elements in the associated list, to get or set

specific fields in the list, to append a new element to a list and to add a set of elements
to a list (the addAll method). We illustrate this by example by listing the methods
generated for the keyword field:

public List<string> getKeywordList();

public int getKeywordCount();

public string getKeyword(int index);

public Builder setKeyword(int index, string value);

public Builder addKeyword(string value);

public Builder addAllKeyword(Iterable<string> value);

public Builder clearKeyword();

The generated code also provides a range of other methods to manipulate messages,
including methods such as toString to provide a readable representation of the message
(often used for debugging for example) and also a series of methods to parse incoming
messages.

As can be seen, this is a very simple format compared to XML (for example,
contrast the specification above with equivalent specifications in XML as shown in
Section 4.3.3), and one that its developers claim is 3 to 10 times smaller than XML
equivalents and 10 to 100 times faster in operation. The associated programming
interface providing access to the data is also considerably simpler than equivalents for
XML.

Note that this is a somewhat unfair comparison, for two reasons. Firstly, the
Google infrastructure is a relatively closed system and hence, unlike, XML, it does not
address interoperability across open systems. Secondly, XML is significantly richer in
that it generates self-describing messages that contain the data and associated metadata
describing the structure of the messages (see Section 4.3.3). Protocol buffers do not
provide this facility directly (although it is possible to achieve this effect, as described
in the relevant web pages in a section on techniques [code.google.com II]). In outline,
this is achieved by asking the protoc compiler to generate a FileDescriptorSet that
contains self-descriptions of messages, and then including this explicitly in message
descriptions. The developers of protocol buffers, though, emphasize that this is not seen
as a particularly useful feature and that it is rarely used in the Google infrastructure code.

Supporting RPC • As mentioned above, protocol buffers are a general mechanism that
can be used for storage or communication. The most common use of protocol buffers,
however, is to specify RPC exchanges across the network, and this is accommodated
with extra syntax in the language. Again, we illustrate the syntax by example:

service SearchService {

rpc Search (RequestType) returns (ResponseType);

}

This code fragment specifies a service interface called SearchService containing one
remote operation, Search, which takes one parameter of type RequestType and returns
one parameter of type ResponseType. For example, the types could correspond to a list

932 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

of keywords and a list of Books matching this set of keywords, respectively. The protoc

compiler takes this specification and produces both an abstract interface SearchService

and a stub that supports type-safe RPC-style calls to the remote service using protocol
buffers.

As well as being language- and platform-neutral, protocol buffers are also
agnostic with respect to the underlying RPC protocol. In particular, the stub assumes
that implementations exist for two abstract interfaces RpcChannel and RpcController,

the former offering a common interface to underlying RPC implementations and the
latter offering a common control interface, for example, to manipulate settings
associated with that implementation. A programmer must provide implementations of
these abstract interfaces, effectively selecting the desired RPC implementation. For
example, this could pass serialized messages using HTTP or TCP or could map onto one
of a number of third-party RPC implementations available and linked from the protocol
buffers site [code.google.com III].

Note that a service interface can support multiple remote operations, but each
operation must adhere to the pattern of taking a single parameter and returning a single
result (with both being protocol buffer messages). This is unusual compared to the
designs of RPC and RMI systems – as we saw in Chapter 5 – remote invocations can
have an arbitrary number of parameters, and in the case of RMI the parameters or results
can be objects or indeed object references (although note that Sun RPC, as documented
in Section 5.3.3, adopts a similar approach to protocol buffers). The rationale for having
one request and one reply is to support extensibility and software evolution; whereas the
more general styles of interface may change significantly over time, this more
constrained style of interface is likely to remain more constant. This approach also
pushes the complexity towards the data in a manner that is reminiscent of the REST
philosophy, with its constrained set of operations and emphasis on manipulating
resources (see Section 9.2).

21.4.2 Publish-subscribe

Protocol buffers are used extensively but not exclusively as the communication
paradigm in the Google infrastructure. To complement protocol buffers, the
infrastructure also supports a publish-subscribe system intended to be used where
distributed events need to be disseminated in real time and with reliability guarantees to
potentially large numbers of recipients. As mentioned above, the publish-subscribe
service is an augmentation to protocol buffers and indeed uses protocol buffers for its
underlying communication.

One key use for the publish-subscribe system, for example, is to underpin the
Google Ads system, recognizing that advertisments in Google are world-wide and that
advertisement serving systems anywhere in the network need to know in a fraction of a
second the eligibility of certain advertisements that can be shown in response to a query.

The RPC system described above would clearly be inappropriate and highly
inefficient for this style of interaction, especially given the potentially large numbers of
subscribers and the guarantees required by the associated applications. In particular, the
sender would need to know the identity of all the other advertisment serving systems,
which could be very large. RPCs would need to be sent to all the individual serving
systems, consuming many connections and a great deal of associated buffer space at the

SECTION 21.4 UNDERLYING COMMUNICATION PARADIGMS 933

sender, not to mention the bandwidth requirements of sending the data across wide area
network links. A publish-subsribe solution, in contrast, with its inherent time and space
uncoupling, overcomes these difficulties and also offers natural support for failure and
recovery of subscribers (see Section 6.1).

Google has not made details of the publish-subscribe system publicly available.
We therefore restrict our discussion to some high-level features of the system.

Google adopts a topic-based publish-subscribe system, providing a number of
channels for event streams with channels corresponding to particular topics. A topic-
based system was chosen for its ease of implementation and its relative predictability in
terms of performance compared to content-based approaches – that is, the infrastructure
can be set up and tailored to deliver events related to a given topic. The downside is a
lack of expressive power in specifying events of interest. As a compromise, the Google
publish-subscribe system allows enhanced subscriptions defined not just by selecting a
channel but also by selecting subsets of events from within that channel. In particular, a
given event consists of a header, an associated set of keywords and a payload, which is
opaque to the programmer. Subscription requests specify the channel together with a
filter defined over the set of keywords. Channels are intended to be used for relatively
static and coarse-grained data streams requiring high throughputs of events (at least 1-
Mbps), so the added capability for expressing refined subscriptions using filters helps
greatly. For example, if a topic generates less than this volume of data, it will be
subsumed within another topic but identifiable by keyword.

The publish-subscribe system is implemented as a broker overlay in the form of a
set of trees, where each tree represents a topic. The root of the tree is the publisher and
the leaf nodes represent subscribers. When filters are introduced, they are pushed as far
back in the tree as possible to minimize unnecessary traffic.

Unlike the publish-subscribe systems discussed in Chapter 6, there is a strong
emphasis on both reliable and timely delivery:

• In terms of reliability, the system maintains redundant trees; in particular, two
separate tree overlays are maintained per logical channel (topic).

• In terms of timely delivery, the system implements a quality of service
management technique to control message flows. In particular, a simple rate
control scheme is introduced based on an imposed rate limit enforced on a per
user/ per topic basis. This replaces a more complex approach and manages the
anticipated resource usage across the tree in terms of memory, CPU and message
and byte rates.

Trees are initially constructed and constantly re-evaluated according to a shortest path
algorithm (see Chapter 3).

21.4.3 Summary of key design choices for communication

The overall design choices relating to communication paradigms in the Google
infrastructure are summarized in Figure 21.8. This table highlights the most important
decisions associated with the overall design and the constituent elements (protocol
buffers and the publish-subscribe system) and summarizes the rationale and the
particular trade-offs associated with each choice.

Figure 21.8 Summary of design choices related to communication paradigms

Element Design choice Rationale Trade-offs

Protocol buffers The use of a
language for
specifying data
formats

Flexible in that
the same
language can be
used for
serializing data
for storage or
communication

-

Simplicity of the
language

Efficient
implementation

Lack of
expressiveness when
compared, for
example, with XML

Support for a
style of RPC
(taking a single
message as a
parameter and
returning a single
message as
result)

More efficient,
extensible and
supports service
evolution

Lack of
expressiveness when
compared with other
RPC or RMI packages

Protocol-agnostic
design

Different RPC
implementation
s can be used

No common semantics
for RPC exchanges

Publish-subscribe Topic-based
approach

Supports
efficient
implementation

Less expressive than
content-based
approaches (mitigated
by the additional
filtering capabilities)

Real-time and
reliability
guarantees

Supports
maintenance of
consistent views
in a timely
manner

Additional
algorithmic support
required with
associated overhead

934 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

Overall, we see a hybrid approach offering two distinct communication paradigms
designed to support different styles of interaction within the architecture. This allows
developers to select the best paradigm for each particular problem domain.

We shall repeat this style of analysis at the end of each of the following sections,
thus providing an overall perspective of key design decisions relating to the Google
infrastructure.

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 935

21.5 Data storage and coordination services

We now present the three services that together provide data and coordination services
to higher-level applications and services: the Google File System, Chubby and Bigtable.
These are complementary services in the Google infrastructure:

• The Google File System is a distributed file system offering a similar service to
NFS and AFS, as discussed in Chapter 12. It offers access to unstructured data in
the form of files, but optimized to the styles of data and data access required by
Google (very large files, for example).

• Chubby is a multi-faceted service supporting, for example, coarse-grained
distributed locking for coordination in the distributed environment and the storage
of very small quantities of data, complementing the large-scale storage offered by
the Google File System.

• Bigtable offers access to more structured data in the form of tables that can be
indexed in various ways including by row or column. Bigtable is therefore a style
of distributed database, but unlike many databases it does not support full
relational operators (these are viewed by Google as unnecessarily complex and
unscalable).

These three services are also interdependent. For example, Bigtable uses the Google File
System for storage and Chubby for coordination.

We look at each service in detail below.

21.5.1 The Google File System (GFS)

Chapter 12 presented a detailed study of the topic of distributed file systems, analyzing
their requirements and their overall architecture and examining two case studies in
detail, namely NFS and AFS. These file systems are general-purpose distributed file
systems offering file and directory abstractions to a wide variety of applications in and
across organizations. The Google File System (GFS) is also a distributed file system; it
offers similar abstractions but is specialized for the very particular requirements that
Google has in terms of storage and access to very large quantities of data [Ghemawat et

al. 2003]. These requirements led to very different design decisions from those made in
NFS and AFS (and indeed other distributed file systems), as we will see below. We start
our discussion of GFS by examining the particular requirements identified by Google.

GFS requirements • The overall goal of GFS is to meet the demanding and rapidly
growing needs of Google’s search engine and the range of other web applications
offered by the company. From an understanding of this particular domain of operation,
Google identified the following requirements for GFS (see Ghemawat et al. [2003]):

• The first requirement is that GFS must run reliably on the physical architecture
discussed in Section 21.3.1 – that is a very large system built from commodity
hardware. The designers of GFS started with the assumption that components will
fail (not just hardware components but also software components) and that the
design must be sufficiently tolerant of such failures to enable application-level

936 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

services to continue their operation in the face of any likely combination of failure
conditions.

• GFS is optimized for the patterns of usage within Google, both in terms of the
types of files stored and the patterns of access to those files. The number of files
stored in GFS is not huge in comparison with other systems, but the files tend to
be massive. For example, Ghemawat et al. [2003] report the need for perhaps one
million files averaging 100 megabytes in size, but with some files in the gigabyte
range. The patterns of access are also atypical of file systems in general. Accesses
are dominated by sequential reads through large files and sequential writes that
append data to files, and GFS is very much tailored towards this style of access.
Small, random reads and writes do occur (the latter very rarely) and are supported,
but the system is not optimized for such cases. These file patterns are influenced,
for example, by the storage of many web pages sequentially in single files that are
scanned by a variety of data analysis programs. The level of concurrent access is
also high in Google, with large numbers of concurrent appends being particularly
prevalent, often accompanied by concurrent reads.

• GFS must meet all the requirements for the Google infrastructure as a whole; that
is, it must scale (particularly in terms of volume of data and number of clients), it
must be reliable in spite of the assumption about failures noted above, it must
perform well and it must be open in that it should support the development of new
web applications. In terms of performance and given the types of data file stored,
the system is optimized for high and sustained throughput in reading data, and this
is prioritized over latency. This is not to say that latency is unimportant, rather,
that this particular component (GFS) needs to be optimized for high-performance
reading and appending of large volumes of data for the correct operation of the
system as a whole.

These requirements are markedly different from those for NFS and AFS (for example),
which must store large numbers of often small files and where random reads and writes
are commonplace. These distinctions lead to the very particular design decisions
discussed below.

GFS interface • GFS provides a conventional file system interface offering a
hierarchical namespace with individual files identified by pathnames. Although the file
system does not provide full POSIX compatibility, many of the operations will be
familiar to users of such file systems (see, for example, Figure 12.4):

create – create a new instance of a file;

delete – delete an instance of a file;

open – open a named file and return a handle;

close – close a given file specified by a handle;

read – read data from a specified file;

write – write data to a specified file.

It can be seen that main GFS operations are very similar to those for the flat file service
described in Chapter 12 (see Figure 12.6). We should assume that the GFS read and

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 937

write operations take a parameter specifying a starting offset within the file, as is the
case for the flat file service.

The API also offers two more specialized operations, snapshot and record

append. The former operation provides an efficient mechanism to make a copy of a
particular file or directory tree structure. The latter supports the common access pattern
mentioned above whereby multiple clients carry out concurrent appends to a given file.

GFS architecture • The most influential design choice in GFS is the storage of files in
fixed-size chunks, where each chunk is 64 megabytes in size. This is quite large
compared to other file system designs. At one level this simply reflects the size of the
files stored in GFS. At another level, this decision is crucial to providing highly efficient
sequential reads and appends of large amounts of data. We return to this point below,
once we have discussed more details of the GFS architecture.

Given this design choice, the job of GFS is to provide a mapping from files to
chunks and then to support standard operations on files, mapping down to operations on
individual chunks. This is achieved with the architecture shown in Figure 21.9

Figure 21.9 Overall architecture of GFS

GFS client GFS master

GFS chunkserver

control flow

data flow

library

Client

metadata

data chunks

GFS chunkserver

data chunks

, which
shows an instance of a GFS file system as it maps onto a given physical cluster. Each
GFS cluster has a single master and multiple chunkservers (typically on the order of
hundreds), which together provide a file service to large numbers of clients concurrently
accessing the data.

The role of the master is to manage metadata about the file system defining the
namespace for files, access control information and the mapping of each particular file
to the associated set of chunks. In addition, all chunks are replicated (by default on three
independent chunkservers, but the level of replication can be specified by the
programmer). The location of the replicas is maintained in the master. Replication is
important in GFS to provide the necessary reliability in the event of (expected) hardware
and software failures. This is in contrast to NFS and AFS, which do not provide
replication with updates (see Chapter 12).

The key metadata is stored persistently in an operation log that supports recovery
in the event of crashes (again enhancing reliability). In particular, all the information
mentioned above is logged apart from the location of replicas (the latter is recovered by
polling chunkservers and asking them what replicas they currently store).

938 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

Although the master is centralized, and hence a single point of failure, the
operations log is replicated on several remote machines, so the master can be readily
restored on failure. The benefit of having such a single, centralized master is that it has
a global view of the file system and hence it can make optimum management decisions,
for example related to chunk placement. This scheme is also simpler to implement,
allowing Google to develop GFS in a relatively short period of time. McKusick and
Quinlan [2010] present the rationale for this rather unusual design choice.

When clients need to access data starting from a particular byte offset within a file,
the GFS client library will first translate this to a file name and chunk index pair (easily
computed given the fixed size of chunks). This is then sent to the master in the form of
an RPC request (using protocol buffers). The master replies with the appropriate chunk
identifier and location of the replicas, and this information is cached in the client and
used subsequently to access the data by direct RPC invocation to one of the replicated
chunkservers. In this way, the master is involved at the start and is then completely out
of the loop, implementing a separation of control and data flows – a separation that is
crucial to maintaining high performance of file accesses. Combined with the large chunk
size, this implies that, once a chunk has been identified and located, the 64 megabytes
can then be read as fast as the file server and network will allow without any other
interactions with the master until another chunk needs to be accessed. Hence
interactions with the master are minimized and throughput optimized. The same
argument applies to sequential appends.

Note that one further repercussion of the large chunk size is that GFS maintains
proportionally less metadata (if a chunk size of 64 kilobytes was adopted, for example,
the volume of metadata would increase by a factor of 1,000). This in turn implies that
GFS masters can generally maintain all their metadata in main memory (but see below),
thus significantly decreasing the latency for control operations.

As the system has grown in usage, problems have emerged with the centralized
master scheme:

• Despite the separation of control and data flow and the performance optimization
of the master, it is emerging as a bottleneck in the design.

• Despite the reduced amount of metadata stemming from the large chunk size, the
amount of metadata stored by each master is increasing to a level where it is
difficult to actually keep all metadata in main memory.

For these reasons, Google is now working on a new design featuring a distributed master
solution.

Caching: As we saw in Chapter 12, caching often plays a crucial role in the performance
and scalability of a file system (see also the more general discussion on caching in
Section 2.3.1). Interestingly, GFS does not make heavy use of caching. As mentioned
above, information about the locations of chunks is cached at clients when first
accessed, to minimize interactions with the master. Apart from that, no other client
caching is used. In particular, GFS clients do not cache file data. Given the fact that most
accesses involve sequential streaming, for example reading through web content to
produce the required inverted index, such caches would contribute little to the
performance of the system. Furthermore, by limiting caching at clients, GFS also avoids
the need for cache coherency protocols.

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 939

GFS also does not provide any particular strategy for server-side caching (that is,
on chunkservers) rather relying on the buffer cache in Linux to maintain frequently
accessed data in memory.

Logging: GFS is a key example of the use of logging in Google to support debugging
and performance analysis. In particular, GFS servers all maintain extensive diagnostic
logs that store significant server events and all RPC requests and replies. These logs are
monitored continually and used in the event of system problems to identify the
underlying causes.

Managing consistency in GFS • Given that chunks are replicated in GFS, it is important
to maintain the consistency of replicas in the face of operations that alter the data – that
is, the write and record append operations. GFS provides an approach for consistency
management that:

• maintains the previously mentioned separation between control and data and
hence allows high-performance updates to data with minimal involvement of
masters;

• provides a relaxed form of consistency recognizing, for example, the particular
semantics offered by record append.

The approach proceeds as follows.
When a mutation (i.e., a write, append or delete operation) is requested for a

chunk, the master grants a chunk lease to one of the replicas, which is then designated
as the primary. This primary is responsible for providing a serial order for all the
currently pending concurrent mutations to that chunk. A global ordering is thus provided
by the ordering of the chunk leases combined with the order determined by that primary.
In particular, the lease permits the primary to make mutations on its local copies and to
control the order of the mutations at the secondary copies; another primary will then be
granted the lease, and so on.

The steps involved in mutations are therefore as follows (slightly simplified):

• On receiving a request from a client, the master grants a lease to one of the replicas
(the primary) and returns the identity of the primary and other (secondary) replicas
to the client.

• The client sends all data to the replicas, and this is stored temporarily in a buffer
cache and not written until further instruction (again, maintaining a separation of
control flow from data flow coupled with a lightweight control regime based on
leases).

• Once all the replicas have acknowledged receipt of this data, the client sends a
write request to the primary; the primary then determines a serial order for
concurrent requests and applies updates in this order at the primary site.

• The primary requests that the same mutations in the same order are carried out at
secondary replicas and the secondary replicas send back an acknowledgement
when the mutations have succeeded’

• If all acknowledgements are received, the primary reports success back to the
client; otherwise, a failure is reported indicating that the mutation succeeded at the
primary and at some but not all of the replicas. This is treated as a failure and

940 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

leaves the replicas in an inconsistent state. GFS attempts to overcome this failure
by retrying the failed mutations. In the worst case, this will not succeed and
therefore consistency is not guaranteed by the approach.

It is interesting to relate this scheme to the techniques for replication discussed in
Chapter 18. GFS adopts a passive replication architecture with an important twist. In
passive replication, updates are sent to the primary and the primary is then responsible
for sending out subsequent updates to the backup servers and ensuring they are
coordinated. In GFS, the client sends data to all the replicas but the request goes to the
primary, which is then responsible for scheduling the actual mutations (the separation
between data flow and control flow mentioned above). This allows the transmission of
large quantities of data to be optimized independently of the control flow.

In mutations, there is an important distinction between write and record append

operations. writes specify an offset at which mutations should occur, whereas record

appends do not (the mutations are applied at the end of the file wherever this might be
at a given point in time). In the former case the location is predetermined, whereas in the
latter case the system decides. Concurrent writes to the same location are not serializable
and may result in corrupted regions of the file. With record append operations, GFS
guarantees the append will happen at least once and atomically (that is, as a contiguous
sequence of bytes); the system does not guarantee, though, that all copies of the chunk
will be identical (some may have duplicate data). Again, it is helpful to relate this to the
material in Chapter 18. The replication strategies in Chapter 18 are all general-purpose,
whereas this strategy is domain-specific and weakens the consistency guarantees,
knowing the resultant semantics can be tolerated by Google applications and services (a
further example of domain-specific replication – the replication algorithm by Xu and
Liskov [1989] for tuple spaces can be found in Section 6.5.2).

21.5.2 Chubby

Chubby [Burrows 2006] is a crucial service at the heart of the Google infrastructure
offering storage and coordination services for other infrastructure services, including
GFS and Bigtable. Chubby is a multi-faceted service offering four distinct capabilities:

• It provides coarse-grained distributed locks to synchronize distributed activities in
what is a large-scale, asynchronous environment.

• It provides a file system offering the reliable storage of small files
(complementing the service offered by GFS).

• It can be used to support the election of a primary in a set of replicas (as needed
for example by GFS, as discussed in Section 21.5.1 above).

• It is used as a name service within Google.

At first sight, this might appear to contradict the overall design principle of simplicity
(doing one thing and doing it well). As we unfold the design of Chubby, however, we
will see that its heart is one core service that is offering a solution to distributed

consensus and that the other facets emerge from this core service, which is optimized for
the style of usage within Google.

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 941

We begin our study of Chubby by examining the interface it offers; then we look
in detail at the architecture of a Chubby system and how this maps onto the physical
architecture. We conclude the examination by looking in detail at the implementation of
the consensus algorithm at the heart of Chubby, Paxos.

Chubby interface • Chubby provides an abstraction based on a file system, taking the
view first promoted in Plan 9 [Pike et al. 1993] that every data object is a file. Files are
organized into a hierarchical namespace using directory structures with names having
the form of:

/ls/chubby_cell/directory_name/.../file_name

where /ls refers to the lock service, designating that this is part of the Chubby system,
and chubby_cell is the name of a particular instance of a Chubby system (the term cell

is used in Chubby to denote an instance of the system). This is followed by a series of
directory names culminating in a file_name. A special name, /ls/local will be resolved
to the most local cell relative to the calling application or service.

Chubby started off life as a lock service, and the intention was that everything
would be a lock in the system. However, it quickly became apparent that it would be
useful to associate (typically small) quantities of data with Chubby entities – we see an
example of this below when we look at how Chubby is used in primary elections. Thus
entities in Chubby share the functionality of locks and files; they can be used solely for
locking, to store small quantities of data or to associate small quantities of data
(effectively metadata) with locking operations.

A slightly simplified version of the API offered by Chubby is shown in Figure
21.10. Open and Close are standard operations, with Open taking a named file or
directory and returning a Chubby handle to that entity. The client can specify various
parameters associated with the Open, including declaring the intended usage (for
example, for reading, writing or locking), and permissions checks are carried out at this
stage using access control lists. Close simply relinquishes use of the handle. Delete is
used to remove the file or directory (this operation fails if applied to a directory with
children).

In the role of a file system, Chubby offers a small set of operations for whole-file

reading and writing; these are single operations that return the complete data of the file
and write the complete data of the file. This whole-file approach is adopted to discourage
the creation of large files, as this is not the intended use of Chubby. The first operation,
GetContentsAndStat, returns both the contents of the file and any metadata associated
with the file (an associated operation, GetStat, just returns the metadata; a ReadDir

operation is also provided to read names and metadata associated with children of a
directory. SetContents writes the contents of a file and SetACL provides a means to set
access control list data. The reading and writing of whole files are atomic operations.

In the role of a lock-management tool, the main operations provided are Acquire,
TryAcquire and Release. Acquire and Release correspond to the operations of the same
name as introduced in Section 16.4; TryAcquire is a non-blocking variant of Acquire.
Note that although locks are advisory in Chubby an application or service must go
through the proper protocol of acquiring and releasing locks. The developers of Chubby
did consider an alternative of mandatory locks, whereby locked data is inaccessible to
all other users and this is enforced by the system, but the extra flexibility and resilience

Figure 21.10 Chubby API

Role Operation Effect

General Open Opens a given named file or directory and
returns a handle

Close Closes the file associated with the handle

Delete Deletes the file or directory

File GetContentsAndStat Returns (atomically) the whole file contents
and metadata associated with the file

GetStat Returns just the metadata

ReadDir Returns the contents of a directory – that is, the
names and metadata of any children

SetContents Writes the whole contents of a file (atomically)

SetACL Writes new access control list information

Lock Acquire Acquires a lock on a file

TryAquire Tries to acquire a lock on a file

Release Releases a lock

942 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

of advisory locks was preferred, leaving the responsibility of checking for conflicts to
the programmer [Burrows 2006].

Should an application need to protect a file from concurrent access, it can use both
the roles together, storing data in the file and acquiring locks before accessing this data.

Chubby can also be used to support a primary election in distributed systems –
that is, the election of one replica as the primary in passive replication management
(refer back to Sections 15.3 and 18.3.1 for discussions of election algorithms and passive
replication respectively). First, all candidate primaries attempt to acquire a lock
associated with the election. Only one will succeed. This candidate becomes the
primary,S with all other candidates then being secondaries. The primary records its
victory by writing its identity to the associated file, and other processes can then
determine the identity of the primary by reading this data. As mentioned above, this is a
key example of combining the roles of lock and file together for a useful purpose in a
distributed system. This also shows how primary election can be implemented on top of
a consensus service as an alternative to the algorithms such as the ring-based approach
or the bully algorithm introduced in Section 15.3.

Finally, Chubby supports a simple event mechanism enabling clients to register
when opening a file to receive event messages concerning the file. More specifically, the
client can subscribe to a range of events as an option in the Open call. The associated
events are then delivered asynchronously via callbacks. Examples of events include that
the file contents have been modified, a handle has become invalid, and so on.

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 943

Chubby is very much a cut-down file system programming interface compared to,
for example, POSIX. Not only does Chubby require read and update operations to apply
to whole files, but it does not support operations to move files between directories, nor
does it support symbolic or hard links. Also Chubby maintains only limited metadata
(related to access control, versioning and a checksum to protect data integrity).

Chubby architecture • As mentioned above, a single instance of a Chubby system is
known as a cell; each cell consists of a relatively small number of replicas (typically
five) with one designated as the master. Client applications access this set of replicas via
a Chubby library, which communicates with the remote servers using the RPC service
described in Section 21.4.1. The replicas are placed at failure-independent sites to
minimize the potential for correlated failures – for example, they will not be contained
within the same rack. All replicas are typically contained within a given physical cluster,
although this is not required for the correct operation of the protocol and experimental
cells have been created that span Google data centres.

Each replica maintains a small database whose elements are entities in the Chubby
namespace – that is, directories and files/locks. The consistency of the replicated
database is achieved using an underlying consensus protocol (an implementation of
Lamport’s Paxos algorithm [Lamport 1989, Lamport 1998]) that is based around
maintaining operation logs (we look at the implementation of this protocol below). As
logs can become very large over time, Chubby also supports the creation of snapshots –
complete views of system state at a given point of time. Once a snapshot is taken,
previous logs can be deleted with the consistent state of the system at any point
determined by the previous snapshot together with the applications of the set of
operations in the log. This overall structure is shown in Figure 21.11.

A Chubby session is a relationship between a client and a Chubby cell. This is
maintained using KeepAlive handshakes between the two entities. To improve
performance, the Chubby library implements client caching, storing file data, metadata
and information on open handles. In contrast to GFS (with its large, sequential reads and
appends), client caching is effective in Chubby with its small files that are likely to be
accessed repeatedly. Because of this caching, the system must maintain consistency
between a file and a cache as well as between the different replicas of the file. The
required cache consistency in Chubby is achieved as follows. Whenever a mutation is to
occur, the associated operation (for example, SetContents) is blocked until all associated
caches are invalidated (for efficiency, the invalidation requests are piggybacked onto
KeepAlive replies from the master with the replies sent immediately when an
invalidation occurs). Cached data is also never updated directly.

The end result is a very simple protocol for cache consistency that delivers
deterministic semantics to Chubby clients. Contrast this with the client caching regime
in NFS, for example, where mutations do not result in the immediate updating of cached
copies, resulting in potentially different versions of files on different client nodes. It is
also interesting to compare this with the cache consistency protocol in AFS, but we leave
that as an exercise to the reader (see Exercise 21.7).

This determinism is important for many of the client applications and services that
use Chubby (for example, Bigtable, as discussed in Section 21.5.3) to store access
control lists. Bigtable requires consistent update of access control lists, across all
replicas and in terms of cached copies. Note that it is this determinism that led to the use

Figure 21.11 Overall architecture of Chubby

Chubby cell

Chubby
client library

Client

*

*

Log

Snapshots

Local
data-
base

Log

Snapshots

Local
data-
base

Log

Snapshots

Local
data-
basedenotes current master

•

•

•

944 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

of Chubby as a name server within Google. We mentioned in Section 13.2.3 that the
DNS allows naming data to become inconsistent. While this is tolerable in the Internet,
the developers of the Google infrastructure preferred the more consistent view offered
by Chubby, using Chubby files to maintain name to address mappings. Burrows [2006]
discusses this use of Chubby as a name service in more detail.

Implementing Paxos • Paxos is a family of protocols providing distributed consensus
(see Section 15.5 for a wider discussion of distributed consensus protocols). Consensus
protocols operate over a set of replicas with the goal of reaching agreement between the
servers managing the replicas to update to a common value. This is achieved in an
environment where:

• Replica servers may operate at an arbitrary speed and may fail (and subsequently
recover).

• Replica servers have access to stable, persistent storage that survives crashes.

• Messages may be lost, reordered or duplicated. They are delivered without
corruption but may take an arbitrarily long time to be delivered.

Paxos is therefore fundamentally a distributed consensus protocol for asynchronous

systems (see Section 2.4.1) and indeed is the dominant offering in this space. The
developers of Chubby stress that the above assumptions reflect the true nature of

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 945

Internet-based systems such as Google and caution practitioners about consensus
algorithms that make stronger assumptions (for example, algorithms for synchronous
systems) [Burrows 2006].

Recall from Chapter 15 that it is impossible to guarantee consistency in
asynchronous systems but that various techniques have been proposed to work around
this result. Paxos works by ensuring correctness but not liveness – that is, Paxos is not
guaranteed to terminate (we return to this issue below once we have looked at the details
of the algorithm).

The algorithm was first introduced by Leslie Lamport in 1989 in a paper called
The Part-Time Parliament, [Lamport 1989, Lamport 1998]. Inspired by his description
of Byzantine Generals (as discussed in Section 15.5.1), he again presented the algorithm
with reference to an analogy, this time referring to behaviour of a mythical parliament
on the Greek island of Paxos. Lamport writes amusingly about the reaction to this
presentation on his web site [research.microsoft.com].

In the algorithm, any replica can submit a value with the goal of achieving
consensus on a final value. In Chubby, agreement equates to all replicas having this
value as the next entry in their update logs, thus achieving a consistent view of the logs
across all sites. The algorithm is guaranteed to eventually achieve consensus if a
majority of the replicas run for long enough with sufficient network stability. More
formally, Kirsch and Amir [2008] present the following liveness properties for Paxos:

Paxos-L1 (Progress): If there exists a stable majority set of servers, then if a server
in the set initiates an update, some member of the set eventually executes the update.

Paxos-L2 (Eventual Replication): If server s executes an update and there exists a
set of servers containing s and r, and a time after which the set does not experience
any communication or process failures, then r eventually executes the update.

The intuition here is that the algorithm cannot guarantee to reach consistency when the
network behaves asynchronously but will eventually reach consistency when more
synchronous (or stable) conditions are experienced.

The Paxos algorithm: The Paxos algorithm proceeds as follows:

Step 1: The algorithm relies on an ability to elect a coordinator for a given consensus
decision. Recognizing that coordinators can fail, a flexible election process is
adopted that can result in multiple coordinators coexisting, old and new, with the goal
of recognizing and rejecting messages from old coordinators. To identify the right
coordinator, an ordering is given to coordinators through the attachment of a
sequence number. Each replica maintains the highest sequence number seen so far
and, if bidding to be a coordinator, will pick a higher unique number and broadcast
this to all replicas in a propose message.

It is clearly important that the sequence number picked by a potential
coordinator is indeed unique, two (or more) coordinators must not be able to pick the
same value. Let us assume we have n replicas. A unique sequence number can be
guaranteed if every replica is assigned a unique identifier, ir, between 0 and n–1, and
then selects the smallest sequence number s that is larger than any sequence numbers
seen so far, so that s mod n = ir (for example, if the number of replicas is 5, we look
at the replica with unique identifier 3 and the last sequence number seen was 20, then
this replica will pick a sequence number of 23 for its next bid).

946 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

If other replicas have not seen a higher bidder, they either reply with a promise

message indicating that they promise to not deal with other (that is, older)
coordinators with lower sequence numbers, or they send a negative
acknowledgement indicating they will not vote for this coordinator. Each promise

message also contains the most recent value the sender has heard as a proposal for
consensus; this value may be null if no other proposals have been observed. If a
majority of promise messages are received, the receiving replica is elected as a
coordinator, with the majority of replicas supporting this coordinator known as the
quorum.

Step 2: The elected coordinator must select a value and subsequently send an accept

message with this value to the associated quorum. If any of the promise messages
contained a value, then the coordinator must pick a value (any value) from the set of
values it has received; otherwise, the coordinator is free to select its own value. Any
member of the quorum that receives the accept message must accept the value and
then acknowledge the acceptance. The coordinator waits, possibly indefinitely in the
algorithm, for a majority of replicas to acknowledge the accept message.

Step 3: If a majority of replicas do acknowledge, then a consensus has effectively
been achieved. The coordinator then broadcasts a commit message to notify replicas
of this agreement. If not, then the coordinator abandons the proposal and starts again.

Note that the terminology above is that used by Google, for example in Chandra et al.
[2007]. In the literature, descriptions of the protocol may use other terminology, for
example based around the roles of proposers, acceptors, learners and so on.

In the absence of failure, consensus is therefore achieved with the message
exchanges shown in Figure 21.12. The algorithm is also safe in the presence of failures
– for example, the failure of a coordinator or of another replica or problems with lost,
reordered or duplicated or delayed messages, as discussed above. A proof of correctness
is beyond the scope of this book but relies heavily on the ordering imposed by step 1
coupled with the fact that, because of the quorum mechanism, if two majorities have
agreed on a proposed value there must be at least one replica in common that agreed to
both. The quorum mechanism also ensures correct behaviour if the network partitions,
since only at most one partition is able to construct a majority.

Returning to the issue of termination, it is possible for Paxos to fail to terminate if
two proposers compete against each other and indefinitely outbid each other in terms of
higher and higher sequence numbers. This is consistent with the impossibility result of
Fischer et al. [1985] concerning absolute guarantees of consensus in asynchronous
systems.

Additional implementation issues: In Chubby, it is not sufficient to reach agreement on a
single value; there is a need to reach agreement on a sequence of values. In practice the
algorithm must therefore repeat to agree a set of entries in the log. This is referred to as
Multi-Paxos by Chandra et al. [2007]. In Multi-Paxos certain optimizations are possible,
including the election of a coordinator for a (potentially long) period of time thus
avoiding repeated executions of step 1.

The paper by Chandra et al. also discusses the engineering challenges of
implementing Paxos in a real-world setting, and in particular in the complex distributed
system setting offered by the Google infrastructure. In this entertaining and instructive

Figure 21.12 Message exchanges in Paxos (in absence of failures)

Propose (seq_number)

Promise

Step 1: electing a coordinator

Coordinator Replicas

Step 2: seeking consensus

Step 3: achieving consensus

Accept (value)

Acknowledgement
Coordinator Replicas

Commit

Coordinator Replicas

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 947

paper, they discuss the challenges of moving from algorithmic description and formal
proof to making the algorithm operate effectively as part of the Chubby system,
including dealing with disk corruptions and other contextual events such as system
upgrades. The paper emphasizes the importance of a stringent testing regime, especially
for such key building blocks of fault-tolerant systems, resonating with the overall
Google principle of extensive testing mentioned in Section 21.3.

948 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

21.5.3 Bigtable

GFS offers a system for storing and accessing large ‘flat’ files whose content is accessed
relative to byte offsets within a file, allowing programs to store large quantities of data
and perform read and write (especially append) operations optimized for the typical use
within the organization. While this is an important building block, it is not sufficient to
meet all of Google’s data needs. There is a strong need for a distributed storage system
that provides access to data that is indexed in more sophisticated ways related to its
content and structure. Web search and nearly all of the other Google applications,
including the crawl infrastructure, Google Earth/Maps, Google Analytics and
personalized search, use structured data access. Google Analytics, for example, stores
information on raw clicks associated with users visiting a web site in one table and
summarizes the analyzed information in a second table. The former is around 200
terabytes in size and the latter 20 terabytes. (The analysis is carried out using
MapReduce, described in Section 21.6 below.)

One choice for Google would be to implement (or reuse) a distributed database,
for example a relational database with a full set of relational operators provided (for
example, union, selection, projection, intersection and join). But the achievement of
good performance and scalability in such distributed databases is recognized as a
difficult problem and, crucially, the styles of application offered by Google do not
demand this full functionality. Google therefore has introduced Bigtable [Chang et al.
2008], which retains the table model offered by relational databases but with a much
simpler interface suitable for the style of application and service offered by Google and
also designed to support the efficient storage and retrieval of quite massive structured
datasets. We describe this interface in some detail below before looking at the internal
architecture of Bigtable, highlighting how these properties are achieved.

Bigtable interface • Bigtable is a distributed storage system that supports the storage of
potentially vast volumes of structured data. The name is strongly indicative of what it
offers, providing storage for what are very big tables (often in the terabyte range). More
precisely, Bigtable supports the fault-tolerant storage, creation and deletion of tables
where a given table is a three-dimensional structure containing cells indexed by a row
key, a column key and a timestamp:

Rows: Each row in a table has an associated row key that is an arbitrary string of up
to 64 kilobytes in size, although most keys are significantly smaller. A row key is
mapped by Bigtable to the address of a row. A given row contains potentially large
amounts of data about a given entity such as a web page. Given that it is common
within Google to process information about web pages, it is quite common, for
example, for row keys to be URLs with the row then containing information about
the resources referenced by the URLs. Bigtable maintains a lexicographic ordering
of a given table by row key, and this has some interesting repercussions. In particular,
as we will see below when we examine the underlying architecture, subsequences of
rows map onto tablets, which are the unit of distribution and placement. Hence it is
beneficial to manage locality by assigning row keys that will be close or even
adjacent in the lexicographic order. This implies that URLs may make bad key
choices, but URLs with the domain portion reversed will provide much stronger
locality for data accesses because common domains will be sorted together,

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 949

supporting domain analyses. To illustrate this, consider information stored on the
BBC web site related to sport. If such information is stored under URLs such as
www.bbc.co.uk/sports and www.bbc.co.uk/football, then the resultant sort will be
rather random and dominated by the lexicographic order of early fields. If, however,
it is stored under uk.co.bbc.www/sport and uk.co.bbc.www/football, the related
information is likely to be stored in the same tablet. It should be stressed that this key
assignment is left entirely to the programmer so they must be aware of this (ordering)
property to exploit the system optimally. To deal with concurrency issues, all
accesses to rows are atomic (echoing similar design decisions in GFS and Chubby).

Columns: The naming of columns is more structured than that of rows. Columns are
organized into a number of column families – logical groupings where the data under
a family tends to be of the same type, with individual columns designated by
qualifiers within families. In other words, a given column is referred to using the
syntax family:qualifier, where family is a printable string and qualifier is an arbitrary
string. The intended use is to have a relatively small number of families for a given
table but a potentially large number of columns (designated by distinct qualifiers)
within a family. Using the example from Chang et al. [2008], this can be used to
structure data associated with web pages, with valid families being the contents, any
anchors associated with the page and the language that is used in the web page. If a
family name refers to just one column it is possible to omit the qualifier. For example,
a web page will have one contents field, and this can be referred to using the key
name contents:.

Timestamps: Any given cell within Bigtable can also have multiple versions indexed
by timestamp, where the timestamp is either related to real time or can be an arbitrary
value assigned by the programmer (for example, a logical time, as discussed in
Section 14.4, or a version identifier). The various versions are sorted by reverse
timestamp with the most recent version available first. This facility can be used, for
example, to store different versions of the same data, including the content of web
pages, allowing analyses to be carried out over historical data as well as the current
data. Tables can be set up to apply garbage collection on older versions
automatically, therefore reducing the burden on the programmer to manage the large
datasets and associated versions. This three-dimensional table abstraction is
illustrated in Figure 21.13.

Bigtable supports an API that provides a wide range of operations, including:

• the creation and deletion of tables;

• the creation and deletion of column families within tables;

• accessing data from given rows;

• writing or deleting cell values;

• carrying out atomic row mutations including data accesses and associated write
and delete operations (more global, cross-row transactions are not supported);

• iterating over different column families, including the use of regular expressions
to identify column ranges;

• associating metadata such as access control information with tables and column
families.

Figure 21.13 The table abstraction in Bigtable

R1

R2

R3

R4

R5

CF1: CF2:q1 CF2:q2 CF3:q1 CF3:q2

t=3
t=7

Column families and qualifiers

Rows

timestamps
t=10

950 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

As can be seen, Bigtable is considerably simpler than a relational database but well
suited to the styles of application within Google. Chang et al.discuss how this interface
supports the storage of tables of data on web pages (where the rows represent individual
web pages and the columns represent data and metadata associated with that given web
page), the storage of both raw and processed data for Google Earth (with rows
representing geographical segments and columns being different images available for
that segment), and also data to support Google Analytics (for example, maintaining a
raw click table where rows represent an end user session and columns the associated
activity).

The overall architecture of the underlying system is presented below.

Bigtable architecture • A Bigtable is broken up into tablets, with a given tablet being
approximately 100–200 megabytes in size. The main tasks of the Bigtable infrastructure
are therefore to manage tablets and to support the operations described above for
accessing and changing the associated structured data. The implementation also has the
task of mapping the tablet structure onto the underlying file system (GFS) and ensuring
effective load balancing across the system. As we shall see below, Bigtable makes heavy
use of both GFS and Chubby for the storage of data and distributed coordination.

A single instance of a Bigtable implementation is known as a cluster, and each
cluster can store a number of tables. The architecture of a Bigtable cluster is similar to
that of GFS, consisting of three major components (as shown in Figure 21.14):

• a library component on the client side;

• a master server;

• a potentially large number of tablet servers.

Figure 21.14 Overall architecture of Bigtable

Bigtable

Tablet
server

.....

master

Tablet
server

Bigtable
client library

Client

Monitoring,
tablet allocation,
garbage collection

Row access

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 951

In terms of scale, Chang et al. report that, as of 2008, 388 production clusters ran across
multiple Google machine clusters, with an average of around 63 tablet servers per
cluster but with many being significantly larger (some with more than 500 tablet servers
per cluster). The number of tablet servers per cluster is also dynamic, and it is common
to add new tablet servers to the system at runtime to increase throughput.

Two of the key design decisions in Bigtable are identical to those made for GFS.
Firstly, Bigtable adopts a single master approach, for exactly the same reasons – that is,
to maintain a centralized view of the state of the system thus supporting optimal
placement and load-balancing decisions and because of the inherent simplicity in
implementing this approach. Secondly, the implementation maintains a strict separation

between control and data with a lightweight control regime maintained by the master
and data access entirely through appropriate tablet servers, with the master not involved
at this stage (to ensure maximum throughput when accessing large datasets by
interacting directly with the tablet servers). In particular, the control tasks associated
with the master are as follows:

• monitoring the status of tablet servers and reacting to both the availability of new
tablet servers and the failure of existing ones;

• assigning tablets to tablet servers and ensuring effective load balancing;

• garbage collection of the underlying files stored in GFS.

Bigtable goes further than GFS in that the master is not involved in the core task of
mapping tablets onto the underlying persistent data (which is, as mentioned above,
stored in GFS). This means that Bigtable clients do not have to communicate with the
master at all (compare this with the open operation in GFS, which does involve the
master), a design decision that significantly reduces the load on the master and the
possibility of the master becoming a bottleneck.

We now look at how Bigtable uses GFS for storing its data and uses Chubby in
rather innovative ways for implementing monitoring and load balancing.

952 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

Data storage in Bigtable: The mapping of tables in Bigtable onto GFS involves several
stages, as summarized below:

• A table is split into multiple tablets by dividing the table up by row, taking a row
range up to a size of around 100–200 megabytes and mapping this onto a tablet.
A given table will therefore consist of multiple tablets depending on its size. As
tables grow, extra tablets will be added.

• Each tablet is represented by a storage structure that consists of set of files that
store data in a particular format (the SSTable) together with other storage
structures implementing logging.

• The mapping from tablets to SSTables is provided by a hierarchical index scheme
inspired by B+-trees.

We look at the storage representation and mapping in more detail below.
The precise storage representation of a tablet in Bigtable is shown in Figure 21.15

Figure 21.15 The storage architecture in Bigtable

SSTable files

Persistent log
Held in GFS

Memtable

Write through

Write

Held in main

memory
Merge Read

.
The main unit of storage in Bigtable is the SSTable (a file format that is also used
elsewhere in the Google infrastructure). An SSTable is organized as an ordered and
immutable map from keys to values, with both being arbitrary strings. Operations are
provided to efficiently read the value associated with a given key and to iterate over a
set of values in a given key range. The index of an SSTable is written at the end of the
SSTable file and read into memory when an SSTable is accessed. This means that a
given entry can be read with a single disk read. An entire SSTable can optionally be
stored in main memory.

A given tablet is represented by a number of SSTables. Rather than performing
mutations directly on SSTables, writes are first committed to a log to support recovery
(see Chapter 17), with the log also held in GFS. The log entries are written through to
the memtable held in main memory. The SSTables therefore act as a snapshot of the state

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 953

of a tablet and, on failure, recovery is implemented by replaying the most recent log
entries since the last snapshot. Reads are serviced by providing a merged view of the
data from the SSTables combined with the memtable. Different levels of compaction are
performed on this data structure to maintain efficient operation, as reported in Chang et

al. [2008]. Note that SSTables can also be compressed to reduce the storage
requirements of particular tables in Bigtable. Users can specify whether tables are to be
compressed and also the compression algorithm to be used.

As mentioned above, the master is not involved in the mapping from tables to
stored data. Rather, this is managed by traversing an index based on the concept of B+-
trees (a form of B-tree where all the actual data is held in leaf nodes, with other nodes
containing indexing data and metadata).

A Bigtable client seeking the location of a tablet starts the search by looking up a
particular file in Chubby that is known to hold the location of a root tablet – that is, a
tablet containing the root index of the tree structure. This root tablet contains metadata
about other tablets – specifically about other metadata tablets, which in turn contain the
location of the actual data tablets. The root tablet together with the other metadata tablets
form a metadata table, with the only distinction being that the entries in the root tablet
contain metadata about metadata tablets, which in turn contain metadata about the actual
data tablets. With this scheme, the depth of the tree is limited to three. The entries in the
metadata table map portions of tablets onto location information, including information
about the storage representation for this tablet (including the set of SSTables and the
associated log).

This overall structure is represented in Figure 21.16. To shortcut this three-level
hierarchy, clients cache location information and also prefetched metadata associated
with other tables when accessing the data structure.

Monitoring: Bigtable uses Chubby in a rather interesting way to monitor tablet servers.
Bigtable maintains a directory in Chubby containing files representing each of the
available tablet servers. When a new tablet server comes along, it creates a new file in
this directory and, crucially, obtains an exclusive lock on this file. The existence of this
file acts as the flag that the tablet server is fully operational and ready to be assigned
tablets by the master, with the lock providing a means of communication between the
two parties:

From the tablet server side: every tablet server monitors its exclusive lock and, if this
is lost, it stops serving its tablets. This is most likely due to a network partition that
compromises the Chubby session. The tablet server will attempt to reacquire the
exclusive lock if the file still exists (see below), and if the file disappears, the server
terminates itself. If a server terminates for another reason, for example because it is
informed that its machine is needed for another purpose, the tablet server can
surrender its exclusive lock, thus triggering a reassignment.

From the master side: the master periodically requests the status of the lock. If the
lock is lost or if a tablet server does not respond, then clearly there is a problem either
with the tablet server or with Chubby. The master attempts to acquire the lock, and if
it succeeds it can infer that Chubby is alive and that the problem rests with the tablet
server. The master then deletes the file from the directory, which will result in the
tablet server terminating itself if it has not already failed. The master then must
reassign all of that server’s tablets to alternative tablet servers.

Figure 21.16 The hierarchical indexing scheme adopted by Bigtable

Chubby file

Root tablet

Other metadata tablets

User tablets

(1st metadata tablet)

954 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

The rationale is to reuse Chubby, which is a well-tested and reliable service, to achieve
the extra level of monitoring rather than providing a specific monitoring service
specifically for this purpose.

Load balancing: To assign tablets, the master must map the available tablets in the cluster
to appropriate tablet servers. From the algorithm above, the master has an accurate list
of tablet servers that are ready and willing to host tablets and a list of all the tablets
associated with the cluster. The master also maintains the current mapping information
together with a list of unassigned tablets (which is populated, for example, when a tablet
server is removed from the system). By having this global view of the system, the master
ensures unassigned tablets are assigned to appropriate tablet servers based on responses
to load requests, updating the mapping information accordingly.

Note that a master also has an exclusive lock of its own (the master lock), and if
this is lost due to the Chubby session being compromised, the master must terminate
itself (again, reusing Chubby to implement additional functionality). This does not stop
access to data but rather prevents control operations from proceeding. Bigtable is
therefore still available at this stage. When the master restarts, it must retrieve the
current status. It does this by first creating a new file and obtaining the exclusive lock
ensuring it is the only master in the cluster, and then working through the directory to
find tablet servers, requesting information on tablet assignments from the tablet servers
and also building a list of all tablets under its responsibility to infer unassigned tablets.
The master then proceeds with its normal operation.

SECTION 21.5 DATA STORAGE AND COORDINATION SERVICES 955

21.5.4 Summary of key design choices

The overall design choices relating to data storage and coordination services are
summarized in Figure 21.17

Figure 21.17 Summary of design choices related to data storage and coordination

Element Design choice Rationale Trade-offs

GFS The use of a large
chunk size (64
megabytes)

Suited to the size of files in GFS;
efficient for large sequential
reads and appends; minimizes the
amount of metadata

Would be very inefficient
for random access to small
parts of files

The use of a
centralized master

The master maintains a global
view that informs management
decisions; simpler to implement

Single point of failure
(mitigated by maintaining
replicas of operations logs)

Separation of control
and data flows

High-performance file access
with minimal master
involvement

Complicates the client
library as it must deal with
both the master and
chunkservers

Relaxed consistency
model

High performance, exploiting
semantics of the GFS operations

Data may be inconsistent,
in particular duplicated

Chubby Combined lock and
file abstraction

Multipurpose, for example
supporting elections

Need to understand and
differentiate between
different facets

Whole-file reading
and writing

Very efficient for small files Inappropriate for large
files

Client caching with
strict consistency

Deterministic semantics Overhead of maintaining
strict consistency

Bigtable The use of a table
abstraction

Supports structured data
efficiently

Less expressive than a
relational database

The use of a
centralized master

As above, master has a global
view; simpler to implement

Single point of failure;
possible bottleneck

Separation of control
and data flows

High-performance data access
with minimal master
involvement

-

Emphasis on
monitoring and load
balancing

Ability to support very large
numbers of parallel clients

Overhead associated with
maintaining global states

.

The most striking feature emerging from this analysis is the design choice of
providing three separate services that individually are relatively simple and targeted

956 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

towards a given style of usage but together provide excellent coverage for the needs of
Google applications and services. This is most evident from the complementary styles
offered by GFS and Chubby, with Bigtable then providing structured data building on
the services offered by both the underlying services. This design choice also echoes the
approach adopted for communication paradigms (see Section 21.4.3) whereby multiple
techniques are offered, each optimized for the intended style of application.

21.6 Distributed computation services

To complement the storage and coordination services, it is also important to support
high-performance distributed computation over the large datasets stored in GFS and
Bigtable. The Google infrastructure supports distributed computation through the
MapReduce service and also the higher-level Sawzall language. We look at MapReduce
in detail and then briefly examine the key features of the Sawzall language.

21.6.1 MapReduce

Given the huge datasets in use at Google, it is a strong requirement to be able to carry
out distributed computation by breaking up the data into smaller fragments and carrying
out analyses of such fragments in parallel, making use of the computational resources
offered by the physical architecture described in Section 21.3.1. Such analyses include
common tasks such as sorting, searching and constructing inverted indexes (indexes that
contain a mapping from words to locations in different files, this being key in
implementing search functions). MapReduce [Dean and Ghemawat 2008] is a simple
programming model to support the development of such applications, hiding underlying
detail from the programmer including details related to the parallelization of the
computation, monitoring and recovery from failure, data management and load
balancing onto the underlying physical infrastructure.

We look at details of the programming model offered by MapReduce before
examining how the system is implemented.

MapReduce interface • The key principle behind MapReduce is the recognition that
many parallel computations share the same overall pattern – that is:

• break the input data into a number of chunks;

• carry out initial processing on these chunks of data to produce intermediary
results;

• combine the intermediary results to produce the final output.

The specification of the associated algorithm can then be expressed in terms of two
functions, one to carry out the initial processing and the second to produce the final
results from the intermediary values. It is then possible to support multiple styles of
computation by providing different implementations of these two functions. Crucially,
by factoring out these two functions, the rest of the functionality can be shared across
the different computations, thus achieving huge reductions in complexity in
constructing such applications.

SECTION 21.6 DISTRIBUTED COMPUTATION SERVICES 957

More specifically, MapReduce specifies a distributed computation in terms of two
functions, map and reduce (an approach partially influenced by the design of functional
programming languages such as Lisp, which provide functions of the same name,
although in functional programming the motivation is not parallel computation):

• map takes a set of key-value pairs as input and produces a set of intermediary key-
value pairs as output.

• The intermediary pairs are then sorted by key value so that all intermediary results
are ordered by intermediary key. This is broken up into groups and passed to
reduce instances, which carry out their processing to produce a list of values for
each group (for some computations, this could be a single value).

To illustrate the operation of MapReduce, let us consider a simple example. In section
21.2, we illustrated the various aspects of a web search for ‘distributed systems book’
Let us simplify this further by just searching for this complete string – that is, a search
for the phrase ‘distributed systems book’ as it appears in a large body of content such as
the crawled contents of the Web. In this example, the map and reduce functions would
perform the following tasks:

• Assuming it is supplied with a web page name and its contents as input, the map

function searches linearly through the contents, emitting a key-value pair
consisting of (say) the phrase followed by the name of the web document
containing this phrase wherever it finds the strings ‘distributed’ followed by
‘system’ followed by ‘book’ (the example can be extended to also emit a position
within the document).

• The reduce function is in this case is trivial, simply emitting the intermediary
results ready to be collated together into a complete index.

The MapReduce implementation is responsible for breaking the data into chunks,
creating multiple instances of the map and reduce functions, allocating and activating
them on available machines in the physical infrastructure, monitoring the computations
for any failures and implementing appropriate recovery strategies, despatching
intermediary results and ensuring optimal performance of the whole system.

With this approach, it is possible to make significant savings in terms of lines of
code by reusing the underlying MapReduce framework. For example, Google
reimplemented the main production indexing system in 2003 and reduced the number of
lines of C++ code in MapReduce from 3,800 to 700 – a significant reduction, albeit in a
relatively small system. This also results in other key benefits, including making it easier
to update algorithms as there is a clean separation of concerns between what is
effectively the application logic and the associated management of the distributed
computation (a similar principle to the separation of concerns intrinsic to container-
based systems, as reported in Section 8.4). In addition, improvements to the underlying
MapReduce implementation immediately benefit all MapReduce applications. The
downside is a more prescriptive framework, albeit one that can be customized by
specifying the map and reduce and indeed other functions, as will become apparent
below.

958 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

To further illustrate the use of MapReduce, we provide in Figure 21.18

Figure 21.18 Examples of the use of MapReduce

Function Initial step Map phase Intermediate step Reduce phase

Word count

Partition data

into fixed-size

chunks for

processing

For each occurrence of
word in data partition,
emit <word, 1>

Merge/sort all

key-value keys

according to their

intermediary key

For each word in
the intermediary
set, count the
number of 1s

Grep Output a line if it
matches a given pattern

Null

Sort
N.B. This

relies heavily

on the

intermediate

step

For each entry in the
input data, output the
key-value pairs to be
sorted

Null

Inverted

index

Parse the associated
documents and output
a <word, document
ID> pair wherever that
word exists

For each word,
produce a list of
(sorted)
document IDs

 a set of
examples of common functions and how they would be implemented using map and
reduce functions. The shared steps in the computation performed by the MapReduce
framework are also shown for completeness. Further details of these examples can be
found in Dean and Ghemawat [2004].

MapReduce architecture • MapReduce is implemented by a library that, as mentioned
above, hides the details associated with parallelization and distribution and allows the
programmer to focus on specifying the map and reduce functions. This library is built
on top of other aspects of the Google infrastructure, in particular using RPC for
communication and GFS for the storage of intermediary values. It is also common for
MapReduce to take its input data from Bigtable and produce a table as a result, for
example as with the Google Analytics example mentioned above (Section 21.5.3).

The overall execution of a MapReduce program is captured in Figure 21.19 which
shows the key phases involved in execution:

• The first stage is to split the input file into M pieces, with each piece being
typically 16–64 megabytes in size (therefore no bigger than a single chunk in
GFS). The actual size is tunable by the programmer and therefore the programmer
is able to optimize this for the particular parallel processing to follow. The key
space associated with the intermediary results is also partitioned into R pieces
using a (programmable) partition function. The overall computation therefore
involves M map executions and R reduce executions.

Figure 21.19 The overall execution of a MapReduce program

Input data
Worker

.

.

Intermediary results

Worker

Worker

Worker

Worker

Results

(written to file)

Master
Map Reduce

•
•
•

•
•
•

SECTION 21.6 DISTRIBUTED COMPUTATION SERVICES 959

• The MapReduce library then starts a set of worker machines (workers) from the
pool available in the cluster, with one being designated as the master and others
being used for executing map or reduce steps. The number of workers is normally
much less than M+R. For example, Dean and Ghemawat [2008] report on typical
figures of M=200,000, R=5000 with 2000 worker machines allocated to the task.
The goal of the master is to monitor the state of workers and allocate idle workers
to tasks, the execution of map or reduce functions. More precisely, the master
keeps track of the status of map and reduce tasks in terms of being idle, in-

progress or completed and also maintains information on the location of
intermediary results for passing to workers allocated a reduce task.

• A worker that has been assigned a map task will first read the contents of the input
file allocated to that map task, extract the key-value pairs and supply them as input
to the map function. The output of the map function is a processed set of key/value
pairs that are held in an intermediary buffer. As the input data is stored in GFS,
the file will be replicated on (say) three machines. The master attempts to allocate
a worker on one of these three machines to ensure locality and minimize the use
of network bandwidth. If this is not possible, a machine near the data will be
selected.

• The intermediary buffers are periodically written to a file local to the map
computation. At this stage, the data are partitioned according to the partition
function, resulting in R regions. This partition function, which is crucial to the
operation of MapReduce, can be specified by the programmer, but the default is
to perform a hash function on the key and then apply modulo R to the hashed value
to produce R partitions, with the end result that intermediary results are grouped
according to the hash value. Dean and Ghemawat [2004] provide the alternative

960 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

example where keys are URLs and the programmer wants to group intermediary
results by the associated host: hash(Hostname(key)) mod R. The master is notified
when partitioning has completed and is then able to request the execution of
associated reduce functions.

• When a worker is assigned to carry out a reduce function, it reads its
corresponding partition from the local disk of the map workers using RPC. This
data is sorted by the MapReduce library ready for processing by the reduce

function. Once sorting is completed, the reduce worker steps through the key-
value pairs in the partition applying the reduce function to produce an
accumulated result set, which is then written to an output file. This continues until
all keys in the partition are processed.

Achieving fault tolerance: The MapReduce implementation provides a strong level of
fault tolerance, in particular guaranteeing that if the map and reduce operations are
deterministic with respect to their inputs (that is they always produce the same outputs
for a given set of inputs), then the overall MapReduce task will produce the same output
as a sequential execution of the program, even in the face of failures.

To deal with failure, the master sends a ping message periodically to check that a
worker is alive and carrying out its intended operation. If no response is received, it is
assumed that the worker has failed and this is recorded by the master. The subsequent
action then depends on whether the task executing was a map or a reduce task:

• If the worker was executing a map task, this task is marked as idle, implying it will
then be rescheduled. This happens irrespective of whether the associated task is in
progress or completed. Remember that results are stored on local disks, and hence
if the machine has failed the results will be inaccessible.

• If the worker was executing a reduce task, this task is marked as idle only if it was
still in progress; if it is completed, the results will be available as they are written
to the global (and replicated) file system.

Note that to achieve the desired semantics, it is important that the outputs from map and
reduce tasks are written atomically, a property ensured by the MapReduce library in
cooperation with the underlying file system. Details of how this is achieved can be found
in Dean and Ghemawat [2008].

MapReduce also implements a strategy to deal with workers that may be taking a
long time to complete (known as stragglers). Google has observed that it is relatively
common for some workers to run slowly, for example because of a faulty disk that may
perform badly due to a number of error-correction steps involved in data transfers. To
deal with this, when a program execution is close to completion, the master routinely
starts backup workers for all remaining in-progress tasks. The associated tasks are
marked as completed when either the original or the new worker completes. This is
reported as having a significant impact on completion times, again circumventing the
problem of working with commodity machines that can and do fail.

As mentioned above, MapReduce is designed to operate together with Bigtable in
processing large volumes of structured data. Indeed, within Google it is common to find
applications that use a mix of all the infrastructural elements. In the box on page 961,
we describe the support provided to the Google Maps and Google Earth applications by
MapReduce, Bigtable and GFS.

Supporting Google Maps and Google Earth

Client programs for Google Maps [maps.google.com] and Google Earth
[earth.google.com] rely on the availability of huge sets of image tiles for loading by
the clients from Google servers. Image tiles are square arrays of pixel values
containing rendered images of geographic features and are organized in layers
holding different types of geographic features. A base layer of tiles showing a street
map is built from an up-to-date geographic database and another layer is built from
scaled satellite and aerial images showing physical characteristics of the Earth’s
surface. Other partially transparent layers are also held and can be called up to show
public transport networks and other infrastructure features, elevation contours and
even real-time traffic flows. The tile sets for each layer cover the Earth’s entire land
surface and are replicated to show different levels of detail at up to 20 zoom levels
(i.e., scales).

Much of the basic geographic data changes only slowly, but data defining new
and changed roads and other physical infrastructure becomes available all the time
and the consequent regeneration of tile sets calls for a high-performance distributed
application running on Google servers that converts geographic vectors, points and
raw image data to tiles. The implementation makes heavy use of Bigtable to store the
underlying data. The basic geographic data is stored in an XML format known as
Keyhole Markup Language or KML (Keyhole being the name of the company that
first developed the software, acquired by Google in 2004). Raw vector and image
data are received in many formats and resolutions from a variety of sources,
including satellite and airborne imagery, and are stored with KML metadata in a
single table where the rows represent particular geographical locations and the
columns represent different geographic features and raw images, organized in
families of columns. The naming scheme for rows ensures that physical features that
are close together are stored in adjacent rows so that the data needed to generate each
tile will lie in one tablet, or not more than a small number of them. This table is
around 70 terabytes in size and has nine billion cells. It is relatively sparse as there
are normally few features or images per geographical location.

Data are continually added to the table as more geographic data and imagery
become available. At selected time points, the addition of data is suspended and a tile
update begins. A set of concurrent Map processes (as in MapReduce) work on the
raw data to transform and correct all the georeferencing coordinates for the flat
presentation of the data and to blend the images together. This Map stage generates
a table structure containing locally sorted geographic data that is passed to a set of
concurrent Reduce processes that render tiles as raster images. The entire
MapReduce task takes around 8 hours to generate a complete set of tiles processing
raw data at around 1 megabyte per second [Chang et al. 2008].

The resultant image tiles are stored in GFS, with an associated index stored in
another table in Bigtable. This table is heavily replicated across hundreds of tablet
servers on clusters at several data centres, thus enabling it to serve the very large
numbers of concurrent users of Google Maps and Google Earth. The index is around
500 gigabytes in size and significant portions are held in main memory, reducing the
latency associated with reads.

SECTION 21.6 DISTRIBUTED COMPUTATION SERVICES 961

962 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

21.6.2 Sawzall

Sawzall [Pike et al. 2005] is an interpreted programming language for performing
parallel data analysis over very large datasets in highly distributed environments such as
that provided by the physical The Google infrastructure. Although MapReduce readily
supports the construction of such highly parallel and distributed programs, the goal of
Sawzall is to simplify the construction of such programs. This is borne out in practice,
with Sawzall programs often being 10 to 20 times smaller than the equivalent programs
written for MapReduce [Pike et al. 2005]. The implementation of the Sawzall language
builds on much of the existing The Google infrastructure, making use of MapReduce to
create and manage the underlying parallel executions, of GFS to store data associated
with the computation and of protocol buffers to provide a common data format for stored
records.

Like MapReduce, Sawzall assumes that parallel computations follow a given
pattern, which we have summarized in Figure 21.20

Figure 21.20 The overall execution of a Sawzall program

Filter

Filter

Filter

Raw data

Aggregator

Emitted data

Results

. Sawzall assumes that the input to
a computation consists of raw data, which in turn consists of a set of records to be
processed. Computations then proceed by executing filters, which process each record
in parallel, producing emitted results. Aggregators take the emitted data and produce the
overall results of the computation.

Sawzall also makes two assumptions about the execution of filters and
aggregators:

• The execution of filters and aggregators should be commutative across all records;
that is, filters can be executed in any order and the result will be the same.

• The aggregator operations should be associative. That is the (implicit) parentheses
in execution do not matter, allowing more degrees of freedom in execution.

As might be expected from examining MapReduce, Sawzall programs that express the
filter operations and data emissions run in the map phase of MapReduce, with
aggregators corresponding to the reduce phase. A set of predefined aggregators are
provided by the language, including aggregators that carry out a summation of all the
emitted values (sum) or build a collection of all the emitted values (collection). Other
aggregators are more statistical, for example constructing a cumulative probability
distribution (quantile) or estimating the values that are most common (top). It is also

SECTION 21.6 DISTRIBUTED COMPUTATION SERVICES 963

possible for a programmer to develop new aggregators, although this is expected to be
relatively rare.

We illustrate the use of Sawzall by a single, simple example from Pike et al.
[2005] illustrating the above features:

count: table sum of int;

total: table sum of float;

x: float = input;

emit count <- 1;

emit total <- x;

Figure 21.21 Summary of design choices related to distributed computation)

Element Design choice Rationale Trade-offs

MapReduce The use of a
common
framework

Hides details of parallelization and
distribution from the programmer;
improvements to the infrastructure
immediately exploited by all
MapReduce applications

Design choices within
the framework may not
be appropriate for all
styles of distributed
computation

Programming of
system via two
operations, map

and reduce

Very simple programming model
allowing rapid development of
complex distributed computations

Again, may not be
appropriate for all
problem domains

Inherent support
for fault-tolerant
distributed
computations

Programmer does not need to worry
about dealing with faults
(particularly important for long-
running tasks running over a physical
infrastructure where failures are
expected)

Overhead associated
with fault-recovery
strategies

Sawzall Provision of a
specialized
programming
language for
distributed
computation

Again, support for rapid
development of often complex
distributed computations with
complexity hidden from the
programmer (even more so than with
MapReduce)

Assumes that programs
can be written in the
style supported (in
terms of filters and
aggregators)

This program takes as input simple records of type float (a stream of values accessed
through the local variable x). The program also defines two aggregators introduced with
the keyword table, with the added keyword sum indicating that these are summation
aggregators (this keyword could equally have been one of collection, quantile or top, for
example). The calls of emit produce a stream of values that are processed by the
aggregators producing the desired results (in this case, a count of all the values in the
input stream together with a sum of all these values).

A full description of the Sawzall language and further examples can be found in
Pike et al.

964 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

21.6.3 Summary of key design choices

The overall design choices relating to MapReduce and Sawzall are summarized in
Figure 21.21.

The overall benefits in both approaches stem from encouraging a particular style
of distributed computation and then providing common infrastructure to enable efficient
implementation of systems developed using this style. This approach has been
demonstrated to be effective right across Google applications and services, including
support of the core search functionality and in the demanding area of supporting cloud
applications such as Google Earth.

This work has sparked an interesting debate in the data management community
as to whether such abstractions are sufficient for all classes of application. For an insight
into this debate, refer to papers by Dean and Ghemawat [2010] and Stonebraker at al.
[2010] in Communications of the ACM.

21.7 Summary

This chapter concludes the book by addressing the key issue of how one very large
Internet enterprise has approached the design of a distributed system to support a
demanding set of real-world applications. This is a very challenging topic and one that
requires a thorough understanding of the technological choices available to distributed
systems developers at all levels of system development, including communication
paradigms, available services and associated distributed algorithms. The inevitable
trade-offs associated with the design choices demand a thorough understanding of the
application domain.

The approach taken in this chapter is to highlight the art of distributed systems
design through a substantial case study – that is, the examination of the design of the
underlying Google infrastructure, the platform and middleware used by Google to
support its search engine and expanding set of applications and services. This is a
compelling case study as it addresses what is the most complex and large-scale
distributed system ever constructed, and one that has demonstrably met its design
requirements.

This case study examined the overall architecture of the system together with in-
depth studies of the key underlying services – specifically, protocol buffers, the publish-
subscribe service, GFS, Chubby, Bigtable, MapReduce and Sawzall – which all work
together to support complex distributed applications and services including the core
search engine and Google Earth. One key lesson to be taken from this case study is the
importance of really understanding your application domain, deriving a core set of
underlying design principles and applying them consistently. In the case of Google, this
manifests itself in a strong advocacy of simplicity and low-overhead approaches
coupled with an emphasis on testing, logging and tracing. The end result is an
architecture that is highly scalable, reliable, high performance and open in terms of
supporting new applications and services.

The Google infrastructure is one of a number of middleware solutions for cloud
computing that have emerged in recent years (albeit only fully available within Google).

SECTION 21.7 SUMMARY 965

Other solutions include the Amazon Web Services (AWS) [aws.amazon.com],
Microsoft’s Azure [www.microsoft.com IV] and open source solutions including
Hadoop (which includes an implementation of MapReduce) [hadoop.apache.org],
Eucalyptus [open.eucalyptus.com], the Google App Engine (available externally and
providing a window on some but not all of the functionality offered by the Google
infrastructure) [code.google.com IV] and Sector/Sphere [sector.sourceforge.net].
OpenStreetMap [www.openstreetmap.org], an open alternative to Google Maps that
operates in a similar manner using voluntarily developed software and non-commercial
servers, has also been developed. Details of these implementations are generally
available and the reader is encouraged to study a selection of these architectures,
comparing the design choices with those presented in the above case study.

Beyond that, there is a real paucity of published case studies related to distributed
systems design, and this is a pity given the potential educational value of studying
overall distributed systems architectures and their associated design principles. The
main contribution of this chapter is therefore to provide a first in-depth case study
illustrating the complexities of designing and implementing a complete distributed
system solution.

966 CHAPTER 21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY

EXERCISES

21.1 To what extent is Google now a cloud provider company? Refer to the definition from
Chapter 1, repeated in Section 21.2 above. Chapter 1, page 921

21.2 The key requirements for the Google infrastructure are scalability, reliability,
performance and openness. Provide three example of where these requirements might
be in conflict and discuss how Google deals with these potential conflicts. page 924

21.3 A specification of a Person structure in XML was presented in Chapter 4 (Figure 4.12).
Rewrite this specification using protocol buffers. Chapter 4, page 929

21.4 Discuss the extent to which the RPC style supported by protocol buffers enhances
extensibility (especially the design decision to have one argument and one result).

page 931

21.5 Explain why the Google infrastructure supports three separate data storage facilities.
Why does Google not just adopt a commercial distributed database instead of utilizing
the three separate services? page 935

21.6 Both GFS and Bigtable make the same core design choice – to have a single master.
What are the repercussions of a failure of this single master in each case?

pages 937-938, 950-952

21.7 In Section 21.5.2, we compared the cache consistency approach in Chubby with NFS,
concluding that NFS offers much weaker semantics in terms of seeing different versions
of files on different nodes. Perform a similar comparison between the cache consistency
approaches adopted in Chubby and AFS. Section 12.1.3, pages 943–944

21.8 As described in Section 21.5.2, the implementation of Paxos depends on the generation
of increasing and globally unique sequence numbers. This section also described a
possible implementation. Describe an alternative approach to implementing such
sequence numbers. pages 945–946

21.9 Figure 21.18 lists a number of possible applications of MapReduce. Describe one other
possible application and sketch out how this would be implemented in MapReduce,
providing in particular outline implementations of the map and reduce functions.

page 958

21.10 Provide an example of a distributed computation that would be difficult to implement in
MapReduce, giving full reasons for your answer. page 958

 967

REFERENCES

Online references

This reference list is available on the Web at www.cdk5.net/refs. It provides clickable
links for those documents that exist only on the Web. In this printed list items
identified by an underlined tag, for example, www.omg.org, point to an index page
leading to the document; direct links can be found in the online reference list.

The references to RFCs refer to the series of Internet standards and
specifications called ‘requests for comments’ that are available from the Internet
Engineering Task Force at www.ietf.org/rfc/ and several other well-known sites.

The online reference list may also be used as an aid to searching for web copies
of other documents by searching for authors or titles with Google or Citeseer at
citeseer.ist.psu.edu.

Online material written or edited by the authors to supplement the book is
referenced in the book by a www.cdk5.net tag but is not included in the reference list.
For example, www.cdk5.net/ipc refers to the additional material about interprocess
communication on our web pages.

.

Abadi and Gordon 1999 Abadi, M. and Gordon, A.D. (1999). A calculus for cryptographic
protocols: The spi calculus. Information and Computation, Vol. 148,
No. 1, pp. 1–70.

Abadi et al. 1998 Abadi, M., Birrell, A.D., Stata, R. and Wobber, E.P. (1998). Secure
Wweb tunneling. In Proceedings of the 7th International World Wide

Web Conference, pp. 531–9. Elsevier, in Computer Networks and ISDN

Systems, Volume 30, Nos 1–7.

Abrossimov et al. 1989 Abrossimov, V., Rozier, M. and Shapiro, M. (1989). Generic virtual
memory management for operating system kernels. Proceedings of 12th

ACM Symposium on Operating System Principles, December, pp.
123–36.

Accetta et al. 1986 Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A. and Young,
M. (1986). Mach: A new kernel foundation for UNIX development. In
Proceedings of the Summer 1986 USENIX Conference, pp. 93–112.

968 REFERENCES

Adjie-Winoto et al. 1999 Adjie-Winoto, W., Schwartz, E., Balakrishnan, H. and Lilley, J. (1999).
The design and implementation of an intentional naming system. In
Proceedings of the 17th ACM Symposium on Operating System

Principles, published as Operating Systems Review, Vol. 34, No. 5, pp.
186–201.

Agrawal et al. 1987 Agrawal, D., Bernstein, A., Gupta, P. and Sengupta, S. (1987).
Distributed optimistic concurrency control with reduced rollback.
Distributed Computing, Vol. 2, No 1, pp. 45–59.

Ahamad et al. 1992 Ahamad, M., Bazzi, R., John, R., Kohli, P. and Neiger, G. (1992). The

Power of Processor Consistency. Technical report GIT-CC-92/34,
Georgia Institute of Technology, Atlanta, GA.

Al-Muhtadi et al. 2002 Al-Muhtadi, J., Campbell, R., Kapadia, A., Mickunas, D. and Yi, S.
(2002). Routing through the mist: Privacy preserving communication in
ubiquitous computing environments. In Proceedings of the 22nd

International Conference on Distributed Computing Systems

(ICDCS’02), Vienna, Austria, July, pp. 74–83.

Albanna et al. 2001 Albanna, Z., Almeroth, K., Meyer, D. and Schipper, M. (2001). IANA

Guidelines for IPv4 Multicast Address Assignments. Internet RFC 3171.

Alonso et al. 2004 Alonso, G., Casata, C., Kuno, H. and Machiraju, V. (2004). Web

Services, Concepts, Architectures and Applications. Berlin, Heidelberg:
Springer-Verlag.

Anderson 1993 Anderson, D.P. (1993). Metascheduling for continuous media. ACM

Transactions on Computer Systems, Vol. 11, No. 3, pp. 226–52.

Anderson 1996 Anderson, R. J. (1996). The Eternity Service. In Proceedings of

Pragocrypt ’96, pp. 242–52.

Anderson 2008 Anderson, R.J. (2008). Security Engineering, 2nd edn. John Wiley &
Sons.

Anderson et al. 1990 Anderson, D.P., Herrtwich, R.G. and Schaefer, C. (1990). SRP – A

Resource Reservation Protocol for Guaranteed-Performance

Communication in the Internet. Technical report 90-006, International
Computer Science Institute, Berkeley, CA.

Anderson et al. 1991 Anderson, T., Bershad, B., Lazowska, E. and Levy, H. (1991).
Scheduler activations: Efficient kernel support for the user-level
management of parallelism. In Proceedings of the 13th ACM

Symposium on Operating System Principles, pp. 95–109.

Anderson et al. 1995 Anderson, T., Culler, D., Patterson, D. and the NOW team. (1995). A
case for NOW (Networks Of Workstations). IEEE Micro, Vol. 15, No.
1, pp. 54–64.

Anderson et al. 1996 Anderson, T.E., Dahlin, M.D., Neefe, J.M., Patterson, D.A., Roselli,
D.S. and Wang, R.Y. (1996). Serverless Network File Systems. ACM

Trans. on Computer Systems, Vol. 14, No. 1, pp. 41–79.

REFERENCES 969

Anderson et al. 2002 Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M. and Werthimer, D.
(2002). SETI@home: An experiment in public-resource computing.
Communications of the ACM, Vol. 45, No. 11, pp. 56–61.

Anderson et al. 2004 Anderson, R., Chan, H. and Perrig, A. (2004). Key infection: Smart trust
for smart dust. In Proceedings of the IEEE 12th International

Conference on Network Protocols (ICNP 2004), Berlin, Germany,
October, pp. 206–215.

ANSA 1989 ANSA (1989). The Advanced Network Systems Architecture (ANSA)

Reference Manual. Castle Hill, Cambridge, England: Architecture
Project Management.

ANSI 1985 American National Standards Institute (1985). American National

Standard for Financial Institution Key Management. Standard X9.17
(revised).

Armand et al. 1989 Armand, F., Gien, M., Herrman, F. and Rozier, M. (1989). Distributing
UNIX brings it back to its original virtues. In Proc. Workshop on

Experiences with Building Distributed and Multiprocessor Systems,
October, pp. 153–174.

Arnold et al. 1999 Arnold, K., O’Sullivan, B., Scheifler, R.W., Waldo, J. and Wollrath,
A. (1999). The Jini Specification. Reading, MA: Addison-Wesley.

associates.amazon.com Amazon Web Service FAQs.

Attiya and Welch 1998 Attiya, H. and Welch, J. (1998). Distributed Computing –

Fundamentals, Simulations and Advanced Topics. Maidenhead,
England: McGraw-Hill.

aws.amazon.com Amazon Web Services. Home page.

Babaoglu et al. 1998 Babaoglu, O., Davoli, R., Montresor, A. and Segala, R. (1998). System
support for partition-aware network applications. In Proceedings of the

18th International Conference on Distributed Computing Systems

(ICDCS ’98), pp. 184–191.

Bacon 2002 Bacon, J. (2002). Concurrent Systems, 3rd edn. Harlow, England:
Addison-Wesley.

Baker 1997 Baker, S. (1997). CORBA Distributed Objects Using Orbix. Harlow,
England: Addison-Wesley.

Bakken and Schlichting
1995

Bakken, D.E. and Schlichting, R.D. (1995). Supporting fault-tolerant
parallel programming in Linda. IEEE Transactions Parallel and

Distributed Systems, Vol. 6, No. 3, pp. 287–302.

Balakrishnan et al. 1995 Balakrishnan, H., Seshan, S. and Katz, R.H. (1995). Improving reliable
transport and hand-off performance in cellular wireless networks. In
Proceedings of the ACM Mobile Computing and Networking

Conference, pp. 2–11.

970 REFERENCES

Balakrishnan et al. 1996 Balakrishnan, H., Padmanabhan, V., Seshan, S. and Katz, R. (1996). A
comparison of mechanisms for improving TCP performance over
wireless links. In Proceedings of the ACM SIGCOMM ’96 Conference,
pp. 256–69.

Balan et al. 2003 Balan, R.K., Satyanarayanan, M., Park, S., Okoshi, T. (2003).
Tactics-based remote execution for mobile computing. In Proceedings

of the First USENIX International Conference on Mobile Systems,

Applications, and Services (MobiSys 2003), San Francisco, CA, May,
pp. 273–286.

Balazinska et al. 2002 Balazinska, M., Balakrishnan, H. and Karger, D. (2002). INS/Twine: A
scalable peer-to-peer architecture for intentional resource discovery. In
Proceedings of the International Conference on Pervasive Computing,
Zurich, Switzerland, August, pp. 195–210.

Baldoni et al. 2005 Baldoni, R. Beraldi, R., Cugola, G., Migliavacca, M. and Querzoni, L.
(2005). Structure-less content-based routing in mobile ad hoc networks.
In Proceedings of the International Conference on Pervasive Services,
pp. 37–46.

Baldoni and Virgillito 2005 Baldoni, R. and Virgillito, A. (2005). Distributed event routing in

publish/subscribe communication systems: A survey. Technical Report
15-05, Dipartimento di Informatica e Sistemistica, Universita di Roma
“La Sapienza”.

Baldoni et al. 2007 Baldoni, R., Beraldi, R., Quema, V., Querzoni, L. and
Tucci-Piergiovanni, S. (2007). TERA: Topic-based event routing for
peer-to-peer architectures. In Proceedings of the 2007 Inaugural

International Conference on Distributed Event-Based Systems. Toronto,
Ontario, Canada, June, pp. 2–13.

Balfanz et al. 2002 Balfanz, D., Smetters, D.K., Stewart, P. and Wong, H.C. (2002).
Talking to strangers: Authentication in ad-hoc wireless networks. In
Proceedings of the Network and Distributed System Security

Symposium, San Diego, CA, February.

Banerjea and Mah 1991 Banerjea, A. and Mah, B.A. (1991). The real-time channel
administration protocol. Second International Workshop on Network

and Operating System Support for Digital Audio and Video, Heidelberg,
Germany.

Baran 1964 Baran, P. (1964). On Distributed Communications. Research
Memorandum RM-3420-PR, Rand Corporation.

Barborak et al. 1993 Barborak, M., Malek, M. and Dahbura, A. (1993). The consensus
problem in fault-tolerant computing. ACM Computing Surveys, Vol. 25,
No. 2, pp. 171–220.

REFERENCES 971

Barghouti and Kaiser 1991 Barghouti, N.S. and Kaiser, G.E. (1991). Concurrency control in
advanced database applications. ACM Computing Surveys, Vol. 23, No.
3, pp. 269–318.

Barham et al. 2003a Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I. and Warfield, A. (2003). Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium on

Operating Systems Principles, Bolton Landing, NY, October, pp.
164–177.

Barham et al. 2003b Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A.,Kotsovinos, E., Madhavapeddy, A.V.S., Neugebauer, R., Pratt, I. and
Warfield, A. (2003). Xen 2002. Technical Report UCAM-CL-TR-553,
Computing Laboratory, University of Cambridge.

Barr and Asanovic 2003 Barr, K. and Asanovic, K. (2003). Energy aware lossless data
compression. Proceedings of the First USENIX International

Conference on Mobile Systems, Applications, and Services (MobiSys

2003), San Francisco, CA, May, pp. 231–244.

Barton et al. 2002 Barton, J., Kindberg, T. and Sadalgi, S. (2002). Physical registration:
Configuring electronic directories using handheld devices. IEEE

Wireless Communications, Vol. 9, No. 1, pp. 30–38.

Baset and Schulzrinne 2006 Baset, S.A. and Schulzrinne, H.G. (2006). An analysis of the Skype
peer-to-peer Internet telephony protocol. In Proceedings of the 25th

IEEE International Conference on Computer Communications

(INFOCOM’06), pp. 1–11.

Bates et al. 1996 Bates, J., Bacon, J., Moody, K. and Spiteri, M. (1996). Using events for
the scalable federation of heterogeneous components. European

SIGOPS Workshop.

Baude et al. 2009 Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V.,
Henrio, L. and Pérez, C. (2009). GCM: A grid extension for Fractal
autonomous distributed components. Annals of Telecommunications,
Springer, Vol. 64, No. 1, pp. 5–24.

Bell and LaPadula 1975 Bell, D.E. and LaPadula, L.J. (1975). Computer Security Model: Unified

Exposition and Multics Interpretation. Mitre Corporation.

Bellman 1957 Bellman, R.E. (1957). Dynamic Programming. Princeton, NJ: Princeton
University Press.

Bellovin and Merritt 1990 Bellovin, S.M. and Merritt, M. (1990). Limitations of the Kerberos
authentication system. ACM Computer Communications Review, Vol.
20, No. 5, pp. 119–32.

Bellwood et al. 2003 Bellwood, T., Clément, L. and von Riegen, C. (eds.) (2003). UDDI

Version 3.0.1. Oasis Corporation.

Beresford and Stajano 2003 Beresford, A. and Stajano, F. (2003). Location privacy in pervasive
computing. IEEE Pervasive Computing, Vol. 2, No. 1, pp. 46–55.

972 REFERENCES

Berners-Lee 1991 Berners-Lee, T. (1991). World Wide Web Seminar.

Berners-Lee 1999 Berners-Lee, T. (1999). Weaving the Web. New York: HarperCollins.

Berners-Lee et al. 2005 Berners Lee, T., Fielding, R. and Masinter, L. (2005). Uniform
Resource Identifiers (URI): Generic syntax. Internet RFC 3986.

Bernstein et al. 1980 Bernstein, P.A., Shipman, D.W. and Rothnie, J.B. (1980). Concurrency
control in a system for distributed databases (SDD-1). ACM

Transactions on Database Systems, Vol. 5, No. 1, pp. 18–51.

Bernstein et al. 1987 Bernstein, P., Hadzilacos, V. and Goodman, N. (1987). Concurrency

Control and Recovery in Database Systems. Reading, MA:
Addison-Wesley. Text available online.

Bershad et al. 1990 Bershad, B., Anderson, T., Lazowska, E. and Levy, H. (1990).
Lightweight remote procedure call. ACM Transactions on Computer

Systems, Vol. 8, No. 1, pp. 37–55.

Bershad et al. 1991 Bershad, B., Anderson, T., Lazowska, E. and Levy, H. (1991).
User-level interprocess communication for shared memory
multiprocessors. ACM Transactions on Computer Systems, Vol. 9, No.
2, pp. 175–198.

Bershad et al. 1995 Bershad, B., Savage, S., Pardyak, P., Sirer, E., Fiuczynski, M., Becker,
D., Chambers, C. and Eggers, S. (1995). Safety and performance in the
SPIN operating system. In Proceedings of the 15th ACM Symposium on

Operating Systems Principles, pp. 267–84.

Bessani et al. 2008 Bessani, A. N., Alchieri, E. P., Correia, M. and Fraga, J. S. (2008).
DepSpace: A Byzantine fault-tolerant coordination service. In
Proceedings of the 3rd ACM Sigops/Eurosys European Conference on

Computer Systems. Glasgow, Scotland, April, pp.163-176.

Bhagwan et al. 2003 Bhagwan, R., Savage, S. and Voelker, G. (2003). Understanding
availability. In Proc. 2nd International Workshop on Peer-to-Peer

Systems (IPTPS ’03), Berkeley, CA, February.

Bhatti and Friedrich 1999 Bhatti, N. and Friedrich, R. (1999). Web Server Support for Tiered

Services. Hewlett-Packard Corporation Technical Report
HPL-1999-160.

Birman 1993 Birman, K.P. (1993). The process group approach to reliable distributed
computing. Comms. ACM, Vol. 36, No. 12, pp. 36–53.

Birman 2004 Birman, K.P. (2004). Like it or not, web services are distributed
Objects! Comms. ACM. Vol. 47, No. 12, pp. 60–62. .

Birman 2005 Birman, K.P. (2005). Reliable Distributed Systems: Technologies, Web

Services and Applications. Springer-Verlag.

Birman and Joseph 1987a Birman, K.P. and Joseph, T.A. (1987). Reliable communication in the
presence of failures. ACM Transactions on Computer Systems, Vol. 5,
No. 1, pp. 47–76.

REFERENCES 973

Birman and Joseph 1987b Birman, K. and Joseph, T. (1987). Exploiting virtual synchrony in
distributed systems. In Proceedings of the 11th ACM Symposium on

Operating Systems Principles, pp. 123–38.

Birman et al. 1991 Birman, K.P., Schiper, A. and Stephenson, P. (1991). Lightweight
causal and atomic group multicast. ACM Transactions on Computer

Systems, Vol. 9, No. 3, pp. 272–314.

Birrell and Needham 1980 Birrell, A.D. and Needham, R.M. (1980). A universal file server. IEEE

Transactions Software Engineering, Vol. SE-6, No. 5, pp. 450–3.

Birrell and Nelson 1984 Birrell, A.D. and Nelson, B.J. (1984). Implementing remote procedure
calls. ACM Transactions on Computer Systems, Vol. 2, No. 1, pp.
39–59.

Birrell et al. 1982 Birrell, A.D., Levin, R., Needham, R.M. and Schroeder, M.D. (1982).
Grapevine:An exercise in distributed computing. Comms. ACM, Vol.
25, No. 4, pp. 260–73.

Birrell et al. 1995 Birrell, A., Nelson, G. and Owicki, S. (1993). Network objects. In
Proceedings of the 14th ACM Symposium on Operating Systems

Principles, pp. 217–30.

Bisiani and Forin 1988 Bisiani, R. and Forin, A. (1988). Multilanguage parallel programming
of heterogeneous machines. IEEE Transactions Computers, Vol. 37,
No. 8, pp. 930–45.

Black 1990 Black, D. (1990). Scheduling support for concurrency and parallelism
in the Mach operating system. IEEE Computer, Vol. 23, No. 5, pp.
35–43.

Blakley 1999 Blakley, R. (1999). CORBA Security – An Introduction to Safe

Computing with Objects. Reading, MA: Addison-Wesley.

Bloch 2006 Bloch, J. (2006). How to design a good API and why it matters. In
Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented

Programming Systems, Languages, and Applications. (OOPSLA’06),
Portland, Oregon, pp. 506–507.

Bolosky et al. 1996 Bolosky, W., Barrera, J., Draves, R., Fitzgerald, R., Gibson, G., Jones,
M., Levi, S., Myhrvold, N. and Rashid, R. (1996). The Tiger video
fileserver. 6th NOSSDAV Conference, Zushi, Japan, April.

Bolosky et al. 1997 Bolosky, W., Fitzgerald, R. and Douceur, J. (1997). Distributed
schedule management in the Tiger video fileserver. In Proc. of the 16th

ACM Symposium on Operating System Principles, St Malo, France,
October, pp. 212–23.

Bolosky et al. 2000 Bolosky, W.J., Douceur, J.R., Ely, D. and Theimer, M. (2000).
Feasibility of a serverless distributed file system deployed on an existing
set of desktop PCs. In Proceedings of the International Conference on

Measurement and Modeling of Computer Systems, pp. 34–43.

974 REFERENCES

Bonnaire et al. 1995 Bonnaire, X., Baggio, A. and Prun, D. (1995). Intrusion free monitoring:
An observation engine for message server based applications. In
Proceedings of the 10th International Symposium on Computer and

Information Sciences (ISCIS X), pp. 541–48.

Booch et al. 2005 Booch, G., Rumbaugh, J. and Jacobson, I. (2005). The Unified Modeling

Language User Guide, 2nd edn. Reading MA: Addison-Wesley.

Borisov et al. 2001 Borisov, N., Goldberg, I. and Wagner, D. (2001). Intercepting mobile
communications: The insecurity of 802.11. In Proceedings of

MOBICOM 2001, pp. 180–9.

Bowman et al. 1990 Bowman, M., Peterson, L. and Yeatts, A. (1990). Univers: An
attribute-based name server. Software–Practice and Experience, Vol.
20, No. 4, pp. 403–24.

Box 1998 Box, D. (1998). Essential COM. Reading, MA: Addison-Wesley.

Box and Curbera 2004 Box, D. and Curbera, F. (2004). Web Services Addressing

(WS-Addressing). BEA Systems, IBM and Microsoft, August.

boxee.tv Boxee. Home page.

Boykin et al. 1993 Boykin, J., Kirschen, D., Langerman, A. and LoVerso, S. (1993).
Programming under Mach. Reading, MA: Addison-Wesley.

Bray and Sturman 2002 Bray, J. and Sturman. C.F. (2002). Bluetooth: Connect Without Cables,
2nd edn. Upper Saddle River, NJ: Prentice-Hall.

Brin and Page 1998 Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems, Vol. 30,
Issue 1-7, pp. 107-117.

Bruneton et al. 2006 Bruneton, E., Coupaye, T., LeClercq, M., Quema, V. and Stefani, J.B.
(2006). The Fractal component model and its support in Java. Software

– Practice and Experience, Vol. 36, Nos.11–21, pp. 1257–1284.

Buford 1994 Buford, J.K. (1994). Multimedia Systems. Addison-Wesley.

Burns and Wellings 1998 Burns, A. and Wellings, A. (1998). Concurrency in Ada. England:
Cambridge University Press.

Burrows et al. 1989 Burrows, M., Abadi, M. and Needham, R. (1989). A logic of

authentication. Technical Report 39. Palo Alto, CA: Digital Equipment
Corporation Systems Research Center.

Burrows et al. 1990 Burrows, M., Abadi, M. and Needham, R. (1990). A logic of
authentication. ACM Transactions on Computer Systems, Vol. 8, No. 1,
pp. 18–36.

Burrows 2006 Burrows, M. (2006). The Chubby lock service for loosely-coupled
distributed systems. In Proc. of the 7th Symposium on Operating

Systems Design and Implementation, Seattle, WA, pp. 335–350.

Bush 1945 Bush, V. (1945). As we may think. The Atlantic Monthly, July.

REFERENCES 975

Bushmann et al. 2007 Bushmann, F., Henney, K. and Schmidt, D.C. (2007). Pattern-Oriented

Software Architecture: A Pattern for Distributed Computing, New
York: John Wiley & Sons.

Busi et al. 2003 Busi, N., Manfredini, C., Montresor, A. and Zavattaro, G. (2003).
PeerSpaces: Data-driven coordination in peer-to-peer networks. In
Proceedings of the 2003 ACM Symposium on Applied Computing,
Melbourne, Florida, March, pp. 380–386.

Callaghan 1996a Callaghan, B. (1996). WebNFS Client Specification. Internet RFC 2054.

Callaghan 1996b Callaghan, B. (1996). WebNFS Server Specification. Internet RFC
2055.

Callaghan 1999 Callaghan, B. (1999). NFS Illustrated. Reading, MA: Addison-Wesley.

Callaghan et al. 1995 Callaghan, B., Pawlowski, B. and Staubach, P. (1995). NFS Version 3

Protocol Specification. Internet RFC 1813, Sun Microsystems.

Campbell 1997 Campbell, R. (1997). Managing AFS: The Andrew File System. Upper
Saddle River, NJ: Prentice-Hall.

Campbell et al. 1993 Campbell, R., Islam, N., Raila, D. and Madany, P. (1993). Designing
and implementing Choices: An object-oriented system in C++. Comms.

ACM, Vol. 36, No. 9, pp. 117–26.

Canetti and Rabin 1993 Canetti, R. and Rabin, T. (1993). Fast asynchronous Byzantine
agreement with optimal resilience. In Proceedings of the 25th ACM

Symposium on Theory of Computing, pp. 42–51.

Cao and Singh 2005 Cao, F. and Singh, J. P. (2005). MEDYM: match-early with dynamic
multicast for content-based publish-subscribe networks. In Proceedings

of the ACM/IFIP/USENIX 2005 International Conference on

Middleware, Grenoble, France, November, pp. 292–313.

Carriero et al. 1995 Carriero, N., Gelernter, D. and Zuck, L. (1995). Bauhaus Linda. In
LNCS 924: Object-based models and languages for concurrent systems.
Berlin, Heidelberg: Springer-Verlag. pp. 66–76.

Carter et al. 1991 Carter, J.B., Bennett, J.K. and Zwaenepoel, W. (1991). Implementation
and performance of Munin. In Proceedings of the 13th ACM Symposium

on Operating System Principles, pp. 152–64.

Carter et al. 1998 Carter, J., Ranganathan, A. and Susarla, S. (1998). Khazana, an
infrastructure for building distributed services. In Proceedings of

ICDCS ’98. Amsterdam, The Netherland, pp. 562–71.

Carzaniga et al. 2001 Carzaniga, A., Rosenblum, D. S. and Wolf, A. L. (2001). Design and
evaluation of a wide-area event notification service. ACM Trans. on

Compuer Systems, Vol. 19, No. 3, pp. 332–383.

976 REFERENCES

Castro and Liskov 2000 Castro, M. and Liskov, B. (2000). Proactive recovery in a
Byzantine-fault-tolerant system. Proceedings of the Fourth Symposium

on Operating Systems Design and Implementation (OSDI ’00), San
Diego, CA, October, p. 19.

Castro et al. 2002a Castro, M., Druschel, P., Hu, Y.C. and Rowstron, A. (2002).
Topology-aware routing in structured peer-to-peer overlay networks.
Technical Report MSR-TR-2002-82, Microsoft Research, 2002.

Castro et al. 2002b Castro, M., Druschel, P., Kermarrec, and Rowstron, A. (2002).
SCRIBE: A large-scale and decentralised application-level multicast
infrastructure. IEEE Journal on Selected Areas in Communication

(JSAC), Vol. 20, No, 8, pp. 1489–99.

Castro et al. 2003 Castro, M., Costa, M. and Rowstron, A. (2003). Performance and

dependability of structured peer-to-peer overlays. Technical Report
MSR-TR-2003-94, Microsoft Research, 2003.

CCITT 1988a CCITT (1988). Recommendation X.500: The Directory – Overview of

Concepts, Models and Service. International Telecommunications
Union, Place des Nations, 1211 Geneva, Switzerland.

CCITT 1988b CCITT (1988). Recommendation X.509: The Directory –

Authentication Framework. International Telecommunications Union,
Place des Nations, 1211 Geneva, Switzerland.

CCITT 1990 CCITT (1990). Recommendation I.150: B-ISDN ATM Functional

Characteristics. International Telecommunications Union, Place des
Nations, 1211 Geneva, Switzerland.

Ceri and Owicki 1982 Ceri, S. and Owicki, S. (1982). On the use of optimistic methods for
concurrency control in distributed databases. In Proceedings of the 6th

Berkeley Workshop on Distributed Data Management and Computer

Networks, Berkeley, CA, pp. 117–30.

Ceri and Pelagatti 1985 Ceri, S. and Pelagatti, G. (1985). Distributed Databases – Principles

and Systems. Maidenhead, England: McGraw-Hill.

Chalmers et al. 2004 Chalmers, D., Dulay, N. and Sloman, M. (2004). Meta data to support
context aware mobile applications. In Proceedings of the IEEE Intl.

Conference on Mobile Data Management (MDM 2004), Berkeley, CA,
January, pp. 199–210.

Chandra and Toueg 1996 Chandra, T. and Toueg, S. (1996). Unreliable failure detectors for
reliable distributed systems. Journal of the ACM. Vol 43, No. 2, pp.
225–67.

Chandra et al. 2007 Chandra, T. D., Griesemer, R. and Redstone, J. (2007). Paxos made live:
An engineering perspective. In Proc. of the Twenty-Sixth Annual ACM

Symposium on Principles of Distributed Computing, (PODC’07),
Portland, Oregon, pp. 398–407.

REFERENCES 977

Chandy and Lamport 1985 Chandy, K. and Lamport, L. (1985). Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer

Systems, Vol. 3, No. 1, pp. 63–75.

Chang and Maxemchuk
1984

Chang, J. and Maxemchuk, N. (1984). Reliable broadcast protocols.
ACM Transactions on Computer Systems, Vol. 2, No. 3, pp. 251–75.

Chang and Roberts 1979 Chang, E.G. and Roberts, R. (1979). An improved algorithm for
decentralized extrema-finding in circular configurations of processors.
Comms. ACM, Vol. 22, No. 5, pp. 281–3.

Chang et al. 2008 Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows,
M., Chandra, T., Fikes, A. and Gruber, R. (2008). Bigtable: A
distributed storage system for structured data. ACM Trans. on Computer

Systems Vol. 26, No. 2, pp. 1–26.

Charron-Bost 1991 Charron-Bost, B. (1991). Concerning the size of logical clocks in
distributed systems. Information Processing Letters, Vol. 39, No.1, pp.
11–16.

Chaum 1981 Chaum, D. (1981). Untraceable electronic mail, return addresses and
digital pseudonyms. Comms. ACM, Vol. 24, No. 2, pp. 84–88.

Chen et al. 1994 Chen, P., Lee, E., Gibson, G., Katz, R. and Patterson, D. (1994). RAID:
High-performance, reliable secondary storage. ACM Computing

Surveys, Vol. 26, No. 2, pp. 145–188.

Cheng 1998 Cheng, C.K. (1998). A survey of media servers. Hong Kong University
CSIS, November.

Cheng et al. 2005 Cheng, Y-C., Chawathe, Y., LaMarca, A. and Krumm J. (2005)
Accuracy characterization for metropolitan-scale Wi-Fi localization,
Third International Conference on Mobile Systems, Applications, and

Services (MobiSys 2005), June.

Cheriton 1984 Cheriton, D.R. (1984). The V kernel: A software base for distributed
systems. IEEE Software, Vol. 1, No. 2, pp. 19–42.

Cheriton 1986 Cheriton, D.R. (1986). VMTP: A protocol for the next generation of
communication systems. In Proceedings of the SIGCOMM ’86

Symposium on Communication Architectures and Protocols, pp.
406–15.

Cheriton and Mann 1989 Cheriton, D. and Mann, T. (1989). Decentralizing a global naming
service for improved performance and fault tolerance. ACM

Transactions on Computer Systems, Vol. 7, No. 2, pp. 147–83.

Cheriton and Skeen 1993 Cheriton, D. and Skeen, D. (1993). Understanding the limitations of
causally and totally ordered communication. In Proceedings of the 14th

ACM Symposium on Operating System Principles, Dec., pp. 44–57.

Cheriton and Zwaenepoel
1985

Cheriton, D.R. and Zwaenepoel, W. (1985). Distributed process groups
in the V kernel. ACM Transactions on Computer Systems, Vol. 3, No. 2,
pp. 77–107.

978 REFERENCES

Cheswick and Bellovin
1994

Cheswick, E.R. and Bellovin, S.M. (1994). Firewalls and Internet

Security. Reading, MA: Addison-Wesley.

Chien 2004 Chien, A. (2004). Massively distributed computing: Virtual screening
on a desktop Grid. In Foster, I. and Kesselman, C. (eds.), The Grid 2.
San Francisco, CA: Morgan Kauffman.

Chisnall 2007 Chisnall, D. (2007). The Definitive Guide to the Xen Hypervisor. Upper
Saddle River, NJ: Prentice-Hall.

Choudhary et al. 1989 Choudhary, A., Kohler, W., Stankovic, J. and Towsley, D. (1989). A
modified priority based probe algorithm for distributed deadlock
detection and resolution. IEEE Transactions Software Engineering,
Vol. 15, No. 1, pp. 10–17.

Chu et al. 2000 Chu,Y.-H., Rao, S.G. and Zhang, H. (2000). A case for end system
multicast. In Proc. of ACM Sigmetrics, June, pp. 1–12.

Cilia et al. 2004 Cilia, M., Antollini, M., Bornhövd, C. and Buchmann, A. (2004).
Dealing with heterogeneous data in pub/sub systems: The
concept-based approach. In Proceedings of the International Workshop

on Distributed Event-Based Systems, Edinburgh, Scotland, May, pp.
26–31.

Clark 1982 Clark, D.D. (1982). Window and Acknowledgement Strategy in TCP.
Internet RFC 813.

Clark 1988 Clark, D.D. (1988). The design philosophy of the DARPA Internet
protocols. ACM SIGCOMM Computer Communication Review, Vol.
18, No. 4, pp. 106–114.

Clarke et al. 2000 Clarke, I., Sandberg, O., Wiley, B. and Hong, T. (2000). Freenet: A
distributed anonymous information storage and retrieval system. In
Proc. of the ICSI Workshop on Design Issues in Anonymity and

Unobservability, Berkeley, CA, pp. 46–66.

code.google.com I Protocol buffers. Home page.

code.google.com II Protocol buffers. Developer guide: techniques.

code.google.com III Protocol buffers. Third-party add-ons (RPC implementations).

code.google.com IV Google App Engine. Home page.

Cohen 2003 Cohen, B. (2003). Incentives build robustness in BitTorrent. May 2003,
Internet publication.

Comer 2006 Comer, D.E. (2006). Internetworking with TCP/IP, Volume 1:

Principles, Protocols and Architecture, 5th edn. Upper Saddle River,
NJ: Prentice-Hall.

Comer 2007 Comer, D.E. (2007). The Internet Book, 4th edn. Upper Saddle River,
NJ: Prentice-Hall.

REFERENCES 979

Condict et al. 1994 Condict, M., Bolinger, D., McManus, E., Mitchell, D. and Lewontin, S.
(1994). Microkernel modularity with integrated kernel performance.
Technical report, OSF Research Institute, Cambridge, MA, April.

Coulouris et al. 1998 Coulouris, G.F., Dollimore, J. and Roberts, M. (1998). Role and
task-based access control in the PerDiS groupware platform. Third ACM

Workshop on Role-Based Access Control, George Mason University,
Washington, DC, October 22–23.

Coulson et al. 2008 Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama,
J. and Sivaharan, T. (2008). A generic component model for building
systems software. ACM Trans. on Computer Systems, Vol. 26, No. 1,
pp. 1–42.

Cristian 1989 Cristian, F. (1989). Probabilistic clock synchronization. Distributed

Computing, Vol. 3, pp. 146–58.

Cristian 1991 Cristian, F. (1991). Reaching agreement on processor group
membership in synchronous distributed systems. Distributed

Computing, Vol. 4, pp. 175–87.

Cristian and Fetzer 1994 Cristian, F. and Fetzer, C. (1994). Probabilistic internal clock
synchronization. In Proceedings of the 13th Symposium on Reliable

Distributed Systems, October, pp. 22–31.

Crow et al. 1997 Crow, B., Widjaja, I., Kim, J. and Sakai, P. (1997). IEEE 802.11
wireless local area networks. IEEE Communications Magazine, Vol. 35,
No. 9, pp. 116–26.

cryptography.org North American Cryptography Archives.

Culler et al. 2001 Culler, D.E., Hill, J., Buonadonna, P., Szewczyk, R. and Woo, A.
(2001). A network-centric approach to embedded software for tiny
devices. Proceedings of the First International Workshop on Embedded

Software, Tahoe City, CA, October, pp. 114–130.

Culler et al. 2004 Culler, D., Estrin, D. and Srivastava, M. (2004). Overview of sensor
networks. IEEE Computer, Vol. 37, No. 8, pp. 41–49.

Curtin and Dolske 1998 Kurtin, M. and Dolski, J. (1998). A brute force search of DES Keyspace.
;login: – the Newsletter of the USENIX Association, May.

Custer 1998 Custer, H. (1998). Inside Windows NT, 2nd edn.. Redmond, WA:
Microsoft Press.

Czerwinski et al. 1999 Czerwinski, S., Zhao, B., Hodes, T., Joseph, A. and Katz, R. (1999). An
architecture for a secure discovery service. In Proceedings of the Fifth

Annual International Conference on Mobile Computing and Networks.
Seattle, WA, pp.24–53.

Dabek et al. 2001 Dabek, F., Kaashoek, M.F., Karger, D., Morris, R. and Stoica, I. (2001).
Wide-area cooperative storage with CFS. In Proc. of the ACM

Symposium on Operating System Principles, October, pp. 202–15.

980 REFERENCES

Dabek et al. 2003 Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J. and Stoica, I.(2003).
Ion Stoica, Towards a common API for structured peer-to-peer overlays.
In Proceedings of the 2nd International Workshop on Peer-to-Peer

Systems (IPTPS ’03), Berkeley, CA, February, pp. 33–44.

Daemen and Rijmen 2000 Daemen, J. and Rijmen, V. (2000). The block cipher Rijndael.
Quisquater, J.-J. and Schneier, B.(eds.). Smart Card Research and
Applications, LNCS 1820. Springer-Verlag, pp. 288–296.

Daemen and Rijmen 2002 Daemen, J. and Rijmen, V. (2002). The Design of Rijndael: AES – The

Advanced Encryption Standard, New York: Springer-Verlag.

Dasgupta et al. 1991 Dasgupta, P., LeBlanc Jr., R.J., Ahamad, M. and Ramachandran, U.
(1991). The Clouds distributed operating system. IEEE Computer, Vol.
24, No. 11, pp. 34–44.

Davidson 1984 Davidson, S.B. (1984). Optimism and consistency in partitioned
database systems. ACM Transactions on Database Systems, Vol. 9, No.
3, pp. 456–81.

Davidson et al. 1985 Davidson, S.B., Garcia-Molina, H. and Skeen, D. (1985). Consistency
in partitioned networks. Computing Surveys, Vol. 17, No. 3, pp. 341–70.

Davies et al. 1998 Davies, N., Friday, A., Wade, S. and Blair, G. (1998). L2imbo: a
distributed systems platform for mobile computing. Mobile Networks

and Applications, Vol. 3, No. 2, pp. 143–156.

de Ipiña et al. 2002 de Ipiña, D.L., Mendonça, P. and Hopper, A. (2002). TRIP: A low-cost
vision-based location system for ubiquitous computing. Personal and

Ubiquitous Computing, Vol. 6, No. 3, pp. 206–219.

Dean 2006 Dean, J. (2006) Experiences with MapReduce, an abstraction for
large-scale computation. In Proc. of the 15th International Conference

on Parallel Architectures and Compilation Techniques, (PACT’06),
Seattle, WA, p. 1.

Dean and Ghemawat 2004 Dean, J. and Ghemawat, S. (2004). MapReduce: simplified data
processing on large clusters. In Proc. of Operating System Design and

Implementation, (OSDI’04), San Francisco, CA, pp. 137–150.

Dean and Ghemawat 2008 Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified data
processing on large clusters. Comms. ACM, Vol. 51, No. 1, pp. 107–113.

Dean and Ghemawat 2010 Dean, J. and Ghemawat, S. (2010). MapReduce: a flexible data
processing tool. Comms. ACM, Vol. 53, No. 1, pp. 72–77.

Debaty and Caswell 2001 Debaty, P. and Caswell, D. (2001). Uniform web presence architecture
for people, places, and things. IEEE Personal Communications, Vol. 8,
No. 4, pp. 6–11.

DEC 1990 Digital Equipment Corporation (1990). In Memoriam: J. C. R. Licklider

1915–1990. Technical Report 61, DEC Systems Research Center.

REFERENCES 981

DeCandia et al. 2007 DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman,
A., Pilchin, A., Sivasubramanian, S., Vosshall, P. and Vogels, W.
(2007). Dynamo: Amazon's highly available key-value store. SIGOPS

Oper. Syst. Rev. Vol. 41, No. 6, pp. 205–220.

Delgrossi et al. 1993 Delgrossi, L., Halstrick, C., Hehmann, D., Herrtwich, R.G., Krone, O.,
Sandvoss, J. and Vogt, C. (1993). Media scaling for audiovisual
communication with the Heidelberg transport system. ACM Multimedia

’93, Anaheim, CA.

Demers et al. 1989 Demers, A., Keshav, S. and Shenker, S. (1989). Analysis and simulation
of a fair queueing algorithm. ACM SIGCOMM ’89.

Denning and Denning 1977 Denning, D. and Denning, P. (1977). Certification of programs for
secure information flow. Comms. ACM, Vol. 20, No. 7, pp. 504–13.

Dertouzos 1974 Dertouzos, M.L. (1974). Control robotics – the procedural control of
physical processes. IFIP Congress.

Dierks and Allen 1999 Dierks, T. and Allen, C. (1999). The TLS Protocol Version 1.0. Internet
RFC 2246.

Diffie 1988 Diffie, W. (1988). The first ten years of public-key cryptography.
Proceedings of the IEEE, Vol. 76, No. 5, pp. 560–77.

Diffie and Hellman 1976 Diffie, W. and Hellman, M.E. (1976). New directions in cryptography.
IEEE Transactions Information Theory, Vol. IT-22, pp. 644–54.

Diffie and Landau 1998 Diffie, W. and Landau, S. (1998). Privacy on the Line. Cambridge, MA:
MIT Press.

Dijkstra 1959 Dijkstra, E.W. (1959). A note on two problems in connection with
graphs. Numerische Mathematic, Vol. 1, pp. 269–71.

Dilley et al. 2002 Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R. and Weihl,
B. (2002). Globally distributed content delivery. IEEE Internet

Computing, pp. 50–58.

Dingledine et al. 2000 Dingledine, R., Freedman, M.J. and Molnar, D. (2000). The Free Haven
project: Distributed anonymous storage service. In Proc. Workshop on

Design Issues in Anonymity and Unobservability, Berkeley, CA, July,
pp. 67–95.

Dolev and Malki 1996 Dolev, D. and Malki, D. (1996). The Transis approach to high
availability cluster communication. Comms. ACM, Vol. 39, No. 4, pp.
64–70.

Dolev and Strong 1983 Dolev, D. and Strong, H. (1983). Authenticated algorithms for
Byzantine agreement. SIAM Journal of Computing, Vol. 12, No. 4,
pp. 656–66.

Dolev et al. 1986 Dolev, D., Halpern, J., and Strong, H. (1986). On the possibility and
impossibility of achieving clock synchronization. Journal of Computing

Systems Science, Vol. 32, No. 2 , pp. 230–50.

982 REFERENCES

Dorcey 1995 Dorcey, T. (1995). CU-SeeMe desktop video conferencing software.
Connexions, Vol. 9, No. 3, pp. 42–45.

Douceur and Bolosky 1999 Douceur, J.R. and Bolosky, W. (1999). Improving responsiveness of a
stripe-scheduled media server. In Proc. IS &T/SPIE Conf. on
Multimedia Computing and Networking, pp. 192–203.

Douglis and Ousterhout
1991

Douglis, F. and Ousterhout, J. (1991). Transparent process migration:
Design alternatives and the Sprite implementation, Software – Practice

and Experience, Vol. 21, No. 8, pp. 757–89.

Draves 1990 Draves, R. (1990). A revised IPC interface. In Proceedings of the

USENIX Mach Workshop, pp. 101–21, October.

Draves et al. 1989 Draves, R.P., Jones, M.B. and Thompson, M.R. (1989). MIG - the Mach

Interface Generator. Technical Report, Dept. of Computer Science,
Carnegie-Mellon University.

Druschel and Peterson 1993 Druschel, P. and Peterson, L. (1993). Fbufs: a high-bandwidth
cross-domain transfer facility. In Proceedings of the 14th ACM

Symposium on Operating System Principles, pp. 189–202.

Druschel and Rowstron
2001

Druschel, P. and Rowstron, A. (2001). PAST: A large-scale, persistent
peeer-to-peer storage utility. In Proceedings of the Eighth Workshop on

Hot Topics in Operating Systems (HotOS-VIII), Schloss Elmau,
Germany, May, pp. 75–80.

Dubois et al. 1988 Dubois, M., Scheurich, C. and Briggs, F.A. (1988). Synchronization,
coherence and event ordering in multiprocessors. IEEE Computer, Vol.
21, No. 2, pp. 9–21.

Dwork et al. 1988 Dwork, C., Lynch, N. and Stockmeyer, L. (1988). Consensus in the
presence of partial synchrony. Journal of the ACM, Vol. 35, No. 2, pp.
288–323.

Eager et al. 1986 Eager, D., Lazowska, E. and Zahorjan, J. (1986). Adaptive load sharing
in homogeneous distributed systems. IEEE Transactions on Software

Engineering, Vol. SE-12, No. 5, pp. 662–675.

earth.google.com Google Earth. Home page.

Edney and Arbaugh 2003 Edney, J. and Arbaugh, W. (2003). Real 802.11 Security: Wi-Fi

Protected. Boston MA: Pearson Education.

Edwards and Grinter 2001 Edwards, W.K. and Grinter, R. (2001). At home with ubiquitous
computing: Seven challenges. In Proceedings of the Third International

Conference on Ubiquitous Computing (Ubicomp 2001), Atlanta, GA,
Sep.–Oct., pp. 256–272.

Edwards et al. 2002 Edwards, W.K., Newman, M.W., Sedivy, J.Z., Smith, T.F. and Izadi, S.
(2002). Challenge: Recombinant computing and the speakeasy
approach. In Proceedings of the Eighth ACM International Conference

on Mobile Computing and Networking (MobiCom 2002), Atlanta, GA,
September, pp. 279–286.

REFERENCES 983

EFF 1998 Electronic Frontier Foundation (1998). Cracking DES, Secrets of

Encryption Research, Wiretap Politics & Chip Design. Sebastapol, CA:
O’Reilly & Associates.

Egevang and Francis 1994 Egevang, K. and Francis, P. (1994). The IP Network Address Translator

(NAT). Internet RFC 1631.

Eisler et al. 1997 Eisler, M., Chiu, A. and Ling, L. (1997). RPCSEC_GSS Protocol

Specification. Sun Microsystems, Internet RFC 2203.

El Abbadi et al. 1985 El Abbadi, A., Skeen, D. and Cristian, C. (1985). An efficient
fault-tolerant protocol for replicated data management. In Proc. of the

4th Annual ACM SIGACT/SIGMOD Symposium on Principles of Data

Base Systems, Portland, OR, pp. 215–29.

Ellis et al. 1991 Ellis, C., Gibbs, S. and Rein, G. (1991). Groupware – some issues and
experiences. Comms. ACM, Vol. 34, No. 1, pp. 38–58.

Ellison 1996 Ellison, C. (1996). Establishing identity without certification
authorities. In Proc. of the 6th USENIX Security Symposium, San Jose,
CA, July, p.7.

Ellison et al. 1999 Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B. and
Ylonen, T. (1999). SPKI Certificate Theory. Internet RFC 2693,
September.

Elrad et al. 2001 Elrad, T., Filman, R. and Bader A. (eds.) (2001). Theme section on
aspect-oriented programming, Comms. ACM, Vol. 44, No. 10, pp.
29–32.

Emmerich 2000 Emmerich, W. (2000). Engineering Distributed Objects. New York:
John Wiley & Sons.

esm.cs.cmu.edu ESM project at CMU. Home page

Eugster et al. 2003 Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec A-M. (2003).
The many faces of publish-subscribe, ACM Computing Surveys, Vol.
35, No. 2, pp. 114–131.

Evans et al. 2003 Evans, C. and 15 other authors (2003). Web Services Reliability

(WS-Reliability), Fujitsu, Hitachi, NEC, Oracle Corporation, Sonic
Software, and Sun Microsystems.

Fall 2003 Fall, K. (2003). A delay-tolerant network architecture for challenged
internets. In Proceedings of the ACM 2003 Conference on Applications,

Technologies, Architectures and Protocols for Computer

Communications (SIGCOMM 2003), Karlsruhe, Germany, August, pp.
27–34.

Farley 1998 Farley, J. (1998). Java Distributed Computing. Cambridge, MA:
O’Reilly.

Farrow 2000 Farrow, R. (2000). Distributed denial of service attacks – how Amazon,
Yahoo, eBay and others were brought down. Network Magazine, March.

984 REFERENCES

Ferguson and Schneier
2003

Ferguson, N. and Schneier, B. (2003). Practical Cryptography. New
York: John Wiley & Sons.

Ferrari and Verma 1990 Ferrari, D. and Verma, D. (1990). A scheme for real-time channel
establishment in wide-area networks. IEEE Journal on Selected Areas

in Communications, Vol. 8, No. 4, pp. 368–79.

Ferreira et al. 2000 Ferreira, P., Shapiro, M., Blondel, X., Fambon, O., Garcia, J.,
Kloostermann, S., Richer, N., Roberts, M., Sandakly, F., Coulouris, G.,
Dollimore, J., Guedes, P., Hagimont, D. and Krakowiak, S. (2000).
PerDiS: Design, implementation, and use of a PERsistent DIstributed
Store. In LNCS 1752: Advances in Distributed Systems. Berlin,
Heidelberg, New York: Springer-Verlag. pp. 427–53.

Ferris and Langworthy
2004

Ferris, C. and Langworthy, D. (eds.), Bilorusets, R. and 22 other authors
(2004). Web Services Reliable Messaging Protocol (WS-Reliable

Messaging). BEA, IBM, Microsoft and TibCo.

Fidge 1991 Fidge, C. (1991). Logical time in distributed computing systems. IEEE

Computer, Vol. 24, No. 8, pp. 28–33.

Fielding 2000 Fielding, R. (2000). Architectural Styles and the Design of

Network-based Software Architectures. Doctoral dissertation,
University of California, Irvine

Fielding et al. 1999 Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach,
P. and Berners-Lee, T. (1999). Hypertext Transfer Protocol –

HTTP/1.1. Internet RFC 2616.

Filman et al. 2004 Filman, R., Elrad, T., Clarke, S. and Aksit, M. (2004) Aspect-Oriented

Software Development. Addison-Wesley.

Fischer 1983 Fischer, M. (1983). The consensus problem in unreliable distributed
systems (a brief survey). In Karpinsky, M. (ed.), Foundations of

Computation Theory, Vol. 158 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 127–140. Yale University Technical Report
YALEU/DCS/TR-273.

Fischer and Lynch 1982 Fischer, M. and Lynch, N. (1982). A lower bound for the time to assure
interactive consistency. Inf. Process. Letters, Vol. 14, No. 4, pp. 183–6.

Fischer and Michael 1982 Fischer, M.J. and Michael, A. (1982). Sacrificing serializability to attain
high availability of data in an unreliable network. In Proceedings of the

Symposium on Principles of Database Systems, pp. 70–5.

Fischer et al. 1985 Fischer, M., Lynch, N. and Paterson, M. (1985). Impossibility of
distributed consensus with one faulty process. Journal of the ACM, Vol.
32, No. 2, pp. 374–82.

Fitzgerald and Rashid 1986 Fitzgerald, R. and Rashid, R.F. (1986). The integration of virtual
memory management and interprocess communication in Accent. ACM

Transactions on Computer Systems, Vol. 4, No. 2, pp. 147–77.

REFERENCES 985

Flanagan 2002 Flanagan, D. (2002). Java in a Nutshell, 4th edn. Cambridge, MA:
O’Reilly.

Floyd 1986 Floyd, R. (1986). Short term file reference patterns in a UNIX

environment. Technical Rep. TR 177, Rochester, NY: Dept of
Computer Science, University of Rochester.

Floyd and Jacobson 1993 Floyd, S. and Jacobson, V. (1993). The synchronization of periodic
routing messages. ACM Sigcomm ’93 Symposium.

Floyd et al. 1997 Floyd, S., Jacobson, V., Liu, C., McCanne, S. and Zhang, L. (1997). A
reliable multicast framework for lightweight sessions and application
level framing. IEEE/ACM Transactions on Networking, Vol. 5, No. 6,
pp. 784–803.

Fluhrer et al. 2001 Fluhrer, S., Mantin, I. and Shamir, A. (2001). Weaknesses in the key
scheduling algorithm of RC4. In Proceedings of the 8th annual

workshop on Selected Areas of Cryptography (SAC), Toronto, Canada,
pp. 1–24.

Ford and Fulkerson 1962 Ford, L.R. and Fulkerson, D.R. (1962). Flows in Networks. Princeton,
NJ: Princeton University Press.

Foster and Kesselman 2004 Foster, I. and Kesselman, C. (eds.) (2004). The Grid 2. San Francisco,
CA: Morgan Kauffman.

Foster et al. 2001 Foster, I., Kesselman, C. and Tuecke, S. (2001). The anatomy of the
Grid: Enabling scalable virtual organisations. Intl. J. Supercomputer

Applications, Vol. 15, No. 3, pp. 200–222.

Foster et al. 2002 Foster, I., Kesselman, C., Nick, J. and Tuecke, S. (2002). Grid services
for distributed systems integration. IEEE Computer, Vol. 35, No. 6, pp.
37–46.

Foster et al. 2004 Foster, I., Kesselman, C. and Tuecke, S. (2004). The Open Grid Services

Architecture. In Foster, I. and Kesselman, C. (eds.), The Grid 2. San
Francisco, CA: Morgan Kauffman.

Fox et al. 1997 Fox, A., Gribble, S., Chawathe, Y., Brewer, E. and Gauthier, P. (1997).
Cluster-based scalable network services. Proceedings of the 16th ACM

Symposium on Operating Systems Principles, pp. 78–91.

Fox et al. 1998 Fox, A., Gribble, S.D., Chawathe, Y. and Brewer, E.A. (1998).
Adapting to network and client variation using active proxies: Lessons
and perspectives. IEEE Personal Communications, Vol. 5, No. 4, pp.
10–19.

Fox et al. 2003 Fox, D., Hightower, J., Liao, L., Schulz, D. and Borriello, G. (2003).
Bayesian filtering for location estimation. IEEE Pervasive Computing,
Vol. 2, No. 3, pp. 24–33.

fractal.ow2.org I Fractal Project. Home page.

fractal.ow2.org II Fractal Project. Tutorial.

986 REFERENCES

France and Rumpe 2007 France, R. and Rumpe, B. (2007). Model-driven development of
complex software: A research roadmap. International Conference on

Software Engineering (Future of Software Engineering session). IEEE
Computer Society, Washington, DC, pp. 37–54.

Fraser et al. 2003 Fraser, K.A., Hand, S.M., Harris, T.L., Leslie, I.M. and Pratt, I.A.
(2003). The Xenoserver computing infrastructure. Technical Report
UCAM-CL-TR-552, Computer Laboratory, University of Cambridge.

Freed and Borenstein 1996 Freed, N. and Borenstein, N. (1996). MIME (Multipurpose Internet Mail

Extensions) Part One: Mechanisms for Specifying and Describing the

Format of Internet Message Bodies. September. Internet RFC 1521.

freenet.project.org The Free Network Project.

freepastry.org The FreePastry project.

Frey and Roman 2007 Frey, D. and G-C Roman, G-C. (2007). Context-aware publish
subscribe in mobile ad hoc networks. In Proceedings of the 9th

International Conference on Coordination Models and Languages, pp.
37–55.

Ganesh et al. 2003 Ganesh, A. J., Kermarrec, A. and Massoulié, L. (2003). Peer-to-peer
membership management for gossip-based protocols. IEEE

Transactions on Computers, Vol. 52, No. 2, pp. 139–149.

Garay and Moses 1993 Garay, J. and Moses, Y. (1993). Fully polynomial Byzantine agreement
in t+1 rounds. In Proceedings of the 25th ACM symposium on theory of

computing, pp. 31–41.

Garcia-Molina 1982 Garcia-Molina, H. (1982). Elections in distributed computer systems.
IEEE Transactions on Computers, Vol. C-31, No. 1, pp. 48–59.

Garcia-Molina and
Spauster 1991

Garcia-Molina, H. and Spauster, A. (1991). Ordered and reliable
multicast communication. ACM Transactions on Computer Systems,
Vol. 9, No. 3, pp. 242–71.

Garfinkel 1994 Garfinkel, S. (1994). PGP: Pretty Good Privacy. Cambridge, MA:
O’Reilly.

Gehrke and Madden 2004 Gehrke, J. and Madden, S. (2004). Query processing in sensor networks.
IEEE Pervasive Computing, Vol. 3, No. 1, pp. 46–55.

Gelernter 1985 Gelernter, D. (1985). Generative communication in Linda. ACM

Transactions on Programming Languages and Systems, Vol. 7, No. 1,
pp. 80–112.

Ghemawat et al. 2003 Ghemawat, S., Gobioff, H. and Leung, S. (2003). The Google file
system. SIGOPS Oper. Syst. Rev., Vol. 37, No. 5, pp. 29–43.

Gibbs and Tsichritzis 1994 Gibbs, S.J. and Tsichritzis, D.C. (1994). Multimedia Programming.
Addison-Wesley.

REFERENCES 987

Gibson et al. 2004 Gibson, G., Courtial, J., Padgett, M.J., Vasnetsov, M., Pas’ko, V.,
Barnett, S.M. and Franke-Arnold, S. (2004). Free-space information
transfer using light beams carrying orbital angular momentum. Optics

Express, Vol. 12, No. 22, pp. 5448–5456.

Gifford 1979 Gifford, D.K. (1979). Weighted voting for replicated data. In
Proceedings of the 7th Symposium on Operating Systems Principles, pp.
150–62.

glassfish.dev.java.net GlassFish Application Server. Home page.

Gokhale and Schmidt 1996 Gokhale, A. and Schmidt, D. (1996). Measuring the performance of
communication middleware on high-speed networks. In Proceedings of

SIGCOMM ’96, pp. 306–17.

Golding and Long 1993 Golding, R. and Long, D. (1993). Modeling replica divergence in a

weak-consistency protocol for global-scale distributed databases.
Technical report UCSC-CRL-93-09, Computer and Information
Sciences Board, University of California, Santa Cruz.

Goldschlag et al. 1999 Goldschlag, D., Reed, M. and Syverson, P. (1999). Onion routing for
anonymous and private Internet connections. Communications of the

ACM, Vol. 42, No. 2, pp. 39–41.

Golub et al. 1990 Golub, D., Dean, R., Forin, A. and Rashid, R. (1990). UNIX as an

application program. In Proc. USENIX Summer Conference, pp.
87–96.

Gong 1989 Gong, L. (1989). A secure identity-based capability system. In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, May, pp. 56–63.

googleblog.blogspot.com I The Official Google Blog. Powering a Google search.

googleblog.blogspot.com II The Official Google Blog. New Search Engine: Caffeine.

googletesting.blogspot.com The Google Testing Blog. Home page.

Gordon 1984 Gordon, J. (1984). The Story of Alice and Bob. After dinner speech, see
also: en.wikipedia.org/wiki/Alice_and_Bob .

Govindan and Anderson
1991

Govindan, R. and Anderson, D.P. (1991). Scheduling and IPC
mechanisms for continuous media. ACM Operating Systems Review,

Vol. 25, No. 5, pp. 68–80.

Goyal and Carter 2004 Goyal, S. and Carter, J. (2004). A lightweight secure cyber foraging
infrastructure for resource-constrained devices. In Proceedings of the

Sixth IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA 2004), December, pp. 186–195.

988 REFERENCES

Graumann et al. 2003 Graumann, D., Lara, W., Hightower, J. and Borriello, G. (2003).
Real-world implementation of the Location Stack: The Universal
Location Framework. In Proceedings of the 5th IEEE Workshop on

Mobile Computing Systems & Applications (WMCSA 2003), Monterey,
CA, October, pp. 122–128.

Grace et al. 2003 Grace, P., Blair, G.S. and Samuel, S. (2003). ReMMoC: A reflective
middleware to support mobile client interoperability. In Proceedings of

the International Symposium on Distributed Objects and Applications

(DOA’03), Catania, Sicily, November, pp. 1170–1187.

Grace et al. 2008 Grace, P., Hughes, D., Porter, B., Blair, G.S., Coulson, G. and Taiani, F.
(2008). Experiences with open overlays: A middleware approach to
network heterogeneity. In Proceedings of the 3rd ACM Sigops/Eurosys

European Conference on Computer Systems (Eurosys’08), Glasgow,
Scotland, pp. 123–136.

Gray 1978 Gray, J. (1978). Notes on database operating systems. In Operating

Systems: an Advanced Course. Lecture Notes in Computer Science,
Vol. 60, Springer-Verlag, pp. 394–481.

Gray and Szalay 2002 Gray, J. and Szalay, A. (2002). The World-Wide Telescope, an

Archetype for Online Science. Technical Report. MSR-TR-2002-75.
Microsoft Research.

Greenfield and Dornan
2004

Greenfield, D. and Dornan, A. (2004). Amazon: Web site to web
services, Network Magazine, October.

Grimm 2004 Grimm, R. (2004). One.world: Experiences with a pervasive computing
architecture. IEEE Pervasive Computing, Vol. 3, No. 3, pp. 22–30.

Gruteser and Grunwald
2003

Gruteser, M. and Grunwald, D. (2003). Enhancing location privacy in
wireless LAN through disposable interface identifiers: a quantitative
analysis. In Proceedings of the 1st ACM international workshop on

Wireless mobile applications and services on WLAN hotspots (WMASH

'03), San Diego, CA, September, pp. 46–55.

Guerraoui et al. 1998 Guerraoui, R., Felber, P., Garbinato, B. and Mazouni, K. (1998). System
support for object groups. In Proceedings of the ACM Conference on

Object Oriented Programming Systems, Languages and Applications

(OOPSLA’98).

Gummadi et al. 2003 Gummadi, K.P., Gummadi, R., Gribble, S.D., Ratnasamy, S., Shenker,
S. and Stoica, I. (2003). The impact of DHT routing geometry on
resilience and proximity. In Proc. ACM SIGCOMM 2003, pp. 381–94.

Gupta et al. 2004 Gupta, A., Sahin, O. D., Agrawal, D. and Abbadi, A. E. (2004).
Meghdoot: Content-based publish/subscribe over P2P networks. In
Proceedings of the 5th ACM/IFIP/USENIX International Conference on

Middleware, Toronto, Canada, October, pp. 254–273.

REFERENCES 989

Gusella and Zatti 1989 Gusella, R. and Zatti, S. (1989). The accuracy of clock synchronization
achieved by TEMPO in Berkeley UNIX 4.3BSD. IEEE Transactions on

Software Engineering, Vol. 15, No. 7, pp. 847–53.

Guttman 1999 Guttman, E. (1999). Service location protocol: Automatic discovery of
IP network services. IEEE Internet Computing, Vol. 3, No. 4, pp. 71–80.

Haartsen et al. 1998 Haartsen, J., Naghshineh, M., Inouye, J., Joeressen, O.J. and Allen, W.
(1998). Bluetooth: Vision, goals and architecture. ACM Mobile

Computing and Communications Review, Vol. 2, No. 4, pp. 38–45.

hadoop.apache.org Hadoop. Home page.

Hadzilacos and Toueg 1994 Hadzilacos, V. and Toueg, S. (1994). A Modular Approach to

Fault-tolerant Broadcasts and Related Problems. Technical report,
Dept of Computer Science, University of Toronto.

Hand et al. 2003 Hand, S., Harris, T., Kotsovinos, E. and Pratt, I. (2003). Controlling the
XenoServer open platform. In Proceedings of the 6th IEEE Conference

on Open Architectures and Network Programming (OPEN ARCH

2003), pp. 3–11.

Handley et al. 1999 Handley, M., Schulzrinne, H., Schooler, E. and Rosenberg, J. (1999).
SIP: Session Initiation Protocol. Internet RFC 2543.

Harbison 1992 Harbison, S. P. (1992). Modula-3. Englewood Cliffs, NJ: Prentice-Hall.

Härder 1984 Härder, T. (1984). Observations on optimistic concurrency control
schemes. Information Systems, Vol. 9, No. 2, pp. 111–20.

Härder and Reuter 1983 Härder, T. and Reuter, A. (1983). Principles of transaction-oriented
database recovery. ACM Computing Surveys, Vol. 15, No. 4, pp.
287–317.

Harrenstien et al. 1985 Harrenstien, K., Stahl, M. and Feinler, E. (1985). DOD Internet Host

Table Specification. Internet RFC 952.

Harter and Hopper 1994 Harter, A. and Hopper, A. (1994). A distributed location system for the
active office. IEEE Network, Vol. 8, No. 1, pp. 62–70.

Harter et al. 2002 Harter, A., Hopper, A., Steggles, P., Ward, A. and Webster, P. (2002).
The anatomy of a context-aware application. Wireless Networks, Vol. 8,
No. 2–3, pp. 187–197.

Härtig et al. 1997 Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S. and Wolter, J.
(1997). The performance of kernel-based systems. In Proceedings of the

16th ACM Symposium on Operating System Principles, pp. 66–77.

Hartman and Ousterhout
1995

Hartman, J. and Ousterhout, J. (1995). The Zebra striped network file
system. ACM Trans. on Computer Systems, Vol. 13 , No. 3, pp.
274–310.

990 REFERENCES

Hauch and Reiser 2000 Hauch, R. and Reiser, H. (2000). Monitoring quality of service across
organisational boundaries. In Trends in Distributed Systems: Towards a

Universal Service Market, Proc. Third Intl. IFIP/HGI Working
conference, USM, September.

Hayton et al. 1998 Hayton, R., Bacon, J. and Moody, K. (1998). OASIS: Access control in
an open, distributed environment. In Proceedings of the IEEE

Symposium on Security and Privacy, May, Oakland, CA, pp. 3–14.

Hedrick 1988 Hedrick, R. (1988). Routing Information Protocol. Internet RFC 1058.

Heidemann et al. 2001 Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D.
and Ganesan, D. (2001). Building efficient wireless sensor networks
with low-level naming. In Proceedings of the 18th ACM Symposium on

Operating Systems Principles, Banff, Alberta, Canada, October, pp.
146–159.

Heineman and Councill
2001

Heineman, G.T. and Councill, W.T. (2001). Component-Based

Software Engineering: Putting the Pieces Together. Reading, MA:
Addison-Wesley.

Hennessy and Patterson
2006

Hennessy, J.L. and Patterson, D.A. (2006). Computer Architecture: A

Quantitative Approach, 4th edn. San Francisco:CA: Morgan Kaufmann.

Henning 1998 Henning, M. (1998). Binding, migration and scalability in CORBA.
Comms. ACM, Vol. 41, No. 10, pp. 62–71.

Henning and Vinoski 1999 Henning, M. and Vinoski, S. (1999). Advanced CORBA Programming

with C++. Reading, MA: Addison-Wesley.

Herlihy 1986 Herlihy, M. (1986). A quorum-consensus replication method for
abstract data yypes. ACM Transactions on Computer Systems, Vol. 4,
No. 1, pp. 32–53.

Herlihy and Wing 1990 Herlihy, M. and Wing, J. (1990). On linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming

Languages and Systems, Vol. 12, No. 3, pp. 463–92.

Herrtwich 1995 Herrtwich, R.G. (1995). Achieving quality of service for multimedia
applications. ERSADS ’95, European Research Seminar on Advanced

Distributed Systems, l’Alpe d’Huez, France, April.

Hightower and Borriello
2001

Hightower, J. and Borriello, G. (2001). Location systems for ubiquitous
computing. IEEE Computer, Vol. 34, No. 8, pp. 57–66.

Hightower et al. 2002 Hightower, J., Brumitt, B. and Borriello, G. (2002). The Location Stack:
A layered model for location in ubiquitous computing. In Proceedings

of the 4th IEEE Workshop on Mobile Computing Systems &

Applications (WMCSA 2002), Callicoon, NY, June, pp. 22–28.

REFERENCES 991

Hill et al. 2000 Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D. and Pister, K.
(2000). System architecture directions for networked sensors. In
Proceedings of the Ninth ACM International Conference on

Architectural Support for Programming Languages and Operating

Systems (ASPLOS-IX), Cambridge, MA, November, pp. 93–104.

Hirsch 1997 Hirsch, F.J. (1997). Introducing SSL and Certificates using SSLeay.
World Wide Web Journal, Vol. 2, No. 3, pp. 141–173.

Holmquist et al. 2001 Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M. and
Gellersen, H.-W. (2001). Smart-Its Friends: A technique for users to
easily establish connections between smart artefacts. In Proceedings of

the Third International Conference on Ubiquitous Computing

(Ubicomp 2001), Atlanta, GA, September –October, pp. 116–122.

Housley 2002 Housley, R. (2002). Cryptographic Message Syntax (CMS) Algorithms.
Internet RFC 3370.

Howard et al. 1988 Howard, J.H., Kazar, M.L., Menees, S.G, Nichols, D.A.,
Satyanarayanan, M., Sidebotham, R.N. and West, M.J. (1988). Scale
and performance in a distributed file system. ACM Transactions on

Computer Systems, Vol. 6, No. 1, pp. 51–81.

Huang et al. 2000 Huang, A., Ling, B., Barton, J. and Fox, A. (2000). Running the Web
backwards: Appliance data services. In Proceedings of the 9th

international World Wide Web Conference, pp.619–31.

Huitema 1998 Huitema, C. (1998). IPv6 – the New Internet Protocol. Upper Saddle
River, NJ: Prentice-Hall.

Huitema 2000 Huitema, C. (2000). Routing in the Internet, 2nd edn. Englewood Cliffs,
NJ: Prentice-Hall.

Hull et al. 2004 Hull, R., Clayton, B. and Melamad, T. (2004). Rapid authoring of
mediascapes. In Proceedings of the Sixth International Conference on

Ubiquitous Computing (Ubicomp 2004), Nottingham, England,
September, pp. 125–142.

hulu.com Hulu. Home page.

Hunt et al. 2007 Hunt, G.C. and Larus, J. R., Singularity: Rethinking the Software Stack,
In ACM SIGOPS Operating Systems Review, Vol. 41, No. 2, pp. 37–49.

Hunter and Crawford 1998 Hunter, J. and Crawford, W. (1998). Java Servlet Programming.
Sebastopol, CA: O’Reilly.

Hutchinson and Peterson
1991

Hutchinson, N. and Peterson, L. (1991). The x-kernel: An architecture
for implementing network protocols. IEEE Transactions on Software

Engineering, Vol. 17, No. 1, pp. 64–76.

Hutchinson et al. 1989 Hutchinson, N.C., Peterson, L.L., Abbott, M.B. and O'Malley, S.W.
(1989). RPC in the x-Kernel: Evaluating new design techniques. In
Proc. of the 12th ACM Symposium on Operating System Principles, pp.
91–101.

992 REFERENCES

Hyman et al. 1991 Hyman, J., Lazar, A.A. and Pacifici, G. (1991). MARS – The
MAGNET-II Real-Time Scheduling Algorithm. ACM SlGCOM ’91,
Zurich.

IEEE 1985a Institute of Electrical and Electronic Engineers (1985). Local Area

Network – CSMA/CD Access Method and Physical Layer

Specifications. American National Standard ANSI/IEEE 802.3, IEEE
Computer Society.

IEEE 1985b Institute of Electrical and Electronic Engineers (1985). Local Area

Network – Token Bus Access Method and Physical Layer Specifications.
American National Standard ANSI/IEEE 802.4, IEEE Computer
Society.

IEEE 1985c Institute of Electrical and Electronic Engineers (1985). Local Area

Network – Token Ring Access Method and Physical Layer

Specifications. American National Standard ANSI/IEEE 802.5, IEEE
Computer Society.

IEEE 1990 Institute of Electrical and Electronic Engineers (1990). IEEE Standard

802: Overview and Architecture. American National Standard
ANSI/IEEE 802, IEEE Computer Society.

IEEE 1994 Institute of Electrical and Electronic Engineers (1994). Local and

Metropolitan Area Networks – Part 6: Distributed Queue Dual Bus

(DQDB) Access Method and Physical Layer Specifications. American
National Standard ANSI/IEEE 802.6, IEEE Computer Society.

IEEE 1999 Institute of Electrical and Electronic Engineers (1999). Local and

Metropolitan Area Networks – Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications. American
National Standard ANSI/IEEE 802.11, IEEE Computer Society.

IEEE 2002 Institute of Electrical and Electronic Engineers (2002). Wireless

Medium Access Control (MAC) and Physical Layer (PHY)

Specifications for Wireless Personal Area Networks (WPANs).
American National Standard ANSI/IEEE 802.15.1, IEEE Computer
Society.

IEEE 2003 Institute of Electrical and Electronic Engineers (2003). Part 15.4:

Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specifications for Low-Rate Wireless Personal Area Networks

(LR-WPANs). American National Standard ANSI/IEEE 802.15.4, IEEE
Computer Society.

IEEE 2004a Institute of Electrical and Electronic Engineers (2004). IEEE Standard

for Local and Metropolitan Area Networks – Part 16: Air Interface for

Fixed Broadband Wireless Access Systems. American National
Standard ANSI/IEEE 802.16, IEEE Computer Society.

REFERENCES 993

IEEE 2004b Institute of Electrical and Electronic Engineers (2004). Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY)

Specifications: Medium Access Control (MAC) Security Enhancement,.
American National Standard ANSI/IEEE 802.11i, IEEE Computer
Society.

Imielinski and Navas 1999 Imielinski, T. and Navas, J.C. (1999). GPS-based geographic
addressing, routing, and resource discovery. Comms. ACM, Vol. 42, No.
4, pp. 86–92.

International PGP The International PGP Home Page.

Internet World Stats 2004 Internet World Stats. www.internetworldstats.com

Ishii and Ullmer 1997 Ishii, H. and Ullmer, B.,(1997). Tangible bits: Towards seamless
interfaces between people, bits and atoms. In Proceedings of the ACM

Conference on Human Factors in Computing Systems (CHI ’97),
Atlanta, GA, March, pp. 234–241.

ISO 1992 International Organization for Standardization (1992). Basic Reference

Model of Open Distributed Processing, Part 1: Overview and Guide to

Use. ISO/IEC JTC1/SC212/WG7 CD 10746-1, International
Organization for Standardization.

ISO 8879 International Organization for Standardization (1986). Information

Processing – Text and Office Systems – Standard Generalized Markup

Language (SGML).

ITU/ISO 1997 International Telecommunication Union / International Organization for
Standardization (1997). Recommendation X.500 (08/97): Open Systems

Interconnection – The Directory: Overview of Concepts, Models and

Services.

Iyer et al. 2002 Iyer, S., Rowstron, A. and Druschel, P. (2002). Squirrel: A decentralized
peer-to-peer web cache. In Proceedings of the 12th ACM Symposium on

Principles of Distributed Computing (PODC 2002), pp. 213–22.

jakarta.apache.org The Apache foundation. Apache Tomcat.

java.sun.com I Sun Microsystems. Java Remote Method Invocation.

java.sun.com II Sun Microsystems. Java Object Serialization Specification.

java.sun.com III Sun Microsystems. Servlet Tutorial.

java.sun.com IV Jordan, M. and Atkinson, M. (1999). Orthogonal Persistence for the

Java Platform - Draft Specification. Sun Microsystems Laboratories,
Palo Alto, CA.

java.sun.com V Sun Microsystems, Java Security API.

java.sun.com VI Sun Microsystems (1999). JavaSpaces technology.

java.sun.com VII Sun Microsystems. The Java Web Services Tutorial.

java.sun.com VIII Sun Microsystems (2003). Java Data Objects (JDO).

994 REFERENCES

java.sun.com IX Sun Microsystems. Java Remote Object Activation Tutorial.

java.sun.com X Sun Microsystems. JavaSpaces Service Specification.

java.sun.com XI Sun Microsystems. Java Messaging Service (JMS) home page.

java.sun.com XII Sun Microsystems. Enterprise JavaBeans Specification.

java.sun.com XIII Sun Microsystems. Java Persistence API Specification.

Johanson and Fox 2004 Johanson, B. and Fox, A. (2004). Extending tuplespaces for
coordination in interactive workspaces. Journal of Systems and

Software, Vol. 69, No. 3, pp. 243–266.

Johnson and Zwaenepoel
1993

Johnson, D. and Zwaenepoel, W. (1993). The peregrine
high-performance RPC system. Software–Practice and Experience,
Vol. 23, No. 2, pp. 201–21.

jonas.ow2.org OW2 Consortium. JOnAS Application Server.

Jordan 1996 Jordan, M. (1996). Early experiences with persistent Java. In
Proceedings of the First International Workshop on Persistence and

Java. Glasgow, Scotland, September, pp. 1–9..

Joseph et al. 1997 Joseph, A., Tauber, J. and Kaashoek, M. (1997). Mobile Computing
with the Rover Toolkit. IEEE Transactions on Computers: Special Issue

on Mobile Computing, Vol. 46, No. 3, pp. 337–52.

Jul et al. 1988 Jul, E., Levy, H., Hutchinson, N. and Black, A. (1988). Fine-grained
mobility in the Emerald system. ACM Transactions on Computer

Systems, Vol. 6, No. 1, pp. 109–33.

jxta.dev.java.net Jxta Community. Home page.

Kaashoek and Tanenbaum
1991

Kaashoek, F. and Tanenbaum, A. (1991). Group communication in the
Amoeba distributed operating system. In Proceedings of the 11th
International Conference on Distributed Computer Systems, pp.
222–30.

Kaashoek et al. 1989 Kaashoek, F., Tanenbaum, A., Flynn Hummel, S. and Bal, H. (1989).
An efficient reliable broadcast protocol. Operating Systems Review,
Vol. 23, No. 4, pp. 5–20.

Kaashoek et al. 1997 Kaashoek, M., Engler, D., Ganzer, G., Briceño, H., Hunt, R., Mazières,
D., Pinckney, T., Grimm, R., Jannotti, J. and Mackenzie, K. (1997).
Application performance and flexibility on exokernel systems. In
Proceedings of the 16th ACM Symposium on Operating Systems

Principles, pp. 52–65.

Kahn 1967 Kahn, D. (1967). The Codebreakers: The Story of Secret Writing. New
York: Macmillan.

Kahn 1983 Kahn, D. (1983). Kahn on Codes. New York: Macmillan.

Kahn 1991 Kahn, D. (1991). Seizing the Enigma. Boston: Houghton Mifflin.

REFERENCES 995

Kaler 2002 Kaler, C. (ed.) (2002). Specification: Web Services Security

(WS-Security).

Kaliski and Staddon 1998 Kaliski, B. and Staddon, J. (1998). RSA Cryptography Specifications,
Version 2.0. Internet RFC 2437.

Kantor and Lapsley 1986 Kantor, B. and Lapsley, P. (1986). Network News Transfer Protocol: A

Proposed Standard for the Stream-Based Transmission of News.
Internet RFC 977.

Kehne et al. 1992 Kehne, A., Schonwalder, J. and Langendorfer, H. (1992). A
nonce-based protocol for multiple authentications. ACM Operating

Systems Review, Vol. 26, No. 4, pp. 84–9.

Keith and Wittle 1993 Keith, B.E. and Wittle, M. (1993). LADDIS: The next generation in
NFS file server benchmarking, USENIX Association Conference

Proceedings, Berkeley, CA, June, pp. 261–78.

Kiciman and Fox 2000 Kiciman, E. and Fox, A. (2000). Using dynamic mediation to integrate
COTS entities in a ubiquitous computing environment. In Proceedings

of the Second International Symposium on Handheld and Ubiquitous

Computing (HUC2K), Bristol, England, September, pp. 211–226.

Kille 1992 Kille, S. (1992). Implementing X.400 and X.500: The PP and QUIPU

Systems. Boston, MA: Artech House.

Kindberg 1995 Kindberg, T. (1995). A sequencing service for group communication
(abstract). In Proceedings of the 14th Annual ACM Symposium on

Principles of Distributed Computing, p. 260. Technical Report No. 698,
Queen Mary and Westfield College Dept. of CS, 1995.

Kindberg 2002 Kindberg, T. (2002). Implementing physical hyperlinks using
ubiquitous identifier resolution. In Proceedings of the Eleventh

International World Wide Web Conference (WWW2002), Honolulu, HI,
May pp. 191–199.

Kindberg and Barton 2001 Kindberg, T. and Barton, J. (2001). A web-based nomadic computing
system. Computer Networks, Vol. 35, No. 4, pp. 443–456.

Kindberg and Fox 2001 Kindberg, T. and Fox, A. (2001). System software for ubiquitous
computing. IEEE Pervasive Computing, Vol. 1, No. 1, pp. 70–81.

Kindberg and Zhang 2003a Kindberg, T. and Zhang, K. (2003). Secure spontaneous device
association. In Proceedings of the Fifth International Conference on

Ubiquitous Computing (Ubicomp 2003), Seattle, WA, October, pp.
124–131.

Kindberg and Zhang 2003b Kindberg, T. and Zhang, K. (2003). Validating and securing
spontaneous associations between wireless devices. In Proceedings of

the 6th Information Security Conference (ISC’03), Bristol, England,
October, pp. 44–53.

996 REFERENCES

Kindberg et al. 1996 Kindberg, T., Coulouris, G., Dollimore, J. and Heikkinen, J. (1996).
Sharing objects over the Internet: The Mushroom approach. In
Proceedings of the IEEE Global Internet 1996, London, England, Nov.,
pp. 67–71.

Kindberg et al. 2002a Kindberg, T., Barton, J., Morgan, J., Becker, G., Bedner, I., Caswell, D.,
Debaty, P., Gopal, G., Frid, M., Krishnan, V., Morris, H., Pering, C.,
Schettino, J. and Serra, B. (2002). People, places, things: Web presence
for the real world. Mobile Networks and Applications (MONET), Vol. 7,
No. 5,, pp. 365–376.

Kindberg et al. 2002b Kindberg, T., Zhang, K. and Shanka, N. (2002). Context authentication
using constrained channels. In Proceedings of the 4th IEEE Workshop

on Mobile Computing Systems & Applications (WMCSA 2002),
Callicoon, NY, June, pp. 14–21.

Kirsch and Amir 2008 Kirsch, J. and Amir, Y. (2008). Paxos for system builders: An overview.
In Proceedings of the 2nd Workshop on Large-Scale Distributed

Systems and Middleware (LADIS ‘08), Vol. 341, Yorktown Heights,
NY, pp. 1–6.

Kistler and Satyanarayanan
1992

Kistler, J.J. and Satyanarayanan, M. (1992). Disconnected operation in
the Coda file system. ACM Transactions on Computer Systems, Vol. 10,
No. 1, pp. 3–25.

Kleinrock 1961 Kleinrock, L. (1961). Information Flow in Large Communication

Networks. MIT, RLE Quarterly Progress Report, July.

Kleinrock 1997 Kleinrock, L. (1997). Nomadicity: Anytime, anywhere in a
disconnected world. Mobile Networks and Applications, Vol. 1, No. 4,
pp. 351–7.

Kohl and Neuman 1993 Kohl, J. and Neuman, C. (1993). The Kerberos Network Authentication

Service (V5). Internet RFC 1510.

Kon et al. 2002 Kon, F., Costa, F., Blair, G. and Campbell, R. (2002). The case for
reflective middleware. Comms. ACM, Vol. 45, No. 6, pp. 33–38.

Konstantas et al. 1997 Konstantas, D., Orlarey, Y., Gibbs, S. and Carbonel, O. (1997).
Distributed music rehearsal. In Proceedings of the International

Computer Music Conference 97, pp 54–64.

Kopetz and Verissimo 1993 Kopetz, H. and Verissimo, P. (1993). Real time and dependability
concepts. In Mullender, (eds.), Distributed Systems, 2nd edn. Reading,
MA: Addison-Wesley.

Kopetz et al. 1989 Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W. ,Senft,
C. and Zainlinger, R. (1989). Distributed fault-tolerant real-time
systems – The MARS Approach. IEEE Micro, Vol. 9, No. 1, pp.
112–26.

Krawczyk et al. 1997 Krawczyk, H., Bellare, M. and Canetti, R. (1997). HMAC:

Keyed-Hashing for Message Authentication. Internet RFC 2104.

REFERENCES 997

Krumm et al. 2000 Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M. and Shafer, S.
(2000). Multi-camera multi-person tracking for EasyLiving. In
Proceedings of the Third IEEE International Workshop on Visual

Surveillance (VS’2000), Dublin, Ireland, July, pp. 3–10.

Kshemkalyani and Singhal
1991

Kshemkalyani, A. and Singhal, M. (1991). Invariant-based verification
of a distributed deadlock detection algorithm. IEEE Transactions on

Software Engineering, Vol. 17, No. 8, pp. 789–99.

Kshemkalyani and Singhal
1994

Kshemkalyani, A. and Singhal, M. (1994). On characterisation and
correctness of distributed deadlock detection. Journal of Parallel and

Distributed Computing, Vol. 22, No. 1, pp. 44–59.

Kubiatowicz 2003 Kubiatowicz, J. (2003). Extracting guarantees from chaos,
Communications of the ACM, vol. 46, No. 2, pp. 33–38.

Kubiatowicz et al. 2000 Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels,
D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C.
and Zhao, B. (2000). OceanStore: an architecture for global-scale
persistent storage. In Proc. ASPLOS 2000, November, pp. 190–201.

Kung and Robinson 1981 Kung, H.T. and Robinson, J.T. (1981). Optimistic methods for
concurrency control. ACM Transactions on Database Systems, Vol. 6,
No. 2, pp. 213–26.

Kurose and Ross 2007 Kurose, J.F. and Ross, K.W. (2007). Computer Networking: A

Top-Down Approach Featuring the Internet. Boston, MA:
Addison-Wesley Longman.

Ladin et al. 1992 Ladin, R., Liskov, B., Shrira, L. and Ghemawat, S. (1992). Providing
availability using lazy replication. ACM Transactions on Computer

Systems, Vol. 10, No. 4, pp. 360–91.

Lai 1992 Lai, X. (1992). On the design and security of block ciphers. ETH Series

in Information Processing, Vol. 1. Konstanz, Geemany: Hartung-Gorre
Verlag.

Lai and Massey 1990 Lai, X. and Massey, J. (1990). A proposal for a new block encryption
standard. In Proceedings Advances in Cryptology–Eurocrypt ’90, pp.
389–404.

Lamport 1978 Lamport, L. (1978). Time, clocks and the ordering of events in a
distributed system. Comms. ACM, Vol. 21, No. 7, pp. 558–65.

Lamport 1979 Lamport, L. (1979). How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions on

Computers, Vol. C-28, No. 9, pp. 690–1.

Lamport 1986 Lamport, L. (1986). On interprocess communication, parts I and II.
Distributed Computing, Vol. 1, No. 2, pp. 77–101.

Lamport 1989 Lamport, L. (1989). The Part-Time Parliament. Technical Report 49,
DEC SRC, Palo Alto, CA.

998 REFERENCES

Lamport 1998 Lamport, L. (1998). The part-time parliament. ACM Transactions on

Computer Systems (TOCS), Vol. 16, No. 2, pp. 133–69.

Lamport et al. 1982 Lamport, L., Shostak, R. and Pease, M. (1982). Byzantine generals
problem. ACM Transactions on Programming Languages and Systems,
Vol. 4, No. 3, pp. 382–401.

Lampson 1971 Lampson, B. (1971). Protection. In Proceedings of the 5th Princeton

Conference on Information Sciences and Systems, p. 437. Reprinted in
ACM Operating Systems Review. Vol. 8, No. 1, p. 18.

Lampson 1981 Lampson, B.W. (1981). Atomic transactions. In Distributed systems:

Architecture and Implementation. Vol 105 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 254–9.

Lampson 1986 Lampson, B.W. (1986). Designing a global name service. In
Proceedings of the 5th ACM Symposium on Principles of Distributed

Computing, pp. 1–10.

Lampson et al. 1992 Lampson, B.W., Abadi, M., Burrows, M. and Wobber, E. (1992).
Authentication in distributed systems: Theory and practice. ACM

Transactions on Computer Systems, Vol. 10, No. 4, pp. 265–310.

Langheinrich 2001 Langheinrich, M. (2001). Privacy by design – principles of
privacy-aware ubiquitous systems. In Proceedings of the Third

International Conference on Ubiquitous Computing (Ubicomp 2001),
Atlanta, GA, Sep.–Oct., pp. 273–291.

Langville and Meyer 2006 Lanville, A.M. and Meyer, C.D. (2006). Pagerank and Beyond: The

Science of Search Engine Rankings. Princeton, NJ: Princeton University
Press.

Langworthy 2004 Langworthy, D. (ed.) (2004) Web Services Coordination.

(WS-Coordination), IBM, Microsoft, BEA.

Leach et al. 1983 Leach, P.J., Levine, P.H., Douros, B.P., Hamilton, J.A., Nelson, D.L.
and Stumpf, B.L. (1983). The architecture of an integrated local
network. IEEE J. Selected Areas in Communications, Vol. SAC-1, No.
5, pp. 842–56.

Lee and Thekkath 1996 Lee, E.K. and Thekkath, C.A. (1996). Petal: Distributed virtual disks, In
Proc. of the 7th Intl. Conf. on Architectural Support for Prog. Langs.

and Operating Systems, October, pp. 84–96.

Lee et al. 1996 Lee, C., Rajkumar, R. and Mercer, C. (1996). Experiences with
Processor Reservation and Dynamic QOS in Real-Time Mach. In
Proceedings Multimedia Japan ’96.

Leffler et al. 1989 Leffler, S., McKusick, M., Karels, M. and Quartermain, J. (1989). The

Design and Implementation of the 4.3 BSD UNIX Operating System.
Reading, MA: Addison-Wesley.

REFERENCES 999

Leibowitz et al. 2003 Leibowitz, N., Ripeanu, M. and Wierzbicki, A. (2003). Deconstructing
the Kazaa network. In Proc. of the 3rd IEEE Workshop on Internet

Applications (WIAPP’03), Santa Clara, CA, p.112.

Leiner et al. 1997 Leiner, B.M., Cerf, V.G., Clark, D.D., Kahn, R.E., Kleinrock, L.,
Lynch, D.C., Postel, J., Roberts, L.G. and Wolff, S. (1997). A brief
history of the Internet. Comms. ACM, Vol. 40, No. 1, pp. 102–108.

Leland et al. 1993 Leland, W.E., Taqqu, M.S., Willinger, W. and Wilson, D.V. (1993). On
the self-similar nature of Ethernet traffic. ACM SIGCOMM ’93, San
Francisco.

Leslie et al. 1996 Leslie, I., McAuley, D., Black, R., Roscoe, T., Barham, P., Evers, D.,
Fairbairns, R. and Hyden, E. (1996). The design and implementation of
an operating system to support distributed multimedia applications.
ACM Journal of Selected Areas in Communication, Vol. 14, No. 7, pp.
1280–97.

Liedtke 1996 Liedtke, J. (1996). Towards real microkernels. Comms. ACM, Vol. 39,
No. 9, pp. 70–7.

Linux AFS The Linux AFS FAQ.

Liskov 1988 Liskov, B. (1988). Distributed programming in Argus. Comms. ACM,

Vol. 31, No. 3, pp. 300–12.

Liskov 1993 Liskov, B. (1993). Practical uses of synchronized clocks in distributed
systems. Distributed Computing, Vol. 6, No. 4, pp. 211–19.

Liskov and Scheifler 1982 Liskov, B. and Scheifler, R.W. (1982). Guardians and actions:
Linguistic support for robust, distributed programs. ACM Transactions

on Programming Languages and Systems, Vol. 5, No. 3, pp. 381–404.

Liskov and Shrira 1988 Liskov, B. and Shrira, L. (1988). Promises: Linguistic support for
efficient asynchronous procedure calls in distributed systems. In
Proceedings of the SIGPLAN ’88 Conference Programming Language

Design and Implementation. Atlanta, GA, pp. 260–7.

Liskov et al. 1991 Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., Shrira, L. and
Williams, M. (1991). Replication in the Harp file system. In
Proceedings of the 13th ACM Symposium on Operating System

Principles, pp. 226–38.

Liu and Albitz 1998 Liu, C. and Albitz, P. (1998). DNS and BIND, third edition. O’Reilly.

Liu and Layland 1973 Liu, C.L. and Layland, J.W. (1973). Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal of the

ACM, Vol. 20, No. 1, pp. 46–61.

Liu et al. 2005 Liu, J., Sacchetti, D., Sailhan, F. and Issarny, V. (2005). Group
management for mobile ad hoc networks: Design, implementation and
experiment. In Proceedings of the 6th international Conference on

Mobile Data Management, New York, pp. 192–199.

1000 REFERENCES

Liu et al. 2008 Liu, J., Rao, S.G., Li, B. and Zhang, H. (2008). Opportunities and
challenges of peer-to-peer Internet video broadcast. In Proceedings of

the IEEE, Special Issue on Recent Advances in Distributed Multimedia

Communications, Vol. 96, No. 1, pp. 11–24.

Loepere 1991 Loepere, K. (1991). Mach 3 Kernel Principles. Open Software
Foundation and Carnegie-Mellon University.

Lundelius and Lynch 1984 Lundelius, J. and Lynch, N. (1984). An upper and lower bound for clock
synchronization. Information and Control, Vol. 62, No. 2/3, pp.
190–204.

Lv et al. 2002 Lv, Q., Cao, P., Cohen, E., Li, K.,and Shenker, S. (2002). Search and
replication in unstructured peer-to-peer networks. In Proceedings of the

2002 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems, Marina Del Rey, CA, pp. 258–259.

Lynch 1996 Lynch, N. (1996). Distributed Algorithms. San Francisco, CA: Morgan
Kaufmann.

Ma 1992 Ma, C. (1992). Designing a Universal Name Service. Technical Report
270, University of Cambridge.

Macklem 1994 Macklem, R. (1994). Not quite NFS: Soft cache consistency for NFS. In
Proceedings of the Winter ’94 USENIX Conference, San Francisco, CA,
January, pp. 261–278.

Madhavapeddy et al. 2003 Madhavapeddy, A., Scott, D. and Sharp, R. (2003). Context-aware
computing with sound. In Proceedings of the Fifth International

Conference on Ubiquitous Computing (Ubicomp 2003), Seattle, WA,
October, pp. 315–332.

Maekawa 1985 Maekawa, M. (1985). A N algorithm for mutual exclusion in
decentralized systems. ACM Transactions on Computer Systems, Vol. 3,
No. 2, pp. 145–159.

Maffeis 1995 Maffeis, S. (1995). Adding group communication and fault tolerance to
CORBA. In Proceedings of the 1995 USENIX Conference on

Object-Oriented Technologies. Monterey, CA. pp. 135–146.

Magee and Sloman 1989 Magee, J. and Sloman, M. (1989). Constructing distributed systems in
Conic. IEEE Trans. Software Engineering Vol. 15, No. 6, pp. 663–675.

Malkin 1993 Malkin, G. (1993). RIP Version 2 – Carrying Additional Information,
Internet RFC 1388.

Mamei and Zambonelli
2009

Mamei, M. and Zambonelli, F. (2009). Programming pervasive and
mobile computing applications: The TOTA approach. ACM

Transactions on Software Engineering and Methodology, Vol. 19, No.
4, p. 263.

maps.google.com Google Maps. Home page.

REFERENCES 1001

Marsh et al. 1991 Marsh, B., Scott, M., LeBlanc, T. and Markatos, E. (1991). First-class
user-level threads. In Proceedings of the 13th ACM Symposium on

Operating System Principles, pp. 110–21.

Martin et al. 2004 Martin, T., Hsiao, M., Ha, D. and Krishnaswami, J. (2004).
Denial-of-service attacks on battery-powered mobile computers. In
Proceedings of the 2nd IEEE Pervasive Computing Conference,
Orlando, FL, March, pp. 309–318.

Marzullo and Neiger 1991 Marzullo, K. and Neiger, G. (1991). Detection of global state predicates.
In Proceedings of the 5th International Workshop on Distributed

Algorithms, pp. 254–72.

Mattern 1989 Mattern, F. (1989). Virtual time and global states in distributed systems.
In Proceedings of the Workshop on Parallel and Distributed

Algorithms, Amsterdam, North-Holland, pp. 215–26.

Maymounkov and Mazieres
2002

Maymounkov, P. and Mazieres, D. (2002). Kademlia: A peer-to-peer
information system based on the XOR metric. In Proceedings of

IPTPS02, Cambridge, MA, pp. 53–65.

mbone BIBs: Introduction to the Multicast Backbone.

McGraw and Felden 1999 McGraw, G. and Felden, E. (1999). Securing Java. New York: John
Wiley & Sons.

McKusick and Quinlan
2010

McKusick, K. and Quinlan, S. (2010). GFS: Evolution or Fast-Forward.
Comms. ACM, Vol. 53, No. 3, pp. 42–49.

Meier and Cahill 2010 Meier, R. and Cahill, V. (2010). On event-based middleware for
location-aware mobile applications. IEEE Transactions on Software

Engineering, Vol. 36, No. 3, pp.09–430.

Melliar-Smith et al. 1990 Melliar-Smith, P., Moser, L. and Agrawala, V. (1990). Broadcast
protocols for distributed systems. IEEE Transactions on Parallel and

Distributed Systems, Vol. 1, No. 1, pp. 17–25.

Menezes 1993 Menezes, A. (1993). Elliptic Curve Public Key Cryptosystems.
Dordrecht, The Netherlands: Kluwer Academic Publishers.

Menezes et al. 1997 Menezes, A., van Oorschot, O. and Vanstone, S. (1997). Handbook of

Applied Cryptography. Boca Raton, FL: CRC Press.

Metcalfe and Boggs 1976 Metcalfe, R.M. and Boggs, D.R. (1976). Ethernet: distributed packet
switching for local computer networks. Comms. ACM, Vol. 19, No. , pp.
395–403.

Milanovic et al. 2004 Milanovic, N., Malek, M., Davidson, A. and Milutinovic, V. (2004).
Routing and cecurity in mobile ad hoc networks. IEEE Computer, Vol.
37, No. 2, pp. 69–73.

Mills 1995 Mills, D. (1995). Improved algorithms for synchronizing computer
network clocks. IEEE Transactions Networks, Vol. 3, No. 3, pp.
245–54.

1002 REFERENCES

Milojicic et al. 1999 Milojicic, J., Douglis, F. and Wheeler, R. (1999). Mobility, Processes,

Computers and Agents. Reading, MA: Addison-Wesley.

Mitchell and Dion 1982 Mitchell, J.G. and Dion, J. (1982). A comparison of two network-based
file servers. Comms. ACM, Vol. 25, No. 4, pp. 233–45.

Mitchell et al. 1992 Mitchell, C.J., Piper, F. and Wild, P. (1992). Digital signatures. In
Simmons, G.J. (ed.), Contemporary Cryptology. New York: IEEE
Press.

Mockapetris 1987 Mockapetris, P. (1987). Domain names – concepts and facilities.
Internet RFC 1034.

Mogul 1994 Mogul, J.D. (1994). Recovery in Spritely NFS. Computing Systems,
Vol. 7, No. 2, pp. 201–62.

Mok 1985 Mok, A.K. (1985). SARTOR – A design environment for real-time
systems. In Proc. Ninth IEEE COMP-SAC, Chicago, IL, Octobep, pp.
174–81.

Morin 1997 Morin, R. (ed.) (1997). MkLinux: Microkernel Linux for the Power

Macintosh. Prime Time Freeware.

Morris et al. 1986 Morris, J., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal,
D.S. and Smith, F.D. (1986). Andrew: A distributed personal computing
environment. Comms. ACM, Vol. 29, No. 3, pp. 184–201.

Moser et al. 1994 Moser, L., Amir, Y., Melliar-Smith, P. and Agarwal, D. (1994).
Extended virtual synchrony. In Proceedings of the 14th International

Conference on Distributed Computing Systems, pp. 56–65.

Moser et al. 1996 Moser, L., Melliar-Smith, P., Agarwal, D., Budhia, R. and
Lingley-Papadopoulos, C. (1996). Totem: A fault-tolerant multicast
group communication system. Comms. ACM, Vol. 39, No. 4, pp. 54–63.

Moser et al. 1998 Moser, L., Melliar-Smith, P. and Narasimhan, P. (1998). Consistent
object replication in the Eternal system. Theory and Practice of Object

Systems, Vol. 4, No. 2, pp. 81–92.

Moss 1985 Moss, E. (1985). Nested Transactions, An Approach to Reliable

Distributed Computing. Cambridge, MA: MIT Press.

Multimedia Directory Multimedia Directory (2005). Scala Inc.

Murphy et al. 2001 Murphy, A.L., Picco, G.P. and Roman, G.-C. (2001). Lime: A
middleware for physical and logical mobility. In Proceedings of the 21st

International Conference on Distributed Computing Systems

(ICDCS-21), Phoenix, AZ, April, pp. 524–233.

Muthitacharoen et al. 2002 Muthitacharoen, A., Morris, R., Gil, T.M. and Chen, B. (2002). Ivy: A
read/write peer-to-peer file system. In Proc. Fifth Symposium on

Operating Systems Design and Implementation (OSDI), Boston, MA,
December, pp. 31–44.

REFERENCES 1003

Muhl et al. 2006 Muhl, G., Fiege, L. and Pietzuch, P.R. (2006). Distributed Event-based

Systems. Berlin, Heidelberg: Springer-Verlag.

Myers and Liskov 1997 Myers, A.C. and Liskov, B. (1997). A decentralized model for
information flow control, ACM Operating Systems Review, Vol. 31, No.
5, pp. 129–42.

Nagle 1984 Nagle, J. (1984). Congestion control in TCP/IP internetworks,
Computer Communications Review, Vol. 14, No. 4, pp. 11–17.

Nagle 1987 Nagle, J. (1987). On packet switches with infinite storage. IEEE

Transactions on Communications, Vol. 35, No. 4, pp. 435–8.

National Bureau of
Standards 1977

National Bureau of Standards (1977). Data Encryption Standard (DES).

Federal Information Processing Standards No. 46, Washington, DC: US
National Bureau of Standards.

nbcr.sdsc.edu National Biomedical Computation Resource, University of California,
San Diego.

Needham 1993 Needham, R. (1993). Names. In Mullender, S. (ed.), Distributed

Systems, an Advanced Course, 2nd edn. Wokingham, England: ACM
Press/Addison-Wesley. pp. 315–26.

Needham and Schroeder
1978

Needham, R.M. and Schroeder, M.D. (1978). Using encryption for
authentication in large networks of computers. Comms. ACM, Vol. 21,
No. 12, pp. 993–9.

Nelson et al. 1988 Nelson, M.N., Welch, B.B. and Ousterhout, J.K. (1988). Caching in the
Sprite network file system. ACM Transactions on Computer Systems,
Vol. 6, No. 1, pp. 134–154.

Neuman et al. 1999 Neuman, B.C., Tung, B. and Wray, J. (1999). Public Key Cryptography

for Initial Authentication in Kerberos. Internet Draft
ietf-cat-kerberos-pk-init-09.

Neumann and Ts’o 1994 Neuman, B.C. and Ts’o, T. (1994). Kerberos: An authentication service
for computer networks. IEEE Communications, Vol. 32, No. 9, pp.
33–38.

Newcomer 2002 Newcomer, E. (2002). Understanding Web Services XML, WSDL,

SOAP and UDDI. Boston, MA: Pearson.

Nielsen and Thatte 2001 Nielsen, H.F. and Thatte, S. (2001). Web Services Routing Protocol

(WS-Routing). Microsoft Corporation.

Nielsen et al. 1997 Nielsen, H., Gettys, J., Baird-Smith, A., Prud’hommeaux, E., Lie, H.
and Lilley, C. (1997). Network performance effects of HTTP/1.1, CSS1,
and PNG. In Proceedings of the SIGCOMM ’97, pp. 155–66.

NIST 1994 National Institute for Standards and Technology (1994). Digital

Signature Standard, NIST FIPS 186. US Department of Commerce.

1004 REFERENCES

NIST 2002 National Institute for Standards and Technology (2002). Secure Hash

Standard. NIST FIPS 180-2 + Change Notice to include SHA-224. US
Department of Commerce.

NIST 2004 National Institute for Standards and Technology (2004). NIST Brief

Comments on Recent Cryptanalytic Attacks on Secure Hashing

Functions and the Continued Security Provided by SHA-1. US
Department of Commerce.

nms.csail.mit.edu The Berkeley RON project. Home page.

Noble and Satyanarayanan
1999

Noble, B. and Satyanarayanan, M. (1999). Experience with adaptive
mobile applications in Odyssey. Mobile Networks and Applications,
Vol. 4 , No. 4, pp. 245–254.

now.cs.berkeley.edu The Berkeley NOW project. Home page.

Oaks and Wong 1999 Oaks, S. and Wong, H. (1999). Java Threads, 2nd edn. Sebastoplo, CA:
O’Reilly.

Ohkubo et al. 2003 Ohkubo, M., Suzuki, K. and Kinoshita, S. (2003). Cryptographic
approach to ‘privacy-friendly’ tags. In Proceedings of the RFID Privacy

Workshop, MIT.

Oki et al. 1993 Oki, B., Pfluegl, M., Siegel, A., and Skeen, D. (1993). The Information
Bus: an architecture for extensible distributed systems. In Proceedings

of the Fourteenth ACM Symposium on Operating Systems Principles,
Asheville, NC, December, NY. pp. 58–68.

Olson and Ogbuji 2002 Olson, M. and Ogbuji, U. (2002). The Python Web services developer:

Messaging technologies compared – Choose the best tool for the task at

hand. IBM DeveloperWorks

OMG 2000a Object Management Group (2000). Trading Object Service

Specification, Vn. 1.0. Needham, MA: OMG.

OMG 2000b Object Management Group (2000). Concurrency Control Service

Specification. Needham, MA: OMG.

OMG 2002a Object Management Group (2002). The CORBA IDL Specification.
Needham, MA: OMG.

OMG 2002b Object Management Group (2002). CORBA Security Service

Specification Vn. 1.8. Needham, MA: OMG.

OMG 2002c Object Management Group (2002). Value Type Semantics. Needham,
MA: OMG.

OMG 2002d Object Management Group (2002). Life Cycle Service, Vn. 1.2.
Needham, MA: OMG.

OMG 2002e Object Management Group (2002). Persistent State Service, Vn. 2.0.
Needham, MA: OMG.

OMG 2003 Object Management Group, (2003). Object Transaction Service

Specification, Vn. 1.4. Needham, MA: OMG.

REFERENCES 1005

OMG 2004a Object Management Group (2004). CORBA/IIOP 3.0.3 Specification.
Needham, MA: OMG.

OMG 2004b Object Management Group (2004). Naming Service Specification.
Needham, MA: OMG.

OMG 2004c Object Management Group (2004). Event Service Specification, Vn.
1.2. Needham, MA: OMG.

OMG 2004d Object Management Group (2004). Notification Service Specification,
Vn. 1.1. Needham, MA: OMG. Technical report telecom/98-06-15.

OMG 2004e Object Management Group (2004). CORBA Messaging. Needham, MA:
OMG.

Omidyar and Aldridge
1993

Omidyar, C.G. and Aldridge, A. (1993). Introduction to SDH/SONET.
IEEE Communications Magazine, Vol. 31, pp. 30–3.

open.eucalyptus.com Eucalyptus. Home page.

OpenNap 2001 OpenNap: Open Source Napster Server, Beta release 0.44, September
2001.

Oppen and Dalal 1983 Oppen, D.C. and Dalal Y.K. (1983). The Clearinghouse: a decentralized
agent for locating named objects in a distributed environment. ACM

Trans. on Office Systems, Vol. 1, No. 3, pp. 230–53.

Oram 2001 Oram, A. (2001). Peer-to-Peer: Harnessing the Benefits of Disruptive

Technologies, O’Reilly, Sebastapol, CA.

Orfali et al. 1996 Orfali, R., Harkey, D. and Edwards, J. (1996). The Essential Distributed

Objects Survival Guide. New York: Wiley.

Orfali et al. 1997 Orfali, R., Harkey, D., and Edwards, J. (1997) Instant CORBA. New
York: John Wiley & Sons.

Organick 1972 Organick, E.I. (1972). The MULTICS System: An Examination of its

Structure. Cambridge, MA: MIT Press.

Orman et al. 1993 Orman, H., Menze, E., O’Malley, S. and Peterson, L. (1993). A fast and
general implementation of Mach IPC in a Network. In Proceedings of

the Third USENIX Mach Conference, April.

OSF Introduction to OSF DCE. The Open Group.

Ousterhout et al. 1985 Ousterhout, J., Da Costa, H., Harrison, D., Kunze, J., Kupfer, M. and
Thompson, J. (1985). A Trace-driven analysis of the UNIX 4.2 BSD file
system. In Proc. of the 10th ACM Symposium Operating System

Principles, p. 15–24.

Ousterhout et al. 1988 Ousterhout, J., Cherenson, A., Douglis, F., Nelson, M. and Welch, B.
(1988). The Sprite network operating system. IEEE Computer, Vol. 21,
No. 2, pp. 23–36.

Parker 1992 Parker, B. (1992). The PPP AppleTalk Control Protocol (ATCP).
Internet RFC 1378.

1006 REFERENCES

Parrington et al. 1995 Parrington, G.D., Shrivastava, S.K., Wheater, S.M. and Little, M.C.
(1995). The design and implementation of Arjuna. USENIX Computing

Systems Journal, Vol. 8, No. 3, pp. 255–308.

Partridge 1992 Partridge, C. (1992). A Proposed Flow Specification. Internet RFC
1363.

Patel and Abowd 2003 Patel, S.N. and Abowd, G.D. (2003). A 2-way laser-assisted selection
scheme for handhelds in a physical environment. In Proceedings of the

Fifth International Conference on Ubiquitous Computing (Ubicomp

2003), Seattle, WA, October, pp. 200–207.

Patterson et al. 1988 Patterson, D., Gibson, G. and Katz, R. (1988). A case for redundant
arrays of interactive disks. ACM International Conf. on Management of

Data (SIGMOD), pp. 109–116.

Pease et al. 1980 Pease, M., Shostak, R. and Lamport, L. (1980). Reaching agreement in
the presence of faults. Journal of the ACM, Vol. 27, No. 2, pp. 228–34.

Pedone and Schiper 1999 Pedone, F. and Schiper, A. (1999). Generic broadcast. In Proceedings of

the 13th International Symposium on Distributed Computing (DISC
’99), September, pp. 94–108.

Peng and Dabek 2010 Peng, D. and Dabex, F. (2010). Large-scale incremental processing
using distributed transactions and notifications. In Proceedings of the

Ninth Symposium on Operating Systems Design and Implementation

(OSDI ’10), Vancouver, Canada, October, pp. 1–15.

Perrig et al. 2002 Perrig, A., Szewczyk, R., Wen, V., Culler, D. and Tygar, D. (2002).
SPINS: Security protocols for sensor networks. Wireless Networks, Vol.
8, No. 5, pp. 521–534.

Peterson 1988 Peterson, L. (1988). The Profile Naming Service. ACM Transactions on

Computer Systems, Vol. 6, No. 4, pp. 341–64.

Peterson et al. 1989 Peterson, L.L., Buchholz, N.C. and Schlichting, R.D. (1989). Preserving
and using context information in interprocess communication. ACM

Transactions on Computer Systems, Vol. 7, No. 3, pp. 217–46.

Petersen et al. 1997 Petersen, K., Spreitzer, M., Terry, D., Theimer, M. and Demers, A.
(1997). Flexible update propagation for weakly consistent replication.
In Proceedings of the 16th ACM Symposium on Operating Systems

Principles, pp. 288–301.

Peterson et al. 2005 Peterson, L.L., Shenker, S. and Turner, J. (2005). Overcoming the
Internet impasse through virtualization. Computer, Vol. 38, No. 4, pp.
34–41.

Pietzuch and Bacon 2002 Pietzuch, P. R. and Bacon, J. (2002). Hermes: A distributed event-based
middleware architecture. In Proceedings of the First International

Workshop on Distributed Event-Based Systems, Vienna, Austria,
pp.611–618.

REFERENCES 1007

Pike et al. 1993 Pike, R., Presotto, D., Thompson, K., Trickey, H. and Winterbottom, P.
(1993). The use of name spaces in Plan 9. Operating Systems Review,
Vol. 27, No. 2, pp. 72–76.

Pike et al. 2005 Pike, R., Dorward, S., Griesemer, R. and Quinlan, S. (2005).
Interpreting the data: Parallel analysis with Sawzall. Scientific

Programming, Vol. 13, No. 4, pp. 277–298.

Pinheiro et al. 2007 Pinheiro, E., Weber, W.D. and Barroso, L.A. (2007). Failure trends in a
large disk drive population. In Proceedings of the 5th USENIX

Conference on File and Storage Technologies, pp. 17–28.

Plaxton et al. 1997 Plaxton, C.G., Rajaraman, R. and Richa, A.W. (1997). Accessing
nearby copies of replicated objects in a distributed environment. In
Proc. of the ACM Symposium on Parallel Algorithms and Architectures,
pp. 311–320.

Ponnekanti and Fox 2004 Ponnekanti, S. and Fox, A. (2004). Interoperability among
independently evolving web services. In Proceedings of the

ACM/Usenix/IFIP 5th International Middleware Conference, Toronto,
Canada, pp. 331–57.

Ponnekanti et al. 2001 Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P. and Winograd, T.
(2001). ICrafter: A service framework for ubiquitous computing
environments. In Proceedings of the Third International Conference on

Ubiquitous Computing (Ubicomp 2001), Atlanta, GA, Sep.–Oct., pp.
56–75.

Popek and Goldberg 1974 Popek, G.J. and Goldberg, R.P. (1974). Formal requirements for
virtualizable third generation architectures. Comms. ACM, Vol. 17, No.
7, pp. 412–421.

Popek and Walker 1985 Popek, G. and Walker, B. (eds.) (1985). The LOCUS Distributed System

Architecture. Cambridge, MA: MIT Press.

Postel 1981a Postel, J. (1981). Internet Protocol. Internet RFC 791.

Postel 1981b Postel, J. (1981). Transmission Control Protocol. Internet RFC 793.

Pottie and Kaiser 2000 Pottie, G.J. and Kaiser, W.J. (2000). Embedding the Internet: Wireless
integrated network sensors. Comms. ACM, Vol. 43, No. 5, pp. 51–58.

Powell 1991 Powell, D. (ed.) (1991). Delta-4: A Generic Architecture for

Dependable Distributed Computing. Berlin and New York:
Springer-Verlag.

Pradhan and Chiueh 1998 Pradhan, P. and Chiueh, T. (1998). Real-time performance guarantees
over wired and wireless LANS. In IEEE Conference on Real-Time

Applications and Systems, RTAS’98, June, p. 29.

Prakash and Baldoni 1998 Prakash, R. and Baldoni, R. (1998). Architecture for group
communication in mobile systems. In Proceedings of the the 17th IEEE

Symposium on Reliable Distributed Systems, Washington, DC, pp.
235–242.

1008 REFERENCES

Preneel et al. 1998 Preneel, B., Rijmen, V. and Bosselaers, A. (1998). Recent developments
in the design of conventional cryptographic algorithms. In Computer

Security and Industrial Cryptography, State of the Art and Evolution.
Vol. 1528 of Lecture Notes in Computer Science, Springer-Verlag, pp.
106–131.

privacy.nb.ca International Cryptography Freedom.

Radia et al. 1993 Radia, S., Nelson, M. and Powell, M. (1993). The Spring Naming

Service. Technical Report 93–16, Sun Microsystems Laboratories, Inc.

Raman and McCanne 1999 Raman, S. and McCanne, S. (1999). A model, analysis, and protocol
framework for soft state-based communication. In Proceedings of the

ACM SIGCOMM, 1999, Cambridge, MA, pp. 15–25.

Randall and Szydlo 2004 Randall, J. and Szydlo, M. (2004). Collisions for SHA0, MD5, HAVAL,
MD4, and RIPEMD, but SHA1 still secure. RSA Laboratories Technical

Note, August 31.

Rashid 1985 Rashid, R.F. (1985). Network operating systems. In Local Area

Networks: An Advanced Course, Lecture Notes in Computer Science,
184, Springer-Verlag, pp. 314–40.

Rashid 1986 Rashid, R.F. (1986). From RIG to Accent to Mach: the evolution of a
network operating system. In Proceedings of the ACM/IEEE Computer

Society Fall Joint Conference, ACM, November.

Rashid and Robertson 1981 Rashid, R. and Robertson, G. (1981). Accent: a communications
oriented network operating system kernel. ACM Operating Systems

Review, Vol. 15, No. 5, pp. 64–75.

Rashid et al. 1988 Rashid, R., Tevanian Jr, A., Young, M., Golub, D., Baron, R., Black, D.,
Bolosky, W.J. and Chew, J. (1988). Machine-Independent Virtual
Memory Management for Paged Uniprocessor and Multiprocessor
Architectures. IEEE Transactions on Computers, Vol. 37, No. 8, pp.
896–907.

Ratnasamy et al. 2001 Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Shenker, S.
(2001). A scalable content-addressable network. In Proc. ACM

SIGCOMM 2001, August, pp. 161–72.

Raynal 1988 Raynal, M. (1988). Distributed Algorithms and Protocols. New York:
John Wiley & Sons.

Raynal 1992 Raynal, M. (1992). About logical clocks for distributed systems. ACM

Operating Systems Review, Vol. 26, No. 1, pp. 41–8.

Raynal and Singhal 1996 Raynal, M. and Singhal, M. (1996). Logical time: Capturing causality in
distributed systems. IEEE Computer, Vol. 29, No. 2, pp. 49–56.

Redmond 1997 Redmond, F.E. (1997). DCOM: Microsoft Distributed Component

Model. IDG Books Worldwide.

REFERENCES 1009

Reed 1983 Reed, D.P. (1983). Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems, Vol. 1, No. 1, pp. 3–23.

Rellermeyer et al. 2007 Rellermeyer, J. S., Alonso, G., and Roscoe, T. (2007). R-OSGi:
Distributed applications through software modularization. In
Proceedings of the ACM/IFIP/USENIX 2007 international Conference

on Middleware, Newport Beach, CA, November, pp. 1–20.

Rescorla 1999 Rescorla, E. (1999). Diffie-Hellman Key Agreement Method. Internet
RFC 2631.

research.microsoft.com Microsoft Research. Writings of Leslie Lamport.

Rether Rether: A Real-Time Ethernet Protocol.

Rhea et al. 2001 Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H.
and Kubiatowicz, J. (2001). Maintenance-free global data storage. IEEE

Internet Computing, Vol. 5, No. 5, pp. 40–49.

Rhea et al. 2003 Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B. and
Kubiatowicz, J. (2003). Pond: The OceanStore prototype, In
Proceedings of the 2nd USENIX Conference on File and Storage

Technologies (FAST ’03), pp. 1–14.

Ricart and Agrawala 1981 Ricart, G. and Agrawala, A.K. (1981). An optimal algorithm for mutual
exclusion in computer networks. Comms. ACM, Vol. 24, No. 1, pp.
9–17.

Richardson et al. 1998 Richardson, T., Stafford-Fraser, Q., Wood, K.R. and Hopper, A. (1998).
Virtual network computing, IEEE Internet Computing, Vol. 2, No. 1,
pp. 33–8.

Ritchie 1984 Ritchie, D. (1984). A Stream Input Output System. AT&T Bell

Laboratories Technical Journal, Vol. 63, No. 8, pt 2, pp. 1897–910.

Rivest 1992a Rivest, R. (1992). The MD5 Message-Digest Algorithm. Internet RFC
1321.

Rivest 1992b Rivest, R. (1992). The RC4 Encryption Algorithm. RSA Data Security
Inc.

Rivest et al. 1978 Rivest, R.L., Shamir, A. and Adelman, L. (1978). A method of obtaining
digital signatures and public key cryptosystems. Comms. ACM, Vol. 21,
No. 2, pp. 120–6.

Rodrigues et al. 1998 Rodrigues, L., Guerraoui, R. and Schiper, A. (1998). Scalable atomic
multicast. In Proceedings IEEE IC3N ’98. Technical Report 98/257.
École polytechnique fédérale de Lausanne.

Roman et al. 2001 Roman, G., Huang, Q. and Hazemi, A. (2001). Consistent group
membership in ad hoc networks. In Proceedings of the 23rd

International Conference on Software Engineering, Washington, DC,
pp. 381–388.

1010 REFERENCES

Rose 1992 Rose, M.T. (1992). The Little Black Book: Mail Bonding with OSI

Directory Services. Englewood Cliffs, NJ: Prentice-Hall.

Rosenblum and Ousterhout
1992

Rosenblum, M. and Ousterhout, J. (1992). The design and
implementation of a log-structured file system. ACM Transactions on

Computer Systems, Vol. 10, No. 1, pp. 26–52.

Rosenblum and Wolf 1997 Rosenblum, D.S. and Wolf, A.L. (1997). A design framework for
Internet-scale event observation and notification. In Proceedings of the

sixth European Software Engineering Conference/ACM SIGSOFT Fifth

Symposium on the Foundations of Software Engineering, Zurich,
Switzerland, pp. 344–60.

Rowley 1998 Rowley, A. (1998). A Security Architecture for Groupware. Doctoral
Thesis, Queen Mary and Westfield College, University of London.

Rowstron and Druschel
2001

Rowstron, A. and Druschel, P. (2001). Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In Proc.

IFIP/ACM Middleware 2001, Heidelberg, Germany, Nov., pp. 329–50.

Rowstron and Wood 1996 Rowstron, A. and Wood, A. (1996). An efficient distributed tuple space
implementation for networks of workstations. In Proceedings of the

Second International Euro-Par Conference, Lyon, France, pp. 510–513.

royal.pingdom.com Royal Pingdom. Map of all Google data centre locations as of 2008.

Rozier et al. 1988 Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M.,
Guillemont, M., H6rrman, F., Kaiser, C., Langlois, S., Leonard, P. and
Neuhauser, W. (1988). Chorus distributed operating systems.
Computing Systems Journal, Vol. 1, No. 4, pp. 305–70.

Rozier et al. 1990 Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M.,
Guillemont, M., Herrman, F., Kaiser, C., Langlois, S., Leonard, P. and
Neuhauser, W. (1990). Overview of the Chorus Distributed Operating

System. Technical Report CS/TR-90-25.1, Chorus Systèmes, France.

RTnet RTnet: Hard Real-Time Networking for Linux/RTAI.

Salber et al. 1999 Salber, D., Dey, A.K. and Abowd, G.D. (1999). The Context Toolkit:
Aiding the development of context-enabled applications. In
Proceedings of the 1999 Conference on Human Factors in Computing

Systems (CHI ’99), Pittsburgh, PA, May, pp. 434–441.

Saltzer et al. 1984 Saltzer, J.H., Reed, D.P. and Clarke, D. (1984). End-to-end arguments
in system design. ACM Transactions on Computer Systems, Vol. 2, No.
4, pp. 277–88.

Sandberg 1987 Sandberg, R. (1987). The Sun Network File System: Design,

Implementation and Experience. Technical Report. Mountain View,
CA: Sun Microsystems.

Sandberg et al. 1985 Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D. and Lyon, B.
(1985). The design and implementation of the Sun Network File
System. In Proceedings of the Usenix Conference, Portland, OR, p. 119.

REFERENCES 1011

Sanders 1987 Sanders, B. (1987). The information structure of distributed mutual
exclusion algorithms. ACM Transactions on Computer Systems, Vol. 5,
No. 3, pp. 284–99.

Sandholm and Gawor 2003 Sandholm, T. and Gawor, J. (2003). Globus Toolkit 3 Core – A Grid

Service Container Framework. July.

Sandhu et al. 1996 Sandhu, R., Coyne, E., Felstein, H. and Youman, C. (1996). Role-based
access control models. IEEE Computer, Vol. 29, No. 2, pp. 38–47.

Sansom et al. 1986 Sansom, R.D., Julin, D.P. and Rashid, R.F. (1986). Extending a

capability based system into a network environment. Technical Report
CMU-CS-86-116, Carnegie-Mellon University.

Santifaller 1991 Santifaller, M. (1991). TCP/IP and NFS, Internetworking in a Unix

Environment. Reading, MA: Addison-Wesley.

Saroiu et al. 2002 Saroiu, S., Gummadi, P. and Gribble, S. (2002). A measurement study
of peer-to-peer file sharing systems. In Proc. Multimedia Computing

and Networking (MMCN), pp. 156–70.

Sastry et al. 2003 Sastry, N., Shankar, U. and Wagner, D. (2003). Secure verification of
location claims. In Proceedings of the ACM Workshop on Wireless

Security (WiSe 2003), September, pp. 1–10.

Satyanarayanan 1981 Satyanarayanan, M. (1981). A study of file sizes and functional
lifetimes. In Proceedings of the 8th ACM Symposium on Operating

System Principles, Asilomar, CA, pp. 96–108.

Satyanarayanan 1989a Satyanarayanan, M. (1989). Distributed File Systems. In Mullender, S.
(ed.), Distributed Systems, an Advanced Course, 2nd edn. Wokingham,
England: ACM Press/Addison-Wesley. pp. 353–83.

Satyanarayanan 1989b Satyanarayanan, M. (1989). Integrating security in a large distributed
system. ACM Transactions on Computer Systems, Vol. 7, No. 3, pp.
247–80.

Satyanarayanan 2001 Satyanarayanan, M. (2001). Pervasive computing: Vision and
challenges. IEEE Personal Communications, Vol. 8, No. 4, pp. 10–17.

Satyanarayanan et al. 1990 Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel,
E.H. and Steere, D.C. (1990). Coda: A highly available file system for a
distributed workstation environment. IEEE Transactions on Computers,
Vol. 39, No. 4, pp. 447–59.

Schilit et al. 1994 Schilit, B.N., Adams, N.I. and Want, R. (1994). Context-aware
computing applications. In Proceedings of the IEEE Workshop on

Mobile Computing Systems and Applications, Santa Cruz, CA,
December, pp. 85–90.

Schiper and Raynal 1996 Schiper, A. and Raynal, M. (1996). From group communication to
transactions in distributed systems. Comms. ACM, Vol. 39, No. 4, pp.
84–7.

1012 REFERENCES

Schiper and Sandoz 1993 Schiper, A. and Sandoz, A. (1993). Uniform reliable multicast in a
virtually synchronous environment. In Proceedings of the 13th

International Conference on Distributed Computing Systems, pp.
561–8.

Schlageter 1982 Schlageter, G. (1982). Problems of optimistic concurrency control in
distributed database systems. SigMOD Record, Vol. 13, No. 3, pp. 62–6.

Schmidt 1998 Schmidt, D. (1998). Evaluating architectures for multithreaded object
request brokers. Comms. ACM, Vol. 44, No. 10, pp. 54–60.

Schneider 1990 Schneider, F.B. (1990). Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys, Vol. 22,
No. 4, pp. 300–19.

Schneider 1996 Schneider, S. (1996). Security properties and CSP. In IEEE Symposium,

on Security and Privacy, pp. 174–187.

Schneier 1996 Schneier, B. (1996). Applied Cryptography, 2nd edn. New York: John
Wiley & Sons.

Schroeder and Burrows
1990

Schroeder, M. and Burrows, M. (1990). The performance of Firefly
RPC. ACM Transactions on Computer Systems, Vol. 8, No. ,. pp. 1–17.

Schroeder et al. 1984 Schroeder, M.D., Birrell, A.D. and Needham, R.M. (1984). Experience
with Grapevine: The growth of a distributed system, ACM Transactions

on Computer Systems, Vol. 2, No. 1, pp. 3–23.

Schulzrinne et al. 1996 Schulzrinne, H., Casner, S., Frederick, D. and Jacobson, V. (1996).
RTP: A Transport Protocol for Real-Time Applications. Internet RFC
1889.

sector.sourceforge.net Sector/Sphere. Home page.

Seetharamanan 1998 Seetharamanan, K. (ed.) (1998). Special Issue: The CORBA
Connection. Comms. ACM, Vol. 41, No. 10.

session directory User Guide to sd (Session Directory).

Shannon 1949 Shannon, C.E. (1949). Communication theory of secrecy systems. Bell

System Technical Journal, Vol. 28, No. 4, pp. 656–715.

Shepler 1999 Shepler, S. (1999). NFS Version 4 Design Considerations. Internet RFC
2624, Sun Microsystems.

Shih et al. 2002 Shih, E., Bahl, P. and Sinclair, M. (2002). Wake on Wireless: An event
driven energy saving strategy for battery operated devices. In
Proceedings of the Eighth Annual ACM Conference on Mobile

Computing and Networking, Altanta, GA, September, pp. 160–171.

Shirky 2000 Shirky, C. (2000). What’s P2P and what’s not, 11/24/2000. Internet
publication.

Shoch and Hupp 1980 Shoch, J.F. and Hupp, J.A. (1980). Measured performance of an
Ethernet local network. Comms. ACM, Vol. 23, No. 12, pp. 711–21.

REFERENCES 1013

Shoch and Hupp 1982 Shoch, J.F. and Hupp, J.A. (1982). The ‘Worm’ programs – early
experience with a distributed computation. Comms. ACM, Vol. 25, No.
3, pp. 172–80.

Shoch et al. 1982 Shoch, J.F., Dalal, Y.K. and Redell, D.D. (1982). The evolution of the
Ethernet local area network. IEEE Computer, Vol. 15, No. 8, pp. 10–28.

Shoch et al. 1985 Shoch, J.F., Dalal, Y.K., Redell, D.D. and Crane, R.C. (1985). The
Ethernet. In Local Area Networks: An Advanced Course. Vol 184 of

Lecture Notes in Computer Science. Springer-Verlag, pp. 1–33.

Shrivastava et al. 1991 Shrivastava, S., Dixon, G.N. and Parrington, G.D. (1991). An overview
of the Arjuna distributed programming system. IEEE Software, pp.
66–73.

Singh 1999 Singh, S. (1999). The Code Book. London: Fourth Estate.

Sinha and Natarajan 1985 Sinha, M. and Natarajan, N. (1985). A priority based distributed
deadlock detection algorithm. IEEE Transactions on Software

Engineering. Vol. 11, No. 1, pp. 67–80.

Sirivianos et al. 2007 Sirivianos, M., Park, J.H., Chen R. and Yang, X. (2007). Free-riding in
BitTorrent networks with the large view exploit. In Proceedings of the

6th International Workshop on Peer-to-Peer Systems (IPTPS ‘07),
Bellevue, WA.

Spafford 1989 Spafford, E.H. (1989). The Internet worm: Crisis and aftermath.
Comms. ACM, Vol. 32, No. 6, pp. 678–87.

Spasojevic and
Satyanarayanan 1996

Spasojevic, M. and Satyanarayanan, M. (1996). An empirical study of a
wide-area distributed file system. ACM Transactions on Computer

Systems, Vol. 14, No. 2, pp. 200–222.

Spector 1982 Spector, A.Z. (1982). Performing remote operations efficiently on a
local computer network. Comms. ACM, Vol. 25, No. 4, pp. 246–60.

Spurgeon 2000 Spurgeon, C.E. (2000). Ethernet: The Definitive Guide. Sebastopol, CA:
O’Reilly.

Srikanth and Toueg 1987 Srikanth, T. and Toueg, S. (1987). Optimal clock synchronization.
Journal ACM. Vol. 34, No. 3, pp. 626–45.

Srinivasan 1995a Srinivasan, R. (1995). RPC: Remote Procedure Call Protocol

Specification Version 2. Sun Microsystems. Internet RFC 1831.
August.

Srinivasan 1995b Srinivasan, R. (1995). XDR: External Data Representation Standard.
Sun Microsystems. Internet RFC 1832. Network Working Group.

Srinivasan and Mogul 1989 Srinivasan, R. and Mogul, J.D. (1989). Spritely NFS: Experiments with
cache-consistency protocols. In Proc. of the 12th ACM Symposium on

Operating System Principles, Litchfield Park, AZ, December, pp.
45–57.

1014 REFERENCES

Srisuresh and Holdrege
1999

Srisuresh, P. and Holdrege, M. (1999). IP Network Address Translator

(NAT) Terminology and Considerations. Internet RFC 2663.

Stajano 2002 Stajano, F. (2002). Security for Ubiquitous Computing. New York: John
Wiley & Sons.

Stajano and Anderson 1999 Stajano, F. and Anderson, R. (1999). The resurrecting duckling:
Security issues for adhoc wireless networks. In Proceedings of the 7th

International Workshop on Security Protocols, pp. 172–194.

Stallings 2002 Stallings, W. (2002). High Speed Networks – TCP/IP and ATM Design

Principles. 2nd edn.Upper Saddle River, NJ: Prentice-Hall.

Stallings 2005 Stallings, W. (2005). Cryptography and Network Security – Principles

and Practice, 4th edn. Upper Saddle River, NJ: Prentice-Hall.

Stallings 2008 Stallings, W. (2008). Operating Systems, 6th edn. Upper Saddle River,
NJ: Prentice-Hall International.

Steiner et al. 1988 Steiner, J., Neuman, C. and Schiller, J. (1988). Kerberos: An
authentication service for open network systems. In Proceedings of the

Usenix Winter Conference, Berkeley, CA.

Stelling et al. 1998 Stelling, P., Foster, I., Kesselman, C., Lee, C. and von Laszewski, G.
(1998). A fault detection service for wide area distributed computations.
In Proceedings of the 7th IEEE Symposium on High Performance

Distributed Computing, pp. 268–78.

Stoica et al. 2001 Stoica, I., Morris, R., Karger, D., Kaashoek, F. and Balakrishnan, H.
(2001). Chord: A scalable peer-to-peer lookup service for internet
applications. In Proc. ACM SIGCOMM, ‘01, August, pp. 149–60.

Stojmenovic 2002 Stojmenovic, I. (ed.) (2002). Handbook of Wireless Networks and

Mobile Computing. New York: John Wiley & Sons.

Stoll 1989 Stoll, C. (1989). The Cuckoo’s Egg: Tracking a Spy Through a Maze of

Computer Espionage. New York: Doubleday.

Stone 1993 Stone, H. (1993). High-performance Computer Architecture, 3rd edn.
Reading, MA: Addison-Wesley.

Stonebraker et al. 2010 Stonebraker, M., Abadi, D., DeWitt, D. J., Madden, S., Paulson, E.,
Pavlo, A. and Rasin, A. (2010). MapReduce and parallel DBMSs:
Friends or foes? Comms. ACM, Vol. 53, No. 1, pp. 64–71.

Sun 1989 Sun Microsystems Inc. (1989). NFS: Network File System Protocol

Specification. Internet RFC 1094.

Sun and Ellis 1998 Sun, C. and Ellis, C. (1998). Operational transformation in real-time
group editors: Issues, algorithms, and achievements. In Proceedings of

the Conference on Computer Supported Cooperative Work Systems, pp.
59–68.

REFERENCES 1015

SWAP-CA 2002 Shared Wireless Access Protocol (Cordless Access) Specification
(SWAP-CA), Revision 2.0,1. The HomeRF Technical Committee, July
2002.

Szalay and Gray 2001 Szalay, A. and Gray, J. (2001) The World-Wide Telescope. Science,
Vol. 293, No. 5537, pp. 2037–2040.

Szalay and Gray 2004 Szalay, A. and Gray, J. (2004). Scientific Data Federation: The

World-Wide Telescope. In Foster, I. and Kesselman, C. (eds.), The Grid

2. San Francisco, CA: Morgan Kauffman.

Szyperski 2002 Szyperski, C. (2002). Component Software: Beyond Object-Oriented

Programming, 2nd edn. Reading, MA: Addison-Wesley.

Tanenbaum 2003 Tanenbaum, A.S. (2003). Computer Networks, 4th edn. Upper Saddle
Rivee, NJ: Prentice-Hall International.

Tanenbaum 2007 Tanenbaum, A.S. (2007). Modern Operating Systems, 3rd edn.
Englewood Cliffs, NJ: Prentice-Hall.

Tanenbaum and van
Renesse 1985

Tanenbaum, A. and van Renesse, R. (1985). Distributed operating
systems. Computing Surveys, ACM, Vol. 17, No. 4, pp. 419–70.

Tanenbaum et al. 1990 Tanenbaum, A.S., van Renesse, R., van Staveren, H., Sharp, G.,
Mullender, S., Jansen, J. and van Rossum, G. (1990). Experiences with
the Amoeba distributed operating system. Comms. ACM, Vol. 33, No.
12, pp. 46–63.

Taufer et al. 2003 Taufer, M., Crowley, M., Karanicolas, J., Cicotti, P., Chien, A. and
Brooks, L. (2003). Moving Towards Desktop Grid Solutions for Large

Scale Modelling in Computational Chemistry. University of California,
San Diego.

Terry et al. 1995 Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M. and
Hauser, C. (1995). Managing update conflicts in Bayou, a weakly
connected replicated storage system. In Proceedings of the 15th ACM

Symposium on Operating Systems Principles, pp. 172–183.

TFCC IEEE Task Force on Cluster Computing.

Thaler et al. 2000 Thaler, D., Handley, M. and Estrin, D. (2000). The Internet Multicast

Address Allocation Architecture. Internet RFC 2908

Thekkath et al. 1997 Thekkath, C.A., Mann, T. and Lee, E.K. (1997). Frangipani: A scalable
distributed file system, in Proc. of the 16th ACM Symposium on

Operating System Principles, St. Malo, France, October, pp. 224–237.

Tokuda et al. 1990 Tokuda, H., Nakajima, T. and Rao, P. (1990). Real-time Mach: Towards
a predictable real-time system. In Proceedings of the USENIX Mach

Workshop, pp. 73–82.

Topolcic 1990 Topolcic, C. (ed.) (1990). Experimental Internet Stream Protocol,

Version 2. Internet RFC 1190.

1016 REFERENCES

Tsoumakos and
Roussopoulos 2006

Tsoumakos, D. and Roussopoulos, N. (2006). Analysis and comparison
of P2P search methods. In Proceedings of the 1st international

Conference on Scalable information Systems (InfoScale '06), Hong
Kong, p.25.

Tzou and Anderson 1991 Tzou, S.-Y. and Anderson, D. (1991). The performance of
message-passing using restricted virtual memory remapping.
Software–Practice and Experience, Vol. 21, pp. 251–67.

van Renesse et al. 1989 van Renesse, R., van Staveran, H. and Tanenbaum, A. (1989). The
performance of the Amoeba distributed operating system. Software –

Practice and Experience, Vol. 19, No. 3, pp. 223–34.

van Renesse et al. 1995 van Renesse, R., Birman, K., Friedman, R., Hayden, M. and Karr, D.
(1995). A framework for protocol composition in Horus. In Proceedings

of the PODC 1995, pp. 80–9.

van Renesse et al. 1996 van Renesse, R., Birman, K. and Maffeis, S. (1996). Horus: A flexible
group communication system. Comms. ACM, Vol. 39, No. 4, pp. 54–63.

van Renesse et al. 1998 van Renesse, R., Birman, K., Hayden, M., Vaysburd, A. and Karr, D.
(1998). Building adaptive systems using Ensemble. Software–Practice

and Experience, Vol. 28, No. 9, pp. 963–979.

van Steen et al. 1998 van Steen, M., Hauck, F., Homburg, P. and Tanenbaum, A. (1998).
Locating objects in wide-area systems. IEEE Communication, Vol. 36,
No. 1, pp. 104–109.

Vinoski 1998 Vinoski, S. (1998). New features for CORBA 3.0. Comms. ACM, Vol.
41, No. 10, pp. 44–52.

Vinoski 2002 Vinoski, S. (2002). Putting the ‘Web’ into Web Services. IEEE Internet

Computing. Vol. 6, No. 4, pp. 90–92.

Vogels 2003 Vogels, W. (2003). Web Services are not Distributed objects. IEEE

Internet Computing, Vol. 7, No, 6, pp. 59–66.

Vogt et al. 1993 Vogt, C., Herrtwich, R.G. and Nagarajan, R. (1993). HeiRAT – The
Heidelberg Resource Administration Technique: Design Philosophy
and Goals. Kommunikation in verteilten Systemen, Munich, Informatik
aktuell, Springer.

Volpano and Smith 1999 Volpano, D. and Smith, G. (1999). Language issues in mobile program
security. In Mobile Agents and Security. Vol. 1419 in Lecture Notes in

Computer Science, Springer-Verlag, pp. 25–43. .

von Eicken et al. 1995 von Eicken, T., Basu, A., Buch, V. and Vogels, V. (1995). U-Net: A
user-level network interface for parallel and distributed programming.
In Proceedings of the 15th ACM Symposium on Operating Systems

Principles, pp. 40–53.

Wahl et al. 1997 Wahl, M., Howes, T. and Kille, S. (1997). The Lightweight Directory

Access Protocol (v3). Internet RFC 2251.

REFERENCES 1017

Waldo 1999 Waldo, J. (1999). The Jini architecture for network-centric computing.
Comms. ACM, Vol. 42, No. 7, pp. 76–82.

Waldo et al. 1994 Waldo, J., Wyant, G., Wollrath, A. and Kendall, S. (1994). A note on
distributed computing. In Arnold et al. 1999, pp. 307–26.

Waldspurger et al. 1992 Waldspurger, C., Hogg, T., Huberman, B., Kephart, J. and Stornetta, W.
(1992). Spawn: A distributed computational economy. IEEE

Transactions on Software Engineering, Vol. 18, No. 2, pp. 103–17.

Wang et al. 2001 Wang, N., Schmidt, D. C. and O'Ryan, C. (2001). Overview of the
CORBA component model. In Heineman, G. T. and Councill, W.T.
(eds), Component-Based Software Engineering: Putting the Pieces

Together, Addison-Wesley Longman Publishing Co., Boston, MA:
Addison-Wesley, pp. 557–571.

Want 2004 Want, R. (2004). Enabling ubiquitous sensing with RFID. IEEE

Computer, Vol. 37, No. 4, pp. 84–86.

Want and Pering 2003 Want, R. and Pering, T. (2003). New horizons for mobile computing. In
Proceedings of the First IEEE International Conference on Pervasive

Computing and Communication (PerCom’03), Dallas-Fort Worth, TX,
March, pp. 3–8.

Want et al. 1992 Want, R., Hopper, A., Falcao, V. and Gibbons, V. (1992). The Active
Badge location system. ACM Transactions on Information Systems,
Vol. 10, No.1, pp. 91–102.

Want et al. 2002 Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M. and Light, J.
(2002). The personal server: Changing the way we think about
ubiquitous computing. In Proceedings of the Fourth International

Conference on Ubiquitous Computing (Ubicomp 2002), Goteborg,
Sweden, Sep.–Oct., pp.194–209.

Weatherspoon and
Kubiatowicz 2002

Weatherspoon, H. and Kubiatowicz, J.D. (2002). Erasure coding vs.
replication: A quantitative comparison. 1st International Workshop on

Peer-to-Peer Systems (IPTPS ’02), Cambridge, MA, March, pp.
328–38.

web.mit.edu I Kerberos: The Network Authentication Protocol.

web.mit.edu II The Three Myths of Firewalls.

Wegner 1987 Wegner, P. (1987). Dimensions of object-based language design.
SIGPLAN Notices, Vol. 22, No. 12, pp. 168–182.

Weikum 1991 Weikum, G. (1991). Principles and realization strategies of multilevel
transaction management. ACM Transactions on Database Systems, Vol.
16, No. 1, pp. 132–40.

Weiser 1991 Weiser, M. (1991). The computer for the 21st Century. Scientific

American, Vol. 265, No. 3, pp. 94–104.

1018 REFERENCES

Weiser 1993 Weiser, M. (1993). Some computer science issues in ubiquitous
computing. Comms. ACM, Vol. 36, No. 7, pp. 74–84.

Wellner 1991 Wellner, P.D. (1991). The DigitalDesk calculator – tangible
manipulation on a desk-top display. In Proceedings of the 4th Annual

ACM Symposium on User Interface Software and Technology, Hilton
Head, SC, November, pp. 27–33.

Wheeler and Needham
1994

Wheeler, D.J. and Needham, R.M. (1994). TEA, a Tiny Encryption
Algorithm. Technical Report 355, Two Cryptographic Notes, Computer
Laboratory, University of Cambridge, December, pp. 1–3.

Wheeler and Needham
1997

Wheeler, D.J. and Needham, R.M. (1997). Tea Extensions. October
1994, pp. 1–3.

Whitaker et al. 2002 Whitaker, A., Shaw, M. and Gribble, D.G. (2002). Denali: Lightweight
virtual machines for distributed and networked applications. Technical

Report 02-02-01, University of Washington.

Wiesmann et al. 2000 Wiesmann, M., Pedone, F., Schiper, A., Kemme, B. and Alonso, G.
(2000). Understanding replication in databases and distributed systems.
In Proceedings of the 20th International Conference on Distributed

Computing Systems (ICDCS ’2000), Taipei, Republic of China, p. 464.

Williams 1998 Williams, P. (1998). JetSend: An appliance communication protocol. In
Proceedings of the IEEE International Workshop on Networked

Appliances, (IEEE IWNA ’98), Kyoto, Japan, November, pp. 51–53.

Winer 1999 Winer, D. (1999). The XML-RPC specification.

Wobber et al. 1994 Wobber, E., Abadi, M., Burrows, M. and Lampson, B. (1994).
Authentication in the Taos operating system. ACM Transactions on

Computer Systems. Vol. 12, No. 1, pp. 3–32.

Wright et al. 2002 Wright, M., Adler, M., Levine, B.N. and Shields, C. (2002). An analysis
of the degradation of anonymous protocols. In Proceedings of the

Network and Distributed Security Symposium (NDSS ’02), February.

wsdl4j.sourceforge.org The Web Services Description Language for Java Toolkit (WSDL4J).

Wulf et al. 1974 Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C. and
Pollack, F. (1974). HYDRA: The kernel of a multiprocessor operating
system. Comms. ACM, Vol. 17, No. 6, pp. 337–345.

Wuu and Bernstein 1984 Wuu, G.T. and Bernstein, A.J. (1984). Efficient solutions to the
replicated log and dictionary problems. In Proceedings of the Third

Annual Symposium on Principles of Distributed Computing, pp.
233–42.

www.accessgrid.org The Access Grid Project.

www.adventiq.com Adventiq Ltd. Home page featuring their KVM-over-IP technology.

www.akamai.com Akamai. Home page.

www.apple.com I Apple Computer. Bonjour Protocol Specifications.

REFERENCES 1019

www.apple.com II Apple Computer. iChat video conferencing for the rest of us.

www.beowulf.org The Beowulf Project. Resource centre.

www.bittorrent.com The Official BitTorrent Website.

www.bluetooth.com The Official Bluetooth SIG Website.

www.butterfly.net The scalable, reliable and high-performance online game platform,

GoGrid.

www.bxa.doc.gov Bureau of Export Administration, US Department of Commerce.
Commercial Encryption Export Controls.

www.cdk5.net Coulouris, G., Dollimore, J. and Kindberg, T. (eds.). Distributed

Systems, Concepts and Design: Supporting material.

www.citrix.com Citrix Corporation. Citrix XenApp.

www.conviva.org Conviva. Home page.

www.coralcdn.org Coral Content Distribution Network. Home page.

www.cren.net Corporation for Research and Educational Networking. CREN

Certificate Authority.

www.cryptopp.com Crypto++® Library 5.2.1.

www.cs.cornell.edu The 3rd ACM SIGOPS International Workshop on Large Scale
Distributed Sytems and Middlewqare (LADIS’09). Keynote by Jeff

Dean on Large-Scale Distributed Systems at Google: Current Systems

and Future Directions.

www.cs.york.ac.uk/dame Distributed Aircraft Maintenance Environment (DAME).

www.cuseeme.com CU-SeeMe Networks Inc. Home page.

www.dancres.org Blitz open source project. Home page.

www.doi.org International DOI Foundation. Pages on digital object identifiers.

www.dropbox.com Dropbox file hosting service. Home page.

www.dtnrg.org Delay Tolerant Networking Research Group. Home page.

www.gigaspaces.com GigaSpaces. Home page.

www.globalcrossing.net Global Crossing. IP Network Performance – monthly history.

www.globexplorer.com Globexplorer, the world’s largest online library of aerial and satellite

imagery.

www.globus.org The Globus Project. Latest stable version of the Globus Toolkit.

www.google.com I Google. Google Apps.

www.google.com II Google. Google Maps.

www.google.com III Google. Google Corporate Information.

www.google.com IV Google. Google Corporate Information. Design Principles.

www.gridmpi.org The GridMPI Project. Home page.

www.handle.net Handle system. Home page.

1020 REFERENCES

www.iana.org I Internet Assigned Numbers Authority. Home page.

www.iana.org II Internet Assigned Numbers Authority. IPv4 Multicast Address Space

Registry.

www.ibm.com IBM. WebSphere Application Server home page.

www.ietf.org Internet Engineering Task Force. Internet RFC Index page.

www.iona.com Iona Technologies. Orbix.

www.ipnsig.org InterPlaNetary Internet Project. Home page.

www.ipoque.com Ipoque GmbH. Internet Study 2008/2009.

www.isoc.org Robert Hobbes Zakon. Hobbe’s Internet Timeline.

www.jbidwatcher.com JBidwatcher Project. Home page.

www.jboss.org JBoss Open Source Community. Home page.

www.jgroups.org JGroups Project. Home page.

www.json.org JSON external data representation. Home page.

www.kontiki.com Kontiki Delivery Management System. Home page.

www.microsoft.com I Microsoft Corporation. Active Directory Services.

www.microsoft.com II Microsoft Corporation. Windows 2000 Kerberos Authentication, White
Paper.

www.microsoft.com III Microsoft Corporation. NetMeeting home page.

www.microsoft.com IV Microsoft Corporation. Azure home page.

www.mozilla.org Netscape Corporation. SSL 3.0 Specification.

www.mpi-forum.org Message Passing Interface (MPI) Forum. Home page.

www.neesgrid.org NEES Grid, Building the National Virtual Collaboratory for

Earthquake Engineering.

www.netscape.com Netscape. Home page.

www.nfc-forum.org Near Field Communication (NFC). Forum home page.

www.oasis.org Web Services reliable messaging. WS-Reliablemessaging. Vn 1.1. Oasis

standard.

www.omg.org Object Management Group. Index to CORBA services.

www.opengroup.org Open Group. Portal to the World of DCE.

www.openmobilealliance.
org

Open Mobile Alliance. Home page.

www.openssl.org OpenSSL Project. OpenSSL: The Open Source toolkit for SSL/TLS.

www.openstreetmap.org OpenStreetMap. Home page.

www.osgi.org The OSGi Alliance. Home page.

www.ow2.org The OW2 Consortium. Home page.

www.parc.com PARC Forum. Presentation to Marissa Mayer, VP Google.

REFERENCES 1021

www.pgp.com PGP. Home page.

www.progress.com Apama from Progress Software. Home page.

www.prototypejs.org Prototype JavaScript Framework. Home page.

www.realvnc.com RealVNC Ltd. Home page.

www.redbooks.ibm.com IBM Redbooks. WebSphere MQ V6 Fundamentals.

www.reed.com Read, D.P. (2000). The End of the End-to-End Argument.

www.research.ibm.com Gryphon Project. Home page.

www.rsasecurity.com I RSA Security Inc. Home page.

www.rsasecurity.com II RSA Corporation (1997). DES Challenge.

www.rsasecurity.com III RSA Corporation (2004). RSA Factoring Challenge.

www.rtj.org Real-Time for Java TM Experts Group.

www.secinf.net Network Security Library.

www.sei.cmu.edu Software Engineering Instute, Carnegie Mellon. Home page of the Ultra

Large Systems (ULS) Initiative.

www.smart-its.org The Smart-Its Project. Home page.

www.spec.org SPEC SFS97 Benchmark.

www.springsource.org SpringSource Community. Spring Framework.

www.upnp.org Universal Plug and Play. Home page.

www.us.cdnetworks.com CDNetworks Inc. Home page.

www.uscms.org USCMS, The Compact Muon Solenoid.

www.verisign.com Verisign Inc. Home page.

www.w3.org I World Wide Web Consortium. Home page.

www.w3.org II World Wide Web Consortium. Pages on the HyperText Markup

Language.

www.w3.org III World Wide Web Consortium. Pages on Naming and Addressing.

www.w3.org IV World Wide Web Consortium. Pages on the HyperText Transfer

Protocol.

www.w3.org V World Wide Web Consortium. Pages on the Resource Description

Framework and other metadata schemes.

www.w3.org VI World Wide Web Consortium. Pages on the Extensible Markup

Language.

www.w3.org VII World Wide Web Consortium. Pages on the Extensible Stylesheet

Language.

www.w3.org VIII XML Schemas. W3C Recommendation (2001).

www.w3.org IX World Wide Web Consortium. Pages on SOAP.

www.w3.org X World Wide Web Consortium. Pages on Canonical XML, Version 1.0.
W3C Recommendation.

1022 REFERENCES

www.w3.org XI World Wide Web Consortium. Pages on Web Services Description

Language (WSDL).

www.w3.org XII World Wide Web Consortium. Pages on XML Signature Syntax and

Processing.

www.w3.org XIII World Wide Web Consortium. Pages on XML key management

specification (XKMS).

www.w3.org XIV World Wide Web Consortium. Pages on XML Encryption Syntax and

Processing.

www.w3.org XV World Wide Web Consortium. Pages on Web Services Choreography

Requirements. W3C Working Draft.

www.w3.org XVI Burdett, D. and Kavantsas, N. WS Choreography Model Overview.
W3C Working Draft.

www.w3.org XVII World Wide Web Consortium. Pages on Web Services Choreography

Description Language Version 1.0.

www.w3.org XVIII World Wide Web Consortium. Pages on Web Services Choreography

Interface (WSCI).

www.w3.org XIX World Wide Web Consortium. Pages on Device Independence.

www.w3.org XX World Wide Web Consortium. Pages on the Semantic Web.

www.w3.org XXI World Wide Web Consortium. Pages on the XML Binary

Charaterization Working Group.

www.w3.org XXII World Wide Web Consortium. Pages on the SOAP Message

Transmission Optimization Protocol recommendations.

www.w3.org XXIII World Wide Web Consortium. Pages on the WS-Addressing Working

Group.

www.w3.org XXIV World Wide Web Consortium. Pages on the Geolocation API

Specification.

www.wapforum.org WAP Forum. White Papers and Specifications.

www.wlana.com The IEEE 802.11 Wireless LAN Standard.

www.xbow.com Crossbow Technology Inc. Pages on wireless sensor networks.

www.xen.org Xen open source community. Home page.

www.zeroconf.org IETF Zeroconf Working Group. Home page.

Wyckoff et al. 1998 Wyckoff, P., McLaughry, S., Lehman, T. and Ford, D. (1998). T Spaces.
IBM Systems Journal, Vol. 37, No. 3.

Xu and Liskov 1989 Xu, A. and Liskov, B. (1989). The design for a fault-tolerant, distributed
implementation of Linda. In Proceedings of the 19th International

Symposium on Fault-Tolerant Computing, Chicago, IL, June, pp.
199–206.

zakon.org Zakon, R.H. Hobbes’ Internet Timeline v7.0,

REFERENCES 1023

Zhang and Kindberg 2002 Zhang, K. and Kindberg, T. (2002). An authorization infrastructure for
nomadic computing. In Proceedings of the Seventh ACM Symposium on

Access Control Models and Technologies, Monterey, CA, June, pp.
107–113.

Zhang et al. 1993 Zhang, L., Deering, S.E., Estrin, D., Shenker, S. and Zappala, D. (1993).
RSVP – A new resource reservation protocol. IEEE Network Magazine,
Vol. 9, No. 5, pp. 8–18.

Zhang et al. 2005a Zhang, H., Goel, A., and Govindan, R. (2005). Improving lookup
latency in distributed hash table systems using random sampling.
IEEE/ACM Trans. Netw. 13, 5 (Oct. 2005), 1121–1134.

Zhang et al. 2005b Zhang, X., Liu, J., Li, B. and Yum, T.-S. (2005).
CoolStreaming/DONet: A data-driven overlay network for live media
streaming. In Proceedings of IEEE INFOCOM'05, Miami, FL, USA,
March, pp. 2102–2011.

Zhao et al. 2004 Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D. and
Kubiatowicz, J.D. (2004). Tapestry: A resilient global-scale overlay for
service deployment, IEEE Journal on Selected Areas in

Communications, Vol. 22, No. 1, pp. 41–53.

Zimmermann 1995 Zimmermann, P.R. (1995). The Official PGP User’s Guide. MIT Press.

This page intentionally left blank

1025

INDEX

A

abort 682
access control 479–481
access control list 480, 528
access rights 72
access transparency 23, 527, 546
ACID properties 681, 720
ack-implosion 647
activation 213

distributed object 339
activator 213
active badge 820, 844, 846, 855

events 838
active bat 854
active object 213
active replication 780–782
actuator 823
ad hoc network 135, 848

mobile 849
ad hoc routing 824
adaptability 25
adaptation

energy-aware 870
of content 866–869
to resource variations 869–870

address resolution protocol (ARP) 112
address space 285, 287–288

aliasing 296
inheritance 290
region 287
shared region 288, 308

admission control 890, 896–897
advertisement

in content-based routing 252

in publish-subscribe 245
AES (Advance Encryption Standard) 490, 501
agreement

in consensus and related problems 660–662
of multicast delivery 648
problems of 659
uniform 650

agreement, of multicast delivery 236
AJAX 53–56
alias 571
Amazon Elastic Compute Cloud (EC2) 418
Amazon Elastic MapReduce 419
Amazon Flexible Payments Service (FPS) 419
Amazon Simple DB 419
Amazon Simple Queue Service (SQS) 419
Amazon Simple Storage Service (S3) 419
Amazon Web Services (AWS) 418, 965

Amazon Elastic Compute Cloud (EC2) 418
Amazon Elastic MapReduce 419
Amazon Flexible Payments Service 419
Amazon Simple DB 419
Amazon Simple Queue Service (SQS) 419
Amazon Simple Storage Service (S3) 419
Dynamo 720, 801
REST in 418

Amoeba
multicast protocol 654
run server 289

Andrew File System (AFS) 530, 548–557
for Linux 530
in DCE/DFS 559
performance 556
wide-area support 556

anti-entropy protocol 791, 792

1026 INDEX

Apollo Domain 263
applet 31, 50

threads within 298
application layer 93, 95
application level multicast 908
application server 60, 360, 363
architectural models 38, 40–58
architectural patterns 51–58

brokerage 57
layering 51
proxy 57
reflection 58
tiering 52

ARP see address resolution protocol
association 821, 825, 827–835

direct 834
indirect 842
physical 834
problem 827
secure spontaneous 860–863
spontaneous 826

associative 262
asymmetric cryptography 484, 491–493
asynchronous communication 148, 232

in publish-subscribe 244
asynchronous distributed system 65, 235, 601, 659,

668, 944
asynchronous invocation 313

in CORBA 347
persistent 313

asynchronous operation 311–314
at-least-once invocation semantics 199
ATM (Asynchronous Transfer Mode) 88, 90, 92, 95,

102, 130
at-most-once invocation semantics 199
atomic commit protocol 728–740

failure model 732
two-phase commit protocol 732

atomic operation 676
atomic transaction see transaction
authentication 74, 474–476

location-based 863
authentication server 504
authentication service 506
automatic identification 855
availability 22, 766, 782–801

B

backbone 113
bandwidth 63

base station, wireless 135, 819
Bayou 425, 792–794

dependency check 793
merge procedure 793

beacon 874
infrared 834
radio 853

bean
Enterprise JavaBeans (EJB)

366
Bellman-Ford routing protocols 99
best-efforts resource scheduling 888
big-endian order 158
Bigtable 927, 948–954

architecture 950–954
interface 948–950
load balancing 954
separation of control and data 951
tablets 950

binder 213
portmapper 203
rmiregistry 220

birthday attack 498
BitTorrent 425, 435, 447, 906–908

chunk 906
leecher 907
optimistic unchoking 908
seeder 906
torrent 907
tracker 906
unchoking 907

blade server 14
block cipher 485–486
blocking operations 148
Bluetooth network 129, 138–141
boundary principle 828
bridge 104
broadcast 233
broker overlay 933
brokerage 57
brute-force attack 484
Business to Business (B2B) 414

integration 414
byzantine failure 68
byzantine generals 662, 665–668

C

cache 49, 766
coherence of cached files 799

caching

INDEX 1027

file, write-through 542
files at client 542
files at server 541
Google File System (GFS) 938
of whole files 548
validation procedure 543, 552

callback
in CORBA remote method invocation 357
in Java remote method invocation 223

callback promise 552
camera phone 834, 861, 874
CAN routing overlay 425, 435
capability 480
cascading abort 689
case studies

Andrew File System (AFS) 548–557
Bayou 792–794
BitTorrent 906–908
Coda file system 795–801
Cooltown 871–878
CORBA 340–358
Domain Name System (DNS) 576–583
End System Multicast (ESM) 908–912
Enterprise JavaBeans (EJB) 364–372
Ethernet network 130
Fractal 372–378
Global Name Service 585–588
Gnutella 447–448
Google infrastructure 917–965
Gossip architecture 783–792
IEEE 802.11 wireless LAN (WiFi) 135
IEEE 802.15.1 Bluetooth wireless PAN 138
Internet protocols 106
IP routing 113
Ivy file system 455–458
Java Messaging Service (JMS) 258–262
Java remote method invocation 217–225
JavaSpaces 271–274
JGroups 238–242
Kerberos 505–510
Message Passing Interface (MPI) 178–180
Needham–Schroeder protocol 504–505
Network File System (NFS) 536–547
Network Time Protocol 603–606
OceanStore 451–455
Pastry routing overlay 436–444
Squirrel web cache 449–451
Sun RPC 201–204
Tapestry routing overlay 444–445
Tiger video file server 901–906
Transport Layer Security (TLS) 511–515

Websphere MQ 256–258
WiFi security 515–517
World Wide Web 26–33
X.500 directory service 588–592
Xen 320–331

catch exception 206
causal ordering 236, 607

of multicast delivery 651
of request handling 770

CDR see CORBA
Common Data Representation

cell phone see mobile phone
certificate 477–479

X.509 standard format 499
certificate authority 500
certificate chain 478, 500
CGI see common gateway interface
challenge, for authentication 475
channel-based publish-subscribe 246
checkpointing 755
Chord routing overlay 425
Chorus 317
chosen plaintext attack 492
Chubby 927, 940–947

architecture 943–944
cache consistency 943
interface 941–943
locks 940
Paxos 943, 944–946
replication 943

chunk, in BitTorrent 906
cipher block chaining (CBC) 485
cipher suite 512
ciphertext 484
circuit switching network see network, circuit

switching
classless interdomain routing (CIDR) 115, 425
clients 15
client-server 5
client-server model 46
clock

accuracy 599
agreement 599
computer 64, 597
correctness 600
drift 64, 598
faulty 600
global 2
logical 608
matrix 610
monotonicity 600

1028 INDEX

resolution 598
skew 598
synchronization see synchronization of clocks
vector 609

cloud computing 13–14, 319, 320, 417–419, 921–922,
964

Amazon Web Services (AWS) 418, 965
Dynamo 720, 801
Eucalyptus 965
Google App Engine 922, 965
Hadoop 965
Microsoft’s Azure 965
OpenStreetMaps 965
Sector/Sphere 965

cluster, of computers 13, 49, 923
Coda file system 458, 795–801

available volume storage group (AVSG) 796
Coda version vector (CVV) 796
volume storage group (VSG) 796

codec 887
collision detection 133
commit 682
common gateway interface 31
communicating entities 42–43

component 42
node 42
object 42
process 42
web services 43

communication
asynchronous 148
communicating entities 42–43
communication paradigms 43–45
group 169–174
operating system support for 303–311
producer-consumer 146
reliable 71, 148
roles 45–48
synchronous 148

communication channels
performance 63
threats to 74

communication paradigms 43–45
indirect communication 44
interprocess communication 43
remote invocation 43

commuting operations 782
complex event processing 7

in publish-subscribe 248
component 42, 60, 336, 358–364

application server 363

component-based software engineering (CBSE)
916

composition 361
container 362–363
contract 360
definition 360
deployment 364
heavyweight approach 365
lightweight approach 364
limitations of objects 336, 358–360
middleware 336, 358–364
OpenCOM 374
OSGi 374
provided interface 360
required interface 360
server-side approach 365
software architecture 360

component-based software engineering (CBSE) 916
Composite Capabilities / Preferences profile (CC/PP)

868
concept-based publish-subscribe 248
concurrency 2, 22, 23

of file updates 527
concurrency control 683–726

comparison of methods 718
conflicting operations 686
Dynamo 720
Google Apps 719
in CORBA concurrency control service 696
in distributed transaction 740–743
in Dropbox 719
in Dynamo 720
in Wikipedia 719
inconsistent retrieval 684
with locks see locks
lost update 683
operation conflict rules 686, 694
optimistic see optimistic concurrency control
by timestamp ordering see timestamp ordering

concurrency transparency 23
conflicting operations 686
confusion (in cryptography) 487
congestion control see network

congestion control
connection

persistent 309
consensus 659–670, 940, 944

impossibility result for an asynchronous system
668

in a synchronous system 663
Paxos 944

INDEX 1029

related to other problems 662
consistency

Google File System (GFS) 939–940
of replicated data 768

consistency models 262
container 362–363
content distribution network 176, 909
content-based publish-subscribe 247
content-based routing 250

advertisement 252
filtering 251
flooding 250
rendezvous 252

context 844
context switch 296
Context Toolkit 847
context-aware computing 10, 820
context-awareness 844–857

in publish-subscribe 248
continuous media 12, 886
contract, in components 360
cookie 538
CoolStreaming 910
Cooltown 871–878

beacon 874
Coordinated Universal Time (UTC) 598
copy-on-write 290
CORBA

architecture 348–351
object adapter 348
object request broker (ORB) 348
proxy 350
skeleton 350

asynchronous RMI 347
case study 340–358
client and server example 353–358
Common Data Representation 160–161
compared with web services 398
dynamic invocation interface 351
dynamic skeleton interface 351
efficiency compared with web services 399
implementation repository 350
interface definition language 197, 341–344

attribute 345
inheritance 346
interface 342
method 342
module 342
pseudo object 351
type 344

interface repository 350

Internet Inter-ORB protocol (IIOP) 352
interoperable object reference (IOR) 351

compared with URL 398
persistent 352
transient 352

language mapping 346
marshalling 161
object 341
object model 341
object request broker (ORB) 340, 348
remote method invocation 341–358

callback 357
remote object reference see CORBA

interoperable object reference
services 352

concurrency control service 696
Event Service 253
persistent state service 523

crash failure 68, 632
credentials 482–483
critical section 633
cryptography 74, 473–477, 484–493

and politics 502
performance of algorithms 501

CSMA/CA 137
CSMA/CD 131
cut 613

consistent 613
frontier 613

cyber foraging 869

D

data centre 13, 923
data compression 887
data link layer 95
data streaming see network, data streaming
datagram 97, 111
data-oriented programming 386, 837–844
deactivation

distributed object 339
deadlock 700–704

definition 700
detection 611, 702
distributed see distributed deadlock
prevention 701, 703
timeouts 703
wait-for graph 700
with read-write locks 700

debugging distributed programs 612, 619–625
delay-tolerant networking see disruption-tolerant

1030 INDEX

networking 850
delegation (of rights) 482
delivery failures 189
Denali 320
denial of service

sleep deprivation torture attack 858
denial of service attack 19, 75
deployment, of components 364
DES (Data Encryption Standard) 489, 501
detecting failure 21
device discovery 828
device management

in Xen 327–329
DHCP - Dynamic Host Configuration Protocol 117,

121, 827
Diffie–Hellman protocol 862
diffusion (in cryptography) 487
digest function 495
digital signature 476–477, 493–500

in XML 409
directed diffusion 850
directory service 533–535, 584

attribute 584
discovery service as 828
UDDI 404–406

dirty read 688
disconnected operation 767, 792, 800–801, 824
discovery service 584, 828–833

Jini 832–833
serverless 831

dispatcher 211
generic in java RMI 224
in CORBA 349
in web services 398

disruption tolerant network 176
disruption-tolerant networking 850
distance vector routing algorithm 99
distributed deadlock 743–751

edge chasing 746–751
transaction priorities 749

phantom deadlock 745
distributed event-based system 6, 45, 242

complex event processing 7
event 6

distributed garbage collection 209, 215–216
in Java 209

distributed hash table 176
in content-based routing 252

distributed multimedia system 12, 12
distributed object 42, 60, 206, 336, 337

activation 339

deactivation 339
interface inheritance 339
inter-object communication 339
lifecycle management 339
middleware 336, 337–340
persistence 339
role of class 338

distributed object model 207
compared with web services 393

distributed operating system 281
distributed shared memory 45, 262–265, 523

Apollo Domain 263
comparison with message passing 264

distributed transaction
atomic commit protocol 728–740
concurrency control 740–743

locking 740
optimistic 742
timestamp ordering 741

coordinator 730–731
flat 728
nested 728
one-phase commit protocol 731
two-phase commit protocol 732

DNS see Domain Name System
Domain Name System (DNS) 124, 576–583

BSD implementation 582
domain name 577
name server 578–583
navigation 580
query 577
resource record 581
zone 578

domain transition 296
domain, in Xen 322

domain0 322
domainU 322

downloading of code 31
in Java remote method invocation 219

Dropbox
concurrency control 719

DSL (digital subscriber line) 88, 103
dynamic invocation 212

in CORBA 351
in web services 387

dynamic invocation interface 212, 351, 397
dynamic skeleton 212, 351

in CORBA 351
dynamic web pages 30–31
Dynamo

concurrency control 720

INDEX 1031

quorum consensus 801
replication 801

E

eager update propagation 804
eavesdropping attack 467
eCommerce 4
election 641–646

bully algorithm 644
for processes in a ring 642

electronic commerce
security needs 469

elliptic curve encryption 493
emulation

of operating system 316
encapsulation 93, 107
encryption 74, 473–477

in XML security 410
End System Multicast (ESM) 908–912

performance-aware adaptation 910, 912
self-organization 910
tree construction 910–912

dealing with nodes leaving 912
joining a tree 911
membership management 911
parent selection 911

end-to-end argument 60, 174
end-to-end principle 908
enemy 73
enemy, security threats from an 75
energy consumption 823, 825

and adaptation 870
and denial of service 858
of communication 849
of compression 869
of discovery protocols 831

energy-aware adaptation 870
Ensemble 238
Enterprise Application Integration (EAI) 254
Enterprise JavaBeans (EJB)

bean 366
bean-managed 365
business interface 366
case study 364–372
configuration by exception 367
container-managed 365
lifecycle management 367
message-driven bean 366
roles 365
session bean 366

epidemic protocol 447
eScience 4
eSquirt 875–877
Ethernet for real-time applications 135
Ethernet hub 103, 105
Ethernet network 104, 129, 130–135
Ethernet switch 103, 135
Eucalyptus 965
event 6

active badge 838
composite 838
concurrency 608
heap 839
in volatile system 837–838
in Xen 323
notification 243
ordering 66
system, compared to tuple space 840

exactly once 198
exception 205

catch 206
in CORBA remote invocation 200
throw 206

execution environment 286
Exokernel 318
expanded ring search 447
external data representation 158–163

F

factory method 213, 355
factory object 213
fail-stop 68
failure

arbitrary 68
byzantine 68
masking 70
timing 70

failure atomicity 680, 751
failure detector 632–633

to solve consensus 669
failure handling 21, 22
failure model 67–71

atomic commit protocol 732
IP multicast 171
request-reply protocol 189
TCP 155
transaction 679
UDP 151

failure models 38
failure transparency 24

1032 INDEX

fairness 634
familiar stranger 854
fault-tolerant average 603
fault-tolerant service 767, 775–782
fidelity 869
FIFO ordering 236

of multicast delivery 651
of request handling 770

file
mapped 288
replicated 795

file group identifier 535
file operations

in directory service model 534
in flat file service model 532
in NFS server 4, 538
in UNIX 526

file-sharing application 425
filter, in publish-subscribe 245
filtering, in content-based routing 251
financial trading 6–8
Firefly RPC 308
firewall 8, 125–128, 392, 483
flat file service 530–533
flooding, in content-based routing 250
flow control 123
flow specification 894
Fractal

Architectural Description Language (ADL) 375
binding 373
case study 372–378
client interface 373
composite binding 373
controller 375
hierarchical composition 375
interception 377
lifecycle management 376
membrane 375
primitive binding 373
programming with interfaces 372
reflection 376
server interface 373

frame relay see network, frame relay
Frangipani distributed file system 562
Freenet 425, 429
front end 770
FTP 95, 96, 106, 127
full virtualization 319
fundamental models 38, 61–76

G

Galileo, satellite navigation system 852
garbage collection 611

in distributed object system 209
local 206

gateway 89
generative communication, in tuple spaces 45, 265
geographical information system 855
global clock 2
Global Name Service 585–588

directory identifier 585
working root 586

Global Positioning System (GPS) 599, 852
global state 610–625

consistent 614
predicate 614
snapshot 615–619
stable 614

Globus Toolkit 417
GLONASS 852
glyph 834
GNS see Global Name Service 585
Gnutella 425, 447–448
Google 5

applications 921
Caffeine 918
cloud computing 921–922
crawling 918
data centre 923
deep searching 918
Google App Engine 921
Google Apps 921
inverted index 918
PageRank 919
physical model 922–924
platform as a service 922
search engine 918–921
software as a service 921

Google App Engine 921, 922, 965
Google Apps 921

concurrency control 719
Google Earth 4, 948, 950, 961
Google File System (GFS) 927, 935–940

architecture 937–939
caching 938
chunks 937
consistency 939–940
interface 936–937
replication 937
requirements 935–936
separation of control and data 938

INDEX 1033

Google infrastructure 927
architecture 924–928
Bigtable 927, 948–954
Chubby 927, 940–947
Google File System (GFS) 927, 935–940
MapReduce 927, 956–960
openness 926
performance 926, 928
protocol buffers 927, 929–932
publish-subscribe 927, 932–933
reliability 925
Sawzall 928, 962–963
scalability 924

Google Maps 4, 948, 961
gossip 447

in End System Multicast (ESM) 911
in publish-subscribe 253
informed gossip 253

gossip architecture 783–792
gossip message 785

processing 789–791
propagating 791–792

query processing 788
update processing 788–789

GPS see Global Positioning System
grant table, in Xen 328
Grid 414–417

computationally-intensive applications 417
data-intensive applications 416
eScience 4
Globus Toolkit 417
middleware 417
open grid services architecture (OGSA) 417
requirements for 416
the World-Wide Telescope 415

Grid computing 14
Grid middleware 417
group 233

closed 235
membership 233
membership management 237, 771
non-overlapping group 235
object group 234
open 235
overlapping 658
overlapping group 235
process group 234
view 237, 771, 772–775

group communication 44, 169–174, 232–238,
646–659, 771–775

for a fault tolerance 233

for collaborative applications 233
for managing replicated data 771
for reliable dissemination of information 233
for system monitoring and management 233
implementation 236–238
JGroups 238–242
ordering 646
programming model 233–235
reliability 646
view-synchronous 773–775

Gryphon 253
GSM mobile phone network 88

H

Hadoop 965
handheld computing 818
handle system 570
handshake protocol, in TSL 512
happened-before 236, 607
heartbeat message 442
Hermes 253
heterogeneity 16, 17, 41, 528, 530

in publish-subscribe 244
name service 573

historical notes
distributed file systems 522
emergence of modern cryptography 465

history 597
global 613
of server operations in request-reply 190

hold-back queue 649
Horus 238
hostname 568
HTML 27
HTTP 30, 95, 96, 106, 107, 125, 192–195

in SOAP 390
over persistent connection 313
performance of 309

hub 105
hybrid cryptographic protocol 476, 493
hypercall 323
hyperlink 26

physical 871, 873–875
hypervisor 319, 321

I

I/O rings, in Xen 328
IANA (Internet Assigned Numbers Authority) 96, 577
IDEA (International Data Encryption Algorithm) 490,

1034 INDEX

501
idempotent operation 190, 199, 532
identifier 566, 568
IEEE 802 standards 128
IEEE 802.11 (WiFi) network 129, 135–138

security 515–517
IEEE 802.15.1 (Bluetooth) network 129, 138–141
IEEE 802.15.4 (ZigBee) network 130
IEEE 802.16 (WiMAX) network 130
IEEE 802.3 (Ethernet) network 104, 129, 130–135
IEEE 802.4 (Token Bus) network 129
IEEE 802.5 (Token Ring) network 129
implementation repository, in CORBA 350
inconsistent retrieval 684, 695
independent failure 2
indirect communication 44, 230

a comparison of approaches 275–276
distributed shared memory 45, 262–265
group communication 44, 232–238
message queues 45, 254–258
publish-subscribe 45, 242–253
tuple space 45, 265–271

indirection 230
information leakage as a security threat 468
infrastructure as a service 319
initialization vector (for a cipher) 486
i-node number 537
input parameters 196
integrity

in consensus and related problems 660–662
of message queues 255
of multicast delivery 236, 647
of reliable communication 71

intentions list 751, 757
interaction model 38, 62–67
interactive consistency 662
interception

Fractal 377
interface 195–198, 204, 205

interface definition language (IDL) 197
service interface 196

interface definition language 208
CORBA 341–344
CORBA IDL example 197
in web services 400–404
Sun RPC example 201

interface definition language (IDL) 197
interface repository, in CORBA 350
International Atomic Time 599
Internet 8, 96, 106–128

routing protocols 113–116

Internet address see IP address
Internet protocol see IP
Internet telephony 885
internetwork 88, 94, 103–105
interoperable Inter-ORB protocol (IIOP) 352
interoperation

spontaneous 825–826
interprocess communication 42, 43

characteristics 147
intranet 8, 14
invocation mechanism 282

asynchronous 313
latency 306
operating system support for 303–311
performance of 305–311
scheduling and communication as part of 282
throughput 307
within a computer 309–311

invocation semantics
at-least-once 199
at-most-once 199
exactly once 198
maybe 199

invokes an operation 15
IOR see CORBA

interoperable object reference
IP 95, 111–122

API 147–158
IP address, Java API 149
IP addressing 108–111
IP multicast 106, 170–173, 236, 649

address allocation 171
failure model 171
Java API 172
router 170

IP spoofing 112
IPC see interprocess communication
IPv4 108
IPv6 90, 105, 118–120
ISDN 95
ISIS 775
isochronous data streams 886
isolation

in Xen 321
Ivy file system 455–458

J

Java
object serialization 162–164
reflection 163

INDEX 1035

thread see thread, Java
Java API

DatagramPacket 151
DatagramSocket 152
InetAddress 149
MulticastSocket 172
ServerSocket 155
Socket 156

Java Messaging Service (JMS)
connection 259
connection factory 259
JMS client 258
JMS destination 259
JMS message 258
JMS provider 258
message consumer 260
message producer 260
transaction 259

Java remote method invocation 217–225
callback 223
client program 222
design and implementation 224–225
downloading of classes 219
parameter and result passing 218
remote interface 217
RMIregistry 220
servant 221
servant classes 221
server program 221
use of reflection 224

Java security 468
JavaSpaces 271–274

leases 272
objects in 272
programming model 272
transaction 272

JetSend 841
JGroups 238–242

building block 238, 241
channel 238, 239–240
process group 238
protocol stack 239, 241–242

Jini 273
discovery service 832–833
distributed event specification 247
leases 216

jitter 63

K

Kademlia routing overlay 425, 435

Kazaa 425
Kerberos 505–510
Kerberos authentication

for NFS 544
kernel 285

monolithic 315
keystream generator 486

L

L2imbo 840
L4 microkernel 318
Lamport timestamp 608
LAN see network, local area
latency 63
layering 51
layers 175
layers in protocols 93
lazy update propagation 803
LDAP see lightweight directory access protocol
leaky bucket algorithm 893
leases 223

for callbacks 223
in discovery services 831
in JavaSpaces 272
in Jini 216

leecher, in BitTorrent 907
lifecycle 371
lifecycle management 339

Enterprise JavaBeans (EJB) 367
Fractal 376

lightweight directory access protocol 592
lightweight RPC 309–311
Linda 265

Bauhaus Linda 267
multiple tuple spaces 267

linear-bounded arrival processes (LBAP) 892
linearizability 776
linearization 614
links 26
link-state routing algorithms 101
little-endian order 158
liveness property 615
load balancing

Bigtable 954
load sharing 289–290
local area network see network, local area
location

absolute 854
authentication based upon 863
physical 855

1036 INDEX

relative 854
semantic 855
sensing 852–857
stack 856

location service 215
location transparency 23, 527, 546
location-aware computing 10
location-aware system see location, sensing
lock manager 697
locking

in distributed transaction 740
locks 692–706

causing deadlock see deadlock
Chubby 940
exclusive 692
granularity 693
hierarchic 705, 706
implementation 696
in nested transaction 699
increasing concurrency 704
lock manager 696
operation conflict rules 694
promotion 695
read-write 694, 695
read-write-commit 704
shared 694
strict two-phase 693
timeouts 703
two-phase locking 693
two-version 704

logging 753–755
logical clock 608
logical time 67, 607–610
log-structured file storage (LFS) 560
loose coupling 385
lost reply message 190
lost update 683, 695

M

Mach 317
MAN see network, metropolitan area
man-in-the-middle attack 467
MapReduce 927, 956–960

architecture 958–960
interface 956–958

marshalling 158
mashup (in service-oriented architecture) 414
masking failures 21, 70
masquerading attack 467
massively multiplayer online games 5–6

maximum transfer unit (MTU) 95, 111, 131
maybe invocation semantics 199
MD5 message digest algorithm 499, 501
media synchronization 885
medium access control protocol (MAC) 95, 131, 134,

136
MEDYM 253
Meghdoot 253
message

destination 148
reply 188
request 188

message authentication code (MAC) 496
message broker, in message queues 256
message digest 476
message passing 146, 178

Message Passing Interface (MPI) 178–180
Message Passing Interface (MPI) 178–180
message queues 45, 60, 254–258

implementation 256–258
integrity 255
message broker 256
message transformation 255
programming model 254–256
reliable delivery 255
security 256
transaction 255
validity 255

message tampering attack 467
message-driven bean

Enterprise JavaBeans (EJB) 366
Message-Oriented Middleware(MOM) 254
metadata 526
metropolitan area network see network, metropolitan

area
microkernel 315–318

comparison with monolithic kernel 316
Microsoft Virtual Server 320
Microsoft’s Azure 965
middleware 17, 52, 58–61

application server 60, 363
categories 59
component 60, 336, 358–364
distributed object 60, 336, 337–340
limitations 60
message queues 60
operating system support for 281
peer-to-peer 60
publish-subscribe 60
web services 60

MIME type

INDEX 1037

use in HTTP 867
mix zone 865
mixing 865
mobile agent 50
mobile code 17, 19, 50, 75

security threats 467
mobile computing 10–11, 818–879

origin of 818
mobile phone 818, 820, 821, 823

and proximity 854
and secure association 859
user agent profile 868
with camera see camera phone

mobileIP 120–122
mobility

physical versus logical 822
transparency 24, 527

model
architectural 38, 40–58
failure 67–71
fundamental 38, 61–76
interaction 62–67
physical 38, 39–40
security 71–76

mote 824
MPEG video compression 886, 887, 892
MTU see maximum transfer unit
multicast 233, 646–659

atomic 651
basic 647
causal ordering 236
causally ordered delivery 651, 657
FIFO ordering 236
FIFO-ordered delivery 651, 653
for event notifications 170
for fault tolerance 169, 779, 780
for highly available data 170
for replicated data 174
operation 169
ordered 173–174, 236, 651–659
reliable 173–174, 236, 647–651
to overlapping groups 658
total ordering 236
totally ordered delivery 651, 654

multicast group 170
multilateration 853
multimedia 882–913

admission control 896–897
continuous media 12, 886
data compression 887
end system approach 909

play time 90
resource bandwidth 883
stream 882–885, 886
stream adaptation 899
stream burstiness 892
typical bandwidths 886
web-based 884

multiprocessor
distributed memory 264
shared memory 283

Non-Uniform Memory Access (NUMA)
263

mutual exclusion 633–641
between processes in a ring 636
by central server 635
Maekawa’s algorithm 639
token 636
using multicast 637–639

N

Nagle’s algorithm 124
name 566, 568

component 571
prefix 571
pure 566
unbound 570

name resolution 566, 569, 573–574, 874
name service 566–593

caching 576, 579
heterogeneity 573
navigation 574–575
replication 579
use of Chubby 944

name space 570
naming context 573
naming domain 572
Napster 425, 428–430, 435
NAT see Network Address Translation
navigation

multicast 575
server-controlled 575

Near Field Communication (NFC) 834, 855
Needham–Schroeder protocol 504–505
negative acknowledgement 649
Nemesis 317
nested transaction 690–692, 759

locking 699
provisional commit 736
recovery 759–761
two-phase commit protocol 736–740

1038 INDEX

timeout actions 740
network

ad hoc 135, 848
ATM (Asynchronous Transfer Mode) 88, 90, 92,

95, 102, 130
bridge 104
circuit switching 91
congestion control 102
CSMA/CA 137
CSMA/CD 131
data streaming 90
data transfer rate 83
delay-tolerant 850
disruption-tolerant 850
frame relay 91
gateway 89
IEEE 802 standards 128
IEEE 802.11 (WiFi) 129, 135–138, 515–517
IEEE 802.15.1 (Bluetooth) 129, 138–141
IEEE 802.15.4 (ZigBee) 130
IEEE 802.16 (WiMAX) 130
IEEE 802.3 (Ethernet) 104, 129, 130–135
IEEE 802.4 (Token Bus) 129
IEEE 802.5 (Token Ring) 129
Internet 96, 106–128
interplanetary 850
IP multicast 106
IP routing 113
latency 83
layer 95
local area 86
metropolitan area 87
packet assembly 95
packet switching 91
packets 89
performance parameters 83
port 96
protocol see protocol
reliability requirements 84
requirements 83–85
router 104
routing 87, 98–102, 113–116
scalability requirements 84
security requirements 85
TCP/IP 106
total system bandwidth 83
traffic analysis 865
transport address 96
tunnelling 105
Ultra Wide Band 855
wide area 87

Network Address Translation (NAT) 116
network computer 57
network discovery service 830
Network File System (NFS) 430, 454, 455, 529,

536–547
Automounter 541
benchmarks 545
enhancements 557
hard and soft mounting 540
Kerberos authentication 544
mount service 539
performance 545
Spritely NFS 557
virtual file system (VFS) 536
v-node 537
WebNFS 558

Network Information Service (NIS) 780
network of brokers 249
network operating system 280
network partition 631, 807–808

primary 772
virtual 811–814

Network Time Protocol 603–606
network transparency 24
NFS see Network File System
NIS see Network Information Service
NNTP 106
node 42
nomadic computing 871
non-blocking send 148
nonce 504
non-preemptive scheduling 300
non-repudiation 470, 494
NQNFS (Not Quite NFS) 558
n-tiered architecture 53
NTP see Network Time Protocol

O

object 42
activation 213
active 213
distributed 206

model 207
exception 205
factory 213
instantiation 205
interface 205
location 215
model 205

CORBA 341

INDEX 1039

no instantiation in web services 393
passive 213
persistent 214
protection 72
reference 204, 205
remote 207
remote reference 207
signature of method 205

object adapter 348
object group 234
object request broker (ORB) 340
object serialization, in Java 162–164
OceanStore 451–455
OMG (Object Management Group) 340
omission failure 67

communication 68
process 68

one-copy serializability 802
one-way function 484
one-way hash function 498
open distributed system 18
open grid services architecture (OGSA) 417
Open Mobile Alliance (OMA) 868
open shortest path first (OSPF) 113
open system 314
open systems interconnection see OSI Reference

Model
OpenCOM 374
openness 17–18, 41, 528, 926
OpenStreetMap 965
operating system 279–332

architecture 314–318
communication and invocation support 303–314
policy and mechanism 314
processes and threads support 286–303

operational transformation 793
optimistic concurrency control 707–711

backward validation 709
comparison of forward and backward validation

711
examples 719
forward validation 710
in distributed transaction 742
starvation 711
update phase 708
validation 708
working phase 707

optimistic unchocking, in BitTorrent 908
ordered multicast 236
OSGi 374
OSI Reference Model 94

output parameters 196
overlay network 175

for multimedia 908

P

packet assembly 95
packet switching network see network, packet

switching
packets see network, packets
page fault 291
PageRank 919
Parallels 320
paravirtualization 320, 323
passive object 213
passive replication see primary-backup replication
Pastry routing overlay 425, 435, 436–444
patterns 51–58, 916
Paxos 843, 943, 944–946

Multi-Paxos 946
peer-to-peer 47–48, 60, 424–459

and copyright ownership 429
BitTorrent 906
CoolStreaming 910
middleware 425, 430–433
publish-subscribe 249
routing overlay 433–436
structured peer-to-peer 445
tuple space 271
ultrapeers 447
unstructured peer-to-peer 445–447

performance transparency 24, 527
persistence

distributed object 339
persistent connection 192, 309
persistent object 214
persistent object store

comparison with file service 523
persistent Java 214, 524

personal digital assistant (PDA) 818
personal server 825
Petal distributed virtual disk system 562
PGP see Pretty Good Privacy
phantom deadlock 745
physical hyperlink 871, 873–875
physical layer 93, 95
physical models 38, 39–40
physically constrained channel 834, 861–863
placement 48–51
plaintext 484
Plan 9 573

1040 INDEX

platform 52, 281
platform as a service 319, 922
play time, for multimedia data elements 90
POP 106
port 96
port mapper 203
POTS (plain old telephone system) 91
PPP 95, 106, 108
precedence graph 808
preemptive scheduling 299
premature write 689
presentation layer 95
Pretty Good Privacy (PGP) 502
primary copy 547
primary-backup replication 778–780
principal 72
privacy 826, 856, 857, 864–866

proxy 865
process 42, 286–303

correct 632
creation 289–291
creation cost 295
multi-threaded 286, 287
threats to 73
user-level 285

process group 234, 238
producer-consumer communication 146
promise 313
protection 284–285

and type-safe language 285
by kernel 285

protection domain 479
protocol 92–98

application layer 93, 95
ARP 112
data link layer 95
dynamic composition 304
FTP 95, 96, 106, 127
HTTP 95, 96, 106, 107, 125
internetwork layer 94
IP 95, 111–122
IPv4 108
IPv6 90, 105, 118–120
layers 93
mobileIP 120–122
network layer 95
NNTP 106
operating system support for 304
physical layer 93, 95
POP 106
PPP 95, 106, 108

presentation layer 95
session layer 95
SMTP 95, 106
stack 94, 304
suite 94
TCP 95, 122–124
TCP/IP 106
transport 92
transport layer 95
UDP 95, 107, 122

protocol buffers 927, 929–932
serialization 929

provided interface
component 360

provisional commit 736
proxy 57, 211

dynamic 397
in CORBA 350
in web services 387, 396, 397

pseudonym 865
pseudo-physical memory, in Xen 325
public key 473
Public key infrastructure 499
public-key certificate 476, 478
public-key cryptography 491–493
publisher, in publish-subscribe 243
publish-subscribe 45, 60, 242–253

advertisement 245
applications 243
centralized implementation 248
channel-based 246
characteristics 244
complex event processing 248
concept-based 248
content-based 247
content-based routing 250
decentralized implementation 248
delivery guarantees 245
example systems 253
filter 245
Google infrastructure 927, 932–933
implementation 248–253
objects of interest 247
peer-to-peer implementation 249
programming model 245–248
publisher 243
role of gossip 253
subject-based 246
subscriber 243
subscription 243
topic-based 246, 933

INDEX 1041

type-based 247

Q

QoS see quality of service
quality of service 25, 41

admission control 890
management 882, 887–897
negotiation 889, 890–896
parameters 890

query
distributed processing 850
spatio-temporal 857

quorum consensus 803, 809–811

R

Radio Frequency IDentification see RFID
random walk 447
randomization 670
RC4 stream cipher algorithm 490
reachability 614
Real Time Transport Protocol (RTP) 90
real-time network 135
real-time scheduling 898
receive omission failures 68
recovery 688–690, 751–761

cascading abort 689
dirty read 688
from abort 688
intentions list 751, 757
logging 753–755
nested transactions 759–761
of two-phase commit protocol 758–761
premature write 689
shadow versions 756–757
strict executions 690
transaction status 752, 757

recovery file 751–761
reorganization 755, 759

recovery from failure 22
recovery manager 751
redundancy 22
redundant arrays of inexpensive disks (RAID) 560
reflection 58

Fractal 376
in Java 163
in Java remote method invocation 224
OpenCOM 374

region see address space
reliable channel 631

reliable communication 71
in SOAP 392
integrity 71
validity 71

reliable multicast 174, 236, 647–651
remote interface 207, 208

in Java remote method invocation 217
remote invocation 15, 43

Google infrastructure 929
remote method invocation 44, 186, 204–216
remote procedure call 44, 186, 195–204
request-reply protocol 43, 186, 187–195

remote method invocation 44, 186
binder 213
communication module 209
CORBA 341–358
dispatcher 211
distributed garbage collection 215–216
downloading of classes 212
dynamic invocation 212
dynamic invocation interface 212
factory method 213
factory object 213
implementation 209–215
Java case study 217–225
null 305
parameter and result passing in Java 218
performance of see invocation mechanism,

performance of
proxy 211
remote reference module 210
servant 211
skeleton 211

remote object 207
activator 213
instantiation 208

remote object reference 168, 207
compared with URI 393
in CORBA 351

remote object table 210
remote procedure call 44, 186, 195–204

duplicate filtering 198
implementation 200–201
input parameters 196
lightweight 309–311
null 305
output parameters 196
performance of see invocation mechanism,

performance of
protocol buffers 931
queued 313

1042 INDEX

retransmission of replies 198
retry request message 198
semantics 198
server stub procedure 200
stub procedure 200
transparency 199

remote reference module 210
rendezvous, in content-based routing 252
replaying attack 467
replica manager 769
replication 49, 447, 765–814

active 780–782
available copies 803, 805–807

with validation 808
Chubby 943
Google File System (GFS) 937
in tuple spaces 268–270
of files 528
primary-backup 778–780
quorum consensus 803, 809–811
transactional 802–814
transparency 24, 767
virtual partition 803, 811–814

reply message 188
request message 188
request-reply protocol 43, 186, 187–195

doOperation 187, 189
exchange protocols 190
failure model 189
getRequest 187
history of server operations 190
lost reply messages 190
message identifiers 189
sendReply 187
timeout 189
use of TCP 191

required interface
component 360

resolver 874
resource 2

invocation upon 282
sharing 14–16, 424

resource management (for multimedia) 897–899
Resource Reservation Protocol (RSVP) 90, 896
REST (representational state transfer) 384, 386, 418
resurrecting duckling protocol 863
RFC 18
RFID (Radio Frequency IDentification) 845, 855, 864,

874
RIP-1 101, 113
RIP-2 113

RMI see remote method invocation
RMIRegistry 220
roles 45–48
router 103, 104
router information protocol (RIP) 100
routing see network

routing
RPC see remote procedure call
RR 190
RRA 190
RSA public-key encryption algorithm 485, 491–493
RSVP see Resource Reservation Protocol
run 614

S

safety property 615
sandbox model of protection 468
satellite navigation 852

see Global Positioning System (GPS)
Sawzall 928, 962–963
scalability 19–21, 527, 924
scaling transparency 24, 527
scheduler activation 302
scheduling

in Xen 323–325
Scribe 253
secret key 473
Sector/Sphere 965
secure channel 74
secure digest function 476
secure hash function 426, 495
Secure Sockets Layer see Transport Layer Security
secure spontaneous device association 860–863
security 18, 19

‘Alice and Bob’ names for protagonists 466
design guidelines 471
eavesdropping attack 467
in Java 468
in message queues 256
information leakage models 468
man-in-the-middle attack 467
masquerading attack 467
message tampering attack 467
replaying attack 467
threats from mobile code 467
threats: leakage, tampering, vandalism 466
Transport Layer Security (TLS) 511–515
trusted computing base 472
XML security 406–410

security mechanism 464

INDEX 1043

security model 38, 71–76
security policy 464
seeder, in BitTorrent 906
Semantic Web 844
send omission failures 68, 148
sender order 148
sensitive instruction

behaviour sensitive 322
control sensitive 322
privileged 322
virtualization 322

sensor 823, 844–857
error mode 845
fusion 846
location 852–857
network, wireless 848–852

sequencer 654
sequential consistency 777
serial equivalence 681, 685
serialization 162

protocol buffers 929
servant 211, 212, 221, 349, 354, 394
servant classes 221, 349, 354
server 15

multi-threaded 292
multi-threading architecture 293
personal 825
throughput 292

server port 150
server stub procedure 200
serverless file system (xFS) 561
service 15

fault-tolerant 767, 775–782
highly available 782–801

service discovery 11
see discovery service

service interface 196, 395
service-oriented architecture (SOA) 413–414

mashup 414
servlet 298
servlet container 396
session bean

Enterprise JavaBeans (EJB) 366
Session Initiation Protocol 885
session key 475
session layer 95
SETI@home project 427
SHA secure hash algorithm 499, 501
SHA-1 secure hash algorithm 434, 436, 450, 457
shadow versions 756–757
shared whiteboard

CORBA IDL interface 343
dynamic invocation 212
implementation in CORBA 353
implemented in Java RMI 217–224
implemented in web services 394

Siena 253
signature of method 205
Simple Public-key Infrastructure (SPKI) 500
SIP see Session Initiation Protocol
skeleton 211

dynamic 212
dynamic in CORBA 351
in CORBA 350
in web services 398
not needed with generic dispatcher 224

Skype 177
smart dust see mote
smart phones 818, 824
smart space 822
SMTP 95, 106
SOAP 384, 387–393

addressing and routing 391
and firewalls 392
envelope 389
header 390
Java implementation 397
message transport 390
messages 388
reliable communication 392
specification 388
use of HTTP 390
with Java 394–398

socket 149
connect 156

soft state 843
software architecture 360
software as a service 319, 414, 921
software interrupt 295
Solaris

lightweight process 301
space uncoupling 44, 230

in tuple spaces 267
spatio-temporal query 857
Speakeasy 842
speaks for relation (in security) 482
SPIN 317
SPKI see Simple Public-key Infrastructure
split device driver, in Xen 327
spontaneous association 826
spontaneous interoperation 11, 825–826
spontaneous networking 821

1044 INDEX

discovery service 584
Spring naming service 573
Spritely NFS 557
Squirrel web cache 449–451
SSL see Transport Layer Security
starvation 634, 711
state machine 268, 769
state transfer 774
stateless server 533
stream cipher 486–487
strict executions 690
structured peer-to-peer 445
Structure-less CBR 253
stub procedure 200

in CORBA 350
subject-based publish-subscribe 246
subscriber, in publish-subscribe 243
subscription, in publish-subscribe 243
subsystem 316
Sun Network File System (NFS) see Network File

System
Sun RPC 201–204, 536

external data representation 203
interface definition language 201
portmapper 203
rpcgen 201

supervisor 284
supervisor mode 285
Switched Ethernet 135
symmetric cryptography 484
symmetric processing architecture 283
synchronization of clocks 599–606

Berkeley algorithm 603
Cristian’s algorithm 601–603
external 599
in a synchronous system 601
internal 599
Network Time Protocol 603–606

synchronization, of server operations 678
synchronous communication 148
synchronous distributed system 64, 235, 601, 625, 630,

633, 659, 663
system call trap 285
system virtualization 318–320
systems of systems 40

T

tag see automatic identification
Tapestry routing overlay 425, 435, 444–445
TCP 95, 122–124, 153–158

and request-reply protocols 191, 308
API 154
failure model 155
Java API 155–158

TCP/IP see protocol, TCP/IP
TEA (Tiny Encryption Algorithm) 488–489, 501
TERA 253
termination

of consensus and related problems 660–662
termination detection 611
thin client 56
thread 42, 148, 286, 292–303

blocking receive 148
C 297
in client 294
comparison with process 294
creation cost 295
implementation 300–303
in server 292
Java 297–300
kernel-level 300
on multiprocessor 294
multi-threading architecture 293
POSIX 297
programming 297–300
scheduling 299
switching 296
synchronization 298
worker 293

three-tiered architecture 53, 362
throw exception 206
TIB Rendezvouz 253
Ticket Granting Service (TGS) 506
ticket, of authentication 474
tiering 52

n-tiered architecture 53
three-tiered architecture 53, 362
two-tiered architecture 53

Tiger video file server 901–906
time 595–610

logical 607–610
time uncoupling 44, 230

in tuple spaces 267
time-based data streams 886
time-critical data 25
timeouts 68
timestamp

Lamport 608
vector 609

timestamp ordering 711–718
in distributed transaction 741

INDEX 1045

multiversion 715–718
operation conflicts 712
read rule 714
write rule 713

timing failure 70
tit-for-tat in BitTorrent, BitTorrent

tit-for-tat 907
Token Bus network 129
Token Ring network 129
tolerating failure 22
topic-based publish-subscribe 246
torrent, in BitTorrent 907
TOTA (Tuples On The Air) 840
total ordering 236, 597, 609

of multicast delivery 651
of request handling 770

totally ordered multicast 174
tracker, in BitTorrent 906
tracking 852

and privacy 856, 864
traffic analysis 865
traffic shaping (for multimedia data) 893
transaction 679–692

abort 682
ACID properties 681, 720
closeTransaction 682
failure model 679
in JavaSpaces 272
in message queues 255
in the Java Messagng Service (JMS) 259
in web services 411
openTransaction 682
recovery see recovery
serial equivalence 685
with replicated data 802–814

transaction status 752, 757
transcoding 867
transparency 23–25, 204

access 23, 527, 546
concurrency 23
failure 24
in remote procedure call 199
location 23, 527, 546
mobility 24, 527
network 24
performance 24, 527
replication 24, 767
scaling 24, 527

transport address 96
transport layer 95
Transport Layer Security (TLS) 107, 511–515

transport protocol 92
trap-door function 484
triple-DES encryption algorithm 501
trust 826, 857, 863
trusted computing base 472, 826
trusted third party 857, 859, 860
tunnelling 105
tuple space 45, 265–271

compared to event system 840
distributed sharing 267
free naming 267
generative communication 45, 265
implementation 268, 268–271
in volatile system 838–840
L2imbo 840
Linda 265
peer-to-peer implementation 271
programming model 265–267
replication 268–270
space uncoupling 267
time uncoupling 267
TOTA 840

two-phase commit protocol 732–735
nested transaction 736–740

flat commit 739
hierarchic commit 738

performance 735
recovery 758–761
timeout actions 734

two-tiered architecture 53
type-based publish-subscribe 247

U

ubiquitous computing 10–11, 818–879
origin of 819

UDDI see universal directory and discovery service
UDP 95, 107, 122, 150–153

failure model 151
for request-reply communication 308
Java API 151–153
use of 151

UFID see unique file identifier
Ultra Large Scale distributed systems (ULS) 40
Ultra Wide Band (UWB) 855
Ultra-Large Scale distributed systems (ULS) 924
ultrapeer, in peer-to-peer computing 447
UMTS 88
unchoking, in BitTorrent 907
unicast 233
uniform property 650

1046 INDEX

Uniform Resource Identifier 568
compared with remote object reference 393
in web services 382

Uniform Resource Locator 28–30, 568
Uniform Resource Name 569
unique file identifier (UFID) 530, 551
universal directory and discovery service(UDDI)

404–406
Universal Plug and Play (UPnP) 829
Universal Transfer Format 163
UNIX

i-node 537
signal 295
system call

exec 289
fork 290, 289

unmarshalling 158
unreliable multicast 171
unstructured peer-to-peer 445–447

epidemic protocol 447
expanded ring search 447
Gnutella 447–448
gossip 447
random walk 447

upcall 302
update semantics 528, 554
URI see Uniform Resource Indentifer
URL see Uniform Resource Locator
URN see Uniform Resource Name
user mode 285
UTC see Coordinated Universal Time
UTF see Universal Transfer Format
utility computing 13–14

V

V system
remote execution 289
support for groups 775

validity
of messages queues 255
of multicast delivery 236, 648
of reliable communication 71

vector clock 609
vector timestamp 609

comparison 610
merging operation 609

Verisign Corporation 500
videoconferencing 884, 887

CU-SeeMe application 884
iChat AV application 884

NetMeeting application 884
video-on-demand service 884
view synchronous group communication 238
view, of group see group, view
view-synchronous group communication 773–775
virtual circuit 97
virtual file system (VFS) see Network File System

(NFS), virtual file system
virtual machine 17
virtual machine monitor 319
virtual memory management

in Xen 325–326
virtual partition 811–814
virtual private network (VPN) 85, 128
virtual processor 301
virtualization

condition for virtualization (Popek and Goldberg)
322

Denali 320
full virtualization 319
hypervisor 319
Microsoft Virtual Server 320
Parallels 320
paravirtualization 320, 323
sensitive instruction 322
system level 318–320
virtual machine monitor 319
VMWare 320
Xen 320–331

virtually synchronous group communication 775
VMWare 320
Voice over IP 177, 885

Skype application 885
Vonage application 885

VoIP see Voice over IP
volatile system 821–826
voting 639
VPN see virtual private network

W

WAN see network, wide area
wearable computing 820
Web 26–33

caching 449–451
Semantic 844

Web presence 872
Web search 3, 3–5
web services 32, 43, 60, 384–399

choreography 412
communication patterns 384

INDEX 1047

compared with CORBA 398, 399
compared with distributed object model 393
coordination 411–413
directory service 404–406
dispatcher 398
dynamic invocation 387
dynamic invocation interface 397
dynamic proxy 397
infrastructure 383
Java client program 396
Java server program 395
loose coupling 385
model 393
no servants 394
proxy 387, 396
REST (representational state transfer) 384, 386
service description 400–404
service interface in Java 395
servlet container 396
skeleton 398
SOAP 384, 387–393
SOAP with Java 394–398
Uniform Resource Identifier 382

web services description language(WSDL) 400–404
binding 403
concrete part 403
interface 402
main elements 400
operations or messages 401
service 404

web-based multimedia 884
webcasting 12
WebNFS 558
Websphere MQ 256

hub-and-spoke topology 258
message channel 257
message channel agent 257
Message Queue Interface 256
queue manager 256

WEP WiFi security 515–517
wide area network see network, wide area
WiFi network 129, 135–138, 515–517
Wikipedia

concurrency control 719
WiMAX network 130
WLAN (wireless local area network) 88
WMAN (wireless metropolitan area network) 88
World Wide Web see Web
WSDL see web services description language
WWAN (wireless wide area network) 88

X

X.500 directory service 588–592
directory information tree 589
LDAP 592

X.509 certificate 499
XDR see Sun RPC

external data representation
Xen 320–331, 419

device management 327–329
domain 322
grant table 328
hypercall 323
hypervisor 321
I/O rings 328
isolation 321
pseudo-physical memory 325
scheduling 323–325
split device driver 327
virtual machine monitor 320–330
virtual memory management 325–326

XenoServer Open Platform 330–331
xFS serverless file system 561
XML (Extensible Markup Language) 32, 164–168

canonical XML 409
elements and attributes 165
for interoperation 844
namespaces 166
parsing 166
schemas 167
security 406–410

digital signature 409
encryption 410
requirements 407

XSLT (eXtensible Style Language Transformations)
867

Z

zero configuration networking 827
ZigBee network 130

This page intentionally left blank

Coulouris 5e PDF files for eBook production

Points to note:

1. These files were generated from FrameMaker (FM) 8 originals produced by the authors.

2. Files have 2 colors in typography and layout. The second color is configurable in the original FM
files. For these 5e PDFs we have chosen the same deep blue color used in the printed versions of
the 4e.

3. The files include some hot links:
- all cross references to text or figures within the same chapter are clickable hot links;
- cross-references to sections in other chapters are not;
- Bibliographic references are not hot links;
 -web references in [] and references to the book's web site (www.cdk5.xxx) are not hot links, even
though they have the appearance of web links. This should definitely be fixed before the files are
distributed.

4. In the file references.pdf, most of the web references are hot links.

George Coulouris
23-4-11

	Cover
	Title Page
	Copyright Page
	CONTENTS
	PREFACE
	Acknowledgements
	1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS
	1.1 Introduction
	1.2 Examples of distributed systems
	1.3 Trends in distributed systems
	1.4 Focus on resource sharing
	1.5 Challenges
	1.6 Case study: The World Wide Web
	1.7 Summary

	2 SYSTEM MODELS
	2.1 Introduction
	2.2 Physical models
	2.3 Architectural models
	2.4 Fundamental models
	2.5 Summary

	3 NETWORKING AND INTERNETWORKING
	3.1 Introduction
	3.2 Types of network
	3.3 Network principles
	3.4 Internet protocols
	3.5 Case studies: Ethernet, WiFi and Bluetooth
	3.6 Summary

	4 INTERPROCESS COMMUNICATION
	4.1 Introduction
	4.2 The API for the Internet protocols
	4.3 External data representation and marshalling
	4.4 Multicast communication
	4.5 Network virtualization: Overlay networks
	4.6 Case study: MPI
	4.7 Summary

	5 REMOTE INVOCATION
	5.1 Introduction
	5.2 Request-reply protocols
	5.3 Remote procedure call
	5.4 Remote method invocation
	5.5 Case study: Java RMI
	5.6 Summary

	6 INDIRECT COMMUNICATION
	6.1 Introduction
	6.2 Group communication
	6.3 Publish-subscribe systems
	6.4 Message queues
	6.5 Shared memory approaches
	6.6 Summary

	7 OPERATING SYSTEM SUPPORT
	7.1 Introduction
	7.2 The operating system layer
	7.3 Protection
	7.4 Processes and threads
	7.5 Communication and invocation
	7.6 Operating system architecture
	7.7 Virtualization at the operating system level
	7.8 Summary

	8 DISTRIBUTED OBJECTS AND COMPONENTS
	8.1 Introduction
	8.2 Distributed objects
	8.3 Case study: CORBA
	8.4 From objects to components
	8.5 Case studies: Enterprise JavaBeans and Fractal
	8.6 Summary

	9 WEB SERVICES
	9.1 Introduction
	9.2 Web services
	9.3 Service descriptions and IDL for web services
	9.4 A directory service for use with web services
	9.5 XML security
	9.6 Coordination of web services
	9.7 Applications of web services
	9.8 Summary

	10 PEER-TO-PEER SYSTEMS
	10.1 Introduction
	10.2 Napster and its legacy
	10.3 Peer-to-peer middleware
	10.4 Routing overlays
	10.5 Overlay case studies: Pastry, Tapestry
	10.6 Application case studies: Squirrel, OceanStore, Ivy
	10.7 Summary

	11 SECURITY
	11.1 Introduction
	11.2 Overview of security techniques
	11.3 Cryptographic algorithms
	11.4 Digital signatures
	11.5 Cryptography pragmatics
	11.6 Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi
	11.7 Summary

	12 DISTRIBUTED FILE SYSTEMS
	12.1 Introduction
	12.2 File service architecture
	12.3 Case study: Sun Network File System
	12.4 Case study: The Andrew File System
	12.5 Enhancements and further developments
	12.6 Summary

	13 NAME SERVICES
	13.1 Introduction
	13.2 Name services and the Domain Name System
	13.3 Directory services
	13.4 Case study: The Global Name Service
	13.5 Case study: The X.500 Directory Service
	13.6 Summary

	14 TIME AND GLOBAL STATES
	14.1 Introduction
	14.2 Clocks, events and process states
	14.3 Synchronizing physical clocks
	14.4 Logical time and logical clocks
	14.5 Global states
	14.6 Distributed debugging
	14.7 Summary

	15 COORDINATION AND AGREEMENT
	15.1 Introduction
	15.2 Distributed mutual exclusion
	15.3 Elections
	15.4 Coordination and agreement in group communication
	15.5 Consensus and related problems
	15.6 Summary

	16 TRANSACTIONS AND CONCURRENCY CONTROL
	16.1 Introduction
	16.2 Transactions
	16.3 Nested transactions
	16.4 Locks
	16.5 Optimistic concurrency control
	16.6 Timestamp ordering
	16.7 Comparison of methods for concurrency control
	16.8 Summary

	17 DISTRIBUTED TRANSACTIONS
	17.1 Introduction
	17.2 Flat and nested distributed transactions
	17.3 Atomic commit protocols
	17.4 Concurrency control in distributed transactions
	17.5 Distributed deadlocks
	17.6 Transaction recovery
	17.7 Summary

	18 REPLICATION
	18.1 Introduction
	18.2 System model and the role of group communication
	18.3 Fault-tolerant services
	18.4 Case studies of highly available services: The gossip architecture, Bayou and Coda
	18.5 Transactions with replicated data
	18.6 Summary

	19 MOBILE AND UBIQUITOUS COMPUTING
	19.1 Introduction
	19.2 Association
	19.3 Interoperation
	19.4 Sensing and context awareness
	19.5 Security and privacy
	19.6 Adaptation
	19.7 Case study: Cooltown
	19.8 Summary

	20 DISTRIBUTED MULTIMEDIA SYSTEMS
	20.1 Introduction
	20.2 Characteristics of multimedia data
	20.3 Quality of service management
	20.4 Resource management
	20.5 Stream adaptation
	20.6 Case studies: Tiger, BitTorrent and End System Multicast
	20.7 Summary

	21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY
	21.1 Introduction
	21.2 Introducing the case study: Google
	21.3 Overall architecture and design philosophy
	21.4 Underlying communication paradigms
	21.5 Data storage and coordination services
	21.6 Distributed computation services
	21.7 Summary

	REFERENCES
	INDEX

