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Preface 
 

By now, most technology professionals have heard of the radical 
transformation taking place in the way that modern computing platforms are 
being designed. Intel, IBM, Sun, and AMD have all introduced microprocessors 
that have multiple execution cores on a single chip. In 2005, consumers had 
the opportunity to purchase desktop platforms, servers, and game consoles 
that were powered by CPUs that had multiple execution cores. Future 
product roadmaps show that this is only the beginning; rather than racing 
towards being the first to 10 gigahertz, semiconductor manufacturers are now 
working towards the goal of leading the industry in the number of execution 
cores integrated onto a single die. In the future, computing platforms, 
whether they are desktop, mobile, server, or specialized embedded platforms 
are most likely to be multi-core in nature.  

The fact that the hardware industry is moving in this direction 
presents new opportunities for software developers. Previous hardware 
platforms presented a sequential programming model to the 
programmer. Operating systems and other system software simulated 
multitasking environments by exploiting the speed, or lack thereof, of 
human perception. As a result, multi-threading was an effective illusion. 
With modern multi-core architectures, developers are now presented 
with a truly parallel computing platform. This affords software 
developers a great deal more power in terms of the ways that they design 
and implement their software. In this book, we’ll take a look at a variety 
of topics that are relevant to writing software for multi-core platforms.  

 Intended Audience 

Our primary objective is to provide the material software developers need 
to implement software effectively and efficiently on parallel hardware 
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platforms. These platforms include multi-core processors and processors 
that use simultaneous multi-threading techniques, such as Hyper-Threading 
Technology (HT Technology). This book will focus on programming 
techniques that allow the developer to exploit the capabilities provided by 
the underlying hardware platform. We hope to reach as broad an audience 
as possible. In an effort to accomplish this, we’ve included introductory 
material on basic threading concepts for those new to multi-threaded 
programming. However, parallel programming is a complex subject, one 
with many different approaches and philosophies. Our intent, and 
challenge, is to provide a comprehensive discussion of the hardware 
capabilities provided by multi-core processors and platforms using 
simultaneous multi-threading techniques without getting lost in the 
different academic arguments about whether or not a particular approach 
is the optimal solution to the problem of writing reliable, easy to maintain, 
parallel programs. References to the definitive works on these topics, as 
they are introduced in the text, are included for readers who want to 
explore these topics in more detail.  

We assume that the reader is an experienced programmer with little to 
no background in multi-threaded programming techniques. This may be an 
overly cautious assumption; many developers reading this text have 
probably used threads when writing applications designed to run on a 
single-core platform, are familiar with the basic principles of multi-threaded 
programming, and have knowledge of at least one threading API. However, 
it’s important to remember the key differences when writing applications 
targeting single-core, multi-core, and platforms with simultaneous multi-
threading technology. These differences are discussed in this book. For this 
reason, we have chosen to start from the beginning, highlighting these 
differences in the appropriate sections. The authors do assume that the 
reader is familiar with at least one high-level language, preferably C/C++. 
However, many of the suggestions made in this book apply equally to 
languages such as Java and Perl. We hope this approach accomplishes our 
goal of making this book relevant to as wide an audience as possible.   

 About This Book 

This book is organized into three major sections. The first section 
(Chapters 1–4) presents an introduction to software threading. This 
section includes background material on why chipmakers have shifted to 
multi-core architectures, how threads work, how to measure the 
performance improvements achieved by a particular threading 



Preface xiii 

implementation, programming paradigms for parallel hardware 
platforms, and abstract data types used when working with threads. After 
completing these chapters, the reader should have a sense of the reasons 
why hardware platforms are evolving in the way that they are and 
understand the basic principles required to write parallel programs.  

The next section of the book (Chapters 5 and 6) discusses common 
programming APIs for writing parallel programs. We look at three 
programming interfaces: Microsoft’s APIs for Win32, MFC, and .NET; 
POSIX Threads; and OpenMP. We recognize that a large number of 
different APIs and programming models are available to developers. 
However, given the constraints of time and space, we have chosen a 
representative sample of the most commonly used APIs today.  

The third and final section is a collection of topics related to multi-
core programming. Chapter 7 discusses common parallel programming 
problems and how to solve them. Chapter 8 examines the topic of 
debugging multi-threaded implementations. Chapter 9 provides an 
introduction or review of hardware fundamentals, and Chapter 10 
follows this up with an in-depth discussion of multi-core processors at 
the hardware level. In Chapter 11, we talk about the software tools 
developed by Intel that help software developers write, debug, and 
profile multi-threaded applications.  

Finally, it should be noted that all of the Windows† based samples 
provided with this book were compiled and built with Microsoft’s Visual 
Studio† 2005. These applications were tested using Microsoft XP with 
Service Pack 2 installed. For Linux†, the gcc compiler was used and the 
examples were tested on Linux 2.6. All OpenMP examples were 
compiled using the latest Intel® C++ Compiler. For the code samples, 
updates, errata, and additional material, please visit the book’s Web site: 
http://www.intel.com/intelpress/mcp. 

 Intel® Software Development Products 

As you’ll see throughout the text, and especially in Chapter 11, Intel 
provides more than just multi-core processors. In addition to the 
hardware platform, Intel has a number of resources for software 
developers, including a comprehensive tool suite for threading that 
includes: 

■ Intel C++ and Fortran compilers, which support multi-threading 
by providing OpenMP and automatic parallelization support 

http://www.intel.com/intelpress/mcp
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■ Intel Math Kernel Library and Intel Integrated Performance 
Primitives that are threaded via OpenMP 

■ Intel VTune™ Performance Analyzer, which can be used to 
monitor processor events related to multi-threaded performance 

■ Intel Thread Checker and the Intel Debugger, which help debug 
common multi-threaded problems like deadlocks 

■ Intel Thread Profiler, which helps developers optimize OpenMP, 
Microsoft Windows, and POSIX-based multi-threaded applications 

In addition to tools, the Intel Software Network is focused on working 
with software vendors around the world to help develop and deploy 
production applications. The Intel Software Network consists of a 
number of different resources. One of these resources is a detailed 
knowledge base of whitepapers and articles written by Intel architects 
that share key insights on technology, including optimal threading 
techniques. The Intel Software Network also includes user discussion 
forums where you can interact with Intel engineers to discuss all things 
related to technology. The Intel Software College provides training 
courses in a variety of formats, including Webcasts, online training, and 
classroom-based training. These classes discuss a wide variety of topics 
including multi-threaded programming. Intel Solution Services provides 
consulting services for companies looking to get expert advice on a 
challenging technical issue.  

To start exploring the online resources available to developers 
targeting multi-core platforms, visit Intel’s multi-core homepage at: 
http://www.intel.com/multi-core/. 

 Acknowledgements 

This book is the culmination of the efforts of a number of talented 
individuals. There are many people that need to be recognized. We’d like 
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Chapter 1
Introduction 
to Multi-Core 
Architecture 

 

n 1945, mathematician John von Neumann, with the aid of J. Presper 
Eckert and John Mauchly, wrote a memo proposing the creation of an 

Electronic Discrete Variable Automatic Computer, more famously known 
as the EDVAC. In this paper, von Neumann suggested the stored-program 
model of computing. In the von Neumann architecture, a program is a 
sequence of instructions stored sequentially in the computer’s memory. 
The program’s instructions are executed one after the other in a linear, 
single-threaded fashion. 

As time went on, advancements in mainframe technology expanded 
upon the ideas presented by von Neumann. The 1960s saw the advent of 
time-sharing operating systems. Run on large mainframe computers, 
these operating systems first introduced the concept of concurrent 
program execution. Multiple users could access a single mainframe 
computer simultaneously and submit jobs for processing. From the 
program’s perspective, it was the only process in the system. The operating 
system handled the details of allocating CPU time for each individual 
program. At this time, concurrency existed at the process level, and the 
job of task switching was left to the systems programmer. 

In the early days of personal computing, personal computers, or PCs, 
were standalone devices with simple, single-user operating systems. Only 
one program would run at a time. User interaction occurred via simple 
text based interfaces. Programs followed the standard model of straight-
line instruction execution proposed by the von Neumann architecture. 
Over time, however, the exponential growth in computing performance 

I
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quickly led to more sophisticated computing platforms. Operating system 
vendors used the advance in CPU and graphics performance to develop 
more sophisticated user environments. Graphical User Interfaces, or GUIs, 
became standard and enabled users to start and run multiple programs in 
the same user environment. Networking on PCs became pervasive. 

This rapid growth came at a price: increased user expectations. Users 
expected to be able to send e-mail while listening to streaming audio that 
was being delivered via an Internet radio station. Users expected their 
computing platform to be quick and responsive. Users expected 
applications to start quickly and handle inconvenient background tasks, 
such as automatically saving a file with minimal disruption. These 
challenges are the problems that face software developers today. 

 Motivation for Concurrency in Software 

Most end users have a simplistic view of complex computer systems. 
Consider the following scenario: A traveling businessman has just come 
back to his hotel after a long day of presentations. Too exhausted to go out, 
he decides to order room service and stay in his room to watch his favorite 
baseball team play. Given that he’s on the road, and doesn’t have access to 
the game on his TV, he decides to check out the broadcast via the Internet. 
His view of the system might be similar to the one shown in Figure 1.1. 

 

Figure 1.1 End User View of Streaming Multimedia Content via the Internet 

The user’s expectations are based on conventional broadcast delivery 
systems which provide continuous, uninterrupted delivery of content. The 
user does not differentiate between streaming the content over the Internet 
and delivering the data via a broadcast network. To the user, watching a 
baseball game on a laptop seems like a simple, straightforward task. 
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The reality is that the implementation of such a system is far more 
difficult. From the client side, the PC must be able to download the 
streaming video data, decompress/decode it, and draw it on the video 
display. In addition, it must handle any streaming audio that accompanies 
the video stream and send it to the soundcard. Meanwhile, given the 
general purpose nature of the computer, the operating system might be 
configured to run a virus scan or some other system tasks periodically. 
On the server side, the provider must be able to receive the original 
broadcast, encode/compress it in near real-time, and then send it over 
the network to potentially hundreds of thousands of clients. A system 
designer who is looking to build a computer system capable of streaming 
a Web broadcast might look at the system as it’s shown in Figure 1.2. 

 

Figure 1.2 End-to-End Architecture View of Streaming Multimedia Content 
over the Internet 

Contrast this view of a streaming multimedia delivery service with 
the end user’s perspective of the system shown in Figure 1.1. In order to 
provide an acceptable end-user experience, system designers must be 
able to effectively manage many independent subsystems that operate in 
parallel.  

Careful inspection of Figure 1.2 shows that the problem of streaming 
media content may be broken into a number of disparate parts; each acting 
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independently1 from one another. This decomposition allows us to break 
down each task into a single isolated problem, making the problem much 
more manageable. 

Concurrency in software is a way to manage the sharing of resources 
used at the same time. Concurrency in software is important for several 
reasons: 

 Concurrency allows for the most efficient use of system resources. 
Efficient resource utilization is the key to maximizing perform-
ance of computing systems. Unnecessarily creating dependencies 
on different components in the system drastically lowers overall 
system performance. In the aforementioned streaming media example, 
one might naively take this, serial, approach on the client side: 

1. Wait for data to arrive on the network 

2. Uncompress the data 

3. Decode the data 

4. Send the decoded data to the video/audio hardware 

This approach is highly inefficient. The system is completely idle 
while waiting for data to come in from the network. A better 
approach would be to stage the work so that while the system is 
waiting for the next video frame to come in from the network, 
the previous frame is being decoded by the CPU, thereby improving 
overall resource utilization. 

 Many software problems lend themselves to simple concurrent 
implementations. Concurrency provides an abstraction for 
implementing software algorithms or applications that are naturally 
parallel. Consider the implementation of a simple FTP server. 
Multiple clients may connect and request different files. A single-
threaded solution would require the application to keep track 
of all the different state information for each connection. A 
more intuitive implementation would create a separate thread for 
each connection. The connection state would be managed by this 
separate entity. This multi-threaded approach provides a solution 
that is much simpler and easier to maintain. 

It’s worth noting here that the terms concurrent and parallel are not 
interchangeable in the world of parallel programming. When multiple 

                                                                      
1 The term “independently” is used loosely here. Later chapters discuss the managing of 

interdependencies that is inherent in multi-threaded programming. 
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software threads of execution are running in parallel, it means that the 
active threads are running simultaneously on different hardware 
resources, or processing elements. Multiple threads may make progress 
simultaneously. When multiple software threads of execution are 
running concurrently, the execution of the threads is interleaved onto a 
single hardware resource. The active threads are ready to execute, but 
only one thread may make progress at a given point in time. In order to 
have parallelism, you must have concurrency exploiting multiple 
hardware resources.  

 Parallel Computing Platforms  

In order to achieve parallel execution in software, hardware must 
provide a platform that supports the simultaneous execution of multiple 
threads. Generally speaking, computer architectures can be classified by 
two different dimensions. The first dimension is the number of 
instruction streams that a particular computer architecture may be able 
to process at a single point in time. The second dimension is the number 
of data streams that can be processed at a single point in time. In this 
way, any given computing system can be described in terms of how 
instructions and data are processed. This classification system is known 
as Flynn’s taxonomy (Flynn, 1972), and is graphically depicted in 
Figure 1.3. 

 

Figure 1.3 Flynn’s Taxonomy 
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Flynn’s taxonomy places computing platforms in one of four 
categories:  

 A single instruction, single data (SISD) machine is a traditional 
sequential computer that provides no parallelism in hardware. 
Instructions are executed in a serial fashion. Only one data stream 
is processed by the CPU during a given clock cycle. Examples of 
these platforms include older computers such as the original IBM 
PC, older mainframe computers, or many of the 8-bit home 
computers such as the Commodore 64 that were popular in the 
early 1980s.  

 A multiple instruction, single data (MISD) machine is capable of 
processing a single data stream using multiple instruction streams 
simultaneously. In most cases, multiple instruction streams need 
multiple data streams to be useful, so this class of parallel 
computer is generally used more as a theoretical model than a 
practical, mass-produced computing platform.  

 A single instruction, multiple data (SIMD) machine is one in 
which a single instruction stream has the ability to process 
multiple data streams simultaneously. These machines are useful 
in applications such as general digital signal processing, image 
processing, and multimedia applications such as audio and video. 
Originally, supercomputers known as array processors or vector 
processors such as the Cray-1 provided SIMD processing 
capabilities. Almost all computers today implement some form of 
SIMD instruction set. Intel processors implement the MMX™, 
Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2 
(SSE2), and Streaming SIMD Extensions 3 (SSE3) instructions that 
are capable of processing multiple data elements in a single clock. 
The multiple data elements are stored in the floating point 
registers. PowerPC† processors have implemented the AltiVec 
instruction set to provide SIMD support.  

 A multiple instruction, multiple data (MIMD) machine is capable 
of is executing multiple instruction streams, while working on a 
separate and independent data stream. This is the most common 
parallel computing platform today. New multi-core platforms 
such as the Intel® Core™ Duo processor fall into this category.  

Given that modern computing machines are either the SIMD or MIMD 
machines, software developers have the ability to exploit data-level and 
task level parallelism in software.  
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Parallel Computing in Microprocessors 

In 1965, Gordon Moore observed that the number of transistors available 
to semiconductor manufacturers would double approximately every 18 
to 24 months. Now known as Moore’s law, this observation has guided 
computer designers for the past 40 years. Many people mistakenly think 
of Moore’s law as a predictor of CPU clock frequency, and it’s not really 
hard to understand why. The most commonly used metric in measuring 
computing performance is CPU clock frequency. Over the past 40 years, 
CPU clock speed has tended to follow Moore’s law. It’s an important 
distinction to make, however, as taking this view of Moore’s law 
imposes unnecessary limits on a silicon designer. While improving 
straight-line instruction throughput and clock speeds are goals worth 
striving for, computer architects can take advantage of these extra 
transistors in less obvious ways. 

For example, in an effort to make the most efficient use of processor 
resources, computer architects have used instruction-level parallelization 
techniques to improve processor performance. Instruction-level parallelism 
(ILP), also known as dynamic, or out-of-order execution, gives the CPU the 
ability to reorder instructions in an optimal way to eliminate pipeline stalls. 
The goal of ILP is to increase the number of instructions that are executed 
by the processor on a single clock cycle2. In order for this technique to be 
effective, multiple, independent instructions must execute. In the case of 
in-order program execution, dependencies between instructions may limit 
the number of instructions available for execution, reducing the amount of 
parallel execution that may take place. An alternative approach that 
attempts to keep the processor’s execution units full is to reorder the 
instructions so that independent instructions execute simultaneously. In 
this case, instructions are executed out of program order. This dynamic 
instruction scheduling is done by the processor itself. You will learn much 
more about these techniques in a later chapter, but for now what is 
important to understand is that this parallelism occurs at the hardware level 
and is transparent to the software developer. 

As software has evolved, applications have become increasingly 
capable of running multiple tasks simultaneously. Server applications 
today often consist of multiple threads or processes. In order to support 
this thread-level parallelism, several approaches, both in software and 
hardware, have been adopted.  

                                                                      
2 A processor that is capable of executing multiple instructions in a single clock cycle is known as a 

super-scalar processor.  
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One approach to address the increasingly concurrent nature of modern 
software involves using a preemptive, or time-sliced, multitasking operating 
system. Time-slice multi-threading allows developers to hide latencies 
associated with I/O by interleaving the execution of multiple threads. This 
model does not allow for parallel execution. Only one instruction stream 
can run on a processor at a single point in time.  

Another approach to address thread-level parallelism is to increase 
the number of physical processors in the computer. Multiprocessor 
systems allow true parallel execution; multiple threads or processes run 
simultaneously on multiple processors. The tradeoff made in this case is 
increasing the overall system cost.  

As computer architects looked at ways that processor architectures 
could adapt to thread-level parallelism, they realized that in many cases, 
the resources of a modern processor were underutilized. In order to 
consider this solution, you must first more formally consider what a 
thread of execution in a program is. A thread can be defined as a basic 
unit of CPU utilization. It contains a program counter that points to the 
current instruction in the stream. It contains CPU state information for 
the current thread. It also contains other resources such as a stack.  

A physical processor is made up of a number of different resources, 
including the architecture state—the general purpose CPU registers and 
interrupt controller registers, caches, buses, execution units, and branch 
prediction logic. However, in order to define a thread, only the 
architecture state is required. A logical processor can thus be created by 
duplicating this architecture space. The execution resources are then 
shared among the different logical processors. This technique is known 
as simultaneous multi-threading, or SMT. Intel’s implementation of SMT 
is known as Hyper-Threading Technology, or HT Technology. HT 
Technology makes a single processor appear, from software’s 
perspective, as multiple logical processors. This allows operating systems 
and applications to schedule multiple threads to logical processors as 
they would on multiprocessor systems. From a microarchitecture 
perspective, instructions from logical processors are persistent and 
execute simultaneously on shared execution resources. In other words, 
multiple threads can be scheduled, but since the execution resources are 
shared, it’s up to the microarchitecture to determine how and when to 
interleave the execution of the two threads. When one thread stalls, 
another thread is allowed to make progress. These stall events include 
handling cache misses and branch mispredictions. 

The next logical step from simultaneous multi-threading is the multi-core 
processor. Multi-core processors use chip multiprocessing (CMP). Rather 
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than just reuse select processor resources in a single-core processor, 
processor manufacturers take advantage of improvements in manufacturing 
technology to implement two or more “execution cores” within a single 
processor. These cores are essentially two individual processors on a single 
die. Execution cores have their own set of execution and architectural 
resources. Depending on design, these processors may or may not share a 
large on-chip cache. In addition, these individual cores may be combined 
with SMT; effectively increasing the number of logical processors by twice 
the number of execution cores. The different processor architectures are 
highlighted in Figure 1.4. 

 

                    
  A) Single Core                              B) Multiprocessor 

   
  C) Hyper-Threading Technology    D) Multi-core 

 
            E) Multi-core with Shared Cache 

 
           F) Multi-core with Hyper-Threading Technology 

 

Figure 1.4 Simple Comparison of Single-core, Multi-processor, and Multi-Core 
Architectures  
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Differentiating Multi-Core Architectures from Hyper-Threading Technology 

With HT Technology, parts of the one processor are shared between threads, 
while other parts are duplicated between them. One of the most important 
shared resources is the actual execution engine. This engine works on both 
threads at the same time by executing instructions for one thread on 
resources that the other thread is not using. When both threads are running, 
HT Technology literally interleaves the instructions in the execution pipeline. 
Which instructions are inserted when depends wholly on what execution 
resources of the processor are available at execution time. Moreover, if one 
thread is tied up reading a large data file from disk or waiting for the user to 
type on the keyboard, the other thread takes over all the processor 
resources—without the operating system switching tasks—until the first 
thread is ready to resume processing. In this way, each thread receives the 
maximum available resources and the processor is kept as busy as possible. 
An example of a thread running on a HT Technology enabled CPU is shown 
in Figure 1.5. 

 

Figure 1.5 Two Threads Executing on a Processor with Hyper-Threading 
Technology 

HT Technology achieves performance gains through latency hiding. 
Fundamentally, a single execution core is shared among multiple threads. 
Therefore, thread execution is not parallel. As a result, performance results 
vary based on application and hardware platform. With HT Technology, in 
certain applications, it is possible to attain, on average, a 30-percent increase 
in processor throughput. In other words, in certain cases, the 
processor can perform 1.3 times the number of executed instructions 
that it could if it were running only one thread. To see a performance 
improvement, applications must make good use of threaded 
programming models and of the capabilities of Hyper-Threading 
Technology. 



Chapter 1: Introduction to Multi-Core Architecture 11 

The performance benefits of HT Technology depend on how much 
latency hiding can occur in your application. In some applications, 
developers may have minimized or effectively eliminated memory 
latencies through cache optimizations. In this case, optimizing for HT 
Technology may not yield any performance gains.  

On the other hand, multi-core processors embed two or more 
independent execution cores into a single processor package. By providing 
multiple execution cores, each sequence of instructions, or thread, has a 
hardware execution environment entirely to itself. This enables each thread 
run in a truly parallel manner. An example of two threads running on a 
dual-core processor is shown in Figure 1.6. Compare this with the HT 
Technology example provided in Figure 1.5, and note that a dual-core 
processor provides true parallel execution of each thread. 

  

Figure 1.6 Two Threads on a Dual-Core Processor with each Thread Running 
Independently 

It should be noted that HT Technology does not attempt to deliver 
multi-core performance, which can theoretically be close to a 100-percent, 
or 2x improvement in performance for a dual-core system. HT Technology 
is more of a facility in which the programmer may be able to use idle CPU 
resources in order to accomplish more work. When combined with multi-
core technology, HT Technology can provide powerful optimization 
opportunities, increasing system throughput substantially. 

Multi-threading on Single-Core versus Multi-Core Platforms 

At this point, many readers may be asking themselves what all the 
commotion is about. The concept of multiple threads in a single process 
space has been around for decades. Most modern applications use 
threads in one fashion or another today. As a result, many developers are 
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already familiar with the concept of threading, and have probably 
worked on applications that have multiple threads. There are however, 
certain important considerations developers should be aware of when 
writing applications targeting multi-core processors: 

 Optimal application performance on multi-core architectures will 
be achieved by effectively using threads to partition software 
workloads. Many applications today use threads as a tool to improve 
user responsiveness on single-core platforms. Rather than blocking 
the user interface (UI) on a time consuming database query or disk 
access, an application will spawn a thread to process the user’s 
request. This allows the scheduler to individually schedule the main 
control loop task that receives UI events as well as the data 
processing task that is running the database query. In this model, 
developers rely on straight-line instruction throughput improvements 
to improve application performance.  

This is the significant limitation of multi-threading on single-core 
processors. Since single-core processors are really only able to 
interleave instruction streams, but not execute them simultaneously, 
the overall performance gains of a multi-threaded application on 
single-core architectures are limited. On these platforms, threads are 
generally seen as a useful programming abstraction for hiding latency.  

This performance restriction is removed on multi-core architectures. 
On multi-core platforms, threads do not have to wait for any one 
resource. Instead, threads run independently on separate cores. As an 
example, consider two threads that both wanted to execute a shift 
operation. If a core only had one “shifter unit” they could not run in 
parallel. On two cores, there would be two “shifter units,” and each 
thread could run without contending for the same resource. 

Multi-core platforms allow developers to optimize applications by 
intelligently partitioning different workloads on different processor 
cores. Application code can be optimized to use multiple processor 
resources, resulting in faster application performance.  

 Multi-threaded applications running on multi-core platforms have 
different design considerations than do multi-threaded applications 
running on single-core platforms. On single-core platforms, 
assumptions may be made by the developer to simplify writing and 
debugging a multi-threaded application. These assumptions may not be 
valid on multi-core platforms. Two areas that highlight these differences 
are memory caching and thread priority.  
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In the case of memory caching, each processor core may have its 
own cache.3 At any point in time, the cache on one processor core 
may be out of sync with the cache on the other processor core. To 
help illustrate the types of problems that may occur, consider the 
following example. Assume two threads are running on a dual-core 
processor. Thread 1 runs on core 1 and thread 2 runs on core 2. The 
threads are reading and writing to neighboring memory locations. 
Since cache memory works on the principle of locality, the data 
values, while independent, may be stored in the same cache line. As a 
result, the memory system may mark the cache line as invalid, even 
though the data that the thread is interested in hasn’t changed. This 
problem is known as false sharing. On a single-core platform, there 
is only one cache shared between threads; therefore, cache 
synchronization is not an issue. 

Thread priorities can also result in different behavior on single-core 
versus multi-core platforms. For example, consider an application 
that has two threads of differing priorities. In an attempt to improve 
performance, the developer assumes that the higher priority thread 
will always run without interference from the lower priority thread. 
On a single-core platform, this may be valid, as the operating system’s 
scheduler will not yield the CPU to the lower priority thread. 
However, on multi-core platforms, the scheduler may schedule both 
threads on separate cores. Therefore, both threads may run 
simultaneously. If the developer had optimized the code to assume 
that the higher priority thread would always run without interference 
from the lower priority thread, the code would be unstable on multi-
core and multi-processor systems. 

One goal of this book is to help developers correctly utilize the number 
of processor cores they have available. 

  Understanding Performance 

At this point one may wonder—how do I measure the performance 
benefit of parallel programming? Intuition tells us that if we can 
subdivide disparate tasks and process them simultaneously, we’re likely 

                                                                      
3 Multi-core CPU architectures can be designed in a variety of ways: some multi-core CPUs will share the 

on-chip cache between execution units; some will provide a dedicated cache for each execution core; 
and others will take a hybrid approach, where the cache is subdivided into layers that are dedicated to a 
particular execution core and other layers that are shared by all execution cores. For the purposes of 
this section, we assume a multi-core architecture with a dedicated cache for each core.  
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to see significant performance improvements. In the case where the tasks 
are completely independent, the performance benefit is obvious, but 
most cases are not so simple. How does one quantitatively determine the 
performance benefit of parallel programming? One metric is to compare 
the elapsed run time of the best sequential algorithm versus the elapsed 
run time of the parallel program. This ratio is known as the speedup and 
characterizes how much faster a program runs when parallelized.  

_ _

_
=tSpeedup(n )

( )

best sequential algorithm

parallel implementation t

Time

Time n
 

Speedup is defined in terms of the number of physical threads (n
t
) 

used in the parallel implementation.  

Amdahl’s Law 

Given the previous definition of speedup, is there a way to determine the 
theoretical limit on the performance benefit of increasing the number of 
processor cores, and hence physical threads, in an application? When 
examining this question, one generally starts with the work done by 
Gene Amdahl in 1967. His rule, known as Amdahl’s Law, examines the 
maximum theoretical performance benefit of a parallel solution relative 
to the best case performance of a serial solution. 

Amdahl started with the intuitively clear statement that program 
speedup is a function of the fraction of a program that is accelerated and 
by how much that fraction is accelerated.  

=
− +

1
Speedup

(1 Fraction ) (Fraction /Speedup )Enhanced Enhanced Enhanced
 

So, if you could speed up half the program by 15 percent, you’d get: 
/ /= − + = + =Speedup 1 ((1 .50) (.50/1.15)) 1 (.50 .43) 1.08  

This result is a speed increase of 8 percent, which is what you’d expect. 
If half of the program is improved 15 percent, then the whole program is 
improved by half that amount. 

Amdahl then went on to explain how this equation works out if you 
make substitutions for fractions that are parallelized and those that are 
run serially, as shown in Equation 1.1. 
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Equation 1.1 Amdahl’s Law 

Speedup = 
+ −

1

(1 )/S S n
 

 
 

In this equation, S is the time spent executing the serial portion of the 
parallelized version and n is the number of processor cores. Note that the 
numerator in the equation assumes that the program takes 1 unit of time 
to execute the best sequential algorithm.  

If you substitute 1 for the number of processor cores, you see that no 
speedup is realized. If you have a dual-core platform doing half the work, 
the result is: 

1 / (0.5S + 0.5S/2) = 1/0.75S = 1.33 

or a 33-percent speed-up, because the run time, as given by the 
denominator, is 75 percent of the original run time. For an 8-core 
processor, the speedup is: 

1 / (0.5S + 0.5S/8) = 1/0.75S = 1.78 

Setting n = ∞ in Equation 1.1, and assuming that the best sequential 
algorithm takes 1 unit of time yields Equation 1.2. 

Equation 1.2 Upper Bound of an Application with S Time Spent in Sequential 
Code 

Speedup = 
1

S
 

 
 

As stated in this manner, Amdahl assumes that the addition of processor 
cores is perfectly scalable. As such, this statement of the law shows the 
maximum benefit a program can expect from parallelizing some portion 
of the code is limited by the serial portion of the code. For example, 
according Amdahl’s law, if 10 percent of your application is spent in serial 
code, the maximum speedup that can be obtained is 10x, regardless of the 
number of processor cores.  

It is important to note that endlessly increasing the processor cores only 
affects the parallel portion of the denominator. So, if a program is only 10-
percent parallelized, the maximum theoretical benefit is that the program 
can run in 90 percent of the sequential time.  
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Given this outcome, you can see the first corollary of Amdahl’s 
law: decreasing the serialized portion by increasing the parallelized 
portion is of greater importance than adding more processor cores. For 
example, if you have a program that is 30-percent parallelized running on 
a dual-core system, doubling the number of processor cores reduces run 
time from 85 percent of the serial time to 77.5 percent, whereas 
doubling the amount of parallelized code reduces run time from 85 
percent to 70 percent. This is illustrated in Figure 1.7. Only when a 
program is mostly parallelized does adding more processors help more 
than parallelizing the remaining code. And, as you saw previously, you 
have hard limits on how much code can be serialized and on how many 
additional processor cores actually make a difference in performance. 

 
Performance benefit of doubling
the number of processor cores 

Performance benefit of doubling 
the amount of parallelism in code 

Note: The advantage gained by writing parallel code 

Figure 1.7 Theoretical Performance Comparison between Increasing Number 
of CPU Cores versus Increasing Concurrency in Implementation 

To make Amdahl’s Law reflect the reality of multi-core systems, rather 
than the theoretical maximum, system overhead from adding threads 
should be included: 

Speedup = 
+ − +

1

(1 )/ ( )S S n H n
 

where H(n) = overhead, and again, we assume that the best serial 
algorithm runs in one time unit. Note that this overhead is not linear on a 
good parallel machine.  
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This overhead consists of two portions: the actual operating system 
overhead and inter-thread activities, such as synchronization and other forms 
of communication between threads. Notice that if the overhead is big 
enough, it offsets the benefits of the parallelized portion. In fact, if the 
overhead is large enough, the speedup ration can ultimately have a value of 
less than 1, implying that threading has actually slowed performance when 
compared to the single-threaded solution. This is very common in poorly 
architected multi-threaded applications. The important implication is that 
the overhead introduced by threading must be kept to a minimum. For this 
reason, most of this book is dedicated to keeping the cost of threading as 
low as possible. 

Amdahl’s Law Applied to Hyper-Threading Technology 
The previous section demonstrated Amdahl’s law as it applies to multi-
processor and multi-core systems. Hyper-Threading Technology 
imposes an additional factor on how you apply Amdahl’s Law to your 
code. On processors enabled with HT Technology, the fact that certain 
processor resources are shared between the different threads of 
execution has a direct effect on the maximum performance benefit of 
threading an application. 

Given the interleaved execution environment provided by HT 
Technology, it’s important to develop a form of Amdahl’s law that works 
for HT Technology. Assume that your application experiences a 
performance gain of around 30 percent when run on a processor with 
HT Technology enabled. That is, performance improves by 30 percent 
over the time required for a single processor to run both threads. If you 
were using a quad-core platform, with each processor completely 
dedicated to the thread it was running, the number could, in theory, 
be up to 4x. That is, the second, third, and fourth processor core 
could give a 300-percent boost to program throughput. In practice it’s 
not quite 300 percent, due to overhead and code that cannot be 
parallelized, and the performance benefits will vary based on the 
application. 

Inside the processor enabled with HT Technology, each thread is 
running more slowly than it would if it had the whole processor to itself. 
HT Technology is not a replacement for multi-core processing since 
many processing resources, such as the execution units, are shared. The 
slowdown varies from application to application. As example, assume 
each thread runs approximately one-third slower than it would if it 
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owned the entire processor. Amending Amdahl’s Law to fit HT 
Technology, then, you get: 

SpeedupHTT = 
+ − +

1

0.67((1 )/ ) ( )S S n H n
 

where n = number of logical processors. 
This equation represents the typical speed-up for programs running 

on processor cores with HT Technology performance. The value of H(n) 
is determined empirically and varies from application to application.  

Growing Returns: Gustafson’s Law 

Based on Amdahl’s work, the viability of massive parallelism was 
questioned for a number of years. Then, in the late 1980s, at the Sandia 
National Lab, impressive linear speedups in three practical applications 
were observed on a 1,024-processor hypercube. The results (Gustafson 
1988) demonstrated that near linear speedup was possible in many 
practical cases, even when Amdahl’s Law predicted otherwise.  

Built into Amdahl’s Law are several assumptions that may not hold true 
in real-world implementations. First, Amdahl’s Law assumes that the best 
performing serial algorithm is strictly limited by the availability of CPU 
cycles. This may not be the case. A multi-core processor may implement a 
separate cache on each core. Thus, more of the problem’s data set may be 
stored in cache, reducing memory latency. The second flaw is that 
Amdahl’s Law assumes that the serial algorithm is the best possible 
solution for a given problem. However, some problems lend themselves to 
a more efficient parallel solution. The number of computational steps may 
be significantly less in the parallel implementation.  

Perhaps the biggest weakness, however, is the assumption that 
Amdahl’s Law makes about the problem size. Amdahl’s Law assumes that 
as the number of processor cores increases, the problem size stays the 
same. In most cases, this is not valid. Generally speaking, when given 
more computing resources, the problem generally grows to meet the 
resources available. In fact, it is more often the case that the run time of 
the application is constant.  

Based on the work at Sandia, an alternative formulation for speedup, 
referred to as scaled speedup was developed by E. Barsis.  

Scaled speedup = + −(1 ) *N N s  

where N = is the number of processor cores and s is the ratio of the time 
spent in the serial port of the program versus the total execution time. 
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Scaled speedup is commonly referred to as Gustafson’s Law. From this 
equation, one can see that the speedup in this case is linear.  

Gustafson’s Law has been shown to be equivalent to Amdahl’s Law 
(Shi 1996). However, Gustafson’s Law offers a much more realistic look 
at the potential of parallel computing on multi-core processors.  

 Key Points 

This chapter demonstrated the inherent concurrent nature of many 
software applications and introduced the basic need for parallelism in 
hardware. An overview of the different techniques for achieving parallel 
execution was discussed. Finally, the chapter examined techniques for 
estimating the performance benefits of using proper multi-threading 
techniques. The key points to keep in mind are: 

 Concurrency refers to the notion of multiple threads in progress 
at the same time. This is often achieved on sequential processors 
through interleaving. 

 Parallelism refers to the concept of multiple threads executing 
simultaneously.  

 Modern software applications often consist of multiple processes 
or threads that can be executed in parallel. 

 Most modern computing platforms are multiple instruction, 
multiple data (MIMD) machines. These machines allow 
programmers to process multiple instruction and data streams 
simultaneously.  

 In practice, Amdahl’s Law does not accurately reflect the benefit 
of increasing the number of processor cores on a given platform. 
Linear speedup is achievable by expanding the problem size with 
the number of processor cores. 
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Chapter 2
System Overview 

of Threading 
 

hen implemented properly, threading can enhance performance by 
making better use of hardware resources. However, the improper 

use of threading can lead to degraded performance, unpredictable 
behavior, and error conditions that are difficult to resolve. Fortunately, if 
you are equipped with a proper understanding of how threads operate, 
you can avoid most problems and derive the full performance benefits 
that threads offer. This chapter presents the concepts of threading 
starting from hardware and works its way up through the operating 
system and to the application level. 

To understand threading for your application you need to understand 
the following items: 

 The design approach and structure of your application 

 The threading application programming interface (API)  

 The compiler or runtime environment for your application  

 The target platforms on which your application will run 

From these elements, a threading strategy can be formulated for use in 
specific parts of your application.  

Since the introduction of instruction-level parallelism, continuous 
advances in the development of microprocessors have resulted in 
processors with multiple cores. To take advantage of these multi-core 
processors you must understand the details of the software threading 
model as well as the capabilities of the platform hardware.  

W 
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You might be concerned that threading is difficult and that you might 
have to learn specialized concepts. While it’s true in general, in reality 
threading can be simple, once you grasp the basic principles. 

 Defining Threads 

A thread is a discrete sequence of related instructions that is executed 
independently of other instruction sequences. Every program has at least 
one thread—the main thread—that initializes the program and begins 
executing the initial instructions. That thread can then create other 
threads that perform various tasks, or it can create no new threads and 
simply do all the work itself. In either case, every program has at least 
one thread. Each thread maintains its current machine state.  

At the hardware level, a thread is an execution path that remains 
independent of other hardware thread execution paths. The operating 
system maps software threads to hardware execution resources as 
described later in this chapter 

The decision to thread your application should reflect the needs of 
the program and the basic execution capabilities of the deployment 
platform. Not everything should be threaded. Too much threading can 
hurt performance. As with many aspects of programming, thoughtful 
design and proper testing determine the right balance.  

 System View of Threads 
The thread computational model is represented in Figure 2.1. As 
illustrated, there are three layers for threading: 

 User-level threads. Threads created and manipulated in the 
application software. 

 Kernel-level threads. The way the operating system implements 
most threads. 

 Hardware threads. How threads appear to the execution 
resources in the hardware.  

A single program thread frequently involves all three levels: a program 
thread is implemented by the operating system as a kernel-level thread, 
and executed as a hardware thread. 

Between these layers are interfaces, which are frequently handled 
automatically by the executing system. However, to make good use of 
threading resources, it’s important to know how these interfaces work. 
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They are touched on in this chapter and treated in greater detail in 
Chapters 3, 4, and 5.  

O
pe

ra
tio

na
l F

lo
w

 User-Level Threads
Used by executable application and handled by user-level OS

Kernel-Level Threads
Used by operating system kernel and and 

handled by kernal-level OS

Hardware Threads
Used by each Processor

 

Figure 2.1  Computation Model of Threading 

Threading above the Operating System 

Developers can best understand the problems they face using threads if 
they know what actually takes place when threads are used in an 
application. In applications that do not rely on a runtime framework, the 
thread creation code is made as a call to system APIs. These calls are then 
executed at runtime as calls to the operating system kernel to create a 
thread. The instructions for the thread’s activity are then passed to the 
processor for execution. Figure 2.2 shows the thread flow in a typical 
system for traditional applications. In the Defining and Preparing stage, 
threads are specified by the programming environment and encoded by 
the compiler. During the Operating stage, threads are created and 
managed by the operating system. Finally, in the Executing stage, the 
processor executes the sequence of thread instructions.  

Performed by  
Programming 
Environment  
and Compiler 

Performed by OS  
using Processes 

Performed by Processors 

Showing return trip to represent that after 
execution operations get pass to user space 
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Preparing 
Threads 
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Threads 
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Figure 2.2 Flow of Threads in an Execution Environment 
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The application code might rely on a runtime environment. Such code, 
known as managed code runs in an environment that performs some 
application functions and makes calls the underlying operating system. 
Managed environments include both Java Virtual Machine (JVM) and 
Microsoft’s Common Language Runtime (CLR). These environments do not 
provide any scheduling capability, relying instead on the operating system 
for scheduling. Threading is passed to the operating system scheduler, 
which handles the remaining downstream thread activity.   

In general, application threads can be implemented at the application 
level using established APIs. The most common APIs are OpenMP† and 
explicit low-level threading libraries such as Pthreads and Windows threads. 
The choice of API depends on the requirements and the system platform. In 
general, low-level threading requires significantly more code than solutions 
such as OpenMP; the benefit they deliver, however, is fine-grained control 
over the program’s use of threads. OpenMP, in contrast, offers ease of use 
and a more developer-friendly threading implementation. OpenMP requires 
a compiler that supports the OpenMP API. Today, these are limited to 
C/C++ and Fortran compilers. Coding low-level threads requires only access 
to the operating system’s multi-threading libraries. For further details on 
OpenMP, Pthreads, and Windows threads, see Chapters 5 and 6. 

To show how threading is used in a program, Listing 2.1 and Listing 2.2 
are simple “Hello World” programs that use the OpenMP and Pthreads 
libraries, respectively. 

  
 
#include <stdio.h> 
// Have to include 'omp.h' to get OpenMP definitons 
#include <omp.h> 
void main() 
{ 
    int threadID, totalThreads; 

 /* OpenMP pragma specifies that following block is 
    going to be parallel and the threadID variable is 
    private in this openmp block. */ 

    #pragma omp parallel private(threadID) 
    { 
       threadID = omp_get_thread_num(); 
       printf("\nHello World is from thread %d\n", 
              (int)threadID);  
          /* Master thread has threadID = 0 */ 
       if (threadID == 0) { 
           printf("\nMaster thread being called\n"); 
           totalThreads = omp_get_num_threads(); 



Chapter 2: System Overview of Threading 25 

           printf("Total number of threads are %d\n", 
                  totalThreads); 
       } 
   } 
} 

Listing 2.1 “Hello World” Program Using OpenMP 

 

#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define NUM_THREADS 5 
 
void *PrintHello(void *threadid) 
{ 
   printf("\n%d: Hello World!\n", threadid); 
   pthread_exit(NULL); 
} 
 
int main(int argc, char *argv[]) 
{ 
   pthread_t threads[NUM_THREADS]; 
   int rc, t; 
   for (t=0; t < NUM_THREADS; t++) { 
      printf("Creating thread %d\n", t); 
      rc = pthread_create( &threads[t], NULL, 
                           PrintHello,(void *)t); 
      if (rc) { 
        printf("ERROR return code from pthread_create(): %d\n", 
               rc); 
        exit(-1); 
      } 
   } 
   pthread_exit(NULL); 
} 

Listing 2.2 “Hello World” Program Using Pthreads 

As can be seen, the OpenMP code in Listing 2.1 has no function that 
corresponds to thread creation. This is because OpenMP creates threads 
automatically in the background. Explicit low-level coding of threads  
is more evident in Pthreads, shown in Listing 2.2, where a call to 
pthread_create() actually creates a single thread and points it at the 
work to be done in PrintHello(). 
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Threads inside the OS 

The key to viewing threads from the perspective of a modern operating 
system is to recognize that operating systems are partitioned into two 
distinct layers: the user-level partition (where applications are run) and the 
kernel-level partition (where system oriented activities occur). Figure 2.3 
shows these partitions along with other components. This figure shows 
the interface between application layer and the kernel-level operating 
system, referred to as system libraries. These contain the necessary 
operating-system components that can be run with user-level privilege. As 
illustrated, the interface between the operating system and the processor is 
the hardware abstraction layer (HAL).  
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Figure 2.3 Different Layers of the Operating System  

The kernel is the nucleus of the operating system and maintains 
tables to keep track of processes and threads. The vast majority of thread-
level activity relies on kernel-level threads. Threading libraries such as 
OpenMP and Pthreads (POSIX standard threads) use kernel-level threads. 
Windows supports both kernel-level and user-level threads. User-level 
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threads, which are called fibers on the Windows platform, require the 
programmer to create the entire management infrastructure for the 
threads and to manually schedule their execution. Their benefit is that 
the developer can manipulate certain details that are obscured in kernel-
level threads. However, because of this manual overhead and some 
additional limitations, fibers might not add much value for well designed 
multi-threaded applications.  

Kernel-level threads provide better performance, and multiple kernel 
threads from the same process can execute on different processors or 
cores. The overhead associated with kernel-level threading is higher than 
user-level threading and so kernel-level threads are frequently reused 
once they have finished their original work. 

Processes are discrete program tasks that have their own address space. 
They are the coarse-level execution unit maintained as an independent entity 
inside an operating system. There is a direct correlation between processes 
and threads. Multiple threads can reside in a process. All threads in a process 
share the same address space and so they benefit from simple inter-thread 
communication. Instead of maintaining an individual process-based thread 
list, the kernel maintains a thread table to keep track of all threads. The 
operating system assigns a process control block (PCB) to each process; it 
contains data on the process’s unique identity, current machine state, the 
priority of the process, and the address of the virtual memory where the 
process resides.  

Figure 2.4 shows the relationship between processors, processes, and 
threads in modern operating systems. A processor runs threads from one 
or more processes, each of which contains one or more threads. 
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Figure 2.4 Relationships among Processors, Processes, and Threads 
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A program has one or more processes, each of which contains one or 
more threads, each of which is mapped to a processor by the scheduler 
in the operating system. A concept known as processor affinity enables 
the programmer to request mapping of a specific thread to a specific 
processor. Most operating systems today attempt to obey these requests, 
but they do not guarantee fulfillment. 

Various mapping models are used between threads and processors: 
one to one (1:1), many to one (M:1), and many to many (M:N), as shown 
in Figure 2.5. The 1:1 model requires no thread-library scheduler 
overhead and the operating system handles the thread scheduling 
responsibility. This is also referred to as preemptive multi-threading. 
Linux, Windows 2000, and Windows XP use this preemptive multi-
threading model. In the M:1 model, the library scheduler decides which 
thread gets the priority. This is called cooperative multi-threading. In 
the case of M:N, the mapping is flexible.  
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(a) 1:1 Mapping of Threads to Processors 

Figure 2.5 Mapping Models of Threads to Processors 
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(b) M:1 Mapping of Threads to Processors 
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(c) M:N Mapping of Threads to Processors 

Figure 2.5 Mapping Models of Threads to Processors (continued) 

User-level threads such as those in Windows are mapped to kernel 
threads; and so, when they are executing, the processor knows them 
only as kernel-level threads. 

In general, a preemptive or 1:1 model enables stronger handling of 
the threads by the operating system. This book focuses only on Windows 
and Linux and so it emphasizes this mode. For other operating systems, 
see the References section. 
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Threads inside the Hardware 

The hardware executes the instructions from the software levels. 
Instructions of your application threads are mapped to resources and 
flow down through the intermediate components—the operating system, 
runtime environment, and virtual layer—to the hardware.  

Threading on hardware once required multiple CPUs to implement 
parallelism: each thread ran on its own separate processor. Today, 
processors with Hyper-Threading Technology (HT Technology) and 
multiple cores provide multi-threading on a single processor. These 
multi-threaded processors allow two or more threads of execution to run 
on a single CPU at the same time. This CPU might have only one 
execution engine or core but share the pipeline and other hardware 
resources among the executing threads. Such processing would be 
considered concurrent but not parallel; Figure 2.6 illustrates this 
difference.  
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Figure 2.6 Concurrency versus Parallelism 

Multi-core CPUs, however, provide two or more execution cores, and 
so they deliver true hardware-based multi-threading. Because both 
threads execute on the same processor, this design is sometimes referred 
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to as chip multi-threading (CMT). By contrast, HT Technology uses a 
single core in which two threads share most of the execution resources. 
This approach is called simultaneous multi-threading (SMT). SMT uses a 
hardware scheduler to manage different hardware threads that are in 
need of resources. The number of hardware threads that can execute 
simultaneously is an important consideration in the design of software; to 
achieve true parallelism, the number of active program threads should 
always equal the number of available hardware threads. In most cases, 
program threads will exceed the available hardware threads. However, 
too many software threads can slow performance. So, keeping a balance 
of software and hardware threads delivers good results.  

 What Happens When a Thread Is Created 

As discussed earlier, there can be more than one thread in a process; and 
each of those threads operates independently, even though they share 
the same address space and certain resources, such as file descriptors.  
In addition, each thread needs to have its own stack space. These stacks  
are usually managed by the operating system. Figure 2.7 shows a typical 
stack representation of a multi-threaded process. As an application 
developer, you should not have to worry about the details of stack 
management, such as thread stack sizes or thread stack allocation. On the 
other hand, system-level developers must understand the underlying 
details. If you want to use threading in your application, you must be 
aware of the operating system’s limits. For some applications, these 
limitations might be restrictive, and in other cases, you might have to 
bypass the default stack manager and manage stacks on your own. The 
default stack size for a thread varies from system to system. That is why 
creating many threads on some systems can slow performance 
dramatically.  



32 Multi-Core Programming 

Region for Thread 1 

Region for Thread 2 

Address 0 

Address N 

Program Code + Data 

Heap 

Stack 

Stack 

Stack 

 

Figure 2.7 Stack Layout in a Multi-threaded Process 

Once created, a thread is always in one of four states: ready, running, 
waiting (blocked), or terminated. There are additional sub-states that 
reflect various reasons for entering one of the four basic states. These 
finer sub-states can be valuable in debugging or analyzing a threaded 
application.  

Every process has at least one thread. This initial thread is created as 
part of the process initialization. Application threads you create will run 
while the initial thread continues to execute. As indicated in the state 
diagram in Figure 2.8, each thread you create starts in a ready state. 
Afterwards, when the new thread is attempting to execute instructions, it 
is either in the running state or blocked. It is blocked if it is waiting for a 
resource or for another thread. When a thread has completed its work, it 
is either terminated or put back by the program into the ready state. At 
program termination, the main thread and subsidiary threads are 
terminated.  
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Figure 2.8 State Diagram for a Thread 

 Application Programming Models and Threading 

Threads are used liberally by the operating system for its own internal 
activities so even if you write a single-threaded application, your runtime 
setup will be heavily threaded. All major programming languages today 
support the use of threads, whether those languages are imperative (C, 
Fortran, Pascal, Ada), object-oriented (C++, Java, C#), functional (Lisp, 
Miranda, SML), or logical (Prolog). 

 Virtual Environment: VMs and Platforms 

One of the most important trends in computing today is virtualization. 
Virtualization is the process of using computing resources to create the 
appearance of a different set of resources. Runtime virtualization, such as 
found in the Java JVM, creates the appearance to a Java application that it 
is running in its own private environment or machine. System 
virtualization creates the appearance of a different kind of virtual 
machine, in which there exists a complete and independent instance of 
the operating system. Both forms of virtual environments make effective 
use of threads internally.  
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Runtime Virtualization 

The operation of runtime virtualization is being provided by runtime 
virtual machine. These virtual machines (VMs) can be considered as a 
container and executor application on top of an operating system. There 
are two mainstream VMs in use today: the Java VM and Microsoft’s 
Common Language Runtime (CLR) that were discussed previously. These 
VMs, for example, create at least three threads: the executing thread, a 
garbage-collection thread that frees memory blocks that are no longer in 
use, and a thread for just-in-time (JIT) compilation of bytecodes into 
executable binary code. The VMs generally create other threads for 
internal tasks. The VM and the operating system work in tandem to map 
these threads to the available execution resources in a way that will 
benefit performance as much as possible.  

System Virtualization 

System virtualization creates a different type of virtual machine. These 
VMs recreate a complete execution context for software: they use 
virtualized network adapters and disks and run their own instance of 
the operating system. Several such VMs can run on the same hardware 
platform, each with its separate operating system. The virtualization 
layer that sits between the host system and these VMs is called the 
virtual machine monitor (VMM). The VMM is also known as the 
hypervisor. Figure 2.9 compares systems running a VMM with one that 
does not.  
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Figure 2.9 Comparison of Systems without and with a VMM 
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A VMM delivers the necessary virtualization of the underlying 
platform such that the operating system in each VM runs under the 
illusion that it owns the entire hardware platform.  

When virtualizing the underlying hardware, VM software makes use 
of a concept called virtual processors. It presents as many virtual 
processors to the guest operating system as there are cores on the actual 
host hardware.  HT Technology does not change the number of virtual 
processors, only cores count. One of the important benefits of processor 
virtualization is that it can create isolation of the instruction-set 
architecture (ISA). Certain processor instructions can be executed only 
by the operating system because they are privileged instructions. On 
today’s Intel processors, only one piece of software—the host operating 
system—has this level of privilege. The VMM and the entire VM run as 
applications. So, what happens when one of the guest operating systems 
needs to run a privileged instruction? This instruction is trapped by the 
virtual processor in the VM and a call is made to the VMM. In some cases, 
the VMM can handle the call itself, in others it must pass the call on to 
the host operating system, wait for the response and emulate that 
response in the virtual processor. By this means, the VMM manages to 
sidestep the execution of privileged instructions.  

However, this process has a distinct performance cost associated 
with it. As a result, Intel has developed a series of extensions to the ISA 
that provide efficient ways for VMMs to execute the privileged 
instructions of guest operating systems. These extensions are part of 
Intel® Virtualization Technology, and are designed to improve the 
performance of VMMs.  

Mapping Application Threads 
VMMs do very little unusual to handle application threads. When an 
application running in a VM creates a thread, the thread creation and 
subsequent scheduling is all handled by the guest operating system. The 
VMM does not need to know about it. When the guest operating system 
schedules the thread, the virtual processor executes the instructions 
using the same methods it executes any other sequence instructions. The 
VMM makes no attempt to match application threads to specific 
processor cores or to second-guess the guest operating system’s 
scheduler. So, on a system with a dual-core processor, for example, the 
VMM presents two virtual processors to the guest operating system. That 
OS then schedules threads on those processors as it would if it were 
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running on the actual hardware. The VMM executes the instructions but 
pays little notice to what application threads are running.  

The only time the VMM interrupts this process is when it needs to 
swap out a VM or perform internal tasks. In such a case, several issues 
can arise. For example, when a VMM is running multiple guest VMs, it 
has to time-slice between them. Suppose a thread is locked and waiting 
for a thread running on a different virtual processor when that other 
processor is swapped out. The original VM will encounter a substantial 
delay that would not occur if both VMs had been running on their own 
dedicated hardware systems. This problem, known as lock-holder pre-
emption, is one of several that arise from the fact that guest VM 
resources must be swapped out at times and the exact state of all threads 
might not expect this situation. However, as virtualization becomes more 
widely adopted, it’s likely that operating systems will offer features that 
assist VMMs to coordinate this kind of activity.  

 Key Points 

The concepts of threading depend on an understanding of the interaction 
of various system components.  

 To properly comprehend the impact of threading, it is important 
to understand the impact of threads on system components. 

 Software threads are different than hardware threads, but maintain 
a direct relationship.  

 Application threading can be implemented using APIs or multi-
threading libraries.  

 Processes, threads, and fibers are different levels of the execution 
mechanism within a system. 

 The thread life cycle has four stages: ready, running, waiting 
(blocked), and terminated. 

 There are two types of virtualization on a system: runtime 
virtualization and system virtualization. 

 A virtual machine monitor (VMM) typically makes no attempt to 
match application threads to specific processor cores or to 
second-guess the guest operating system’s scheduler. 
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Chapter 3
Fundamental 

Concepts of Parallel 
Programming 

 

s discussed in previous chapters, parallel programming uses threads 
to enable multiple operations to proceed simultaneously. The entire 

concept of parallel programming centers on the design, development, 
and deployment of threads within an application and the coordination 
between threads and their respective operations. This chapter examines 
how to break up programming tasks into chunks that are suitable for 
threading. It then applies these techniques to the apparently serial 
problem of error diffusion.  

 Designing for Threads 

Developers who are unacquainted with parallel programming generally 
feel comfortable with traditional programming models, such as object-
oriented programming (OOP). In this case, a program begins at a defined 
point, such as the main() function, and works through a series of tasks 
in succession. If the program relies on user interaction, the main 
processing instrument is a loop in which user events are handled. From 
each allowed event—a button click, for example, the program performs 
an established sequence of actions that ultimately ends with a wait for 
the next user action. 

When designing such programs, developers enjoy a relatively simple 
programming world because only one thing is happening at any given 
moment. If program tasks must be scheduled in a specific way, it’s 
because the developer imposes a certain order on the activities. At any 

A 
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point in the process, one step generally flows into the next, leading up to 
a predictable conclusion, based on predetermined parameters.  

To move from this linear model to a parallel programming model, 
designers must rethink the idea of process flow. Rather than being 
constrained by a sequential execution sequence, programmers should 
identify those activities that can be executed in parallel. To do so, they 
must see their programs as a set of tasks with dependencies between 
them. Breaking programs down into these individual tasks and identifying 
dependencies is known as decomposition. A problem may be decomposed 
in several ways: by task, by data, or by data flow. Table 3.1 summarizes 
these forms of decomposition. As you shall see shortly, these different 
forms of decomposition mirror different types of programming activities.  

Table 3.1      Summary of the Major Forms of Decomposition 

Decomposition Design Comments 

Task Different activities assigned to 
different threads 

Common in GUI apps 

Data Multiple threads performing the 
same operation but on different 
blocks of data 

Common in audio 
processing, imaging, and 
in scientific programming 

Data Flow One thread’s output is the input 
to a second thread 

Special care is needed to 
eliminate startup and 
shutdown latencies  

Task Decomposition 

Decomposing a program by the functions that it performs is called task 
decomposition. It is one of the simplest ways to achieve parallel 
execution. Using this approach, individual tasks are catalogued. If two of 
them can run concurrently, they are scheduled to do so by the 
developer. Running tasks in parallel this way usually requires slight 
modifications to the individual functions to avoid conflicts and to 
indicate that these tasks are no longer sequential.  

If we were discussing gardening, task decomposition would suggest 
that gardeners be assigned tasks based on the nature of the activity: if 
two gardeners arrived at a client’s home, one might mow the lawn while 
the other weeded. Mowing and weeding are separate functions broken 
out as such. To accomplish them, the gardeners would make sure to have 
some coordination between them, so that the weeder is not sitting in the 
middle of a lawn that needs to be mowed.  
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In programming terms, a good example of task decomposition is 
word processing software, such as Microsoft Word†. When the user 
opens a very long document, he or she can begin entering text right 
away. While the user enters text, document pagination occurs in the 
background, as one can readily see by the quickly increasing page count 
that appears in the status bar. Text entry and pagination are two separate 
tasks that its programmers broke out by function to run in parallel. Had 
programmers not designed it this way, the user would be obliged to wait 
for the entire document to be paginated before being able to enter any 
text. Many of you probably recall that this wait was common on early  
PC word processors. 

Data Decomposition 

Data decomposition, also known as data-level parallelism, breaks down 
tasks by the data they work on rather than by the nature of the task. 
Programs that are broken down via data decomposition generally have 
many threads performing the same work, just on different data items. For 
example, consider recalculating the values in a large spreadsheet. Rather 
than have one thread perform all the calculations, data decomposition 
would suggest having two threads, each performing half the calculations, or 
n threads performing 1/nth the work. 

If the gardeners used the principle of data decomposition to divide 
their work, they would both mow half the property and then both weed 
half the flower beds. As in computing, determining which form of 
decomposition is more effective depends a lot on the constraints of the 
system. For example, if the area to mow is so small that it does not need 
two mowers, that task would be better done by just one gardener—that 
is, task decomposition is the best choice—and data decomposition could 
be applied to other task sequences, such as when the mowing is done 
and both gardeners begin weeding in parallel. 

As the number of processor cores increases, data decomposition 
allows the problem size to be increased. This allows for more work to 
be done in the same amount of time. To illustrate, consider the 
gardening example. Two more gardeners are added to the work crew. 
Rather than assigning all four gardeners to one yard, we can we can 
assign the two new gardeners to another yard, effectively increasing our 
total problem size. Assuming that the two new gardeners can perform 
the same amount of work as the original two, and that the two yard 
sizes are the same, we’ve doubled the amount of work done in the same 
amount of time.  
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Data Flow Decomposition 

Many times, when decomposing a problem, the critical issue isn’t what 
tasks should do the work, but how the data flows between the different 
tasks. In these cases, data flow decomposition breaks up a problem by 
how data flows between tasks.  

The producer/consumer problem is a well known example of how data 
flow impacts a programs ability to execute in parallel. Here, the output of 
one task, the producer, becomes the input to another, the consumer. The 
two tasks are performed by different threads, and the second one, the 
consumer, cannot start until the producer finishes some portion of its work.  

Using the gardening example, one gardener prepares the tools—that 
is, he puts gas in the mower, cleans the shears, and other similar tasks—
for both gardeners to use. No gardening can occur until this step is 
mostly finished, at which point the true gardening work can begin. The 
delay caused by the first task creates a pause for the second task, after 
which both tasks can continue in parallel. In computer terms, this 
particular model occurs frequently. 

In common programming tasks, the producer/consumer problem 
occurs in several typical scenarios. For example, programs that must rely 
on the reading of a file fit this scenario: the results of the file I/O become 
the input to the next step, which might be threaded. However, that step 
cannot begin until the reading is either complete or has progressed 
sufficiently for other processing to kick off. Another common 
programming example is parsing: an input file must be parsed, or 
analyzed semantically, before the back-end activities, such as code 
generation in a compiler, can begin. 

The producer/consumer problem has several interesting dimensions: 

 The dependence created between consumer and producer can 
cause significant delays if this model is not implemented 
correctly. A performance-sensitive design seeks to understand the 
exact nature of the dependence and diminish the delay it 
imposes. It also aims to avoid situations in which consumer 
threads are idling while waiting for producer threads. 

 In the ideal scenario, the hand-off between producer and 
consumer is completely clean, as in the example of the file 
parser. The output is context-independent and the consumer has 
no need to know anything about the producer. Many times, 
however, the producer and consumer components do not enjoy 



Chapter 3: Fundamental Concepts of Parallel Programming 41 

such a clean division of labor, and scheduling their interaction 
requires careful planning.  

 If the consumer is finishing up while the producer is completely 
done, one thread remains idle while other threads are busy 
working away. This issue violates an important objective of 
parallel processing, which is to balance loads so that all available 
threads are kept busy. Because of the logical relationship 
between these threads, it can be very difficult to keep threads 
equally occupied. 

In the next section, we’ll take a look at the pipeline pattern that allows 
developers to solve the producer/consumer problem in a scalable 
fashion.  

Implications of Different Decompositions 

Different decompositions provide different benefits. If the goal, for 
example, is ease of programming and tasks can be neatly partitioned by 
functionality, then task decomposition is more often than not the winner. 
Data decomposition adds some additional code-level complexity to tasks, so 
it is reserved for cases where the data is easily divided and performance is 
important. 

The most common reason for threading an application is 
performance. And in this case, the choice of decompositions is more 
difficult. In many instances, the choice is dictated by the problem 
domain: some tasks are much better suited to one type of decomposition. 
But some tasks have no clear bias. Consider for example, processing 
images in a video stream. In formats with no dependency between 
frames, you’ll have a choice of decompositions. Should they choose task 
decomposition, in which one thread does decoding, another color 
balancing, and so on, or data decomposition, in which each thread does 
all the work on one frame and then moves on to the next? To return to 
the analogy of the gardeners, the decision would take this form: If two 
gardeners need to mow two lawns and weed two flower beds, how 
should they proceed? Should one gardener only mow—that is, they 
choose task based decomposition—or should both gardeners mow 
together then weed together?  

In some cases, the answer emerges quickly—for instance when a 
resource constraint exists, such as only one mower. In others where 
each gardener has a mower, the answer comes only through careful 
analysis of the constituent activities. In the case of the gardeners, task 
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decomposition looks better because the start-up time for mowing is 
saved if only one mower is in use. Ultimately, you determine the right 
answer for your application’s use of parallel programming by careful 
planning and testing. The empirical timing and evaluation plays a more 
significant role in the design choices you make in parallel programming 
than it does in standard single-threaded programming.  

 Challenges You’ll Face 

The use of threads enables you to improve performance significantly by 
allowing two or more activities to occur simultaneously. However, 
developers cannot fail to recognize that threads add a measure of 
complexity that requires thoughtful consideration to navigate correctly. 
This complexity arises from the inherent fact that more than one activity 
is occurring in the program. Managing simultaneous activities and their 
possible interaction leads you to confronting four types of problems: 

 Synchronization is the process by which two or more threads 
coordinate their activities. For example, one thread waits for 
another to finish a task before continuing. 

 Communication refers to the bandwidth and latency issues 
associated with exchanging data between threads.  

 Load balancing refers to the distribution of work across multiple 
threads so that they all perform roughly the same amount of 
work. 

 Scalability is the challenge of making efficient use of a larger 
number of threads when software is run on more-capable 
systems. For example, if a program is written to make good use of 
four processor cores, will it scale properly when run on a system 
with eight processor cores? 

Each of these issues must be handled carefully to maximize application 
performance. Subsequent chapters describe many aspects of these 
problems and how best to address them on multi-core systems. 

 Parallel Programming Patterns 

For years object-oriented programmers have been using design patterns 
to logically design their applications. Parallel programming is no different 
than object-oriented programming—parallel programming problems 
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generally fall into one of several well known patterns. A few of the more 
common parallel programming patterns and their relationship to the 
aforementioned decompositions are shown in Table 3.2.  

Table 3.2      Common Parallel Programming Patterns 

Pattern Decomposition 

Task-level parallelism Task 

Divide and Conquer Task/Data 

Geometric Decomposition Data 

Pipeline Data Flow 

Wavefront Data Flow 

 
In this section, we’ll provide a brief overview of each pattern and the 

types of problems that each pattern may be applied to.  

 Task-level Parallelism Pattern. In many cases, the best way to 
achieve parallel execution is to focus directly on the tasks 
themselves. In this case, the task-level parallelism pattern makes 
the most sense. In this pattern, the problem is decomposed into a 
set of tasks that operate independently. It is often necessary 
remove dependencies between tasks or separate dependencies 
using replication. Problems that fit into this pattern include the 
so-called embarrassingly parallel problems, those where there 
are no dependencies between threads, and replicated data 
problems, those where the dependencies between threads may 
be removed from the individual threads.  

 Divide and Conquer Pattern. In the divide and conquer pattern, 
the problem is divided into a number of parallel sub-problems. 
Each sub-problem is solved independently. Once each sub-
problem is solved, the results are aggregated into the final 
solution. Since each sub-problem can be independently solved, 
these sub-problems may be executed in a parallel fashion.  

 The divide and conquer approach is widely used on sequential 
algorithms such as merge sort. These algorithms are very easy to 
parallelize. This pattern typically does a good job of load 
balancing and exhibits good locality; which is important for 
effective cache usage. 

 Geometric Decomposition Pattern. The geometric decomposi-
tion pattern is based on the parallelization of the data structures 
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used in the problem being solved. In geometric decomposition, 
each thread is responsible for operating on data ‘chunks’. This 
pattern may be applied to problems such as heat flow and wave 
propagation. 

 Pipeline Pattern. The idea behind the pipeline pattern is identical 
to that of an assembly line. The way to find concurrency here is 
to break down the computation into a series of stages and have 
each thread work on a different stage simultaneously.  

 Wavefront Pattern. The wavefront pattern is useful when 
processing data elements along a diagonal in a two-dimensional 
grid. This is shown in Figure 3.1 

 

Figure 3.1 Wavefront Data Access Pattern 

The numbers in Figure 3.1 illustrate the order in which the data 
elements are processed. For example, elements in the diagonal 
that contains the number “3” are dependent on data elements 
“1” and “2” being processed previously. The shaded data 
elements in Figure 3.1 indicate data that has already been 
processed. In this pattern, it is critical to minimize the idle time 
spent by each thread. Load balancing is the key to success with 
this pattern.  

For a more extensive and thorough look at parallel programming design 
patterns, refer to the book Patterns for Parallel Programming (Mattson 
2004).   
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 A Motivating Problem: Error Diffusion 

To see how you might apply the aforementioned methods to a practical 
computing problem, consider the error diffusion algorithm that is used in 
many computer graphics and image processing programs. Originally 
proposed by Floyd and Steinberg (Floyd 1975), error diffusion is a 
technique for displaying continuous-tone digital images on devices that 
have limited color (tone) range. Printing an 8-bit grayscale image to a 
black-and-white printer is problematic. The printer, being a bi-level 
device, cannot print the 8-bit image natively. It must simulate multiple 
shades of gray by using an approximation technique. An example of an 
image before and after the error diffusion process is shown in Figure 3.2. 
The original image, composed of 8-bit grayscale pixels, is shown on the 
left, and the result of the image that has been processed using the error 
diffusion algorithm is shown on the right. The output image is composed 
of pixels of only two colors: black and white. 

   
Original 8-bit image on the left, resultant 2-bit image on the right. At the resolution 
of this printing, they look similar. 

   
The same images as above but zoomed to 400 percent and cropped to 25 percent 
to show pixel detail. Now you can clearly see the 2-bit black-white rendering on the 
right and 8-bit gray-scale on the left.  

Figure 3.2 Error Diffusion Algorithm Output  
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The basic error diffusion algorithm does its work in a simple three-
step process:  

1. Determine the output value given the input value of the current 
pixel. This step often uses quantization, or in the binary case, 
thresholding. For an 8-bit grayscale image that is displayed on a 1-bit 
output device, all input values in the range [0, 127] are to be 
displayed as a 0 and all input values between [128, 255] are to  
be displayed as a 1 on the output device.  

2. Once the output value is determined, the code computes the 
error between what should be displayed on the output device 
and what is actually displayed. As an example, assume that the 
current input pixel value is 168. Given that it is greater than our 
threshold value (128), we determine that the output value will be 
a 1. This value is stored in the output array. To compute the 
error, the program must normalize output first, so it is in the 
same scale as the input value. That is, for the purposes of 
computing the display error, the output pixel must be 0 if the 
output pixel is 0 or 255 if the output pixel is 1. In this case, the 
display error is the difference between the actual value that 
should have been displayed (168) and the output value (255), 
which is –87.  

3. Finally, the error value is distributed on a fractional basis to the 
neighboring pixels in the region, as shown in Figure 3.3.  

 

Figure 3.3 Distributing Error Values to Neighboring Pixels 

This example uses the Floyd-Steinberg error weights to propagate 
errors to neighboring pixels. 7/16ths of the error is computed and added  
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to the pixel to the right of the current pixel that is being processed. 
5/16ths of the error is added to the pixel in the next row, directly below 
the current pixel. The remaining errors propagate in a similar fashion. 
While you can use other error weighting schemes, all error diffusion 
algorithms follow this general method. 

The three-step process is applied to all pixels in the image. Listing 3.1 
shows a simple C implementation of the error diffusion algorithm, using 
Floyd-Steinberg error weights. 

 

 

/**************************************  
* Initial implementation of the error diffusion algorithm. 
***************************************/ 

void error_diffusion(unsigned int width, 
                     unsigned int height, 
                     unsigned short **InputImage,  
                unsigned short **OutputImage) 
{ 
   for (unsigned int i = 0; i < height; i++) 
   { 
      for (unsigned int j = 0; j < width; j++) 
      { 
         /* 1. Compute the value of the output pixel*/ 
         if (InputImage[i][j] < 128) 
            OutputImage[i][j] = 0; 
         else 
            OutputImage[i][j] = 1; 
 
         /* 2. Compute the error value */ 
         int err = InputImage[i][j] - 255*OutputImage[i][j]; 
 
         /* 3. Distribute the error */ 
         InputImage[i][j+1]   += err * 7/16; 
         InputImage[i+1][j-1] += err * 3/16; 
         InputImage[i+1][j]   += err * 5/16; 
         InputImage[i+1][j+1] += err * 1/16; 
      } 
   } 

} 

Listing 3.1 C-language Implementation of the Error Diffusion Algorithm 
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Analysis of the Error Diffusion Algorithm 

At first glance, one might think that the error diffusion algorithm is an 
inherently serial process. The conventional approach distributes errors to 
neighboring pixels as they are computed. As a result, the previous pixel’s 
error must be known in order to compute the value of the next pixel. 
This interdependency implies that the code can only process one pixel at 
a time. It’s not that difficult, however, to approach this problem in a way 
that is more suitable to a multithreaded approach.  

An Alternate Approach: Parallel Error Diffusion 

To transform the conventional error diffusion algorithm into an approach 
that is more conducive to a parallel solution, consider the different 
decomposition that were covered previously in this chapter. Which 
would be appropriate in this case? As a hint, consider Figure 3.4, which 
revisits the error distribution illustrated in Figure 3.3, from a slightly 
different perspective. 

 

Figure 3.4 Error-Diffusion Error Computation from the Receiving Pixel’s 
Perspective 

Given that a pixel may not be processed until its spatial predecessors 
have been processed, the problem appears to lend itself to an approach 
where we have a producer—or in this case, multiple producers—
producing data (error values) which a consumer (the current pixel) will 
use to compute the proper output pixel. The flow of error data to the 
current pixel is critical. Therefore, the problem seems to break down 
into a data-flow decomposition.  
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Now that we identified the approach, the next step is to determine the 
best pattern that can be applied to this particular problem. Each 
independent thread of execution should process an equal amount of work 
(load balancing). How should the work be partitioned? One way, based on 
the algorithm presented in the previous section, would be to have a thread 
that processed the even pixels in a given row, and another thread that 
processed the odd pixels in the same row. This approach is ineffective 
however; each thread will be blocked waiting for the other to complete, 
and the performance could be worse than in the sequential case.  

To effectively subdivide the work among threads, we need a way to 
reduce (or ideally eliminate) the dependency between pixels. Figure 3.4 
illustrates an important point that's not obvious in Figure 3.3—that in 
order for a pixel to be able to be processed, it must have three error 
values (labeled eA, eB, and eC1 in Figure 3.3) from the previous row, and 
one error value from the pixel immediately to the left on the current 
row. Thus, once these pixels are processed, the current pixel may 
complete its processing. This ordering suggests an implementation 
where each thread processes a row of data. Once a row has completed 
processing of the first few pixels, the thread responsible for the next row 
may begin its processing. Figure 3.5 shows this sequence. 

 
Multiple threads are able to process multiple rows simultaneously. 

Figure 3.5 Parallel Error Diffusion for Multi-thread, Multi-row Situation  

                                                   
1 We assume eA = eD = 0 at the left edge of the page (for pixels in column 0); and that eC = 0 at the 

right edge of the page (for pixels in column W-1, where W = the number of pixels in the image). 
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Notice that a small latency occurs at the start of each row. This 
latency is due to the fact that the previous row’s error data must be 
calculated before the current row can be processed. These types of 
latency are generally unavoidable in producer-consumer implementations; 
however, you can minimize the impact of the latency as illustrated here. 
The trick is to derive the proper workload partitioning so that each 
thread of execution works as efficiently as possible. In this case, you 
incur a two-pixel latency before processing of the next thread can begin. 
An 8.5" X 11" page, assuming 1,200 dots per inch (dpi), would have 
10,200 pixels per row. The two-pixel latency is insignificant here. 

The sequence in Figure 3.5 illustrates the data flow common to the 
wavefront pattern.  

Other Alternatives 

In the previous section, we proposed a method of error diffusion where 
each thread processed a row of data at a time. However, one might 
consider subdividing the work at a higher level of granularity. 
Instinctively, when partitioning work between threads, one tends to look 
for independent tasks. The simplest way of parallelizing this problem 
would be to process each page separately. Generally speaking, each page 
would be an independent data set, and thus, it would not have any 
interdependencies. So why did we propose a row-based solution instead 
of processing individual pages? The three key reasons are: 

 An image may span multiple pages. This implementation would 
impose a restriction of one image per page, which might or might 
not be suitable for the given application. 

 Increased memory usage. An 8.5 x 11-inch page at 1,200 dpi 
consumes 131 megabytes of RAM. Intermediate results must be 
saved; therefore, this approach would be less memory efficient.  

 An application might, in a common use-case, print only a 
single page at a time. Subdividing the problem at the page level 
would offer no performance improvement from the sequential 
case. 

A hybrid approach would be to subdivide the pages and process regions 
of a page in a thread, as illustrated in Figure 3.6. 
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Multiple threads processing multiple page sections 

Figure 3.6 Parallel Error Diffusion for Multi-thread, Multi-page Situation 

Note that each thread must work on sections from different page. 
This increases the startup latency involved before the threads can begin 
work. In Figure 3.6, Thread 2 incurs a 1/3 page startup latency before it 
can begin to process data, while Thread 3 incurs a 2/3 page startup 
latency. While somewhat improved, the hybrid approach suffers from 
similar limitations as the page-based partitioning scheme described 
above. To avoid these limitations, you should focus on the row-based 
error diffusion implementation illustrated in Figure 3.5. 

 Key Points 

This chapter explored different types of computer architectures and how 
they enable parallel software development. The key points to keep in 
mind when developing solutions for parallel computing architectures are: 

 Decompositions fall into one of three categories: task, data, and 
data flow. 

 Task-level parallelism partitions the work between threads based 
on tasks.  

 Data decomposition breaks down tasks based on the data that the 
threads work on. 
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 Data flow decomposition breaks down the problem in terms of 
how data flows between the tasks.  

 Most parallel programming problems fall into one of several well 
known patterns. 

 The constraints of synchronization, communication, load balancing, 
and scalability must be dealt with to get the most benefit out of a 
parallel program. 

Many problems that appear to be serial may, through a simple 
transformation, be adapted to a parallel implementation. 
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Chapter 4
Threading and 

Parallel 
Programming 

Constructs 
 

his chapter describes the theory and practice of the principal parallel 
programming constructs that focus on threading and begins with the 

fundamental concepts of synchronization, critical section, and deadlock. 
The following chapters cover implementation details and related issues.  

 Synchronization 

Synchronization is an enforcing mechanism used to impose constraints 
on the order of execution of threads. The synchronization controls the 
relative order of thread execution and resolves any conflict among 
threads that might produce unwanted behavior. In simple terms, 
synchronization is used to coordinate thread execution and manage 
shared data.  

In an environment where messages are used for communicating 
between a sender and a receiver, synchronization is implicit, as a 
message must be sent before the message can be received. On the other 
hand, for a shared-memory based environment, threads have no implicit 
interdependency unless some constraints are imposed.  

Two types of synchronization operations are widely used: mutual 
exclusion and condition synchronization. In the case of mutual  
 

T
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exclusion, one thread blocks a critical section—a section of code that 
contains shared data—and one or more threads wait to get their turn to 
enter into the section. This helps when two or more threads share the 
same memory space and run simultaneously. The mutual exclusion is 
controlled by a scheduler and depends on the granularity of the 
scheduler. Condition synchronization, on the other hand, blocks a 
thread until the system state specifies some specific conditions. The 
condition synchronization allows a thread to wait until a specific 
condition is reached. Figure 4.1 shows the generic representation of 
synchronization.  

 

Figure 4.1 Generic Representation of Synchronization Block inside Source 
Code 

While a number of techniques are available for synchronization, only 
a few methods are used by developers on a regular basis. The techniques 
used are also to some extent determined by the programming 
environment.  
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The scope of synchronization is broad. Proper synchronization orders 
the updates to data and provides an expected outcome. In Figure 4.2, 
shared data d can get access by threads T

i
 and T

j 
at time t

i
, t

j
, t

k
, t

l
, where 

t
i
 ≠ t

j
 ≠ t

k
 ≠ t

l
 and a proper synchronization maintains the order to update 

d at these instances and considers the state of d as a synchronization 
function of time. This synchronization function, s, represents the 
behavior of a synchronized construct with respect to the execution time 
of a thread.  

iT Tj

tj

d
Shared Data

Shared data d depends on synchronization functions of time

T = f  (t)
d = f  (t) = s(...,t ,t ,t ,t ,...)tk

ti

tl

j ki l

 

Figure 4.2 Shared Data Synchronization, Where Data d Is Protected by a 
Synchronization Operation 

Figure 4.3 represents how synchronization operations are performed 
in an actual multi-threaded implementation in a generic form, and 
demonstrates the flow of threads. When m>=1, the creation timing for 
initial threads T

1
…T

m
 might not be the same. After block B

i
 as well as B

j
, 

the number of threads could be different, which means m is not 
necessarily equal to n and n is not necessarily equal to p. For all 
operational environments, the values of m, n, and p are at least 1. 
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T 1 

Implementation Source Code 

Parallel Code Block 
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Parallel Code Block 
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T 1...p 
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constructs B i 

Perform synchronization 
operations using parallel 

constructs B j 

 

Figure 4.3 Operational Flow of Threads for an Application 

 Critical Sections 

A section of a code block called a critical section is where shared 
dependency variables reside and those shared variables have dependency 
among multiple threads. Different synchronization primitives are used to 
keep critical sections safe. With the use of proper synchronization 
techniques, only one thread is allowed access to a critical section at any 
one instance. The major challenge of threaded programming is to 
implement critical sections in such a way that multiple threads perform 
mutually exclusive operations for critical sections and do not use critical 
sections simultaneously.  
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Critical sections can also be referred to as synchronization blocks. 
Depending upon the way critical sections are being used, the size of a 
critical section is important. Minimize the size of critical sections when 
practical. Larger critical sections-based code blocks should split into multiple 
code blocks. This is especially important in code that is likely to experience 
significant thread contention. Each critical section has an entry and an exit 
point. A critical section can be represented as shown in Figure 4.4. 

 

<Critical Section Entry,  
 to keep other threads in waiting status> 
 ... 
Critical Section 
 ... 
<Critical Section Exit,  
 allow other threads to enter critical section> 

Figure 4.4 Implement Critical Section in Source Code 

 Deadlock 

Deadlock occurs whenever a thread is blocked waiting on a resource of 
another thread that will never become available. According to the 
circumstances, different deadlocks can occur: self-deadlock, recursive 
deadlock, and lock-ordering deadlock. In most instances, deadlock means 
lock-ordering deadlock.  

The self-deadlock is the instance or condition when a thread, T
i
, wants 

to acquire a lock that is already owned by thread T
i
. In Figure 4.5 (a), at 

time t
a
 thread T

i
 owns lock l

i
, where l

i
 is going to get released at t

c
. 

However, there is a call at t
b
 from T

i
, which requires l

i
. The release time of 

l
i
 is t

d
, where t

d
 can be either before or after t

c
. In this scenario, thread T

i
 is 

in self-deadlock condition at t
b
. When the wakeup path of thread T

i
, resides 

in another thread, T
j
, that condition is referred to as recursive deadlock, as 

shown in Figure 4.5 (b). Figure 4.5 (c) illustrates a lock-ordering thread, 
where thread T

i
 locks resource r

j
 and waits for resource r

i
, which is being 

locked by thread T
j
. Also, thread T

j
 locks resource r

i
 and waits for resource 

r
j
, which is being locked by thread T

i
. Here, both threads T

i
 and T

j
 are in 

deadlock at t
d
, and w is the wait-function for a lock.  
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Figure 4.5 Deadlock Scenarios 
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To represent the transition model of deadlock of an environment, 
consider representing atomic states by s

i
 and each thread of the system 

by T
i
. Each thread can transition from one state to another by requesting 

a resource, acquiring a resource, or freeing the current resource. So, 
the transition can be represented as shown in Figure 4.6, where, 
r

i
 ≡ requesting a resource, a

i
 ≡ acquiring a resource, and f

i
 ≡ freeing 

current resource. 

iT :

Current State

si sj
ri ai fi sd

Deadlock State   

Figure 4.6 Deadlock Scenario in a State Transition for a Thread 

For any thread T
i
, if the state transition of T

i
 becomes s

d
 for all 

possible scenarios and remains blocked at s
d
, thread T

i
 would not have 

any way to transition from s
d
 to any other state. That is why state s

d
 is 

called the deadlock state for thread T
i
.  

Avoiding deadlock is one of the challenges of multi-threaded 
programming. There must not be any possibility of deadlock in an 
application. A lock-holding prevention mechanism or the creation of lock 
hierarchy can remove a deadlock scenario. One recommendation is to 
use only the appropriate number of locks when implementing 
synchronization. Chapter 7 has a more detailed description of deadlock 
and how to avoid it. 

 Synchronization Primitives 

Synchronization is typically performed by three types of primitives: 
semaphores, locks, and condition variables. The use of these primitives 
depends on the application requirements. These synchronization primitives 
are implemented by atomic operations and use appropriate memory fences. 
A memory fence, sometimes called a memory barrier, is a processor 
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dependent operation that guarantees that threads see other threads’ memory 
operations by maintaining reasonable order. To hide the granularity of these 
synchronization primitives, higher level synchronizations are used. That way 
application developers have to concern themselves less about internal 
details.   

Semaphores 

Semaphores, the first set of software-oriented primitives to accomplish 
mutual exclusion of parallel process synchronization, were introduced by 
the well known mathematician Edsger Dijkstra in his 1968 paper, “The 
Structure of the “THE”-Multiprogramming System” (Dijkstra 1968). Dijkstra 
illustrated that synchronization can be achieved by using only traditional 
machine instructions or hierarchical structure. He proposed that a 
semaphore can be represented by an integer, sem, and showed that a 
semaphore can be bounded by two basic atomic operations, P (proberen, 
which means test) and V (verhogen, which means increment). These 
atomic operations are also referred as synchronizing primitives. Even 
though the details of Dijkstra’s semaphore representation have evolved, 
the fundamental principle remains same. Where, P represents the 
“potential delay” or “wait” and V represents the “barrier removal” or 
“release” of a thread. These two synchronizing primitives can be 
represented for a semaphore s as follows: 

      Thread "T" performs operation "P": 

            P(s)  atomic {sem = sem-1; temp = sem} 
                   if  (temp < 0) 
                       {Thread T blocked and enlists on a 
                        waiting list for s} 

      Thread "T" performs operation "V": 

            V(s)  atomic {sem = sem +1; temp = sem} 
                   if  (temp <=0)  
                       {Release one thread from the waiting 
                        list for s}  

where semaphore value sem is initialized with the value 0 or 1 before the 
parallel processes get started. In Dijkstra’s representation, T referred to 
processes. Threads are used here instead to be more precise and to 
remain consistent about the differences between threads and processes. 
The P operation blocks the calling thread if the value remains 0, whereas 
the V operation, independent of P operation, signals a blocked thread to 
allow it to resume operation. These P and V operations are “indivisible 
actions” and perform simultaneously. The positive value of sem 
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represents the number of threads that can proceed without blocking, and 
the negative number refers to the number of blocked threads. When the 
sem value becomes zero, no thread is waiting, and if a thread needs to 
decrement, the thread gets blocked and keeps itself in a waiting list. 
When the value of sem gets restricted to only 0 and 1, the semaphore is a 
binary semaphore.  

To use semaphore, you can consider semaphore as a counter, which 
supports two atomic operations. Implementation of semaphores varies. 
From a usability perspective, two kinds of semaphores exist: strong and 
weak. These represent the success of individual calls on P. A strong 
semaphore maintains First-Come-First-Serve (FCFS) model and provides 
guarantee to threads to calls on P and avoid starvation. And a weak 
semaphore is the one which does not provide any guarantee of service to 
a particular thread and the thread might starve. For example, in POSIX, 
the semaphores can get into starvation status and implemented 
differently than what Dijkstra defined and considered as a weak 
semaphore (Reek 2002).  

According to Dijkstra, the mutual exclusion of parallel threads using 
P and V atomic operations represented as follows: 
semaphore s 

s.sem = 1 

begin 

   T: <non-critical section> 

       P(s) 

       <critical section> 

       V(s) 

       Goto T 

end 
 

Semaphores are largely of historical interest. They are the 
unstructured “goto” statements of multi-threaded programming. Most 
programming environments provide higher-level structured synchroniza-
tion primitives. However, like the goto, semaphores are occasionally the 
best primitive to use. A typical use of a semaphore is protecting a shared 
resource of which at most n instances are allowed to exist 
simultaneously. The semaphore starts out with value n. A thread that 
needs to acquire an instance of the resource performs operation P. It 
releases the resource using operation V. 
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Let’s examine how semaphores might be used for the producer-
consumer problem and whether the problem can be resolved using 
semaphores or not. Producer-consumer is a classic synchronization 
problem, also known as the bounded-buffer problem. Here a producer 
function generates data to be placed in a shared buffer and a consumer 
function receives the data out of the buffer and operates on it, where 
both producer and consumer functions execute concurrently.  

Pseudo-code using a semaphore for the producer-consumer problem 
is shown in Figure 4.7. 

 

 

semaphore s 

void producer () { 
   while (1) { 
      <produce the next data> 
      s->release() 
   } 
} 

void consumer() { 
   while (1) { 
      s->wait() 
      <consume the next data> 
   } 
} 

Figure 4.7 Pseudo-code of Producer-Consumer Problem 

Here neither producer nor consumer maintains any order. If the 
producer function operates forever prior to the consumer function then 
the system would require an infinite capacity and that is not possible. That 
is why the buffer size needs to be within a boundary to handle this type of 
scenario and make sure that if the producer gets ahead of the consumer 
then the time allocated for the producer must be restricted. The problem 
of synchronization can be removed by adding one more semaphores in the 
previous solution shown in Figure 4.7. Adding the semaphore would 
maintain the boundary of buffer as shown in Figure 4.8, where sEmpty and 
sFull retain the constraints of buffer capacity for operating threads. 
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semaphore sEmpty, sFull 

void producer() { 
   while (1) { 
      sEmpty->wait() 
      <produce the next data> 
      sFull->release() 
   } 
} 

void consumer() { 
   while (1) { 
      sFull->release() 
      <consume the next data> 
      sEmpty->wait() 
   } 
} 

Figure 4.8 Dual Semaphores Solution for Producer-Consumer Problem 

Instead of using two independent semaphores and having a 
constraint-based solution, the solution in Figure 4.8 can be implemented 
using other synchronization primitives as well. The following sections 
discuss how to solve the producer-consumer problem using locks and 
conditional variables primitives.  

Locks 

Locks are similar to semaphores except that a single thread handles a lock 
at one instance. Two basic atomic operations get performed on a lock:  

 acquire(): Atomically waits for the lock state to be unlocked and 
sets the lock state to lock. 

 release(): Atomically changes the lock state from locked to 
unlocked.  

At most one thread acquires the lock. A thread has to acquire a lock 
before using a shared resource; otherwise it waits until the lock becomes 
available. When one thread wants to access shared data, it first acquires 
the lock, exclusively performs operations on the shared data and later 
releases the lock for other threads to use. The level of granularity can be 
either coarse or fine depending on the type of shared data that needs to 
be protected from threads. The coarse granular locks have higher lock 
contention than finer granular ones. To remove issues with lock 
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granularity, most of the processors support the Compare and Swap (CAS) 
operation, which provides a way to implement lock-free synchronization. 
The atomic CAS operations guarantee that the shared data remains 
synchronized among threads. If you require the use of locks, it is 
recommended that you use the lock inside a critical section with a single 
entry and single exit, as shown in Figure 4.9.  

 

{define all necessary locks} 
<Start multithreading blocks> 
... 
<critical section start> 

<acquire lock L> 

.. operate on shared memory protected by lock L ..  
    

<release lock L> 
<critical section end> 
... 
<End multithreading blocks> 

Figure 4.9 A Lock Used Inside a Critical Section 

From an implementation perspective, it is always safe to use explicit 
locks rather than relying on implicit locks. In general a lock must not be 
held for a long periods of time. The explicit locks are defined by the 
developer, whereas implicit locks come from the underlying framework 
used, such as database engines provides lock the maintain data 
consistency.  

In the produce-consumer problem, if the consumer wants to 
consume a shared data before the producer produces, it must wait. To 
use locks for the producer-consumer problem, the consumer must loop 
until the data is ready from the producer. The reason for looping is that 
the lock does not support any wait operation, whereas Condition 
Variables does.   

Lock Types 
An application can have different types of locks according to the 
constructs required to accomplish the task. You must avoid mixing lock 
types within a given task. For this reason, special attention is required 
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when using any third party library. If your application has some third 
party dependency for a resource R and the third party uses lock type L 
for R, then if you need to use a lock mechanism for R, you must use lock 
type L rather any other lock type. The following sections cover these 
locks and define their purposes.  

Mutexes. The mutex is the simplest lock an implementation can use. 
Some texts use the mutex as the basis to describe locks in general. The 
release of a mutex does not depend on the release() operation only. A 
timer attribute can be added with a mutex. If the timer expires before a 
release operation, the mutex releases the code block or shared memory 
to other threads. A try-finally clause can be used to make sure that the 
mutex gets released when an exception occurs. The use of a timer or try-
finally clause helps to prevent a deadlock scenario. 

Recursive Locks. Recursive locks are locks that may be repeatedly 
acquired by the thread that currently owns the lock without causing the 
thread to deadlock. No other thread may acquire a recursive lock until 
the owner releases it once for each time the owner acquired it. Thus 
when using a recursive lock, be sure to balance acquire operations with 
release operations. The best way to do this is to lexically balance the 
operations around single-entry single-exit blocks, as was shown for 
ordinary locks. The recursive lock is most useful inside a recursive 
function. In general, the recursive locks are slower than nonrecursive 
locks. An example of recursive locks use is shown in Figure 4.10.  

 

Recursive_Lock L 
void recursiveFunction (int count) { 
   L->acquire() 
   if (count > 0) { 
      count = count - 1; 
      recursiveFunction(count); 
   } 
   L->release(); 
} 

Figure 4.10 An Example of Recursive Lock Use 

Read-Write Locks. Read-Write locks are also called shared-exclusive or 
multiple-read/single-write locks or non-mutual exclusion semaphores. 
Read-write locks allow simultaneous read access to multiple threads but 
limit the write access to only one thread. This type of lock can be used 
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efficiently for those instances where multiple threads need to read shared 
data simultaneously but do not necessarily need to perform a write 
operation. For lengthy shared data, it is sometimes better to break the 
data into smaller segments and operate multiple read-write locks on  
the dataset rather than having a data lock for a longer period of time.  

Spin Locks. Spin locks are non-blocking locks owned by a thread. 
Waiting threads must “spin,” that is, poll the state of a lock rather than 
get blocked. Spin locks are used mostly on multiprocessor systems. This 
is because while the thread spins in a single-core processor system, no 
process resources are available to run the other thread that will release 
the lock. The appropriate condition for using spin locks is whenever the 
hold time of a lock is less than the time of blocking and waking up a 
thread. The change of control for threads involves context switching of 
threads and updating thread data structures, which could require more 
instruction cycles than spin locks. The spin time of spin locks should be 
limited to about 50 to 100 percent of a thread context switch (Kleiman 
1996) and should not be held during calls to other subsystems. Improper 
use of spin locks might cause thread starvation. Think carefully before 
using this locking mechanism. The thread starvation problem of spin 
locks can be alleviated by using a queuing technique, where every 
waiting thread to spin on a separate local flag in memory using First-In, 
First-Out (FIFO) or queue construct.   

Condition Variables 

Condition variables are also based on Dijkstra’s semaphore semantics, 
with the exception that no stored value is associated with the operation. 
This means condition variables do not contain the actual condition to 
test; a shared data state is used instead to maintain the condition for 
threads. A thread waits or wakes up other cooperative threads until a 
condition is satisfied. The condition variables are preferable to locks 
when pooling requires and needs some scheduling behavior among 
threads. To operate on shared data, condition variable C, uses a lock, L. 
Three basic atomic operations are performed on a condition variable C:  

 wait(L): Atomically releases the lock and waits, where wait 
returns the lock been acquired again 

 signal(L): Enables one of the waiting threads to run, where signal 
returns the lock is still acquired 

 broadcast(L): Enables all of the waiting threads to run, where 
broadcast returns the lock is still acquired 



Chapter 4: Threading and Parallel Programming Constructs 67 

To control a pool of threads, use of a signal function is recommended. 
The penalty for using a broadcast-based signaling function could be 
severe and extra caution needs to be undertaken before waking up all 
waiting threads. For some instances, however, broadcast signaling can be 
effective. As an example, a “write” lock might allow all “readers” to 
proceed at the same time by using a broadcast mechanism.  

To show the use of a condition variable for a synchronization 
problem, the pseudocode in Figure 4.11 solves the producer-consumer 
problem discussed earlier. A variable LC is used to maintain the 
association between condition variable C and an associated lock L. 

 
 

Condition C; 
Lock L; 
Bool LC = false; 

void producer() { 
   while (1) { 
      L ->acquire(); 
      // start critical section 
      while (LC  == true) { 
         C ->wait(L); 
      } 
      // produce the next data 
      LC  = true; 
      C ->signal(L); 
      // end critical section 
      L ->release(); 
   } 
} 

void consumer() { 
   while (1) { 
      L ->acquire(); 
      // start critical section 
      while (LC  == false) { 
         C ->wait(L); 
      } 
      // consume the next data 
      LC = false; 
     // end critical section 
      L ->release(); 
   } 
} 

Figure 4.11 Use of a Condition Variable for the Producer-Consumer Problem 
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Monitors 
For structured synchronization, a higher level construct is introduced 
for simplifying the use of condition variables and locks, known as a 
monitor. The purpose of the monitor is to simplify the complexity of 
primitive synchronization operations and remove the implementation 
details from application developers. The compiler for the language that 
supports monitors automatically inserts lock operations at the 
beginning and the end of each synchronization-aware routine. Most 
recent programming languages do not support monitor explicitly, 
rather they expose lock and unlock operations to the developers. The 
Java language supports explicit monitor objects along with 
synchronized blocks inside a method. In Java, the monitor is maintained 
by the “synchronized” constructs, such as  
synchronized (object) { 
 
     <Critical Section> 
} 

where the “condition” primitives are used by wait(), notify(), or 
notifyAll() methods. Do not confuse this with the Monitor object in 
the Java SDK though. The Java Monitor object is used to perform 
resource management in Java Management Extension (JMX). Similarly, 
the monitor object in C# is used as lock construct.  

 Messages 

The message is a special method of communication to transfer 
information or a signal from one domain to another. The definition of 
domain is different for different scenarios. For multi-threading 
environments, the domain is referred to as the boundary of a thread. 
The three M’s of message passing are multi-granularity, 
multithreading, and multitasking (Ang 1996). In general, the 
conceptual representations of messages get associated with processes 
rather than threads. From a message-sharing perspective, messages get 
shared using an intra-process, inter-process, or process-process 
approach, as shown in Figure 4.12. 
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Figure 4.12 Message Passing Model 

Two threads that communicate with messages and reside in the same 
process use intra-process messaging. Two threads that communicate and 
reside in different processes use inter-process messaging. From the 
developer’s perspective, the most common form of messaging is the 
process-process approach, when two processes communicate with each 
other rather than depending on the thread.  

In general, the messaging could be devised according to the memory 
model of the environment where the messaging operation takes place. 
Messaging for the shared memory model must be synchronous, whereas 
for the distributed model messaging can be asynchronous. These 
operations can be viewed at a somewhat different angle. When there is 
nothing to do after sending the message and the sender has to wait for 
the reply to come, the operations need to be synchronous, whereas if the 
sender does not need to wait for the reply to arrive and in order to 
proceed then the operation can be asynchronous.  

The generic form of message communication can be represented as 
follows: 
Sender:  
        <sender sends message to one or more recipients 
         through structure> 
        \\ Here, structure can be either queue or port 
        <if shared environment> 
              {wait for the acknowledgement> 
        <else> 
              {sender does the next possible operation> 
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Receiver: 
       <might wait to get message from sender from  
        appropriate structure> 
       <receive message from appropriate structure and 
        process> 

The generic form of message passing gives the impression to developers 
that there must be some interface used to perform message passing. The 
most common interface is the Message Passing Interface (MPI). MPI is 
used as the medium of communication, as illustrated in Figure 4.13. 
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Figure 4.13 Basic MPI Communication Environment 

To synchronize operations of threads, semaphores, locks, and 
condition variables are used. These synchronization primitives convey 
status and access information. To communicate data, they use thread 
messaging. In thread messaging, synchronization remains explicit, as 
there is acknowledgement after receiving messages. The 
acknowledgement avoids primitive synchronization errors, such as 
deadlocks or race conditions. The basic operational concepts of 
messaging remain the same for all operational models. From an 
implementation point of view, the generic client-server model can be 
used for all messaging models.  

Inside hardware, message processing occurs in relationship with the 
size of the message. Small messages are transferred between processor 
registers and if a message is too large for processor registers, caches get 
used. Larger messages require main memory. In the case of the largest 
messages, the system might use processor-external DMA, as shown in 
Figure 4.14.  
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Figure 4.14 System Components Associated with Size of Messages 

 Flow Control-based Concepts  

In the parallel computing domain, some restraining mechanisms allow 
synchronization among multiple attributes or actions in a system. These 
are mainly applicable for shared-memory multiprocessor or multi-core 
environments. The following section covers only two of these concepts, 
fence and barrier.  

Fence 

The fence mechanism is implemented using instructions and in fact, most 
of the languages and systems refer to this mechanism as a fence 
instruction. On a shared memory multiprocessor or multi-core 
environment, a fence instruction ensures consistent memory operations. 
At execution time, the fence instruction guarantees completeness of all 
pre-fence memory operations and halts all post-fence memory operations 
until the completion of fence instruction cycles. This fence mechanism 
ensures proper memory mapping from software to hardware memory 
models, as shown in Figure 4.15. The semantics of the fence instruction 
depend on the architecture. The software memory model implicitly 
supports fence instructions. Using fence instructions explicitly could be 
error-prone and it is better to rely on compiler technologies. Due to the 
performance penalty of fence instructions, the number of memory fences 
needs to be optimized.  
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Figure 4.15 Fence Mechanism 

Barrier 

The barrier mechanism is a synchronization method by which threads 
in the same set keep collaborating with respect to a logical 
computational point in the control flow of operations. Through this 
method, a thread from an operational set has to wait for all other 
threads in that set to complete in order to be able to proceed to the 
next execution step. This method guarantees that no threads proceed 
beyond an execution logical point until all threads have arrived at that 
logical point. Barrier synchronization is one of the common operations 
for shared memory multiprocessor and multi-core environments. Due to 
the aspect of waiting for a barrier control point in the execution flow, 
the barrier synchronization wait function for ith thread can be 
represented as 
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where W
barrier

 is the wait time for a thread, T
barrier

 is the number of threads 
has arrived, and R

thread
 is the arrival rate of threads.  

For performance consideration and to keep the wait time within a 
reasonable timing window before hitting a performance penalty, special 
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consideration must be given to the granularity of tasks. Otherwise, the 
implementation might suffer significantly.  

 Implementation-dependent Threading Features  

The functionalities and features of threads in different environments are 
very similar; however the semantics could be different. That is why  
the conceptual representations of threads in Windows and Linux remain 
the same, even though the way some concepts are implemented could 
be different. Also, with the threading APIs of Win32, Win64, and POSIX 
threads (Pthreads), the semantics are different as well. Windows 
threading APIs are implemented and maintained by Microsoft and  
work on Windows only, whereas the implementation of Pthreads APIs 
allows developers to implement threads on multiple platforms. The IEEE 
only defined the Pthreads APIs and let the implementation be done by OS 
developers. Due to the implementation issues of Pthreads, not all features 
exist in Pthreads APIs. Developers use Pthreads as a wrapper of their 
own thread implementations. There exists a native Linux Pthreads library 
similar to Windows native threads, known as Native POSIX Thread 
Library (NPTL).  

Consider the different mechanisms used to signal threads in Windows 
and in POSIX threads. Windows uses an event model to signal one or 
more threads that an event has occurred. However, no counterpart to 
Windows events is implemented in POSIX threads. Instead, condition 
variables are used for this purpose.  

These differences are not necessarily limited to cross-library 
boundaries. There may be variations within a single library as well. For 
example, in the Windows Win32 API, Microsoft has implemented two 
versions of a mutex. The first version, simply referred to as a mutex, 
provides one method for providing synchronized access to a critical 
section of the code. The other mechanism, referred to as a 
CriticalSection, essentially does the same thing, with a completely 
different API. What’s the difference?  

The conventional mutex object in Windows is a kernel mechanism. 
As a result, it requires a user-mode to kernel-mode transition to work. 
This is an expensive operation, but provides a more powerful 
synchronization mechanism that can be used across process boundaries. 
However, in many applications, synchronization is only needed within a 
single process. Therefore, the ability for a mutex to work across process 
boundaries is unnecessary, and leads to wasted overhead. To remove 
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overhead associated with the standard mutex Microsoft implemented the 
CriticalSection, which provides a user-level locking mechanism. This 
eliminates any need to make a system call, resulting in much faster 
locking. 

Even though different threading libraries will have different ways of 
implementing the features described in this chapter, the key to being 
able to successfully develop multithreaded applications is to understand 
the fundamental concepts behind these features.  

 Key Points 

This chapter presented parallel programming constructs and later 
chapters provide details about the implementation of the constructs. To 
become proficient in threading techniques and face fewer issues during 
design and development of a threaded solution, an understanding of the 
theory behind different threading techniques is helpful. Here are some of 
the points you should remember: 

 For synchronization, an understanding of the atomic actions of 
operations will help avoid deadlock and eliminate race 
conditions.  

 Use a proper synchronization construct-based framework for 
threaded applications. 

 Use higher-level synchronization constructs over primitive types.  

 An application cannot contain any possibility of a deadlock 
scenario. 

 Threads can perform message passing using three different 
approaches: intra-process, inter-process, and process-process.  

 Understand the way threading features of third-party libraries are 
implemented. Different implementations may cause applications 
to fail in unexpected ways. 
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Chapter 5
Threading APIs 

 

revious chapters introduced the basic principles behind writing 
concurrent applications. While describing every thread package 

available today is beyond the scope of this book, it is important to 
illustrate the aforementioned principles with practical examples. This 
chapter will provide an overview of several popular thread packages 
used by developers today.  

 Threading APIs for Microsoft Windows 

Since the advent of Windows NT, Microsoft has enabled application 
developers to write multi-threaded software applications. Advances in 
processor technology have allowed Microsoft to add additional 
capabilities, evolving its programming interface to support more and 
more advanced threading operations. As a result, the Microsoft threading 
APIs have become a powerful tool for writing multi-threaded applications 
running on Windows. 

Historically, native Windows applications have been written in 
C/C++ using Microsoft’s Win32 or MFC APIs. However, many new 
applications are being developed using Microsoft’s .NET platform and 
associated common language runtime (CLR). This chapter examines 
writing multi-threaded applications using both programming 
techniques.  

Win32/MFC Thread APIs 

The Win32/MFC API provides developers with a C/C++ interface for 
developing Windows applications. While there are a large number of 

P 
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developers moving to a managed code development environment, 
understanding the Win32/MFC model is important for several reasons: 

 Performance. Applications that run in a managed runtime 
environment run on a software virtual machine. Managed code is 
compiled to virtual machine op-codes. These op-codes are then 
translated, at runtime, to native processor instructions. A number of 
optimizations minimize this overhead. However, native applications 
run directly on the processor; the overhead of translating virtual 
machine op-codes is eliminated. In some applications, the overhead 
of the virtual machine may not be acceptable.  

 Legacy Application Support. There are a number of existing 
applications where it is not reasonable to port to a managed 
runtime environment. In order to maximize the performance of 
these applications for multi-core processors, the existing code 
must be multi-threaded. 

Creating Threads 
All processes start with a single thread of execution: the main thread. In 
order to write multi-threaded code, one must have the ability to create 
new threads. The most basic thread creation mechanism provided by 
Microsoft is CreateThread(): 
HANDLE CreateThread( 

LPSECURITY_ATTRIBUTES lpThreadAttributes, 
SIZE_T dwStackSize, 
LPTHREAD_START_ROUTINE lpStartAddress, 
LPVOID lpParameter, 
DWORD dwCreationFlags, 
LPDWORD lpThreadId ); 

The first parameter, lpThreadAttributes, is a data structure that 
specifies several different security parameters. It also defines whether or 
not processes created from the current process (child processes) inherit 
this handle. In other words, this parameter gives advanced control over 
how the thread handle may be used in the system. If the programmer 
does not need control over these attributes, the programmer may specify 
NULL for this field.  

The second parameter, dwStackSize, specifies the stack size of the 
thread. The size is specified in bytes, and the value is rounded up to the 
nearest page size. 
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The third parameter, lpStartAddress, specifies a function pointer 
to the actual code that the thread runs. The function pointer that has the 
following signature:  

DWORD WINAPI ThreadFunc(LPVOID data) 

From the thread function’s signature, one can see that a thread will 
return a status value on exit and will take a void pointer to some data 
value or structure. This provides the basic communication mechanism 
between the thread and the outside world.  

The fourth parameter in CreateThread(), lpParameter, is the 
data value to pass into the thread function. In other words, considering 
the aforementioned ThreadFunc(), the value specified in this 
argument to CreateThread() will be passed in as the data value in 
ThreadFunc().  

The fifth parameter, dwCreationFlags, specifies various 
configuration options. For example, using this flag, the programmer may 
specify that the thread be created in the suspended state, thus giving the 
programmer control of when the thread is started.  

The final parameter, lpThreadId, points to where the function 
should store a value that uniquely identifies a thread in the system. This 
identifier is global and is useful in debugging.  

On success, CreateThread() returns a HANDLE to the new thread. 
An observant reader may at this point ask what the difference is between 
the HANDLE returned by CreateThread() and the Thread ID. There are 
actually a number of differences; for our purposes it’s only important to 
note that there are two different return values for CreateThread() and 
that different Thread API calls will expect one value or the other. The 
HANDLE value is the most frequently used of the two.  

Once a thread is created, the programmer will at some point want to 
terminate the thread. This is accomplished by calling the ExitThread() 
function: 

VOID ExitThread(DWORD dwExitCode); 

ExitThread() is called at the end of ThreadFunc() to indicate that 
the thread should terminate. Note that an explicit call to ExitThread() 
is not mandatory; simply returning the exit code will result in this 
function being called implicitly: 
DWORD WINAPI ThreadFunc( LPVOID data ) 
{ 
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    // do something 
    ... 
    // ready to exit thread 
    return 0; // will implicitly call ExitThread(0); 
} 

Note that in C++, calling ExitThread() will exit the thread before 
any constructors/automatic variables are cleaned up. Thus, Microsoft 
recommends that the program simply return from the ThreadFunc() 
rather than call ExitThread() explicitly.  

The CreateThread() and ExitThread() functions provide a 
flexible, easy to use mechanism for creating threads in Windows 
applications. There’s just one problem. CreateThread() does not 
perform per-thread initialization of C runtime datablocks and variables. 
Hence, you cannot use CreateThread() and ExitThread(), in any 
application that uses the C runtime library. Instead, Microsoft provides 
two other methods, _beginthreadex() and _endthreadex() that 
perform the necessary initialization prior to calling CreateThread(). 
CreateThread() and ExitThread() are adequate for writing 
applications that just use the Win32 API; however, for most cases, it is 
recommended that developers use _beginthreadex() and 
_endthreadex() to create threads. 

The definition of _beginthreadex() is similar to that of 
CreateThread(); the only difference being one of semantics. 
unsigned long _beginthreadex(  // unsigned long  
                               //  instead of HANDLE, 
                               //  but technically the 
                               //  same 
void *security,                // same as CreateThread() 
unsigned stack_size,           // same as CreateThread() 
unsigned (__stdcall func) (void),  // ptr to func 
                                   // returning unsigned  
                                   // instead of void 
void *arglist,                 // same as CreateThread() 
unsigned initflag,             // same as CreateThread() 
unsigned* threadID);           // same as CreateThread() 

Similarly, the definition of _endthreadex() follows that of 
ExitThread(): 
void _endthreadex( unsigned retval );  
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For applications written in C++ using MFC, Microsoft provides yet 
another function to create a thread—AfxBeginThread():1 
CWinThread* AfxBeginThread( 
    AFX_THREADPROC pfnThreadProc, 
    LPVOID pParam, 
    int nPriority = THREAD_PRIORITY_NORMAL, 
    UINT nStackSize = 0, 
    DWORD dwCreateFlags = 0, 
    LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL ); 

AfxBeginThread() differs from CreateThread() in several ways: 
 AfxBeginThread() returns a pointer to a CWinThread object 

rather than a HANDLE to a thread. 
 AfxBeginThread() re-orders the parameters and replaces the 
threadId parameter with nPriority, which allows the 
programmer to specify the thread’s priority. 

 AfxBeginThread() expects the following definition for 
ThreadFunc(): 
UINT ThreadFunc (LPVOID pParam); 

 AfxBeginThread() calls _beginthreadex(); thus it is safe to 
use with the C runtime library. 

For all intent and purpose, AfxBeginThread is conceptually identical to 
CreateThread. MFC provides a complimentary function to ExitThread 
as well: 
void AFXAPI AfxEndThread( UINT nExitCode,  

                    BOOL bDelete = TRUE ); 

The bDelete parameter specifies whether or not the framework 
should automatically delete the associated thread object upon 
termination. It should be set to FALSE if a program wishes to check the 
exit code of the thread; however, it then becomes the program’s 
responsibility to destroy the CWinThread object. 

Managing Threads 
Now that you know how to create a thread, let’s examine the process of 
controlling or manipulating the execution of threads. It was previously 
demonstrated that Windows allows developers to create threads in one 
of two initial states: suspended or running. For the remainder of the 

                                                   
1 There are two types of threads that can be created using AfxBeginThread(): worker threads and 

user-interface threads. This text only considers worker threads.  
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chapter, we’ll use Win32 definitions to illustrate the concepts of 
programming in Windows. Most MFC calls will be identical to Win32; the 
only difference is that the MFC calls will be methods called on MFC-based 
classes, such as CWinThread, rather than C function calls.  

The following functions allow the programmer to control the 
execution of a thread: 

DWORD SuspendThread( HANDLE hThread ); 
DWORD ResumeThread( HANDLE hThread ); 
BOOL TerminateThread( HANDLE hThread, DWORD dwExitCode ); 

SuspendThread() allows the developer to suspend execution of the 
thread specified by the HANDLE parameter. The kernel keeps track of 
the current suspend count for a given thread in the thread’s data 
structure. A suspend count of 0 indicates that the thread is ready to run. 
A suspend count greater than 0 indicates that the thread is suspended. 
SuspendThread(), when called, will increment this field and return the 
previous value of suspend count. ResumeThread() will decrement the 
suspend count for the thread specified by the HANDLE value. It will 
return the previous suspend count. This implies that if a thread is 
transitioning from the suspended state to the run state, its suspend count 
will be 1. Calling ResumeThread() on a currently running thread will 
return 0. This does not indicate an error condition, as calling 
ResumeThread() on a thread with a suspend count of 0 has no effect.  

The TerminateThread() function forces the thread specified by the 
HANDLE parameter to terminate. No user code executes; the thread is 
immediately terminated. If the function is successful, a non-zero value is 
returned. 

Developers must be very careful when calling SuspendThread(), 
as the thread may be in a state in which it is dangerous to suspend. 
For example, if the thread is holding a semaphore and is suspended, it 
will not release the semaphore prior to being suspended. As a result, 
other threads will not be able to access critical sections until the 
suspended thread is resumed and releases the resource. This may 
cause significant performance problems or even deadlock.  

TerminateThread() is even more dangerous. The thread that is 
being terminated will not be given a chance to do any clean-up; 
therefore, a number of particularly nasty side-effects may occur. For 
example, if a thread is holding on to a synchronization object such as a 
mutex, and is abruptly terminated by this call, the synchronization object 
will remain locked; hence, a deadlock will occur as the thread no longer 
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exists and will be unable to release this resource. It is strongly 
recommended that you avoid using this function.  

In order to safely suspend/terminate threads, we need a signaling 
mechanism that allows one thread, say the main thread, to notify the 
targeted thread that it must suspend/terminate itself. Fortunately, 
Windows provides developers with a way to do such an operation by 
using Windows events. 

Thread Communication using Windows Events 
As previously demonstrated, multiple threads within an application need 
a mechanism that can be used for inter-thread communication. Microsoft 
has provided Event objects that may be used for this purpose. The code 
sample provided in Listing 5.1 illustrates the use of Windows Events to 
communicate between threads.  

 

1 // This example illustrates the use of  
2 // Windows Events as a inter-thread communication  
3 // mechanism. 
4 #define NUM_THREADS  10 
5 #include <windows.h> 
6 #include <stdio.h> 
7 #include <process.h> 
8  
9 typedef struct 
10 { 
11    int Id; 
12    HANDLE hTerminate; 
13 } ThreadArgs; 
14  
15 unsigned __stdcall ThreadFunc( void *pArgs ) 
16 { 
17    HANDLE hTerminate = ((ThreadArgs *)pArgs)->hTerminate; 
18    int id = ((ThreadArgs *)pArgs)->Id; 
19   
20    // run until we are told to terminate 
21    while (1) 
22    { 
23       // Check to see if we should terminate 
24       if (WaitForSingleObject(hTerminate, 0) == 
25                               WAIT_OBJECT_0) 
26       { 
27          // Terminate Thread - we call ResetEvent to 
28          // return the terminate thread to its non- 
29          // signaled state, then exit the while() loop 
30          printf("Terminating Thread %d\n", id); 
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31          ResetEvent(hTerminate); 
32          break; 
33       } 
34       // we can do our work now... 
35       // simulate the case that it takes 1 s 
36       // to do the work the thread has to do 
37       Sleep(1000); 
38    } 
39    _endthreadex(0); 
40    return 0; 
41 }  
42  
43  
44 int main( int argc, char* argv[] ) 
45 { 
46    unsigned int threadID[NUM_THREADS]; 
47    HANDLE hThread[NUM_THREADS]; 
48    ThreadArgs threadArgs[NUM_THREADS]; 
49  
50    // Create 10 threads 
51    for (int i = 0; i < NUM_THREADS; i++) 
52    { 
53       threadArgs[i].Id = i; 
54       threadArgs[i].hTerminate = CreateEvent(NULL, TRUE, 
55                                             FALSE, NULL); 
56       hThread[i] = (HANDLE)_beginthreadex(NULL, 0, 
57           &ThreadFunc, &threadArgs[i], 0, &threadID[i]); 
58    } 
59  
60    printf("To kill a thread (gracefully), press 0-9, " \ 
61           "then <Enter>.\n"); 
62    printf("Press any other key to exit.\n"); 
63   
64    while (1) 
65    {          
66       int c = getc(stdin); 
67       if (c == '\n') continue; 
68       if (c < '0' || c > '9') break; 
69       SetEvent(threadArgs[c – '0'].hTerminate); 
70    } 
71  
72    return 0; 
73 } 

Listing 5.1 A Thread Application that uses Windows Events 

The application in Listing 5.1 is very simple. When loaded, the 
application creates multiple threads to process different tasks. It uses 
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_beginthreadex() as discussed in the previous section. The application 
notifies the user that the application is started and gives the user an 
interface in which a thread may be terminated. If the user enters a thread 
ID, the application, using Windows Events, terminates the thread 
gracefully. Otherwise, the different threads in the system continue to run 
until the user indicates that the program should be terminated.  

In order to use events, a programmer must first create an event. We 
do this in line 54 using the CreateEvent() method: 
HANDLE CreateEvent( 
                 LPSECURITY_ATTRIBUTES lpEventAttributes,   
                 BOOL bManualReset,  
                 BOOL bInitialState,  
                 LPCTSTR lpName ); 

The first parameter, lpEventAttributes, should look familiar. It’s 
the same security attributes data structure defined in the 
CreateThread() function call. The default attributes are valid for this 
case, so we simply pass in NULL. The second parameter, 
bManualReset, allows the programmer to specify whether or not the 
event being created should be explicitly reset by the programmer using 
the ResetEvent function call. This parameter gives the programmer 
the option to determine whether or not more than one thread will 
respond to a given event. If bManualReset is FALSE, then Windows 
will create an auto-reset event and return the event to the non-signaled 
state after a single thread has been run. If bManualReset is TRUE, 
Windows will create a manual reset event and it is up to the program to 
return the event object to the non-signaled state. In the example given 
in Listing 5.1, it was a moot point, as each thread had its own event that 
it was monitoring. Therefore, the event could have just as easily been 
set to FALSE. The third parameter, bInitialState, determines the 
initial state of the Event. The programmer may specify that the event is 
in either the signaled or non-signaled state. In the example application, 
the event was initialized to the non-signaled state, indicating that the 
user is not yet ready to terminate the thread. Finally, the programmer 
may specify a name for the event in the fourth parameter, lpName. 
Providing a name creates a system-wide event. Upon successful 
completion, a handle to the event is returned. This handle is used in the 
other API calls to operate on the event.  

Once the event is created, it is ready to use. The event handle is stored 
locally from the main thread, and is also passed to each individual thread. 
This defines an interface between the threads that contain a reference to 
this object. In this example, the main thread and individual worker threads 
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now have a communication channel. How do the threads communicate? 
They communicate by using the messages described in Chapter 4. In  
this case, our messages are Windows Events. By using SetEvent(), 
ResetEvent(), and the Wait routines, WaitForSingleObject() and 
WaitForMultipleObjects(), we can send messages between threads. 

The Wait routines wait on a specific handle—or multiple handles in the 
case of WaitForMultipleObjects()—for a specified timeout period. Since 
a handle in Windows is a generic concept used to reference objects of 
multiple types, the Wait routines provided by Microsoft wait on multiple 
object types.2 In this aforementioned example, the handle used references 
that an event object created specifically to terminate the thread. The timeout 
period is 0, which indicates that the programmer is only interested in 
checking to see if the event has been signaled, or a numeric value that 
specifies a timeout. If the programmer specifies a timeout of 0, and the event 
hasn’t been signaled, WaitForSingleObject() will return immediately and 
indicate to the programmer that the event has not yet occurred. In other 
situations, it may make sense to specify a non-zero timeout value. In that case, 
WaitForSingleObject() will wait for the period of time specified by the 
timeout value for the event to occur. Microsoft defines a special constant, 
INFINITE, to indicate that the thread of control wants to wait indefinitely for 
the event to occur. In this way, the programmer can notify the OS that the 
thread has no other work to do until this particular event occurs, and hence 
can be moved off the run queue to the wait queue. The OS can then switch to 
a thread that is in the ready-to-run state. 

The function prototype for the WaitForSingleObject() function 
has the following syntax: 
DWORD WaitForSingleObject( HANDLE hHandle,  
                           DWORD dwMilliseconds ); 

WaitForSingleObject() will return one of four values: 

 WAIT_OBJECT_0. This value is returned when the object that is 
being waited on enters the signaled3 state. 

 WAIT_TIMEOUT. This value is returned when the specified 
timeout value occurs prior to the object entering the signaled 
state.  

                                                   
2 WaitForXXX() may wait on events, jobs, mutexes, processes, semaphores, threads, and timers, 

among other objects. 
3 The meaning of a signaled state varies based on the type of object being waited on. In the example 

in Figure 5.1, we wait on an Event object, hence, WAIT_OBJECT_0 is returned once SetEvent() 
sets the event’s state to signaled. 
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 WAIT_ABANDONED. In the case that the handle refers to a 
Mutex object, this return code indicates that the thread that 
owned the mutex did not release the mutex prior to 
termination. 

 WAIT_FAILED. This value indicates that an error occurred. 
GetLastError() should be used to get extended error 
information regarding the cause of failure.  

The function WaitForMultipleObjects() has the following 
prototype: 
DWORD WaitForMultipleObjects( DWORD nCount, 

                        const HANDLE* lpHandles, 
                        BOOL bWaitAll, 
                        DWORD dwMilliseconds ); 

Note that the WaitForMultipleObjects() call takes in a different 
parameter set than WaitForSingleObject(). The parameter nCount 
specifies the number of handles to wait on. This value cannot exceed  
the maximum number of object handles specified by the 
MAXIMUM_WAIT_OBJECTS constant. The parameter lpHandles 
specifies an array of object handles to wait on. Parameter bWaitAll 
indicates whether or not the programmer wants to wait on all handles to 
be signaled before returning, or wait on any one or more of the handles 
to be signaled before returning. In the case of the former, the developer 
should set bWaitAll to TRUE; for the latter case, the developer should 
set bWaitAll to FALSE. The timeout value is the same for both 
WaitForSingleObject() and WaitForMultipleObjects().  

The return value for WaitForMultipleObjects() is identical in the 
case of WAIT_TIMEOUT or WAIT_FAILED. In the case that an event is 
signaled, or a handle is abandoned, the return value is slightly different. 
In that case, WaitForMultipleObjects() returns WAIT_OBJECT_I or 
WAIT_ABANDONED_I, where I is the index position in the array of 
object handles where the signaled event was found.4 For example, 
assuming that the programmer wanted to be notified when any object 
was signaled, the code excerpt illustrated in Listing 5.2 can be used to 
determine which object handle has been signaled. 

 

                                                   
4 If bWaitAll is set to FALSE, and if the number of objects in the signaled state happens to be greater 

than 1,  the array index of the first signaled or abandoned value in the array—starting at array index 
0—is returned.  
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1 DWORD event, arrayIndex = 0; 
2  
3 // Assume eventArray and count are initialized elsewhere 
4 // Wait for any of the events in eventArray to occur 
5  
6 event = WaitForMultipleObjects( 
7                                count, 
8                                eventArray, 
9                                FALSE, 
10                                INFINITE ); 
11 switch (event) 
12 { 
13     case WAIT_OBJECT_0 + 0: 
14     // eventArray[0] signaled 
15     case WAIT_OBJECT_0 + 1: 
16     // eventArray[1] signaled 
17     ...                                

Listing 5.2 Computing the Index of the Event that Has Been Signaled while Waiting 
on Multiple Objects 

Now that the thread has a mechanism for waiting for a particular 
event to occur, we need a mechanism to signal the thread when it is time 
to terminate. Microsoft provides the SetEvent() call for this purpose. 
SetEvent() sets an event object to the signaled state. This allows a 
thread to notify another thread that the event has occurred. SetEvent() 
has the following signature: 
BOOL SetEvent( HANDLE hEvent ); 

SetEvent() takes a single parameter which is the HANDLE value of 
the specific event object, and returns TRUE if the event was signaled 
successfully. The handle to the event object must be modifiable; in  
other words, the access rights for the handle must have the 
EVENT_MODIFY_STATE field set. 

In the case of a manual reset event, the programmer must return the 
event object the non-signaled state. To do this, a programmer uses the 
ResetEvent() function. The ResetEvent() function has the following 
prototype: 
BOOL ResetEvent( HANDLE hEvent ); 

ResetEvent() accepts as a parameter the handle to reset and 
returns TRUE upon success. Like SetEvent(), the handle to the event 
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object must have the appropriate access rights set, otherwise the call to 
ResetEvent() will fail.5 

It is important to contrast the example program in Listing 5.1 to the 
case where the TerminateThread() function is used to terminate a 
thread. TerminateThread() fails to give the thread any chance of 
graceful exit; the thread is terminated immediately and without any 
chance to properly free any resources it may have acquired. It 
recommended that you use a notification mechanism such as the one 
defined above to give the thread a chance to do proper cleanup. 

Thread Synchronization 
Generally speaking, creating a thread is a relatively simple task, and one 
that does not consume the bulk of the development time when writing a 
multi-threaded application. The challenge in writing a multi-threaded 
application lies in making sure that in a chaotic, unpredictable, real-world 
runtime environment threads act in an orderly, well-known manner, 
avoiding such nasty conditions as deadlock and data corruption caused 
by race conditions. The example in Figure 5.1 showed one Windows 
mechanism for coordinating the actions of multiple threads—events. This 
section will look at the different object types Microsoft provides for 
sharing data among threads.  

Microsoft defines several different types of synchronization objects as 
part of the Win32 API. These include events, semaphores, mutexes, and 
critical sections. In addition, the Wait methods allow the developer to 
wait on thread and process handles, which may be used to wait for 
thread and process termination. Finally, atomic access to variables and 
linked lists can be achieved through the use of interlocked functions.  

Before we discuss the different data structures provided by Windows, 
let’s review a few of the basic concepts that are used to synchronize 
concurrent access requests to shared resources. The critical section is 
the block of code that can only be accessed by a certain number of 
threads at a single time. In most cases, only one thread may be executing 
in a critical section at one time. A semaphore is a data structure that 
limits access of a particular critical section to a certain number of 
threads. A mutex is a special case of a semaphore that grants exclusive 
access of the critical section to only one thread. With these basic 

                                                   
5 Microsoft defines an additional function for signaling events: PulseEvent(). PulseEvent() 

combines the functionality of SetEvent() with ResetEvent(). It is not covered in this text, other 
than in this footnote, as Microsoft’s documentation indicates that the function is unreliable and 
should not be used. 
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definitions in hand, we are now in a position to examine how Microsoft 
implements these constructs. Generally speaking, the implementation of 
these concepts is straightforward in Windows. 

A semaphore object is created using the Windows 
CreateSemaphore() call: 

HANDLE CreateSemaphore( 
            LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, 
            LONG lInitialCount, 
            LONG lMaximumCount, 
            LPCTSTR lpName ); 

Like the previous thread functions, CreateSemaphore() allows the 
programmer to set certain security attributes that determine whether or 
not the handle will be inherited by child processes. The maximum 
number of threads that may be accessing the critical section protected by 
the semaphore is specified by the lMaximumCount parameter. A name, as 
pointed to by the lpName parameter, can be given to the semaphore. 
This name can then be used by the OpenSemaphore() function to get a 
handle to an already created semaphore: 

HANDLE OpenSemaphore( DWORD dwDesiredAccess, 
                      BOOL bInheritHandle, 
                      LPCTSTR lpName ); 

It should be noted that by specifying a name in the lpName 
parameter, the program will create a system-wide semaphore that is 
available and visible to all processes. Specifying NULL for this parameter 
creates a local semaphore. Unless inter-process communication is 
needed, it is recommended that programs use local semaphores. 

Once a semaphore is created, the developer can wait on the semaphore 
using WaitForSingleObject(). WaitForSingleObject() will wait on 
the semaphore handle until the thread is able to acquire the semaphore, the 
specified timeout has expired, or an error occurred with the call to 
WaitForSingleObject(). In the case that the thread is allowed to enter 
the critical section, the semaphore count is decreased by 1 until it reaches 0. 
At that point, the semaphore enters the non-signaled state and no other 
threads are allowed into the critical section until one of the threads exits the 
critical section by calling ReleaseSemaphore(): 
BOOL ReleaseSemaphore( HANDLE hSemaphore, 
                       LONG lReleaseCount, 
                       LPLONG lpPreviousCount ); 
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ReleaseSemaphore() will increment the semaphore’s object count 
by the increment value specified in lReleaseCount.6 An example of 
using semaphore objects to protect a critical section of code is shown in 
Listing 5.3: 

 
 
1 HANDLE hSemaphore; 
2 DWORD status; 
3  
4 // Create a binary semaphore that is unlocked 
5 // We don’t care about the name in this case 
6 hSemaphore = CreateSemaphore(NULL, 1, 1, NULL); 
7  
8 // verify semaphore is valid 
9 if (NULL == hSemaphore) 
10 { 
11     // Handle error 
12     ;  
13 } 
14  
15 ... 
16  
17 // We are now testing our critical section 
18 status = WaitForSingleObject(hSemaphore, 0); 
19  
20 if (status != WAIT_OBJECT_0) 
21 { 
22   // cannot enter critical section – handle appropriately 
23 } 
24 else 
25 { 
26   // enter critical section 
27   // time to exit critical section 
28   status = ReleaseSemaphore(hSemaphore, 1, NULL); 
29   if (!status) 
30   { 
31     // release failed, recover from error here 
32   } 
33 } 

Listing 5.3 Using a Semaphore Object to Protect a Critical Section of Code 

                                                   
6 If the increment value were to cause the semaphore’s count to exceed the maximum count, the 

count will remain unchanged, and the function will return FALSE, indicating an error condition. 
Always check return values for error conditions! 
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A mutex in Windows works in much the same way as the semaphore 
object does. The programmer makes a call to CreateMutex(), which 
returns a handle which may be used by WaitForSingleObject() to 
determine whether or not a thread may access a critical section. When  
a thread is about to leave a critical section, it makes a call to 
ReleaseMutex(), which indicates that the thread is exiting the critical 
section. A mutex may be named, and may be opened by calling 
OpenMutex(). As in the case of semaphores, associating a name to a 
mutex will create a system wide mutex. Listing 5.4 shows how to use a 
mutex object: 

 
 
1 HANDLE hMutex; 
2 DWORD status; 
3  
4 // Create a mutex 
5 // Note that there aren’t count parameters 
6 // A mutex only allows a single thread to be executing 
7 // in the critical section 
8 // The second parameter indicates whether or not 
9 // the thread that creates the mutex will automatically 
10 // acquire the mutex. In our case it won’t 
11 // We don’t care about the name in this case 
12 hMutex = CreateMutex(NULL, FALSE, NULL); 
13 if (NULL == hMutex) // verify mutex is valid 
14 { 
15    // handle error here 
16 } 
17  
18 ... 
19  
20 // We are now testing our critical section 
21 status = WaitForSingleObject(hMutex, 0); 
22  
23 if (status != WAIT_OBJECT_0) 
24 { 
25   // cannot enter critical section – handle appropriately 
26 } 
27 else 
28 { 
29   // enter critical section 
30   // do some work 
31  
32   ... 
33  
34   // time to exit critical section 
35   status = ReleaseMutex(hMutex); 
36   if (!status) 
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37   { 
38     // release failed, recover from error here 
39   } 
40 } 

Listing 5.4 Using a Mutex Object to Protect a Critical Section of Code 

There’s one important point to note with regards to both the mutex 
and semaphore objects. These objects are kernel objects, and can be 
used to synchronize access between process boundaries. This ability 
comes at a price; in order to acquire a semaphore, a call to the kernel 
must be made. As a result, acquiring a semaphore or mutex incurs 
overhead, which may hurt the performance of certain applications. In 
the case that the programmer wants to synchronize access to a group  
of threads in a single process, the programmer may use the 
CRITICAL_SECTION data structure. This object will run in user space, 
and does not incur the performance penalty of transferring control to the 
kernel to acquire a lock. 

The semantics of using CRITICAL_SECTION objects are different 
from those of mutex and semaphore objects. The CRITICAL_SECTION 
API defines a number of functions that operation on CRITICAL_SECTION 
objects: 

void InitializeCriticalSection( LPCRITICAL_SECTION lpCS ); 
void InitializeCriticalSectionAndSpinCount( 
                                   LPCRITICAL_SECTION lpCS,  
                                   DWORD dwSpinCount ); 
void EnterCriticalSection( LPCRITICAL_SECTION lpCS ); 
BOOL TryEnterCriticalSection( LPCRITICAL_SECTION lpCS ); 
void LeaveCriticalSection( LPCRITICAL_SECTION lpCS ); 
DWORD SetCriticalSectionSpinCount( LPCRITICAL_SECTION lpCS, 
                                   DWORD dwSpinCount ); 
void DeleteCriticalSection( LPCRITICAL_SECTION lpCS ); 

EnterCriticalSection() blocks on a critical section object when 
it is not available. The non-blocking form of this operation is 
TryEnterCriticalSection(). 

Atomic Operations 

Acquiring mutexes and other locking primitives can be very 
expensive. Many modern computer architectures support special 
instructions that allow programmers to quickly perform common 
atomic operations without the overhead of acquiring a lock. Microsoft 
supports the operations through the use of the Interlocked API.  
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The Interlocked functions perform atomic operations 32-bit and  
64-bit variables. These functions enable the following operations: 

 InterlockedIncrement() atomically increments a 32-bit 
variable. The 64-bit version is InterlockedIncrement64().  

 InterlockedDecrement() atomically decrements a 32-bit 
variable. The 64-bit version is InterlockedDecrement64(). 

 InterlockedExchange() atomically assigns one 32-bit value  
to another target variable. The 64-bit version is 
InterlockedExchange64(). To exchange pointers, use the 
InterlockedExchangePointer() function. 

 InterlockedExchangeAdd() provides an atomic version of the 
C += operator. The function atomically adds a value to a target 
32-bit variable and then assigns the resulting sum to the target 
variable. The 64-bit version is InterlockedExchangeAdd64().  

 InterlockedCompareExchange() atomically compares the 
destination value with a comparison value and updates the 
destination if the comparison is true. The function takes  
three parameters: a pointer to the Destination variable, an 
Exchange value, which is a 32-bit value to assign to Destination if 
the comparison is true, and Comperand, which is the value that 
Destination will be compared with. If Destination is equal to 
Comperand, then Destination is assigned to the value of 
Exchange. If the comparison fails, then the function doesn’t  
do anything. The 64-bit version of this function is 
InterlockedCompareExchange64(). To exchange pointers, 
use InterlockedCompareExchangePointer(). 

In addition to providing atomic access to variables, the Interlocked 
functions enable atomic access to singly linked lists. Four operations are 
defined as part of this class of operations: 

 InitializeSListHead() initializes the linked list. 

 InterlockedPushEntrySList() atomically adds a node to the 
front of the list. 

 InterlockedPopEntrySList() atomically removes a node from 
the front of the list. 

 InterlockedFlushSList() atomically removes all nodes in 
the list. 



Chapter 5: Threading APIs 93 

Thread Pools 
In certain applications, the developer may need to dynamically allocate a 
number of threads to perform some task. The number of threads may 
vary greatly, depending on variables that are completely out of the 
developer‘s control. For example, in a Web server application, there may 
be times where the server is sitting idle, with no work to be done. 
During other times, the server may be handling thousands of requests at 
any given time. One approach to handling this scenario in software 
would be dynamic thread creation. As the system starts receiving  
more and more work, the programmer would create new threads to 
handle incoming requests. When the system slows down, the 
programmer may decide to destroy a number of the threads created 
during peak load as there isn’t any work to be done and the threads are 
occupying valuable system resources.   

A couple of problems are associated with dynamic thread creation. 
First, thread creation can be an expensive operation. During peak traffic, 
a Web server will spend more time creating threads than it will spend 
actually responding to user requests. To overcome that limitation, the 
developer may decide to create a group of threads when the application 
starts. These threads would be ready to handle requests as they come in. 
This certainly helps solve the overhead problem, but other problems still 
remain. What is the optimal number of threads that should be created? 
How can these threads be scheduled optimally based on current system 
load? At the application level, most developers don’t have visibility into 
these parameters, and as a result, it makes sense for the operating system 
to provide some support for the notion of a thread pool.  

Beginning with Windows 2000, Microsoft started providing a thread 
pool API that greatly reduces the amount of code that the developer 
needs to write to implement a thread pool. The principal function for 
using the thread pool is QueueUserWorkItem(): 
BOOL QueueUserWorkItem ( LPTHREAD_START_ROUTINE Function, 
                         PVOID Context, 
                         ULONG Flags ); 

The first two parameters are of the kind you’ve seen before in creating 
Windows threads. The routine Function() is a pointer to a function that 
represents the work the thread in the pool must perform. This function 
must have the form: 
DWORD WINAPI Function( LPVOID parameter ); 
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The return value is the thread’s exit code, which can be obtained by 
calling GetExitCodeThread(). The parameter argument contains a 
pointer to void. This construct is a generic way of allowing a program to 
pass a single parameter or a structure containing multiple parameters. 
Simply cast this parameter within the Function routine to point to the 
desired data type. The Flags parameter will be examined shortly. 

When QueueUserWorkItem() is called for the first time, Windows 
creates a thread pool. One of these threads will be assigned to Function. 
When it completes, the thread is returned to the pool, where it awaits a 
new assignment. Because Windows relies on this process, Function() 
must not make any calls that terminate the thread. If no threads are 
available when QueueUserWorkItem() is called, Windows has the 
option of expanding the number of threads in the pool by creating 
additional threads. The size of the thread pool is dynamic and under the 
control of Windows, whose internal algorithms determine the best way 
to handle the current thread workload. 

If you know the work you’re assigning will take a long time to 
complete, you can pass WT_EXECUTELONGFUNCTION as the third 
parameter in the call to QueueUserWorkItem(). This option helps the 
thread pool management functions determine how to allocate threads. If 
all threads are busy when a call is made with this flag set, a new thread is 
automatically created.  

Threads in Windows thread pools come in two types: those that 
handle asynchronous I/O and those that don’t. The former rely on I/O 
completion ports, a Windows kernel entity that enables threads to be 
associated with I/O on specific system resources. How to handle I/O 
with completion ports is a complex process that is primarily the 
province of server applications. A thorough discussion of I/O completion 
ports may be found in Programming Applications for Microsoft 
Windows (Richter 1999).  

When calling QueueUserWorkItem(), you should identify which 
threads are performing I/O and which ones are not by setting the 
WT_EXECUTIONDEFAULT field into the QueueUserWorkItem() Flags 
parameter. This tells the thread pool that the thread does not perform 
asynchronous I/O and it should be managed accordingly. Threads that do 
perform asynchronous I/O should use the WT_EXECUTEINIOTHREAD flag. 

When using many threads and functional decomposition, consider 
using the thread pool API to save some programming effort and to allow 
Windows the best possible opportunities to achieve maximum 
performance 
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Thread Priority 
All operating systems that support threads use a priority scheme to 
determine how threads should be allocated time to run on a particular 
core processor. This enables important work to proceed while lesser 
tasks wait for processing resources to become available. Every operating 
system has a different way of handling priorities. Much of the time, 
priorities are of no great concern; however, every once in a while 
priorities can be important to know how a particular thread will run in 
the context of competing threads. 

Windows uses a scheme in which threads have priorities that range 
from 0 (lowest priority) to 31 (highest priority). The Windows scheduler 
always schedules the highest priority threads first. This means that 
higher-priority threads could hog the system causing lower-priority 
threads to starve—if it wasn’t for priority boosts. Windows can 
dynamically boost a thread’s priority to avoid thread starvation. Windows 
automatically does this when a thread is brought to the foreground, a 
window receives a message such as a mouse input, or a blocking 
condition (event) is released. Priority boosts can somewhat be controlled 
by the user via the following four functions: 
SetProcessPriorityBoost( HANDLE hProc, BOOL disable ) 
SetThreadPriorityBoost( HANDLE hThread, BOOL disable ) 
GetProcessPriorityBoost( HANDLE hProc, PBOOL disable ) 
GetThreadPriorityBoost( HANDLE hThread, PBOOL disable ) 

All threads are created, by default, with their priority set to normal. 
After creation, a thread’s priority is changed using this function: 
BOOL SetThreadPriority( HANDLE threadHandle, 
                        int newPriority ); 

The possible values for newPriority are specified in Table 5.1,  
which lists the priorities in descending order. The values are self-
explanatory. 

Table 5.1 Symbolic Constants for Representing the Priorities Supported by 
Windows 

Symbolic Constant for Thread Priority 

THREAD_PRIORITY_TIME_CRITICAL 

THREAD_PRIORITY_HIGHEST 

THREAD_PRIORITY_ABOVE_NORMAL 

THREAD_PRIORITY_NORMAL 
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THREAD_PRIORITY_BELOW_NORMAL 

THREAD_PRIORITY_LOWEST 

THREAD_PRIORITY_IDLE 
 

The function that returns a thread’s priority level is:  
int GetThreadPriority( HANDLE threadHandle ); 

This function returns a value that translates into one of the symbolic 
constants in Table 5.1. Note that Windows does not identify a thread’s 
priority level on the 0 to 31 scale nor does it allow a thread’s priority to 
be set with such specificity. This design enables Microsoft to define new 
priority levels at a future date.  

You will rarely need to boost a thread’s priority significantly. 
However, one unique situation does warrant special consideration. In 
cases where precise timing is critical, the thread performing the timing 
might need to boost its priority to the highest level. This measure is used 
to prevent the thread from being swapped out while it is reading from 
the system timer. Immediately upon getting the timing information, the 
thread’s priority should be reset back to normal or to its original priority. 
It’s important to realize that while a thread is running at highest priority, 
other threads are waiting, so it’s generally advisable not to abuse this 
priority level by using it excessively. 

Priority levels affect the way a thread is scheduled. On processors 
with Hyper-Threading Technology (HT Technology), the two logical 
processors do not interact on the basis of thread priority. Both threads 
have an equal chance of using a free resource, and their instructions are 
interleaved in the most efficient way possible, without any consideration 
paid to thread priority. On multi-core processors, it’s important to 
understand that one cannot rely on priority to provide mutually-exclusive 
access to a critical section. On a single-core processor, a careless 
developer might make the assumption that since one thread is always a 
higher priority than another that it will always execute to completion 
before the lower-priority thread gets a chance to execute. This is not the 
case on a multi-core processor; both the high and low priority threads 
may run simultaneously.  

Processor Affinity 
When threads are scheduled for execution, Windows chooses which 
processor should run it. The policy it uses in selecting the processor is 
called soft affinity. This policy suggests to the Windows scheduler that 
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threads should, as much as possible, run on the processor on which they 
ran previously. The idea is that this policy makes best use of data that 
might remain in processor cache.  

Affinity, or the preference for a thread to run on a given processor, can 
be set by the developer. This is a desirable thing to do in some situations. 
For example, say a program uses four threads of which two perform 
considerable I/O and two perform intensive number crunching. If these 
threads are running on a dual-core system with HT Technology, four logical 
processors are available to the program. If both I/O threads run on the same 
physical processor core and the number-crunching threads run on the other 
processor core, then the processing load will be poorly balanced. The I/O 
processor core will spend considerable time waiting as both threads are 
reading or writing data. Meanwhile, the processor core running the number-
crunching threads will be working continuously trying to perform the 
calculations. 

By use of thread affinity, a developer can place one I/O thread and 
one calculation thread on the same physical processor core, and likewise 
on the second processor core. Now, when the I/O thread is waiting for 
data to be read or written, its resources can be temporarily made 
available to the calculation thread. By this means, the processor makes 
best use of the delays, and the two threads help each other while 
keeping both processors completely busy. 

To achieve this kind of load balancing between threads and processor 
cores, you need to tell Windows on which processor to run the thread. 
Windows must follow this instruction. As a result, unless you know for 
sure that your preference will improve performance, as in the example, it 
is best not to specify affinity because doing so will interfere with the 
scheduler’s own optimized scheduling algorithms. Thorough testing is 
the best way to know with certainty the benefits of this optimization. If 
you find a compelling reason to set a thread’s processor affinity, you do it 
with the following function: 
DWORD_PTR SetThreadAffinityMask ( 
            HANDLE threadHandle, 
            DWORD_PTR threadAffinityMask );  

The threadAffinityMask parameter is actually an unsigned integer. It 
has one bit turned on for every logical processor on which the thread 
can be scheduled. The first processor core, core 0, is indicated by an 
affinity mask of 0x01. The second processor core, core 1, is indicated by 
an affinity mask of 0x02. A thread that can run on either one of these 
processors will have an affinity mask of 0x03, and so forth.  
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The affinity mask must be a subset of the program’s own affinity 
mask. Each program, or process, can specify its processor affinity. If the 
thread attempts to set its affinity to a processor core not within the 
process’s affinity, an error ensues. 

To obtain a process’s affinity mask, you call: 
BOOL GetProcessAffinityMask ( 
      HANDLE processHandle, 
      PDWORD_PTR processAffinityMask, 
      PDWORD_PTR systemAffinityMask ); 

To call this function, you provide the process handle, and Windows will 
fill in the process affinity mask and the system’s affinity mask. The latter 
indicates which of the system’s processors are capable of handling 
threads. 

If need be, the process’s affinity mask can be set from inside the 
program by calling: 
BOOL SetProcessorAffinityMask ( 
      HANDLE processHandle, 
      PDWORD_PTR processAffinityMask ); 

The parameters to this function are used and constructed in the same 
manner as those in SetThreadAffinityMask(), discussed previously. 

As discussed earlier, using affinity masks to force Windows to place a 
thread on a given processor core is not always a good move. In some 
cases, the interference that this practice causes with the scheduler’s 
method of running threads can create delays. As a result, affinity should 
be implemented judiciously. When testing shows that it realizes 
substantial benefits, it should be used. However, situations frequently 
arise where tests indicate a slight-to-moderate lift in using processor 
affinity. In these cases, you want to use affinity as long as it does not 
disrupt the Windows scheduler. The function to communicate affinity as 
a preference rather than a command is: 
DWORD SetThreadIdealProcessor ( 
      HANDLE threadHandle, 
      DWORD idealProcessor ); 

The second parameter is not an affinity mask, but an integer  
that indicates the processor core. The manifest constant 
MAXIMUM_PROCESSORS can be passed for this parameter. This value 
tells Windows that no particular processor core is preferred. This 
practice can be useful to disable affinity for a thread that previously had 
set affinity to a particular processor core. The function returns the 
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previous ideal processor or MAXIMUM_PROCESSORS, if there was no 
previous ideal processor core. 

Important questions arise here: how do you know how many 
processors a system has and which ones are configured and available? 
Again, the Windows API provides a solution to this problem. Listing 5.5 
shows the code that extracts processor information for the runtime 
system from the operating system. 

 

// program to obtain and display basic 
// information about the runtime processor 
// hardware on Windows systems 
 
#include <windows.h> 
#include <stdio.h> 
 
void main() 
{ 
   SYSTEM_INFO sysInfo; 
  
   // Function loads sysInfo structure with data  
   GetSystemInfo ( &sysInfo );  
   // Display the data  
   printf ( "System hardware information: \n" );   
   printf ( "  OEM ID: %u\n", sysInfo.dwOemId ); 
   printf ( "  Number of processors: %u\n",  
                sysInfo.dwNumberOfProcessors );  
   printf ( "  Processor type: %u\n",  
          sysInfo.dwProcessorType );  
   printf ( "  Active processor mask: %u\n",  
                sysInfo.dwActiveProcessorMask );                  
   printf ( "  Page size: %u bytes\n", sysInfo.dwPageSize );  
} 

Listing 5.5 How to Obtain Basic Processor Data from Windows 

On a system with HT Technology running Windows XP, the output 
from this code is: 
System hardware information: 
  OEM ID: 0 
  Number of processors: 2 
  Processor type: 586 
  Active processor mask: 3 
     Page size: 4096 bytes 
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Notice that the number of processors is the number of logical processors. 
In other words, it recognizes the capabilities of HT Technology as 
distinct processors.  

The active processor mask indicates which processors are 
configured, or available for use by Windows. Each bit is set to 1 for each 
configured processor, hence the decimal value 3 when the “processors” 
are configured.  

On a dual-core system with HT Technology, the output from running 
the code in Listing 5.5 is: 
System hardware information: 
  OEM ID: 0 
  Number of processors: 4 
  Processor type: 586 
  Active processor mask: 15 
     Page size: 4096 bytes 

User-level Threading with Fibers 
Until this point, only kernel threads have been discussed. These are 
threads that are regularly preempted by other threads the Windows 
scheduler wants to run. In addition, all these threads have been kernel 
objects. This means the data regarding their status is created and 
maintained in the kernel by kernel processes, such as the scheduler. 

Windows offers a user-level threading package called fibers. Fibers 
are completely contained in user space, and use cooperative, rather than 
preemptive scheduling. Fibers run until you decide to manually swap  
one out. 

Here is how fibers work. A single thread can be broken down into 
tasks that are swapped in and out by the application. The Windows 
kernel knows nothing about the fibers; the kernel simply runs threads. 
The work that the threads are doing is unknown to the kernel. When 
using fibers, the thread is running the work of whichever fiber the 
developer has specified in the logic of the code. In other words, the 
scheduling algorithm is implemented in the application. Therefore, it is 
up to the developer to manage the scheduling of fibers and when they 
should run in the context of the thread’s time slice. However, a limitation 
of fibers is that at no time can any single thread ever run more than one 
fiber at a time. As such, fibers are not a mechanism that enables greater 
parallelism, which means that they do not gain, at least directly, a 
performance benefit from HT Technology or multi-core platforms. The 
primary purpose of fibers is to provide the developer with a convenient 
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method of scheduling multiple tasks that are known to not need parallel 
execution.  

The first step in using Windows fibers is to convert the current 
thread into a fiber. Once this is done, additional fibers can be added. So, 
the following function is the first one to call: 
PVOID ConvertThreadToFiber( PVOID parameters ); 

This function returns the address of the fiber’s internal data area, which 
contains housekeeping items. This address should be saved. Later on, when 
you switch fibers, the address of this data area will be needed. The sole 
parameter to this function is a pointer to arguments for this fiber. It seems a bit 
strange for a thread to pass arguments to itself. However, this parameter can be 
retrieved from the fiber’s internal data area using the function: 
PVOID GetFiberData(); 

There is no point in converting a thread into a fiber unless you plan 
to run multiple fibers on the thread. So, once you’ve converted the 
thread into a fiber, you should next create the other fibers you plan to 
run. The function to do this is: 
PVOID CreateFiber ( DWORD fiberStackSize, 
                    PFIBER_START_ROUTINE fiberProc, 
                    PVOID fiberProcParameters ); 

The first parameter specifies how large the stack for the fiber should 
be. Normally, a value of 0 is passed here. Passing a 0 will cause 
Windows to allocate two pages of storage and to limit the stack size 
to the default 1 MB. The next two parameters should look familiar 
from thread-creation functions you have previously seen. The first is 
a pointer to a fiber function; the second is a pointer to the 
parameters of that function. Note that unlike a thread function this 
fiber function does not return a value. This function has the form: 
VOID WINAPI fiberProc( PVOID fiberProcParameters ); 

An important characteristic of the fiber function is that it must not exit. 
Remember that when using threads and the thread function exits, the 
thread is terminated. However, with fibers, the effect is more dramatic: 
the thread and all the fibers associated with it are terminated.  

Again, it’s important to save the address returned by CreateFiber() 
because it is used in the following function to switch among the fibers: 
VOID SwitchToFiber( PVOID addressOfFiberEnvironment ); 

The sole parameter to this function is the address returned by 
CreateFiber() and ConvertThreadToFiber(). Switching to a fiber is 
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the only way to activate a fiber. You can switch anytime you desire to. 
You basically receive total control over scheduling in exchange for the 
fact that only one fiber at a time can run on a thread. Only a fiber can 
switch to another fiber. This explains why you must convert the original 
thread into a fiber at the start of this process.  

The function to delete a fiber is: 
VOID DeleteFiber( PVOID addressOfFiberEnvironment ); 

A fiber can kill itself this way. However, when it does so, it kills the 
current thread and all fibers associated with it. 

A final function that is useful is  
PVOID GetCurrentFiber(); 

which returns the address of the fiber environment of the currently 
executing fiber. 

Listing 5.6 shows the code for a program that creates some fibers and 
has them print their identification.  

 

// demonstration of the use of Windows fibers 
#define  _WIN32_WINNT  0x400 
 
#include <stdio.h> 
#include <windows.h> 
 
#define FIBER_COUNT 10 
void *fiber_context[FIBER_COUNT]; 
 
VOID WINAPI fiberProc ( void * ); 
 
void main() 
{ 
    int   i; 
    int   fibers[FIBER_COUNT]; 
     
    for ( i = 0; i < FIBER_COUNT; i++ ) 
        fibers[i] = i; 
         
    fiber_context[0] = ConvertThreadToFiber ( NULL ); 
    
    for ( i = 1; i < FIBER_COUNT; i++ ) 
    { 
       fiber_context[i] = CreateFiber ( 
                            0,            // stack size   
                            fiberProc,    // function 
                            &fibers[i] ); // parameter 
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       if ( fiber_context[i] != NULL ) 
            printf ( "fiber %d created\n", i ); 
    } 
     
    for ( i = 1; i < FIBER_COUNT; i++ ) 
    { 
        if ( fiber_context[i] != NULL ) 
            SwitchToFiber ( fiber_context[i] ); 
    }     
} 
 
VOID WINAPI fiberProc ( void *fiber_nbr ) 
{ 
    int nbr; 
     
    nbr = *( (int*) fiber_nbr ); 
    printf ( "Hello from fiber %d\n", nbr ); 
 
    // now switch back to the fiber of the main line 
    SwitchToFiber ( fiber_context[0] ); 
} 

Listing 5.6 Program to Create Fibers that Print an Identifying Message to the Console 

Notice the #defined manifest constant at the very start of the listing. 
Fibers were introduced in Windows NT 4.0. The value of 0x400 in: 
#define  _WIN32_WINNT  0x400 

tells the compiler to include features in windows.h that appeared in 
Microsoft Windows NT 4.0 and later; hence, it includes support for 
function calls used by the fiber APIs. Failing to include the constant will 
result in compilation errors. The output from this program is: 

fiber 1 created 
fiber 2 created 
fiber 3 created 
fiber 4 created 
fiber 5 created 
fiber 6 created 
fiber 7 created 
fiber 8 created 
fiber 9 created 
Hello from fiber 1 
Hello from fiber 2 
Hello from fiber 3 
Hello from fiber 4 
Hello from fiber 5 
Hello from fiber 6 
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Hello from fiber 7 
Hello from fiber 8 
Hello from fiber 9 

Notice how the fibers print out their messages in a nice sequential order. 
This is, of course, attributable to the fact that only one fiber can run at a 
time and that the main fiber schedules which one runs when. 

It might seem that fibers are not valuable in the context of parallel 
programming because they only run one at a time. However, they have 
considerable value in certain specific applications. Suppose for example 
that your application receives numerous requests that you want to 
handle individually. You could create a thread for each request, but this 
approach has drawbacks. Threads are expensive to start up and you 
don’t have control over their execution. The former problem can be 
handled with thread pools, but because pools are generally used for all 
thread tasks a program must perform, the execution schedule is even 
more uncertain. In addition, if you have to expand your thread pool, the 
creation of threads is a kernel call and, hence, expensive. 

Fibers, however, are cheap to create because they do not involve 
user-space to kernel transitions. In fact, several of the fiber functions are 
implemented as inline functions. Fibers are an efficient mechanism any 
time you have multiple tasks to perform and are content doing one at a 
time. Notice that you can emulate parallel processing by swapping fibers 
as needed. This way, if a fiber is about to wait on a slow process, you can 
swap in another fiber and give it as much time as you deem necessary. In 
some situations where the behavior and parallelism of the application is 
well known, fibers may even provide a performance benefit due to the 
reduction of synchronization and task-switching overhead. 

Compiling and Linking Multi-threaded Applications in Windows 
In order to simplify the building of multi-threaded applications for 
Windows platforms, Microsoft has built in support for multithreading 
into the Microsoft compiler. The first step in compiling a multi-threaded 
application is to make sure that the compiler is using the correct runtime 
libraries. Microsoft provides several different implementations of the 
standard C runtime library. These versions vary based on three different 
criteria: linkage (static or dynamic), whether or not the library is re-
entrant,7 and whether or not the library includes debugging symbols. The 

                                                   
7 One library is designed for single-threaded applications; it is not re-entrant. The other library is 

designed for multi-threaded applications; it is re-entrant. 
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compiler switches that are used in multi-threaded applications are shown 
in Table 5.2. These compiler switches can be specified on the command 
line or by selecting the appropriate option in the “code generation” tab 
of the project’s properties within Visual Studio, as shown in Figure 5.1.  

Table 5.2 Command-line Switches for Compiling Multi-threaded Code in 
Windows. 

Switch Meaning 

/MT Multithreaded with static linkage 

/MTd Multithreaded with debugging enabled 

/MD Multi-threaded dynamic link library (DLL) 

/MDd Multi-threaded DLL with debugging enabled 
 

 

Figure 5.1 Enabling Multi-threading in Microsoft Visual Studio 

In addition, the _MT preprocessor value should be defined. This is the 
agreed convention in Windows for testing code for multithreading. It is 
set by the /D "_MT" command-line switch. 
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The appropriate libraries are generally brought in by setting the 
correct flag from Table 5.2. However, it is important to know more about 
which libraries are used. This knowledge will help in the case that you 
need to troubleshoot compiler issues or you want to write custom 
makefiles. Table 5.3 provides the list of multi-threaded libraries that are 
used when linking in the Microsoft C runtime library.  

Table 5.3 Microsoft’s Multi-threaded Libraries for C Programs 

Program Type C Runtime Library 

Multithreaded LIBCMT.lib 

Multithreaded with debugging LIBCMTD.lib 

Multi-threaded DLL MSVCRT.lib (import library for MSVCRT.dll) 

Multi-threaded DLL with 
debugging 

MSVCRTD.lib (import library for MSVCRTD.dll) 

 
The libraries for the C++ runtime are different, as shown in Table 5.4 

Table 5.4 Microsoft’s Multi-threaded Libraries for C++ Programs 

Program Type C++ Runtime library 

Multithreaded LIBCPMT.lib 

Multithreaded with debugging LIBCPMTD.lib 

Multithreaded DLL MSVCPRT.lib (also uses MSVCRT.dll) 

Multithreaded DLL with debugging MSVCPRTD.lib (also uses MSVCRTD.dll) 
 

A word of caution is in order here. Developers should not intermix 
the use of static and dynamic libraries in a single process space. Multiple 
copies of the C runtime library within a single process space will result in 
unstable behavior.8 The Microsoft linker will prevent this error in the 
case where the developer tries to link both the static and dynamic 
versions of the runtime library into a single .exe. However, in the case of 
a .dll that is used by an .exe, it is the programmer’s responsibility to 
guarantee that the .exe and .dll are built with the same version of the C 
runtime.  

                                                   
8 Note that this is the second time that using the standard C library routines has introduced an 

additional level of complexity to using threads in Windows; the first was when using the 
CreateThread() call. In general, Microsoft encourages the use of the Win32 API over the standard 
C library, for instance, CreateFile() instead of fopen(). Using the Win32 API exclusively will 
simplify writing Windows-based multi-threaded applications. 
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 Threading APIs for Microsoft .NET Framework 

In 2002, Microsoft introduced a new execution environment, called the 
Common Language Runtime (CLR), which executes programs in the form 
of intermediate code, rather than native binaries. This code is 
conceptually similar to Java bytecodes in that the CLR executes them 
within a carefully defined virtual machine. And like Java, it frequently 
uses just-in-time compilation to convert the intermediate code into binary 
routines on the fly. 

The goal of this design was to provide a common execution 
environment for all the major languages Microsoft supported at the time, 
notably C++ and Visual Basic, and for a new language, named C#, that 
Microsoft unveiled with the launch of the CLR and associated 
technologies. Those technologies included an extensive set of APIs 
commonly referred to as the .NET Framework. Together, the framework, 
the CLR, and the tools needed for execution, are referred to as .NET. 

The .NET Framework has extensive support for threads. The API 
provides a substantial subset of the functionality of the Windows API. It 
does not include some features, such as fibers, but most thread 
management functions and concepts are present. These are implemented 
in the .NET Framework class entitled Thread. This section discusses how 
to use Thread in .NET. The examples are implemented in C#. If you want 
to use another .NET language, such as C++, Visual Basic .NET, or JScript, 
consult Microsoft’s .NET Framework Class Library Reference, which 
provides examples of the APIs in all four languages. 

Creating Threads 

On the whole, .NET APIs tend to be somewhat leaner than their Win32 
counterparts. This is especially visible in the call for creating a new 
thread:  
using System.Threading; 
. . . 
Thread t = new Thread( new ThreadStart( ThreadFunc )); 

The call to ThreadStart() constructs a new thread. The parameter is a 
delegate called ThreadFunc. In C#, a delegate is the equivalent of an 
address of a function in C. It’s a manner of identifying a function  
or method without actually invoking it. As with Win32, when 
ThreadFunc() ends, the thread terminates. 
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Listing 5.7 illustrates a simple creation of a thread and the call to the 
ThreadFunc.  

 
 
1 using System; 
2 using System.Threading; 
3  
4 public class ThreadDemo1 
5 { 
6    public static void ThreadFunc() 
7    { 
8        for ( int i = 0; i < 3; i++ ) 
9            Console.WriteLine( 
10               "Hello #{0} from ThreadFunc", i ); 
11            Thread.Sleep( 10000 ); 
12    } 
13  
14    // The main entry point for the application. 
15    public static void Main() 
16    { 
17        Thread t = 
18           new Thread( new ThreadStart( ThreadFunc )); 
19        t.Start(); 
20        Thread.Sleep( 40 ); 
21  
22        for ( int j = 0; j < 4; j++ ) 
23        { 
24            Console.WriteLine( "Hello from Main Thread" ); 
25            Thread.Sleep( 0 ); 
26        } 
27    } 
28 } 

Listing 5.7 Simple Program Showing Thread Creation 

A new thread is created using ThreadStart() on lines 17–18. The 
ThreadFunc is defined in lines 6–12. An important difference between 
the Win32 and .NET APIs appears here. In Win32, the creation of a 
thread results in a request to the scheduler to execute it. No additional 
step is necessary. In .NET, this is not so. The thread must be explicitly 
started by the start() method, as shown on line 19. This method 
changes the status of the thread to Runnable inside .NET, which makes 
it eligible for processing by the scheduler. On a single processor system, 
however, .NET will not start the thread until the main thread has 
completed or is suspended. This can cause obvious problems, so it is 
common to suspend the current, principal thread to enable created 
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threads to begin execution. This is done on line 20 by the call to the 
Sleep() method. The sole argument to this method is a 32-bit integer 
that indicates the number of milliseconds to sleep before being 
awakened, that is, reactivated. As with nearly all things related to threads, 
nothing is guaranteed. So, the number of milliseconds is simply a request 
to the operating system. The actual number of milliseconds in the 
sleeping state might vary considerably from the requested amount. 

Because Microsoft is aware that Sleep() must be called to start up 
waiting threads, it provides a special value of 0 to indicate that the 
principal thread should be suspended only long enough to start 
execution of the any waiting threads. On the other end of the scale, the 
special value Infinite tells the scheduler to suspend the thread 
indefinitely. 

As Listing 5.7 illustrates, the method for creating a function in C# is 
much more concise than the corresponding function call in C on Win32. 
This concision comes at a cost, however. The delegate called when a 
thread is started accepts no parameters, so it is difficult to pass thread-
specific information to the delegate. To pass data without making it 
accessible globally is an advanced topic, which is beyond the scope of this 
book. (Abrams 2004), however, explains how to do this. 

Thread Priority and Other Properties 
As discussed in the previous sections on the Win32 API, thread priority 
determines when the scheduler will schedule execution. Threads with 
higher priority can grab the processor for themselves and even starve 
lower priority threads, so managing priority in special circumstances can 
be beneficial. For the most part, you should accept the default priority 
that .NET assigns to your threads. However, if you need to change it, you 
simply specify it as an assignment to the thread.Priority property. 
For example,  
Thread nThread = new Thread ( ThreadFunc ); 
nthread.Priority = AboveNormal; 
nThread.Start (); 

The .NET framework supports five levels of thread priority: 
 Highest 
 AboveNormal 
 Normal (the default level) 
 BelowNormal 
 Lowest 
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Each of these levels represents a group of fine-grained levels, which are 
accessible through Win32. When the thread is started, the scheduler 
determines where in the group of levels to place the thread. For 
example, if you specify BelowNormal, the scheduler chooses the sub-
level within BelowNormal to place your thread. You have no control 
over this decision. 

Another useful property .NET provides enables you to name a thread. 
This option has several benefits, the most important of which is in 
debugging, where the name makes it much easier for developers to 
identify which thread is being followed. To name a thread, simply 
initialize its .name property. For example: 
Thread nThread = new Thread ( ThreadFunc ); 
nthread.Name = "new_thread1"; 
nThread.Start ();  

Having examined thread creation, let’s examine how threads are 
terminated and how their activities can be suspended and restarted. 

Managing Threads 

The simplest and safest way to terminate a thread is to exit it. Doing so, 
permits the CLR to perform the necessary clean up without any difficulty. 
At times, however, it’s necessary to terminate some other thread. As part 
of the .NET threading API, an Abort() method is supplied for this 
purpose. A call to Abort() generates a ThreadAbortException, where 
any code should go to handle an abort signal in the middle of an 
unfinished operation. In addition, the call will execute any code in the 
aborted thread’s finally statement. Listing 5.8 shows the calls. 

 
 
1 using System; 
2 using System.Threading; 
3  
4 public class ThreadAbortExample 
5 { 
6    public static void Thread2() 
7    { 
8        try 
9        { 
10            Console.WriteLine( "starting t2" ); 
11            Thread.Sleep( 500 ); 
12            Console.WriteLine( "finishing t2" ); 
13        } 
14        catch( ThreadAbortException e ) 
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15        { 
16            Console.WriteLine( "in t2\'s catch block"); 
17        } 
18        finally 
19        { 
20            Console.WriteLine( "in t2\'s finally" ); 
21        } 
22    } 
23  
24    public static void Main() 
25    { 
26        Thread t = new Thread( new ThreadStart(Thread2) ); 
27        Console.WriteLine( "starting main thread" ); 
28        t.Start(); 
29        Thread.Sleep( 500 ); 
30        t.Abort(); 
31        t.Join(); 
32        Console.WriteLine( "main thread finished.\n" + 
33                           "Press <Enter> to exit" ); 
34        Console.ReadLine(); 
35    } 
36 } 

Listing 5.8 How to Abort a Thread in .NET 

Lines 26–28 start a second thread, t, as illustrated previously. After a 
brief pause (line 29), t is aborted. The effect of this is to call the catch 
code in Thread2’s exception handler, followed by the code in the 
finally clause. The output of this program is: 
starting main thread 
starting t2 
finishing t2 
in t2's catch block 
in t2's finally 
main thread finished. 
Press <Enter> to exit 

Calling Abort() results in a more complicated set of actions. The 
first is that the thread being aborted can thwart the action by calling  
the System.Threading.Thread.ResertAbort method inside the 
exception handler.  

Another factor should be borne in mind: processing in the finally 
block might take a substantial amount of time. Because the thread will 
stay alive throughout the processing of the finally code, the thread might 
not abort for a substantial period of time, sometimes not until the 
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program itself is finished. Because of these two possibilities of a thread 
persisting past the initial Abort(), it might be necessary to verify that a 
specific thread has indeed been aborted. The way to do this is to use the 
join method, which is discussed next.  

Waiting on a Thread 
Threads often need to wait on each other. This concept is presented in 
the Win32 APIs as “waiting on an event.” The .NET Framework borrows 
the model used by Pthreads—the API employed in Linux and several 
versions of UNIX. There the concept is known as joining a thread, and 
it simply means waiting for that thread to finish. Line 31 of Listing 5.8 
shows how this method is called. In that program, the main thread 
creates and aborts Thread2 then joins it. This is the preferred way of 
knowing with certainty that a given thread has aborted.  

It is important to note that the thread calling Join() blocks until the 
joined thread exits. In some circumstances, this might not be desirable 
because in such cases, Join() can be called with a 32-bit integer 
parameter, which indicates the maximum number of milliseconds to wait 
for the joined thread to complete. When called, this way, Join() returns 
the Boolean value true if the thread terminated, and false if the thread 
did not terminate and the return occurred because the maximum wait 
expired. 

Suspending and Resuming Threads 
Earlier in this section, we described the use of the Sleep() method to 
suspend a thread for a time-delimited duration. Examples of its use 
appear in lines 11 and 20 of Listing 5.8.  

There are times, however, when it’s desirable to suspend a thread for 
an indefinite period of time and then resume it at a later point. The pair 
of methods to do this are Suspend() and Resume(). Neither of these 
methods takes an argument or returns a value. 

Thread Pools 

The creation of a new thread is an expensive operation. A lot of system-
level activity is generated to create the new thread of execution, create 
thread-local storage, and set up the system structures to manage the 
thread. As a result of this overhead, conservation of created threads is a 
recommended practice. The effect on performance, especially on slower 
machines, can be compelling. 
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However, managing the task of managing multiple threads, some of 
which might be dormant, and assigning new chunks of work to the 
threads as the work becomes available, leads to a significant amount of 
code complexity. In response, the .NET Framework provides a resource 
called thread pools. 

A pool of threads is initially created as well as a work queue of sorts. 
As new chunks of work become available they are queued up for the 
thread pool, which executes them as threads are available. The process 
of managing the work queue, waking threads, and assigning them the 
work is all handled by the .NET Framework. This is a valuable resource. If 
your program uses more than a few threads, thread pools should be 
considered as an option. 

.NET’s ThreadPool class does most of the work of thread pools. The 
pool is created the first time work is queued for it—a remarkably high-
level operation. The exact number of threads created in the pool is 
dynamic and determined by .NET when the pool is created. However, 
.NET enforces a maximum of 25 threads per hardware processor. The 
ThreadPool methods GetMinThreads() and SetMinThreads() can be 
used to inquire and enforce a minimum number of threads. A 
corresponding GetMaxThreads() method informs you of the maximum, 
but there is no method that enables you to increase this value.  

Listing 5.9 shows a simple example of a thread pool in use. 
 

 
1 using System; 
2 using System.Threading; 
3 public class ThreadPoolExample 
4 { 
5     public static void Main() 
6     { 
7         // Queue a piece of work 
8         ThreadPool.QueueUserWorkItem( 
9                     new WaitCallback( WorkToDo )); 
10  
11         Console.WriteLine( "Greetings from Main()" ); 
12         Thread.Sleep( 1000 ); 
13  
14         Console.WriteLine( "Main thread exiting...\n" +  
15                            "Press <enter> to close" ); 
16         Console.ReadLine(); 
17     } 
18  
19     // This thread procedure performs the task. 
20     static void WorkToDo( Object dataItems ) 
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21     { 
22         Console.WriteLine("Greetings from thread pool"); 
23     } 
24 } 

Listing 5.9 Simple Example of Using a Thread Pool in .NET 

The thread pool is created by the first call to the work queue, which 
occurs in line 8. As in thread creation, it is passed a delegate; which, in this 
case points to the method defined in lines 20–23. As can be seen from the 
signature on line 20, there is an overloaded version, which permits an 
object to be passed to the work procedure. Frequently, this data object 
contains state information about the status of the application when the call 
work was queued, but it can, in fact, contain any data object. 

Notice the call to Sleep() on line 12. It is necessary for successful 
completion of this program. Without this statement, the program could 
exit without the work queue ever having completed its work. Because 
the work can be assigned to any available thread, the main thread has no 
way to join any of the pool’s threads, so it has no mechanism for waiting 
until they complete. Of course, the threads in the pool can modify a data 
item to indicate activity, but that is a not a .NET-specific solution. 

The output from this program is: 
Greetings from Main() 
Greetings from thread pool. 
Main thread exiting... 
Press <enter> to close 

In addition to being work engines that consume queued work items, 
thread pools are effective means of assigning threads to wait on specific 
events, such as waiting on network traffic and other asynchronous 
events. The .NET Framework provides several methods for waiting. They 
require registering a call-back function that is invoked when the waited-
for event occurs. One of the basic methods for registering a call-back and 
waiting is RegisterWaitForSingleObject(), which enables you to 
also specify a maximum wait period. The call-back function is called if 
the event occurs or the wait period expires. Listing 5.10, which is 
adapted from a Microsoft example, shows the necessary code. 

 
 
1 using System; 
2 using System.Threading; 
3 // TaskInfo contains data that is passed to the callback 
4 // method. 
5 public class TaskInfo 
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6 { 
7     public RegisteredWaitHandle Handle = null; 
8     public string OtherInfo = "default"; 
9 } 
10  
11 public class Example 
12 { 
13     public static void Main( string[] args ) 
14     { 
15  
16         AutoResetEvent ev = new AutoResetEvent( false ); 
17  
18         TaskInfo ti = new TaskInfo(); 
19         ti.OtherInfo = "First task"; 
20         ti.Handle =  
21             ThreadPool.RegisterWaitForSingleObject( 
22                 ev, 
23                 new WaitOrTimerCallback( WaitProc ), 
24                 ti, 
25                 1000, 
26                 false ); 
27  
28        // The main thread waits three seconds,  
29        // to demonstrate the time-outs on the queued 
30        // thread, and then signals. 
31  
32        Thread.Sleep( 3100 ); 
33        Console.WriteLine( "Main thread signals." ); 
34        ev.Set(); 
35  
36        Thread.Sleep( 1000 ); 
37        Console.WriteLine( "Press <enter> to close." ); 
38        Console.ReadLine(); 
39    } 
40  
41 // The callback method executes when the registered 
42 // wait times-out, or when the WaitHandle (in this 
43 // case, AutoResetEvent) is signaled. 
44  
45    public static void WaitProc( object passedData,  
46                                 bool timedOut ) 
47    { 
48        TaskInfo ti = (TaskInfo) passedData; 
49  
50        string cause = "TIMED OUT"; 
51        if ( !timedOut ) 
52        { 
53            cause = "SIGNALED"; 
54            if ( ti.Handle != null ) 
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55                ti.Handle.Unregister( null ); 
56        } 
57  
58        Console.WriteLine( 
59            "WaitProc({0}) on thread {1}; cause={2}", 
60            ti.OtherInfo, 
61            Thread.CurrentThread.GetHashCode().ToString(), 
62            cause 
63        ); 
64    } 
65 } 

Listing 5.10 Using Callbacks in Thread Pools to Wait on Events  

There is a lot going on in this listing. The method that is registered 
for the callback is WaitProc, defined in lines 45-64. As can be seen, it 
takes two parameters: the first is an object containing data to be passed 
to the method, the second is a Boolean to indicate whether the call was 
generated by a time out (true) signal from the waited for event (false). 
The passed data object is cast to an object of type TaskInfo, which is 
defined in lines 3–9. The handle property of TaskInfo is returned from 
the call to RegisterWaitForSingleObject() on lines 21-26. The 
parameters to this method are complex. ev is a handle for the event 
being waited for—we’ll come back to this shortly. The second parameter 
is the delegate for the callback function; as can be seen, that delegate 
must be of type WaitOrTimerCallback. 

The third parameter is the data object to pass to the callback function. 
The fourth parameter is the number of milliseconds to wait. And the fifth is 
a Boolean that indicates whether the event should stop waiting after the 
delegate has been called (true) or keep wait anew (false). 

As soon as the handle is created, the wait begins. The Sleep 
statement on line 32 allows this wait to expire several times. Because  
of the parameter on line 26, the wait renews and expires several times, 
each time calling the method pointed to by the delegate. Line 34 actually 
triggers the event via a direct call. The callback function is able to 
distinguish which event triggered the call by the timedOut parameter 
discussed previously. As a result, running this code generates the 
following output: 

WaitProc(First task) executes on thread 4; cause=TIMED OUT. 
WaitProc(First task) executes on thread 4; cause=TIMED OUT. 
WaitProc(First task) executes on thread 6; cause=TIMED OUT. 
Main thread signals. 
WaitProc(First task) executes on thread 6; cause=SIGNALED. 
Press <enter> to close. 
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The number of the thread on which the task is executed will vary 
from system to system. As can be seen, while the main thread is waiting, 
the 1-second duration expires three times, as expected. Then, the 
callback function is called one more time when the signal is sent. 

The .NET Framework enables threads to start up based on more than 
a single event. The WaitHandle.WaitAll() and WaitHandle.Wait-
Any()methods fire when all events in an array have been signaled, or if 
any one event in an array is signaled, respectively. Events themselves do 
not need to be automatic as in Listing 5.10; they can also be manual by 
using ManualResetEvent(). The difference is that an automatic reset 
will issue the signal and then reset itself so that it is not in the signaled 
state, whereas a manual reset event persists in the signaled state until it is 
manually reset. The choice between them depends entirely on the 
application’s needs.  

As this section has illustrated, thread pools are a very useful 
mechanism that enables sophisticated threading to be implemented 
conveniently in many applications. The range of options regarding events 
and the characteristics of signals give thread pools considerable 
flexibility. 

Thread Synchronization 

The mechanisms for synchronizing thread actions in .NET are similar to 
those found in all other threading APIs, such as Win32 and Pthreads. 
They include capabilities for mutual exclusion and for atomic actions  
on specific variables. By and large, .NET maintains the simplicity of 
expression seen in the previous examples. No synchronization is simpler, 
in fact, than use of the lock keyword in C#.  

The usual way to use lock is to place it in front of a block of code 
delimited by braces. Then, that block can be executed by only one 
thread at a time. For example: 
lock(this) 
{ 
   shared_var = other_shared_var + 1; 
   other_shared_var = 0; 
} 

The C# lock statement makes several calls to the .NET Framework. 
The previous example is syntactically equivalent to the following snippet: 
Monitor.Enter( this ) 
try 
{ 
 shared_var = other_shared_var + 1; 
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 other_shared_var = 0; 
} 
finally 
{ 
 Monitor.Exit( this ) 
} 

Monitor is a class that enforces mutual exclusion and locking in .NET. 
When used as in the previous example, Monitor.Enter() locks a code 
block. In this respect, it is similar to critical sections in the Win32 API. 

Monitor can also be used to lock a data structure by passing that data 
structure as a parameter to the Monitor.Enter() call. Monitor.Exit() 
releases the lock. If Monitor.Enter() was called with an object, 
Monitor.Exit() should be called with the same object to release the 
lock. When Monitor.Enter() is called, the .NET Framework sets up two 
queues: one containing references to threads waiting to obtain the lock 
once it’s released, and another queue containing references to threads that 
want to be signaled that the lock is available. When Monitor.Exit() is 
called, the next thread in the first queue gets the lock.  

Monitors have unusual aspects. For example, the Monitor.Wait() 
method enables a thread to temporarily give up a lock to another thread and 
then reclaim it. A system of signals called pulses are used to notify the 
original thread that the lock has been released. 

As you have learned, mutexes are a similar mechanism for providing 
mutual exclusion to resources. Mutexes differ from monitors in that they 
can be used with wait handles, as shown in the following example. They 
also can be locked multiple times. In such a case, they must be unlocked 
the same number of times before the lock is actually released. 

To use a mutex, one must be created. Then a call to WaitOne is 
issued to grab the lock as soon as it becomes available, if it’s not already 
available. Once the lock is no longer needed, it is made available with the 
ReleaseMutex method.  
private static Mutex mutx = new Mutex(); 
. . . 
 
private static void UseResource() 
{ 
    // Wait to enter the locked code. 
    mutx.WaitOne(); 
 
    Console.WriteLine( " in the locked code " );  
 
    Thread.Sleep( 100 );  
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    Console.WriteLine( " leaving locked code ",          
 
    // Release the Mutex. 
    mutx.ReleaseMutex(); 
} 

This is a simple, effective locking mechanism that is comparable to 
counterparts in Win32 and Pthreads. 

Atomic Actions 
Actions are atomic if they can only be performed as a single indivisible 
act. The term is commonly used in database operations to refer to a series 
of steps that must all be completed. If any of them can’t be completed, all 
steps so far completed are rolled back, so that at no time does the 
database record a partial series. It’s all or nothing. Threads present similar 
problems. Consider what happens if a thread is suspended while it is 
updating the values of an important variable. Suddenly, the application or 
the system can be left in a degenerate or corrupted state.9 One solution is 
the Interlocked class. Although not discussed in the Win32 portion of 
this chapter, the Win32 API does have corresponding APIs.  

The three most common methods of the Interlocked class are: 
Decrement, Increment, and Exchange. These are all simple methods to 
use and should be used anytime a variable shared between threads is 
being modified. 
int intCounter = 0; 
. . . 
 
// set the value of intCounter to 6 
Interlocked.Exchange( ref usingResource, 6 ); 
 
// Drop value to 5 
Interlocked.Decrement( ref intCounter ); 
 
//Raise it back to 6 
Interlocked.Increment( ref intCounter ); 

Several aspects are worthy of note. Firstly, the Interlocked class 
uses references to the variables to be modified, not the variables 
themselves; so make sure to include the ref keyword, as in the 

                                                   
9 It might come as a surprise to some readers that incrementing or decrementing a variable is not 

inherently an indivisible action. It takes three instructions: the variable is copied into a register in 
the processor core by a process called loading, incremented, and then copied from the register 
back to the variable’s location in memory.  
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previous examples. These references are the equivalent of addresses 
or pointers from C and C++. Secondly, the Exchange method is not 
really used for exchanging values but initializing one value to another. 
In the example, the value of 0 to which intCounter was initialized is 
exchanged with 6, leaving 6 as the new value of intCounter.  

As can be seen from this overview, the .NET Framework’s set of 
threading APIs is more succinct than its counterparts in Win32. It  
also includes higher-level capabilities, such as advanced thread pool 
manage-ment functions. The upshot is that programming threads in C# 
on .NET tends to be easier and overall more productive than at the lower 
levels of Win32.  

 POSIX Threads 

POSIX threads, or Pthreads, is a portable threading library designed with 
the intent of providing a consistent programming interface across multiple 
operating system platforms. Pthreads is now the standard threading 
interface for Linux and is also widely used on most UNIX platforms. An 
open-source version for Windows, called pthreads-win32, is available as 
well. For more information on pthreads-win32, refer to References. If you 
want to work in C and need a portable threading API that provides more 
direct control than OpenMP, pthreads is a good choice. 

Most core Pthreads functions focus on thread creation and destruction, 
synchronization, plus a few miscellaneous functions. Capabilities like 
thread priorities are not a part of the core pthreads library, but instead are 
a part of the optional capabilities that are vendor specific.  

Creating Threads 

The POSIX threads call to create a thread is pthread_create():  
pthread_create (  
    &a_thread,      // thread ID goes here  
    NULL,      // thread attributes (NULL = none)  
    PrintThreads,     // function name  
    (void *) msg );   // parameter 

As in Windows, the third parameter represents a pointer to the function 
called by the launched thread, while the fourth parameter is a pointer to a 
void, which is used to pass arguments to the called function. 

Listing 5.11 illustrates the usage of pthread_create() to create a 
thread. 
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1 #include <stdio.h> 
2 #include <stdlib.h> 
3 #include <pthread.h> 
4  
5 void *PrintThreads ( void * ); 
6  
7 #define NUM_THREADS 9 
8  
9 int main() 
10 { 
11    int i, ret; 
12    pthread_t a_thread; 
13  
14    int thdNum [NUM_THREADS];  //thread numbers go here 
15  
16    for ( i = 0; i < NUM_THREADS; i++ ) 
17        thdNum[i] = i; 
18  
19    for ( i = 0; i < NUM_THREADS; i++ ) 
20    { 
21        ret = pthread_create ( 
22                &a_thread, 
23                NULL, 
24                PrintThreads, 
25                (void *) &thdNum[i] ); 
26  
27        if ( ret == 0 ) 
28           printf ( "Thread launched successfully\n" ); 
29    } 
30  
31    printf ( "Press any key to exit..." ); 
32    i = getchar(); 
33    return ( 0 ); 
34 } 
35  
36 // Make the threads print out their thread number. 
37  
38 void *PrintThreads ( void *num ) 
39 { 
40    int i; 
41  
42    for ( i = 0; i < 3; i++ ) 
43        printf ( "Thread number is %d\n", 
44            *((int*)num)); 
45  
46    return ( NULL ); 
47 }  

Listing 5.11 Creating and Using Threads with Pthreads 
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The main loop does print a notice when a thread is launched 
successfully, and then has the thread print its thread number three times. 
Note that the output from this program does not show an orderly 
sequence of print statements from each individual thread. Instead, the 
print statements are printed out in a mixed order. 

Managing Threads 

When a thread is created under Pthreads, developers have the option of 
indicating the nature of that thread’s interaction with other threads. For 
example, 
pthread_detach( pthread_t thread_to_detach ); 

can be used to detach the thread from the other threads when it has no 
need to interact with them. This option asserts that no other thread will 
interact with this thread, and that the operating system is free to use  
this information in managing the thread. The operating system uses this 
information particularly at thread exit, when it knows that no return value 
needs to be passed back to some other thread. 

The complementary function,  
pthread_join( pthread_t thread, void **ret_val ); 

tells the operating system to block the calling thread until the specified 
thread exits. Attaching to a thread in this way is called joining, just as we 
saw in the section on .NET threads. The function takes two parameters: 
the pthread_t identifier of the thread being joined, and a pointer to a 
pointer to void where the thread’s return value should be placed. If the 
thread does not return a value, NULL can be passed as the second 
parameter. 

To wait on multiple threads, simply join all those threads. Listing 5.12 
shows how this is done. 

  

int main() 
{ 
    int i, ret; 
 
    pthread_t thdHandle [NUM_THREADS]; //thread identifiers 
    int thdNum [NUM_THREADS];          //thread numbers go here 
     
    for ( i = 0; i < NUM_THREADS; i++ ) 
        thdNum[i] = i; 
 
    for ( i = 0; i < NUM_THREADS; i++ ) 
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    { 
        ret = pthread_create ( 
                &thdHandle[i], 
                NULL, 
                PrintThreads, 
                (void *) &thdNum[i] ); 
                     
        if ( ret == 0 ) 
            printf ( "Thread launched successfully\n" ); 
    } 
 
    // join all the threads and wait... 
    for ( i = 0; i < NUM_THREADS; i++ ) 
        pthread_join ( thdHandle[i], NULL ); 
 
    printf ( "Press any key to exit..." ); 
    i = getchar(); 
    return ( 0 ); 
} 

Listing 5.12 Coordinating Thread Execution with pthread_join 

One caveat should be noted: two threads cannot join the same 
thread. Once a thread has been joined, no other threads can join it. To 
have two or more threads wait on a thread’s execution, other devices 
such as those presented in the section on signaling can be used. 

Thread Synchronization 

The Pthreads library has mutexes that function similarly to those in 
Win32 and .NET. Terminology and coding syntax, predictably, are 
different; as are some details of implementation. 

Whereas Windows refers to mutexes as being signaled, that is, 
available or unlocked, Pthreads refers to mutexes by the more intuitive 
terms locked and unlocked. Obviously, when a mutex is locked, the code 
it’s protecting is not accessible. The syntax of the Pthreads API calls 
follows this nomenclature: 

pthread_mutex_lock( &aMutex ); 
. . . code to be protected goes here . . . 

pthread_mutex_unlock( &aMutex ); 

The sole parameter to both functions is the address of a previously 
declared mutex object: 
pthread_mutex_t aMutex = PTHREAD_MUTEX_INITIALIZER; 
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PTHREAD_MUTEX_INITIALIZER is a macro that initializes the opaque 
data type pthread_mutex_t. Certain uncommon forms of mutex 
creation can use other macros; however, the vast majority of the time 
you create a mutex, this is the initialization code you’ll want. 

Using a mutex, the code for the PrintThreads() routine of  
Listing 5.11 (lines 38–47) would now looks like this: 
void *PrintThreads( void *num ) 
{ 
    int i; 
 
    pthread_mutex_lock( &testMutex ); 
 
    for ( i = 0; i < 3; i++ ) 
        printf ( "Thread number is %d\n", 
            *((int*)num)); 
 
    pthread_mutex_unlock( &testMutex ); 
 
    return ( NULL ); 
} 

Earlier in the program, at the global level, the following definition 
appeared:  
pthread_mutex_t testMutex = PTHREAD_MUTEX_INITIALIZER; 

In the discussion of Win32 mutexes, we saw that calling WaitFor-
SingleObject(hMutex, 0) would test hMutex right away and return. By 
examining the return value and comparing it to WAIT_TIMEOUT, we can tell 
whether the mutex was locked. The Pthreads library has a similar function, 
pthread_mutex_trylock(&mutex), which tests the mutex to see whether 
it’s locked and then returns. If it returns EBUSY, the mutex is already locked. 
It’s important to note in both the Windows and Pthreads version of this 
function, if the mutex is unlocked, this call will lock it. It behooves you 
therefore to check the return value, so as to avoid inadvertently locking a 
mutex simply because you were trying to see whether it was available. It is 
expected that you will use this test-and-lock behavior in situations where 
you would like to lock a mutex, but if the mutex is already locked, you 
might want to perform other activities before testing the mutex again. 

Signaling 

Many multi-threading programmers find the event model of 
communication error prone. As a result, certain APIs exclude them. The 
Pthreads model has no direct counterpart to the Windows concept of 
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events. Rather, two separate constructs can be used to achieve the same 
ends. They are condition variables and the semaphore.  

Condition Variables 
A condition variable is a mechanism that is tightly bound to a mutex and 
a data item. It is used when one or more threads are waiting for the value 
of the data item to change. Rather than spinning, the threads block on 
the condition variable and wait for it to be signaled by some other thread. 
This signal notifies the waiting threads that the data item has changed 
and enables the threads to begin or resume processing. 

This works in a very mechanical way. The data item is declared, for 
instance, with a flag that tells a consumer thread that the producer thread 
has data ready for it, and that the data is protected by a mutex. The data 
item and the mutex together are associated with a condition variable. 
When the producer thread changes the flag, after unlocking and 
relocking the mutex, it signals the condition variable, which announces 
that the flag has changed value. This announcement can be sent 
optionally to a single thread or broadcast to all threads blocking on the 
condition variable. In addition to the announcement, the signal unblocks 
the waiting thread or threads. 

Listing 5.13 illustrates how this works by showing two threads 
waiting on a condition variable. The listing is somewhat longer than the 
others presented in this book, but it shows how to address a very typical 
problem in programming with threads. 

 
 
1 #include <stdio.h> 
2 #include <stdlib.h> 
3  
4 #include <pthread.h> 
5  
6 #define BLOCK_SIZE     100 
7 #define BUF_SIZE   1000000 
8  
9 size_t bytesRead; 
10  
11 typedef struct { 
12    pthread_mutex_t  mutex; // mutex 
13    pthread_cond_t   cv;    // condition variable 
14    int              data;  // data item used as a flag 
15 } flag; 
16  
17 flag ourFlag = {            // default initialization 
18        PTHREAD_MUTEX_INITIALIZER, 
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19        PTHREAD_COND_INITIALIZER, 
20        0 };                 // data item set to 0 
21  
22 pthread_t hThread1, hThread2;    // the waiting threads 
23 void* PrintCountRead( void* );   // the thread function 
24  
25 int main( int argc, char *argv[] ) 
26 { 
27    FILE *infile; 
28    char *inbuf; 
29    int  status; 
30  
31    if ( argc != 2 ) 
32    { 
33       printf( "Usage GetSetEvents filename\n" ); 
34       return( -1 ); 
35    } 
36  
37    infile = fopen( argv[1], "r+b" ); 
38    if ( infile == NULL ) 
39    { 
40       printf( "Error opening %s\n", argv[1] ); 
41       return( -1 ); 
42    } 
43  
44    inbuf = (char*) malloc ( BUF_SIZE ); 
45    if ( inbuf == NULL ) 
46    { 
47       printf( "Could not allocate read buffer\n" ); 
48       return( -1 ); 
49    } 
50  
51    // now start up two threads 
52    pthread_create( &hThread1, NULL, 
53                    PrintCountRead, (void *) NULL ); 
54    pthread_create( &hThread2, NULL, 
55                    PrintCountRead, (void *) NULL ); 
56  
57    bytesRead = fread( inbuf, 1, BLOCK_SIZE, infile ); 
58    if ( bytesRead < BLOCK_SIZE ) 
59    { 
60       printf( "Need a file longer than %d bytes\n", 
61                BLOCK_SIZE ); 
62       return( -1 ); 
63    } 
64    else  // now we tell the waiting thread(s) 
65    { 
66       // first, lock the mutex 
67       status = pthread_mutex_lock( &ourFlag.mutex ); 
68       if ( status != 0 ) 
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69       { 
70          printf( "error locking mutex in main func.\n" ); 
71          exit( -1 ); 
72       } 
73  
74       ourFlag.data = 1; // change the data item  
75                         // then broadcast the change 
76       status = pthread_cond_broadcast( &ourFlag.cv ) ; 
77       if ( status != 0 ) 
78       { 
79          printf( "error broadcasting condition var\n" ); 
80          exit( -1 ); 
81       } 
82  
83       // unlock the mutex 
84       status = pthread_mutex_unlock( &ourFlag.mutex ); 
85       if ( status != 0 ) 
86       { 
87          printf( "error unlocking mutex in waiting \ 
88                  function\n" ); 
89          exit( -1 ); 
90       } 
91    } 
92  
93    while ( !feof( infile ) && 
94            bytesRead < BUF_SIZE - BLOCK_SIZE ) 
95       bytesRead += fread(inbuf, 1, BLOCK_SIZE, infile ); 
96  
97    printf("Read a total of %d bytes\n", (int)bytesRead); 
98    return( 0 ); 
99 } 
100  
101 // the thread function, which waits on the 
102 // condition variable 
103 void *PrintCountRead( void* pv ) 
104 { 
105    int status; 
106  
107    // lock the mutex 
108    status = pthread_mutex_lock( &ourFlag.mutex ); 
109    if ( status != 0 ) 
110    { 
111       printf( "error locking mutex in waiting func.\n" ); 
112       exit( -1 ); 
113    } 
114  
115    // now wait on the condition variable 
116    // (loop should spin once only) 
117    while ( ourFlag.data == 0 ) 
118    { 
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119       status = pthread_cond_wait( &ourFlag.cv, 
120                                   &ourFlag.mutex ); 
121       if ( status != 0 ) 
122       { 
123          printf("error waiting on condition variable\n"); 
124          exit( -1 ); 
125       } 
126    } 
127  
128    if ( ourFlag.data != 0 ) 
129    { 
130       printf( "Condition was signaled. " 
131               "Main thread has read %06d bytes\n", 
132               (int) bytesRead ); 
133    } 
134  
135    // unlock the mutex 
136    status = pthread_mutex_unlock( &ourFlag.mutex ); 
137    if ( status != 0 ) 
138    { 
139       printf("error unlocking mutex in waiting func.\n"); 
140       exit( -1 ); 
141    } 
142  
143    return( pv ); 
144 } 

Listing 5.13 Waking Two Threads through a Broadcast to Condition Variables in 
Pthreads  

Several subtleties come into play. Before examining them, let’s go 
over what this code does. At a global level (lines 11–21), the code creates 
a structure that includes a mutex, a condition variable, and a data item 
that serves as a flag. This code also initializes both the mutex and the 
condition variable to the Pthreads defaults, and 0 for the flag. 

The code opens and reads a file that is specified on the command 
line. Then, two threads are created (lines 51–55); they both use the same 
thread function, PrintCountRead(). This function locks the mutex 
(lines 108–113) and then starts a loop that waits on the value of the flag. 
The function then calls pthread_cond_wait() (lines 119–120), which 
is the code that registers with the system that it wants to be awakened 
when the condition variable is signaled. At this point, the thread blocks 
while waiting for a signal. When the signal arrives, the thread wakes up 
and proceeds. The condition variable is signaled from the main function 
after the flag’s value is changed to 1 (lines 74–76). The loop condition 
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now proves false, and execution flows to the next statement. Here, the 
flag’s value is checked again (line 128–130) and the dependent action—
printing the number of bytes read by the principal thread—is performed. 
The mutex is then unlocked (lines 135–141) and the worker thread exits. 

After starting up the two worker threads, which are both blocked 
waiting for their condition variables to be signaled, the main thread reads 
one buffer of data (line 57). When this read is successful, it signals the 
worker threads that they can proceed. It does this by locking the mutex 
and broadcasting the signal to all waiting threads via 
pthread_cond_broadcast() (line 76). It then unlocks the mutex and 
finishes reading the file. This routine could have instead used 
pthread_cond_signal() to emit the signal. However, that call would 
have signaled only one waiting thread, rather than all of them. Such an 
option would be useful if several waiting threads are all waiting to do the 
same thing, but the desired activity cannot be parallelized. 

The program in Listing 5.14 generates the following output when run 
on a file consisting of 435,676 bytes. 
Condition was signaled. Main thread has read 002700 bytes 
Condition was signaled. Main thread has read 011200 bytes 
Read a total of 435676 bytes 

You might be tempted to use condition variables without the 
required mutex. This will lead to problems. Pthreads is designed to use a 
mutex with condition variables, as can be seen in the parameters in 
pthread_cond_wait(), which takes a pointer to the condition variable 
and one to the mutex. In fact, without the mutex, the code will not 
compile properly. The mutex is needed by the Pthreads architecture to 
correctly record the occurrence of the signal used by the condition 
variable. 

The code in Listing 5.14 is typical of producer/consumer situations. 
In those, typically, the program starts up a bunch of threads. The 
producer threads—in this case, the one reading the file—must generate 
data or actions for the consumer or worker threads to process. Typically, 
the consumer threads are all suspended pending a signal sent when there 
is data to consume. In this situation, .NET implements handles via a 
thread pool; however, Pthreads has no built-in thread pool mechanism.  

Semaphores 
The semaphore is comparable to those in the Win32 APIs, described 
earlier. A semaphore is a counter that can have any nonnegative value. 
Threads wait on a semaphore. When the semaphore’s value is 0, all 
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threads are forced to wait. When the value is nonzero, a waiting thread is 
released to work. The thread that gets released is determined first by 
thread priority, then by whoever attached to the semaphore first. When  
a thread releases, that is, becomes unblocked, it decrements the value of 
the semaphore. In typical constructs, the semaphore is set to 0 
(blocking), which forces dependent threads to wait. Another thread 
increments the semaphore; this process is known as posting. One 
waiting thread is thereby released and in releasing, it decrements the 
semaphore back to 0. This blocks all other threads still waiting on  
the semaphore. This design makes the semaphore a convenient way to 
tell a single waiting thread that it has work to be performed. 

Technically speaking, Pthreads does not implement semaphores; they 
are a part of a different POSIX specification. However, semaphores are 
used in conjunction with Pthreads’ thread-management functionality, as 
you shall see presently. Listing 5.14 illustrates the use of Pthreads with 
semaphores. The program reads a file and signals another thread to print 
the count of bytes read. Nonessential parts of the listing have been 
removed.  

 
 
1 #include <stdio.h> 
2 #include <stdlib.h> 
3  
4 #include <pthread.h> 
5 #include <semaphore.h> 
6  
7 #define BLOCK_SIZE     100 
8 #define BUF_SIZE   1000000 
9  
10 size_t bytesRead; 
11  
12 sem_t sReadOccurred;        // the semaphore we'll use 
13 pthread_t hThread;          // the waiting thread 
14 void* 
15    PrintCountRead( void* ); // the thread function 
16  
17 int main( int argc, char *argv[] ) 
18 { 
19   . . . open the input file here. . . 
20  
21    // first initialize the semaphore 
22    sem_init( &sReadOccurred, // address of the semaphore 
23       0,   // 0 = share only with threads in this program 
24       0 ); // initial value. 0 = make threads wait 
25  
26    // now start up the thread 
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27    pthread_create( 
28                &hThread, 
29                NULL, 
30                PrintCountRead, 
31                (void *) NULL ); 
32  
33    bytesRead = fread( inbuf, 1, BLOCK_SIZE, infile ); 
34    if ( bytesRead < BLOCK_SIZE ) 
35    { 
36        printf( "Need a file longer than %d bytes\n", 
37                 BLOCK_SIZE ); 
38        return( -1 ); 
39    } 
40    else 
41        sem_post( &sReadOccurred ); // release the 
42                                    // waiting threads 
43  
44 . . . finish reading file and print total bytes read. . . 
45  
46    return( 0 ); 
47 } 
48  
49 // the thread function, which waits for the event before 
50 // proceeding 
51 void *PrintCountRead( void* pv ) 
52 { 
53    int i; 
54     
55    sem_wait( &sReadOccurred ); // wait on the semaphore 
56    printf( "Have now read %06d bytes\n", 
57             (int) bytesRead ); 
58    return( pv ); 
59 } 

Listing 5.14 Using a Pthreads Semaphore to Indicate Program Status 

The code opens an input file, creates a semaphore (lines 21–25)  
and starts up a thread (lines 26–32) before it reads any data. Notice that 
the semaphore refers to the semaphore data item on line 12. In line 55, 
we see that the created thread, which will report the number of bytes 
read, is waiting for the semaphore to signal. After the first read occurs, 
the semaphore is signaled (line 41) and releases the waiting thread to 
begin reporting the number of input bytes read. Even though the 
reporting thread was started up prior to any reads, it is incapable of 
reporting 0 bytes read because it has blocked on the semaphore until 
after the first read completed. 
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This use of a semaphore is valuable in the producer-consumer model. 
The consumer thread function is set up to contain an infinite loop, such 
as with while(1). When the producer has placed data in a data 
structure, generally a queue, it signals the semaphore, thereby releasing 
the consumer thread’s main loop. This release resets the semaphore; 
once the consumer routine is complete and loops anew, it will block on 
the semaphore until the producer thread releases it again. If the producer 
thread should post to the semaphore while the consumer thread is 
working, the thread will discover upon looping that the semaphore is 
already unlocked and so it will continue processing without stopping. By 
this means, the producer thread can directly control when and how often 
the consumer thread performs its work. 

The difficulty with semaphores is that they are limited when dealing 
with multiple consumer threads. To solve this problem, developers using 
the Pthreads library rely on condition variables.  

Compilation and Linking 

Pthreads code should include the pthread.h header file. On the 
compilation command line, the Pthreads library should be specified to 
the linker on UNIX and Linux environments using the -lpthread 
command-line switch. For the pthreads-win32 version mentioned 
earlier, include the bundled header file and link to the DLL, and the 
Pthreads programs will compile and run correctly on Windows. 

 Key Points 

This chapter provided an overview of two threading APIs: the Microsoft 
Windows model, and the POSIX threads (Pthreads) model. When 
developing applications based on these APIs, you should keep the 
following points in mind: 

 Multi-threaded applications targeting Microsoft Windows can be 
written in either native or managed code.  

 Since the CreateThread() function does not perform per-thread 
initialization of C runtime datablocks and variables, you cannot 
reliably use CreateThread() in any application that uses the C 
runtime library. Use _beginthreadex() function instead. 

 Thread termination should be handled very carefully. Avoid using 
functions such as TerminateThread().  
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 Threads can communicate with one another using Events. 

 Thread synchronization may be accomplished through the use of 
Mutexes, Semaphores, CriticalSections, and Interlocked functions. 

 Thread pool support is built into the API.  

 Windows supports multiple thread-priority levels.  

 Processor affinity is a mechanism that allows the programmer to 
specify which processor a thread should try to run on. 

 POSIX threads (Pthreads) is a portable threading API that is 
supported on a number of platforms. 

 Different platforms support different Pthreads capabilities. 
Features may not be available in all Pthreads environments. 
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Chapter 6
OpenMP†: 

A Portable Solution 
for Threading 

 

he major CPU vendors are shifting gears, choosing to add parallelism 
support on-chip with multi-core processors in order to avoid many of 

the technological hurdles in boosting speeds, while still offering a better 
performing processor. However, if your software does not take 
advantage of these multiple cores, it may not run any faster. That is 
where OpenMP† plays a key role by providing an easy method for 
threading applications without burdening the programmer with the 
complications of creating, synchronizing, load balancing, and destroying 
threads.  

The OpenMP standard was formulated in 1997 as an API for writing 
portable, multithreaded applications. It started as a Fortran-based 
standard, but later grew to include C and C++. The current version is 
OpenMP Version 2.5, which supports Fortran, C, and C++. Intel C++  
and Fortran compilers support the OpenMP Version 2.5 standard 
(www.openmp.org). The OpenMP programming model provides a 
platform-independent set of compiler pragmas, directives, function calls, 
and environment variables that explicitly instruct the compiler how and 
where to use parallelism in the application. Many loops can be threaded 
by inserting only one pragma right before the loop, as demonstrated by 
examples in this chapter. By leaving the nitty-gritty details to the 
compiler and OpenMP runtime library, you can spend more time 
determining which loops should be threaded and how to best restructure 
the algorithms for performance on multi-core processors. The full 
potential of OpenMP is realized when it is used to thread the most time-
consuming loops, that is, the hot spots.  

T 

http://www.openmp.org
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Tackling the topic of OpenMP in a single chapter is an intimidating 
task. Therefore, this chapter serves as a bridge for you, allowing you to 
reach a point where you have a fundamental understanding of threading 
with OpenMP from which you can build your broader practical 
knowledge. The power and simplicity of OpenMP can be demonstrated 
by looking at an example. The following loop converts each 32-bit RGB 
(red, green, blue) pixel in an array into an 8-bit grayscale pixel. The one 
pragma, which has been inserted immediately before the loop, is all that 
is needed for parallel execution under OpenMP. 
#pragma omp parallel for 
       for ( i = 0; i < numPixels; i++) 
       { 
             pGrayScaleBitmap[i] = (unsigned BYTE) 
                    ( pRGBBitmap[i].red   * 0.299 + 
                      pRGBBitmap[i].green * 0.587 + 
                      pRGBBitmap[i].blue  * 0.114 ); 
       } 

Let’s take a closer look at the loop. First, the example uses work-sharing, 
which is the general term that OpenMP uses to describe distributing 
work across threads. When work-sharing is used with the for construct, 
as shown in this example, the iterations of the loop are distributed 
among multiple threads. The OpenMP implementation determines how 
many threads to create and how best to manage them. All the 
programmer needs to do is to tell OpenMP which loop should be 
threaded. No need for programmers to add a lot of codes for creating, 
initializing, managing, and killing threads in order to exploit parallelism. 
OpenMP compiler and runtime library take care of these and many other 
details behind the scenes. 

In the current OpenMP specification Version 2.5, OpenMP places the 
following five restrictions on which loops can be threaded: 

 The loop variable must be of type signed integer. Unsigned 
integers will not work. Note: this restriction is to be removed in 
the future OpenMP specification Version 3.0. 

 The comparison operation must be in the form loop_variable 
<, <=, >, or >= loop_invariant_integer. 

 The third expression or increment portion of the for loop must 
be either integer addition or integer subtraction and by a loop-
invariant value. 



Chapter 6: OpenMP†: A Portable Solution for Threading 137 

 If the comparison operation is < or <=, the loop variable must 
increment on every iteration; conversely, if the comparison 
operation is > or >=, the loop variable must decrement on every 
iteration.  

 The loop must be a single entry and single exit loop, meaning no 
jumps from the inside of the loop to the outside or outside to the 
inside are permitted with the exception of the exit statement, 
which terminates the whole application. If the statements goto 
or break are used, they must jump within the loop, not outside 
it. The same goes for exception handling; exceptions must be 
caught within the loop. 

Although these restrictions may sound somewhat limiting, most loops 
can easily be rewritten to conform to them. The restrictions listed above 
must be observed so that the compiler can parallelize loops via OpenMP. 
However, even when the compiler parallelizes the loop, you must still 
ensure the loop is functionally correct by watching out for the issues in 
the next section. 

 Challenges in Threading a Loop  

Threading a loop is to convert independent loop iterations to threads and 
run these threads in parallel. In some sense, this is a re-ordering 
transformation in which the original order of loop iterations can be 
converted to into an undetermined order. In addition, because the loop 
body is not an atomic operation, statements in the two different 
iterations may run simultaneously. In theory, it is valid to convert a 
sequential loop to a threaded loop if the loop carries no dependence. 
Therefore, the first challenge for you is to identify or restructure the hot 
loop to make sure that it has no loop-carried dependence before adding 
OpenMP pragmas.   

Loop-carried Dependence 

Even if the loop meets all five loop criteria and the compiler threaded  
the loop, it may still not work correctly, given the existence of data 
dependencies that the compiler ignores due to the presence of OpenMP 
pragmas. The theory of data dependence imposes two requirements  
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that must be met for a statement S
2
 and to be data dependent on 

statement S
1
.  

 There must exist a possible execution path such that statement S
1
 

and S
2
 both reference the same memory location L.   

 The execution of S
1
 that references L occurs before the execution 

of S
2
 that references L. 

In order for S
2
 to depend upon S

1
, it is necessary for some execution of S

1
 

to write to a memory location L that is later read by an execution of S
2
. 

This is also called flow dependence. Other dependencies exist when two 
statements write the same memory location L, called an output 
dependence, or a read occurs before a write, called an anti-dependence. 
This pattern can occur in one of two ways:  

 S
1
 can reference the memory location L on one iteration of a loop; 

on a subsequent iteration S
2
 can reference the same memory 

location L.   

 S
1
 and S

2
 can reference the same memory location L on the same 

loop iteration, but with S
1
 preceding S

2 
during execution of the 

loop iteration. 

The first case is an example of loop-carried dependence, since the 
dependence exists when the loop is iterated. The second case is an 
example of loop-independent dependence; the dependence exists 
because of the position of the code within the loops. Table 6.1 shows 
three cases of loop-carried dependences with dependence distance d, 
where 1 ≤ d ≤ n, and n is the loop upper bound.    

Table 6.1 The Different Cases of Loop-carried Dependences  

 iteration k iteration k + d  

 Loop-carried flow dependence  

statement S1   write L  

statement S2  read L 

 Loop-carried anti-dependence  

statement S1  read L  

statement S2  write L 

 Loop-carried output dependence  

statement S1 write L  

statement S2  write L 
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Let’s take a look at the following example where d = 1 and n = 99. 
The write operation is to location x[k] at iteration k in S

1
, and a read 

from it at iteration k+1 in S
2
, thus a loop-carried flow dependence occurs. 

Furthermore, with the read from location y[k–1] at iteration k in S
1
, a 

write to it is performed at iteration k+1 in S
2
, hence, the loop-carried anti-

dependence exists. In this case, if a parallel for pragma is inserted for 
threading this loop, you will get a wrong result.   

// Do NOT do this. It will fail due to loop-carried  
// dependencies. 

x[0] = 0; 
y[0] = 1; 

#pragma omp parallel for private(k) 
 
      for ( k = 1; k < 100; k++ ) { 
         x[k] = y[k-1] + 1;  // S1 
         y[k] = x[k-1] + 2;  // S2 
      } 

Because OpenMP directives are commands to the compiler, the compiler 
will thread this loop. However, the threaded code will fail because of 
loop-carried dependence. The only way to fix this kind of problem is to 
rewrite the loop or to pick a different algorithm that does not contain the 
loop-carried dependence. With this example, you can first predetermine 
the initial value of x[49] and y[49]; then, you can apply the loop strip-
mining technique to create a loop-carried dependence-free loop m. 
Finally, you can insert the parallel for to parallelize the loop m. By 
applying this transformation, the original loop can be executed by two 
threads on a dual-core processor system.  

// Effective threading of the loop using strip-mining  
// transformation.  

x[0] = 0;  
y[0] = 1;  
x[49] = 74; //derived from the equation x(k)=x(k-2)+3  
y[49] = 74; //derived from the equation y(k)=y(k-2)+3 
 
#pragma omp parallel for private(m, k) 
 
     for (m=0, m<2; m++) {  
        for ( k = m*49+1; k < m*50+50; k++ ) {  
           x[k] = y[k-1] + 1;   // S1  
           y[k] = x[k-1] + 2;   // S2  
        } 
     } 



140 Multi-Core Programming 

Besides using the parallel for pragma, for the same example, you 
can also use the parallel sections pragma to parallelize the original 
loop that has loop-carried dependence for a dual-core processor system. 

// Effective threading of a loop using parallel sections   

#pragma omp parallel sections private(k) 
   { {  x[0] = 0; y[0] = 1;  
        for ( k = 1; k < 49; k++ ) {  
           x[k] = y[k-1] + 1;    // S1  
           y[k] = x[k-1] + 2;    // S2  
        }  
     } 

#pragma omp section  
     {  x[49] = 74; y[49] = 74;  
        for ( k = 50; k < 100; k++ ) {  
           x[k] = y[k-1] + 1;    // S3  
           y[k] = x[k-1] + 2;    // S4  
        }  
     }  
   } 

With this simple example, you can learn several effective methods 
from the process of parallelizing a loop with loop-carried dependences. 
Sometimes, a simple code restructure or transformation is necessary to 
get your code threaded for taking advantage of dual-core and multi-core 
processors besides simply adding OpenMP pragmas.     

Data-race Conditions 

Data-race conditions that are mentioned in the previous chapters could  
be due to output dependences, in which multiple threads attempt  
to update the same memory location, or variable, after threading. In 
general, the OpenMP C++ and Fortran compilers do honor OpenMP 
pragmas or directives while encountering them during compilation 
phase, however, the compiler does not perform or ignores the detection 
of data-race conditions. Thus, a loop similar to the following example, in 
which multiple threads are updating the variable x will lead to 
undesirable results. In such a situation, the code needs to be modified  
via privatization or synchronized using mechanisms like mutexes. For 
example, you can simply add the private(x) clause to the parallel 
for pragma to eliminate the data-race condition on variable x for  
this loop.   
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// A data race condition exists for variable x;  
// you can eliminate it by adding private(x) clause.  
 
#pragma omp parallel for  
for ( k = 0; k < 80; k++ )  
{  
    x = sin(k*2.0)*100 + 1;  
    if ( x > 60 ) x = x % 60 + 1;  
    printf ( "x %d = %d\n", k, x );  
} 

As discussed previously, data-race conditions can sometimes be 
difficult to spot; that is, more difficult than shown in this example. When 
using the full thread synchronization tools in the Windows API or in 
Pthreads, developers are more likely to avoid these issues because data is 
designed from the start to be managed with threading contention and 
race conditions in mind. However, when using OpenMP, it is easier to 
overlook data-race conditions. One tool that helps identify such situations 
is Intel® Thread Checker, which is an add-on to Intel VTune™ 
Performance Analyzer. Intel Thread Checker is discussed in more detail 
in Chapter 11.  

Managing Shared and Private Data 

In writing multithreaded programs, understanding which data is shared 
and which is private becomes extremely important, not only to 
performance, but also for program correctness. OpenMP makes this 
distinction apparent to the programmer through a set of clauses such as 
shared, private, and default, and it is something that you can set 
manually. With OpenMP, it is the developer’s responsibility to indicate to 
the compiler which pieces of memory should be shared among the 
threads and which pieces should be kept private. When memory is 
identified as shared, all threads access the exact same memory location. 
When memory is identified as private, however, a separate copy of the 
variable is made for each thread to access in private. When the loop 
exits, these private copies become undefined.  

By default, all the variables in a parallel region are shared, with three 
exceptions. First, in parallel for loops, the loop index is private. In 
the next example, the k variable is private. Second, variables that are 
local to the block of the parallel region are private. And third, any 
variables listed in the private, firstprivate, lastprivate, or 
reduction clauses are private. The privatization is done by making a 
distinct copy of each of these variables for each thread.  
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Each of the four clauses takes a list of variables, but their semantics are 
all different. The private clause says that each variable in the list should 
have a private copy made for each thread. This private copy is initialized 
with its default value, using its default constructor where appropriate. For 
example, the default value for variables of type int is 0. In OpenMP, 
memory can be declared as private in the following three ways. 

 Use the private, firstprivate, lastprivate, or reduction 
clause to specify variables that need to be private for each 
thread. 

 Use the threadprivate pragma to specify the global variables 
that need to be private for each thread.  

 Declare the variable inside the loop—really inside the OpenMP 
parallel region—without the static keyword. Because static 
variables are statically allocated in a designated memory area by 
the compiler and linker, they are not truly private like other 
variables declared within a function, which are allocated within 
the stack frame for the function. 

The following loop fails to function correctly because the variable x is 
shared. It needs to be private. Given example below, it fails due to the 
loop-carried output dependence on the variable x. The x is shared among 
all threads based on OpenMP default shared rule, so there is a data-race 
condition on the x while one thread is reading x, another thread might 
be writing to it 

#pragma omp parallel for  
      for ( k = 0; k < 100; k++ ) {  
          x = array[k];  
          array[k] = do_work(x);  
      } 

This problem can be fixed in either of the following two ways, which 
both declare the variable x as private memory. 

// This works. The variable x is specified as private. 
 
#pragma omp parallel for private(x)  
for ( k = 0; k < 100; k++ )  
{  
    x = array[i];  
    array[k] = do_work(x);  
} 
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// This also works. The variable x is now private. 

#pragma omp parallel for  
for ( k = 0; k < 100; k++ )  
{  
    int x; // variables declared within a parallel  
           // construct are, by definition, private  
    x = array[k];  
    array[k] = do_work(x);  
} 

Every time you use OpenMP to parallelize a loop, you should carefully 
examine all memory references, including the references made by called 
functions.  

Loop Scheduling and Partitioning  

To have good load balancing and thereby achieve optimal performance 
in a multithreaded application, you must have effective loop scheduling 
and partitioning. The ultimate goal is to ensure that the execution cores 
are busy most, if not all, of the time, with minimum overhead of 
scheduling, context switching and synchronization. With a poorly 
balanced workload, some threads may finish significantly before 
others, leaving processor resources idle and wasting performance 
opportunities. In order to provide an easy way for you to adjust the 
workload among cores, OpenMP offers four scheduling schemes that 
are appropriate for many situations: static, dynamic, runtime, and 
guided. The Intel C++ and Fortran compilers support all four of these 
scheduling schemes.  

A poorly balanced workload is often caused by variations in compute 
time among loop iterations. It is usually not too hard to determine the 
variability of loop iteration compute time by examining the source code. 
In most cases, you will see that loop iterations consume a uniform 
amount of time. When that’s not true, it may be possible to find a set of 
iterations that do consume similar amounts of time. For example, 
sometimes the set of all even iterations consumes about as much time as 
the set of all odd iterations, or the set of the first half of the loop 
consumes about as much time as the second half. On the other hand, it 
may be impossible to find sets of loop iterations that have a uniform 
execution time. In any case, you can provide loop scheduling 
information via the schedule(kind [, chunksize]) clause, so that the 
compiler and runtime library can better partition and distribute the 
iterations of the loop across the threads, and therefore the cores, for 
optimal load balancing. 
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By default, an OpenMP parallel for or worksharing for loop uses 
static-even scheduling. This means the iterations of a loop are distributed 
among the threads in a roughly equal number of iterations. If m iterations 
and N threads are in the thread team, each thread gets m/N iterations, 
and the compiler and runtime library correctly handles the case when m 
is not evenly divisible by N. 

With the static-even scheduling scheme, you could minimize the 
chances of memory conflicts that can arise when more than one 
processor is trying to access the same piece of memory. This approach  
is workable because loops generally touch memory sequentially, so 
splitting up the loop into large chunks results in little chance of 
overlapping memory and a reasonable chance of good processor cache 
efficiency. Consider the following simple loop when executed using 
static-even scheduling and two threads. 

#pragma omp parallel for  
for ( k = 0; k < 1000; k++ ) do_work(k); 

OpenMP will execute loop iterations 0 to 499 on one thread and  
500 to 999 on the other thread. While this partition of work might be a 
good choice for memory issues, it could be bad for load balancing. 
Unfortunately, the converse is also true: what might be good for load 
balancing could be bad for memory performance. Therefore, 
performance engineers must strike a balance between optimal memory 
usage and optimal load balancing by measuring performance to see what 
method produces the best results. 

Loop-scheduling and partitioning information is conveyed to the 
compiler and runtime library on the OpenMP for construct with the 
schedule clause. 

#pragma omp for schedule(kind [, chunk-size]) 

The four schedule schemes specified in the OpenMP standard are 
summarized in Table 6.2. The optional parameter chunk-size, when 
specified, must be a loop-invariant positive integer constant or integer 
expression.  

Be careful when you adjust the chunk size, because performance 
can be adversely affected. As the chunk size shrinks, the number of 
times a thread needs to retrieve work from the work queue increases. 
As a result, the overhead of going to the work queue increases, thereby 
reducing performance and possibly offsetting the benefits of load 
balancing.  
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Table 6.2 The Four Schedule Schemes in OpenMP 

Schedule Type Description 

static (default 
with no chunk 
size) 

Partitions the loop iterations into equal-sized chunks or as 
nearly equal as possible in the case where the number of loop 
iterations is not evenly divisible by the number of threads 
multiplied by the chunk size. When chunk size is not specified, 
the iterations are divided as evenly as possible, with one chunk 
per thread. Set chunk to 1 to interleave the iterations. 

dynamic Uses an internal work queue to give a chunk-sized block of loop 
iterations to each thread as it becomes available. When a thread 
is finished with its current block, it retrieves the next block of 
loop iterations from the top of the work queue. By default, chunk 
size is 1. Be careful when using this scheduling type because of 
the extra overhead required. 

guided Similar to dynamic scheduling, but the chunk size starts off large 
and shrinks in an effort to reduce the amount of time threads 
have to go to the work queue to get more work. The optional 
chunk parameter specifies the minimum size chunk to use, 
which, by default, is 1. 

runtime Uses the OMP_SCHEDULE environment variable at runtime to 
specify which one of the three loop-scheduling types should be 
used. OMP_SCHEDULE is a string formatted exactly the same 
as it would appear on the parallel construct.  

 
For dynamic scheduling, the chunks are handled with the first-come, 

first-serve scheme, and the default chunk size is 1. Each time, the number 
of iterations grabbed is equal to the chunk size specified in the schedule 
clause for each thread, except the last chunk. After a thread has finished 
executing the iterations given to it, it requests another set of chunk-size 
iterations. This continues until all of the iterations are completed. The 
last set of iterations may be less than the chunk size. For example, if  
the chunk size is specified as 16 with the schedule(dynamic,16) 
clause and the total number of iterations is 100, the partition would be 
16,16,16,16,16,16,4 with a total of seven chunks. 

For guided scheduling, the partitioning of a loop is done based on the 
following formula with a start value of β

0
 = number of loop iterations. 

⎥
⎥
⎤

⎢
⎢
⎡=

N
k

k 2
β

π  

where N is the number of threads, π
k
 denotes the size of the k’th chunk, 

starting from the 0’th chunk, and β
k
 denotes the number of remaining 

unscheduled loop iterations while computing the size of k’th chunk. 
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When π
k
 gets too small, the value gets clipped to the chunk size S 

that is specified in the schedule (guided, chunk-size) clause. The 
default chunk size setting is 1, if it is not specified in the schedule 
clause. Hence, for the guided scheduling, the way a loop is partitioned 
depends on the number of threads (N), the number of iterations (β

0
) and 

the chunk size (S).  
For example, given a loop with β

0
 = 800, N = 2, and S = 80, the loop 

partition is {200, 150, 113, 85, 80, 80, 80, 12}. When π
4
 is smaller than 

80, it gets clipped to 80. When the number of remaining unscheduled 
iterations is smaller than S, the upper bound of the last chunk is trimmed 
whenever it is necessary. The guided scheduling supported in the Intel 
C++ and Fortran compilers are a compliant implementation specified in 
the OpenMP Version 2.5 standard. 

With dynamic and guided scheduling mechanisms, you can tune your 
application to deal with those situations where each iteration has variable 
amounts of work or where some cores (or processors) are faster than 
others. Typically, guided scheduling performs better than dynamic 
scheduling due to less overhead associated with scheduling. 

The runtime scheduling scheme is actually not a scheduling scheme 
per se. When runtime is specified in the schedule clause, the OpenMP 
runtime uses the scheduling scheme specified in the OMP_SCHEDULE 
environment variable for this particular for loop. The format for the 
OMP_SCHEDULE environment variable is schedule-type[,chunk-size]. 
For example:  

export OMP_SCHEDULE=dynamic,16 

Using runtime scheduling gives the end-user some flexibility in 
selecting the type of scheduling dynamically among three previously 
mentioned scheduling mechanisms through the OMP_SCHEDULE 
environment variable, which is set to static by default.  

Furthermore, understanding the loop scheduling and partitioning 
schemes will significantly help you to choose the right scheduling 
scheme, help you to avoid false-sharing for your applications at runtime, 
and lead to good load balancing. Considering the following example:  

float x[1000], y[1000];  
#pragma omp parallel for schedule(dynamic, 8)  
         for (k=0; k<1000; k++) {  
            x[k] = cos(k)* x[k] + sin(k) * y[k]  
         } 
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Assume you have a dual-core processor system and the cache line size 
is 64 bytes. For the sample code shown above, two chunks (or array 
sections) can be in the same cache line because the chunk size is set to 8 
in the schedule clause. So each chunk of array x takes 32 bytes per cache 
line, which leads to two chunks placed in the same cache line. Because 
two chunks can be read and written by two threads at the same time, this 
will result in many cache line invalidations, although two threads do not 
read/write the same chunk. This is called false-sharing, as it is not 
necessary to actually share the same cache line between two threads. A 
simple tuning method is to use schedule(dynamic,16), so one chunk 
takes the entire cache line to eliminate the false-sharing. Eliminating false-
sharing through the use of a chunk size setting that is aware of cache line 
size will significantly improve your application performance.    

Effective Use of Reductions 

In large applications, you can often see the reduction operation inside 
hot loops. Loops that reduce a collection of values to a single value are 
fairly common. Consider the following simple loop that calculates the 
sum of the return value of the integer-type function call func(k) with 
the loop index value as input data. 

sum = 0;  
for ( k = 0; k < 100; k++ ){  
  sum = sum + func(k); // “func” has no side-effects  
} 

It looks as though the loop-carried dependence on sum would prevent 
threading. However, if you have a dual-core processor system, you can 
perform the privatization—that is, create a stack variable “temp” from 
which memory is allocated from automatic storage for each thread—and 
perform loop partitioning to sum up the value of two sets of calls in 
parallel, as shown in the following example.   

Thread 0:                      Thread 1: 

temp = 0;                      temp = 0;  
for (k=0; k<50; k++) {         for (k=50; k<100; k++) { 
  temp = temp + func(k);           temp = temp + func(k) 
}                              } 
 
lock (&sum)                    lock(&sum) 
sum = sum + temp               sum = sum + temp 
unlock (&sum)                  unlock(&sum)   



148 Multi-Core Programming 

At the synchronization point, you can combine the partial sum results 
from each thread to generate the final sum result. In order to perform  
this form of recurrence calculation in parallel, the operation must be 
mathematically associative and commutative. You may notice that the 
variable sum in the original sequential loop must be shared to guarantee 
the correctness of the multithreaded execution of the loop, but it also 
must be private to permit access by multiple threads using a lock or a 
critical section for the atomic update on the variable sum to avoid data-
race condition. To solve the problem of both sharing and protecting sum 
without using a lock inside the threaded loop, OpenMP provides the 
reduction clause that is used to efficiently combine certain associative 
arithmetical reductions of one or more variables in a loop. The following 
loop uses the reduction clause to generate the correct results. 

sum = 0;  
#pragma omp parallel for reduction(+:sum)  
    for (k = 0; k < 100; k++) {  
       sum = sum + func(k);  
    } 

Given the reduction clause, the compiler creates private copies of the 
variable sum for each thread, and when the loop completes, it adds the 
values together and places the result in the original variable sum. 

Other reduction operators besides “+” exist. Table 6.3 lists those C++ 
reduction operators specified in the OpenMP standard, along with the initial 
values—which are also the mathematical identity value—for the temporary 
private variables. You can also find a list of Fortran reduction operators along 
with their initial values in OpenMP specification Version 2.5.  

Table 6.3 Reduction Operators and Reduction Variable’s Initial Value in 
OpenMP 

Operator Initialization Value 

+ (addition) 0 

- (subtraction) 0 

* (multiplication) 1 

& (bitwise and) ~0 

| (bitwise or) 0 

^ (bitwise exclusive or) 0 

&& (conditional and) 1 

|| (conditional or) 0 
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For each variable specified in a reduction clause, a private copy is 
created, one for each thread, as if the private clause is used. The 
private copy is then initialized to the initialization value for the operator, 
as specified in Table 6.3. At the end of the region or the loop for which 
the reduction clause was specified, the original reduction variable is 
updated by combining its original value with the final value of each of 
the private copies, using the operator specified. While identifying the 
opportunities to explore the use of the reduction clause for threading, 
you should keep the following three points in mind.  

 The value of the original reduction variable becomes undefined 
when the first thread reaches the region or loop that specifies the 
reduction clause and remains so until the reduction 
computation is completed.  

 If the reduction clause is used on a loop to which the nowait is 
also applied, the value of original reduction variable remains 
undefined until a barrier synchronization is performed to ensure 
that all threads have completed the reduction.  

 The order in which the values are combined is unspecified. 
Therefore, comparing sequential and parallel runs, even between 
two parallel runs, does not guarantee that bit-identical results will 
be obtained or that side effects, such as floating-point exceptions, 
will be identical.  

 Minimizing Threading Overhead 

Using OpenMP, you can parallelize loops, regions, and sections or 
straight-line code blocks, whenever dependences do not forbids them 
being executed in parallel. In addition, because OpenMP employs the 
simple fork-join execution model, it allows the compiler and run-time 
library to compile and run OpenMP programs efficiently with lower 
threading overhead. However, you can improve your application 
performance by further reducing threading overhead.  

Table 6.4 provides measured costs of a set of OpenMP constructs and 
clauses on a 4-way Intel Xeon® processor-based system running at 
3.0 gigahertz with the Intel compiler and runtime library. You can see that 
the cost for each construct or clause is small. Most of them are less than 
7 microseconds except the schedule(dynamic) clause. The schedule 
(dynamic) clause takes 50 microseconds, because its default chunk size is 
1, which is too small. If you use schedule(dynamic,16), its cost is 
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reduced to 5.0 microseconds. Note that all measured costs are subject to 
change if you measure these costs on a different processor or under a 
different system configuration. The key point is that no matter how well the 
compiler and runtime are developed and tuned to minimize the overhead of 
OpenMP constructs and clauses, you can always find ways to reduce the 
overhead by exploring the use of OpenMP in a more effective way.    

Table 6.4 Measured Cost of OpenMP Constructs and Clauses  

Constructs  Cost (in microseconds) Scalability   

parallel  1.5 Linear 

Barrier 1.0 Linear or O(log(n)) 

schedule(static) 1.0 Linear 

schedule(guided) 6.0 Depends on contention 

schedule(dynamic) 50 Depends on contention 

ordered 0.5 Depends on contention 

Single  1.0 Depends on contention 

Reduction   2.5 Linear or O(log(n)) 

Atomic  0.5 Depends on data-type and 
hardware 

Critical  0.5 Depends on contention 

Lock/Unlock 0.5 Depends on contention 

Earlier, you saw how the parallel for pragma could be used to 
split the iterations of a loop across multiple threads. When the compiler 
generated thread is executed, the iterations of the loop are distributed 
among threads. At the end of the parallel region, the threads are 
suspended and they wait for the next parallel region, loop, or sections.  
A suspend or resume operation, while significantly lighter weight than 
create or terminate operations, still creates overhead and may be 
unnecessary when two parallel regions, loops, or sections are adjacent as 
shown in the following example. 

#pragma omp parallel for for  
( k = 0; k < m; k++ ) {  
    fn1(k); fn2(k);  
} 
 
#pragma omp parallel for // adds unnecessary overhead  
for ( k = 0; k < m; k++ ) {  
    fn3(k); fn4(k);  
} 
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The overhead can be removed by entering a parallel region once, 
then dividing the work within the parallel region. The following code is 
functionally identical to the preceding code but runs faster, because the 
overhead of entering a parallel region is performed only once. 

#pragma omp parallel  
{  
   #pragma omp for  
   for ( k = 0; k < m; k++ ) {  
      fn1(k); fn2(k);  
   } 
 
   #pragma omp for  
   for ( k = 0; k < m; k++ ) {  
      fn3(k); fn4(k);  
   }  
} 

Ideally, all performance-critical portions of the application would be 
executed within a parallel region. Since very few programs are 
comprised only of loops, additional constructs are used to handle non-
loop code. A work-sharing section is one such construct. 

Work-sharing Sections 

The work-sharing sections construct directs the OpenMP compiler and 
runtime to distribute the identified sections of your application among 
threads in the team created for the parallel region. The following 
example uses work-sharing for loops and work-sharing sections 
together within a single parallel region. In this case, the overhead of 
forking or resuming threads for parallel sections is eliminated.  

#pragma omp parallel  
{  
   #pragma omp for  
   for ( k = 0; k < m; k++ ) {  
      x = fn1(k) + fn2(k);  
   } 
 
   #pragma omp sections private(y, z)  
   {  
      #pragma omp section  
         { y = sectionA(x); fn7(y); }  
      #pragma omp section  
         { z = sectionB(x); fn8(z); }  
   }  
} 
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Here, OpenMP first creates several threads. Then, the iterations of the 
loop are divided among the threads. Once the loop is finished, the 
sections are divided among the threads so that each section is executed 
exactly once, but in parallel with the other sections. If the program 
contains more sections than threads, the remaining sections get 
scheduled as threads finish their previous sections. Unlike loop 
scheduling, the schedule clause is not defined for sections. Therefore, 
OpenMP is in complete control of how, when, and in what order threads 
are scheduled to execute the sections. You can still control which 
variables are shared or private, using the private and reduction 
clauses in the same fashion as the loop construct.   

 Performance-oriented Programming 

OpenMP provides a set of important pragmas and runtime functions that 
enable thread synchronization and related actions to facilitate correct 
parallel programming. Using these pragmas and runtime functions 
effectively with minimum overhead and thread waiting time is extremely 
important for achieving optimal performance from your applications.   

Using Barrier and Nowait  

Barriers are a form of synchronization method that OpenMP employs to 
synchronize threads. Threads will wait at a barrier until all the threads in 
the parallel region have reached the same point. You have been using 
implied barriers without realizing it in the work-sharing for and work-
sharing sections constructs. At the end of the parallel, for, 
sections, and single constructs, an implicit barrier is generated by the 
compiler or invoked in the runtime library. The barrier causes execution to 
wait for all threads to finish the work of the loop, sections, or region 
before any go on to execute additional work. This barrier can be removed 
with the nowait clause, as shown in the following code sample. 
#pragma omp parallel  
{  
   #pragma omp for nowait  
   for ( k = 0; k < m; k++ ) {  
      fn10(k); fn20(k);  
   } 

   #pragma omp sections private(y, z)  
   {  
      #pragma omp section   
         { y = sectionD(); fn70(y); }  
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      #pragma omp section   
         { z = sectionC(); fn80(z); }  
   }  
} 

In this example, since data is not dependent between the first work-
sharing for loop and the second work-sharing sections code block, the 
threads that process the first work-sharing for loop continue 
immediately to the second work-sharing sections without waiting for 
all threads to finish the first loop. Depending upon your situation, this 
behavior may be beneficial, because it can make full use of available 
resources and reduce the amount of time that threads are idle. The 
nowait clause can also be used with the work-sharing sections 
construct and single construct to remove its implicit barrier at the end 
of the code block. 

Adding an explicit barrier is also supported by OpenMP as shown in 
the following example through the barrier pragma. 
#pragma omp parallel shared(x, y, z) num_threads(2)  
{  
   int tid = omp_get_thread_num();  
   if (tid == 0) {  
      y = fn70(tid);  
   }  
   else {  
      z = fn80(tid);  
   } 

#pragma omp barrier 

#pragma omp for  
   for ( k = 0; k < 100; k++ ) {  
      x[k] = y + z + fn10(k) + fn20(k);  
   }  
} 

In this example, the OpenMP code is to be executed by two threads; 
one thread writes the result to the variable y, and another thread writes 
the result to the variable z. Both y and z are read in the work-sharing for 
loop, hence, two flow dependences exist. In order to obey the data 
dependence constraints in the code for correct threading, you need to 
add an explicit barrier pragma right before the work-sharing for loop 
to guarantee that the value of both y and z are ready for read. In real 
applications, the barrier pragma is especially useful when all threads 
need to finish a task before any more work can be completed, as would 
be the case, for example, when updating a graphics frame buffer before 
displaying its contents.  
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Interleaving Single-thread and Multi-thread Execution 

In large real-world applications, a program may consist of both serial and 
parallel code segments due to various reasons such as data dependence 
constraints and I/O operations. A need to execute something only once 
by only one thread will certainly be required within a parallel region, 
especially because you are making parallel regions as large as possible  
to reduce overhead. To handle the need for single-thread execution, 
OpenMP provides a way to specify that a sequence of code contained 
within a parallel section should only be executed one time by only one 
thread. The OpenMP runtime library decides which single thread will  
do the execution. If need be, you can specify that you want only the 
master thread, the thread that actually started the program execution, to 
execute the code, as in the following example. 

#pragma omp parallel  
{  // every thread calls this function  
   int tid = omp_get_thread_num(); 

   // this loop is divided among the threads  
   #pragma omp for nowait  
   for ( k = 0; k < 100; k++ ) x[k] = fn1(tid);  
   // no implicit barrier at the end of the above loop causes 
   // all threads to synchronize here 

   #pragma omp master  
   y = fn_input_only();// only the master thread calls this 

   // adding an explicit barrier to synchronize all threads  
   // to make sure x[0-99] and y is ready for use  
   #pragma omp barrier 

   // again, this loop is divided among the threads  
   #pragma omp for nowait  
   for ( k = 0; k < 100; k++ ) x[k] = y + fn2(x[k]);  
   // The above loop does not have an implicit barrier, so  
   // threads will not wait for each other. 

   // One thread – presumbly the first one done with above --  
   // will continue and execute the following code.  
   #pragma omp single  
   fn_single_print(y); // only one of threads calls this 

   // The above single construct has an implicit barrier,  
   // so all threads synchronize here before printing x[]. 

   #pragma omp master  
   fn_print_array(x); // only one of threads prints x[]  
} 
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As can be seen from the comments in this code, a remarkable amount 
of synchronization and management of thread execution is available in a 
comparatively compact lexicon of pragmas. Note that all low-level details 
are taken care of by the OpenMP compiler and runtime. What you need 
to focus on is to specify parallel computation and synchronization 
behaviors you expected for correctness and performance. In other 
words, using single and master pragmas along with the barrier 
pragma and nowait clause in a clever way, you should be able to 
maximize the scope of a parallel region and the overlap of computations 
to reduce threading overhead effectively, while obeying all data 
dependences and I/O constraints in your programs.  

Data Copy-in and Copy-out 

When you parallelize a program, you would normally have to deal with how 
to copy in the initial value of a private variable to initialize its private copy for 
each thread in the team. You would also copy out the value of the private 
variable computed in the last iteration/section to its original variable for the 
master thread at the end of parallel region. OpenMP standard provides four 
clauses—firstprivate, lastprivate, copyin, and copyprivate—for 
you to accomplish the data copy-in and copy-out operations whenever 
necessary based on your program and parallelization scheme. The following 
descriptions summarize the semantics of these four clauses:  

 firstprivate provides a way to initialize the value of a private 
variable for each thread with the value of variable from the master 
thread. Normally, temporary private variables have an undefined 
initial value saving the performance overhead of the copy.  

 lastprivate provides a way to copy out the value of the private 
variable computed in the last iteration/section to the copy of the 
variable in the master thread. Variables can be declared both 
firstprivate and lastprivate at the same time. 

 copyin provides a way to copy the master thread’s 
threadprivate variable to the threadprivate variable of each 
other member of the team executing the parallel region.  

 copyprivate provides a way to use a private variable to 
broadcast a value from one member of threads to other members 
of the team executing the parallel region. The copyprivate 
clause is allowed to associate with the single construct; the 
broadcast action is completed before any of threads in the team 
left the barrier at the end of construct.   
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Considering the code example, let’s see how it works. The following 
code converts a color image to black and white. 
for ( row = 0; row < height; row++ ) {  
    for ( col = 0; col < width; col++ ) {  
         pGray[col] = (BYTE)  
             ( pRGB[row].red   * 0.299 +  
               pRGB[row].green * 0.587 +  
               pRGB[row].blue  * 0.114 );  
    }  
    pGray += GrayStride;  
    pRGB += RGBStride;  
} 

The issue is how to move the pointers pGray and pRGB to the correct 
place within the bitmap while threading the outer “row” loop. The 
address computation for each pixel can be done with the following code:  
pDestLoc = pGray + col + row * GrayStride;  
pSrcLoc  = pRGB + col + row * RGBStride; 

The above code, however, executes extra math on each pixel for the 
address computation. Instead, the firstprivate clause can be used to 
perform necessary initialization to get the initial address of pointer pGray 
and pRGB for each thread. You may notice that the initial addresses of the 
pointer pGray and pRGB have to be computed only once based on the 
“row” number and their initial addresses in the master thread for each 
thread; the pointer pGray and pRGB are induction pointers and updated 
in the outer loop for each “row” iteration. This is the reason the bool-
type variable doInit is introduced with an initial value TRUE to make 
sure the initialization is done only once for each to compute the initial 
address of pointer pGray and pRGB. The parallelized code follows: 

      #pragma omp parallel for private (row, col) \ 
                           firstprivate(doInit, pGray, pRGB)  
      for ( row = 0; row < height; row++ ) {  
          // Need this init test to be able to start at an  
          // arbitrary point within the image after threading.  
          if (doInit == TRUE) {  
             doInit = FALSE;  
             pRGB  += ( row * RGBStride );  
             pGray += ( row * GrayStride );  
          }  
          for ( col = 0; col < width; col++ ) {  
             pGray[col] = (BYTE) ( pRGB[row].red   * 0.299 +  
                                   pRGB[row].green * 0.587 +  
                                   pRGB[row].blue  * 0.114 ); 
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          }  
          pGray += GrayStride;  
          pRGB += RGBStride;  
      } 

If you take a close look at this code, you may find that the four variables 
GrayStride, RGBStride, height, and width are read-only variables. In 
other words, no write operation is performed to these variables in the 
parallel loop. Thus, you can also specify them on the parallel for loop 
by adding the code below:   
firstprivate (GrayStride, RGBStride, height, width)  

You may get better performance in some cases, as the privatization 
helps the compiler to perform more aggressive registerization and code 
motion as their loop invariants reduce memory traffic.  

Protecting Updates of Shared Variables 

The critical and atomic pragmas are supported by the OpenMP 
standard for you to protect the updating of shared variables for avoiding 
data-race conditions. The code block enclosed by a critical section and an 
atomic pragma are areas of code that may be entered only when no other 
thread is executing in them. The following example uses an unnamed 
critical section. 
#pragma omp critical  
{  
   if ( max < new_value ) max = new_value  
} 

Global, or unnamed, critical sections will likely and unnecessarily 
affect performance because every thread is competing to enter the 
same global critical section, as the execution of every thread is 
serialized. This is rarely what you want. For this reason, OpenMP offers 
named critical sections. Named critical sections enable fine-grained 
synchronization, so only the threads that need to block on a particular 
section will do so. The following example shows the code that 
improves the previous example. In practice, named critical sections are 
used when more than one thread is competing for more than one 
critical resource. 
#pragma omp critical(maxvalue)  
{  
   if ( max < new_value ) max = new_value  
} 
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With named critical sections, applications can have multiple critical 
sections, and threads can be in more than one critical section at a time. It is 
important to remember that entering nested critical sections runs the risk 
of deadlock. The following code example code shows a deadlock situation: 
void dequeue(NODE *node)  
{  
  #pragma omp critical (x)  
  {  
     node = node->next;  
  }  
} 

void do_work(NODE *node)  
{  
  #pragma omp critical (x)  
  {  
     node->next->data = fn1(node->data);  
     node = dequeue(node)  
  }  
} 

In the previous code, the dynamically nested critical sections are used. 
When the function do_work is called inside a parallel loop, multiple 
threads compete to enter the outer critical section. The thread that 
succeeds in entering the outer critical section will call the dequeue 
function; however, the dequeue function cannot make any further 
progress, as the inner critical section attempts to enter the same critical 
section in the do_work function. Thus, the do_work function could 
never complete. This is a deadlock situation. The simple way to fix the 
problem in the previous code is to do the inlining of the dequeue 
function in the do_work function as follows: 
void do_work(NODE *node)  
{  
  #pragma omp critical (x)  
  {  
     node->next->data = fn1(node->data);  
     node = node->next;  
  }  
} 

When using multiple critical sections, be very careful to examine 
critical sections that might be lurking in subroutines. In addition to using 
critical sections, you can also use the atomic pragma for updating 
shared variables. When executing code in parallel, it is impossible to 
know when an operation will be interrupted by the thread scheduler. 
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However, sometimes you may require that a statement in a high-level 
language complete in its entirety before a thread is suspended. For 
example, a statement x++ is translated into a sequence of machine 
instructions such as:  
load   reg, [x];  
add    reg 1;  
store  [x], reg;  

It is possible that the thread is swapped out between two of these machine 
instructions. The atomic pragma directs the compiler to generate code to 
ensure that the specific memory storage is updated atomically. The 
following code example shows a usage of the atomic pragma. 
int main()  
{ float y[1000];  
  int   k, idx[1000]; 

  #pragma omp parallel for shared(y, idx)  
  for ( k = 0; k < 8000; k++) {  
    idx[k] = k % 1000;  
    y[idx[k]] = 8.0;  
  }   

  #pragma omp parallel for shared(y, idx)  
  for ( k = 0; k < 8000; k++) {  
     #pragma omp atomic  
     y[idx[k]] += 8.0 * (k % 1000);  
  }  
  return 0;  
} 

An expression statement that is allowed to use the atomic pragma 
must be with one of the following forms: 

 x binop = expr  

 x++ 

 ++x 

 x -- 

 -- x  

In the preceding expressions, x is an lvalue expression with scalar type; 
expr is an expression with scalar type and does not reference the object 
designed by x; binop is not an overloaded operator and is one of +, *, -, /, 
&, ^, |, <<, or >> for the C/C++ language.   

It is worthwhile to point out that in the preceding code example, 
the advantage of using the atomic pragma is that it allows update of 
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two different elements of array y to occur in parallel. If a critical section 
were used instead, then all updates to elements of array y would be 
executed serially, but not in a guaranteed order. Furthermore, in 
general, the OpenMP compiler and runtime library select the most 
efficient method to implement the atomic pragma given operating 
system features and hardware capabilities. Thus, whenever it is possible 
you should use the atomic pragma before using the critical section in 
order to avoid data-race conditions on statements that update a shared 
memory location. 

Intel Taskqueuing Extension to OpenMP 

The Intel Taskqueuing extension to OpenMP allows a programmer to 
parallelize control structures such as recursive function, dynamic-tree 
search, and pointer-chasing while loops that are beyond the scope of 
those supported by the current OpenMP model, while still fitting into the 
framework defined by the OpenMP specification. In particular, the 
taskqueuing model is a flexible programming model for specifying units 
of work that are not pre-computed at the start of the work-sharing 
construct. Take a look the following example.  
void tq_func(LIST *p)  
{  
  #pragma intel omp parallel taskq shared(p)  
  {  while (p!= NULL)  {  
       #pragma intel omp task captureprivate(p)  
        {   tq_work1(p, 70);  }  
       #pragma intel omp task captureprivate(p)  
        {   tq_work2(p, 80);  }  
       p= p->next;  
     }  
  }  
} 

The parallel taskq pragma directs the compiler to generate code to 
create a team of threads and an environment for the while loop to 
enqueue the units of work specified by the enclosed task pragma. The 
loop’s control structure and the enqueuing are executed by one thread, 
while the other threads in the team participate in dequeuing the work 
from the taskq queue and executing it. The captureprivate clause 
ensures that a private copy of the link pointer p is captured at the time 
each task is being enqueued, hence preserving the sequential semantics. 
The taskqueuing execution model is shown in Figure 6.1.  
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Figure 6.1 Taskqueuing Execution Model  

Essentially, for any given program with parallel taskq constructs, 
a team of threads is created by the runtime library when the main thread 
encounters a parallel region. The runtime thread scheduler chooses one 
thread T

K
 to execute initially from all the threads that encounter a taskq 

pragma. All the other threads wait for work to be put on the task queue. 
Conceptually, the taskq pragma triggers this sequence of actions: 

1. Causes an empty queue to be created by the chosen thread T
K
 

2. Enqueues each task that it encounters 

3. Executes the code inside the taskq block as a single thread  

The task pragma specifies a unit of work, potentially to be executed by a 
different thread. When a task pragma is encountered lexically within a 
taskq block, the code inside the task block is placed on the queue 
associated with the taskq pragma. The conceptual queue is disbanded 
when all work enqueued on it finishes and the end of the taskq block is 
reached. The Intel C++ compiler has been extended throughout its 
various components to support the taskqueuing model for generating 
multithreaded codes corresponding to taskqueuing constructs.  
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 OpenMP Library Functions 
As you may remember, in addition to pragmas, OpenMP provides a set of 
functions calls and environment variables. So far, only the pragmas have 
been described. The pragmas are the key to OpenMP because they provide 
the highest degree of simplicity and portability, and the pragmas can be 
easily switched off to generate a non-threaded version of the code.  

In contrast, the OpenMP function calls require you to add the 
conditional compilation in your programs as shown below, in case you 
want to generate a serial version.  
#include <omp.h> 

#ifdef _OPENMP  
    omp_set_num_threads(4);  
#endif 

When in doubt, always try to use the pragmas and keep the function 
calls for the times when they are absolutely necessary. To use the 
function calls, include the <omp.h> header file. The compiler 
automatically links to the correct libraries.  

The four most heavily used OpenMP library functions are shown in 
Table 6.5. They retrieve the total number of threads, set the number of 
threads, return the current thread number, and return the number of 
available cores, logical processors or physical processors, respectively. 
To view the complete list of OpenMP library functions, please see the 
OpenMP Specification Version 2.5, which is available from OpenMP web 
site at www.openmp.org. 

Table 6.5 The Most Heavily Used OpenMP Library Functions  

Function Name Description 

int omp_get_num_threads ( void ); Returns the number of threads currently in 
use. If called outside a parallel region, this 
function will return 1. 

int omp_set_num_threads ( int 
NumThreads ); 

This function sets the number of threads that 
will be used when entering a parallel section. 
It overrides the OMP_NUM_THREADS 
environment variable. 

int omp_get_thread_num ( void ); Returns the current thread number between 0 
(master thread) and total number of threads - 1. 

int omp_get_num_procs ( void ); Returns the number of available cores (or 
processors). A core or processor with Hyper-
Threading Technology enabled will count as 
two cores (or two processors). 

http://www.openmp.org
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Figure 6.2 uses these functions to perform data processing for each 
element in array x. This example illustrates a few important concepts 
when using the function calls instead of pragmas. First, your code must 
be rewritten, and with any rewrite comes extra documentation, 
debugging, testing, and maintenance work. Second, it becomes difficult 
or impossible to compile without OpenMP support. Finally, because 
thread values have been hard coded, you lose the ability to have loop-
scheduling adjusted for you, and this threaded code is not scalable 
beyond four cores or processors, even if you have more than four cores 
or processors in the system.  

float x[8000]; 

omp_set_num_threads(4);  
#pragma omp parallel private(k)  
{ // This code has a shortcoming. Can you find it?  
  int num_thds = omp_get_num_threads();  
  int ElementsPerThread = 8000 / num_thds;  
  int Tid = omp_get_thread_num();  
  int LowBound   = Tid*ElementsPerThread;  
  int UpperBound = LowBound + ElementsPerThread;  

  for ( k = LowBound; k < UpperBound; k++ )  
      DataProcess(x[k]);  
} 

Figure 6.2 Loop that Uses OpenMP Functions and Illustrates the Drawbacks 

 OpenMP Environment Variables 
The OpenMP specification defines a few environment variables. Occasionally 
the two shown in Table 6.6 may be useful during development. 

Table 6.6 Most Commonly Used Environment Variables for OpenMP 

Environment Variable Description Example 

OMP_SCHEDULE Controls the scheduling of 
the for-loop work-sharing 
construct. 

set OMP_SCHEDULE = “guided, 2” 

OMP_NUM_THREADS Sets the default number 
of threads. The 
omp_set_num_threads() 
function call can override 
this value. 

set OMP_NUM_THREADS = 4 
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Additional compiler-specific environment variables are usually 
available. Be sure to review your compiler’s documentation to become 
familiar with additional variables. 

 Compilation 
Using the OpenMP pragmas requires an OpenMP-compatible compiler 
and thread-safe runtime libraries. The Intel C++ Compiler version 7.0 
or later and the Intel Fortran compiler both support OpenMP on Linux 
and Windows. This book’s discussion of compilation and debugging 
will focus on these compilers. Several other choices are available as 
well, for instance, Microsoft supports OpenMP in Visual C++ 2005 for 
Windows and the Xbox™ 360 platform, and has also made OpenMP 
work with managed C++ code. In addition, OpenMP compilers for 
C/C++ and Fortran on Linux and Windows are available from the 
Portland Group. 

The /Qopenmp command-line option given to the Intel C++ Compiler 
instructs it to pay attention to the OpenMP pragmas and to create 
multithreaded code. If you omit this switch from the command line, the 
compiler will ignore the OpenMP pragmas. This action provides a very 
simple way to generate a single-threaded version without changing any 
source code. Table 6.7 provides a summary of invocation options for 
using OpenMP. 

Table 6.7 Compiler Switches for OpenMP (C/C++ and Fortran) 

Windows Linux Semantics 

-Qopenmp  -openmp Generate multithreaded code for Intel® 
Pentium® III, Pentium 4 with Hyper-
Threading Technology, Pentium M, 
and multi-core processors. 

-Qopenmp-profile -openmp-profile Link with instrumented OpenMP 
runtime library to generate OpenMP 
profiling information for use with the 
OpenMP component of VTune™ 
Performance Analyzer. 

-Qopenmp-stubs -openmp-stubs  Enable the user to compile OpenMP 
programs in sequential mode. The 
openmp directives are ignored and a 
stub OpenMP library is linked for 
sequential execution. 
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Windows Linux Semantics 

-Qopenmp-report -openmp-report Control level of reports: 

0 
1 
2  

0 
1 
2  

0 - Disable parallelization diagnostics 
1 - report successfully threaded code 
[default] 
2 – 1 + report successfully code 
generation for master, single, critical, 
and atomic. 

For conditional compilation, the compiler defines _OPENMP. If needed, 
this definition can be tested in this manner: 
#ifdef _OPENMP  
    printf ( "Hello World, I'm using OpenMP!\n" );  
#endif 

The thread-safe runtime libraries are selected and linked automatically 
when the OpenMP related compilation switch is used. 

The Intel compilers support the OpenMP Specification Version 2.5 
except the workshare construct. Be sure to browse the release notes 
and compatibility information supplied with the compiler for the latest 
information. The complete OpenMP specification is available from the 
OpenMP Web site, listed in References. To review details about OpenMP 
for the Intel Compiler, see Chapter 11. 

 Debugging 
Debugging multithreaded applications has always been a challenge due 
to the nondeterministic execution of multiple instruction streams caused 
by runtime thread-scheduling and context switching. Also, debuggers 
may change the runtime performance and thread scheduling behaviors, 
which can mask race conditions and other forms of thread interaction. 
Even print statements can mask issues because they use synchronization 
and operating system functions to guarantee thread-safety.  

Debugging an OpenMP program adds some difficulty, as OpenMP 
compilers must communicate all the necessary information of private 
variables, shared variables, threadprivate variables, and all kinds of 
constructs to debuggers after threaded code generation; additional code 
that is impossible to examine and step through without a specialized 
OpenMP-aware debugger. Therefore, the key is narrowing down the 
problem to a small code section that causes the same problem. It would 
be even better if you could come up with a very small test case that can 
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reproduce the problem. The following list provides guidelines for 
debugging OpenMP programs.  

1. Use the binary search method to identify the parallel construct 
causing the failure by enabling and disabling the OpenMP 
pragmas in the program.  

2. Compile the routine causing problem with no /Qopenmp switch 
and with /Qopenmp_stubs switch; then you can check if the 
code fails with a serial run, if so, it is a serial code debugging. If 
not, go to Step 3. 

3. Compile the routine causing problem with /Qopenmp switch and 
set the environment variable OMP_NUM_THREADS=1; then you 
can check if the threaded code fails with a serial run. If so, it is a 
single-thread code debugging of threaded code. If not, go to Step 4. 

4. Identify the failing scenario at the lowest compiler optimization 
level by compiling it with /Qopenmp and one of the switches 
such as /Od, /O1, /O2, /O3, and/or /Qipo.  

5. Examine the code section causing the failure and look  
for problems such as violation of data dependence after paralleliza-
tion, race conditions, deadlock, missing barriers, and uninitialized 
variables. If you can not spot any problem, go to Step 6.  

6. Compile the code using /Qtcheck to perform the OpenMP code 
instrumentation and run the instrumented code inside the Intel 
Thread Checker.     

Problems are often due to race conditions. Most race conditions are 
caused by shared variables that really should have been declared private, 
reduction, or threadprivate. Sometimes, race conditions are also caused 
by missing necessary synchronization such as critica and atomic 
protection of updating shared variables. Start by looking at the variables 
inside the parallel regions and make sure that the variables are declared 
private when necessary. Also, check functions called within parallel 
constructs. By default, variables declared on the stack are private but the 
C/C++ keyword static changes the variable to be placed on the global 
heap and therefore the variables are shared for OpenMP loops. The 
default(none) clause, shown in the following code sample, can be 
used to help find those hard-to-spot variables. If you specify 
default(none), then every variable must be declared with a data-
sharing attribute clause. 

#pragma omp parallel for default(none) private(x,y) shared(a,b) 
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Another common mistake is uninitialized variables. Remember that 
private variables do not have initial values upon entering or exiting a 
parallel construct. Use the firstprivate or lastprivate clauses 
discussed previously to initialize or copy them. But do so only when 
necessary because this copying adds overhead. 

If you still can’t find the bug, perhaps you are working with just too 
much parallel code. It may be useful to make some sections execute 
serially, by disabling the parallel code. This will at least identify the 
location of the bug. An easy way to make a parallel region execute in 
serial is to use the if clause, which can be added to any parallel 
construct as shown in the following two examples. 
#pragma omp parallel if(0)  
printf("Executed by thread %d\n", omp_get_thread_num());  

#pragma omp parallel for if(0)  
for ( x = 0; x < 15; x++ ) fn1(x); 

In the general form, the if clause can be any scalar expression, like the 
one shown in the following example that causes serial execution when 
the number of iterations is less than 16. 
#pragma omp parallel for if(n>=16)  
for ( k = 0; k < n; k++ ) fn2(k); 

Another method is to pick the region of the code that contains the bug 
and place it within a critical section, a single construct, or a master 
construct. Try to find the section of code that suddenly works when it is 
within a critical section and fails without the critical section, or executed 
with a single thread.  

The goal is to use the abilities of OpenMP to quickly shift code back 
and forth between parallel and serial states so that you can identify the 
locale of the bug. This approach only works if the program does in  
fact function correctly when run completely in serial mode. Notice that 
only OpenMP gives you the possibility of testing code this way without 
rewriting it substantially. Standard programming techniques used in the 
Windows API or Pthreads irretrievably commit the code to a threaded 
model and so make this debugging approach more difficult.  

 Performance 
OpenMP paves a simple and portable way for you to parallelize your 
applications or to develop threaded applications. The threaded application 
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performance with OpenMP is largely dependent upon the following 
factors: 

 The underlying performance of the single-threaded code. 

 The percentage of the program that is run in parallel and its 
scalability. 

 CPU utilization, effective data sharing, data locality and load 
balancing. 

 The amount of synchronization and communication among the 
threads. 

 The overhead introduced to create, resume, manage, suspend, 
destroy, and synchronize the threads, and made worse by the 
number of serial-to-parallel or parallel-to-serial transitions.  

 Memory conflicts caused by shared memory or falsely shared 
memory. 

 Performance limitations of shared resources such as memory, write 
combining buffers, bus bandwidth, and CPU execution units. 

Essentially, threaded code performance boils down to two issues: how 
well does the single-threaded version run, and how well can the work be 
divided up among multiple processors with the least amount of 
overhead?  

Performance always begins with a well-designed parallel algorithm or 
well-tuned application. The wrong algorithm, even one written in hand-
optimized assembly language, is just not a good place to start. Creating a 
program that runs well on two cores or processors is not as desirable as 
creating one that runs well on any number of cores or processors. 
Remember, by default, with OpenMP the number of threads is chosen by 
the compiler and runtime library—not you—so programs that work well 
regardless of the number of threads are far more desirable.  

Once the algorithm is in place, it is time to make sure that the code 
runs efficiently on the Intel Architecture and a single-threaded version 
can be a big help. By turning off the OpenMP compiler option you can 
generate a single-threaded version and run it through the usual set of 
optimizations. A good reference for optimizations is The Software 
Optimization Cookbook (Gerber 2006). Once you have gotten the 
single-threaded performance that you desire, then it is time to generate 
the multithreaded version and start doing some analysis. 
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First look at the amount of time spent in the operating system’s idle 
loop. The Intel VTune Performance Analyzer is great tool to help with 
the investigation. Idle time can indicate unbalanced loads, lots of blocked 
synchronization, and serial regions. Fix those issues, then go back to the 
VTune Performance Analyzer to look for excessive cache misses and 
memory issues like false-sharing. Solve these basic problems, and you will 
have a well-optimized parallel program that will run well on multi-core 
systems as well as multiprocessor SMP systems.  

Optimizations are really a combination of patience, trial and error, and 
practice. Make little test programs that mimic the way your application 
uses the computer’s resources to get a feel for what things are faster than 
others. Be sure to try the different scheduling clauses for the parallel 
sections. Chapter 7 provides additional advice on how to tune parallel 
code for performance and Chapter 11 covers the tools you’ll need. 

 Key Points 
Keep the following key points in mind while programming with OpenMP: 

 The OpenMP programming model provides an easy and portable 
way to parallelize serial code with an OpenMP-compliant compiler. 

 OpenMP consists of a rich set of pragmas, environment variables, 
and a runtime API for threading. 

 The environment variables and APIs should be used sparingly 
because they can affect performance detrimentally. The pragmas 
represent the real added value of OpenMP. 

 With the rich set of OpenMP pragmas, you can incrementally 
parallelize loops and straight-line code blocks such as sections 
without re-architecting the applications. The Intel Task queuing 
extension makes OpenMP even more powerful in covering more 
application domain for threading.  

 If your application’s performance is saturating a core or 
processor, threading it with OpenMP will almost certainly 
increase the application’s performance on a multi-core or 
multiprocessor system.  

 You can easily use pragmas and clauses to create critical sections, 
identify private and public variables, copy variable values, and 
control the number of threads operating in one section.  
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 OpenMP automatically uses an appropriate number of threads for 
the target system so, where possible, developers should consider 
using OpenMP to ease their transition to parallel code and to make 
their programs more portable and simpler to maintain. Native and 
quasi-native options, such as the Windows threading API and 
Pthreads, should be considered only when this is not possible. 
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Chapter 7
Solutions to 

Common Parallel 
Programming 

Problems 
 

arallel programming has been around for decades, though before the 
advent of multi-core processors, it was an esoteric discipline. 

Numerous programmers have tripped over the common stumbling 
blocks by now. By recognizing these problems you can avoid stumbling. 
Furthermore, it is important to understand the common problems before 
designing a parallel program, because many of the problems arise from 
the overall decomposition of the program, and cannot be easily patched 
later. This chapter surveys some of these common problems, their 
symptoms, and ways to circumvent them.  

 Too Many Threads 

It may seem that if a little threading is good, then a lot must be better. In 
fact, having too many threads can seriously degrade program perform-
ance. The impact comes in two ways. First, partitioning a fixed amount 
of work among too many threads gives each thread too little work, so 
that the overhead of starting and terminating threads swamps the useful 
work. Second, having too many concurrent software threads incurs 
overhead from having to share fixed hardware resources. 

When there are more software threads than hardware threads, the 
operating system typically resorts to round robin scheduling. The 

P 
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scheduler gives each software thread a short turn, called a time slice, to 
run on one of the hardware threads. When a software thread’s time slice 
runs out, the scheduler preemptively suspends the thread in order to run 
another software thread on the same hardware thread. The software 
thread freezes in time until it gets another time slice. 

Time slicing ensures that all software threads make some progress. 
Otherwise, some software threads might hog all the hardware threads 
and starve other software threads. However, this equitable distribution of 
hardware threads incurs overhead. When there are too many software 
threads, the overhead can severely degrade performance. There are 
several kinds of overhead, and it helps to know the culprits so you can 
spot them when they appear. 

The most obvious overhead is the process of saving and restoring a 
thread’s register state. Suspending a software thread requires saving the 
register values of the hardware thread, so the values can be restored 
later, when the software thread resumes on its next time slice. Typically, 
thread schedulers allocate big enough time slices so that the save/restore 
overheads for registers are insignificant, so this obvious overhead is in 
fact not much of a concern.  

A more subtle overhead of time slicing is saving and restoring a 
thread’s cache state. Modern processors rely heavily on cache 
memory, which can be about 10 to 100 times faster than main 
memory. Accesses that hit in cache are not only much faster; they also 
consume no bandwidth of the memory bus. Caches are fast, but finite. 
When the cache is full, a processor must evict data from the cache to 
make room for new data. Typically, the choice for eviction is the least 
recently used data, which more often than not is data from an earlier 
time slice. Thus threads tend to evict each other’s data. The net effect 
is that too many threads hurt performance by fighting each other for 
cache. 

A similar overhead, at a different level, is thrashing virtual memory. 
Most systems use virtual memory, where the processors have an address 
space bigger than the actual available memory. Virtual memory resides 
on disk, and the frequently used portions are kept in real memory. 
Similar to caches, the least recently used data is evicted from memory 
when necessary to make room. Each software thread requires virtual 
memory for its stack and private data structures. As with caches, time 
slicing causes threads to fight each other for real memory and thus hurts 
performance. In extreme cases, there can be so many threads that the 
program runs out of even virtual memory. 



Chapter 7: Solutions to Common Parallel Programming Problems 173 

The cache and virtual memory issues described arise from sharing 
limited resources among too many software threads. A very different, and 
often more severe, problem arises called convoying, in which software 
threads pile up waiting to acquire a lock. Consider what happens when a 
thread’s time slice expires while the thread is holding a lock. All threads 
waiting for the lock must now wait for the holding thread to wake up 
and release the lock. The problem is even worse if the lock 
implementation is fair, in which the lock is acquired in first-come first-
served order. If a waiting thread is suspended, then all threads waiting 
behind it are blocked from acquiring the lock.  

The solution that usually works best is to limit the number of 
“runnable” threads to the number of hardware threads, and possibly 
limit it to the number of outer-level caches. For example, a dual-core 
Intel® Pentium® Processor Extreme Edition has two physical cores, each 
with Hyper-Threading Technology, and each with its own cache. This 
configuration supports four hardware threads and two outer-level 
caches. Using all four runnable threads will work best unless the 
threads need so much cache that it causes fighting over cache, in which 
case maybe only two threads is best. The only way to be sure is to 
experiment. Never “hard code” the number of threads; leave it as a 
tuning parameter. 

Runnable threads, not blocked threads, cause time-slicing overhead. 
When a thread is blocked waiting for an external event, such as a mouse 
click or disk I/O request, the operating system takes it off the round-
robin schedule. Hence a blocked thread does not cause time-slicing 
overhead. A program may have many more software threads than 
hardware threads, and still run efficiently if most of the OS threads are 
blocked. 

A helpful organizing principle is to separate compute threads from 
I/O threads. Compute threads should be the threads that are runnable 
most of the time. Ideally, the compute threads never block on external 
events, and instead feed from task queues that provide work. The 
number of compute threads should match the processor resources. The 
I/O threads are threads that wait on external events most of the time, and 
thus do not contribute to having too many threads. 

Because building efficient task queues takes some expertise, it is 
usually best to use existing software to do this. Common useful practices 
are as follows: 

■ Let OpenMP do the work. OpenMP lets the programmer specify 
loop iterations instead of threads. OpenMP deals with managing 
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the threads. As long as the programmer does not request a 
particular number of threads, the OpenMP implementation will 
strive to use the optimal number of software threads. 

■ Use a thread pool, which is a construct used to maintain a set of 
long lived software threads and eliminates the overhead of 
initialization process of threads for short lived tasks. A thread 
pool is a collection of tasks which are serviced by the software 
threads in the pool. Each software thread finishes a task before 
taking on another. For example, Windows has a routine 
QueueUserWorkItem. Clients add tasks by calling 
QueueUserWorkItem with a callback and pointer that define the 
task. Hardware threads feed from this queue. For managed code, 
Windows .NET has a class ThreadPool. Java has a class Executor 
for similar purposes. Unfortunately, there is no standard thread 
pool support in POSIX threads. 

■ Experts may wish to write their own task scheduler. The 
method of choice is called work stealing, where each thread 
has its own private collection of tasks. When a thread runs out 
of tasks, it steals from another thread’s collection. Work 
stealing yields good cache usage and load balancing. While a 
thread is working on its own tasks, it tends to be reusing data 
that is hot in its cache. When it runs out of tasks and has to 
steal work, it balances the load. The trick to effective task 
stealing is to bias the stealing towards large tasks, so that the 
thief can stay busy for a while. The early Cilk scheduler 
(Blumofe 1995) is a good example of how to write an effective 
task-stealing scheduler. 

 Data Races, Deadlocks, and Live Locks 

Unsynchronized access to shared memory can introduce race 
conditions, where the program results depend nondeterministically on 
the relative timings of two or more threads. Figure 7.1 shows two 
threads trying to add to a shared variable x, which has an initial value of 
0. Depending upon the relative speeds of the threads, the final value of 
x can be 1, 2, or 3.  
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Figure 7.1 Unsynchronized Threads Racing against each Other Lead to 
Nondeterministic Outcome 

Parallel programming would be a lot easier if races were as obvious as 
in Figure 7.1. But the same race can be hidden by language syntax in a 
variety of ways, as shown by the examples in Figure 7.2. Update 
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operations such as += are normally just shorthand for “temp = x; x = 
temp+1”, and hence can result in interleaving. Sometimes the shared 
location is accessed by different expressions. Sometimes the shared 
location is hidden by function calls. Even if each thread uses a single 
instruction to fetch and update the location, there could be interleaving, 
because the hardware might break the instruction into interleaved reads 
and writes.  

 

Figure 7.2 Race Conditions Hiding behind Language Syntax 

Intel Thread Checker is a powerful tool for detecting potential race 
conditions. It can see past all the varieties of camouflage shown in Figure 7.2 
because it deals in terms of actual memory locations, not their names or 
addressing expressions. Chapter 11 says more about Thread Checker. 

Sometimes deliberate race conditions are intended and useful. For 
example, threads may be reading a location that is updated 
asynchronously with a “latest current value.” In such a situation, care 
must be taken that the writes and reads are atomic. Otherwise, garbled 
data may be written or read. For example, reads and writes of structure 
types are often done a word at a time or a field at a time. Types longer 
than the natural word size, such as 80-bit floating-point, might not be 
read or written atomically, depending on the architecture. Likewise, 
misaligned loads and stores, when supported, are usually not atomic. If 
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such an access straddles a cache line, the processor performs the access 
as two separate accesses to the two constituent cache lines. 

Data races can arise not only from unsynchronized access to shared 
memory, but also from synchronized access that was synchronized at too 
low a level. Figure 7.3 shows such an example. The intent is to use a list 
to represent a set of keys. Each key should be in the list at most once. 
Even if the individual list operations have safeguards against races, the 
combination suffers a higher level race. If two threads both attempt to 
insert the same key at the same time, they may simultaneously determine 
that the key is not in the list, and then both would insert the key. What is 
needed is a lock that protects not just the list, but that also protects the 
invariant “no key occurs twice in list.” 

 

Figure 7.3 A Higher-Level Race Condition Example. 

Adding the necessary lock to correct Figure 7.3 exposes the 
frustrating performance problem of locks. Building locks into low-level 
components is often a waste of time, because the high-level components 
that use the components will need higher-level locks anyway. The lower-
level locks then become pointless overhead. Fortunately, in such a 
scenario the high-level locking causes the low-level locks to be 
uncontended, and most lock implementations optimize the uncontended 
case. Hence the performance impact is somewhat mitigated, but for best 
performance the superfluous locks should be removed. Of course there 
are times when components should provide their own internal locking. 
This topic is discussed later in the discussion of thread-safe libraries. 

Deadlock 

Race conditions are typically cured by adding a lock that protects the 
invariant that might otherwise be violated by interleaved operations. 
Unfortunately, locks have their own hazards, most notably deadlock. 
Figure 7.4 shows a deadlock involving two threads. Thread 1 has 
acquired lock A. Thread 2 has acquired lock B. Each thread is trying to 
acquire the other lock. Neither thread can proceed. 
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Figure 7.4 Deadlock Caused by Cycle 

Though deadlock is often associated with locks, it can happen any 
time a thread tries to acquire exclusive access to two more shared 
resources. For example, the locks in Figure 7.4 could be files instead, 
where the threads are trying to acquire exclusive file access.  

Deadlock can occur only if the following four conditions hold true: 
1. Access to each resource is exclusive.  

2. A thread is allowed to hold one resource while requesting 
another. 

3. No thread is willing to relinquish a resource that it has acquired. 

4. There is a cycle of threads trying to acquire resources, where 
each resource is held by one thread and requested by another. 

Deadlock can be avoided by breaking any one of these conditions.  
Often the best way to avoid deadlock is to replicate a resource that 

requires exclusive access, so that each thread can have its own private 
copy. Each thread can access its own copy without needing a lock. The 
copies can be merged into a single shared copy of the resource at the 
end if necessary. By eliminating locking, replication avoids deadlock and 
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has the further benefit of possibly improving scalability, because the lock 
that was removed might have been a source of contention. 

If replication cannot be done, that is, in such cases where there 
really must be only a single copy of the resource, common wisdom is to 
always acquire the resources (locks) in the same order. Consistently 
ordering acquisition prevents deadlock cycles. For instance, the 
deadlock in Figure 7.4 cannot occur if threads always acquire lock A 
before they acquire lock B.  

The ordering rules that are most convenient depend upon the 
specific situation. If the locks all have associated names, even something 
as simple as alphabetical order works. This order may sound silly, but it 
has been successfully used on at least one large project.  

For multiple locks in a data structure, the order is often based on the 
topology of the structure. In a linked list, for instance, the agreed upon 
order might be to lock items in the order they appear in the list. In a tree 
structure, the order might be a pre-order traversal of the tree. Somewhat 
similarly, components often have a nested structure, where bigger 
components are built from smaller components. For components nested 
that way, a common order is to acquire locks in order from the outside to 
the inside.  

If there is no obvious ordering of locks, a solution is to sort the 
locks by address. This approach requires that a thread know all locks 
that it needs to acquire before it acquires any of them. For instance, 
perhaps a thread needs to swap two containers pointed to by pointers x 
and y, and each container is protected by a lock. The thread could 
compare “x < y” to determine which container comes first, and acquire 
the lock on the first container before acquiring a lock on the second 
container, as Figure 7.5 illustrates. 

void AcquireTwoLocksViaOrdering( Lock& x, Lock& y ) { 
    assert( &x!=&y ); 
    if( &x<&y ) { 
        acquire x 
        acquire y 
    } else { 
        acquire y 
        acquire x 
    } 
}   

Figure 7.5 Locks Ordered by their Addresses 
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In large software projects, different programmers construct different 
components, and by necessity should not have to understand the inner 
workings of the other components. It follows that to prevent accidental 
deadlock, software components should try to avoid holding a lock while 
calling code outside the component, because the call chain may cycle 
around and create a deadlock cycle.  

The third condition for deadlock is that no thread is willing to give 
up its claim on a resource. Thus another way of preventing deadlock is 
for a thread to give up its claim on a resource if it cannot acquire the 
other resources. For this purpose, mutexes often have some kind of “try 
lock” routine that allows a thread to attempt to acquire a lock, and give 
up if it cannot be acquired. This approach is useful in scenarios where 
sorting the locks is impractical. Figure 7.6 sketches the logic for using a 
“try lock” approach to acquire two locks, A and B. In Figure 7.6, a 
thread tries to acquire both locks, and if it cannot, it release both locks 
and tries again.  

void AcquireTwoLocksViaBackoff( Lock& x, Lock& y ) { 
    for( int t=1; ; t*=2 ) { 
        acquire x 
        try to acquire y  
        if( y was acquired ) break; 
        release x 
        wait for random amount of time between 0 and t 
    } 
}   

Figure 7.6 “Try and Back Off” Logic  

Figure 7.6 has some timing delays in it to prevent the hazard of live 
lock. Live lock occurs when threads continually conflict with each other 
and back off. Figure 7.6 applies exponential backoff to avoid live lock. If 
a thread cannot acquire all the locks that it needs, it releases any that it 
acquired and waits for a random amount of time. The random time is 
chosen from an interval that doubles each time the thread backs off. 
Eventually, the threads involved in the conflict will back off sufficiently 
that at least one will make progress. The disadvantage of backoff schemes 
is that they are not fair. There is no guarantee that a particular thread will 
make progress. If fairness is an issue, then it is probably best to use lock 
ordering to prevent deadlock.  



Chapter 7: Solutions to Common Parallel Programming Problems 181 

 Heavily Contended Locks 

Proper use of lock to avoid race conditions can invite performance 
problems if the lock becomes highly contended. The lock becomes like a 
tollgate on a highway. If cars arrive at the tollgate faster than the toll 
taker can process them, the cars will queue up in a traffic jam behind the 
tollgate. Similarly, if threads try to acquire a lock faster than the rate at 
which a thread can execute the corresponding critical section, then 
program performance will suffer as threads will form a “convoy” waiting 
to acquire the lock. Indeed, this behavior is sometimes referred to as 
convoying. 

As mentioned in the discussion of time-slicing woes, convoying 
becomes even worse for fair locks, because if a thread falls asleep, all 
threads behind it have to wait for it to wake up. Imagine that software 
threads are cars and hardware threads are the drivers in those cars. This 
might seem like a backwards analogy, but from a car’s perspective, 
people exist solely to move cars between parking places. If the cars form 
a convoy, and a driver leaves his or her car, everyone else behind is 
stuck.  

Priority Inversion 

Some threading implementations allow threads to have priorities. When 
there are not enough hardware threads to run all software threads, the 
higher priority software threads get preference. For example, 
foreground tasks might be running with higher priorities than 
background tasks. Priorities can be useful, but paradoxically, can lead 
to situations where a low-priority thread blocks a high-priority thread 
from running.  

Figure 7.7 illustrates priority inversion. Continuing our analogy with 
software threads as cars and hardware threads as drivers, three cars are 
shown, but there is only a single driver. A low-priority car has acquired a 
lock so it can cross a single-lane “critical section” bridge. Behind it waits 
a high-priority car. But because the high-priority car is blocked, the driver 
is attending the highest-priority runnable car, which is the medium-
priority one. As contrived as this sounds, it actually happened on the 
NASA Mars Pathfinder mission.  
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High Priority Software Thread Low Priority Software Thread

Medium Priority Software Thread

 

Figure 7.7 Priority Inversion Scenario, Where High Priority Gets Blocked and 
Medium Priority Gets the Cycles 

In real life, the problem in Figure 7.7 would be solved by bumping up 
the priority of the blocking car until it is out of the way. With locks, this 
is called priority inheritance. When a high-priority thread needs to 
acquire a lock held by a low-priority thread, the scheduler bumps up the 
priority of the blocking thread until the lock is released. Indeed, the Mars 
Pathfinder problem was solved by turning on priority inheritance (Reeves 
1998). 

An alternative is priority ceilings in which a priority, called the 
ceiling, is assigned to the mutex. The ceiling is the highest priority of any 
thread that is expected to hold the mutex. When a thread acquires the 
mutex, its priority is immediately bumped up to the ceiling value for the 
duration that it holds the mutex. The priority ceilings scheme is eager to 
bump up a thread’s priority. In contrast, the priority inheritance scheme 
is lazy by not bumping up a thread’s priority unless necessary.  

Windows mutexes support priority inheritance by default. Pthreads 
mutexes support neither the priority inheritance nor priority ceiling 
protocols. Both protocols are optional in the pthreads standard. If they 
exist in a particular implementation, they can be set for a mutex via the 
function pthread_mutexattr_setprotocol and inspected with the 
function pthread_mutexattr_getprotocol. Read the manual pages on 
these functions to learn whether they are supported for the target 
system.  
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Programmers “rolling their own” locks or busy waits may encounter 
priority inversion if threads with different priorities are allowed to 
acquire the same lock. Hand-coded spin locks are a common example. If 
neither priority inheritance nor priority ceilings can be built into the lock 
or busy wait, then it is probably best to restrict the lock’s contenders to 
threads with the same priority. 

Solutions for Heavily Contended Locks 

Upon encountering a heavily contended lock, the first reaction of many 
programmers is “I need a faster lock.” Indeed, some implementations of 
locks are notoriously slow, and faster locks are possible. However, no 
matter how fast the lock is, it must inherently serialize threads. A faster 
lock can thus help performance by a constant factor, but will never 
improve scalability. To improve scalability, either eliminate the lock or 
spread out the contention.  

The earlier discussion of deadlock mentioned the technique of 
eliminating a lock by replicating the resource. That is certainly the 
method of choice to eliminate lock contention if it is workable. For 
example, consider contention for a counter of events. If each thread can 
have its own private counter, then no lock is necessary. If the total count 
is required, the counts can be summed after all threads are done 
counting.  

If the lock on a resource cannot be eliminated, consider partitioning 
the resource and using a separate lock to protect each partition. The 
partitioning can spread out contention among the locks. For example, 
consider a hash table implementation where multiple threads might try 
to do insertions at the same time. A simple approach to avoid race 
conditions is to use a single lock to protect the entire table. The lock 
allows only one thread into the table at a time. The drawback of this 
approach is that all threads must contend for the same lock, which could 
become a serial bottleneck. An alternative approach is to create an array 
of sub-tables, each with its own lock, as shown in Figure 7.8. Keys can be 
mapped to the sub-tables via a hashing function. For a given key, a thread 
can figure out which table to inspect by using a hash function that 
returns a sub-table index. Insertion of a key commences by hashing the 
key to one of the sub-tables, and then doing the insertion on that sub-
table while holding the sub-table’s lock. Given enough sub-tables and a 
good hash function, the threads will mostly not contend for the same 
sub-table and thus not contend for the same lock.  
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Figure 7.8 Spreading out Contention by Partitioning a Hash Table into 
Multiple Sub-tables 

Pursuit of the idea of spreading contention among multiple locks 
further leads to fine-grained locking. For example, hash tables are 
commonly implemented as an array of buckets, where each bucket holds 
keys that hashed to the same array element. In fine-grained locking, there 
might be a lock on each bucket. This way multiple threads can 
concurrently access different buckets in parallel. This is straightforward 
to implement if the number of buckets is fixed. If the number of buckets 
has to be grown, the problem becomes more complicated, because 
resizing the array may require excluding all but the thread doing the 
resizing. A reader-writer lock helps solve this problem, as will be explained 
shortly. Another pitfall is that if the buckets are very small, the space 
overhead of the lock may dominate.  

If a data structure is frequently read, but infrequently written, then a 
reader-writer lock may help deal with contention. A reader-write lock 
distinguishes readers from writers. Multiple readers can acquire the lock 
at the same time, but only one writer can acquire it at a time. Readers 
cannot acquire the lock while a writer holds it and vice-versa. Thus 
readers contend only with writers.  

The earlier fine-grained hash table is a good example of where 
reader-write locks can help if the array of buckets must be dynamically 
resizable. Figure 7.9 shows a possible implementation. The table 
consists of an array descriptor that specifies the array’s size and 
location. A reader-writer mutex protects this structure. Each bucket has 
its own plain mutex protecting it. To access a bucket, a thread acquires 
two locks: a reader lock on the array descriptor, and a lock on the 
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bucket’s mutex. The thread acquires a reader lock, not a writer lock, on 
the reader-writer mutex even if it is planning to modify a bucket, 
because the reader-writer mutex protects the array descriptor, not the 
buckets. If a thread needs to resize the array, it requests a writer lock 
on the reader-writer mutex. Once granted, the thread can safely modify 
the array descriptor without introducing a race condition. The overall 
advantage is that during times when the array is not being resized, 
multiple threads accessing different buckets can proceed concurrently. 
The principle disadvantage is that a thread must obtain two locks 
instead of one. This increase in locking overhead can overwhelm the 
advantages of increased concurrency if the table is typically not subject 
to contention. 

 

Figure 7.9 Hash Table with Fine-grained Locking 

If writers are infrequent, reader-writer locks can greatly reduce 
contention. However, reader-writer locks have limitations. When the rate 
of incoming readers is very high, the lock implementation may suffer 
from memory contention problems. Thus reader-writer locks can be very 
useful for medium contention of readers, but may not be able to fix 
problems with high contention. The reliable way to deal with high 
contention is to rework the parallel decomposition in a way that lowers 
the contention. For example, the schemes in Figures 7.8 and 7.9 might 
be combined, so that a hash table is represented by a fixed number of 
sub-tables, each with fine-grained locking.  
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 Non-blocking Algorithms 

One way to solve the problems introduced by locks is to not use locks. 
Algorithms designed to do this are called non-blocking. The defining 
characteristic of a non-blocking algorithm is that stopping a thread does 
not prevent the rest of the system from making progress. There are 
different non-blocking guarantees: 

■ Obstruction freedom. A thread makes progress as long as there is 
no contention, but live lock is possible. Exponential backoff can 
be used to work around live lock. 

■ Lock freedom. The system as a whole makes progress. 

■ Wait freedom. Every thread makes progress, even when faced 
with contention. Very few non-blocking algorithms achieve this. 

Non-blocking algorithms are immune from lock contention, priority 
inversion, and convoying. Non-blocking algorithms have a lot of 
advantages, but with these come a new set of problems that need to be 
understood.  

Non-blocking algorithms are based on atomic operations, such as the 
methods of the Interlocked class discussed in Chapter 5. A few non-
blocking algorithms are simple. Most are complex, because the 
algorithms must handle all possible interleaving of instruction streams 
from contending processors. 

A trivial non-blocking algorithm is counting via an interlocked 
increment instead of a lock. The interlocked instruction avoids lock 
overhead and pathologies. However, simply using atomic operations is 
not enough to avoid race conditions, because as discussed before, 
composing thread-safe operations does not necessarily yield a thread-safe 
procedure. As an example, the C code in Figure 7.10 shows the wrong 
way and right way to decrement and test a reference count 
p->ref_count. In the wrong code, if the count was originally 2, two 
threads executing the wrong code might both decrement the count, and 
then both see it as zero at the same time. The correct code performs the 
decrement and test as a single atomic operation.  
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Figure 7.10 Atomic Operations and Race Conditions 

Most non-blocking algorithms involve a loop that attempts to perform 
an action using one or more compare-and-swap (CAS) operations, and 
retries when one of the CAS operations fails. A simple and useful 
example is implementing a thread-safe fetch-and-op. A fetch-and-op reads 
a value from a location, computes a new value from it, and stores the 
new value. Figure 7.11 illustrates both a locked version and a non-
blocking version that operate on a location x. The non-blocking version 
reads location x into a local temporary x_old, and computes a new value 
x_new = op(x_old). The routine InterlockedCompareExchange 
stores the new value, unless x is now different than x_old. If the store 
fails, the code starts over until it succeeds.  

void LockedFetchAndOp( long& x ) { 
    acquire lock 
    x = op(x); 
    release lock 
} 

void NonBlockingFetchAndOp( volatile long& x ) { 
    long x_old, x_new, x_was; 
    do { 
        x_old = x; 
        x_new = op(x_old); 
        x_was = InterlockedCompareExchange(&x, x_new, 
                                               x_old); 
    } while( x_was!=x_old ); 
} 

Figure 7.11 Comparison of Locked and Lockless Code for Fetch-and-op 
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Fetch-and-op is useful as long as the order in which various threads 
perform op does not matter. For example, op might be “multiply by 2.” 
The location x must have a type for which a compare-and-exchange 
instruction is available. 

ABA Problem 

In Figure 7.11, there is a time interval between when a thread executes 
“x_old = x” and when the thread executes InterlockedCompareEx-
change. During this interval, other processors might perform other fetch-
and-op operations. For example, suppose the initial value read is A. An 
intervening sequence of fetch-and-op operations by other processors 
might change x to B and then back to A. When the original thread 
executes InterlockedCompareExchange, it will be as if the other 
processor’s actions never happened. As long as the order in which op is 
executed does not matter, there is no problem. The net result is the same 
as if the fetch-and-op operations were reordered such that the 
intervening sequence happens before the first read.  

But sometimes fetch-and-op has uses where changing x from A to B 
to A does make a difference. The problem is indeed known as the ABA 
problem. Consider the lockless implementation of a stack shown in 
Figure 7.12. It is written in the fetch-and-op style, and thus has the 
advantage of not requiring any locks. But the “op” is no longer a pure 
function, because it deals with another shared memory location: the field 
“next.” Figure 7.13 shows a sequence where the function 
BrokenLockLessPop corrupts the linked stack. When thread 1 starts 
out, it sees B as next on stack. But intervening pushes and pops make C 
next on stack. But Thread 1’s final InterlockedCompareExchange does 
not catch this switch because it only examines Top. 

 
Node* Top; // Pointer to top item on stack. 

void BrokenLocklessPush( Node* node ) { 
    Item *t_old, t_was; 
    do { 
        Item* t_old = Top; 
        n->next = t_old; 
        t_was = InterlockedCompareExchange(&Top,node,t_old); 
    } while( t_was!=t_old ); 
} 
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Item* BrokenLocklessPop() { 
    Item *t_old, *t_was, *t_new; 
    do { 
        t_old = Top; 
        t_new = t_old->next; 
        // ABA problem may strike below! 
        t_was = InterlockedCompareExchange(&Top,t_new,t_old); 
    } while( t_was!=t_old ); 
    return t_old; 
} 

Figure 7.12 Lockless Implementation of a Linked Stack that May Suffer from ABA 
Problem 

 

Figure 7.13 Sequence Illustrates ABA Problem for Code in Figure 7.12 

The solution to the ABA problem is to never reuse A. In a garbage-
collected environment such as Java or .NET, this is simply a matter of not 
recycling nodes. That is, once a node has been popped, never push it 
again. Instead allocate a fresh node. The garbage collector will do the 
hard work of checking that the memory for node A is not recycled until 
all extant references to it are gone. 



190 Multi-Core Programming 

In languages with garbage collection, the problem is harder. An old 
technique dating back to the IBM 370 changes ABA to ABA′. In other 
words, make A slightly different each time. This is typically done by 
appending a serial number to the pointer. A special instruction that can do 
a double-wide compare-exchange is required. On IA-32, the instruction 
is cmpxchg8b, which does a compare-exchange on eight bytes. On 
processors with Intel EM64T, it is cmpxchg16b. On Itanium® processors, 
there is cmp8xchg16, which is not quite the same, because it compares 
only the first eight bytes, but exchanges all 16. However, as long as the 
serial number is the first eight bytes, it works for turning ABA into ABA′. 

Another solution is to build a miniature garbage collector that 
handles pointers involved in compare-exchange operations. These 
pointers are called hazard pointers, because they present a hazard to 
lockless algorithms. Maged Michael’s paper on hazard pointers (Michael 
2004) explains how to implement hazard pointers. Hazard pointers are a 
nontrivial exercise and make assumptions about the environment, so 
tread with caution. 

Cache Line Ping-ponging 

Non-blocking algorithms can cause a lot of traffic on the memory bus as 
various hardware threads keep trying and retrying to perform operations 
on the same cache line. To service these operations, the cache line 
bounces back and forth (“ping-pongs”) between the contending threads. 
A locked algorithm may outperform the non-blocking equivalent if lock 
contention is sufficiently distributed and each lock says “hand off my 
cache line until I’m done.” Experimentation is necessary to find out 
whether the non-blocking or locked algorithm is better. A rough guide is 
that a fast spin lock protecting a critical section with no atomic 
operations may outperform an alternative non-blocking design that 
requires three or more highly contended atomic operations.  

Memory Reclamation Problem 

Memory reclamation is the dirty laundry of many non-blocking 
algorithms. For languages such as C/C++ that require the programmer to 
explicitly free memory, it turns out to be surprisingly difficult to call 
free on a node used in a non-blocking algorithm. Programmers planning 
to use non-blocking algorithms need to understand when this limitation 
arises, and how to work around it. 



Chapter 7: Solutions to Common Parallel Programming Problems 191 

The problem occurs for algorithms that remove nodes from linked 
structures, and do so by performing compare-exchange operations on 
fields in the nodes. For example, non-blocking algorithms for queues do 
this. The reason is that when a thread removes a node from a data 
structure, without using a lock to exclude other threads, it never knows 
if another thread still looking at the node. The algorithms are usually 
designed so that the other thread will perform a failing compare-
exchange on a field in the removed node, and thus know to retry. 
Unfortunately, if in the meantime the node is handed to free, the field 
might be coincidentally set to the value that the compare-exchange 
expects to see.  

The solution is to use a garbage collector or mini-collector like 
hazard pointers. Alternatively you may associate a free list of nodes with 
the data structure and not free any nodes until the data structure itself 
is freed. 

Recommendations 

Non-blocking algorithms are currently a hot topic in research. Their big 
advantage is avoiding lock pathologies. Their primary disadvantage is that 
they are much more complicated than their locked counterparts. Indeed, 
the discovery of a lockless algorithm is often worthy of a conference 
paper. Non-blocking algorithms are difficult to verify. At least one 
incorrect algorithm has made its way into a conference paper. Non-
experts should consider the following advice: 

■ Atomic increment, decrement, and fetch-and-add are generally 
safe to use in an intuitive fashion. 

■ The fetch-and-op idiom is generally safe to use with operations 
that are commutative and associative. 

■ The creation of non-blocking algorithms for linked data 
structures should be left to experts. Use algorithms from the 
peer-reviewed literature. Be sure to understand any memory 
reclamation issues. 

Otherwise, for now, stick with locks. Avoid having more runnable 
software threads than hardware threads, and design programs to avoid 
lock contention. This way, the problems solved by non-blocking 
algorithms will not come up in the first place.  
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 Thread-safe Functions and Libraries 

The Foo example in Figure 7.2 underscores the importance of 
documenting thread safety. Defining a routine like Foo that updates 
unprotected hidden shared state is a poor programming practice. In 
general, routines should be thread safe; that is, concurrently callable by 
clients. However, complete thread safety is usually unrealistic, because it 
would require that every call do some locking, and performance would 
be pathetic. Instead, a common convention is to guarantee that instance 
routines are thread safe when called concurrently on different objects, 
but not thread safe when called concurrently on the same object.  

This convention is implicit when objects do not share state. For 
objects that do share state, the burden falls on the implementer to 
protect the shared state. Figure 7.14 shows a reference-counted 
implementation of strings where the issue arises. From the client’s 
viewpoint, each string object is a separate string object, and thus threads 
should be able to concurrently operate on each object. In the underlying 
implementation, however, a string object is simply a pointer to a shared 
object that has the string data, and a reference count of the number of 
string objects that point to it. The implementer should ensure that 
concurrent accesses do not corrupt the shared state. For example, the 
updates to the reference count should use atomic operations.  

 

Figure 7.14 Implementer Should Ensure Thread Safety of Hidden Shared State 

When defining interfaces, care should be taken to ensure that they 
can be implemented efficiently in a thread-safe manner. Interfaces should 
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not update hidden global state, because with multiple threads, it may not 
be clear whose global state is being updated. The C library function 
strtok is one such offender. Clients use it to tokenize a string. The first 
call sets the state of a hidden parser, and each successive call advances 
the parser. The hidden parser state makes the interface thread unsafe. 
Thread safety can be obtained by having the implementation put the 
parser in thread-local storage. But this introduces the complexity of a 
threading package into something that really should not need it in the 
first place. A thread-safe redesign of strtok would make the parser 
object an explicit argument. Each thread would create its own local 
parser object and pass it as an argument. That way, concurrent calls 
could proceed blissfully without interference. 

Some libraries come in thread-safe and thread-unsafe versions. Be sure 
to use the thread-safe version for multi-threaded code. For example, on 
Windows, the compiler option /MD is required to dynamically link with 
the thread-safe version of the run-time library. For debugging, the 
corresponding option is /MDd, which dynamically links with the “debug” 
version of the thread-safe run-time. Read your compiler documentation 
carefully about these kinds of options. Because the compilers date back to 
the single-core era, the defaults are often for code that is not thread safe. 

 Memory Issues 

When most people perform calculations by hand, they are limited by 
how fast they can do the calculations, not how fast they can read and 
write. Early microprocessors were similarly constrained. In recent 
decades, microprocessors have grown much faster in speed than in 
memory. A single microprocessor core can execute hundreds of 
operations in the time it takes to read or write a value in main memory. 
Programs now are often limited by the memory bottleneck, not 
processor speed. Multi-core processors can exacerbate the problem 
unless care is taken to conserve memory bandwidth and avoid memory 
contention.  

Bandwidth  

To conserve bandwidth, pack data more tightly, or move it less 
frequently between cores. Packing the data tighter is usually 
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straightforward, and benefits sequential execution as well. For example, 
pack Boolean arrays into one Boolean value per bit, not one value per 
byte. Use the shortest integer type that can hold values in the required 
range. When declaring structures in C/C++, declare fields in order of 
descending size. This strategy tends to minimize the extra padding that 
the compiler must insert to maintain alignment requirements, as 
exemplified in Figure 7.15.    

 

Figure 7.15 Order Fields by Decreasing Size to Reduce Padding 

Some compilers also support “#pragma pack” directives that pack 
structures even more tightly, possibly by removing all padding. Such very 
tight packing may be counterproductive, however, because it causes 
misaligned loads and stores that may be significantly slower than aligned 
loads and stores.  

Working in the Cache 

Moving data less frequently is a more subtle exercise than packing, 
because mainstream programming languages do not have explicit 
commands to move data between a core and memory. Data movement 
arises from the way the cores read and write memory. There are two 
categories of interactions to consider: those between cores and memory, 
and those between cores. 

Data movement between a core and memory also occurs in single-
core processors, so minimizing data movement benefits sequential 
programs as well. There exist numerous techniques. For example, a 



Chapter 7: Solutions to Common Parallel Programming Problems 195 

technique called cache-oblivious blocking recursively divides a problem 
into smaller and smaller subproblems. Eventually the subproblems 
become so small that they each fit in cache. The Fastest Fourier 
Transform in the West (Frigo 1997) uses this approach and indeed lives 
up to its name. Another technique for reducing the cache footprint is to 
reorder steps in the code. Sometimes this is as simple as interchanging 
loops. Other times it requires more significant restructuring.  

The Sieve of Eratosthenes is an elementary programming exercise that 
demonstrates such restructuring and its benefits. Figure 7.16 presents the 
Sieve of Eratosthenes for enumerating prime numbers up to n. This version 
has two nested loops: the outer loop finds primes, and the inner loop, 
inside function Strike, strikes out composite numbers. This version is 
unfriendly to cache, because the inner loop is over the full length of array 
composite, which might be much larger than what fits in cache.  

 

 
inline long Strike( bool composite[], long i,  
                    long stride, long limit ) { 
    for( ; i<=limit; i+=stride ) 
        composite[i] = true; 
    return i; 
} 
long CacheUnfriendlySieve( long n ) { 
    long count = 0; 
    long m = (long)sqrt((double)n); 
    bool* composite = new bool[n+1]; 
    memset( composite, 0, n ); 
    for( long i=2; i<=m; ++i ) 
        if( !composite[i] ) { 
            ++count; 
            // Strike walks array of size n here. 
            Strike( composite, 2*i, i, n ); 
        } 
    for( long i=m+1; i<=n; ++i ) 
        if( !composite[i] ) 
            ++count; 
    delete[] composite; 
    return count; 
} 

Figure 7.16 Cache-Unfriendly Sieve of Eratosthenes 

Figure 7.17 shows how the sieve can be restructured to be cache 
friendly. Instead of directly representing the conceptual sieve as one big 
array, it represents it as a small window into the conceptual sieve. The 
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window size is approximately n  bytes. The restructuring requires that 
the original inner loop be stopped when it reaches the end of a window, 
and restarted when processing the next window. The array striker 
stores the indices of these suspended loops, and has an element for each 
prime up to n . The data structures grow much more slowly than n, 
and so fit in a 106 byte cache even when n approaches values as large as 
1011. Of course, allocating array composite to hold 1011 bytes is 
impractical on most machines. The later discussion of multi-threading the 
sieve describes how to reduce composite to n  bytes instead of 
n bytes. 

 

long CacheFriendlySieve( long n ) { 
   long count = 0; 
   long m = (long)sqrt((double)n); 
   bool* composite = new bool[n+1]; 
   memset( composite, 0, n ); 
   long* factor = new long[m]; 
   long* striker = new long[m]; 
   long n_factor = 0; 
   for( long i=2; i<=m; ++i ) 
      if( !composite[i] ) { 
         ++count; 
         striker[n_factor] = Strike( composite, 2*i, i, m ); 
         factor[n_factor++] = i; 
      } 
   // Chops sieve into windows of size ≈ sqrt(n) 
   for( long window=m+1; window<=n; window+=m ) { 
      long limit = min(window+m-1,n); 
      for( long k=0; k<n_factor; ++k ) 
         // Strike walks window of size sqrt(n) here. 
         striker[k] = Strike( composite, striker[k], factor[k], 
                              limit ); 
         for( long i=window; i<=limit; ++i )  
            if( !composite[i] )  
               ++count; 
   } 
   delete[] striker; 
   delete[] factor; 
   delete[] composite; 
   return count; 
} 

Figure 7.17 Cache-Friendly Sieve of Eratosthenes 

The restructuring introduces extra complexity and bookkeeping 
operations. But because processor speed so greatly outstrips memory 
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speed, the extra bookkeeping pays off dramatically. Figure 7.18 shows 
this performance difference. On this log plot, the cache friendly code has 
a fairly straight performance plot, while the cache unfriendly version’s 
running time steps up from one straight line to another when n reaches 
approximately 106. The step is characteristic of algorithms that transition 
from running in cache to running out of cache as the problem size 
increases. The restructured version is five times faster than the original 
version when n significantly exceeds the cache size, despite the extra 
processor operations required by the restructuring.  

 

Figure 7.18 Performance Difference between Figure 7.16 and Figure 7.17 

Memory Contention 

For multi-core programs, working within the cache becomes trickier, 
because data is not only transferred between a core and memory, but 
also between cores. As with transfers to and from memory, mainstream 
programming languages do not make these transfers explicit. The 
transfers arise implicitly from patterns of reads and writes by different 
cores. The patterns correspond to two types of data dependencies: 

■ Read-write dependency. A core writes a cache line, and then a 
different core reads it.  

■ Write-write dependency. A core writes a cache line, and then a 
different core writes it. 

An interaction that does not cause data movement is two cores 
repeatedly reading a cache line that is not being written. Thus if multiple 
cores only read a cache line and do not write it, then no memory 
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bandwidth is consumed. Each core simply keeps its own copy of the 
cache line.  

To minimize memory bus traffic, minimize core interactions by 
minimizing shared locations. Hence, the same patterns that tend to 
reduce lock contention also tend to reduce memory traffic, because it is 
the shared state that requires locks and generates contention. Letting 
each thread work on its own local copy of the data and merging the data 
after all threads are done can be a very effective strategy.  

Consider writing a multi-threaded version of the function 
CacheFriendlySieve from Figure 7.17. A good decomposition for this 
problem is to fill the array factor sequentially, and then operate on the 
windows in parallel. The sequential portion takes time O( n ), and 
hence has minor impact on speedup for large n. Operating on the 
windows in parallel requires sharing some data. Looking at the nature of 
the sharing will guide you on how to write the parallel version. 

■ The array factor is read-only once it is filled. Thus each thread 
can share the array. 

■ The array composite is updated as primes are found. However, 
the updates are made to separate windows, so they are unlikely 
to interfere except at window boundaries that fall inside a cache 
line. Better yet, observe that the values in the window are used 
only while the window is being processed. The array composite 
no longer needs to be shared, and instead each thread can have a 
private portion that holds only the window of interest. This 
change benefits the sequential version too, because now the 
space requirements for the sieve have been reduced from O(n) to 
O( n ). The reduction in space makes counting primes up to 1011 
possible on even a 32-bit machine. 

■ The variable count is updated as primes are found. An atomic 
increment could be used, but that would introduce memory 
contention. A better solution, as shown in the example, is to give 
each thread perform a private partial count, and sum the partial 
counts at the end. 

■ The array striker is updated as the window is processed. Each 
thread will need its own private copy. The tricky part is that 
striker induces a loop-carried dependence between windows. 
For each window, the initial value of striker is the last value it 
had for the previous window. To break this dependence, the 
initial values in striker have to be computed from scratch. This 
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computation is not difficult. The purpose of striker[k] is to 
keep track of the current multiple of factor[k].  

■ The variable base is new in the parallel version. It keeps track of 
the start of the window for which striker is valid. If the value 
of base differs from the start of the window being processed, it 
indicates that the thread must recompute striker from scratch. 
The recomputation sets the initial value of striker[k] to the 
lowest multiple of factor[k] that is inside or after the window. 

Figure 7.19 shows the multi-threaded sieve. A further refinement that 
cuts the work in half would be to look for only odd primes. The 
refinement was omitted from the examples because it obfuscates 
understanding of the multi-threading issues. 

 
long ParallelSieve( long n ) { 
    long count = 0; 
    long m = (long)sqrt((double)n); 
    long n_factor = 0; 
    long* factor = new long[m]; 
 
#pragma omp parallel 
    { 
       bool* composite = new bool[m+1]; 
       long* striker = new long[m]; 
 
#pragma omp single 
       { 
          memset( composite, 0, m ); 
          for( long i=2; i<=m; ++i ) 
             if( !composite[i] ) { 
                ++count; 
                Strike( composite, 2*i, i, m ); 
                factor[n_factor++] = i; 
             } 
       } 
       long base = -1; 
 
#pragma omp for reduction (+:count) 
       for( long window=m+1; window<=n; window+=m ) { 
          memset( composite, 0, m ); 
          if( base!=window ) { 
             // Must compute striker from scratch. 
             base = window;   
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             for( long k=0; k<n_factor; ++k )  
                 striker[k] = (base+factor[k]-1)/factor[k] *  
                               factor[k] - base; 
          } 
          long limit = min(window+m-1,n) - base; 
          for( long k=0; k<n_factor; ++k )  
              striker[k] = Strike( composite, striker[k], 
                                   factor[k], limit ) - m; 
          for( long i=0; i<=limit; ++i )  
              if( !composite[i] )  
                  ++count; 
              base += m; 
       } 
       delete[] striker; 
       delete[] composite; 
    } 
    delete[] factor; 
    return count; 
} 

Figure 7.19 Parallel Sieve of Eratosthenes 

 Cache-related Issues 

As remarked earlier in the discussion of time-slicing issues, good 
performance depends on processors fetching most of their data from 
cache instead of main memory. For sequential programs, modern caches 
generally work well without too much thought, though a little tuning 
helps. In parallel programming, caches open up some much more serious 
pitfalls. 

False Sharing 

The smallest unit of memory that two processors interchange is a cache 
line or cache sector. Two separate caches can share a cache line when 
they both need to read it, but if the line is written in one cache, and read 
in another, it must be shipped between caches, even if the locations of 
interest are disjoint. Like two people writing in different parts of a log 
book, the writes are independent, but unless the book can be ripped 
apart, the writers must pass the book back and forth. In the same way, 
two hardware threads writing to different locations contend for a cache 
sector to the point where it becomes a ping-pong game. 
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Figure 7.20 illustrates such a ping-pong game. There are two threads, 
each running on a different core. Each thread increments a different 
location belonging to the same cache line. But because the locations 
belong to the same cache line, the cores must pass the sector back and 
forth across the memory bus. 

 

Figure 7.20 Cache Line Ping Ponging Caused by False Sharing  

Figure 7.21 shows how bad the impact can be for a generalization of 
Figure 7.20. Four single-core processors, each enabled with Hyper-
Threading Technology (HT Technology), are used to give the flavor of a 
hypothetical future eight-core system. Each hardware thread increments 
a separate memory location. The ith thread repeatedly increments 
x[i*stride]. The performance is worse when the locations are 
adjacent, and improves as they spread out, because the spreading puts 
the locations into more distinct cache lines. Performance improves 
sharply at a stride of 16. This is because the array elements are 4-byte 
integers. The stride of 16 puts the locations 16 × 4 = 64 bytes apart. The 
data is for a Pentium 4 based processor with a cache sector size of 
64 bytes. Hence when the locations were 64 bytes part, each thread is 
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hitting on a separate cache sector, and the locations become private to 
each thread. The resulting performance is nearly one hundredfold better 
than when all threads share the same cache line. 

 

Figure 7.21 Performance Impact of False Sharing 

Avoiding false sharing may require aligning variables or objects in 
memory on cache line boundaries. There are a variety of ways to force 
alignment. Some compilers support alignment pragmas. The Windows 
compilers have a directive __declspec(align(n)) that can be used to 
specify n-byte alignment. Dynamic allocation can be aligned by allocating 
extra pad memory, and then returning a pointer to the next cache line in 
the block. Figure 7.22 shows an example allocator that does this. Function 
CacheAlignedMalloc uses the word just before the aligned block to store a 
pointer to the true base of the block, so that function CacheAlignedFree 
can free the true block. Notice that if malloc returns an aligned pointer, 
CacheAlignedMalloc still rounds up to the next cache line, because it 
needs the first cache line to store the pointer to the true base.  
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It may not be obvious that there is always enough room before the 
aligned block to store the pointer. Sufficient room depends upon two 
assumptions: 

■ A cache line is at least as big as a pointer.  

■ A malloc request for at least a cache line’s worth of bytes returns 
a pointer aligned on boundary that is a multiple of 
sizeof(char*). 

These two conditions hold for IA-32 and Itanium-based systems. Indeed, 
they hold for most architecture because of alignment restrictions 
specified for malloc by the C standard. 
 

// Allocate block of memory that starts on cache line 
void* CacheAlignedMalloc( size_t bytes, void* hint ) { 
    size_t m = (cache line size in bytes); 
    assert( (m & m-1)==0 ); // m must be power of 2 
    char* base = (char*)malloc(m+bytes); 
 
    // Round pointer up to next line 
    char * result = (char*)((UIntPtr)(base+m)&-m); 
 
    // Record where block actually starts. 
    ((char**)result)[-1] = base; 
 
    return result; 
} 
 
// Free block allocated by CacheAlignedMalloc 
void CacheAlignedFree( void* p ) { 
 
    // Recover where block actually starts 
    char* base = ((byte**)p)[-1]; 
 
    // Failure of following assertion indicates memory 
    // was not allocated with CacheAlignedMalloc. 
    assert( (void*)((UIntPtr) 
            (base+NFS_LineSize)&-NFS_LineSize) == p); 
    free( base ); 
} 

Figure 7.22 Memory Allocator that Allocates Blocks Aligned on Cache Line 
Boundaries 

The topic of false sharing exposes a fundamental tension between 
efficient use of a single-core processor and efficient use of a multi-core 



204 Multi-Core Programming 

processor. The general rule for efficient execution on a single core is to 
pack data tightly, so that it has as small a footprint as possible. But on a 
multi-core processor, packing shared data can lead to a severe penalty 
from false sharing. Generally, the solution is to pack data tightly, give 
each thread its own private copy to work on, and merge results 
afterwards. This strategy extends naturally to task stealing. When a thread 
steals a task, it can clone the shared data structures that might cause 
cache line ping ponging, and merge the results later. 

Memory Consistency 

At any given instant in time in a sequential program, memory has a well 
defined state. This is called sequential consistency. In parallel programs, 
it all depends upon the viewpoint. Two writes to memory by a hardware 
thread may be seen in a different order by another thread. The reason is 
that when a hardware thread writes to memory, the written data goes 
through a path of buffers and caches before reaching main memory. 
Along this path, a later write may reach main memory sooner than an 
earlier write. Similar effects apply to reads. If one read requires a fetch 
from main memory and a later read hits in cache, the processor may 
allow the faster read to “pass” the slower read. Likewise, reads and writes 
might pass each other. Of course, a processor has to see its own reads 
and writes in the order it issues them, otherwise programs would break. 
But the processor does not have to guarantee that other processors see 
those reads and writes in the original order. Systems that allow this 
reordering are said to exhibit relaxed consistency. 

Because relaxed consistency relates to how hardware threads observe 
each other’s actions, it is not an issue for programs running time sliced 
on a single hardware thread. Inattention to consistency issues can result 
in concurrent programs that run correctly on single-threaded hardware, 
or even hardware running with HT Technology, but fail when run on 
multi-threaded hardware with disjoint caches. 

The hardware is not the only cause of relaxed consistency. Compilers 
are often free to reorder instructions. The reordering is critical to most 
major compiler optimizations. For instance, compilers typically hoist 
loop-invariant reads out of a loop, so that the read is done once per loop 
instead of once per loop iteration. Language rules typically grant the 
compiler license to presume the code is single-threaded, even if it is not. 
This is particularly true for older languages such as Fortran, C, and 
C++ that evolved when parallel processors were esoteric. For recent 
languages, such as Java and C#, compilers must be more circumspect, 
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but only when the keyword volatile is present. Unlike hardware 
reordering, compiler reordering can affect code even when it is running 
time sliced on a single hardware thread. Thus the programmer must be 
on the lookout for reordering by the hardware or the compiler.  

Current IA-32 Architecture 

IA-32 approximates sequential consistency, because it evolved in the 
single-core age. The virtue is how IA-32 preserves legacy software. 
Extreme departures from sequential consistency would have broken old 
code. However, adhering to sequential consistency would have yielded 
poor performance, so a balance had to be struck. For the most part, the 
balance yields few surprises, yet achieves most of the possible 
performance improvements (Hill 1998). Two rules cover typical 
programming: 

■ Relaxation for performance. A thread sees other threads’ reads 
and writes in the original order, except that a read may pass a 
write to a different location. This reordering rule allows a thread 
to read from its own cache even if the read follows a write to 
main memory. This rule does not cover “nontemporal” writes, 
which are discussed later.  

■ Strictness for correctness. An instruction with the LOCK prefix 
acts as a memory fence. No read or write may cross the fence. 
This rule stops relaxations from breaking typical synchronization 
idioms based on the LOCK instructions. Furthermore, the 
instruction xchg has an implicit LOCK prefix in order to preserve 
old code written before the LOCK prefix was introduced.  

This slightly relaxed memory consistency is called processor order. For 
efficiency, the IA-32 architecture also allows loads to pass loads but hides 
this from the programmer. But if the processor detects that the 
reordering might have a visible effect, it squashes the affected 
instructions and reruns them. Thus the only visible relaxation is that 
reads can pass writes. 

The IA-32 rules preserve most idioms, but ironically break the 
textbook algorithm for mutual exclusion called Dekker’s Algorithm1. 
This algorithm enables mutual exclusion for processors without special 
atomic instructions. Figure 7.23(a) demonstrates the key sequence in 
Dekker’s Algorithm. Two variables X and Y are initially zero. Thread 1 

                                                   
1 The first published software-only, two-process mutual exclusion algorithm.  
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writes X and reads Y. Thread 2 writes Y and reads X. On a sequentially 
consistent machine, no matter how the reads and writes are 
interleaved, no more than one of the threads reads a zero. The thread 
reading the zero is the one allowed into the exclusion region. On IA-32, 
and just about every other modern processor, both threads might read 
0, because the reads might pass the writes. The code behaves as if 
written in Figure 7.23(b). 

 

Figure 7.23 Why Relaxed Consistency Breaks Dekker’s Algorithm  

Figure 7.23(c) shows how make the sequence work by inserting 
explicit memory fence instructions. The fences keep the reads from 
passing the writes. Table 7.1 summarizes the three types of IA-32 fence 
instructions. 

Table 7.1 Types of IA-32 Fence Instructions 

Mnemonic Name Description 

mfence Memory fence neither reads nor writes may cross 

lfence load fence reads may not cross  

sfence Store fence writes may not cross 
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The fences serve to tighten memory ordering when necessary for 
correctness. The order of writes can be loosened with nontemporal store 
instructions, which are not necessarily seen by other processors in the 
order they were issued by the issuing processor. Some IA-32 string 
operations, such as MOVS and STOS, can be nontemporal. The looser 
memory ordering allows the processor to maximize bus efficiency by 
combining writes. However, the processor consuming such data might 
not be expecting to see the writes out of order, so the producer should 
issue a sfence before signaling the consumer that the data is ready.  

IA-32 also allows memory consistency rules to be varied for specific 
memory ranges. For instance, a range with “write combining” permits 
the processor to temporarily record writes in a buffer, and commit the 
results to cache or main memory later in a different order. Such a range 
behaves as if all stores are nontemporal. In practice, in order to 
preserve legacy code, most environments configure IA-32 systems to 
use processor order, so the page-by-page rules apply only in special 
environments. Section 7.2 of Volume 2 of IA-32 Intel® Architecture 
Software Developer’s Manual describes the memory ordering rules in 
more detail.  

Itanium® Architecture 

The Itanium architecture had no legacy software to preserve, and thus 
could afford a cutting-edge relaxed memory model. The model 
theoretically delivers higher performance than sequential consistency by 
giving the memory system more freedom of choice. As long as locks are 
properly used to avoid race conditions, there are no surprises. However, 
programmers writing multiprocessor code with deliberate race 
conditions must understand the rules. Though far more relaxed than 
IA-32, the rules for memory consistency on Itanium processors are 
simpler to remember because they apply uniformly. Furthermore, 
compilers for Itanium-based systems interpret volatile in a way that 
makes most idioms work. 

Figure 7.24(a) shows a simple and practical example where the rules 
come into play. It shows two threads trying to pass a message via 
memory. Thread 1 writes a message into variable Message, and Thread 2 
reads the message. Synchronization is accomplished via the flag 
IsReady. The writer sets IsReady after it writes the message. The reader 
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busy waits for IsReady to be set, and then reads the message. If the 
writes or reads are reordered, then Thread 2 may read the message 
before Thread 1 is done writing it. Figure 7.24(b) shows how the Itanium 
architecture may reorder the reads and writes. The solution is to declare 
the flag IsReady as volatile, as shown in 7.24(c). Volatile writes 
are compiled as “store with release” and volatile reads are compiled as 
“load with acquire.” Memory operations are never allowed to move 
downwards over a “release” or upwards over an “acquire,” thus 
enforcing the necessary orderings. 

 

Figure 7.24 Use of Volatile Keyword for Itanium® Architecture 

The details of the Itanium architecture’s relaxed memory model 
can be daunting, but the two of the idioms over most practice. Figure 
7.25 illustrates these two idioms. The animals represent memory 
operations whose movement is constrained by animal trainers who 
represent acquire and release fences. The first idiom is message 
passing, which is a generalization of Figure 7.24. A sender thread 
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writes some data, and then signals a receiver thread that it is ready by 
modifying a flag location. The modification might be a write, or some 
other atomic operation. As long as the sender performs a release 
operation after writing the data, and the receiver performs an acquire 
operation before reading the data, the desired ordering will be 
maintained. Typically, these conditions are guaranteed by declaring 
the flag volatile, or using an atomic operation with the desired 
acquire/release characteristics. 

Operations by Sending Thread Operations by Receiving Thread

Write Operations for Message

Release

Read Operations for Message

Message Passing Idiom

Cage Boundary

Cage Idiom

Release

Memory Operations

Time

Time

Acquire

Acquire

 

Figure 7.25 Two Common Idioms for Using Shared Memory without a Lock  

The second idiom is memory cage. A memory cage starts with an 
acquire fence and ends in a release fence. These fences keep any memory 
operations inside the cage from escaping. However, be aware that 
memory cages keep things inside from getting out, and not vice-versa. It 
is possible for disjoint cages to become overlapped by instruction 
reordering, because an acquire that begins a cage can float backwards 
over the release that ends a previous cage. For similar reasons, trying to 
fix Dekker’s Algorithm with acquiring reads and releasing writes does not 
fix the algorithm—the fix needs to stop reads from floating backwards 
over writes, but acquiring reads can nonetheless float backwards over 
releasing writes. The proper fix is to add a full memory fence, for 
instance, call the __memory_barrier() intrinsic. 



210 Multi-Core Programming 

A subtle example of fencing is the widely used double-check idiom. 
The idiom is commonly used for lazy initialization in multi-threaded code. 
Figure 7.26 shows a correct implementation of double check for the 
Itanium architecture. The critical feature is declaring the flag as volatile 
so that the compiler will insert the correct acquire and release fences. 
Double-check is really the message-passing idiom, where the message is 
the initialized data structure. This implementation is not guaranteed to be 
correct by the ISO C and C++ standards, but is nonetheless correct for 
the Itanium architecture because the Itanium processor’s interpretation 
of volatile reads and writes implies fences. 

 

Figure 7.26 Use of Volatile in Double Check Idiom on Itanium® Architecture 

A common analysis error is to think that the acquire fence between 
the outer if and read data structure is redundant, because it would 
seem that the hardware must perform the if before the read data 
structure. But an ordinary read could in fact be hoisted above the if 
were it on the same cache line as another read before the if. Likewise, 
without the fence, an aggressive compiler might move the read upwards 
over the if as a speculative read. The acquire fence is thus critical. 

High-level Languages 

When writing portable code in a high-level language, the easiest way to 
deal with memory consistency is through the language’s existing 
synchronization primitives, which normally have the right kind of fences 
built in. Memory consistency issues appear only when programmers “roll 
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their own” synchronization primitives. If you must roll your own 
synchronization, the rules depend on the language and hardware. Here 
are some guidelines: 

■ C and C++. There is no portable solution at present. The ISO C++ 
committee is considering changes that would address the issue. 
For Windows compilers for IA-32, use inline assembly code to 
embed fence instructions. For the Itanium processor family, try to 
stick to the “message passing” and “cage” idioms, and declare the 
appropriate variables as volatile.  

■ .NET. Use volatile declarations as for the Itanium architecture and 
the code should be portable to any architecture. 

■ Java. The recent JSR-133 revision of the Java memory makes it 
similar to Itanium architecture with .NET, so likewise, use volatile 
declarations. 

 Avoiding Pipeline Stalls on IA-32 

When writing a parallel program for performance, first get the 
decomposition right. Then tune for cache usage, including avoidance of 
false sharing. Then, as a last measure, if trying to squeeze the last cycles 
out, concern yourself with the processor’s pipeline. The Pentium 4 and 
Pentium D processors have deep pipelines that permit high execution 
rates of instructions typical of single-threaded code. The execution units 
furthermore reorder instructions so that instructions waiting on memory 
accesses do not block other instructions. Deep pipelines and out of order 
execution are usually a good thing, but make some operations relatively 
expensive.  

Particularly expensive are serializing instructions. These are 
instructions that force all prior instructions to complete before any 
subsequent instructions. Common serializing instructions include those 
with the LOCK prefix, memory fences, and the CPUID instruction. The 
XCHG instruction on memory is likewise serializing, even without the 
LOCK prefix. These instructions are essential when serving their 
purpose, but it can pay to avoid them, or at least minimize them, when 
such alternatives exist.  

On processors with HT Technology, spin waits can be a problem 
because the spinning thread might consume all the hardware resources. 
In the worst case, it might starve the thread on which the spinner is 
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waiting! On the Pentium 4 processor and later processors, the solution is 
to insert a PAUSE instruction. On Itanium processors, the similar 
instruction is HINT 0. These instructions notify the hardware that the 
thread is waiting; that is, that hardware resources should be devoted to 
other threads. Furthermore, on IA-32, spinning on a read can consume 
bus bandwidth, so it is typically best to incorporate exponential backoff 
too. Figure 7.27 shows a spin-wait with a PAUSE instruction 
incorporated. In more complicated waits based on exponential backoff, 
the PAUSE instruction should go in the delay loop. 

 
 
 

 

while( !IsReady ) 
   _asm pause; 

R2 = Message; 

Figure 7.27 Busy-wait Loop with IA-32 Pause Instruction 

 Data Organization for High Performance 

The interactions of memory, cache, and pipeline can be daunting. It may 
help to think of a program’s locations as divided into four kinds of 
locality: 

■ Thread private. These locations are private to a given thread and 
never shared with other threads. A hardware thread tends to 
keep this memory in cache, as long as it fits. Hence accesses to 
thread private locations tend to be very fast and not consume bus 
bandwidth. 

■ Thread shared read only. These locations are shared by multiple 
threads, but never written by those threads. Lookup tables are a 
common example. Because there are no writes, a hardware 
thread tends to keep its own copy in cache, as long as it fits. 

■ Exclusive access. These locations are read and written, but 
protected by a lock. Once a thread acquires the lock and starts 
operating on the data, the locations will migrate into cache. Once 
a thread releases the lock, the locations will migrate back to 
memory or to the next hardware thread that acquires the lock. 
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■ Wild West. These locations are read and written by 
unsynchronized threads. Depending upon the lock implementa-
tion, these locations may include the lock objects themselves, 
because by their nature, locks are accessed by unsynchronized 
threads that the lock will synchronize. Whether a lock object 
counts as part of the Wild West depends upon whether the lock 
object holds the real “guts” of the lock, or is just a pointer off to 
the real guts.  

A location’s locality may change as the program runs. For instance, a 
thread may create a lookup table privately, and then publish its location 
to other threads so that it becomes a read-only table. 

A good decomposition favors thread-private storage and thread-shared 
read-only storage, because these have low impact on the bus and do not 
need synchronization. Furthermore, locations of a given locality should not 
be mixed on the same cache line, because false sharing issues arise. For 
example, putting thread-private data and Wild West data on the same line 
hinders access to the thread-private data as the Wild West accesses ping 
pong the line around. Furthermore, Wild West locations are often 
candidates for putting on a separate cache line, unless the locations tend to 
be accessed by the same thread at nearly the same time, in which case 
packing them onto the same cache line may help reduce memory traffic.  

 Key Points 

The key to successful parallel programming is choosing a good program 
decomposition. Keep the following points in mind when choosing a 
decomposition:   

■ Match the number of runnable software threads to the available 
hardware threads. Never hard-code the number of threads into 
your program; leave it as a tuning parameter. 

■ Parallel programming for performance is about finding the zone 
between too little and too much synchronization. Too little 
synchronization leads to incorrect answers. Too much 
synchronization leads to slow answers.  

■ Use tools like Intel Thread Checker to detect race conditions. 

■ Keep locks private. Do not hold a lock while calling another 
package’s code. 

■ Avoid deadlock by acquiring locks in a consistent order. 
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■ Consider memory bandwidth and contention issues when picking 
a decomposition for parallel execution. Pack data tightly to 
minimize bandwidth and cache footprint. Put data meant for 
different processors on different cache lines. Separate shared 
read-only data from writable data.  

■ Spread out lock contention by using multiple distributed locks 
where possible. 

■ Lockless algorithms have both advantages and disadvantages. 
They are particularly tricky in languages without garbage 
collection. Tread with caution. 

■ Cache lines are the quanta of information interchange between 
hardware threads. 

■ If writing your own synchronization code, understand the 
memory consistency model for the target platform. 

■ Serializing instructions, such as atomic operation and memory 
fences, are useful when needed, but relatively expensive 
compared to other instructions.  
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Chapter 8
Multi-threaded 

Debugging 
Techniques 

 

ebugging multi-threaded applications can be a challenging task. The 
increased complexity of multi-threaded programs results in a large 

number of possible states that the program may be in at any given time. 
Determining the state of the program at the time of failure can be 
difficult; understanding why a particular state is troublesome can be even 
more difficult. Multi-threaded programs often fail in unexpected ways, 
and often in a nondeterministic fashion. Bugs may manifest themselves in 
a sporadic fashion, frustrating developers who are accustomed to 
troubleshooting issues that are consistently reproducible and predictable. 
Finally, multi-threaded applications can fail in a drastic fashion—
deadlocks cause an application or worse yet, the entire system, to hang. 
Users tend to find these types of failures to be unacceptable.  

This chapter examines general purpose techniques that are useful 
when debugging multi-threaded applications. Intel has developed a 
number of tools, including the Intel® Thread Checker, the Intel Thread 
Profiler, and the Intel Debugger that help debug and profile multi-
threaded applications. These tools are discussed in Chapter 11.  

 General Debug Techniques 

Regardless of which library or platform that you are developing on, 
several general principles can be applied to debugging multi-threaded 
software applications.  

D 



216  Multi-Core Programming 

Designing with Debugging in Mind 

The first technique for eliminating bugs in multi-threaded code is to avoid 
introducing the bug in the first place. Many software defects can be 
prevented by using proper software development practices.1 The later a 
problem is found in the product development lifecycle, the more 
expensive it is to fix. Given the complexity of multi-threaded programs, it 
is critical that multi-threaded applications are properly designed up front.  

How often have you, as a software developer, experienced the 
following situation? Someone on the team that you’re working on gets a 
great idea for a new product or feature. A quick prototype that illustrates 
the idea is implemented and a quick demo, using a trivial use-case, is 
presented to management. Management loves the idea and immediately 
informs sales and marketing of the new product or feature. Marketing 
then informs the customer of the feature, and in order to make a sale, 
promises the customer the feature in the next release. Meanwhile, the 
engineering team, whose original intent of presenting the idea was to get 
resources to properly implement the product or feature sometime in the 
future, is now faced with the task of delivering on a customer 
commitment immediately. As a result of time constraints, it is often the 
case that the only option is to take the prototype, and try to turn it into 
production code.  

While this example illustrates a case where marketing and 
management may be to blame for the lack of following an appropriate 
process, software developers are often at fault in this regard as well. For 
many developers, writing software is the most interesting part of the 
job. There’s a sense of instant gratification when you finish writing your 
application and press the run button. The results of all the effort and 
hard work appear instantly. In addition, modern debuggers provide a 
wide range of tools that allow developers to quickly identify and fix 
simple bugs. As a result, many programmers fall into the trap of coding 
now, deferring design and testing work to a later time. Taking this 
approach on a multi-threaded application is a recipe for disaster for 
several reasons: 

■ Multi-threaded applications are inherently more complicated 
than single-threaded applications. Hacking out a reliable, 
scalable implementation of a multi-threaded application is hard; 

                                                   
1 There are a number of different software development methodologies that are applicable to parallel 

programming. For example, parallel programming can be done using traditional or rapid prototyping 
(Extreme Programming) techniques.  
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even for experienced parallel programmers. The primary reason 
for this is the large number of corner cases that can occur and the 
wide range of possible paths of the application. Another 
consideration is the type of run-time environment the application 
is running on. The access patterns may vary wildly depending on 
whether or not the application is running on a single-core or 
multi-core platform, and whether or not the platform supports 
simultaneous multithreading hardware. These different run-time 
scenarios need to be thoroughly thought out and handled to 
guarantee reliability in a wide range of environments and use 
cases.  

■ Multi-threaded bugs may not surface when running under the 
debugger. Multi-threading bugs are very sensitive to the timing of 
events in an application. Running the application under the 
debugger changes the timing, and as a result, may mask 
problems. When your application fails in a test or worse, the 
customer environment, but runs reliably under the debugger, it is 
almost certainly a timing issue in the code.  

While following a software process can feel like a nuisance at times, 
taking the wrong approach and not following any process at all is a 
perilous path when writing all but the most trivial applications. This 
holds true for parallel programs. 

While designing your multi-threaded applications, you should keep 
these points in mind. 

■ Design the application so that it can run sequentially. An 
application should always have a valid means of sequential 
execution. The application should be validated in this run mode 
first. This allows developers to eliminate bugs in the code that are 
not related to threading. If a problem is still present in this mode 
of execution, then the task of debugging reduces to single-
threaded debugging.  

In many circumstances, it is very easy to generate a sequential 
version of an application. For example, an OpenMP application 
compiled with one of the Intel compilers can use the openmp-
stubs option to tell the compiler to generate sequential OpenMP 
code.  

■ Use established parallel programming patterns. The best 
defense against defects is to use parallel patterns that are known 
to be safe. Established patterns solve many of the common 
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parallel programming problems in a robust manner. Reinventing 
the wheel is not necessary in many cases.   

■ Include built-in debug support in the application. When trying 
to root cause an application fault, it is often useful for 
programmers to be able to examine the state of the system at any 
arbitrary point in time. Consider adding functions that display the 
state of a thread—or all active threads. Trace buffers, described in 
the next section, may be used to record the sequence of accesses 
to a shared resource. Many modern debuggers support the 
capability of calling a function while stopped at a breakpoint. 
This mechanism allows developers to extend the capabilities of 
the debugger to suit their particular application’s needs.  

Code Reviews 
Many software processes suggest frequent code reviews as a means 
of improving software quality. The complexity of parallel 
programming makes this task challenging. While not a replacement 
for using well established parallel programming design patterns, 
code reviews may, in many cases, help catch bugs in the early stages 
of development.  

One technique for these types of code reviews is to have individual 
reviewers examine the code from the perspective of one of the threads 
in the system. During the review, each reviewer steps through the 
sequence of events as the actual thread would. Have objects that 
represent the shared resources of the system available and have the 
individual reviewers (threads) take and release these resources. This 
technique will help you visualize the interaction between different 
threads in your system and hopefully help you find bugs before they 
manifest themselves in code.  

As a developer, when you get the urge to immediately jump into 
coding and disregard any preplanning or preparation, you should 
consider the following scenarios and ask yourself which situation you’d 
rather be in. Would you rather spend a few weeks of work up front to 
validate and verify the design and architecture of your application, or 
would you rather deal with having to redesign your product when you 
find it doesn’t scale? Would you rather hold code reviews during 
development or deal with the stress of trying to solve mysterious, 
unpredictable showstopper bugs a week before your scheduled ship 
date? Good software engineering practices are the key to writing reliable  
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software applications. Nothing is new, mysterious, or magical about 
writing multi-threaded applications. The complexity of this class of 
applications means that developers must be conscious of these 
fundamental software engineering principles and be diligent in following 
them.  

Extending your Application—Using Trace Buffers 

Chapter 7 identified two categories of bugs found in multi-threaded 
applications: synchronization bugs and performance bugs. 
Synchronization bugs include race conditions and deadlocks that 
cause unexpected and incorrect behavior. Performance bugs arise 
from unnecessary thread overhead due to thread creation or context 
switch overhead, and memory access patterns that are suboptimal 
for a given processor’s memory hierarchy. The application returns 
the correct results, but often takes too long to be usable. This 
chapter focuses on debugging synchronization bugs that cause 
applications to fail. 

In order to find the cause of these types of bugs, two pieces of 
information are needed: 

1. Which threads are accessing the shared resource at the time of 
the failure. 

2. When the access to the shared resource took place.  

In many cases, finding and fixing synchronization bugs involves code 
inspection. A log or trace of the different threads in the application and 
the pattern in which they accessed the shared resources of the code 
helps narrow down the problematic code sections. One simple data 
structure that collects this information is the trace buffer. 

A trace buffer is simply a mechanism for logging events that the 
developer is interested in monitoring. It uses an atomic counter that 
keeps track of the current empty slot in the array of event records. The 
type of information that each event can store is largely up to the 
developer. A sample implementation of a trace buffer, using the Win32 
threading APIs, is shown in Listing 8.1.2 

 
 

                                                   
2 In the interest of making the code more readable, Listing 8.1 uses the time() system call to record 

system time. Due to the coarse granularity of this timer, most applications should use a high 
performance counter instead to keep track of the time in which events occurred.  
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1 // Circular 1K Trace buffer 
2 #define TRACE_BUFFER_SIZE 1024 
3  
4 typedef struct traceBufferElement 
5 { 
6    DWORD threadId; 
7    time_t timestamp; 
8    const char *msg; 
9 } traceBufferElement; 
10  
11 static LONG m_TraceBufferIdx = -1; 
12 static traceBufferElement traceBuffer[TRACE_BUFFER_SIZE];  
13  
14 void InitializeTraceBuffer() 
15 { 
16    m_TraceBufferIdx = -1; 
17     
18    /* initialize all entries to {0, 0, NULL} */ 
19    memset(traceBuffer, 0,     
20           TRACE_BUFFER_SIZE*sizeof(traceBufferElement)); 
21 } 
22  
23 void AddEntryToTraceBuffer(const char *msg) 
24 { 
25    LONG idx = 0; 
26  
27    // Get the index into the trace buffer that this  
28    // thread should use 
29    idx = InterlockedIncrement(&m_TraceBufferIdx) %  
30                                  TRACE_BUFFER_SIZE; 
31  
32    // Enter the data into the Trace Buffer 
33    traceBuffer[idx].threadId = GetCurrentThreadId();                     
34    traceBuffer[idx].timestamp = time(NULL); 
35    traceBuffer[idx].msg = msg; 
36 } 
37  
38 void PrintTraceBuffer() 
39 { 
40    int i; 
41    printf("Thread ID  Timestamp   Msg\n"); 
42    printf("----------|----------|----------------------“ 
43           "-----------------\n"); 
44  
45    // sort by timestamp before printing 
46    SortTraceBufferByTimestamp(); 
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47    for (i = 0; i < TRACE_BUFFER_SIZE; i++) 
48    { 
49       if (traceBuffer[i].timestamp == 0) 
50       { 
51          break; 
52       } 
53       printf("0x%8.8x|0x%8.8x| %s\n",  
54              traceBuffer[i].threadId,  
55              traceBuffer[i].timestamp,  
56          traceBuffer[i].msg); 
57    } 
58 } 

Listing 8.1 Sample Implementation of a Trace Buffer 

Listing 8.1, creates a trace buffer that can store 1,024 events. It stores 
these events in a circular buffer. As you’ll see shortly, once the circular 
buffer is full, your atomic index will wrap around and replace the oldest 
event. This simplifies your implementation as it doesn’t require 
dynamically resizing the trace buffer or storing the data to disk. In some 
instances, these operations may be desirable, but in general, a circular 
buffer should suffice.  

Lines 1–13 define the data structures used in this implementation. 
The event descriptor traceBufferElement is defined in lines 4–9. It 
contains three fields: a field to store the thread ID, a timestamp value that 
indicates when the event occurred, and a generic message string that is 
associated with the event. This structure could include a number of 
additional parameters, including the name of the thread. 

The trace buffer in Listing 8.1 defines three operations. The first 
method, InitializeTraceBuffer(), initializes the resources used by 
the trace buffer. The initialization of the atomic counter occurs on line 16. 
The atomic counter is initialized to –1. The initial value of this counter is 
–1 because adding a new entry in the trace buffer requires us to first 
increment (line 29) the atomic counter. The first entry should be stored 
in slot 0. Once the trace buffer is initialized, threads may call 
AddEntryToTraceBuffer() to update the trace buffers with events as 
they occur. PrintTraceBuffer() dumps a listing of all the events that 
the trace buffer has logged to the screen. This function is very useful 
when combined with a debugger that allows users to execute code at a 
breakpoint. Both Microsoft Visual Studio† and GDB support this 
capability. With a single command, the developer can see a log of all the  
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recent events being monitored, without having to parse a data structure 
using the command line or a watch window.  

Note that the implementation of the trace buffer in Listing 8.1 logs 
events as they are passed into the buffer. This doesn’t necessarily 
guarantee that the trace buffer will log events exactly as they occur in 
time. To illustrate this point, consider the two threads shown in 
Listing 8.2. 

  
 

unsigned __stdcall Thread1(void *) 
{ 
   // ... thread initialization 
   // write global data 
   m_global = do_work(); 
   AddEntryToTraceBuffer(msg); 
   // ... finish thread 
} 

unsigned __stdcall Thread2(void *) 
{ 
   // ... thread initialization 
   // read global data 
   Thread_local_data = m_global; 
   AddEntryToTraceBuffer(msg); 
   // ... finish thread 
} 

Listing 8.2 Two Threads Logging Events to a Trace Buffer 

By now it should be clear what the problem is. A race condition 
exists between the two threads and the access to the trace buffer. 
Thread1 may write to the global data value and then start logging that 
write event in the trace buffer. Meanwhile, Thread2 may read that same 
global value after the write, but log this read event before the write 
event. Thus, the data in the buffer may not be an accurate reflection of 
the actual sequence of events as they occurred in the system.  

One potential solution to this problem is to protect the operation 
that you want to log and the subsequent trace buffer access with a 
synchronization object. A thread, when logging the event, could request 
exclusive access to the trace buffer. Once the thread has completed 
logging the event, it would then unlock the trace buffer, allowing other 
threads to access the buffer. This is shown in Listing 8.3. 



Chapter 8: Multi-threaded Debugging Techniques 223 

 

 

// This is NOT RECOMMENDED 
unsigned __stdcall Thread1(void *) 
{ 
   // ... thread initialization 
   // write global data 

   LockTraceBuffer(); 

   m_global = do_work(); 
   AddEntryToTraceBuffer(msg); 

   UnlockTraceBuffer(); 

   // ... finish thread 
} 

unsigned __stdcall Thread2(void *) 
{ 
   // ... thread initialization 
   // read global data 
   LockTraceBuffer(); 

   Thread_local_data = m_global; 
   AddEntryToTraceBuffer(msg); 

   UnlockTraceBuffer(); 
   // ... finish thread 
} 

Listing 8.3 Incorrectly Synchronizing Access to the Trace Buffer 

There are a number of drawbacks to this technique. Using a 
synchronization primitive to protect access to a trace buffer may actually 
mask bugs in the code, defeating the purpose of using the trace buffer for 
debug. Assume that the bug the developer is tracking down is related to a 
missing lock around the read or write access in the thread. By locking 
access to the trace buffer, the developer is protecting a critical section of 
code that may be incorrectly unprotected. Generally speaking, when 
tracking down a race condition, the programmer should avoid 
synchronizing access to the trace buffer. If you synchronize access and 
your application works, it’s a clue that there may be a problem in the 
synchronization mechanism between those threads.  

The preferred method to overcoming this limitation is to log a message 
before and after the event occurs. This is demonstrated in Listing 8.4. 
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unsigned __stdcall Thread1(void *) 
{ 
   // ... thread initialization 
   // write global data 
   AddEntryToTraceBuffer(before_msg); 
   m_global = do_work(); 
   AddEntryToTraceBuffer(after_msg); 
   // ... finish thread 
} 

unsigned __stdcall Thread2(void *) 
{ 
   // ... thread initialization 
   // read global data 
   AddEntryToTraceBuffer(before_msg2); 
   Thread_local_data = m_global; 
   AddEntryToTraceBuffer(after_msg2); 
   // ... finish thread 
} 

Listing 8.4 Preferred Method of Logging Messages with a Trace buffer 

By logging a before and after message, a programmer can determine 
whether or not the events occurred as expected. If the before and after 
messages between the two threads occur in sequence, then the 
developer can safely assume that the event was ordered. If the before and 
after messages are interleaved, then the order of events is indeterminate; 
the events may have happened in either order.  

A trace buffer can be used to gather useful data about the sequence 
of operations occurring in a multi-threaded application. For other more 
difficult problems, more advanced threading debug tools may be 
required. These tools are discussed in Chapter 11.  

 Debugging Multi-threaded Applications in Windows 

Most Windows programmers use Microsoft Visual Studio as their primary 
integrated development environment (IDE). As part of the IDE, Microsoft 
includes a debugger with multi-threaded debug support. This section 
examines the different multi-threaded debug capabilities of Visual Studio, 
and then demonstrates how they are used.  
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Threads Window 

As part of the debugger, Visual Studio provides a “Threads” window that 
lists all of the current threads in the system. From this window, you can: 

■ Freeze (suspend) or thaw (resume) a thread. This is useful 
when you want to observe the behavior of your application 
without a certain thread running.  

■ Switch the current active thread. This allows you to manually 
perform a context switch and make another thread active in the 
application. 

■ Examine thread state. When you double-click an entry in the 
Threads window, the source window jumps to the source line 
that the thread is currently executing. This tells you the thread’s 
current program counter. You will be able to examine the state of 
local variables within the thread. 

The Threads window acts as the command center for examining and 
controlling the different threads in an application. 

Tracepoints 

As previously discussed, determining the sequence of events that lead to 
a race condition or deadlock situation is critical in determining the root 
cause of any multi-thread related bug. In order to facilitate the logging of 
events, Microsoft has implemented tracepoints as part of the debugger 
for Visual Studio 2005. 

Most developers are familiar with the concept of a breakpoint. A 
tracepoint is similar to a breakpoint except that instead of stopping 
program execution when the applications program counter reaches that 
point, the debugger takes some other action. This action can be printing 
a message or running a Visual Studio macro.  

Enabling tracepoints can be done in one of two ways. To create a 
new tracepoint, set the cursor to the source line of code and select 
“Insert Tracepoint.” If you want to convert an existing breakpoint to a 
tracepoint, simply select the breakpoint and pick the “When Hit” option 
from the Breakpoint submenu. At this point, the tracepoint dialog 
appears.  

When a tracepoint is hit, one of two actions is taken based on the 
information specified by the user. The simplest action is to print a 
message. The programmer may customize the message based on a set of 
predefined keywords. These keywords, along with a synopsis of what 
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gets printed, are shown in Table 8.1. All values are taken at the time the 
tracepoint is hit.  

Table 8.1 Tracepoint Keywords 

Keyword Evaluates to 

$ADDRESS The address of the instruction 

$CALLER The name of the function that called this function 

$CALLSTACK The state of the callstack 

$FUNCTION The name of the current function 

$PID The ID of the process 

$PNAME The name of the process 

$TID The ID of the thread 

$TNAME The name of the thread 
 

In addition to the predefined values in Table 8.1, tracepoints also give 
you the ability to evaluate expressions inside the message. In order to do 
this, simply enclose the variable or expression in curly braces. For 
example, assume your thread has a local variable threadLocalVar that 
you’d like to have displayed when a tracepoint is hit. The expression 
you’d use might look something like this: 
Thread: $TNAME local variables value is {threadLocalVar}. 

Breakpoint Filters 

Breakpoint filters allow developers to trigger breakpoints only when 
certain conditions are triggered. Breakpoints may be filtered by machine 
name, process, and thread. The list of different breakpoint filters is 
shown in Table 8.2.  

Table 8.2 Breakpoint Filter Options 

Filter Description 

MachineName Specifies that the breakpoint should only be triggered on 
certain machines 

ProcessId Limit breakpoint to process with the matching ID 

ProcessName Limit breakpoint to process with matching name 

ThreadId Limit breakpoint to thread with matching ID 

ThreadName Limit breakpoint to thread with matching name 
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Breakpoint filters can be combined to form compound statements. 
Three logic operators are supported: !(NOT), &(AND), and ||(OR).  

Naming Threads 

When debugging a multi-threaded application, it is often useful to assign 
unique names to the threads that are used in the application. In 
Chapter 5, you learned that assigning a name to a thread in a managed 
application was as simple as setting a property on the thread object. In 
this environment, it is highly recommended that you set the name field 
when creating the thread, because managed code provides no way to 
identify a thread by its ID.  

In native Windows code, a thread ID can be directly matched to an 
individual thread. Nonetheless, keeping track of different thread IDs 
makes the job of debugging more difficult; it can be hard to keep track of 
individual thread IDs. An astute reader might have noticed in Chapter 5 
the conspicuous absence of any sort of name parameter in the methods 
used to create threads. In addition, there was no function provided to get 
or set a thread name. It turns out that the standard thread APIs in Win32 
lack the ability to associate a name with a thread. As a result, this 
association must be made by an external debugging tool. 

Microsoft has enabled this capability through predefined exceptions 
built into their debugging tools. Applications that want to see a thread 
referred to by name need to implement a small function that raises an 
exception. The exception is caught by the debugger, which then takes 
the specified name and assigns it to the associated ID. Once the 
exception handler completes, the debugger will use the user-supplied 
name from then on.  

The implementation of this function can be found on the Microsoft 
Developer Network† (MSDN) Web site at msdn.microsoft.com by 
searching for: “setting a thread name (unmanaged).” The function, 
named SetThreadName(), takes two arguments. The first argument is 
the thread ID. The recommended way of specifying the thread ID is to 
send the value -1, indicating that the ID of the calling thread should be 
used. The second parameter is the name of the thread. The 
SetThreadName() function calls RaiseException(), passing in a 
special ‘thread exception’ code and a structure that includes the thread 
ID and name parameters specified by the programmer.  

Once the application has the SetThreadName() function defined, 
the developer may call the function to name a thread. This is shown in 



228  Multi-Core Programming 

Listing 8.5. The function Thread1 is given the name Producer,3 
indicating that it is producing data for a consumer. Note that the function 
is called at the start of the thread, and that the thread ID is specified as -1. 
This indicates to the debugger that it should associate the calling thread 
with the associated ID. 

 
 

unsigned __stdcall Thread1(void *) 
{ 
   int i, x = 0; // arbitrary local variable declarations 
   SetThreadName(-1, "Producer"); 

   // Thread logic follows 
} 

Listing 8.5 Using SetThreadName to Name a Thread 

Naming a thread in this fashion has a couple of limitations. This 
technique is a debugger construct; the OS is not in any way aware of the 
name of the thread. Therefore, the thread name is not available to anyone 
other than the debugger. You cannot programmatically query a thread 
for its name using this mechanism. Assigning a name to a thread using 
this technique requires a debugger that supports exception number 
0x406D1388. Both Microsoft’s Visual Studio and WinDbg debuggers 
support this exception. Despite these limitations, it is generally advisable 
to use this technique where supported as it makes using the debugger 
and tracking down multi-threaded bugs much easier.  

Putting It All Together 

Let’s stop for a minute and take a look at applying the previously 
discussed principles to a simplified real-world example. Assume that you 
are writing a data acquisition application. Your design calls for a 
producer thread that samples data from a device every second and stores 
the reading in a global variable for subsequent processing. A consumer 
thread periodically runs and processes the data from the producer. In 
order to prevent data corruption, the global variable shared by the 
producer and consumer is protected with a Critical Section. An example 
of a simple implementation of the producer and consumer threads is 
shown in Listing 8.6. Note that error handling is omitted for readability. 

                                                   
3 Admittedly the function name Thread1 should be renamed to Producer as well, but is left 

somewhat ambiguous for illustration purposes.  
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1 static int m_global = 0; 
2 static CRITICAL_SECTION hLock; // protect m_global 
3   
4 // Simple simulation of data acquisition 
5 void sample_data() 
6 { 
7    EnterCriticalSection(&hLock);       
8    m_global = rand(); 
9    LeaveCriticalSection(&hLock);       
10 }  
11  
12 // This function is an example  
13 // of what can be done to data 
14 // after collection 
15 // In this case, you update the display 
16 // in real time 
17 void process_data() 
18 { 
19    EnterCriticalSection(&hLock);       
20    printf("m_global = 0x%x\n", m_global); 
21    LeaveCriticalSection(&hLock);       
22 } 
23   
24 // Producer thread to simulate real time  
25 // data acquisition. Collect 30 s  
26 // worth of data 
27 unsigned __stdcall Thread1(void *) 
28 { 
29    int count = 0; 
30    SetThreadName(-1, "Producer"); 
31    while (1) 
32    { 
33       // update the data 
34       sample_data(); 
35  
36       Sleep(1000); 
37       count++; 
38       if (count > 30) 
39          break; 
40    } 
41    return 0; 
42 } 
43  
44 // Consumer thread 
45 // Collect data when scheduled and  
46 // process it. Read 30 s worth of data 
47 unsigned __stdcall Thread2(void *) 
48 { 
49    int count = 0; 
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50    SetThreadName(-1, "Consumer"); 
51    while (1) 
52    { 
53       process_data(); 
54  
55  Sleep(1000); 
56       count++; 
57       if (count > 30) 
58          break; 
59    } 
60    return 0; 
61 } 

Listing 8.6 Simple Data Acquisition Device 

The producer samples data on line 34 and the consumer processes 
the data in line 53. Given this relatively simple situation, it is easy to 
verify that the program is correct and free of race conditions and 
deadlocks. Now assume that the programmer wants to take advantage of 
an error detection mechanism on the data acquisition device that 
indicates to the user that the data sample collected has a problem. The 
changes made to the producer thread by the programmer are shown in 
Listing 8.7. 

 
 

void sample_data() 
{ 
   EnterCriticalSection(&hLock);       
   m_global = rand(); 
   if ((m_global % 0xC5F) == 0) 
   { 
      // handle error 
      return; 
   } 
   LeaveCriticalSection(&hLock);       
}  

Listing 8.7 Sampling Data with Error Checking 

After making these changes and rebuilding, the application becomes 
unstable. In most instances, the application runs without any problems. 
However, in certain circumstances, the application stops printing data. 
How do you determine what’s going on?  

The key to isolating the problem is capturing a trace of the sequence 
of events that occurred prior to the system hanging. This can be done 
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with a custom trace buffer manager or with tracepoints. This example 
uses the trace buffer implemented in Listing 8.1.  

Now armed with a logging mechanism, you are ready to run the 
program until the error case is triggered. Once the system fails, you can 
stop the debugger and examine the state of the system. To do this, run 
the application until the point of failure. Then, using the debugger, stop 
the program from executing. At this point, you’ll be able bring up the 
Threads window to see the state information for each thread, such as the 
one shown in Figure 8.1. 

 

Figure 8.1 Examining Thread State Information Using Visual Studio 2005 

When you examine the state of the application, you can see that the 
consumer thread is blocked, waiting for the process_data() call to 
return. To see what occurred prior to this failure, access the trace buffer. 
With the application stopped, call the PrintTraceBuffer() method 
directly from Visual Studio’s debugger. The output of this call in this 
sample run is shown in Figure 8.2. 
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1  Thread ID |Timestamp   Msg 
2 ---------|--------- |------------------------------------ 
3 0x0000728|1137395188|Producer: sampled data value: 0x29 
4 0x00005a8|1137395188|Consumer: processed data value: 0x29 
5 0x0000728|1137395189|Producer: sampled data value: 0x78 
6 0x00005a8|1137395189|Consumer: processed data value: 0x78 
7 0x0000728|1137395190|Producer: sampled data value: 0x18BE 
8 0x0000728|1137395190|Producer: sampled data value: 0x6784 
9 0x0000728|1137395190|Producer: sampled data value: 0x4AE1 
10 0x0000728|1137395191|Producer: sampled data value: 0x3D6C 

Figure 8.2 Output from trace buffer after Error Condition Occurs 

Examination of the trace buffer log shows that the producer thread is 
still making forward progress. However, no data values after the first two 
make it to the consumer. This coupled with the fact that the thread state 
for the consumer thread indicates that the thread is stuck, points to an 
error where the critical section is not properly released. Upon closer 
inspection, it appears that the data value in line 7 of the trace buffer log 
is an error value. This leads up back to your new handling code, which 
handles the error but forgets to release the mutex. This causes the 
consumer thread to be blocked indefinitely, which leads to the consumer 
thread being starved. Technically this isn’t a deadlock situation, as the 
producer thread is not waiting on a resource that the consumer thread 
holds.  

The complete data acquisition sample application is provided on this 
book’s Web site, www.intel.com/intelpress/mcp. 

 Multi-threaded Debugging Using GDB 

For POSIX threads, debugging is generally accomplished using the GNU 
Project Debugger (GDB). GDB provides a number of capabilities for 
debugging threads, including: 

■ Automatic notification when new threads are created 

■ Listing of all threads in the system 

■ Thread-specific breakpoints 

■ The ability to switch between threads 

■ The ability to apply commands to a group of threads 

http://www.intel.com/intelpress/mcp
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Not all GDB implementations support all of the features outlined here. 
Please refer to your system’s manual pages for a complete list of 
supported features.  

Notification on Thread Creation 

When GDB detects that a new thread is created, it displays a message 
specifying the thread’s identification on the current system. This 
identification, known as the systag, varies from platform to platform. 
Here is an example of this notification: 
Starting program: /home/user/threads 
[Thread debugging using libthread_db enabled] 
[New Thread -151132480 (LWP 4445)] 
[New Thread -151135312 (LWP 4446)] 

Keep in mind that the systag is the operating system’s identification for a 
thread, not GDB’s. GDB assigns each thread a unique number that 
identifies it for debugging purposes. 

Getting a List of All Threads in the Application 

GDB provides the generic info command to get a wide variety of 
information about the program being debugged. It is no surprise that a 
subcommand of info would be info threads. This command prints a list 
of threads running in the system: 
(gdb) info threads 
2 Thread -151135312 (LWP 4448)  0x00905f80 in vfprintf ()   
from /lib/tls/libc.so.6 
* 1 Thread -151132480 (LWP 4447)  main () at threads.c:27 

The info threads command displays a table that lists three properties 
of the threads in the system: the thread number attached to the thread by 
GDB, the systag value, and the current stack frame for the current thread. 
The currently active thread is denoted by GDB with the * symbol. The 
thread number is used in all other commands in GDB.  

Setting Thread-specific Breakpoints 

GDB allows users that are debugging multi-threaded applications to 
choose whether or not to set a breakpoint on all threads or on a 
particular thread. The much like the info command, this capability is 
enabled via an extended parameter that’s specified in the break 
command. The general form of this instruction is: 
break linespec thread threadnum 
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where linespec is the standard gdb syntax for specifying a breakpoint, 
and threadnum is the thread number obtained from the info threads 
command. If the thread threadnum arguments are omitted, the 
breakpoint applies to all threads in your program. Thread-specific 
breakpoints can be combined with conditional breakpoints: 
(gdb) break buffer.c:33 thread 7 if level > watermark 

Note that stopping on a breakpoint stops all threads in your program. 
Generally speaking this is a desirable effect—it allows a developer to 
examine the entire state of an application, and the ability to switch the 
current thread. These are good things.  

Developers should keep certain behaviors in mind, however, when 
using breakpoints from within GDB. The first issue is related to how 
system calls behave when they are interrupted by the debugger. To 
illustrate this point, consider a system with two threads. The first thread 
is in the middle of a system call when the second thread reaches a 
breakpoint. When the breakpoint is triggered, the system call may return 
early. The reason—GDB uses signals to manage breakpoints. The signal 
may cause a system call to return prematurely. To illustrate this point, 
let’s say that thread 1 was executing the system call sleep(30). When 
the breakpoint in thread 2 is hit, the sleep call will return, regardless of 
how long the thread has actually slept. To avoid unexpected behavior 
due to system calls returning prematurely, it is advisable that you check 
the return values of all system calls and handle this case. In this example, 
sleep() returns the number of seconds left to sleep. This call can be 
placed inside of a loop to guarantee that the sleep has occurred for the 
amount of time specified. This is shown in Listing 8.8. 

 
 

int sleep_duration = 30; 
do 
{ 
   sleep_duration = sleep(sleep_duration); 
} while (sleep_duration > 0); 

Listing 8.8 Proper Error Handling of System Calls  

The second point to keep in mind is that GDB does not single step all 
threads in lockstep. Therefore, when single-stepping a line of code in one 
thread, you may end up executing a lot of code in other threads prior to 
returning to the thread that you are debugging. If you have breakpoints 
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in other threads, you may suddenly jump to those code sections. On 
some OSs, GDB supports a scheduler locking mode via the set scheduler-
locking command. This allows a developer to specify that the current 
thread is the only thread that should be allowed to run.   

Switching between Threads 

In GDB, the thread command may be used to switch between threads. It 
takes a single parameter, the thread number returned by the info threads 
command. Here is an example of the thread command: 

(gdb) thread 2 
[Switching to thread 2 (Thread -151135312 (LWP 4549))]#0  
PrintThreads (num=0xf6fddbb0) at threads.c:39 
39      {  
(gdb) info threads 
* 2 Thread -151135312 (LWP 4549)  PrintThreads (num=0xf6fddbb0) 
at threads.c:39 
  1 Thread -151132480 (LWP 4548)  main () at threads.c:27 
(gdb) 

In this example, the thread command makes thread number 2 the active 
thread.  

Applying a Command to a Group of Threads 

The thread command supports a single subcommand apply that can be 
used to apply a command to one or more threads in the application. The 
thread numbers can be supplied individually, or the special keyword all 
may be used to apply the command to all threads in the process, as 
illustrated in the following example: 
(gdb) thread apply all bt 
Thread 2 (Thread -151135312 (LWP 4549)): 
#0  PrintThreads (num=0xf6fddbb0) at threads.c:39 
#1  0x00b001d5 in start_thread () from 
/lib/tls/libpthread.so.0 
#2  0x009912da in clone () from /lib/tls/libc.so.6 

Thread 1 (Thread -151132480 (LWP 4548)): 
#0  main () at threads.c:27 
39      {  
(gdb) 

The GDB backtrace (bt) command is applied to all threads in the system. 
In this scenario, this command is functionally equivalent to: thread 
apply 2 1 bt. 
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 Key Points 

This chapter described a number of general purpose debugging 
techniques for multi-threaded applications. The important points to 
remember from this chapter are: 

■ Proper software engineering principles should be followed when 
writing and developing robust multi-threaded applications.  

■ When trying to isolate a bug in a multi-threaded application, it is 
useful to have a log of the different sequence of events that led 
up to failure. A trace buffer is a simple mechanism that allows 
programmers to store this event information.  

■ Bracket events that are logged in the trace buffer with “before” 
and “after” messages to determine the order in which the events 
occurred.  

■ Running the application in the debugger may alter the timing 
conditions of your runtime application, masking potential race 
conditions in your application.  

■ Tracepoints can be a useful way to log or record the sequence of 
events as they occur.  

■ For advanced debugging, consider using the Intel software tools, 
specifically, the Intel Debugger, the Intel Thread Checker, and 
the Intel Thread Profiler.  



237 
 

 

Chapter 9
Single-Core 

Processor 
Fundamentals 

 

o gain a better understanding of threading in multi-core hardware, it 
is best to review the fundamentals of how single-core processors 

operate. During the debugging, tracing, and performance analysis of 
some types of programs, knowing a processor’s details is a necessity 
rather than an option. This chapter and Chapter 10 provide the 
architectural concepts of processors that are pertinent to an 
understanding of multi-threaded programming. For internal instruction-
level details, you should consult Intel Software Developers Guides at 
Intel’s Web site.  

This chapter discusses single-core processors as a basis for 
understanding processor architecture. If you are already familiar with the 
basics of processors and chipsets, you might skip this chapter and move 
directly to Chapter 10.  

 Processor Architecture Fundamentals 

The term processor has become loosely defined. A more precise 
definition is developed in the following sections. A chipset is the set  
of chips that helps processors interact with physical memory and other 
components. Here, the chip is actually a processor but without 
centralized main processing capability. A block diagram with all the basic 
components in a computer system is represented in Figure 9.1.  

T 
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Figure 9.1 Basic Components in a Computer System 

You might be familiar with two chips in the chipset. Previously these 
chips were known as the Northbridge and Southbridge and they were 
connected by a shared PCI bus. Intel changed the implementation and 
started using dedicated point-to-point connections or direct media 
interface (DMI) between these two chips and introduced Intel Hub 
Architecture (IHA), as shown in Figure 9.2. IHA replaced the Northbridge 
and Southbridge with the Memory Controller Hub (MCH) and the I/O 
Controller Hub (ICH). When graphics and video features are built into 
the MCH, it is called the Graphics Memory Controller Hub (GMCH). A 
front side bus (FSB) attaches the chipset to the main processor. 

To understand the impact of the hardware platform on an 
application, the questions to pose are which processor is being used, 
how much memory is present, what is the FSB of the system, what is the 
cache size, and how the I/O operations take place? The answer to most 
of these questions is dictated by the processor.  

The smallest unit of work in a processor is handled by a single 
transistor. A combination of transistors forms a logic block and a set of 
logic blocks create a functional unit—some examples are the Arithmetic 
Logic Unit (ALU), Control Units, and Prefetch Units. These functional 
units receive instructions to carry out operations. Some functional units  
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are more influential than others and some remain auxiliary. The 
functional units, or blocks, form a microprocessor or Central Processing 
Unit (CPU). A high-level block diagram of a microprocessor is shown in 
Figure 9.3(a). The manufacturing process of a microprocessor produces a 
physical die and the packaged die is called the processor. Figure 9.3(b) 
shows a photo of a die. Inside a computer system, the processor sits on a 
socket. To show the physical entity of processor and socket, see 
Figure 9.3(c). Sometimes the processor is referred to as the CPU. For 
simplicity’s sake, this book refers to processor and microprocessor 
interchangeably. Different processors usually have a different number of 
functional units.  
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Figure 9.2 A System Showing MCH, ICH, and FSB 
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(c) Processor with Other Components 

Figure 9.3 Processor, Die, and Socket 

A processor fetches software instructions as input, performs 
instruction decode operations to make instructions understood by the 
processor, does some specific tasks, and finally produces the output, as 
illustrated in Figure 9.4. All these operations are done through the 
functional blocks inside a processor and all of the pipeline stages are 
within the boundary of a processor.  
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Figure 9.4 Processor Attached with the System Bus Showing Basic 
Operational Steps 

Now let’s review the internals of a processor.  

 The on-die caches are usually referred to as levels: L1, L2, and 
L3. L1 is the smallest and L3 is the largest. Most of the 32-bit 
processors do not yet have an L3 cache, whereas the currently 
available Intel® Itanium® processors have large L3 caches, such 
as the 6-megabyte L3 cache in the Itanium 2 processor.  

 The Local Advanced Programmable Interrupt Controller 
(Local APIC) unit is specific to a processor and provides 
interrupt handling capability to a specific processor. This is  
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not the I/O APIC. The I/O APIC is a part of the chipset that 
supports interrupt handling of different I/O devices through 
the Local APIC. The I/O APIC is an off-chip unit and usually a 
part of a multi-processor-based chipset.  

 The interface unit is the functional block that helps to 
interface a processor with the system bus or front side bus 
(FSB).  

 The register array is the set of registers present in a processor. 
The number of registers can vary significantly from one 
generation of processor to another: 32-bit processors without 
Intel Extended Memory 64 Technology (Intel EM64T) have 
only eight integer registers, whereas 64-bit Itanium® 
processors have 128 integer registers.  

 The execution resources include the integer ALU, Floating-
Point execution, and branch units. The number of execution 
units and the number of active execution units per cycle—
referred to as the number of issue ports—vary from processor 
to processor. The execution speed of functional blocks varies 
as well and these implementations get improved from 
generation to generation. The number of execution units is 
sometimes referred to as the machine width. For example, if 
the processor has six execution units, the processor is said to 
be a six-wide machine.  

Other types of functional blocks are available in the processor and they 
vary with respect to the type of processor as well. There are areas in a 
processor referred to as queues that temporarily retain instructions prior 
to going into the next phase of operation through the pipeline stages. 
The scheduler is another functional block. It determines when micro-
operations are ready to execute based on the readiness of their 
dependent input register operand sources and the availability of the 
execution resources the micro-operations need to complete their 
operation. 

The execution flow of operations in a processor is shown in 
Figures 9.5 and 9.6. These figures depict the basic four steps of the 
pipeline: fetch, decode, execute, and write. In reality the process is 
somewhat more complicated.  
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Figure 9.5 Basic Execution Flow in a Processor 
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Figure 9.6 Basic Execution Flow in a Superscalar Processor 
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Different types of Instruction Set Architecture (ISA) processors exist, 
but in reality the basic aspects of a processor core remain the same. Intel 
technology can be divided into two primary types of cores: superscalar1 
and Explicitly Parallel Instruction Computing (EPIC). All the processors 
discussed here are based on these two types. You might already be 
familiar with a superscalar core. Intel’s mainstream superscalar processor 
architecture began in 1993 with the introduction of the Intel Pentium® 
processor. This superscalar architecture evolved into the Intel NetBurst® 
microarchitecture, as found in the Pentium 4 processor.  

Figure 9.7 provides a block diagram of the Intel Pentium 4 processor. 
Here the functional blocks are partitioned into three distinctive segments, 
front end, back end or execution core, and memory subsystem.  
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Figure 9.7 Execution Flow inside Intel® Pentium® 4 Processor 

                                                   
1 A processor with a single pipeline is called a scalar processor and a CPU with multiple pipelines is 

called a superscalar processor. 
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 Comparing Superscalar and EPIC Architecture 

Intel recently started developing multi-core processors for both 
superscalar and EPIC architectures. The superscalar architecture is 
commonly referred to as wide, speculative, and dynamic in nature. 
To provide a better understanding of differences between these two 
architectures, Table 9.1 compares superscalar and EPIC architecture 
and Figure 9.8 shows the operational flow in these two 
architectures.  

Table 9.1 Comparison of Superscalar and EPIC Architecture 

Superscalar EPIC 

Supports 32-bit and 64-bit (Intel EM64T) Supports 64-bit (Intel® Itanium® 
Architecture) 

Effective resource utilization with 
minimum number of registers array 

Massive resources with large number of 
registers array 

RISC-like instructions RISC-like instructions bundled into 
groups of three 

Has multiple parallel execution units Has multiple parallel execution 
units 

Runtime scheduling  Mostly static scheduling with the help of 
compiler 

Single path speculative execution with 
branch prediction 

Both paths of speculative execution with 
branch prediction 

Loads data from memory only when 
needed, and tries to find the data in the 
caches first 

Speculatively loads data before its 
needed, and still tries to find data in the 
caches first 
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Figure 9.8 Operational Comparison between Superscalar and EPIC  

 Key Points  
Understanding the basics of a single-core processor is essential to 
comprehend how threading works on a multi-core processor. The 
important concepts and terms to keep in mind are:  

 There are different functional blocks that form a microprocessor 
such as, Arithmetic Logic Unit, Control Units, and Prefetch Units.  

 A chipset is used to interface the processor to physical memory 
and other components. 

 A processor is the container of the dies, and the die is the 
microprocessor or CPU. In loose terms, processor and 
microprocessor get used interchangeably.  

 The high-level operations for multi-core processors remain the 
same as for single-core processors. 

 Two fundamentally different generic architectures are available 
from Intel: wide superscalar and EPIC.  

Now that the basic building blocks of a processor have been covered, the 
following chapter explores multi-core processor architecture from a 
hardware perspective, focusing on the Pentium 4 processor and Itanium 
architecture.
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Chapter 10
Threading on Intel® 

Multi-Core 
Processors 

 

he concepts of threading from a software perspective were covered 
in previous chapters. Chapter 2 also touched briefly on threading 

inside hardware and Chapter 9 covered the concepts of single-core 
processors. This chapter describes in more detail what threading inside 
hardware really means, specifically inside the processor. Understanding 
hardware threading is important for those developers whose software 
implementation closely interacts with hardware and who have control 
over the execution flow of the underlying instructions. The degree to 
which a developer must understand hardware details varies. This chapter 
covers the details of the multi-core architecture on Intel processors for 
software developers, providing the details of hardware internals from a 
threading point of view.  

 Hardware-based Threading 

Chapter 9 describes the basics of the single-core processor. In most 
cases, threaded applications use this single-core multiple-issue 
superscalar processor. The “threading illusion” materializes from the 
processor and that is called instruction level parallelism (ILP). This is 
done through a context-switch operation. The operational overhead of 
context switching should be limited to a few processor cycles. To 
perform a context switch operation, the processor must preserve the 
current processor state of the current instruction before switching to 

T 
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other instruction. A processor keeps ongoing operational information 
mainly in registers and a policy dictates this context switch operation.  

The simplest class of processor is single-issue, single-thread (SIST) or 
single-threaded scalar-based processor. For SIST, the OS handles multiple 
threads. In terms of hardware resource sharing and the level of 
granularity of resource hold time, there are two types of processors 
available: coarse-grained multi-threading (CGMT) and fine-grained multi-
threading (FGMT). Each maintains a policy of sharing resources among 
threads.  

For coarse-grained multi-threading, or switch-on-event multi-
threading, a thread has full control over processor resources for a 
specified quantum of time or number of processor cycles. In fine-grained 
multi-threading, the thread switching takes place at an instruction-cycle 
boundary. That means the overhead associated with thread switching is 
higher for a coarse-grained than for a fine-grained implementation. To 
reflect the policy associated with these processors, coarse-grained multi-
threading is also referred to as blocked multi-threading scalar, and fine-
grained multi-threading as interleaved multi-threading scalar, illustrated in 
Figure 10.1. Both fine- and coarse-grained multi-threading are sometimes 
referred to as temporal multi-threading (TMT).  
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Figure 10.1 Different Threading Scenarios on Multi-issue Processors  
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From an application level, it appears that multiple threads run at the 
same time, but in reality the system does not have enough resources to 
support those threads simultaneously. The OS scheduler, in combination 
with the hardware scheduler and execution core, gives the impression of 
threading.  

For systems with multiple processors or symmetric multi-processor 
(SMP) systems with shared memory, the scenario is different. In an SMP 
environment, the system can utilize thread-level parallelism (TLP) as well 
by running different threads in parallel on different processors. The OS 
scheduler is also responsible for handling this thread balancing act on the 
system. The use of ILP and TLP lack the benefit of resource utilization. To 
address the issue of processor resource utilization, the introduction of 
simultaneous multi-threading (SMT) allows multiple threads to compete 
for shared available resources, shown in Figure 10.2. 
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Figure 10.2 SMT Handles Multiple Threads  

SMT hardware is effective for those applications that require 
complementary hardware resources during runtime. A multi-threaded 
singleton application—an application that has dependency on a specific 
functional unit of the CPU, such as integer or floating point functional 
units—might suffer a performance penalty on an SMT platform. In an 
SMT processor, TLP gets converted into ILP and accommodates variations 
among ILP and TLP. In terms of granularity, to utilize resources 
effectively an SMT processor exploits both coarse-grained and fine-
granted parallelism.  
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When a processor has two or more cores, then that processor is 
referred to as chip multiprocessing (CMP). Here, each core executes 
hardware threads independently of other hardware threads, and shared 
memory helps to maintain inter-thread communication, shown in 
Figure 10.3. This independent thread execution on a multi-core 
processor is referred as chip multi-threading (CMT).  
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Figure 10.3 CMP Handles Multiple Threads  

The concept of CMP has been around for a while in the specialized 
processor domain, in areas like communication and DSP. In CMP 
technology, multiple processors reside on a single die. To extend the 
usability of the CMP in the general processor domain, the industry 
introduced the concept of multi-core processors, which are slightly 
different than CMPs even though many publications started using CMP as 
a generic description of multi-core processors. In CMPs, multiple 
processors get packed on a single die, whereas for multi-core processors, 
a single die contains multiple cores rather than multiple processors. The 
concept of CMP can be confused with the existence of multiprocessor 
systems-on-chip (MPSoC). CMP and MPSoC are two different types of 
processors used for two different purposes. CMP is for general-purpose 
ISA hardware solutions, whereas MPSoC is used in custom architectures. 
In simple terms, the CMP is the one that has two or more conventional 
processors on a single die, as shown in Figure 10.4.  
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                      (a) Die of a Single-core Processor                 (b) Die of a Dual-Core Processor 

Figure 10.4 Single-core and Dual-Core Processor Dies 

Several dimensions of technological evolution influenced the 
development of hardware threading. Process technology helps to 
manufacture smaller transistors and accommodates more transistors in a 
smaller package and keeps everything within the thermal envelope—the 
amount of heat allowed for a single processor. When you think of a 
processor, you must realize that there can be a good number of 
instructions in flight at operational time. In the Intel NetBurst® 
microarchitecture as many as 126 instructions remain in flight at any one 
time, positioned in various stages of execution and ready to execute 
simultaneously. To handle these many instructions and utilize processor 
resources, it is essential to incorporate parallelism effectively in a 
processor. This is one of the major reasons for the evolution of 
processors from superscalar to SMT to multi-core architecture.  

Threading from Intel 

Now that you have an idea what hardware threading means, you can 
easily guess that Intel has been implementing threading in processors for 
some time—in fact with the introduction of the Intel Pentium® 
superscalar processor in 1993. The performance was not impressive 
compared to the current standard, but was just a beginning of threading-
based solutions on a processor. The progress continued and the next 
shift took place in 2000 with the introduction of Hyper-Threading 
Technology (HT Technology) for the 32-bit world and by the addition of 
Explicit Parallel Instruction Computing (EPIC) architecture with the 
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launch of 64-bit Itanium® processors. The next wave from Intel came 
with the addition of dual-core processors in 2005, and further 
developments are in the works. To understand Intel threading solutions 
from the processor level and the availability of systems based on these 
processors, review the features of brands like Intel® Core™ Duo, Intel 
Pentium Processor Extreme Edition, Intel Pentium D, Intel Xeon®, Intel 
Pentium 4, and Intel Itanium 2. As stated before, when you are going to 
select different types of processor for your solution, you have to make 
sure the processor is compatible with the chipset. To learn more details 
on processors and compatibility, visit the Intel Web site.  

 Hyper-Threading Technology 

Hyper-Threading Technology (HT Technology) is a hardware mechanism 
where multiple independent hardware threads get to execute in a single 
cycle on a single superscalar processor core, as shown in Figure 10.5. 
The implementation of HT Technology was the first SMT solution for 
general processors from Intel. In the current generation of Pentium 4 
processors, only two threads run on a single-core by sharing, and 
replicating processor resources.  
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Inside a processor with HT Technology, two threads share resources 
from a single core, and that is why these threads are referred to as logical 
processors. In terms of physical processor core resources, a Pentium 4 
processor with HT Technology and one without are almost the same. 
Only the die size is increased for the additional logic on the processor 
with HT Technology. The number of registers on processors with and 
without HT Technology remains the same. Obviously only one of these 
two threads can use a shared resource at a time.  

From the OS perspective, the system represents two logical 
processors. This configuration allows a thread to be executed on each 
logical processor. Instructions from both threads are simultaneously 
dispatched for execution by the processor core. The processor core 
executes these two threads concurrently, using out-of-order instruction 
scheduling to keep execution units as busy as possible during each clock 
cycle. Figure 10.6 shows that the time taken to process n threads on a 
single processor is significantly more than a single-processor system with 
HT Technology enabled. This is because with HT Technology enabled, 
two logical processors process two threads concurrently on one physical 
processor. 
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Figure 10.6 Multi-threaded Processing using Hyper-Threading Technology 
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Difference between Multiprocessor and Hyper-Threading Technology 

Multiprocessor technology is referred to as MP. In MP multiple physical 
processors exist, whereas HT Technology relates to only one physical 
processor. In an MP environment, each processor could be enabled with 
HT Technology as well, as shown in Figure 10.7. For an MP environment 
without HT Technology, each thread dynamically gets a fixed number of 
devoted functional blocks in a processor, whereas with HT Technology 
the resources get shared among threads and a thread assignment policy 
determines the resource utilization.  

Physical Package 
Logical  

Processor 0 
Architectural 

State 

Logical  
Processor 1 
Architectural 

State 
Execution Engine 

Local APIC Local APIC 
Bus Interface 

Physical Package 
Logical  

Processor 0 
Architectural 

State 

Logical  
Processor 1 
Architectural 

State 
Execution Engine 

Local APIC Local APIC 
Bus Interface 

System Bus 

MP HT 
Physical Package 

Architectural 
State 

Execution  
Engine 

Local APIC 
Bus Interface 

System Bus 

MP 
Physical Package 

Architectural 
State 

Execution  
Engine 

Local APIC 
Bus Interface 

 

Figure 10.7 Multiprocessor with and without Hyper-Threading Technology 

Hyper-Threading Technology Architecture 

HT Technology is integrated into the Intel NetBurst microarchitecture 
using 90nm technology. The operational protocols and algorithms are 
improved to accommodate two execution flows of hardware threads. 
The various generations of processors with HT Technology are enhanced 
by additional features, whereas the architectural core remains the same. 
Figure 10.8 shows the different functional blocks in the architecture of 
the Pentium 4 processor with HT Technology. 

The instruction decoding phase is independent of the execution 
phase. This separation helps to maintain the flow of the two threads. The 
instruction fetch logic keeps two streaming buffers for use with both 
threads and two instruction pointers (IP) to track the progress of 
instruction fetches for the two logical processors. In the case of branch 
prediction, branch prediction structures return a stack buffer and branch 
history buffer that get duplicated, and a large global history array is 
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shared with entries that are tagged with logical processor IDs. The 
decode logic preserves two copies of all the necessary states required to 
perform an instruction decode, even though the decoding operations are 
done through a coarse-grained scheme in a single cycle.  
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The decode logic passes decoded instructions to the trace cache, also 
referred to as the advanced instruction cache. In reality, this is somewhat 
different than the conventional instruction cache. The trace cache stores 
already-decoded instructions in the form of micro-ops and maintains data 
integrity by associating a logical processor ID. The inclusion of the trace 
cache helps to remove the complicated decodes logic from the main 
execution phase. The trace cache orders the decoded micro-ops into 
program-ordered sequences or traces. If both hardware threads need 
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access to the trace cache, the trace cache provides access with a fine-
grained approach rather than coarse-grained. The trace cache can hold 
up to 12K micro-ops, but not every required instruction can reside in the 
trace cache. That is why, when the requested instruction micro-op is not 
available in the trace cache, the instruction needs to bring it from L2 
cache—this event is called a Trace Cache Miss. On the other hand, when 
the instruction micro-ops remain available in trace cache and instruction 
flow does not need to take extra steps to get required instructions from 
L2, the event is referred to as a Trace Cache Hit.  

In the front end of a processor with HT Technology, both 
hardware threads make independent progress and keep data 
association. The micro-op queues decouple the front end from the 
execution core and have a hard partition to accommodate two 
hardware threads. Once the front end is ready to prepare the 
microcode, the operational phase gets transferred to the backend out-
of-order execution core, where appropriate execution parallelism 
takes place among microcode streams. This is done with the help of 
distributor micro-op queues and schedulers which keep the correct 
execution semantics of the program. To maintain the two hardware 
threads’ register resource allocation, two Register Allocation Tables 
(RATs) support two threads. The register renaming operation is done 
in parallel to allocator logic. The execution is done by the advanced 
dynamic execution engine (DEE) and the rapid execution engine 
(REE). Six micro-ops get dispatched in each cycle through DEE and 
certain instructions are executed in each half cycle by REE. When two 
hardware threads want to utilize back-end, each thread gets allocation 
through a fine-grained scheme and a policy is established to limit the 
number of active entries each hardware thread can have in each 
scheduler queue. To provide ready micro-ops for different ports, the 
collective dispatch bandwidth across all of the schedulers is twice the 
number of micro-ops received by the out-of-order core.  

Once the out-of-order execution core allows instructions from both 
threads interleaved in an arbitrary fashion to complete execution, it 
places issued micro-ops in the reorder buffer by alternating between two 
hardware threads. If for some instruction, one hardware thread is not 
ready to retire micro-ops, other threads can utilize the full retirement 
bandwidth.  
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In the memory subsystem, the Data Translation Lookaside Buffer 
(DTLB) is a shared resource but maintains hardware thread tags or logical 
processor tags to maintain data integrity. The rest of the cache 
hierarchies get shared by hardware threads. Inside the bus, no priority is 
assigned to logical processors or hardware threads, even though the 
distinction between requests from two logical processors is maintained 
reliably. The interrupt maintenance is done through local APICs, which 
are unique to each logical processor.  

 Multi-Core Processors 

To understand multi-core processors, this section extends the concepts 
of single core and differentiates the meaning of core from that of 
processor. The following sections also cover the basics of the multi-core 
architecture, what is available today, and what may be available beyond 
multi-core architecture.  

Architectural Details 

Chapter 9 reviewed how a single-core processor contains functional 
blocks, where most of the functional blocks perform some specific 
operations to execute instructions. The core in this case is a combination 
of all of the functional blocks that directly participate in executing 
instructions. The unified on-die Last Level Cache (LLC) and Front Side 
Bus (FSB) interface unit could be either part of the core or not, 
depending on the configuration of the processor.  

Some documents exclusively differentiate between core and 
execution core. The only difference is that an execution core is the main 
set of functional blocks that directly participate in an execution, whereas 
core encompasses all available functional blocks. To remain consistent, 
this book tries to distinguish the differences. In Figure 10.9, different 
core configurations are shown. Using shared LLC in a multi-core 
processor, the cache coherency complexity is reduced, but there needs 
to be a mechanism by which the cache line keeps some identifying tag 
for core association or dynamically splits the cache for all cores. Also, 
when the FSB interface gets shared, this helps to minimize FSB traffic. 
Proper utilization of a multi-core processor also comes from a compatible 
chipset.  
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The number of cores can vary, but the cores remain symmetrical; that 
is why you see product announcements for two, four, eight, or more 
cores in processors. You will be seeing the representation of the number 
of cores by 2n (where, in theory, 0 < n < ∞). Projected theoretical 
representations always remain blocked by available technologies. With 
the constraint in current technology, the proposed geometry of current 
and upcoming multi-core processors is shown in Table 10.2.  

Table 10.2 Disclosed Multi-Core Processors with Specific Features 

Processor Brand 
or Code Name 

Number 
of 
Cores 

LLC Size HT 
Technology 
Present 

FSB Interface Unit 
(Shared or 
Independent) 

Intel® Core™ Duo 2 1 × 2 MB No Shared 

Intel® Pentium® D 2 2 × 1 MB No Independent 

Intel® Pentium® 
Processor Extreme 
Edition 

2 2 × 1 MB Yes Independent 

Intel codename 
Presler 

2 2 × 2 MB No Independent 

Intel codename 
Dempsey 

2 2 x 2 MB Yes Independent 

Intel codename 
Paxville 

2 2 x 2 MB Yes Shared 

Intel® Itanium® 
processor 
codenamed 
Montecito 

2 2 × 12 MB Yes Shared 

 

Table 10.3 shows only two physical cores. The number of threads 
supported by these processors is currently limited to two cores, but with 
respect to the platform, the number of threads varies with respect to the 
chipset where these processors are being used. If the chipset supports N 
number of processors, then the number of hardware threads for that 
platform can be as high as N × 2 × 2. For the latest updates about 
available processors, visit the Intel Web site. 
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Comparison between Multiprocessors and Multi-Core Processors 
A multiprocessor represents multiple physical processors, whereas a 
multi-core processor represents multiple cores in a single physical 
processor, as shown in Figure 10.10. That means a multiprocessor can be 
built from a number of multi-core processors. Think of a multiprocessor 
environment as containing multiple sockets where you can plug in 
multiple processors. A multi-core processor resides on a single socket.  

Networking Model of Multi-Core Processors 

How do multiple cores communicate with each other and how are 
these cores positioned inside a die? These concerns are similar to 
network topology issues. The interconnection could be bus, mesh, 
ring, cross-bar, and so on. Different vendors utilize different 
topologies for these interconnections. Currently from Intel, the 
interconnection follows the existing FSB-based connection scheme. 
This approach has some important legacy aspects associated with it. 
Remember, auxiliary and required components must support multi-
core processors and for that, all these components must support and 
have cohesive features to handle multi-core processors. The core of 
a multi-core processor does the same things that a single core based 
processor does except that with a multi-core processor, cores have 
to operate in a concerted way.  

How about threads on these multi-core processors? What will 
happen with your application as the number of cores increase? The 
more cores that processors support, the more hardware threads you 
get to utilize. The multi-core processor hardware is evolving with 
updated protocols and improved logic. To implement threading in 
software, you need to use a methodology for synchronization. If you 
have ever performed operations to handle hardware threads directly, 
you know the level of synchronization that needs to be done. The 
layer above the hardware needs to support proper synchronization 
of the processors. Otherwise, an application might not get the 
expected performance gain. You also need to understand which 
operating systems support these multi-core processors and which 
compilers generate better code to deal with these many hardware 
threads.  
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(a) Multiprocessor with Single-Core Processors 

 
(b) Multiprocessor with Multi-Core Processors 

Figure 10.10     Multiprocessor with Single-Core and Multi-Core processors  

Multi-Core for Itanium® Architecture  

The evolution of multi-core processors is not bounded by superscalar 
architecture. Intel announced a next-generation multi-core processor into 
the Explicitly Parallel Instruction Computing (EPIC) architecture domain 
code-named Montecito. Montecito introduces two cores in a single die, as 
shown in Figure 10.11 Even though the Itanium processor is an explicitly 
parallel instruction computing processor which provides exclusive 
instruction-level parallelism, to utilize resources and reduce miss 
penalties, Montecito incorporates both ILP and TLP. The implementation 
of ILP is similar to the implementation concepts of HT Technology, 
where resources get shared by fine-grained and coarse-grained 
parallelism, as well as SMT. In the current Itanium architecture, the 
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concept of HT Technology blends Switch-on Event Multi-threading 
(SoEMT) for the cores and SMT for the memory hierarchy. The SoEMT is 
a form of coarse-grained parallelism where the time constants are varied 
based on dynamic behaviors of the instruction stream or events. Don’t 
confuse this term with Intel EM64T. 
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Figure 10.11    Multi-Core Architecture of Intel Itanium® Processor code-named Montecito  

The FSB interface is shared among the cores. Montecito supports two 
cores in each socket and two hardware threads on each core. So, one 
socket has four contexts. This can be seen as comparable to a dual-core 
platform with HT Technology.  

In Montecito, each core attaches to the FSB interface through the 
arbiter, which provides a low-latency path for a core to initiate and 
respond to system events while ensuring fairness and forward progress. 
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The arbiter maintains communication with the core through a 
synchronization functional block, as shown in Figure 10.12. The arbiter 
maintains each core’s unique identity to the FSB interface and operates at 
a fixed ratio to the FSB interface frequency.  
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Figure 10.12    Single Core Itanium® 2 Processor and Montecito Core 

An asynchronous interface between the arbiter and each core enables 
the core and cache frequency to vary as needed. This arbiter and the 
synchronizers add a small amount of latency to transactions both from a 
core to the system interface and from the system interface to a core.  

The arbiter consists of a set of address queues, data queues, 
synchronizers, control logic for core and FSB interface arbitration, error-
correction code (ECC) encoders/decoders, and parity generators. The 
arbiter interleaves core requests on a one-to-one basis when both cores 
have transactions to issue. When only one core has requests, it can issue 
its requests without waiting for the other core to issue a transaction. 
Because read latency is the greatest concern, the read requests are 
typically the highest priority, followed by writes, and finally clean victim 
notifications from the LLC.  
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Each core tracks the occupancy of the arbiter’s queues using a credit 
system for flow control. As requests complete, the arbiter informs the 
appropriate core of the type and number of de-allocated queue entries. 
The cores use this information to determine which, if any, transaction to 
issue to the arbiter. The arbiter manages the system interface protocols 
while the cores track individual requests. The arbiter tracks all in-order 
requests and maintains the system interface protocol. Deferred or out-of-
order transactions are tracked by the core with the arbiter simply passing 
the appropriate system interface events on to the appropriate core. The 
arbiter has the ability to support various legacy configurations by 
adjusting where the agent identifier—socket, core, and/or thread—is 
driven on the system interface. The assignment of socket and core must 
be made at power on and cannot be changed dynamically. The 
assignment of a thread is fixed, but the driving of the thread identifier is 
under Processor Abstraction Layer (PAL) control since it is for 
information purposes only and is not needed for correctness or forward 
progress. 

In the core, one thread has exclusive access to the execution 
resources (foreground thread) for a period of time while the other thread 
is suspended (background thread). Thread control logic evaluates the 
thread’s ability to make progress and may dynamically decrease the 
foreground thread’s time quantum if it appears that it will make less 
effective use of the core than the background thread. This ensures better 
overall utilization of the core resources over strict temporal multi-
threading (TMT) and effectively hides the cost of long latency operations 
such as memory accesses, especially the on-die LLC cache misses, which 
has latency of 14 cycles. Other events, such as the time-out and forward 
progress event, provide fairness, and switch hint events provide paths for 
the software to influence thread switches. These events have an impact 
on a thread’s urgency that indicates a thread’s ability to effectively use 
core resources. Many switch events change a thread’s urgency, or the 
prediction that a thread is likely to make good use of the core resources.  

Each thread has an urgency value that is used as an indication of a 
thread’s ability to make effective use of the core execution resources. 
The urgency of the foreground thread is compared against the 
background thread at every LLC event. If the urgency of the foreground 
thread is lower than the background thread then the LLC event may 
initiate a thread switch. Thread switches may be delayed from when the 
control logic requests a switch to when the actual switch occurs. The 
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reasons for delay include serialization operations and long latency 
accesses. Urgency can take on values from 0 to 7. An urgency of 0 
denotes that a thread has no useful work to perform. An urgency of 7 is 
only used for a thread that is switched due to a time-out event when its 
current urgency is 5. An external interrupt directed at the background 
thread sets the urgency for the background thread at 6 to provide a 
reasonable response time for interrupt servicing, but the urgency for the 
current thread that receives an interrupt is not changed. The nominal 
urgency is 5 and indicates that a thread is effectively using (or would 
effectively use) the core execution resources (no LLC misses 
outstanding). The urgency is reset to 5 when the background thread with 
urgency above 5 becomes the foreground thread. Every LLC miss event 
decrements the urgency by 1 after the urgency is compared, eventually 
saturating at 0. Similarly, every LLC return event increments the urgency 
by 1 before the urgency is compared saturating at 5.  

Though most of the hardware threads are controlled by a processor 
control functional block, in Montecito you would be able to control 
threads using the hint@pause instruction. The hint@pause instruction is 
used by software to initiate a thread switch. The intent is to allow code 
to indicate that it does not have any useful work to do and that its 
execution resources should be given to the other thread. Some later 
event may change the work for the thread and should awaken the thread 
such as an interrupt.  

The hint@pause instruction forces a switch from the foreground 
thread to the background thread. This instruction can be predicated to 
conditionally initiate a thread switch. The current issue group retires 
before the switch is initiated. Consequently, the following code 
sequences are equivalent: 

Hint at beginning of issue group: 
            hint@pause 
            add         r1 = r2, r3 
            add         r4 = r2, r0 

Hint at end of issue group: 
            add         r1 = r2, r3 
            add         r4 = r2, r0 
            hint@pause 

Having all these changes in Montecito does not affect legacy 
software.  
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 Multiple Processor Interaction 

Up to this point, the book has covered hardware, architecture, and the 
impact of software on a multi-core environment. As yet no detailed 
information has been offered about the concepts of communication 
among processors or cores. This section discusses details about multiple 
processor intercommunication. It is impossible to organize a parallel 
computational system without establishing communication channels or 
other means of interaction between different parts of such a system. 
Thus, completely isolating processors and preventing them from 
exchanging information would not constitute a good approach to parallel 
computations. Moreover, establishing a dedicated resource to be shared 
between multiple processors, like shared memory in symmetric 
multiprocessing, is generally not enough for an efficient parallel 
operation. Additional means must be provided to facilitate interaction 
among multiple processors. The following section covers how this 
communication usually gets done in a multi-threaded environment.  

Inter-Processor Communication and Multi-threaded Programming 

The APIC plays a major role in communication among cores or 
processors using the interprocessor interrupt (IPI). To illustrate 
interprocessor communication for multi-threaded programming, 
Figure 10.13 depicts how the IPI scheme is used in a parallel 
programming environment.  

One of the most important reasons an operating system uses IPIs is to 
schedule the execution of threads on multiple processors. Normally, the 
system may reschedule threads upon each timer or similar periodic 
external interrupt. But, once a thread triggers a synchronization object—
and this may happen at an unpredictable moment in time, not at all 
periodically—other threads waiting on that object need to be executed. 
Of course, they may be queued and run at the next periodic interruption 
signal, though in this case a considerable amount of time is wasted, from 
the processor’s point of view, Another approach is to program the 
threads in a manner that allows them to check the state of the other 
threads they depend on, but such a programming scheme sometimes 
cannot even be called parallel. Figure 10.14 illustrates these statements: 
since all threads are executed in a preemptive environment, the model of 
polling a state variable in memory does not always work well—threads 
may get preempted and the actual execution may be shifted in time with 
regard to the moment when the state change occurred.  
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Figure 10.13 Relationship of Each Processor’s Local APIC, I/O APIC, and System Bus in a 
Multiprocessor System 
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Figure 10.14 Use of Interprocessor Interrupts in Parallel Programming 
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Again, by employing the IPI scheme, the system ensures that all 
waiting threads are executed immediately after the synchronization 
object has been triggered, and executed with a predictable delay time, 
much less than the normal rescheduling period. 

But in some situations a thread’s wait time does not exceed the time 
quantum granted to the thread by the operating system. In this case it 
would be inefficient to reschedule the thread’s execution by returning 
control to the OS or by making other threads issue an IPI to wake up 
your waiting thread, since the interrupt delivery delay may be much 
greater than the actual wait interval. The only solution would be to keep 
control and wait for other threads in a loop. This is where the hardware 
monitor/wait approach yields the best benefit to a programmer, because 
one can boost the performance by providing a hint to the processor that 
the current thread does not need any computational resources since all it 
does is wait for a variable to change. 

 Power Consumption 

You might be surprised to find this section in a software book. You 
might know that you can control your system power by using available 
system level APIs such as GetSystemPowerStatus and 
GetDevicePowerState. Mobile application developers understand the 
issue with power more than others. Traditionally, systems and 
applications have been designed for high performance. In fact, our entire 
discussion up to this point has been concerned with architectural and 
programming innovations to increase performance of applications and 
systems. However, recently the power consumption of the platform has 
become a critical characteristic of a computing system.  

Power Metrics 

Increases in power consumption have occurred despite dramatic and 
revolutionary improvements in process technology and circuit design. The 
primary reason behind the increase in power has been the continued 
emphasis on higher performance. As complexity and frequency of processors 
has increased over the years to provide unprecedented levels of performance 
the power required to supply these processors has increased steadily too. A 
simplified equation that demonstrates power-performance relationship for 
the CMOS circuits on which all modern processors are based is: 

P ≅  ACV 

2 f 
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The first component in the equation captures the dynamic power of 
charging and discharging transistor circuits from which basic functional 
blocks of processors are built. The power is directly proportional to 
switching frequency (f), square of the supply voltage (V) and total 
capacitance (C). Since not all functional blocks are used at any given time 
by a processor workload and not all gates are switched, A represents 
activity factor or the number of switched transistors on a die. 

The equation above demonstrates the trade-off between performance 
and power. As processor frequency increases so does power consumption. 
As processor architecture becomes more complex to support greater 
levels of instruction level parallelism and increased performance, 
capacitance of system increases and so does dynamic power.  

Another and more subtle point is that concurrent processing can also 
lead to significant power reduction. Splitting the workload into multiple 
threads and running them in parallel can significantly increase processor 
power efficiency. Multi-threading attacks two primary sources of energy 
inefficiency that is related to activity factor A and total processor 
capacitance C: unutilized resources and wasted resources due to 
aggressive speculation in modern processors. Multi-threaded processors 
rely much less on speculation and provide better resource utilization 
leading to improved power efficiency. 

The processor’s power efficiency can be measured and quantified in a 
variety of ways. One common metric is peak power or Thermal Design 
Power (TDP). This is the maximum power at which the processor can run 
without exceeding thermal solution capabilities and damaging the part. 
Another common metric used to quantify processor power consumption is 
average power. It is usually computed as an average of instantaneous 
power readings over execution of a certain benchmark. A more accurate 
measurement of power efficiency is performance per watt. It may be 
expressed in a variety of ways such as energy per instruction, MIPS/watts, 
or benchmark performance score per average processor power 
consumption. All these metrics reflect a fundamental interplay between 
performance and power, and demonstrate the interdependency between 
the two. The power efficiency metric is the fact that processors must be 
efficient both in active and idle states. In reality, processors in mobile, 
desktop, and server platforms spend a significant amount of time doing 
nothing or being idle. Ensuring that processor power consumption is 
minimal in this state is critical for the overall power efficiency. Note that a 
processor with higher TDP or active power consumption will be more 
energy efficient and potentially have lower average power if it provides a 
very low power idle state. While it may be beneficial to expand power for 
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active workload for performance reasons, there is no benefit to wasting 
power when you are doing nothing! 

Reducing Power Consumption 

The discussion so far has focused on the fundamental aspects and 
importance of processor power consumption. It should be clear that 
reducing processor power has become an overriding design goal. Achieving 
low power processor operation is a complex task that requires effort at 
multiple layers of hardware and software infrastructure. At the silicon level, 
designers have developed advanced techniques such as strained silicon and 
sleep transistors to reduce leakage and idle power. At the logic level, 
extensive clock gating allows to turn off tree branches to latches and flip-
flops when they are not used saving considerable amount of power.  

At the architecture level processors expose different frequency and 
voltage settings that allow operating systems to adjust processor 
performance to current workload demand. As the equation shows, 
processor power is proportional to its frequency and square of the voltage. 
Adjusting these two parameters to workload demand can lead to 
significant power benefits without impacting perceived system 
performance. In fact, frequency and voltage scaling is a feature in almost all 
Intel processors today and is better known as Enhanced Intel SpeedStep® 
Technology. In addition, Intel processors support highly efficient 
frequency and voltage transitions with rapid frequency scaling and no-stall 
voltage changes. Since reaching low power state might not be worthwhile 
if it takes a long time these capabilities are essential to maintaining system 
performance and reducing dynamic power consumption.  

When available, operating systems use Enhanced Intel SpeedStep 
Technology to reduce platform power during operation. Both Linux and 
Windows implement similar algorithms. Operating systems determine the 
right frequency setting by measuring the time they spend in idle loop. 
Whenever the processor is underutilized the OS determines the 
frequency that will increase processor utilization to a certain level. On 
the other hand, if processor utilization becomes higher than a certain 
threshold, the OS will increase processor frequency to meet higher 
demand. In today’s operating system, power management is governed by 
Advance Configuration and Power Interface (ACPI). ACPI is part of BIOS 
and exposes power management features and details to the operating 
system. All Intel processors today provide support for a variety of idle 
and performance states enabling operating systems to take advantage of 
these features for power efficient operation. 
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Finally, in addition to processors and operating systems, applications 
have a responsibility to reduce power consumption of computing devices. 
With the proliferation of multi-core processors, application developers 
have a great opportunity to decrease system power consumption by 
writing efficient and optimized multi-threaded applications. Multi-core 
processors offer clear performance benefits with close to linear speedup as 
you add cores. With the performance advantage coming from parallelism 
and not from an increase in frequency and voltage, multi-core processors 
can be very energy-efficient. By writing multi-threaded applications that 
take full advantage of parallelism provided by the cores, developers can 
cause processor throughput to be dramatically increased, more than 
making up for greater power dissipation due to a larger number of cores, 
and resulting in significant net gain in power efficiency. 

 Beyond Multi-Core Processor Architecture 

Every technology has a next step. Things go from conception to research 
and move on to development. The progression continues to evolve. You 
now know that having more than a single core is referred to as multi-core. In 
theory, the number of cores is only limited by the availability of supporting 
technologies. Over time we can anticipate processors with more and more 
cores as we continue to innovate. Intel is working to deliver innovative 
processor technology on a roadmap as proposed in Figure 10.15.  
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The silicon technology is also approaching the nanoscale domain to 
enhance transistor density as well, as shown in Figure 10.16. 
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Figure 10.16 Innovation-enabled Technology Pipeline 

Beyond nanoscale, the technology proposes to drive transistors to the 
quantum level. If the progress continues, you can expect processors with 
many cores before the end of this decade. As the number of cores 
increases, the processor architecture will provide significant hardware-
based, thread-level, parallel capability on a single processor. With these 
levels of compaction and multiplicity, just imagine the possibilities for 
the future of multi-core processors. 

 Key Points 
When developing a software application, the focus usually remains on 
the implementation layer and the layer below. Several layers separate the 
abstracted application and the hardware. With the recent development of 
more than one core in a single package, developers have to consider 
every component in the solution domain to optimize the capabilities of 
these new processors.  
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Key concepts to remember about threading on multi-core processors: 

■ There are four types of threading models used in a processor: 
fine-grained, coarse-grained, SMT, and CMT.  

■ For the fine-grained threading model, context switching occurs in 
every cycle and for the coarse-grained threading model, context 
switching occurs when a pipeline gets stalled. On the other hand, 
there is no context switching required for true SMP or multi-core 
processors.  

■ Processors have enough resources to handle a good number of 
instructions in flight during full operation.  

■ Intel has two types of general processor architecture: wide 
speculative superscalar and EPIC. Superscalar processors are used 
for Intel 32-bit processors and Intel EM64T. EPIC is used for 
Itanium processors.  

■ Recently, an implementation of HT Technology was introduced 
in the Itanium processor as well. 

■ Interprocessor or intercore communication is done by inter-
processor interrupt (IPI) with the help of Advanced 
Programmable Interrupt Controller (APIC) features in the 
processors. 

■ Advance Configuration and Power Interface (ACPI) exposes 
processor frequency and voltage levels as performance states.  

■ The power factors can be controlled through software APIs. 

■ Enhanced Intel SpeedStep Technology is available on platforms to 
improve power-based performance.  
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riting a threaded application requires the same create, debug, and 
tuning steps needed to make a working application that is not 

threaded. While so much is the same, it is most interesting to look at 
what is different. 

This chapter takes a look at Intel’s suite of software and focuses on 
the aspects of these products that Intel has included for threaded 
applications. Intel’s suite of products is arguably the most comprehensive 
available today for threaded programming for C++ or Fortran developers, 
including a few tools that are currently unique or leading examples. 

Most of the tools are focused on threading. A section in this chapter 
also describes Message Passing Interface (MPI) programming and the 
tools to support it. MPI programming is an important programming 
method to consider when you are trying to make highly scalable code 
that might even run on a very large supercomputer. 

 Overview 

Intel has been working with multiprocessor designs and the tools to 
support them for well over a decade. In order to assist programmers, 
Intel has made available a number of tools for creating, debugging, and 
tuning parallel programs. 

W 
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Investigate 

Most programming work begins with an existing application. It often 
begins with a prototype of a framework or critical elements of the 
application, for those working to program something entirely new. 
Whether a prototype or a preexisting application, some initial 
investigation plays a critical role in guiding future work. Tools such 
as the Intel® VTune™ Performance Analyzer and the Intel Thread 
Profiler are extremely useful. The Intel compilers can play a strong 
role in “what if” experiments by simply throwing some switches, or 
inserting a few directives in the code, and doing a recompile to see 
what happens. 

Create/Express  

Applications are written in a programming language, so a compiler is a 
natural place to help exploit parallelism. No programming languages 
in wide usage were designed specifically with parallelism in mind. 
This creates challenges for the compiler writer to automatically find 
and exploit parallelism. The Intel compilers do a great deal to find 
parallelism automatically. Despite this great technology, there are too 
many limitations in widely used programming languages, and 
limitations in the way code has been written for decades, for this  
to create a lot of success. Automatic parallelization by the compiler  
is nevertheless a cheap and easy way to get some help— 
all automatically. Auto-parallelization is limited by all popular 
programming languages because the languages were designed without 
regard to expressing parallelism. This is why extensions like OpenMP 
are needed, but they are still limited by the programming languages 
they extend. There is no cheap and easy way to achieve parallelism 
using these languages. 

To overcome limitations imposed by conventional programming 
languages, the Intel compilers support OpenMP, which allows a 
developer to add directives to the code base that specify how different 
code segments may be parallelized. This allows programs to get 
significant performance gains in a simple, easy-to-maintain fashion. The 
OpenMP extensions have been covered in some detail in Chapter 6. Intel 
libraries also help make the production of threaded applications easier. In 
this case, Intel engineers have done the work for you and buried it in the 
implementation of the libraries. These may be the very same libraries you 
were using before threading. 
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Debugging 

Having multiple threads combine to get the work of an application done 
gives rise to new types of programming errors usually not possible with 
single threaded applications. Up until recently, these threading errors 
were simply bugs that needed to be debugged the old fashion way—seek 
and find. With the Intel Thread Checker, developers can directly locate 
threading errors. It can detect the potential for these errors even if the 
error does not occur during an analysis session. This is because a well-
behaved threaded application needs to coordinate the sharing of memory 
between threads in order to avoid race conditions and deadlock. The 
Intel Thread Checker is able to locate examples of poor behavior that 
should be removed by the programmer to create a stable threaded 
application. 

Tuning 

Performance tuning of any application is best done with non-intrusive 
tools that supply an accurate picture of what is actually happening on a 
system. Threaded applications are no exception to this. A programmer, 
armed with an accurate picture of what is happening, is able to locate 
suboptimal behavior and opportunities for improvement. The Intel 
Thread Profiler and the Intel VTune Performance Analyzer help tune a 
threaded application by making it easy to see and probe the activities of 
all threads on a system. 

 Intel® Thread Checker 

The Intel Thread Checker is all about checking to see that a threaded 
program is not plagued by coding errors in how threads interoperate that 
can cause the program to fail. It is an outstanding debugging tool, even 
for programs that seem to be functioning properly. Just knowing that 
such a tool exists is a big step since this is such a new area for most 
programmers. Finding this class of programming error is especially 
difficult and frustrating because the errors manifest themselves as 
nondeterministic failures that often change from run to run of a program 
and most often change behavior when being examined using a debugger. 

Developers use the Intel Thread Checker to locate a special class of 
threading coding errors in multi-threaded programs that may or may not 
be causing the program to fail. The Intel Thread Checker creates 
diagnostic messages for places in a program where its behavior in a  
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multi-threaded environment is potentially nondeterministic. The Intel 
Thread Checker identifies issues including data races, deadlocks, stalled 
threads, lost signals and abandoned locks. The Intel Thread Checker 
supports analysis of threaded programs that use OpenMP, POSIX, and the 
Windows API. 

Chapter 7 explained data races and deadlocks which are the two 
programming errors that can occur because of threading. These are difficult 
to debug as they can cause results to be indeterminate and to differ from  
the output that a non-threaded version of the program would produce. 
Deadlock causes a program, or a subset of threads, to not be able to 
continue executing at all because of errors in the way it was programmed. 

The process of finding critical multi-threading programming issues 
like data races and deadlocks starts with running a program with the Intel 
Thread Checker to collect data. Once this data collection has occurred, 
the Intel Thread Checker is used to view the results of the program 
execution. These results are shown in a prioritized list of diagnostic and 
warning messages based on the trace data. Sorting and organizing the 
Diagnostics list in various ways helps focus on the most important issues. 
This tool isolates threading bugs to the source code line where the bug 
occurs. It shows exactly where in a program threading errors are likely to 
happen. When the Intel Thread Checker detects an issue, it reports the 
function, context, line, variable, and call stack to aid in analysis and 
repair. It also provides a suggestion of possible causes for the threading 
errors and suggested solutions with one-click diagnostic help. 

The Intel Thread Checker suggests all necessary warnings for effective 
threaded application diagnosis, while allowing you to choose which 
warnings to display at different points in the product development cycle. 

How It Works 

The Intel Thread Checker can do its analysis using built-in binary 
instrumentation and therefore can be used regardless of which compiler is 
used. This is particularly important with modern applications that rely on 
dynamically linked libraries (DLLs) for which the source code is often 
unavailable. The Intel Thread Checker is able to instrument an application 
and the shared libraries, such as DLLs, that the application utilizes. 

When combined with the Intel compiler and its compiler-inserted 
instrumentation functionality, Intel Thread Checker gives an even better 
understanding by making it possible to drill down to specific variables on 
each line. Figure 11.1 shows the diagnostic view and Figure 11.2 shows 
the source view of the Intel Thread Checker.  



Chapter 11: Intel® Software Development Products 279 

 

Figure 11.1  Intel® Thread Checker Diagnostic View 

 

Figure 11.2  Intel® Thread Checker Source View 



280 Multi-Core Programming 

Usage Tips 

Because the Intel Thread Checker relies on instrumentation, a 
program under test will run slower than it does without 
instrumentation due to the amount of data being collected. 
Therefore, the most important usage tip is to find the smallest data 
set that will thoroughly exercise the program under analysis. 
Selecting an appropriate data set, one that is representative of your 
code without extra information, is critical so as not to slow execution 
unnecessarily. It is generally not practical to analyze a long program 
or run an extensive test suite using this tool. 

In practice, three iterations of a loop—first, middle, and last—are 
usually sufficient to uncover all the problems that the Intel Thread 
Checker is able to find within each loop. The exception is when if 
conditions within the loop do different things for specific iterations. 
Because of the overhead involved in the Intel Thread Checker operation, 
you should choose a data set for testing purposes that operates all the 
loops that you are trying to make run in parallel, but has the smallest 
amount of data possible so that the parallel loops are only executed a 
small number of iterations. Extra iterations only serve to increase the 
execution time. If you have a particular section of code you would like to 
focus on, you can either craft your data and test case to exercise just that 
part, or you can use the Pause/Resume capabilities of the Intel Thread 
Checker. 

The Intel Thread Checker prioritizes each issue it sees as an error, 
warning, caution, information, or remark, as shown in Figure 11.3. 
Sorting errors by severity and then focusing on the most important issues 
first is the best way to use the tool. 

Before you prepare your code for use with the Intel Thread 
Checker, you should ensure that your code is safe for parallel 
execution by verifying that it is sequentially correct. That is, debug it 
sequentially before trying to run in parallel. Also, if your language or 
compiler needs special switches to produce thread-safe code, use 
them. This comes up in the context of languages like Fortran, where 
use of stack (automatic) variables is usually necessary, and not always 
the default for a compiler. The appropriate switch on the Intel Fortran 
Compiler is –Qauto. Use of this option on older code may cause 
issues, and the use of a SAVE statement in select places may be 
required for subroutines that expect variables to be persistent from 
invocation to invocation. 
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Figure 11.3 Intel® Thread Checker Bar Chart with Error Categories 

Using Intel® Thread Checker with OpenMP 

OpenMP programs are threaded programs and can suffer from the same 
errors and performance problems as explicitly threaded applications. 
OpenMP is discussed in detail in Chapter 6. Using Intel Thread Checker, 
you can avoid the standard task of identifying storage conflicts in 
previously threaded code. With OpenMP, the diagnostic output of Intel 
Thread Checker identifies and allows the categorizing of the scope of 
variables within parallel regions. This allows a programmer using 
OpenMP to try a directive that is close to correct and fine tune it using 
Intel Thread Checker. Intel has provided a whitepaper on this exact topic 
on their developer web site, www.intel.com/software, titled Intel® 
Threading Tools and OpenMP by Clay P. Breshears.  

 Intel Compilers 
Just as with previous hardware technologies, the compiler can  
play a central or supporting role in taking advantages the  
multi-processor/multi-core/multi-threading capabilities of your shared 

http://www.intel.com/software
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memory platform. Intel Corporation has been supporting multi-
threading capabilities in its compilers for many years now. This section 
explores those technologies. 

OpenMP† 

In Chapter 6, you learned how OpenMP can be used as a portable 
parallel solution and that Intel compilers have support for OpenMP 
within the Windows and Linux environments. Intel compilers support 
all the implementation methodologies discussed in Chapter 6. At the 
time of this writing, Version 9.1 of the Intel compilers support the 
OpenMP API 2.5 specification as well as the workqueuing extension, a 
feature proposed by Intel for OpenMP 3.0. To get the Intel compiler to 
recognize your OpenMP constructs, compile with the following 
switch: 

 Windows: /Qopenmp 

 Linux:    -openmp 

Some of the many advantages of using OpenMP to thread software  
are: 

 It is intuitive and comparatively easy to introduce into your 
application. 

 It is portable across operating systems, architectures, and 
compilers. 

 The compiler has the opportunity to make architecture-specific 
optimizations. 

OpenMP API achieves these goals by leaving the implementation up to 
the compiler.  

Atomic 
The OpenMP Atomic directive is probably the most obvious example of a 
feature where the compiler is able to provide a fast implementation. The 
atomic directive is similar to a critical section—in that only one thread 
may enter the atomic section of code at a time—but it places the 
limitation on the developer that only very simplistic and specific 
statements can follow it. 

When you use the atomic directive as follows: 
#pragma omp atomic 
      workunitdone++; 
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The compiler can issue the following instructions that allow the 
hardware to atomically add one to the variable 
mov        eax, 0x1h 
lock xadd  DWORD PTR [rcx], eax 

This is much more efficient than locking the code using a critical section 
or a mutex, then updating the variable, and finally releasing the lock, 
which can take hundreds or thousands of cycles, depending on the 
implementation. This could be created using inline assembly or compiler 
intrinsics, except that then the code would not be portable to other 
architectures or OS environments. 

The Intel compilers will perform other optimization algorithms when 
compiling OpenMP code. The atomic example was chosen due to its 
simplicity. As optimization techniques are developed by Intel’s compiler 
developers, those techniques usually get added in the compiler so that 
everyone who uses OpenMP with the Intel compiler benefits, whether 
they are aware of it or not. 

Auto-Parallel 
The Intel compilers have another feature to help facilitate threading. The 
auto-parallelization feature automatically translates serial source code into 
equivalent multi-threaded code. The resulting binary behaves as if the 
user inserted OpenMP pragmas around various loops within their code. 
The switch to do this follows: 

 Windows: /Qparallel 

 Linux:  -parallel 

For some programs this can yield a “free” performance gain on SMP 
systems. For many programs the resulting performance is less than 
expected, but don’t give up on the technology immediately. There are 
several things that can be done to increase the probability of 
performance for this auto-parallel switch.  

Increasing or decreasing the threshold for which loops will be made 
parallel might guide the compiler in creating a more successful binary. 
The following switch guides the compiler heuristics for loops: 

 Windows: /Qpar_threshold[:n] 

 Linux:  -par_threshold[n] 

where the condition 0 <= n <= 100 holds and represents the 
threshold for the auto-parallelization of loops. If n=0, then loops get 
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auto-parallelized always, regardless of computation work volume. If 
n=100, then loops get auto-parallelized when performance gains are 
predicted based on the compiler analysis data. Loops get auto-parallelized 
only if profitable parallel execution is almost certain. The intermediate 
values 1 through 99 represent the percentage probability for profitable 
speed-up. For example, n=50 directs the compiler to parallelize only if 
there is a 50 percent probability of the code speeding up if executed in 
parallel.  

Using auto-parallelization in combination with other switches like 
Inter-Procedural Optimizations (IPO), Profile Guided Optimizations 
(PGO) and High Level Optimizations (HLO) aids the compiler in making 
more correct choices while threading the code. 

If auto-parallelization does not help directly, it can perhaps help 
indirectly. The Intel compilers also support a compiler reporting feature 
and the switch is: 

 Windows: /Qpar_report[n] 

 Linux:  -par_report[n] 

where 0 <= n <= 3. If n=3, then the report gives diagnostic information 
about the loops it analyzed. The following demonstrates the use of this 
report on a simplistic example. Given the following source: 

1 #define NUM 1024 
2 #define NUMIJK 1024 
3 void multiply_d( double a[][NUM], double b[][NUM], 
4                  double c[][NUM] ) 
5 { 
6    int i,j,k; 
7    double temp; 
8    for(i=0; i<NUMIJK; i++) { 
9       for(j=0; j<NUMIJK; j++) { 
10          for(k=0; k<NUMIJK; k++) { 
11             c[i][j] = c[i][j] + a[i][k] * b[k][j]; 
12          } 
13       } 
14    } 
15 } 

The compiler produces the following report: 
$ icc multiply_d.c -c -parallel -par_report3 
   procedure: multiply_d 
   serial loop: line 10: not a parallel candidate due to insufficent 
work 
   serial loop: line 8 
      anti data dependence assumed from line 11 to line 11, due to "b" 
      anti data dependence assumed from line 11 to line 11, due to "a" 
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      flow data dependence assumed from line 11 to line 11, due to "c" 
      flow data dependence assumed from line 11 to line 11, due to "c" 
   serial loop: line 9 
      anti data dependence assumed from line 11 to line 11, due to "b" 
      anti data dependence assumed from line 11 to line 11, due to "a" 
      flow data dependence assumed from line 11 to line 11, due to "c" 
      flow data dependence assumed from line 11 to line 11, due to "c" 

Based on this report, you can see the compiler thinks a dependency 
exists between iterations of the loop on the a, b, and c arrays. This 
dependency is due to an aliasing possibility—basically, it is possible that 
the a or b array points to a memory location within the c array. It is easy 
to notify the compiler that this is not possible1. To handle such instances, 
any of the following techniques can be used: 

■ Inter-Procedural Optimization (IPO) 

− Windows:  /Qipo 

− Linux:  -ipo 

■ Restrict keyword 

■ Aliasing switches: /Oa, /Ow, /Qansi_alias 

■ #pragma ivdep 

After modifying the code as follows: 
… 

void multiply_d(double a[][NUM], double  b[][NUM], double  c[restrict][NUM]) 

… 

the following report is produced: 
$ icc multiply_d.c -c -parallel -par_report3 -c99     
procedure: multiply_d 
   serial loop: line 10: not a parallel candidate due to insufficent work 
multiply_d.c(8) : (col. 2) remark: LOOP WAS AUTO-PARALLELIZED. 
   parallel loop: line 8 
      shared     : { "c" "b" "a" } 
      private    : { "i" "j" "k" } 
      first priv.: { } 
      reductions : { } 

                                                   
1 In this case, the programmer assumes the responsibility of ensuring that this aliasing doesn’t occur. 

If the programmer is wrong, unpredictable results will occur.  
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This technique can also be used as a guide in adding OpenMP pragmas to 
the source. For the above example, the following OpenMP changes are 
easy to identify: 

 
1 #define NUM 1024 
2 #define NUMIJK 1024 
3 void multiply_d( double a[][NUM], double b[][NUM], 
4                  double c[][NUM] ) 
5 { 
6    int i,j,k; 
7    double temp; 
8 #pragma omp parallel for shared(a,b,c) private(i,j,k) 
9    for(i=0; i<NUMIJK; i++) { 
10       for(j=0; j<NUMIJK; j++) { 
11          for(k=0; k<NUMIJK; k++) { 
12             c[i][j] = c[i][j] + a[i][k] * b[k][j]; 
13          } 
14       } 
15    } 
16 } 

The auto-parallelization feature of the Intel compilers may provide an 
easy performance gain in your source. If it doesn’t, you can increase its 
probability of helping you guide it with other switches, aliasing 
techniques, or by using it to guide the insertion of OpenMP pragmas. If  
a specific portion of the application does not thread through  
auto-parallelization―or if it does thread the code, but it does so 
inefficiently―report this to Intel through Intel Premier Support Web site. 
It is possible that the compiler developers can add that optimization to 
the compiler, thereby making the application run faster, as well as 
improving the compiler for the overall community. 

Software-based Speculative Precomputation 

Version 9.0 of the Intel compilers introduced a “preview” feature called 
Software-based Speculative Precomputation (SSP), also known as Helper 
Threads. The goal of SSP is to hide memory latencies associated with 
single-threaded applications by utilizing idle or unused multi-threading 
hardware resources to prefetch data from memory into the cache. In 
order to do the prefetch, the compiler creates secondary thread(s) that 
run on behalf of the main thread. The secondary thread or threads try to 
access data in memory that will soon be needed by the main thread. If 
the needed data is not currently in the cache, a cache miss occurs and 
the data is loaded into the cache. In the ideal case, the data will be in the 
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cache before the main thread needs the data. Since the hardware 
threading resources would have been idle otherwise, this technique 
effectively eliminates performance penalties associated with memory 
latencies. This technique will work for any system that can execute 
threads simultaneously and includes a shared cache that multiple threads 
can access directly. 

In order for this technique to yield a performance gain the compiler 
needs detailed data about cache misses within your application. The 
compiler needs to gather an execution profile of your application and 
data on cache misses from the Performance Monitoring Unit (PMU) in 
order to identify where cache misses are occurring in your application.  

Compiler Optimization and Cache Optimization 

In order to achieve the maximum benefit from threading, it is also 
important to make sure your application is optimized for the underlying 
hardware platform. Two aspects that are relevant to threading should be 
considered: 

■ Increasing cache usage (thereby decreasing bus bandwidth) 

■ Increasing the performance of every thread 

One of the performance-limiting factors on a parallel processing 
capable system is the memory subsystem bottleneck. The Intel 
compiler can help avoid main memory accesses by performing 
optimizations within the compiler to maximize the use of the caches—
which ultimately decreases the amount of data that needs to pass 
through the memory bus. 

On some architectures it is often optimal to reduce the use of 
prefetching, as this can cause unnecessary accesses to memory. When 
the Intel compiler uses OpenMP or Auto-Parallelization, the compiler may 
reduce using prefetches on architectures where this is relevant. 

The default switches in the Intel compiler may not yield the optimal 
performance or the best cache optimizations. The compiler has several 
features that can increase the probability that your application will 
perform better: 

■ Higher Optimization Levels (/O1,/O2,/O3) 

■ Vectorization (/Q[a]xP, /Q[a]xN, Q[a]xW, /Q[a]xB, /Q[a]xK) 

■ Inter-Procedural Optimizations (/Qipo) 

■ Profile Guided Optimizations (/Qprof_gen -> /Qprof_use) 
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 Intel® Debugger 

Chapter 8 covered a number of general purpose debugging techniques 
for multi-threaded applications. In order to provide additional help to 
developers Intel has developed a debugging tool appropriately named the 
Intel Debugger (IDB). The Intel Debugger is shipped as part of the Intel 
compilers. It is a full-featured symbolic source-code application debugger 
that helps programmers to locate software defects that result in run-time 
errors in their code. It provides extensive debugging support for C, C++ 
and Fortran, including Fortran 90. It also provides a choice of control 
from the command line, including both dbx and gdb modes, or from a 
graphical user interface, including a built-in GUI, ddd, Eclipse CDT, and 
Allinea DDT.  

The Intel compilers enable effective debugging on the platforms they 
support. Intel compilers are “debugger-agnostic” and work well with 
native debuggers, the Intel Debugger, and selected third-party debuggers. 
By the same token, the Intel Debugger is compiler-agnostic and works 
well with native compilers, the Intel compilers, and selected third-party 
compilers. This results in a great deal of flexibility when it comes to 
mixing and matching development tools to suite a specific environment.  

In addition, the Intel Debugger provides excellent support for the 
latest Intel processors, robust performance, superior language-feature 
support, including C++ templates, user-defined operators, and modern 
Fortran dialects (with Fortran module support); and support for Intel 
Compiler features not yet thoroughly supported by other debuggers.  

The Intel Debugger is a comprehensive tool in general and also 
supports extensively for threaded applications as well. Some of the 
advanced capabilities of the Intel Debugger for threaded applications are: 

■ Includes native threads and OpenMP threads  

■ Provides an “all threads stop” / “all threads go” execution model 

■ Acquires thread control on attach and at thread creation 

■ Ability to list all threads and show indication of thread currently 
in focus  

■ Set focus to a specific thread 

■ Sets breakpoints and watchpoints for all threads or for a subset of 
all threads (including a specific thread)  

■ Most commands apply to thread currently in focus or to any/all 
threads as appropriate 
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■ Optional thread-specific qualifier for many commands 

■ Access to Thread Local Storage and Shared Local Variables  

For the cluster-parallel applications, the Intel Debugger makes use of MPI 
including a proprietary cluster aggregation network and support for user-
defined process sets that can be stopped or moved forward 
independently of one another.  

Even though the Intel Debugger does not support examining the 
content of mutexes and condition variables, it can be used from the 
command line to call directly into native thread libraries and OpenMP 
libraries for more detailed information. 

 Intel Libraries 

Libraries are an ideal way to utilize parallelism. The library writer can hide 
all the parallelism and the programmer can call the routines without 
needing to write parallel code. Intel has two libraries that implement 
functions that have been popular for many years, and which Intel has 
gradually made more and more parallel leading up to today when they are 
parallelized to a great extent. Both of Intel’s libraries are programmed using 
OpenMP for their threading, and are pre-built with the Intel compilers. This 
is a great testimonial to the power of OpenMP, since these libraries produce 
exceptional performance using this important programming method. 

Intel® Math Kernel Library 

The Intel Math Kernel Library (Intel MKL) is a set of highly optimized 
routines used for mathematical problem solving. The routine are used for 
solving problems of computational linear algebra, performing the 
discrete Fourier transforms, and solving some other computation-
intensive problems. The library includes routines of the BLAS, Sparse 
BLAS, LAPACK and ScaLAPACK packages (Fortran interfaces), sparse 
solver, interval linear solvers, CBLAS (C interface to BLAS routines), as 
well as discrete Fourier (with Cluster DFTI) and fast Fourier transform 
routines, vector mathematical functions, and the Vector Statistical Library 
(Fortran and C interfaces for random number generators and 
convolution/correlation mathematical operations). The library functions 
ensure high performance when run on Intel processors or compatible 
processors. Level 3 BLAS and most LAPACK routines, in particular, take 
advantage of multiprocessor computation through threading.  
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Intel MKL is threaded in a number of places: sparse solver, LAPACK 
(*GETRF, *POTRF, *GBTRF, *GEQRF, *ORMQR, *STEQR, *BDSQR 
routines), all Level 3 BLAS, Sparse BLAS matrix-vector and matrix-matrix 
multiply routines for the compressed sparse row and diagonal formats, 
and all discrete Fourier transform (DFT) routines—except 1D 
transformations when DFTI_NUMBER_OF_TRANSFORMS=1 and sizes are 
not a power-of-two, and all fast Fourier transform (FFT) routines. 

Intel® Integrated Performance Primitives 

The Intel Integrated Performance Primitives (Intel IPP) are a set of highly 
optimized routines used as the basis for much multimedia 
encode/decode work as well as a variety of other nonscientific problems. 
The routines are used for image processing, audio coding, speech coding, 
JPEG, video coding, speech recognition, color conversion, computer 
vision, data compression, signal processing, cryptography, string 
processing, matrix processing and vector math. The library functions 
ensure high performance when run on Intel processors or compatible 
processors. Higher level routines take advantage of multiprocessor 
computation through threading. Each release has a list of functions that 
take advantage of threading; the IPP 5.0 release, for instance, lists 563 
routines that use OpenMP to offer parallelism. 

Parallel Program Issues When Using Parallel Libraries 

Using a parallel library from a program that expresses some parallelism 
itself creates a situation where some thought is required. Running a four-
processor machine is most efficient if a program uses four active threads. 
However, if the program is actively running four threads in a parallel 
region, and each thread calls a library routine that in turn tries to spawn 
four threads, the elegance disappears and conflict arises. Therefore, it is 
critical that a developer understand not only the parallel nature of their 
application, but the underlying parallel implementation of any external 
libraries used in implementing that application.  

If the user threads the program using OpenMP directives and uses 
the Intel compilers to compile the program, Intel Math Kernel Library 
(Intel MKL) and the user program will both use the same threading 
library. This solves many potential issues automatically for the user. 
Intel’s libraries will determine if the function is called while in a parallel 
region in the program, and if it is, it does not spread its operations over 
multiple threads. However, the Intel libraries can be aware that the 
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function is in a parallel region only if the threaded program and the 
library are using the same threading library. If the user program is 
threaded by some other means, the library may operate in multi-
threaded mode and the computations may be slow or possibly 
corrupted. This implies that the programmer should take the following 
into consideration:  

■ If the user threads the program using OS threads (pthreads on 
Linux, Win32 threads on Windows), and if more than one thread 
calls the library, and the function being called is threaded, it is 
important that threading in Intel MKL be turned off. Set 
OMP_NUM_THREADS=1 in the environment. This is the default 
with Intel MKL except for sparse solver.  

■ If the user threads the program using OpenMP and compiles the 
program using a compiler other than a compiler from Intel, then 
the best approach is to force the library to run in serial. This case 
is more problematic than the previous one in that setting 
OMP_NUM_THREADS in the environment affects both the 
compiler's threading library and the threading library used by the 
Intel libraries. For Intel’s Math Kernel Library, you set 
MKL_SERIAL=YES, which forces Intel MKL to serial mode 
regardless of OMP_NUM_THREADS value.  

■ If multiple programs are running on a multiple-CPU system, as in 
the case of a parallelized program running using MPI for 
communication in which each processor is treated as a node, 
then the threading software will see multiple processors on the 
system even though each processor has a separate process 
running on it. In this case, OMP_NUM_THREADS should be set 
to 1 to force serial use of the libraries and defer to the wisdom 
of the programmer to orchestra the system usage at a higher 
level. 

The Future 

Libraries will expand as a popular method for achieving parallelism. The 
need for more standardization—for compilers, users, and libraries to 
cooperate with regards to the creation and activation of threads—will 
grow. Right now, a careful programmer can pour through the 
documentation for libraries and compilers and sort out how to resolve 
potential conflicts. As time passes, we hope to see some consensus on 
how to solve this problem and make programming a little easier. We will 
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see the emergence of more domain specific parallel libraries, as well as 
some general frameworks built around libraries. 

Intel® Threading Building Blocks 

Intel is developing a new approach to help developers with libraries. The 
Intel Threading Building Blocks are a higher-level abstraction for threaded 
applications that will also be understandable by analysis tools. Since the 
project is currently in development, consult the Intel Web site for more 
information on features and availability.  

 Intel® VTune™ Performance Analyzer 

The Intel VTune Performance Analyzer is a system-wide analysis tool that 
offers event sampling and call graphs that include all information 
available broken down not only by processes/tasks, but also by the 
threads running within the processes. Intel Press offers a whole book on 
the Analyzer, which dives into its numerous capabilities. This section 
gives you just a flavor for the features, and highlights some of the ways 
the Analyzer feature can be used in the tuning of threaded applications. 

Users have summed up the tool by saying that the VTune analyzer 
“finds things in unexpected places.” Users of the VTune analyzer are 
enthusiastic about this tool largely because of this remarkable capability. 
Threading adds a dimension to already complex modern computer 
systems. It is no surprise when things happen on a system that cannot be 
easily anticipated. When you seek to refine a computer system, the best 
place to start is with a tool that can find these hidden problems by giving 
a comprehensive performance exam. 

Measurements are the key to refinement. The Intel VTune 
Performance Analyzer is a tool to make measurements. It also has 
wonderful features to help you understand those measurements, and 
even advises you on what exceptional values may mean and what you 
can do about them.  

Taking a close look at the execution characteristics of an application 
can guide decisions in terms of how to thread an application. Starting 
with the hotspots—the main performance bottlenecks—in the 
application, one can see if threading can be applied to that section of 
code. Hotspots are found using the event sampling features in the VTune 
analyzer. If the hotspot is in a location with little opportunity for 
parallelism, a hunt up the calling sequence will likely find better 
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opportunities. The calling sequence can be traced back using the call-
graph capability of the analyzer. Implementations of threads can be 
refined by looking at balance using the Samples Over Time feature and 
the Intel Thread Profiler in the analyzer. 

Find the Hotspot 

The VTune analyzer can find the modules, functions, threads and even 
the line of source code that consume most of the CPU cycles without 
requiring a special build of the application. Source code displays require 
a version with symbol information not stripped out—the default on 
Linux, and needs a special option on Windows.  

Shown here in Figure 11.4 is the module view in the analyzer for 
Windows after collecting sampling data on the platform. It shows the 
majority of CPU being spent in our program. Additional mouse clicks will 
reveal functions and even the source code lines. 

 

Figure 11.4 Sampling Results Using the Intel® VTune™ Performance Analyzer 
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If you can distribute the work currently done on one processor onto 
two processors, you can theoretically double the performance of an 
application. Amdahl’s law reminds us that we cannot make a program 
run faster than the sequential—not written to run in parallel—portion of 
the application, so don’t expect to leap to doubled performance every 
time. 

Using Call Graph for Finding a Threading Point 

The VTune analyzer includes a Call Graph feature to create a call 
graph of an application. By looking at the call graph as shown in 
Figure 11.5, you can find places farther up in the call tree from the 
hotspot in a function where it could make sense to create a thread. By 
rewriting a higher level location in a program to partition the work 
among several threads, parallel processing should improve the 
performance of the application.  

 

Figure 11.5 Call Graph Results, Viewed by Thread 
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Check the Load Balancing 

How well distributed and parallelized the workload is can be examined 
using the VTune analyzer’s Samples Over Time feature. The Samples 
Over Time display shows how, for a particular application, module, or 
thread, the time data was collected, as shown in Figure 11.6. Looking at 
the thread sampling data over time shows if the CPU time consumed by 
each thread was about the same, providing evidence of whether the 
workload was evenly distributed. You can also look to see if the number 
of samples taken by each thread was significant and in the same range. 

 

Figure 11.6 Example of a Sampling Over Time View 

 Intel® Thread Profiler 

The Intel Thread Profiler is implemented as a view within the VTune 
Performance Analyzer, but it is so significant that it should be discussed 
as if it were an entirely separate product. Unlike the rest of the VTune 
analyzer, the Intel Thread Profiler is aware of synchronization objects 
used to coordinate threads. Coordination can require that a thread wait, 
so knowing about the synchronization objects allows Intel Thread 
Profiler to display information about wait time, or wasted time. The Intel 
Thread Profiler helps a developer tune for optimal performance by 
providing insights into synchronization objects and thread workload 
imbalances that cause delays along the longest flows of execution. 

The Intel Thread Profiler shows an application’s critical path as it 
moves from thread to thread, helping a developer decide how to use 
threads more efficiently, shown in Figure 11.7. It is able to identify 
synchronization issues and excessive blocking time that cause delays for 
Win32, POSIX threaded and OpenMP code. It can show thread workload 
imbalances so a developer can work to maximizes threaded application 
performance by maximizing application time spent in parallel regions 
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doing real work. Intel Thread Profiler has special knowledge of OpenMP, 
and can graphically display the performance results of a parallel 
application that has been instrumented with calls to the OpenMP 
statistics-gathering run-time engine. 

 

Figure 11.7 The Intel® Thread Profiler Critical Path—Timeline View 

The Timeline view shows the contribution of each thread to the total 
program, whether on the critical path or not. The Thread Profilers also 
has the ability to zero in on the critical path: the Critical Paths view 
shows how time was spent on your program's critical path, the Profile 
view displays a high-level summary of the time spent on the critical path. 

Using the VTune Performance Analyzer and the Intel Thread Profiler 
together, provide insights for a developer about threading in their 
applications and on their systems. Together, these analysis tools help the 
developer avoid searching for opportunities through trial and error by 
providing direct feedback. 

 MPI Programming 

Threading is a convenient model where each thread has access to the 
memory of the other thread. This is portable only between shared 
memory machines. In general, parallel machines may not share memory 
between processors. While this is not the case with multi-core 
processors, it is important to point out that parallel programs need not be 
written assuming shared memory. 

When shared memory is not assumed, the parts of a program 
communicate by passing messages back and forth. It is not important 
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how the messages are passed; the details of the interconnect are hidden 
in a library. On a shared memory machine, such as a multi-core 
processor, this is done through shared memory. On a supercomputer 
with thousands of processors, it may be done through an expensive and 
very high speed special network. On other machines, it may be done via 
the local area network or even a wide area network. 

In order for a message-passing program to be portable, a standard for 
the message passing library was needed. This formed the motivation 
behind the Message Passing Interface (MPI), which is the widely used 
standard for message passing. Many implementations exist including 
vendor-specific versions for their machines or interconnects. The two 
most widely used versions of MPI are MPICH, with roots from the earliest 
days of UNIX and now hosted by Argonne National Lab, and LAM/MPI, an 
open-source implementation hosted by Indiana University. 

MPI makes possible source-code portability of message-passing 
programs written in C, C++, or Fortran. This has many benefits, including 
protecting investments in a program, and allowing development of the 
code on one machine such as a desktop computer, before running it on 
the target machine, which might be an expensive supercomputer with 
limited availability. 

MPI enables developers to create portable and efficient programs 
using tightly coupled algorithms that require nodes to communicate 
during the course of a computation. MPI consists of a standard set of API 
calls that manage all aspects of communication and data transfer between 
processors/nodes. MPI allows the coordination of a program running as 
multiple processes in a distributed (not shared) memory environment, 
yet is flexible enough to also be used in a shared memory system such as 
a multi-core system. 

Intel Support for MPI 
Intel has both performance tuning software and its own MPI library. The 
library is known as the Intel MPI Library, and is not specifically for any 
brand of machine, or for that matter any particular interconnect. The 
performance tuning tool that Intel developed to support optimized MPI 
performance analysis is called the Intel Trace Analyzer and Collector.  

Intel® MPI Library 
Intel created a version of MPI that eliminates a key drawback of MPI 
libraries—the need to build a version of a program for each different 
interconnect. The Intel MPI Library is possible because the library uses 
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the Direct Access Programming Library (DAPL) supplied by virtually 
every interconnect vendor, plus Intel supplies its own library for generic 
methods such as shared memory. This library allows a developer to 
create an efficient program for all platforms in a single binary by linking 
with one MPI that can automatically configure for the interconnect 
present at run time. This changes MPI from its traditional source-level 
compatibility only to also offer binary-level compatibility. This opens up 
application developers to create executables of their programs that can 
run on a dual-core processor desktop or a 4,096-node supercomputer, 
while maintaining competitive performance with the old methods of 
producing a separate build for each fabric. 

The library offers a great deal of flexibility by allowing both users and 
developers to select fabrics at run time. The library supports all MPI-1 
features plus many MPI-2 features, including file I/O, generalized requests, 
and preliminary thread support. The library is based on Argonne National 
Laboratory’s MPICH-2 release of the MPI-2 specification. 

Intel offers this library for Linux. Microsoft recently started to offer a 
version of an MPI library for Windows that also gives developers the ability to 
have a single efficient binary as well. Figure 11.8 shows how an application is 
linked with the Intel MPI library, which in turn accesses the DAPL layer. 
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Figure 11.8 Intel® MPI Library Abstracts the DAPL-based Interconnects 
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Intel® Trace Analyzer and Collector 
The Intel Trace Analyzer and Collector allows a developer to analyze, 
optimize, and deploy high-performance applications on clusters. The 
collector interacts with an MPI application to collect information at run 
time, and the analyzer is used to display the collected traces after the run to 
allow analysis of the information. A developer can see concurrent behavior 
of parallel applications through Timeline Views and Parallelism Displays, as 
shown in Figure 11.9. The analyzer calculates statistics for specific time 
intervals, processes, or functions. It also displays application activities, 
event source code locations, and message passing along a time axis. 

 

Figure 11.9 Timeline Views and Parallel Displays 

Scalability is a key concern with any parallel program, and the analyzer 
provides views that are particularly useful for a developer seeking to 
enhance scalability. A user can navigate through trace data levels of 
abstraction: cluster, node, process, thread, and function. The Detailed and 
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Aggregate Views, shown in Figure 11.10, allow examination of aspects of 
application run-time behavior, grouped by functions or processes. 

 

Figure 11.10 Detailed and Aggregate Views 

For parallel application development on cluster systems, these offer 
powerful capabilities and belong in any MPI developer’s toolkit. They 
offer a great opportunity to understand MPI application behavior, which 
in turns helps achieve high execution performance. 

 Key Points 

Parallel programming is more natural than forcing our thinking into 
sequential code streams. Yet, the change from this type of thinking that 
developers have all been trained on means we all need to think 
differently than we have for decades. 
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Assistance from the makers of developer tools can help us with 
coding/expressing, debugging, tuning, and testing our parallel 
applications. 

Keep the following points in mind when using Intel software 
development products: 

 Automatic parallelization by the compiler is cheap and easy to try, 
and generally limited in how much it is likely to help. 

 Software-based Speculative Precomputation (SSP), also known as 
Helper Threads, is a “preview” feature in Intel’s latest compilers. 
SSP uses additional threads to hide memory latencies by 
prefetching data into cache. 

 Intel Thread Checker can find errors in parallel programming 
even when the errors are not causing the program to fail during 
testing. 

 Gaining insight into the actual operation of an application may be 
the most important way to help developers. The Intel VTune 
Performance Analyzer with the Intel Thread Profiler are powerful 
tools for gaining such insights. 

 The Intel VTune Performance Analyzer provides a non-intrusive 
way of analyzing the performance of your application. The Intel 
Thread Profiler is a view within the VTune tool that allows 
programmers to profile multi-threaded programs.  

 The Intel Math Kernel Library and the Intel Integrated 
Performance Primitives provide developers with high-
performance routines for math and multimedia routines, 
respectively. Developers need to pay careful attention to the 
interaction between threads in their local application and how 
the libraries create and use threads.  

 Programming using message passing, such as with MPI, can lead 
to highly scalable programs that can run on the largest computers 
as well as new multi-core processors. Support for using MPI in an 
application is provided by the Intel MPI Library. MPI-based 
applications can be optimized using the Intel Trace Analyzer and 
Collector. 

 The Intel Debugger, included as part of the Intel compiler 
software distribution, provides multi-threading debugging 
capabilities, including support for OpenMP.  
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These are complex and powerful tools. Describing all the features and 
capabilities is beyond the scope of the book. For a more complete 
discussion of all the different features and capabilities please refer to the 
documentation included with the programs and stay up to date with the 
latest information, which can be found at the Intel Software Network 
Web site at www.intel.com/software. 

http://www.intel.com/software
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Glossary 
 

64-bit mode The mode in which 64-bit applications run on platforms 
with Intel® Extended Memory 64 Technology (Intel® EM64T). See 
compatibility mode. 

advanced programmable interrupt controller (APIC) The hardware 
unit responsible for managing hardware interrupts on a computing 
platform.   

aliasing A situation in which two or more distinct references map to the 
same address in memory or in cache.  

alignment The need for data items to be located on specific boundaries 
in memory. Misaligned data can cause the system to hang in certain 
cases, but mostly it detrimentally affects performance. Padding helps 
keep data items aligned within aggregate data types.  

architecture state The physical resources required by a logical 
processor to provide software with the ability to share a single set of 
physical execution resources. The architecture state consists of the 
general purpose CPU registers, the control registers, and the 
advanced programmable interrupt controller (APIC). Each copy 
of the architecture state appears to software as a separate physical 
processor.  

associativity The means by which a memory cache maps the main RAM 
to the smaller cache. It defines the way cache entries are looked up 
and found in a processor. 
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atomic Operations that are indivisible (hence, the reference to the 
atom), meaning that all the operations must be completed or none of 
them can be. Example atomic operations relevant to multi-core 
programming include access to shared (global) memory locations, 
database transactions, and any sequence of operations that, if 
interrupted, would leave the software or the system in an unstable or 
corrupted state.  

barrier A synchronization mechanism that prevents forward progress by a 
group of threads until all threads, or in some implementations, a certain 
number of threads, reach the same point in their execution. Threads 
will block until all threads in the group, or the threshold level has been 
reached. Through this method, a thread from an operational set has to 
wait for all or some number of other threads in that set to complete in 
order to be able to proceed to the next execution step. 

base address The starting address of a segment.  

big-endian A way of storing values in memory that is favored by RISC 
processors. In this scheme, for example, a two-byte integer whose 
value is 0x0123 is stored in consecutive bytes in memory as 01 23. 
The big-end (the most significant bits) are stored in the lower 
addressed-byte, hence the name. See little endian. 

cache coherency The need for caches on separate processors to contain 
the same values with respect to a data item that is held in the cache 
of more than one processor.  

cache line The minimum amount of memory read by a processor from 
RAM into its caches. The size of a cache line can be determined by 
processor-specific calls. On recent IA-32 processors and those with 
Intel EM64T, the cache line is 128 bytes. 

canonical address A memory address that uses a special format and is 
required for memory references. See effective address. 

chip multiprocessing (CMP) A technology in which multiple processors 
reside on a single die, are singly packaged, and utilize a single socket 
of the platform.  

Common Language Runtime (CLR) The virtual machine and execution 
layer in Microsoft’s .NET environment. 

coarse-grained multi-threading (Also referred to as switch-on-event 
multi-threading) a type of threading in which the thread has full 
control over processor resources for a specified threshold of timing 
windows or number of processor cycles. 
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compatibility mode The operating mode in which 32-bit applications 
can run on a 64-bit operating system on platforms with Intel EM64T.  

concurrency The operational and execution methodology by which 
common resources or CPUs simultaneously execute parallel tasks or 
threads.  

condition variable A mechanism that allows a thread to wait on some 
condition or event to occur. Another thread will signal the waiting 
thread once the condition occurs. Condition variables are almost 
always used in conjunction with a mutex and a Boolean expression 
that indicates whether or not the condition is met.  

context switch The event that occurs when one thread stops executing 
on a given CPU and yields control of the CPU to another thread. 
During this event, the thread-specific state, including CPU registers, 
instruction pointer, and stack pointer must be saved so that the 
thread being evicted from the CPU may eventually be restored. This 
event allows multiple processes to share a single CPU resource.  

control registers Registers that are used to configure hardware to 
operate in certain modes and perform specific actions. These 
registers can be read and modified only by software at the highest 
privilege levels, such as the operating system and device drivers. 

convoying A common problem in lock-based synchronization where 
multiple threads are blocked from executing while waiting to acquire 
a shared lock. Convoys reduce concurrency and hence the overall 
performance of multi-threaded programs 

core The instruction execution portion of the processor, plus the caches 
and interfaces to system buses. 

cooperative multi-threading A form of multitasking where threads of 
control voluntarily give up control of the CPU to other threads. In a 
cooperative multi-threading scheme, threads are not pre-empted by 
an external entity such as the operating system.  

CPUID An assembly instruction that returns information on the runtime 
processor. The information that it provides depends on the values of 
parameters passed to it in various registers. The available data is 
extended each time Intel modifies the processor architecture in an 
important way.  

critical section The part of a process where multiple threads overlap, 
and that contains at least one shared resource that the various threads 
may access. Only one thread is allowed to access the critical section 
at any given time. 
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data decomposition The process of breaking down program tasks by 
the data they work on rather than by the nature of the task. 

data-level parallelism see data decomposition. 

data race A condition where multiple threads attempt to access the 
same memory location at the same time. In a data race, the value of 
the memory location is undefined and generally incorrect. Data races 
are generally avoided by synchronizing access to the shared memory 
location.      

deadlock A situation in which one thread (Thread A) is waiting for a 
resource held by another thread (Thread B), while holding a resource 
that is needed by Thread B. Since Thread A and Thread B are blocked 
waiting for resources held by the other thread, the threads are locked 
and no forward progress is made.  

decomposition The process of breaking programs down into a series of 
discrete tasks. There are three types of decomposition: functional, 
data, and a variant of functional decomposition, called 
producer/consumer. 

Dekker’s Algorithm A technique used in multi-threaded programming 
for mutual exclusion that allows two threads to share a single 
resource using shared memory.  

double word On x86 architectures, a 32-bit data item. 

dual-core is a term that describes a processor architecture in which two 
processor cores are placed on the same physical die.  

effective address A memory address that consists of two parts: a base 
address and a displacement from that base address. 

EM64T See Intel Extended Memory 64 Technology.  

endian How numerical values are stored in bytes. See big-endian and 
little-endian. 

false sharing A problem that occurs when threads on two different 
chips are both accessing the data item that are in the same cache 
line. Each access requires both processors to update their caches. If 
the updated item is used only by a single processor, all other 
processors are still forced to update their caches despite the fact 
they don’t need to know about the change in data; hence the term, 
false sharing. 

fence A restraining mechanism, usually an instruction, that allows 
synchronization among multiple attributes or actions in a system, and 
ensures proper memory mapping from software to hardware memory 
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models. The fence instruction guarantees completeness of all pre-
fence memory operations and halts all post-fence memory operations 
until the completion of fence instruction cycles. 

fiber A thread that is scheduled and managed in user space. Also known 
as green threads, or user-level threads. 

fine-grained locking An operational locking mechanism where the 
protection boundary is attributed to a single shared resource. 
Multiprocessor and real-time kernels utilize fine-grained locking. This 
increases concurrency in a system.    

fine-grained multi-threading A type of threading in which the thread 
switching takes place at an instruction cycle boundary. 

flow dependence A type of data dependency in which one statement 
depends on the value of a variable of the previous statement and 
there is no redefinition of the variable between these two statements, 
such as if a variable V is defined in statement S1 and later used at 
statement S2 with no redefinition of V, then there exists a flow 
dependency between S1 and S2.  

functional decomposition A partitioning technique that subdivides a 
program into different tasks based on the different independent 
operations that it performs.. 

GDB (Gnu Debugger) A debugger that provides a number of 
capabilities for debugging POSIX threads (Pthreads).  

GDT See global descriptor table. 

general-purpose register (GPR) A register that has no function pre-
assigned by the processor or the operating system. As such, GPRs can 
be used for whatever purpose the software needs.  

global descriptor table (GDT) A system table that can hold up to 8,192 
entries that describe data items, such as segments, procedure entry 
points, LDTs and the like. A given system must have a GDT.  

GPR See general-purpose register.  
hazard pointer A miniature garbage collector that handles pointers 

involved in compare-exchange operations; called a hazard pointer, 
because it presents a hazard to lockless algorithms. 

horizontal multi-threading See simultaneous multi-threading (SMT).  
Hyper-Threading Technology (HT Technology) Intel’s implementa-

tion of simultaneous multi-threading, in which multiple threads 
execute simultaneously on the same processor core. 
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IA (Intel architecture) The family of Intel processors to which a given 
chip belongs. 

IA-32 (Intel architecture, 32 bits) The Intel architecture for processors 
whose ILP is all 32-bits. It includes Intel Pentium® 4 and Xeon® 
processors prior to the advent of Intel EM64T. 

IA-32e (Intel architecture 32-bit extended) Shorthand for the Intel 
architecture mode in which the instructions for Intel EM64T are in 
use. It supports 32-bit software via compatibility mode and 64-bit 
software via 64-bit mode. 

IA-32 EL (Emulation Layer) A means of executing 32-bit IA-32 code on 
an Intel Itanium® processor.  

IA-64 (Intel architecture, 64 bits) Shorthand for the 64-bit architecture 
used in Intel Itanium processors.  

inline C++ keyword that suggests to the compiler that it replace calls to 
a function with the actual executable code for the function. This step 
increases performance by eliminating the overhead of the function 
call, but it can also detrimentally affect performance if overused by 
increasing code size excessively. 

ILP (integer-long-pointer) The programming model used by an operat-
ing system on a specific processor platform. It refers to the size in 
bits of the integer, long integer, and pointer data types.  

Intel EM64T See Intel Extended Memory 64 Technology. 

Intel Extended Memory 64 Technology Provides 64-bit extensions to 
the processor instruction set that enables IA-32e processors to 
execute 64-bit operating systems and applications.  

IPC (inter-process communication) The methodology by which 
processes or computers exchange data with other processes or 
computers using standard protocols.  

Java Virtual Machine (JVM) A software interpreter that translates 
precompiled Java bytecodes into machine instructions and executes 
them on a hardware platform.  

kernel thread A thread that is managed and scheduled by the kernel. 
Kernel threads relieve the burden of scheduling and managing 
threads from the programmer; however, kernel threads may require 
additional overhead as they are managed by the operating system. As 
a result, operations on them may require a system call. Most modern 
operating systems have very efficient implementations that minimize 
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this overhead, making kernel threads the preferred threading 
technique in most cases.  

latency The preferred term for delay in the semiconductor industry.  

LDT See local descriptor table 

linear address An address that points to a byte in the system’s linear 
address space. On systems that don’t use paging, the linear address is 
the same as the physical address of the byte in RAM. On systems that 
do use paging, this address must be converted to an actual physical 
address by a series of lookups. 

linear address space The memory that is addressable directly by the 
processor. Under normal circumstances, this space would 
correspond with 4 gigabytes of memory on 32-bit systems. This 
address space is different from the physical address space, in that an 
IA-32 system could be configured with less than 4 gigabytes of RAM. 
In such a case, its linear address space remains 4 gigabytes, but its 
physical address space is the lower number that corresponds to the 
amount of RAM physically present.  

little endian A way of storing values in memory that is favored by CISC 
architectures, such as IA-32 processors. In this scheme, for example, 
a two-byte integer whose value is 0x0123 is stored in consecutive 
bytes in memory as 23 01 The little-end (the least important bits) are 
stored in the lower addressed-byte, hence the name. See big endian. 

live lock The hazard status that occurs when threads continually conflict 
with each other and back off. 

load balancing The distribution of work across multiple threads so that 
they all perform roughly the same amount of work. 

local descriptor table A system table that can hold up to 8,192 entries. 
These entries describe system data items, such as segments, 
procedure entry points, and the like. A system can have zero or more 
Local Descriptor Tables.  

lock A mechanism for enforcing limits on access to a shared resource in 
an environment that has many threads of execution. Locks are one 
way of enforcing concurrency control policies. 

logical processor The hardware interface exposed by processors with 
Hyper-Threading Technology that makes it appear, from software’s 
perspective, that multiple processors are available. This is accom-
plished by duplicating the architecture state of the processor, 
including the CPU register set and interrupt control logic. Logical 
processors share a single set of physical execution resources.   
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loop scheduling In OpenMP, a method of partitioning work done in a 
loop between multiple threads. There are four loop scheduling types, 
including static, dynamic, guided, and runtime.  

memory cage A relaxed memory model idiom that starts with an 
acquire fence and ends in a release fence. Memory cages keep things 
that are inside from getting out, and not vice versa. 

memory latency The delay caused by accessing RAM memory. This 
delay arises in large part because RAM chips run at one tenth the 
clock speed of most modern processors.  

message A special method of communication to transfer information or 
a signal from one domain to another. 

micro-ops The smallest executable unit of code that a processor can 
run. IA-32 instructions are translated into micro-ops before they are 
executed. 

MMX™ Technology An extended instruction set introduced by Intel to 
improve performance in multimedia applications. 

model-specific register (MSR) Special registers that vary from one 
processor generation to the next. They contain data items that are 
used by the operating system and the processor for memory 
management, performance monitoring, and other system functions. 

monitor A simplistic, abstracted synchronization methodology that 
guarantees mutual exclusion of internal data and has thread 
synchronization capabilities. A critical section gets included in a 
monitor to allow a thread exclusive access to internal data without 
interference from other threads.  

MSR See model-specific register. 

multi-core is a term that describes a processor architecture in which two 
or more processor cores are placed on the same physical die.  

multiple-processor system-on-a-chip See chip multiprocessing 
(CMP).  

multitasking A technique used by operating systems that allow users to 
run multiple processes, or applications, simultaneously.  

multi-threading A technique used to run multiple threads of execution 
in a single process or application.  

mutex The mechanism by which threads acquire control of shared 
resources. A mutex is also referred to as mutual-exclusion 
semaphore. A mutex has two states, locked and unlocked.  
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mutual exclusion A technique for synchronization among threads that 
limits execution in a particular critical section of code to a single 
thread of execution.  

mutual exclusion semaphore See mutex.  

.NET Microsoft’s managed execution environment. 

non-blocking algorithm An algorithm designed not to use locks. The 
defining characteristic of a non-blocking algorithm is that stopping a 
thread does not prevent the rest of the system from making progress.  

Non-Uniform Memory Access (NUMA) An architecture that physically 
links two or more SMPs, where one SMP can access memory of 
another SMP. As the name NUMA suggests, not all processors have 
equal access time to the memory. When cache coherency is 
preserved for NUMA architecture, it is called cc-NUMA. 

NUMA See Non-Uniform Memory Access. 

on-chip multiprocessing See chip multiprocessing (CMP).  
OpenMP An application programming interface that provides a platform-

independent set of compiler pragmas, directives, function calls, and 
environment variables that explicitly instruct the compiler how and 
where to use parallelism in an application. 

padding Unused bytes placed in a structure or other aggregate data 
object to assure that all fields are properly aligned.  

PAE See physical address extensions. 

page directory base register A register that contains the base address 
of the system page directory. This register is generally collocated in 
control register CR3. 

page directory entry An entry in the system’s page directory table that 
contains detailed data about the status of a given memory page, such 
as whether it’s present in memory, and about what access rights can 
be granted to it. 

page directory pointer table In 64-bit mode, this second look-up table is 
consulted during resolution of linear addresses to physical addresses. It 
occurs after the PML4 and before the page directory table. 

page map level 4 table The first look-up table used in resolving linear 
addresses in 64-bit mode to physical addresses. 

page size extensions Technology that enables page sizes beyond the 
default 4 kilobytes. Using page size extensions, pages can be  
2 megabytes or 4 megabytes. 
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page size extensions (36-bits) An alternative to PAE for extending 
addresses to 36-bits on IA-32 architectures. 

parallelism The operational and execution methodology by which 
different resources or CPUs execute the same task simultaneously. 

PDBR See page directory base register. 
physical address The actual location of an item in the physical address 

space. 

physical address extensions A method of extending 32-bit addresses 
to 36 bits on IA-32 architectures. On platforms with Intel EM64T, PAE 
enables similar extensions that are implemented differently. 

physical address space The range of addresses that the processor can 
generate on the memory bus. Hence, it reflects the total amount of 
addressable physical memory on a given system. 

PML4 See page map level 4 table. 

POSIX thread (Pthread) A portable, standard threading API that is 
supported on a number of different operating systems, including 
many different flavors of Unix, MacOS, and Microsoft Windows.  

priority ceilings A method for raising the priority of a thread when it 
acquires a lock. A priority ceiling is the maximum priority level of any 
thread that needs to access a critical section of code. The thread that 
acquires a lock that has a priority ceiling value immediately runs at 
that priority level. This technique is used to avoid the problem of 
priority inversion. 

priority inheritance A method of allowing a lower priority thread to 
inherit the priority of a high priority thread when the low priority 
thread holds a lock that is needed by the high priority thread. This is 
commonly used to avoid the problem of priority inversion. 

priority inversion A threading problem observed in priority based 
schedulers where a low priority thread holds a lock that is required 
by a high priority thread. Meanwhile, a medium priority thread is 
running, preventing the low priority thread from releasing the lock, 
thus starving the high priority thread. This bug was encountered on 
the Mars Pathfinder mission. 

privilege level The level of permissible activities as enforced by the 
processor. Privilege level 0 is the highest level of privilege—all 
processor instructions can be executed at this privilege level. Most 
applications running on IA-32 architectures run at privilege level 3. 
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Certain instructions that change the way the processor functions 
cannot be executed from this privilege level.  

preemptive multi-threading A thread-based scheduling technique 
where the currently running thread is stopped by an external entity, 
usually the operating system. The current thread loses control of the 
CPU, and another thread is allowed to execute. The process of 
switching between threads is known as a context switching.  

prefetching Loading data items or instructions into cache prior to the 
processor’s need for them. Prefetching prevents processor stalls by 
making sure that needed data is always in cache. Modern Intel IA-32 
processors support prefetching in hardware and software. 

process A process is a program in execution. It contains a main thread of 
execution, as well as an address space, and other resources allocated 
to it by the operating system. Processes are sometimes referred to as 
heavy-weight processes.   

processor affinity The preference for a thread to run on a given 
processor.  

processor order A semi-relaxed memory consistency model. This 
method maintains the correctness of consistency of memory read-
write sequences.  

producer/consumer (P/C) decomposition A common form of 
functional decomposition where the output of one task, the 
producer, becomes the input to another, the consumer..  

PSE See page size extensions 
PSE-36 See page size extensions (36-bits) 
Pthread See POSIX thread 

read-write lock A lock that allows simultaneous read access to multiple 
threads but limits the write access to only one thread. 

recursive lock A lock that is called recursively by the thread that 
currently owns the lock. 

register Registers are special, high-speed locations in the processor 
where data items and addresses are placed for use by the processor in 
executing a specific instruction. 

register file The collection of all the registers available on a specific 
processor. 

relaxed consistency A memory consistency model that maintains 
memory to be consistent only at certain synchronization events and 
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ensures maintenance of memory write operations by following 
consistency constraints. Relaxed consistency helps reduce the cost of 
memory access by hiding the latency of write operations.  

quadword On IA-32 architectures, a 64-bit data item. 

register pressure A situation in which software requires more registers 
than are presently available, which leads to excess swapping of data 
in and out of registers, thereby reducing performance. 

Savage benchmark A Fortran benchmark designed by Bill Savage to 
exercise a system’s floating-point arithmetical capabilities. 

segment A block of memory used for a discrete task by a program or the 
operating system.  

segment descriptor An entry in a descriptor table that contains 
important data regarding a specific segment. 

segment selector The part of a logical address that serves as a reference 
to a segment descriptor in a descriptor table.  

serializing event An instruction or action that causes the processor to 
cease all speculative and out-of-order execution and discard the 
results of any instruction executed but not retired. The processor 
then resumes processing at the current instruction. These events 
occur because certain execution aspects, such as precision of 
floating-point calculations, have changed, generally at the request of 
the running program. 

segment override The act of loading a specific value in a segment base 
register, rather than employing the default value. In 64-bit mode, 
segment overrides can be performed on the FS and GS segment 
registers only. 

semaphore A special type of variable used for synchronization. 
Semaphores can only be accessed by two operations, wait and signal. 
A semaphore is an extension of a mutex, and allows more than one 
thread in a critical section. 

sequential consistency When, at any given instant in time in a 
sequential program, memory has a well defined state. 

single-issue, single-thread A baseline processor threading model that 
does not exploit any parallelism.  

SIMD The acronym stands for “single instruction, multiple data items,” a 
technology in which a single arithmetic operation is performed on 
multiple data items at one time. It is frequently useful for the 
arithmetic performed in multimedia and imaging applications. Intel’s 
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Streaming SIMD Extensions (SSE) family of technologies uses SIMD 
extensively.  

simultaneous multi-threading (SMT) A processor multi-threading 
model that allows threads to compete for shared available resources 
and enhance processor utilization. 

soft affinity The policy used by Microsoft Windows to select a 
processor for execution of a thread. This policy suggests to the 
Windows scheduler that threads should, as much as possible, run on 
the processor on which they ran previously. 

spin wait A tight or time-delayed loop-based locking mechanism used 
for synchronization. Spin waits allow a thread to wait for something 
else to happen instead of calling an interrupt. 

SSE (Streaming SIMD Extensions) Extensions to IA-32 processors designed 
for fast performance of routine tasks, especially in multimedia and 
imaging applications. SSE makes extensive use of SIMD. 

SSE2 (Streaming SIMD Extensions 2) The second generation of SSE 
instructions introduced by Intel with the Pentium 4 processor in 
2001. It added support for 64-bit double-precision arithmetic and 
included cache management instructions, among other features. 

SSE3 (Streaming SIMD Extensions 3) The third generation of SSE 
instructions introduced with the Prescott generation of Pentium 4 
processors in 2004. Among other features, these 13 instructions add 
capabilities for performing arithmetic within a single XMM register 
and efficiently converting floating-point numbers to integers. 

synchronization The process by which two or more threads coordinate 
their activities and allow threads to coexist efficiently. There are four 
distinct means available for synchronizing threads: mutexes, 
condition variables, read/write locks, and semaphores. 

taskqueuing An extension to OpenMP by Intel that allows programmers 
to parallelize special control functions such as recursive functions, 
dynamic tree searches, and pointer chasing while loops.   

task state segment All the data the processor needs to manage a task is 
stored in a special of segment, known as the task state segment. 

thread The minimal schedulable execution entity. Threads contain an 
instruction pointer to the instruction stream that the thread executes, 
CPU state information, and a stack pointer. Depending on the platform, 
additional information may be kept by the operating system or hardware 
platform. Threads are sometimes called “lightweight processes.”  
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thread pool A collection of worker threads that are used to perform 
independent units of work on demand. Thread pools reduce the 
overhead of thread creation/destruction.  

thread safe A property of a section of code that determines whether or 
not multiple threads may simultaneously execute that block of code. 
A function is considered to be thread safe if and only if the function 
returns the proper results when multiple threads are calling the 
function at the same time.   

thunking A form of backwards-compatibility mechanism used by 
Microsoft in Windows to enable older binaries to run on modern 
versions of Windows.  

translation look-aside buffer (TLB) An on-chip cache that holds page-
lookup information.  

TSS See task state segment. 
uniform memory access (UMA) UMA is also referred to as symmetric 

multiprocessor (SMP) or cache coherent UMA (CC-UMA) architec-
ture. With UMA, all the processors are identical and have equal 
access time to memory. Cache Coherent means, if one processor 
updates a location in shared memory, all the other processors know 
about the update.  

virtual 8086 A method of executing 16-bit programs on IA-32 
processors. No longer used today, but supported on IA-32 processors 
for backward compatibility. It is not supported in IA-32e 
Compatibility mode. 

virtual machine monitor (VMM) A virtualization layer between a host 
system and virtual machines, where the virtual machine is the 
container of operating systems. VMM is also referred to as a 
hypervisor.  

word The basic, default amount of data that a given architecture uses. It 
is generally as wide as an integer and the size of the default address.
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shared variables 

debugging and, 166 
protecting updates, 157, 158, 159, 160 
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HT Technology and, 252 
Itanium architecture and, 262 
overview, 8, 30, 249 

SoEMT (Switch-on Event  
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SSP (Software-based Speculative 
Precomputation), 287 

start( ) method, 109 

static keyword, 142, 166 
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T 
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thermal envelope, 251 
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thread command (GDB), 235 
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APIs for .NET Framework, 107, 109, 110, 

111, 112, 113, 114, 115, 116, 117, 118, 
119, 120 

APIs for POSIX, 120, 121, 122, 123, 124, 
125, 126, 127, 128, 129, 130,  
131, 132 

APIs for Windows, 75, 76, 77, 78, 79, 80, 
81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 
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user-level threads 

fibers and, 100, 101, 102, 103, 104 
overview, 22, 23, 24, 25 
Windows support, 27, 29 

V 

variables 

condition, 66, 67, 68, 70, 125, 126, 127, 
128, 129 

environment, 163, 164 
loop, 136 

OpenMP clauses and, 142, 149 
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