

FUNDAMENTALS OF
PERFORMANCE
EVALUATION OF
COMPUTER AND
TELECOMMUNICATION
SYSTEMS

MOHAMMAD S. OBAIDAT

NOUREDDINE A. BOUDRIGA

FUNDAMENTALS OF
PERFORMANCE EVALUATION
OF COMPUTER AND
TELECOMMUNICATION
SYSTEMS

FUNDAMENTALS OF
PERFORMANCE
EVALUATION OF
COMPUTER AND
TELECOMMUNICATION
SYSTEMS

MOHAMMAD S. OBAIDAT

NOUREDDINE A. BOUDRIGA

Copyright r 2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, scanning, or

otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright

Act, without either the prior written permission of the Publisher, or authorization through

payment of the appropriate per copy fee to the Copyright Clearance Center, Inc., 222 Rosewood

Drive, Danvers, MA 01923, (978) 750 8400, fax (978) 750 4470, or on the web at www.

copyright.com. Requests to the Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)

748 6011, fax (201) 748 6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts

in preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be

suitable for your situation. You should consult with a professional where appropriate. Neither the

publisher nor author shall be liable for any loss of profit or any other commercial damages, including

but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact

our Customer Care Department within the United States at (800) 762 2974, outside the United

States at (317) 572 3993 or fax (317) 572 4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print

may not be available in electronic formats. For information about Wiley products, visit our web site

at www.wiley.com.

Library of Congress Cataloging in Publication Data:

Obaidat, Mohammad S. (Mohammad Salameh), 1952

Fundamentals of performance evaluation of computer and telecommunication systems /

Mohammad S. Obaidat, Noureddine A. Boudriga.

p. cm.

Includes bibliographical references and index.

ISBN 978 0 471 26983 0 (cloth)

1. Computer systems Evaluation. 2. Computer systems Simulation methods.

3. Telecommunication systems Evaluation. 4. Telecommunication systems Simulation

methods I. Boudriga, Noureddine. II. Title.

QA76.9.E94O23 2009

004.2 dc22

2009028766

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To Our Families

Mohammad Salameh Obaidat
Noureddine A. Boudriga

CONTENTS

PREFACE xiii

1 INTRODUCTION AND BASIC CONCEPTS 1

1.1 Background 2
1.2 Performance Evaluation Viewpoints and Concepts 3
1.3 Goals of Performance Evaluation 5
1.4 Applications of Performance Evaluation 6
1.5 Techniques 7
1.6 Metrics of Performance 8
1.7 Workload Characterization and Benchmarking 10
1.8 Summary 18
References 19
Exercises 20

2 PROBABILITY THEORY REVIEW 21

2.1 Basic Concepts on Probability Theory 22
2.2 Elementary Sampling 26
2.3 Random Variables 29
2.4 Sums of Variables 38
2.5 Regression Models 40
2.6 Important Density and Distribution Functions 47
2.7 Markov Processes 50
2.8 Limits 54

vii

2.9 Comparing Systems using Sample Data 57
2.10 Summary 62
References 62
Exercises 63

3 MEASUREMENT/TESTING TECHNIQUE 66

3.1 Measurement Strategies 66
3.2 Event Tracing 67
3.3 Monitors 70
3.4 Program Optimizers 73
3.5 Accounting Logs 74
3.6 Summary 75
References 75
Exercises 76

4 BENCHMARKING AND CAPACITY PLANNING 78

4.1 Introduction 79
4.2 Types of Benchmark Programs 80
4.3 Benchmark Examples 83
4.4 Frequent Mistakes and Games in Benchmarking 96
4.5 Procedures of Capacity Planning and Related Main Problems 100
4.6 Capacity Planning for Web Services 102
4.7 Summary 108
References 100
Exercises 112

5 DATA REPRESENTATION AND ADVANCED TOPICS
ON VALIDATION MODELING 113

5.1 Data Representation 114
5.2 Measurements 118
5.3 Program Profiling and Outlining 123
5.4 State Machine Models 127
5.5 Petri Net-Based Modeling 135
5.6 Protocol Validation 143
5.7 Summary 147
References 147
Exercises 148

6 BASICS OF QUEUEING THEORY 152

6.1 Queue Models 152
6.2 Queue Parameters 157
6.3 Little’s Law 162

viii CONTENTS

6.4 Priority Management 167
6.5 Analysis of M/M/1 Systems 170
6.6 The M/M/M Queue 176
6.7 Other Queues 177
6.8 Queueing Models with Insensitive Length Distribution 184
6.9 Summary 186
References 186
Exercises 187

7 QUEUEING NETWORKS 190

7.1 Fundamentals of Queueing Networks 190
7.2 Model Inputs and Outputs in Queueing Networks 195
7.3 Open Networks 198
7.4 Closed Queueing Networks 204
7.5 Product Form Networks 209
7.6 Mean Value Analysis 215
7.7 Analysis Using Flow Equivalent Servers 218
7.8 Summary 220
References 220
Exercises 221

8 OPERATIONAL AND MEAN VALUE ANALYSIS 226

8.1 Operational Laws 226
8.2 Little’s Formula 231
8.3 Bottleneck Analysis 236
8.4 Standard MVA 239
8.5 Approximation of MVA 244
8.6 Bounding Analysis 248
8.7 Case Study: A Circuit Switching System 255
8.8 Summary 259
References 259
Exercises 260

9 INTRODUCTION TO SIMULATION TECHNIQUE 265

9.1 Introduction 265
9.2 Types of Simulation 275
9.3 Some Terminology 279
9.4 Random-Number-Generation Techniques 280
9.5 Survey of Commonly Used Random Number Generators 291
9.6 Seed Selection 292
9.7 Random Variate Generation 294
9.8 Testing of Random Number Sequences 299

CONTENTS ix

9.9 Summary 307
References 308
Exercises 310

10 COMMONLY USED DISTRIBUTIONS IN SIMULATION
AND THEIR APPLICATIONS 312

10.1 Exponential Distribution 313
10.2 Poisson Distribution 315
10.3 Uniform Distribution 318
10.4 Normal Distribution 319
10.5 Weibull Distribution 326
10.6 Pareto Distribution 327
10.7 Geometric Distribution 330
10.8 Gamma distribution 331
10.9 Erlang Distribution 334
10.10 Beta Distribution 337
10.11 Binomial Distribution 338
10.12 Chi-Square Distribution 342
10.13 Student’s t Distribution 345
10.14 Examples of Applications 346
10.15 Summary 349
References 349
Exercises 350

11 ANALYSIS OF SIMULATION RESULTS 353

11.1 Introduction 353
11.2 Fundamental Approaches 355
11.3 Verification Techniques 358
11.4 Validation Techniques 362
11.5 Verification and Validation in Distributed Environments 365
11.6 Transient Elimination 369
11.7 Stopping Principles for Simulations 372
11.8 Accreditation 373
11.9 Summary 374
References 374
Exercises 375

12 SIMULATION SOFTWARE AND CASE STUDIES 377

12.1 Introduction 378
12.2 Selection of Simulation Software 378
12.3 General-Purpose Programming Languages 379
12.4 Simulation Languages 381
12.5 Simulation Software Packages 398

x CONTENTS

12.6 Comparing Simulation Tools and Languages 417
12.7 Case Studies on Simulation of Computer and

Telecommunication Systems 418
12.8 Summary 428
References 429
Exercises 432

APPENDIX A TABLE OF STANDARD NORMAL (Z) DISTRIBUTION 434

APPENDIX B COMMONLY USED NORMAL QUANTILES 436

APPENDIX C QUANTILES OF UNIT NORMAL DISTRIBUTION 437

APPENDIX D QUANTILES OF STUDENT’S T-DISTRIBUTION
WITH V DEGREES OF FREEDOM 439

INDEX 441

CONTENTS xi

PREFACE

Performance evaluation of computer and telecommunication systems has
become an important subject in recent days because of the widespread use
and general pervasiveness of these systems in our daily life. Evaluating the
performance of these systems is needed at every stage in their life cycle. There is
no point in designing and implementing a new system that does not have
competitive performance and cost. Performance evaluation of an existing
system is also essential as it assists in determining out how well it is performing
and whether any improvements are needed to enhance the performance or meet
future demands.

The performance of computer and telecommunication systems can be
assessed by measurement/real testing, analytic modeling, and simulation
techniques. After a system has been built and is running, its performance can
be evaluated using the measurement technique. To evaluate the performance of
a component or a subsystem that cannot be measured, for example, during the
design and development stages it is necessary to use analytic or/and simulation
modeling.

The objective of this book is to provide an up-to-date treatment of the
fundamental techniques, theories, and applications of performance evaluation
of computer and telecommunication systems. It consists of 12 chapters that
cover three main techniques of performance evaluation of computer and
telecommunication systems along with their applications and case studies.

Chapter 1 introduces the fundamental concepts and viewpoints of perfor-
mance evaluation of computer and telecommunication systems. It sheds light
on objectives, challenges, and application of performance evaluation. It also

xiii

deals with techniques that can be used, performance metrics, workload
characterization, and benchmarking.

Chapter 2 reviews the basic concepts in probability theory that are needed
for a better understanding of all topics related to performance analysis. It
presents the basic theories in probability theory including conditional prob-
ability, sampling, and reasoning with less precise data. In addition, it investi-
gates the fundamental properties of random variables, both discrete and
continuous. Regression models and their analysis are discussed along with
Markov chains.

In Chapter 3, we focus on the fundamental concepts of the measurement
technique, tracing, tools, monitors and monitoring techniques, program
optimizers, accounting logs, and traffic issues and solutions.

Chapter 4 discusses the issues related to benchmarking and capacity
planning along with the problems, associated with them. The types of bench-
marking programs and common mistakes in benchmarking are given.
A separate section has been dedicated to capacity planning for Web service,
which addresses the scalability, architecture, and network capacity along with
server overloading issues for improving the performance of Web servers.

Chapter 5 deals with data representation, graphical representation, ratio
game, program profiling, state machine models, finite-state machine (FSM)
validation, queuing Petri nets, Petri net-based validation, and advanced topic in
validation molding.

Chapter 6 reviews the basics of queueing theory and models along with their
applications to performance evaluation of computer and telecommunication
systems. Queue parameters and queueing theory notation are examined. Little’s
law, priority management in queues, common queues such as M/M/m, M/G/1,
M/Er/1, M/G/1, and queueing models with insensitive length distribution are
all analyzed and examples are given.

Chapter 7 studies the fundamentals properties of queueing networks includ-
ing major classes of queueing networks, such as open queueing networks, closed
queueing networks, Jackson networks, Jackson’s Theorem, BCMP networks,
Baskett, Chandy, Muntz and Palacios (BCMP) theorem, analysis using flow-
equivalent servers, and the product form networks, along with related examples.

Chapter 8 reviews the fundamentals of operational laws, mean value analysis
(MVA) technique, approximateMVA technique, the bounding analysis scheme,
bottleneck analysis method, Chandy-Neuse Linearizer algorithms, Zahorjan-
Eager-Sweillam aggregate queue length algorithm, Asymptotic bounds, and the
balanced systems bounds.

Chapter 9 introduces the fundamental concepts of simulation as a perfor-
mance evaluation technique for computer and telecommunication systems. The
principles and basics of simulation technique, simulation terminology, and
random-number generation techniques, such as linear congruential, mixed,
Tausworthe, and Extended Fibonici schemes, are also studied. It also reviews
The state-of-the-art schemes to generate random variates, including Inverse

xiv PREFACE

transformation, rejection, characterization, and composition techniques. The
testing of random numbers and random variates is also investigated.

Chapter 10 is devoted to a review of the main characteristics of the
commonly used distributions in modeling and simulation of computer and
telecommunication systems. Some of these distributions are continuous,
whereas the others are discrete. Among the major probability distributions
that are investigated are the exponential, Poisson distribution, uniform,
normal, Weibull, Pareto, geometric, beta, binomial, Gamma, Erlang, chi-
square, inverse chi-distribution, F distribution, and student’s t-distribution.

In Chapter 11, we study the various techniques used for verifying and
validating a simulation model. The chapter deals with both the functional and
structural verification processes. Major schemes in verification and validation
are investigated and discussed along with examples. We also investigate various
techniques that are used in transient removal and simulation stopping.

Finally, Chapter 12 discusses the alternatives for selecting software tools to
develop simulation models. A comparison of the simulation languages with the
general purpose programming languages is provided to evaluate which lan-
guage is better suited for simulation and what makes one language better than
another. A survey of commonly used simulation packages/tools for modeling
computer and telecommunication systems is given.

The book contains numerous examples and case studies along with exercises
and problems for possible use as homework and programming assignments.
The authors will provide an instructor manual that contains solutions for
exercises and problems in the book as well as a set of power point viewgraphs
that will be available to instructors who adopt the book for their courses.

The book is an ideal text for a graduate or senior undergraduate course in
performance evaluation of computer and telecommunication systems, perfor-
mance evaluation of communication networks, performance analysis of com-
puter and communication systems, modeling and simulation of computer and
telecommunication systems, and performance analysis of computer and tele-
communication systems. It can also serve as an excellent reference for
practitioners and researchers in performance evaluation as well as for system
administrators, computer, electrical, system, and software engineers; and
computer and operation research scientists.

We would like to thank the reviewers of the original book proposal for their
helpful suggestions and input. Also we are grateful to our students for some of
the feedback that we received while class testing the manuscript. Many thanks
go to the editors and editorial assistants of John Wiley & Sons for their kind
cooperation and fine work.

MOHAMMAD S. OBAIDAT

NOUREDDINE A. BOUDRIGA

PREFACE xv

CHAPTER 1

INTRODUCTION AND BASIC
CONCEPTS

Performance evaluation of computer and telecommunication systems has
become an increasingly important issue given their general pervasiveness. An
evaluation of these systems is needed at every stage in their life. There is no
point in designing and implementing a new system that does not have
competitive performance/cost ratio. Performance evaluation of an existing
system is also essential because it helps to determine how well it is performing
and whether any improvements are needed to enhance the performance.

Computer and telecommunication systems performance can be evaluated
using the measurement, analytic modeling, and simulation techniques. Once a
system has been built and is running, its performance can be evaluated using
the measurement technique. To evaluate the performance of a component or a
subsystem that cannot be measured, for example, during the design and
development phases, it is necessary to use analytic or simulation modeling so
as to predict the performance [1–15].

The objective of this book is to provide an up-to-date treatment of the
fundamental techniques and applications of performance evaluation of com-
puter and telecommunication systems.

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

1

1.1 BACKGROUND

Performance evaluation aims at predicting a system’s behavior in a quantitative
manner. When a new computer and telecommunication system is to be built or
an existing system has to be tuned, reconfigured, or adapted, a performance
evaluation can be employed to forecast the impact of architectural or
implementation modifications on the overall system performance.

Today’s computer and telecommunication systems are more complex, more
rapidly evolving, and more pervasive and essential to numerous parties that
range from individual users to corporations. This results in an increasing interest
to find new effective tools and techniques to assist in understanding the behavior
and performance of existing systems as well as to predict the performance of the
ones that are being designed. Such an understanding can help in providing
quantitative answers to questions that arise during the life cycles of the system
under study, such as during initial design stages and implementation, during
sizing and acquisition, and during evolution and fine tuning.

To evaluate the performance of a system, we can use the measurement
technique if the system exists and it is possible to conduct the required
experiments and testing on it. However, when the system does not exist or
conducting the measurements is expensive or catastrophic, then we rely on
simulation and analytic modeling techniques. The last two techniques try to
answer important questions related to the design or tuning of the system under
study, where the term ‘‘system’’ refers to a collection of hardware, software, and
firmware components that make a computer or telecommunication system. It
could be a hardware component such as an Asynchronous Transfer Mode
(ATM) switch and a central processing unit (CPU); a software system, such as a
database system; or a network of several processors, such as a multiprocessor
computer system or a local area network (LAN) [1–21].

Examples of the type of predictions that can be made from performance
analysis studies include [1–21]:

� The number of stations that can be connected to a LAN and still maintain
a reasonable average frame delay and throughput

� The fraction of cells that can be discarded from an ATM system during
overload

� The number of sources that can be supported in an Available Bit Rate
(ABR) voice service over ATM networks so that a specific cell loss ratio
(CLR) threshold is not exceeded

� The fraction of calls that are blocked on outgoing lines of a company’s
telephone system and how much improvement we can get if an extra line is
added

� The improvement in speedup and latency that we can achieve if we add a
processor or two to a multiprocessor system

� The best switch architecture for a specific application

2 INTRODUCTION AND BASIC CONCEPTS

� The improvement in mean response time of a network if the copper wires
are replaced by optical fiber

All such questions and more can be answered using the three main
techniques of performance evaluation. The results from one or more of these
techniques can be used to validate the results obtained by the other. For
example, we can use analytic results to validate simulation results or vice versa.
We can also use the analytic results from a prototype version of the system,
which can be designed to validate simulation results and so on.

It is worth mentioning here that validation and versification (V&V) are
important procedures that should be performed for any simulation model.
Also, validation is needed for analytic models. These subjects are important for
performance evaluation, and many conferences and journals have dedicated
tracks/section for them [1, 2, 14, 15]. We will deal with V&V in Chapter 11.

1.2 PERFORMANCE EVALUATION VIEWPOINTS AND CONCEPTS

All engineering systems should be designed and operated with specific perfor-
mance requirements in mind. It is essential that all performance requirements
of any system to be designed should be stated at the outset and before investing
time and money in the final design stages, which include testing and imple-
mentation. The work conducted by Erlang in 1909 on telephone exchange is
considered the beginning of performance evaluation as a new discipline. Even
though the range of performance evaluation is now wide, the fundamentals are
the same.

It is desirable to evaluate the performance of a system make sure that it is
suitable for the intended applications and that it is cost effective to build it, or if
it exists physically, it can be operated and tuned to provide optimum perfor-
mance under given resource constraints and operating conditions. The best
performance metrics and desired operational requirements of a system under
study depend on the nature of applications, constraints, and environments. For
example, the metrics to be considered for a LAN or a computer system that are
operating in a manned space shuttle may be different from those on a campus of
a company or college.

Experimentation with the real system or a prototype version of it is usually
expensive, laborious, inflexible, and prohibitive. Moreover, it gives accurate
information about the system under special cases or a specific set of assump-
tions. However, analytic modeling and simulation are flexible, inexpensive, and
usually provide fast results.

In the context of modeling, we can define a model as an abstraction of the
system or subsystem under study. A model can be envisioned as a description
of a system by symbolic language or theory to be viewed as a system with which
the world of objects can be communicated. Shannon defined a model as ‘‘ the
process of designing a computerized model of a system (or a process) and

1.2 PERFORMANCE EVALUATION VIEWPOINTS AND CONCEPTS 3

conducting experiments with this model for the purpose of either understanding
the behavior of the system or of evaluating various strategies for the operation
of the system’’ [1, 2].

In the context of performance evaluation, we can provide three possible
definitions for the term ‘‘system’’ [1, 2, 14]:

– An assemblage of objects so combined by nature or human as to form an
integral unit

– A regularly interacting or interdependent group of objects forming a
unified whole [Webster’s Dictionary]

– A combination of components/objects that act together to perform a
function not possible with any of the individual parts [IEEE Standard
Dictionary of Electrical and Electronic Terms]

– A set of objects with certain interactions between them

From the above definitions, we observe two major features in these
definitions:

1. A system consists of interacting objects/components.

2. A system is associated with a function/work that it performs.

It is important to mention here that a system should not always be coupled
with physical objects and natural laws as a set of equations that defines a
function is considered a system.

Systems can be divided into the following three types:

� Continuous systems: Here the state changes continuously over time.

� Discrete systems: In this type, the state varies in fixed quanta.

� Hybrid systems: Here, the system state variables may change continuously
in response to some events, whereas others may vary discretely.

We can also classify systems into stochastic and deterministic types. The
stochastic systems contain a certain amount of randomness in their transitions
from one state to another. A stochastic system can enter more than one possible
state in response to a stimulus. Clearly, a stochastic system is nondeterministic
because the next state cannot be unequivocally predicted if the current state and
the stimulus are known. In the deterministic systems, the new state of the
system is completely determined by the previous state and by the stimulus.

Modeling and simulation is considered one of the best instruments to predict
performance as they roll data into knowledge and knowledge into experience. It
is also flexible, cost effective, and risk free. In modeling and simulation, we need
three types of entities: (1) real system, (2) model, and (3) simulator. These
entities have to be understood as well as their interrelation to one another. The
real system, if either it exists physically or its design is available, is a supply of

4 INTRODUCTION AND BASIC CONCEPTS

raw data, whereas the model is a set of instructions for data generating. The
simulator (simulation program) is a tool to implement the model and carry out
its instructions [1, 2, 6, 14, 15].

Moreover, systems can be divided into open and closed systems. In a
closed system, all state changes are prompted by internal activities, whereas
in an open system, state change occurs in response to both internal and
external activities.

1.3 GOALS OF PERFORMANCE EVALUATION

The objectives of any performance evaluation study depend mainly on the
interest, applications, skills, and capabilities of the analysts. Nevertheless,
common goals in any performance evaluation study are typical for computer
and telecommunication systems [1, 2, 4]. The major ones are briefly described
below.

1. Compare alternative system designs. Here, the goal is to compare the
performance of different systems or component designs for a specific
application. Examples include deciding the best ATM switch for a specific
application or the type of buffering used in it. Other examples include
choosing the optimum number of processors in a parallel processing
system, the type of interconnection network, size and number of disk
drives, and type of compiler or operating system. The objective of
performance analysis in this case is to find quantitatively the best
configuration under the considered operating environments.

2. Procurement. In this case, the goal is to find the most cost-effective system
for a specific application. It is essential to weigh out the benefit of
choosing an expensive system that provides a little performance enhance-
ment when compared with a less expensive system.

3. Capacity planning. This is of great interest to system administrators and
managers of data processing installations. This is done to make sure that
adequate resourceswill beavailable tomeet futuredemands ina cost-effective
manner without jeopardizing performance objectives. In some literature,
capacitymanagement,which is used to ensure that the available resources are
used to provide the optimum performance, is included under capacity
planning. In general, capacity planning is performed using the following
main steps: (a) instrument the system, (b) observe it, (c) select the workload,
(d) forecast the performance under different configurations and alternatives,
and (e) select the best cost-effective configuration alternative.

4. System tuning. The objective in this case is to find the set of parameter
values that produce the best system performance. For example, disk and
network buffer sizes can impact the overall performance. Finding the set
of best parameters for these resources is a challenge but is important to
have the best performance.

1.3 GOALS OF PERFORMANCE EVALUATION 5

5. Performance debugging. In some applications, you may come to a
situation where the application or control software of the system is
working, but it is slow. Therefore, it is essential to discover through
performance analysis why the program is not meeting the performance
expectation. Once the cause of the problem is identified, the problem can
be corrected.

6. Set expectation. This is meant to enable system users to set the appro-
priate expectations for what a system actually can do. This is imperative
for the future planning of new generations of routers, switches, and
processors.

7. Recognize relative performance. The objective in this circumstance is to
quantify the change in performance relative to past experience and
previous system generations. It can also be to quantify the performance
relative to the customer’s expectations or to competing systems.

1.4 APPLICATIONS OF PERFORMANCE EVALUATION

The performance evaluation of computer and telecommunication systems is
needed for a variety of applications; themajor ones are described below [1–3, 5–7]:

� Design of systems. It is important that before implementing any system, we
conduct a performance evaluation analysis to select the best and most
cost-effective design. In general, before designing any new system, one
typically has in mind specific architectures, configurations, and perfor-
mance objectives. Then, all related parameters are chosen to reach the
goals. This process entails constructing a model of the system or subsystem
at an appropriate level of detail, and this model is evaluated using either
analytic modeling or simulation to estimate its performance. It is worth
pointing out that analytic modeling may give quick rough results to
eliminate inadequate and bad designs; however, simulation would be an
effective tool for conducting experiments that can help in making detailed
design decisions and avoiding mistakes. Analytic modeling can be used to
validate simulation results. In some cases, a prototype version of the
system to be designed can be built to make special case validation to
simulation and analytic results.

� System upgrade and tuning. This process is needed to upgrade or tune the
performance of the system or components of the system by either replacing
some components with new ones that have better capabilities or by
replacing the entire system or subsystem with one depending on the
required performance and capacities. The cost, performance, and compat-
ibility dictate the chosen type of system, subsystem, or component, as well
as the vendor. In such a case, analytic modeling is used; however, for large
and complex systems, simulation is a must. Furthermore, this process may

6 INTRODUCTION AND BASIC CONCEPTS

entail changing resource management policies, such as the buffer alloca-
tion scheme, scheduling mechanism, and so on. In applications like these,
direct testing and measurement is the best to use; however, it may not be
feasible in many situations. Analytic techniques may be attractive, but we
may not be able to change the aspects easily. This means that simulation
analysis may be the best in such cases, especially if direct experimentation
is not possible. Nevertheless, if the goal is just to get a rough estimate or to
track the change in output in response to some changes in input
parameters, then analytic modeling is a viable option.

� Procurement. In this application, the objective is to select the best system
from a group of other competing systems. The main criteria are usually the
cost, availability, compatibility, and reliability. Direct testing may be
the best for such an application, but it may not be practical. Therefore,
decisions can be made on some available data with simple modeling.

� System analysis. When the system is not performing as it is expected, a
performance analysis is conducted to find the bottleneck device or cause of
sluggish behavior. The reason for such a poor performance could be either
inadequate hardware devices or system management. This means there is a
need to identify and locate the problem. If the problem is caused by an
inadequate hardware device, then the system has to be upgraded, and if it
is caused by poor management, then the system has to be tuned up. In
general, the system has to be monitored using hardware, software, or
hybrid monitors to examine the behavior of various management schemes
under different operating environments and conditions. A measurement
technique is usually used in such cases to locate the hardware components
or code in question. However, in some cases, simulation and analytic
analysis are used, especially if the system is complex.

1.5 TECHNIQUES

Three methods can be used to characterize the performance of computer and
telecommunication systems. These are (a) analytic modeling, (b) simulation, and
(c) measurement and testing. These alternatives are arranged here in increasing
order of cost and accuracy. Analytic models are always approximate: This price
must be paid for tractability and obtaining closed-form solution expressions of
the performance metrics in terms of design parameters and variables. However,
they are usually computationally inexpensive, and expressions can be obtained
in a fast manner. Simulations require considerable investment of time in
deriving the model, designing and coding the simulator, and verifying and
validating the model, but they are more flexible, accurate, and credible. Real
measurements and experiments on a variation of a prototype or on the actual
system are the most expensive of all and require considerable engineering
efforts; however, these measurements are the most accurate. It is important to

1.5 TECHNIQUES 7

note that these three methods complement one another and are used in different
phases of the development process of the system [1, 5, 6]. Some of them can be
used to validate the results obtained by the others.

In the early stage of the design, when the system designer/architect is
searching to find the optimum system configuration, it is impossible to carry
out experiments on prototype, and it is time consuming to conduct detailed
simulation experiments. During this early stage of the design, the designer is
interested in basic performance tradeoffs and in narrowing the range of
parameters to be considered. Conducting real-time measurement on a proto-
type or constructing detailed simulation experiments may be tedious and not
cost effective. All that is required at this early stage is approximate calculations
to indicate the performance tradeoffs. Analytic performance models provide
such an approximate initial quick and rough analysis. It is important to keep in
mind that almost all analytic models are approximate. Also, there is often no
way to bound tightly the accuracy of such models. That is, one cannot
guarantee that the real performance measure is within x% of that predicted
by the analytic model, for some finite y%. In most cases, the only way to assess
the accuracy of the model is to conduct a few simulation runs and compare the
simulation results with the analytic results. Although analytic models
are approximate, they are accepted because these models themselves might
be used to explore design alternatives, and it is sufficient to have approximate
estimates of the expected behavior and performance. If a more accurate
performance characterization is required, then the designer must turn to
the simulation or measurement on a prototype version of the system, which
is more expensive. It is worth noting that the accuracy of an analytic model
depends on the quality of input data and on the appropriateness of the chosen
performance measure. Regardless of how good the analytic model may be, it
cannot give accurate results if the input data are inaccurate or not representa-
tive of the workload that the system will be subjected to in the real world. That
is to say, collecting representative workload data is crucial for accurate
performance modeling [1–7].

1.6 METRICS OF PERFORMANCE

The selection of performance metrics is essential in performance evaluation.
These metrics or measures should be selected with the type of application and
service in mind, as a performance metric for one application may not be of
interest to another application. A good performance metric should have the
following characteristics: (a) the performance metric should allow an
unambiguous comparison to be made between systems, (b) it should be
possible to develop models to estimate the metric, (c) it should be relevant or
meaningful, and (d) the model used to estimate the metric should not be
difficult to estimate.

8 INTRODUCTION AND BASIC CONCEPTS

In general, performance evaluation analysts are typically interested in the:
(a) frequency of occurrence of a specific event, (b) duration of specific time
intervals, and (c) size of some parameter [4, 5–7]. In other words, the interest is
in count, time, and size measures.

If the system performs the intended service correctly, its performance can be
measured by the rate at which the service is performed, the time needed to
perform the service, and the resources consumed while performing the service.
These are often called productivity, responsiveness, and usage metric/measures,
respectively. The productivity of a multiprocessor computer system is measured
by its throughput (number of packets or requests processed per unit time) or
speedup (how fast the system compared with a single processor system). The
responsiveness of the same system is measured by the mean packet delay, which
is the mean time needed to process a packet. The utilization metric gives a
measure of the percentage of time the resources of the multiprocessor system are
busy for a given load level. The resource [usually a processor, but can be a
memory or an input/output (I/O) device] with the highest use is called the
bottleneck device [1–4].

Performance evaluation metrics of a computer and telecommunication
systems can be classified into the following chief categories [1–2]:

� Higher better metrics (HB). In this category, the higher the value of the
metric, the better it is. Productivity comes under this category.

� Lower better metrics (LB). Here, the lower the value of the metric, the
better it is. Responsiveness is an example of this type.

� Nominal better metrics (NB). In this class, the performance metric should
not be too high or too low. A value of usage between 0.5 and 0.75 is
desired. Utilization is an example on such metrics.

Other performance measures that are becoming of great interest to perfor-
mance analysts are availability and reliability. Availability is quantified by
two known measures: (a) mean time to failure (MTTF) and (b) mean time
between failures (MTBT) [1–3]. Reliability is defined as the probability that the
system survives until some time t. If X is time to failure of the system, where X is
assumed to be a random variable, then reliability, R(t), can be expressed as
R(t)=P(X W t)=1�F(t), where F(t) is the distribution function of the system
lifetime X [1, 4, 8].

It is important to point out that performance of computer and telecommu-
nication systems from the viewpoint of performance tends to be optimistic as it
usually ignores the failure-repair behavior of the system. A new trend these
days is to consider the performance, availability, and capacity together. This
process is important because in a computer communication network, the failure
of a link or router causes partial outage of the network, namely, the decrease in
network’s capacity that affects the system’s quality of service (QoS) as well as
its performance [5–8].

1.6 METRICS OF PERFORMANCE 9

1.7 WORKLOAD CHARACTERIZATION AND BENCHMARKING

Regardless of which performance evaluation technique is used, we need to
provide input to the model or real system under study. Many new computer
and network applications and programming paradigms are constantly emer-
ging. Understanding the characteristics of today’s emerging workloads
is essential to design efficient and cost-effective architectures for them. It is
important to characterize web servers, database systems, transaction processing
systems, multimedia, networks, ATM switches, and scientific workloads. It is
also useful to design models for workloads. An accurate characterization of
application and operation system behavior leads to improved architectures and
designs. Analytical modeling of workloads is a challenge and needs to be
performed carefully. This is because it takes significant amounts of time to
perform trace-driven or execution-driven simulations due to the increased
complexity of the processor, memory subsystem, and the workload domain.
Quantitative characterization of workloads can help significantly in the crea-
tion and validation of analytic models. They can capture the essential features
of systems and workloads, which can be helpful in providing early predication
about the design. Moreover, quantitative and analytical characterization of
workloads is important in understanding and exploiting their interesting
features [10–12]. Figure 1.1 depicts an overall block diagram of workload
characterization process.

In this context, there are two types of relevant inputs: (a) parameters that
can be controlled by the system designer, such as resource allocation buffering
technique and scheduling schemes, and (b) input generated by the environ-
ments in which the system under study is used such as interarrival times. Such
inputs are used to drive the real system if the measurement technique or the
simulation model is used. They also can be used to determine adequate
distributions for the analytic and simulation models. In the published literature,
such inputs are often called workloads.

Workload characterization is considered an important issue in performance
evaluation, as it is not always clear what (a) level of detail the workload should
have (b) aspects of the workload are significant, and (c) method to be used to
represent the workload. In workload characterization, the term ‘‘user’’ may or

Workload
characterization

process

Workload
model

Components
such as
requests,
jobs, etc.

FIGURE 1.1. Overall workload characterization process.

10 INTRODUCTION AND BASIC CONCEPTS

may not be a human being. In most related literature, the term ‘‘workload
component’’ or ‘‘workload unit’’ is used instead of user. This means that
workload characterization attempts to characterize a typical component.
Examples of workload components include (a) applications such as website,
e-mail service, or program development (b) sites such as several sites for the
same company, and (c) user sessions such as monitoring complete sessions from
user login and logout and applications that can be run during such sessions.
Measured quantities, requests, and resource demands used to characterize the
workload are called parameters. Transaction types include (a) packet sizes, (b)
source and destination of packets, and (c) instructions. In general, workload
parameters are preferable over system parameters for the characterization of
workloads. The parameters of significant impact are included, whereas those
of minor impact are usually excluded. Among the techniques that can be
used to specify workload are (a) averaging, (b) single-parameter histogram,
(c) multiparameter histogram, (d) Markov models. (e) clustering, (f) use of
dispersion measures such as coefficient of variation (COV), and (g) principal-
component analysis [10–12].

The averaging is the simplest scheme. It relies on presenting a single number
that summarizes the parameter values observed, such as arithmetic mean,
median/mode/geometric or harmonic means. The arithmetic means may not be
appropriate for certain applications. In such cases, the median, mode, geo-
metric means, and harmonic means are used. For example, in the case of
addresses in a network, the mean or median is meaningless, therefore, the mode
is often chosen.

In the single-parameter histogram scheme, we use histograms to show the
relative frequencies of various values of the parameter under consideration.
The drawback of using this scheme is that when using individual-parameter
histograms, these histograms ignore the correlation among various parameters.
To avoid the problem of correlation among different parameters in the single-
parameter scheme, the multiparameter scheme is often used. In the latter
scheme, a k-dimensional histogram is constructed to describe the distribution
of k workload parameters. The difficulty with the same technique is that it is
not easy to construct joint histograms for more than two parameters.

Markov models are used in cases when the next request is dependant only on
the last request. In general, we can say that if the next state of the system under
study depends only on the current state, then the overall systems is behavior
follows the Markov model. Markov models are often used in queuing analysis.
We can illustrate the model by a transition matrix that gives the values of
the probabilities of the next state given present state. Figure 1.2 shows the
transition probability matrix for a job’s transition in a multiprocessor compu-
ter system. Any node in the system can be in one of three possible states: (a)
active state where the node (computer) is executing a program (code) using its
own cache memory, (b) wait (queued) state where the node waits to access the
main memory to read/write data, and (c) access state where the node’s request
to access the main memory has been granted. The probabilities of going from

1.7 WORKLOAD CHARACTERIZATION AND BENCHMARKING 11

one state to the other make what is called the transition matrix [16]; see
Figure 1.2.

The clustering scheme is used when the measured workload is made of a
huge number of components. In such a case, these huge components are
categorized into a small number of clusters/tiers such that the components in
one cluster are as akin to each other as possible. This is almost similar to what is
used in clustering in pattern recognition. One class member may be selected
from each cluster to be its representative and to conduct the needed study to
find out what system design decisions are needed for that cluster/group.

Figure 1.3 shows the number of cells delivered to node A and the numbers
delivered to node B in a computer network. As shown in Figure 1.3, the cells
can be classified into six groups (clusters) that represent the six different links
that they arrive on. Therefore, instead of using 60 cells for each specific
analysis, we can use only 6 cells.

The use of dispersionmeasure can give better information about the variability
of thedata, as themean schemealone is insufficient in caseswhere thevariability in
the data set is large. The variability can be quantified using the variance, standard
deviation or the COV. In a data set, the variance is given by:

Variance ¼ s2 ¼ 1=ðn� 1Þ
Xn
i¼1
ðxi � x0Þ0

and COV= s/xu
where xu is the sample mean with size n. A high COV means high variance,
which means in such a case, the mean is not sufficient. A zero COV means that

Wait
(Queued)

Execute
(Active)

Access

0.4

0.4

0.4

0.4

0.4

0.4

FIGURE 1.2. State transition diagram for the Markov model of the multiprocessor

system.

12 INTRODUCTION AND BASIC CONCEPTS

the variance is zero, and in such a case, the mean value gives the same
information as the complete data set.

The principal-component analysis is used to categorize workload compo-
nents using the weighted sum of their parameter values. If di is the weight for
the ith parameter xi, then the weighted sum W is as follows:

W ¼
Xk
i¼1

aixi

The last expression can be used to group the components into clusters such as
low, medium, and high-demand classes [2, 14].

The weights to be used in such cases can be determined using the principal-
component analysis that permits finding the weights wj’s such thatWi’s provide
the maximum discrimination when compared with other components. The
value of Wi is called the principal factor or principal component. In general, if
we are given a set of k parameters, such as x1, x2,y., xn, then the principal-
component analysis produces a set of factors and W1, W2, yy., Wk, such
that: (a) theW’s are linear combinations of x’s, (b) theW ’s form an orthogonal
set, which means that their inner product is zero:

Inner Product=SWj �Wj=0, and the W’s form an ordered set so that W1
describes the highest percent of the variance in resource demands,W2 describes
a lower highest percent, and so forth.

If the system under study is to be used for a specific application, such as
airline reservation, online banking, or stock market trade, then representative
application programs from these applications or a representative subset of
functions for these applications should be used during the performance
evaluation study. Usually, benchmark programs are described in terms of the

12

13

15

7
5

8

y

x

FIGURE 1.3. An example of 60 cells in 6 groups (clusters).

1.7 WORKLOAD CHARACTERIZATION AND BENCHMARKING 13

functions to be performed, and they exercise all resources in the system such as
peripherals, databases, networks, and so on.

The term ‘‘benchmark’’ is often used to mean workload or kernel. Bench-
marks are usually run by vendors or third parties for typical configurations and
workloads. This process should be done with care as it may leave room for
misinterpretation and misuse of the measures. Clearly, it is essential to perform
this task accurately. A benchmark program is used as a standard reference
for comparing performance results using different hardware or different soft-
ware tools. It is supposed to capture processing and data movement character-
istics of a category of application. Benchmarks are meant to measure and
predict the performance of systems under study and to reveal their design
weakness and strong aspects. A benchmark suite is basically a set of benchmark
programs together with a set of specific rules that govern the test conditions and
methods such as testbed platform environment, input data, output results,
and evaluation metrics (measures). A benchmark family is a set of benchmark
suites.

In computer systems, benchmarks can be classified based on the application,
such as commercial applications, scientific computing, network services, signal
processing, scientific computing, and image processing. Moreover, we can
classify benchmarks into microbenchmarks, macrobenchmarks, synthetic
benchmark programs, program kernels, and application benchmark programs
[9, 13].

A microbenchmark tends to be a synthetic kernel. Microbenchmarks
measure a specific portion of the computer system, such as the CPU speed,
memory speed, I/O speed, interconnection network, and so on. A small
program can be used to test only the processor-memory interface, or the
floating-point unit, independent of other components of the system. In general,
microbenchmarks are used to characterize the maximum possible performance
that could be obtained if the overall system’s performance were limited by that
single component. Examples on microbenchmarks include [9]:

� LINPAC: This suite measures numerical computing, and it is a collection
of Fortran subroutines that analyzes and solves linear equations and linear
least-square problems.

� LMBENCH: This suite measures system calls and data movement opera-
tion. It is portable and used to measure the operating system overheads
and capability of data transfer among the processor, cache, main memory,
network, a disk or various Unix platforms.

� STREAM: This simple synthetic benchmark measures sustainable band-
width of memory and the corresponding computation rate.

A macrobenchmark measures the performance of the system as a whole.
Basically, it compares different systems when running a specific application on
them. This is of great interest to the system buyer. Keep in mind that this class
of benchmarks does not reveal why the system performs well or bad.

14 INTRODUCTION AND BASIC CONCEPTS

Usually, this class of benchmarks is used for parallel computer systems.
Examples on macrobenchmark programs include [9, 16–21] the following:

� NPB suite: The Numerical Aerodynamic Simulation (NAS) Parallel
Benchmark (NPB) was developed by the (NAS) program at National
Aeronautics and Space Administration (NASA) at Ames for performance
evaluation of supercomputers. It consists of five kernels: Embarrassing
Pascal (EP), multigrid method (MG), conjugate gradient method (CG),
fast fourier-based method for solving a three-dimensional (3D) partial
differential equation (FT), and Integer Sorting (IS), as well as the
simulated applications block lower triangular, block upper triangular
(LU), scalar penta-diagonal (SP) and block tri-diagonal (BT) programs.

� PARKBENCH: This was called after the Parallel Kernel and Benchmarks
committee. The current benchmarks are for distributed memory multi-
computers, coded using Fortran 77 plus Parallel Virtual Machine (PVM)
or Message Passing Interface (MPI) for message passing.

� STAP: The Space-Time Adaptive Processing (STAP) benchmark suite is
basically a set of real-time, radar signal processing programs originally
developed at MIT Lincoln Laboratory. The suite consists of computa-
tional-intensive programs that require one to perform 1010-1014 FLOPS.

� TPC: This was developed by the Transaction Processing Performance
Council. TPC has released five benchmarks: TPC-A, TPC-B, TBC-C, TPC-
D, and TPC-E. The first two released benchmarks became obsolete in 1995.

� SPEC: This suite was developed by Standard Performance Evaluation
Corporation (SPEC), which is a nonprofit corporation that is made of
major vendors. It is becoming the most popular benchmark suite world-
wide. SPEC started with benchmarks that measure CPU performance, but
now it has suites that measure client-server systems, commercial applica-
tions, I/O subsystems, and so on. Among the suites, there are SPECT95,
SPEChpc96, SPECweb96, SFS, SDM, GPC, SPEC SFS97, SPECjAp,
and SPECjAppServer2001, which is a client/server benchmark for measur-
ing SPEC HPC2002, and SPECviewperf 7.1. SPEC periodically publishes
performance results of various systems, both in hard copy and on their
website (http://www.spec.org).

In 2003, SPECapc (SPEC application, performance, characterization)
releases the new Solid Edge V12 benchmark, and SPECviewperf 7.1.
SPECapc for Solid Edge Version 12 is an updated benchmark based on
new features in the software’s latest version. The new version increases the
graphics and CPU workloads without requiring additional memory. The
CPU tests now include a recompute calculation for a part with 500 features
and a mass property calculation of the assembly. SPECviewperf 7.1 inserts a
small amount of variation at regular intervals within its application-based
test files, called viewsets. This ensures that the test system examines
and processes each frame individually, as it would in typical real-world
applications. For more updated information, visit SPEC website [17].

1.7 WORKLOAD CHARACTERIZATION AND BENCHMARKING 15

Despite the problems involved in using the instruction mix to evaluate
performance of computer systems, there is still interest in them. An instruction
mix is attractive for some analysts in that it abstracts many details of real
application programs. An instruction mix is a specification of different
instructions coupled with their usage frequency. Examples of an instruction
mix include the Gibson mix, which was originally developed by Jack C. Gibson
for the IBM 704 system [1, 2].

The program kernel is a generalization of the instruction mix. It is used to
characterize the main portion of a specific type of application program. The
Kernel benchmark is usually a small program that has been extracted from a
large application program. Because the kernel is small, including a dozen lines
of code, it should be easy to port it to many different systems. Evaluating the
performance of different systems by running such a small kernel can provide an
insight into the relative performance of these systems. Because kernels do not
exercise memory hierarchy, which is a major bottleneck in most systems, they
are of limited value to make a conclusive overall performance comparison or
prediction of system performance. Examples of kernels include Puzzle, Tree
Searching, Ackermann’s Function, and Application benchmark programs are
often used when the computer system under evaluation is meant to be used for
a specific application, such as an airline reservation or scientific computing.
These benchmarks are usually described in terms of the functions to be
performed and make use of almost all resources of the system. Keep in mind
that application benchmarks are real and complete programs that produce
useful results. Collection of such programs is often made on emphasizing one
application. To reduce the time needed to run the entire set of programs, they
usually use artificial small input data sets, which may limit the application’s
ability to model memory behavior and I/O requirement accurately? They are
considered effective in giving good results. Examples of such benchmark
programs include the Debit-Credit benchmark, which is used to compare
transaction processing systems [9, 17–21].

Network quality benchmarking services is designed to provide independent
examination of network quality and performance. QoS is measured externally
based on drive tests, whereas performance is measured internally based on
network management system data. Quality benchmarking services for a net-
work is-useful for performance target setting and instant comparison. It is also
useful for long-term monitoring. Its main benefits include (a) objective
evaluation of network quality, (b) end-user point of view (c) comparison
with competitors, and (d) good for long-term network planning.

1.7.1 Case Study: Website Characterization

The phenomenal growth of the World-Wide Web (WWW), in both the volume
of information on it and the numbers of users desiring access to it, is dramatically
increasing the performance requirements for large-scale information servers.

16 INTRODUCTION AND BASIC CONCEPTS

WWW server performance is a central issue in providing ubiquitous, reliable,
and efficient information access [10–12].

It is important that the WWW traffic workload be understood as it is
crucial in the analysis of a server’s performance. Capturing the main
characteristics of such systems, such as the distributions of file sizes and
buffering schemes, is vital to provide a quantitative measure of the aggregate
overall advantage of a particular server system’s optimization. Workload
generators that can be used for such systems include SpecWeb96, WebStone,
and SURGE [10–12].

In the characterization of a web server, we need to choose parameters that
best describe the characteristics of the workload of the servers and system
software used, monitor the systems to obtain some raw performance data,
analyze performance data, and finally construct a workload model of the
system under investigation. Workload characterization allows us to understand
the current state of the system under investigation. Characterizing workload is
also essential to the design of new system components [11, 12].

In Arlitt and Jin [10] from Hewlett-Packard (HP) have conducted a work-
load characterization of the of the 1998 World Cup website. Measurements
from the World Cup website were collected over a 3-month period, and during
this time, the site received 1.35 billion requests, which is considered large, and if
not the largest Web workload analyzed to date, it is definitely one of the largest.
The authors determined how Web server workloads are evolving. They found
that improvement in the caching architecture of the World-Wide Web are
changing the workloads of Web servers and that major improvements to that
architecture are still necessary.

World Cup 1998 was held in France from June 10 through July 12, 1998. It
was commonly called, France ’98, and it is considered the most widely covered
media event in history. The estimated cumulative television audience is about
40 billion who watched the 64 matches, more than twice the cumulative
television audience of the 1996 Summer Olympic Games in Atlanta, Georgia.
The URL of France ’98 was as follows: www.france98.com. It received more
than 1 billion client requests during the tournament [10].

The World Cup tournament is held once every 4 years to determine the best
soccer (called football outside the United States) team in the world. This
tournament is open to all countries worldwide. Because of the number of
participating teams, a qualifying round is usually used to select the teams that
will play in the World Cup tournament. The qualifying round for France ‘98
was held between March 1996 at November 1997 and out of the 172 countries
that participated only 30 were selected to compete in France ’98, along with the
host country, France, and the reigning champions, Brazil. Each match lasted
for 90 minutes in length and was played in two 45-minute halves. The website of
the 1998 World Cup provided current scores of the matches in real time.
Moreover, fans were able to access previous match results; player statistics,
player info such as there biographies, ages, and so on; team backgrounds;

1.7 WORKLOAD CHARACTERIZATION AND BENCHMARKING 17

information in English and French about stadiums; and local attractions; a
wide range of photos and sound clips from the game; and some interviews with
players and coaches. Fans were able to download free software, such as World
Cup screensavers and wallpapers from the France ’98 website [22]. Several
companies cooperated to establish the website, which includes: France Tele-
com, EDS, Hewlett-Packard, and Sybase. Thirty servers were used, and were
distributed across four locations: 4 servers in Paris, 10 servers in Herndon,
Virginia; 10 servers in Plano, Texas; and 6 servers in Santa Clara, California.
The creation and updating of all web pages were done in France. A Cisco
Distributed Director was used to distributed client requests across the four
locations where various load balancers were used to distribute the incoming
requests among the available servers.

Arlitt and Williamson in [10] observed the following main characteristics in
the web of the World Cup workload and the performance implications of these
characteristics, which include the following:

1. HTTP/1.1 clients that have become more common, accounting for 21%
of all requests. Widespread deployment of HTTP/1.1 compliant clients
and servers is necessary for the functionality of HTTP/1.1 to be fully
exploited.

2. About 88% of all requests were for image files; an additional 10% were
for HTML files, signifying that most users interests were in cacheable
files.

3. About 19% of all responses were ‘‘Not Modified,’’ signifying that cache
consistency traffic had a greater impact in the World Cup workload than
in previous Web server workloads [11].

4. The workload was rather bursty.

5. For timeouts of 100 seconds or less, many users’ sessions contained only a
single request and a single response. Arlitt and Wiliamson [10] believed
that this is due to improved Web caching architecture that now exists,
which has potential implications on both server and protocol design.

6. During periods of peak user interest in World Cup site, the volume of
cache consistency traffic increased noticeably.

1.8 SUMMARY

Performance evaluation can be considered both an art and science. This
discipline has become more and more important because of the complexity
and widespread applications of both computer and telecommunication sys-
tems. This chapter aimed to provides an introduction and background
information to performance evaluation. We discussed the viewpoint and chief
concepts as well as the objectives of performance evaluation. Then we reviewed
the main application areas and techniques. Workload characterization and
benchmarking were addressed along with examples.

18 INTRODUCTION AND BASIC CONCEPTS

REFERENCES

[1] M. S. Obaidat, and G. I. Papadimitriou (Eds.), ‘‘Applied System Simulation:

Methodologies and Applications,’’ Springer, New York; 2003.

[2] R. Jain, ‘‘The Art of Computer Systems Performance Analysis,’’ Wiley, New York,

1991.

[3] K. Kant, ‘‘Introduction to Computer System Performance Evaluation,’’ McGraw

Hill, New York, 1992.

[4] D. J. Lilja, ‘‘Measuring Computer Performance,’’ Cambridge University Press,

Cambridge, UK, 2000.

[5] M. S. Obaidat, ‘‘Advances in Performance Evaluation of Computer and Tele

communications Networking,’’ Computer Communication Journal, Vol. 25, Nos.

11 12, pp. 993 996, 2002.

[6] M. S. Obaidat, ‘‘ATM Systems and Networks: Basics Issues, and Performance

Modeling and Simulation,’’ Simulation: Transactions of the Society for Modeling

and Simulation International, Vol. 78, No. 3, pp. 127 138, 2003.

[7] M. S. Obaidat, ‘‘Performance Evaluation of Telecommunication Systems: Models

Issues and Applications,’’ Computer Communications Journal, Vol. 34, No. 9,

pp. 753 756, 2003.

[8] M. C. Ghanbari, J. Hughes, M. C. Sinclair, and J. P. Eade, ‘‘A Principles of

Performance Engineering for Telecommunication and Information Systems,‘‘ IEE,

Herts, UK, 1997.

[9] K. Hwang, and Z. Xu, ‘‘Scalable Parallel Computing,’’ McGraw Hill, New York,

1998.

[10] M. Arlitt, and T. Jin, ‘‘Workload Characterization of the 1998 World Cup

Website,’’ HP Technical Report 1999 35R1, Hewlett Packard, 1999.

[11] M. Arlitt, and C. Williamson, ‘‘Internet Web Servers: Workload Characterization

and Performance Implications,’’ Transactions on Networking, Vol. 5, No. 5,

pp. 631 645, 1997.

[12] L. John, and A. Maynard, (Eds.), ‘‘Workload Characterization of Emerging

Applications,’’ Springer, New York, 2003.

[13] J. L. Hennessy, and D. A. Patterson, ‘‘Computer Architecture: A Quantitative

Approach,’’ Morgan, Kaufmann, 3rd edition, 2003.

[14] J. Banks, J. S. Crason II, B. L. Nelson, and D. Nicol, ‘‘Discrete Event System

Simulation,’’ 3rd edition, Prentice Hall, Upper Saddle River, NJ, 2001.

[15] S. M. Ross, ‘‘Simulation,’’ 2nd edition, Harcourt Academic Press, San Diego, 1997.

[16] M. S. Obaidat, ‘‘Performance Evaluation of the IMPS Multiprocessor System,’’

Journal of Computers and Electric Engineering, Vol. 15, No. 4, pp. 121 130, 1989.

[17] The Standard Performance Evaluation Corporation: http://www.spec.org

[18] http://imls.lib.utexas.edu/redesign/slideshow/tsld009.html

[19] NAS Parallel Benchmarks: http://science.nas.nasa.gov/software/npb/

[20] Parkbench Parallel Benchmarks: http://www.netlib.org/parbench/

[21] Transaction Processing Council (TPC) Benchmarks: http://www.tpc.org/

[22] www.france98.com

REFERENCES 19

EXERCISES

1. Compare and contrast the possible techniques to evaluate a computer or
a network system.

2. Visit the website of SPEC and write a report on the new benchmark
programs that have been released recently and their applications.

3. For each of the following computer and telecommunications systems,
give two performance metrics that can used to assess its performance:

a. A web sever

b. WiMax network

c. A Wi-Fi wireless LAN

d. A cross-bar–based multiprocessor computer system

e. An airline reservation system

4. Describe what you think would be the most effective way to evaluate each
of the following systems:

a. A 1000-processor massively parallel computer system

b. The performance of an ATM-based LAN system

c. A battlefield-communication system

d. A cellular network in a large city

5. Explain the role of empirical experimental studies and trace-driven
simulation analysis in the performance evaluation of computer and
telecommunication systems.

6. To estimate the performance of a multiplexer, the packet arrival should
be modeled accurately. Recent empirical studies have shown that the
Poisson process is an inaccurate model for the packet arrival process. The
statistical structure of the packet arrival process is more complex than
assuming it to follow a Poisson process or a finite source models that are
often used for modeling call arrivals.

Explain why this statement is correct. What is the process that is used
nowadays to accurately model such an arrival process? Give examples
from published literature.

20 INTRODUCTION AND BASIC CONCEPTS

CHAPTER 2

PROBABILITY THEORY REVIEW

Probability is a numerical measure of the likelihood of an event. It is a number,
from 0 to 1, that is attached to an event. Probabilities are generally hard to
measure. However, it is easy to measure probabilities of events that are
extremely rare. In addition, one can observe that when a sequence of
experiments forms an independent trials process, the possible outcomes for
each experiment are the same and occur with the same probability, which
means that the outcomes of the previous experiments do not influence the
predictions for the outcomes of the next experiment.

Probability theory also allows the study of chance processes for which
prediction for future experiments is dependent on the knowledge of previous
outcomes. In fact, when we observe a sequence of likelihood experiments, all
the past outcomes could influence the predictions for the next experiment. In
particular, the study of a special type of likelihood processes, called Markov
chain, where the outcome of a given experiment can influence the outcome of
the next experiment, has been extensively studied in the literature. The Markov
chains have observed a large range of application in communication networks
and computer systems.

In this chapter, we introduce the essential concepts in probability theory
needed for a better understanding of the following chapters in this book. To this
end, we present the basic concepts including conditional probability, sampling,
and reasoning with less precise data. In a second step, we study the basic
properties of random variables, discrete and continuous. Then, we introduce the

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

21

regression models and their analysis and discuss the basic ideas behind the
distribution functions. Finally, we develop a study of the Markov chains.

2.1 BASIC CONCEPTS ON PROBABILITY THEORY

To introduce the probability theory, let us consider a random experiment of
which all possible results are included in a nonempty set, denoted by O, which is
usually called the sample space. An element o A O is often called a sample
point of the experiment. An event of a random experiment is specified as a
subset of O, An event a is called true if the simple point o A O has been chosen
with oA a. Otherwise, it is called false. A set A of events in O is called algebra if
the following statements are satisfied [1, 2]:

� O A A

� If a, b A A, then a , b A A and a - b A A

� if a A A and a is the complementary subset of a, then a 2 A

Example.LetO ¼ ½0; 1� � ½0; 1� be the unit square and s be the set of all sets of the
form A�B, where A and B are interval. Thus, the smallest algebra D(s)

containing s is the set containing the empty set and the objects of the formS
i2I

si;where I is a finite set of integers. To show this, one can easily observe that: a)

O A D(s); b) the empty set is an element of O; c) the union and intersection of
elements of D(s) are also elements of D(s); and d) any other algebra containing s
contains D(s). The algebra D(s) is called the algebra generated by (or the closure
of) s.

Now, let A be an algebra, a function p : A! Rþ is called a measure on A if,
for every pair of disjoint sets of events a, b A A, we have
pða [bÞ ¼ pðaÞ þ pðbÞ. We say that a measure p is a probability measure on
A if p takes its values in [0, 1] and p(O)=1. Obviously, a measure satisfies the
following properties [3]:

� pðEmptysetÞ ¼ 0

� pðSn
i¼1

aiÞ ¼
Pn
i¼1

pðaiÞ for any finite set of pairwise disjoint events a1; ::; an 2 A

� pða [bÞ ¼ pðaÞ þ pðbÞ � pða \ bÞ for all pair a, b A A

More generally, let a1; ::; an 2 A ; then the Probability PrðSn
i¼1

aiÞ can be
computed recursively as follows:

Prð
[n
i¼1

aiÞ ¼
Xn
k¼1
ð�1Þkþ1

X
i1o::oik

Prð
\k
j¼1

ai jÞ

For the special case where n=2, we obtain:

22 PROBABILITY THEORY REVIEW

Prða1 [a2Þ ¼ pða1Þ þ pða2Þ � pða1 \ a2Þ

Special cases of inequalities, referred to as Boole’s inequalities, can be deduced
from the preceding equation. They are as follows:

Xn
k¼1

PrðaiÞ � Prð
[n
i¼1

aiÞ �
Xn
k¼1

PrðaiÞ �
X

1�ioj�n
Prðai \ ajÞ

Finally, let us define the probability of an event a to be true, with respect to
a probability measure p, as p(a). The 3-tuple (O,A,p) will be called proba-
bility space if, and only if, A is an algebra in O and p is a probability
measure.

Example. Assume that n packets need to be placed in n buffers in a switch
belonging to a communication network. Each packet is placed in a buffer that
is chosen randomly, independently, and uniformly. Then let us compute (a) the
probability that a given buffer contains at least k packets and show that ½ is an
upper bound for the probability of having k packets in a buffer and (b) a lower
bound for the probability of having at least one packet at a buffer. To do this,
let ai;k; 1 � i � n; be the event that buffer i contains k packets and Ek be the

event that there exists a buffer with at least k packets. Then Ek ¼
Sn
i¼1

ai;k and

the Boole’s inequality shows that

PðEkÞ �
Xn
k¼1

Prðai;kÞ

The computation of Prðai;kÞ can be performed using events ai;F; where
F 	 1; ::; nf g and iA{1,. . .,n}. Event ai;F states that the packets in buffer i are
characterized by F. Obviously, we have ai;k ¼

S
F : Fj j¼k

ai;F and

Pðai;kÞ �
X

F : F½ �¼k
Prðai;FÞ

The number of subsets F 	 1; ::; nf g; Fj j ¼ k is equal to
n

k

� �
, and the

probability Prðai;FÞ is equal to 1
n Fj j ¼ 1

nk
. Therefore,

PrðEkÞ � n
n

k

� �
1

nk

A classic computation shows that

2.1 BASIC CONCEPTS ON PROBABILITY THEORY 23

n
n

k

� �
1

nk
� n:2 log n 1 � 1

2

This proves (a). To compute the second bound, let bi be the event that exactly k
packets are placed in buffer 1 and b be the event of having at least one packet at
buffer 1. Then b ¼ S

1�i�n
bi. The Boole’s equation gives:

PrðbÞ ¼ PrðSn
i¼1

biÞ �
Pn
k¼1

PrðbiÞ �
P

1�ioj�n
Prðbi \ bjÞ

¼Pn
i¼1

1

n
� P

1�ioj�n

1

n2
¼ 1� n

2

� �
1

n2

� 1� 1
2
¼ 1

2

Example.Three optical packetsA,B, andC, are contending for an output port, in
a switch node.We assume that one and only one packet can get through the port.
The sample space may be taken as the 3-element set O={A,B,C}, where each
element corresponds to the outcome of that candidate’s getting into the output
port. Suppose thatA andB have the same chance of winning, and thatC has only
1/2 the chance ofA or B. Thus, we assign the following elementary probabilities:

p Að Þ ¼ p Bð Þ ¼ 2p Cð Þ

Since p(A)+ p(B)+ p(C)=1, we deduce that

2p Cð Þ þ 2p Cð Þ þ p Cð Þ ¼ 1

which implies that 5p(C)=1. Hence,

p Að Þ ¼ 2

5
; p Bð Þ ¼ 2

5
; p Cð Þ ¼ 1

5

Let E be the event that either packet A or C gets to the output port. Then
E={A,C} and

p Eð Þ ¼ p Að Þ þ p Cð Þ ¼ 3

5

2.1.1 Conditional Probability

The conditional probability of event b assuming an event a, such that PrðaÞ > 0
is denoted by Prðb aÞj and defined as follows:

24 PROBABILITY THEORY REVIEW

Prðb aÞj ¼ Prða \ bÞ
PrðaÞ

This can be generalized as follows: If a1; ::; an are events satisfying
Prð T

1�i�n 1

aiÞ 6¼ 0 , then:

Prð
\

1�i�n
aiÞ ¼

Yn
j¼1

Prðai
\j 1

k¼1
akÞ

�����
Using the particular cases of this formula, when n= 2, we obtain two
equalities:

Prðb aÞj � PrðaÞ ¼ Prða \ bÞ ¼ Prða bÞj � PrðbÞ

which are valid when PrðaÞ > 0 and PrðbÞ > 0: This gives the so-called Bayes’s
formula:

Prða bÞj ¼ PrðaÞ � Prðb aÞj
PrðbÞ

This allows the following definition: Two events a and b are called independent if,
and only if, Prða bÞj ¼ PrðaÞ , or equivalently Prðb aÞj ¼ PrðbÞ. In the opposite, if
Prða bÞj 6¼ PrðaÞ; then the two events are called correlated. Two disjoint events
a and b with nonzero probabilities cannot be independent because the

Prðb aÞj ¼ Prða\bÞ
PrðaÞ ¼ 0 implies that Prðb aÞj ¼ 0: On the one hand, because PrðbÞ

6¼ 0; we deduce that Prðb aÞj 6¼ PrðbÞ . On the other hand, one can show in this
case that:

Prða [bÞ ¼ PrðaÞ þ PrðbÞ

Example. Consider in a switch the problem of n packets to be placed in n
buffers randomly, independently, and uniformly as discussed earlier. Let a be
the event that buffer 1 has no packets, and let b the event that some buffer i, for
fixed i, has no packets. Then, for n=3

Prðb aÞj ¼ 1

8
; PrðbÞ ¼ 8

27

This shows that the two events are correlated.

2.1 BASIC CONCEPTS ON PROBABILITY THEORY 25

2.2 ELEMENTARY SAMPLING

It is important to realize how much of probability theory can be derived from
no more than the conditional probability formulas that we have established in
the previous section. Many important results that are often thought to lie
beyond the domain of probability theory can be derived. The applications of
the theory given in this section are rather simple compared with the serious
scientific inference that we hope to achieve later in the following sections.
Nevertheless, our reason for considering them in close detail is not only of
simple pedagogical form. Failure to understand the logic of these concepts can
have serious consequences [4, 5].

2.2.1 Sampling Without Replacement

Let us consider a traditional problem that we present using a simple example in
communication. A buffer in a switch contains N packets, which are identical
in their structure and header except that they carry sequence numbers 1, 2,y, N.
The packets are assumed to belong to two different flows. The first flow, sayR, has
M packets; and the second flow, sayW, has the remaining (N�M) packets. The
switch takes a packet from the buffer randomly, serves it and records its flow type,
drops it, and repeats the process until n packets have been dropped, 0r nr N.

Let ai and bi be the events that ‘‘the packet serviced at the ith extraction
belongs to flow R’’ and the ‘‘packet serviced at the ith extraction belongs to flow
W,’’ respectively. Since only packets from flows R and W can be extracted, we
have PrðaiÞ þ PrðbiÞ ¼ 1 , which leads to saying that the events are related by
negation; i.e., ai ¼ bi . We also have, for i=1,

Prða1Þ ¼ M
N

and Prðb1Þ ¼ N M
N

These equalities represent a description of the state of knowledge of the switch
prior to the drawing of the first packet. Changes in the switch’s state of
knowledge (in terms of the number of packets of types R and W) appear when
we attempt to compute the probabilities referring to the second packet service.
For example, what is the probability for having a packet from R in the first two
extractions? From the product rule, this is:

Prða1 ^ a2Þ ¼ Prða1Þ:Prða2 a1j Þ ¼MðM � 1Þ
NðN � 1Þ

This result can be easily extended to the computation of Prða1^ a2 ^ ::: ^ akÞ:
The following formula holds:

26 PROBABILITY THEORY REVIEW

Prða1 ^ a2 ^ ::: ^ akÞ ¼
Qk 1

i¼0
M i
N i
¼

M

k

� �
N

k

� � for r �M

Then, the probability of having the event a1 ^ a2 ^ ::: ^ ak ^ bk¼1 ^ ::: ^ bn is
given by:

Prðbkþ1 ^ ::: ^ bnja1 ^ a2 ^ ::: ^ akÞ ¼ M!ðN �MÞ!ðN � nÞ
N!ðM � kÞ!ðN �M � ðn� kÞÞ!

¼

M

k

� �
N �M

n� k

� �
N

K

� �
N � K

r

� �

This result was derived for a particular order of packets of type R and W.
However, the probability of serving k packets of type R and l� k packets of
typeW in any specified order is the same. Let g be the event of having k packets
served within n packets in any order. Then, it holds that

PrðgÞ ¼ n

k

� �
Prðbkþ1 ^ ::: ^ bn a1 ^ a2 ^ ::: ^ akj Þ

Let hðk N;M; nÞj . (Here we abbreviate by h(k) this expression.) Then,

hðk N;M; nÞ ¼j

M

k

� �
N �M

n� k

� �
N

n� k

� �

Obviously, h satisfies the following:

hðk N;M; nÞ ¼j hðk N; n;MÞ ¼ hðn� k N;N �M; nÞjj

The most probable value of k can be obtained by solving h(k)= h(k� 1). This

gives: k0 ¼ ðnþ1ÞðMþ1ÞNþ2 and k0
nþ1 ¼ Mþ1

Nþ2 : If k0 is not an integer, the next integer

below k0 is the most probable. Thus, the most probable fraction f ¼ k0=r of
packet served from R (or in the sample) is approximately equal to the fraction
M/N, as one can expect it.

Until this point, we have considered only the case where we sample without
replacement (i.e., packet are dropped after service). It may be appropriate for
many real situations that the sample can be made with replacement. For
example, in a quality-control application, one may need to have to sample

2.2 ELEMENTARY SAMPLING 27

objects and get them back to their places. This case of sampling with replacement
may be complicated conceptually, but with some assumptions usually made, it
ends up being simpler mathematically than sampling without replacement. For
the sake of simplicity, let us go back to discuss the aforementioned subject, but
we assume now that we sample packets from the buffer, and after recording the
type of traffic (i.e., type R orW) of each packet, we replace it in the buffer before
taking the next packet. For this, we still have an equation like:

Prða1 ^ a2Þ ¼ Prða1Þ:Prða2 a1j Þ

But this probability equals ðMNÞ2 , which also leads us to write the probability of
having exactly k packets from traffic type R within a sample of n served
packets, regardless of the order, as shown below:

n

r

� �
:

M

N

� �r
N �M

N

� �n 1

2.2.2 Reasoning with Less Precise Data

Assume now that after k extractions of packets, the system knows that packets
of type R will be found at least once in later extractions, but it does not know
which extraction or extractions will occur. Such an event, denoted by aFutur ,
can be formally written as follows:

aFutur ¼ akþ1 _ akþ2 _ ::: _ an

where ai is the event ‘‘the packet serviced at the ith extraction belongs to flow R.
To compute PðaFuturÞ; let us consider its complementary event, which represents
the statements that all packets serviced after the k+1 extractions are of typeW.

aFutur ¼ bkþ1 ^ bkþ2 ^ ::: ^ bn

Using the exchangeability rule previously discussed, the probability PðaFuturÞ
is the same as the probability serving packets of type W at the first
(n� k) extractions, regardless of what can happen after that. Therefore,
we have:

PrðaFuturÞ ¼
N �M

n� k

� �
N

n� k

� � 1

In a similar way, the probability PðaFuturÞ is the same as in the case containing
(N� 1) packets, (M� 1) of which are of type W:

28 PROBABILITY THEORY REVIEW

PrðaFutur akj Þ ¼
N �M

n� k

� �
N � 1

n� k

� � 1

This gives the probability PðaFuturÞ: Now, let us go to PðakjaFuturÞ; where we
have:

PðakaFuturÞ ¼ PðakjaFuturÞPðaFuturÞ ¼ PðaFuturjakÞPðakÞ

Thus, we can deduce that:

PðakjaFuturÞ ¼ PðakÞPðaFuturjakÞ
PðaFuturÞ

Using (2.6), this equality becomes:

PðakjaFuturÞ ¼ M

N � nþ k

N � 1

n� k

� �
� N �M

n� k

� �
N

n� k

� �
� N �M

n� k

� �

Example. Let us apply this result to the simple case, where N= 4, M= 2,
n= 3, k= 1, and let us compute Pðakja2Þ: We have:

aFutur ¼ a2 _ a3; Pða1jaFuturÞ ¼ 2

4� 3þ 1
:

3

2

� �
� 2

2

� �
4

2

� �
� 2

2

� � ¼ 3� 1

6� 1
¼ 2

5

and Pða1ja2Þ ¼ 1
3

This shows the following interesting result:

Pða1jaFuturÞ > Pða1ja2Þ

2.3 RANDOM VARIABLES

Let R be the probability space obtained by considering the algebra generated by
the set of subsets xf g; x 2 R: A numerical function X : O! R defined on a
probability space (or sample space)O is called a random variable if, for every real
x, XðkÞ; k 2 R is measurable. Thus, X assigns a real value to every element of the

2.3 RANDOM VARIABLES 29

sample space. This process enables statistics to be conveniently computed over a
probability space. In the sequel, we will consider only real-valued random
variables: X : O! R: Three types of random variables can be considered:
discrete, continuous, and mixed variables. A discrete random variable takes
only isolated values with nonzero probabilities. The number of values it is allowed
to take may be infinite, but they should be countable. That is, it must be possible
to arrange its values in a sequence so that the rth number is identifiable for any
integer r. A continuous random variable X is a variable satisfying the following
integral for the computation of the probability of the event X � xf g ¼
o XðoÞ � xjf g using a function, called probability density function of X:

PrðX � xÞ ¼
Z x

1
pxðtÞdt

A random variable is called mixed if it has both discrete and continuous parts.

2.3.1 Discrete Variable

A discrete random variable X is called non-negative if XðoÞ � 0 for all o A O.
It is called a binary or Bernoulli random variable if it takes its values in {0, 1}.
A binary random variable X is called an indicator of event a (and can be
denoted by wa) if XðoÞ ¼ 1 if, and only if, o A a.

For a discrete random variable, taking its values into an increasing sequence
xxf g1�k , and a real number x, we have

PrðX � xÞ ¼
X

k: xk�k
PrðX ¼ xkÞ; PrðX � xÞ ¼

X
k: xk�k

PrðX ¼ xkÞ

For the sake of simplicity, we will assume that the values of a discrete variable X
are integers. The function pX : N ! R , defined by pXðkÞ ¼ PrðX ¼ kÞ , is called
the probability distribution of X (probability mass function, (PMF)), and the
function GXðkÞ ¼ PrðX � kÞ is called the cumulative distribution function
(CDF) of X. Finally, the function HXðkÞ ¼ PrðX � kÞ is called the survival
distribution function.

The most important measures used in combination with random variables
are called expectation (also called the expected value) and variance. The
following definition specifies these metrics [6, 7].

Definition 1. Let ðO;A; pÞ denote a probability space and X : O ! R be an
arbitrary discrete random variable. Then the expectation (also called expected
value or mean) E(X) of X is defined as follows:

30 PROBABILITY THEORY REVIEW

EðXÞ ¼
X

k2ImðXÞ
kPrðX ¼ kÞ

where Im(X) represents the set of values of X (assumed to be in N). The nth
moment of X, nW 1, is equal to expectation EðXnÞ of the of random variableXn.

The following statements describe the basic features of the expected value of
a discrete variable X:

� If X is non-negative, then E(X)Z0

� Eð Xj jÞ ¼ EðXÞj j
� EðlXÞ ¼ lEðXÞ, for all real l
� EðX þ YÞ ¼ EðXÞ þ EðYÞ

Consider now two discrete random variables. They are called independent if
for all real numbers x and y:

PrðX ¼ x Y ¼ yj Þ ¼ PrðX ¼ xÞ

Then, X and Y have the following property:

EðX � YÞ ¼ EðXÞ � EðYÞ

A proof of this statement is given as follows. For all real number a and b,
consider the events a and b defined as follows:

aa ¼ X ¼ af g and bb ¼ X ¼ bf g

Using the fact that X and Y are independent, we have Prða \ bÞ ¼ PrðaÞ�
PrðbÞ:Using the indicator variables wa; a 2 R; which are defined by waðxÞ ¼ 1 if
and only if a= x, we rewrite X �Y as follows:

X � Y ¼ ð
X
a2R

awaÞ � ð
X
a2R

bwbÞ ¼
X
a;b2R

a � bwaa\bb

The expectation (expected value) of X.Y can be computed as follows:

2.3 RANDOM VARIABLES 31

EðX � YÞ ¼ Eð
X
a;b2R

a � bwaa\bbÞ ¼
X
a;b2R

a � bPrðaa \ bbÞ

¼
X
a;b2R

a � bPrðaaÞ � PrðbbÞ

¼ ð
X
a;b2R

aPrðaaÞÞ � ð
X
a;b2R

bPrðbbÞÞ

¼ EðXÞ � EðYÞ

Example. Let X1, X2, and X3 be three random variables defined on the unit
square in the Euclidean space by:

X1 $1; $2ð Þ ¼ $2
1; X2 $1; $2ð Þ ¼ $2

2;X3 $1; $2ð Þ ¼ $1 þ$2

We need to show that X1 and X2 are independent, and that X1 and X3 are not
independent.

Let us consider the functions:

Fjk r; tð Þ ¼ P Xj � r;Xk � t
� �

; j 6¼ k 2 1; 2; 3f g;Fs rð Þ ¼ P X1 � r;ð Þ; s ¼ 1; 2; 3

An easy computation shows that Fs rð Þ ¼ r
p

, s=1,2, and

F12 r; tð Þ ¼ P $1 � r
p

; $2 � t
p� � ¼ r:t

p ¼ F1 rð ÞF2 tð Þ

However, for r=1/4 and t=1, we have:

F13
1

4
; 1

� �
¼ P $1 � 1

2
; $1 þ$2 � 1

� �
¼ Area E1ð Þ ¼ 1

2
� 1

8
¼ 3

8

Area E1 is depicted in Figure 2.1. A computation of F3 shows that:

F3 tð Þ ¼

0; if to0
t2

2
; if 0 � t � 1

1� 2 tð Þ2
2

; if 1 � t � 2

1; if 2ot

8>>>><
>>>>:

and that X1 and X3 are not independent random variables.

32 PROBABILITY THEORY REVIEW

The conditional expectation of a discrete random variable X with respect to
an event a is defined by:

EðX aÞ ¼
X
a2R

a � PrðX ¼ a aÞj
�����

This formula allows the definition of random variable EðX YÞj by setting
EðX YÞj ðyÞ ¼ EðX Y ¼ yÞ:j Therefore, EðX YÞj is a discrete random variable for
which the equality EðY :XÞ ¼ EðYÞEðX YÞj does not hold, in general. The
expectation of the random variable given that another variable Y takes the
value Y=y is

EðX Y ¼ yÞ ¼
X
a2R

a � PrðX ¼ a Y ¼ yÞj
�����

EðX Y ¼ yÞj is a function of y. By applying this function on the values of
the random variable Y, one obtains a random variable EðX YÞj called the
conditional expectation. The properties of EðX YÞj include the following:

� EðX YÞj ¼ EðXÞ if X and Y are independent

� EðlX YÞj ¼ lEðX YÞj for all real l
� EðX þ ZYÞj ¼ EðX YÞj þ EðZ YÞj for any variable Z

� EðgðYÞXYÞj ¼ gðYÞEðX YÞj for any function g on R.

1

0 1/2

E2

1

�1��2�1

�2

�1

FIGURE 2.1. The spaces E and E1.

2.3 RANDOM VARIABLES 33

Definition 2. Let (O, A, p) denote a probability space and X : O ! R be an
arbitrary random variable with expected value m=E(X). Then the variance of
X denoted by V(X) is as follows:

VðXÞ ¼ EððX � mÞ2Þ

The standard deviation of X, denoted by s(X), is given by

sðXÞ ¼ VðXÞ
p

Among the features of V(X), one can mention the following:

� If X is any random variable and c is any constant, then
VðcXÞ ¼ c2VðXÞ and VðX þ cÞ ¼ VðXÞ:

� If X and Y are two random variables and EðXÞ ¼ a and EðYÞ ¼ b , then

VðX þ YÞ ¼ EðX2Þ þ 2EðXÞEðYÞ þ EðY2Þ � ðaþ bÞ2

Example. A packet is selected at random among n packets p1, p2,y, pn. Let X
be the index of the selected packet. Then we can easily show that

EðXÞ ¼ ðnþ 1Þ=2 since EðXÞ ¼Pn
i¼1

i=n: In addition, we can show that:

VðXÞ ¼ ðn� 1Þðnþ 1Þ=12 using the following equality:

12 þ 22 þ :::þ n2 ¼ nðnþ 1Þð2nþ 1Þ=6

2.3.2 Examples of Discrete Random Variables

The followings are some examples of discrete random variables that are
important to the subsequent chapters. Chapter 10 discusses in detail the
properties of these variables in addition to other variables.

� Bernoulli discrete random variable: Consider a random experiment that has
two outcomes 0 and 1. The probability distribution of random variable X
is given by:

p ¼ PðX ¼ 1Þ and ð1� pÞ ¼ PðX ¼ 0Þ

� Binomial discrete random variable: An experiment with only two outcomes,
say 1 and 0, is considered n times where successive tests are assumed
independent. The random variable X counts now the number of times the
outcome 1 occurs. The probability distribution of X is given by:

PðX ¼ kÞ ¼ n

k

� �
pkð1� pÞn k

34 PROBABILITY THEORY REVIEW

� where p 2 [0,1] and k 2 1; 2; ::; nf g. It is clear that p=P(X=1).

� Geometric random variable: Here, the experiment with two possible out-
comes is carried out several times. The random variable represents the
number of trials it takes for the outcome 1 to occur. The probability
distribution of X is given by:

PðX ¼ kÞ ¼ pð1� pÞk 1

� Poisson random variable: A Poisson variable X is defined by the probability
distribution:

PðX ¼ kÞ ¼ ak

k!
e a for 0 � k and a40

The main parameters of the aforementioned variables can be derived from the
probability distribution functions for the aforementioned discrete random
variables. In particular, the expected value, the nth moments, and the nth
central moment can be easily determined.

� Expected value: It is given by EðXÞ ¼ P
all k

kPrðX ¼ kÞ

� The nth moment: This is given by EðXnÞ ¼ P
all k

kn PrðX ¼ kÞ

� The nth central moment: This is given by E[(X-E(X))n]

Let us, for example, compute E(X) for a geometric random variable. Then

E Xð Þ ¼
X
k�0

kp 1� pð Þk 1¼ p
X
k�0

k 1� pð Þk 1

To compute this, assume xj jo1 and then the sum
P
k�0

xk ¼ 1
1 x

: By differentiat-
ing this expression, we obtain:

X
k�1

kxk 1 ¼ 1

1� xð Þ2 So; EðXÞ ¼ p

ð1� ð1� pÞÞ2 ¼
p

p2
¼ 1

p

Now, let X be a random variable with expected value m ¼ EðXÞ: Then, the
variance and standard deviation X, denoted by V(X) and s(X), respectively, are
defined by:

VðXÞ ¼ EððX � mÞ2Þ; sðXÞ ¼ VðXÞ
p

A useful alternative form for computing the variance is given by
VðXÞ ¼ EðX2Þ � m2: This can be obtained as shown below:

2.3 RANDOM VARIABLES 35

VðXÞ ¼ EððX � mÞ2Þ ¼ EðX2 � 2mX þ m2Þ
¼ EðX2Þ � 2mEðXÞ þ m2 ¼ EðX2Þ � m2

Several properties can be established for the variance. Some of these properties
are special and different from those characterizing the expectation. For
instance, if l is a real number, we have:

VðlXÞ ¼ l2VðXÞ;Vðlþ XÞ ¼ VðXÞ

For the first assertion, for example, let m=E(X). Then ml=E(lX) and

VðlXÞ ¼ EððlX � lmÞ2Þ ¼ l2EððX � mÞ2Þ ¼ l2VðXÞ

On the other hand, let X1,..,Xn be n random variables with E(Xi)= m and

V(Xi)= s, for all i. Let Sn be the sum
Pn
i¼1

Xi and An ¼ Sn

n
: Then, the following

statements can be easily established:

VðSnÞ ¼ ns2; VðAnÞ ¼ s2

n

In fact, the statement is trivial for n=1. The general case is deduced from
Sn ¼ Sn 1 þ Xn

2.3.3 Continuous Random Variables

In this subsection, we consider the basic properties of the expected value and
the standard deviation of continuous variables. The definition of these
mathematical entities is basically similar to that for discrete random variables.
The expected value of a real-valued random variable X with density function
(also called probability density function) f is given by:

m ¼ EðXÞ ¼
Z þ1
1

xf ðxÞdx

The variance V (also denoted by s2) of X is defined by:

s2 ¼
Z þ1
1
ðx� mÞ2f ðxÞdx where EðXÞ ¼ m

Assume thatX and Y are real-valued random variables and that f and g are their
continuous probability distribution functions. Then the following results are true:

1. E(XY)=E(X)E(Y) provided that Eð Xj jÞ and Eð Xj jÞ exist
2. E (aX+bY)=aE(X)+bE(Y) for all real numbers a and b

36 PROBABILITY THEORY REVIEW

Because statement two is obvious, we check only the first statement. The
proof is performed in two steps. The first step proves the result in the case where
the ranges of X and Y are contained in intervals [a, b] and [c, d], respectively.
The second step uses the hypotheses to extend this result for the case where the
ranges are general. Let f and g be the density functions of X and Y, respectively,
and the density function of XY is fg. Thus, we have

EðXYÞ ¼
Z b

a

Z d

c

xyf ðxÞgðyÞdxdy

¼
Z b

a

xf ðxÞdx
Z d

c

ygðyÞdy ¼ EðXÞEðYÞ

The extension is feasible knowing that, because of the hypotheses, one can say
that, for all eW0, there are four real values a, b, c, and d such that:

EðXÞ �
Z b

a

xf ðxÞdx
����

����oe and EðYÞ �
Z d

c

ygðyÞdy
����

����oe

and so that E(XY) and E(X) E(Y) are close to
R b
a

R d
c xyf ðxÞgðyÞdxdy andR b

a xf ðxÞdx
R d
c ygðyÞdy; respectively.

In addition to the aforementioned properties, the following relations are
valid for the variance/standard deviation:

� s2(X)=E(X2)�E(X)2

� s(cX)= cs(X), for all c
� s2(X+c) = s2(X) for all c

where c is a constant.

Example 1. Let X be a distributed continuous random variable with the density
function f given by:

f ðtÞ ¼ le lt; t � 0; l > 0

O; elsewhere

(

An easy computation of E(X) and s(X) gives:

EðXÞ ¼
Z 1
0

tle ltdt ¼ 1

l
; and s2ðXÞ ¼

Z 1
0

t2le ltdt� 1

l2
¼ 1

l2

The above distribution is an exponential distribution. It is clear that for
the exponential distribution, the variance is the equal to the square of the
mean.

2.3 RANDOM VARIABLES 37

2.4 SUMS OF VARIABLES

In this section, we discuss the important problem of determining the distribu-
tion of a sum of independent random variables in terms of the distributions of
the individual variables. We will distinguish between the case of discrete
random variables and the case of continuous variables. For the first case, the
variables are assumed to be defined for all integers and to have the value 0
where they are not defined.

2.4.1 Sums of Discrete Variables

Assume that Xi,i A{1,2} are two independent discrete random variables and f1
and f2 are their probability density functions. Let Y=X1+X2 and f3 be its
probability density function. To determine the distribution f3, we determine the
probability that Y takes an arbitrary value y. Assume that X1= k and then
Y=y if and only if X2= y � k. Thus, the event {Y=y} is the union of events
Ak defined by

Ak ¼ X1 ¼ kf g ^ X2 ¼ y� kf g; k 2 Z

The probability of event {Y=y} therefore is given by

P Y ¼ yð Þ ¼
X1

k¼ 1
P X1 ¼ kð Þ � P X2 ¼ y� kð Þ

Hence, we conclude that the probability distribution f3 is given by the
convolution product of f1 and f1

f3ðkÞ ¼
X1

k¼ 1
f1ðjÞf2ðk� jÞ; j 2 Z

This result can be extended to the sum Sn of n independent random variables
Xi,i A{1,2,..,n} with density probability fi,i A{1,2,..,n}. For this to be estab-
lished, we can use the following sequence of sums:

Sn ¼ Sn 1 þ Xn; n � 2; S1 ¼ X1

Therefore, we can find the distribution function of Sn by induction. The density
function

fSn
ðkÞ ¼ f
1 f

2 :::

fn � ðkÞ

Example. A die is rolled three times. Let Xi,i=1, 2, 3 be the outcomes, and let
S3 be the sum of these outcomes, S3=X1+X2+X3. The random variables
Xi,i=1, 2, 3 have a common distribution m defined by mðiÞ ¼ 1

6
; i 2 1; ::6f g:

The distribution function of S3 is then the convolution of this distribution with
the distribution of S2. Thus,

38 PROBABILITY THEORY REVIEW

PrðS3 ¼ 3Þ ¼ mð1Þ3 ¼ 1

216

PrðS3 ¼ 4Þ ¼ mð1ÞPrðS2 ¼ 3Þ þmð2ÞPrðS2 ¼ 2Þ

¼ mð1Þðmð1Þmð2Þ þmð2Þmð1ÞÞ þmð2Þmð1Þ2 ¼ 3

216

The computation of Pr(S3 = i), 18ZiZ5, can be done in a similar way.

2.4.2 Sums of Continuous Random Variables

We now consider the case of two independent continuous random variables
and study the distribution of their sum. Let X and Y be the two random
variables and assume that their density functions are denoted by f and g,
respectively. Assume also that f and g are defined for all real numbers. Then the
convolution, denoted f *g, of f and g is the function given by

f
 gðzÞ ¼
Z 1
1
f ðz� yÞgðyÞdy ¼

Z 1
1
gðz� yÞgðyÞdy

The definition of the convolution is similar to the definition provided in the
discrete case. Therefore, it should not be surprising that if X and Y are
independent, then the density of their sum is the convolution of their densities.
This fact is stated as follows. The sum X+Y is a continuous variable with
density function h equal to the convolution f *g.

Example. Let X and Y be two continuous random variables and f and g their
probability density functions. Assume that f and g are given by

f ðxÞ ¼ gðxÞ ¼ e lx; x � 0

0; otherwise

(

Using the equalitiesZ 1
1
f ðz� xÞgðxÞdx ¼

Z z

0

e lðz xÞe lxdx ¼
Z z

0

e lzdx ¼ze lz

the density function h of the random variable X+Y can be computed by

hðzÞ ¼ ze lz; z � 0

0; otherwise

(

2.4 SUMS OF VARIABLES 39

2.5 REGRESSION MODELS

A regression model is a system of the form:

Yi ¼ f ðXi; gÞ þ �i

where g = (g0,..,gp 1) is a vector of p parameters; Xi = (Xi,l,..,Xi,p) is a known
constant vector, called predictor variable; and ei, iZ 1 are independent random
variables, called the random error term with mean E(ei) = 0 and variance
s2(ei) = s2 [8, 9]. They are assumed uncorrelated so that their covariance is
zero, meaning that Cov(ei, ej) = 0, ’i, j : i 6¼ j. Note here that if X and Y are any
two random variables, then the covariance of X and Y is defined by:

CovðX ;YÞ ¼ E½ðX � EðXÞÞðY � EðYÞÞ�

Obviously, one can show that the covariance satisfies three main statements:(a)
Cov(X,X)=0; (b) Cov(X,Y)=0 if X and Y are independent; and (c) one can
have Cov(X,Y)=0 and X and Y not independent.

The regression model is said to be simple if it has only one predictor variable.
It is said to be linear in the parameters if no parameter appears as an exponent,
multiplied or divided by another parameter. It is linear in the predictor variable
if the predictor variable appears only in the first power. A model that is linear in
the parameters and in the predictor variable is also called a first-order model.
For the sake of simplicity, the regression model is called simple, multilinear,
and nonlinear if it has the following forms:

� Yi = g0 + g1Xi + ei
� Yi = g0 + g1Xi,1 +..+ gp lXi,p l + ei
� Yi= f(Xi, g) + ei, where f is not linear in Xi

Two examples of classes of nonlinear regression models are of special
importance and are widely used. They are the exponential regression models
and the logistic regression models. The first class uses functions under the form
Yi= g0+ g1e

g2Xi+ ei. It is commonly used in growth studies, where the rate of
growth at a given time is proportional to the amount of growth as time
increases. In this case, parameter g0 represents the maximum growth value. The
second class uses models of the form Yi ¼ g0

1þg1eg2X þ ei . This model has been
largely used in population studies to relate, for example, the number of types
(Y) to time (X). Figure 2.2 shows the two functions with specific values of the
parameters.

Regression models are widely used in business, communication, and many
other disciplines. A few examples of applications are as follows:

� The child’s height will increase with his age up to a certain age.
The growth pattern may be different from one child to another.

40 PROBABILITY THEORY REVIEW

The overall growth pattern can be predicted by using the relationship
among the growth pattern, the number of children, and the heights at
different ages.

� The performance of an employee on a given job can be predicted by using
the relationship between performance and a series of aptitude tests.

� The length of hospital stay of a surgical patient can be predicted by using
the relationship between the time in the hospital and the severity of the
operation.

2.5.1 Linear Regression Models

For the sake of simplicity, we consider in the following linear regression models
of the form:

Yi ¼ b0 þ b1Xi þ ei

where gi is the value of the response variable in the ith trial, b0 and bi are
parameters, Xi is a known constant called the predictor variable of the ith trial,
and ei is a random error term with mean E(ei)=0 and variance s2(ei)= s2. In
addition, the variables are assumed uncorrelated. The results we will set in this
subsection can be extended to more general linear models. The important
features of the model include the following:

� E(Yi) = E(b0 + b1Xi) + E(ei) = E(b0 + b1Xi) = b0 + b1E(Xi)

� s2(Yi) = s2(b0 + b1Xi + ei) s
2(ei) = s2

Exponential model
E(Y)�100-50 exp(�2x)

E
(Y

)

2
X

0 4 2
X

0 4

110

100

90

80

70

60

50

40

10

8

6

4

2

0

Logistic model
E(Y)�10/[1�20 exp(�2x)]

FIGURE 2.2. Examples of exponential and logistic models.

2.5 REGRESSION MODELS 41

The observational data to be used for estimating the parameters of the
regression function consist of observations on the predictor variable X and
the corresponding observations on the response variable Y. For each trial, there
is an X observation and a Y observation. We denote the (X, Y) observations for
the ith trial as (Xi, Yi), with i=1,y,n. To find efficient estimators of the
regression parameters b0 and b1, we can use the method of least squares, which
requires that we consider the sum of the n squared deviations. This criterion is
denoted by the following sum Q and is defined by:

Q ¼
Xn
i¼1
ðYi � b0 þ b1XiÞ2

According to the method of least squares, the estimators of b0 and b1 are those
values b0 and b1, respectively, that minimize the Q value for the given sample
observations (Xi, Yi), where i= 1,y,n. The estimators b0 and b1 that satisfy the
least squares criterion can be found following two ways:

1. Numerical search procedures can be used to evaluate in a systematic
fashion the least squares criterion Q for different estimates b0 and b1 until
the ones that minimize Q are found.

2. Analytical procedures can often be used to find the values of b0 and b1
that minimize Q. The analytical approach is feasible when the regression
model is not mathematically complex.

Using the analytical approach, it can be shown for regression model that the
values b0 and b1 that minimize Q for any particular set of sample data are given
by the following equations:X

1�i�n
Yi ¼ nb0 þ b1

X
1�i�n

Xi and
X
1�i�n

XiYi ¼ b0
X
1�i�n

Xi þ b1
X
1�i�n

X2
i

These equations can be derived from the partial derivatives as follows:

@Q

@b0
¼ �2

X
1�i�n

ðYi � b0�b1XiÞ

@Q

@b0
¼ �2

X
1�i�n

XiðYi�b0 � b1XiÞ

We can write

EðYÞ ¼ nb0 þ b1EðXÞandEðYXÞ ¼ b0EðXÞ þ b1EðX2Þ

Equations (7.15) can be solved for b0 and b1. This gives:

42 PROBABILITY THEORY REVIEW

b1 ¼ EðXÞEðYÞ nEðXYÞ
EðXÞ2 nEðX2Þ and b0 = E(Y)� b1 E(X)

Given sample estimators b0 and b1 of the parameters in the regression
function, we estimate the regression function at level X as follows: Ŷ = b0 +
b1X where Ŷ is the value of the estimated regression function at the level X of
the predictor variable. We call a value of the response variable a response and
E{Y} the mean response. Thus, the mean response stands for the mean of the
probability distribution of Y corresponding to the level X of the predictor
variable. Ŷ is referred to as a point estimator of the mean response when the
level of the predictor variable is X.

2.5.2 NonLinear Regression models

In a nonlinear regression model of the form Yi = f(Xi, g) + ei, the function f is
referred to as the response function [10]. Nonlinear response functions that can
be linearized by a transformation are often called intrinsically linear response
functions. For example, the exponential response function:

f ðXi; gÞ ¼ g1e
g2Xi

can be linearized using the logarithm function and be transformed to:

loge f ðXi; gÞ ¼ logeðg1Þ þ g2X

and be used to determine some characteristics of the response function f.
Typically, the estimation of the parameters of a nonlinear regression model

is performed by the method of least squares or the method of maximum
likelihood. This is similar to what is done by the linear regression models. In
addition, both of these methods of estimation yield the same parameter
estimates when the error terms in nonlinear regression model are independent
and normally distributed with constant variance. Unlike linear regression, it is
usually not possible to find analytical expressions for the least squares and
maximum likelihood estimators for nonlinear regression models. Instead,
numerical procedures have been developed with these estimation procedures,
requiring intensive computations. The analysis of nonlinear regression models
is therefore realized by using standard computer software programs.

One can recognize that the method of maximum likelihood leads to the same
criterion here when the error terms ei are independent and normally distributed
with constant variance by considering the likelihood function. To obtain the
normal equations for a nonlinear regression model:

Yi ¼ f ðXi; gÞ þ ei

It may be useful to minimize the least squares criterion Q:

2.5 REGRESSION MODELS 43

Q ¼
Xn
i¼1
ðYi � f ðXi; gÞÞ2

with respect to g0,..,gp 1. Computing the partial derivativewith respect to gi gives

@Q

@gk
¼
Xn
i¼1
�2ðYi � f ðXi; gÞÞ @f ðXi; gÞ

@gk

� 	

When the partial derivatives are all set to 0, say @Q
@gk
¼ 0; and the parameters are

replaced by the least squares estimates, we obtain the following p equations:

Xn
i¼1

Yi
@f ðXi; gÞ

@gk

� 	
¼
Xn
i¼1

f ðXi; gÞÞ @f ðXi; gÞ
@gk

� 	
; k ¼ 0; 1; 2; ::; p� 1

The solution of these equations gives the vector solutions: g= (g0,..,gp-1). The
resolution of such systems is often difficult to perform. Numerical search
procedures need to be set to obtain a solution g recursively. In particular,
when f is the response function of the exponential model is given by:

f ðXi; gÞ ¼ g0e
g1Xi

The preceding equations obtained by partial derivative computation gives the
following the main equation:

Xn
i¼1

Yie
g1Xi ¼ g0

Xn
i¼1

e2g1Xi and
Xn
i¼1

XiYie
g1Xi ¼ g0

Xn
i¼1

e2g1Xi

These equations are not linear in g0 and g1 and are difficult to solve. A numerical
approach can be used.

The Gauss-Newton method, which is also called the linearization method,
can be applied to approximate the nonlinear regression model with linear
terms. It uses a Taylor series expansion and employs ordinary least squares to
estimate the parameters. Generally, the Gauss-Newton method begins with
initial values for the regression parameters g0,..,gp 1.We denote these initial
values by gð0Þ0 ; ::; gð0Þp 1. Typically, the initial values may be collected from earlier,
similar cases or theoretical estimations. The values gðjÞk obtained at the jth
iteration are obtained from gðj 1Þ

k using the following approach and approx-
imating the mean response f(Xi, g) for the n cases by the linear terms in the
Taylor series close to gðj 1Þ

k . It holds that:

f ðXi; gÞ � f ðXi; gðj 1ÞÞ þ
Xp 1

i¼1

@f ðXi; gÞ
@gk

� 	
g¼gðj 1Þ

ðgk � gðj 1Þ
k Þ

Introducing new variables and constants by stating that:

44 PROBABILITY THEORY REVIEW

f
ðj 1Þ
i ¼ f ðXi; gðj 1ÞÞ; bj 1

k ¼ gk � gðj 1Þ
k ; D

ðj 1Þ
ik ¼ @f ðXi; gÞ

@gk

� 	
g¼gðj 1Þ

;

and

Y
ðj 1Þ
k ¼ Yk � f

ðj 1Þ
i

Replacing them in previous main equation leads to the following linear
regression model:

Y
ðj 1Þ
k ¼

Xp 1

k¼0
D
ðj 1Þ
ik bðj 1Þ

k þ ei

This regression model has the form Yi ¼
Pp 1

k¼1
bkXk þ ei; where Xk ¼ D

ðj 1Þ
ik : The

responses y(j 1)
k are residuals and represent the deviations of the observations

around the nonlinear regression function f, and the X variables observations
are the partial derivatives of the mean response evaluated for each case i of the
n cases. Because model described by previous main equation is linear, we can
estimate the parameters b(j 1) by ordinary least squares and obtain the vector
of least squares estimated regression coefficients b(j 1). The iteration is engaged
by setting:

gðjÞk ¼ gðj 1Þ
k þ b

ðj 1Þ
k

It has been shown that the revised regression coefficients represent the

adjustments in the right direction using the criteria Q ¼Pn
i¼1
ðYi � f ðXi; gÞÞ2

and showing that:

Xn
i¼1
ðYi � f ðXi; gðj 1ÞÞÞ2 ¼

Xn
i¼1
ðYi � f

ðj 1Þ
i Þ2 >

Xn
i¼1
ðYi � f

ðjÞ
i Þ2

¼
Xn
i¼1
ðYi � f ðXi; gðjÞÞÞ2

For the sake of space, we will not prove this property.
As a first step, we take up regression analysis when a single predictor variable

is used for predicting the response or outcome variable of interest. In the
following, we will consider the construction of regression modeling and analysis
when two or more variables are used for making predictions, and we discuss the
estimation of the parameters of regression models containing a single predictor
variable and the case of nonlinear regression.

2.5 REGRESSION MODELS 45

2.5.3 Regression Analysis

Real problems must be reduced to manageable proportions whenever models
are constructed for the problem resolution. Only a limited number of
explanatory or predictor variables can—or should—be included in a regression
model for any situation of interest. Building a regression model follows the
following three steps:

Selection of Predictor Variables. A central problem in building a regression
model is that of choosing a finite set of predictor variables that is efficient in
some meaning for the objectives of the analysis. A major concern in making this
choice is the extent to which a selected variable contributes to reducing the
remaining part of the regression model. Other considerations include the extent
to which observations on the variable can be obtained more accurately,
quickly, or economically than on competing variables, as well as the degree
to which the variable can be controlled.

Regression Relation. The choice of the functional form of the regression
relation depends on the choice of the predictor variables. Typically, the basic
form of the regression relation is not known in advance and must be decided
empirically after the data have been collected. Polynomial regression functions
(e.g., linear or quadratic) can be considered satisfactory approximations to
regression functions of unknown form or when the known form is highly
complex but can be reasonably approximated by a linear or quadratic
regression function.

Scope of Model. In formulating a regression model, the model designer often
needs to restrict the coverage of the model to some domain of values of
the predictor variable(s). The scope is determined either by the design of the
investigation or by the range of data at hand. For instance, a telecommunica-
tions operator studying the effect of communication minute price on the
volume on communications sold can investigate certain price levels, ranging
in different intervals. The shape of the regression function substantially outside
this range would be in serious doubt because the investigation provided no
evidence as to the nature of the relation outside the regions.

Generally, the model designer does not know the values of the regression
parameters involved in the regression model (such as bi, in the linear
regression models), and these values must be estimated from relevant data.
Frequently, the designed model does not have acceptable a priori knowledge of
the appropriate predictor variables and of the functional form of the regression
relation (e.g., linear or nonlinear), and the designer must rely on an analysis of
the data for developing a suitable regression model.

Data for regression analysis may be observational as obtained from
nonexperimental or experimental studies. Observational data do not control
the predictor (or explanatory) variable(s) of interest. For example, assume

46 PROBABILITY THEORY REVIEW

that the company managers wish to study the relation between age of employee
(X) and number of days of illness in a given year (e.g., last year) (Y). The needed
data for use in the regression analysis can be collected from personnel records.
Such data are observational data because the predictor variable (i.e., age) is not
controlled. A major limitation of observational data is that they often do not
provide adequate information about cause-and-effect relationships.

Nevertheless, it is possible to perform a controlled experiment to provide data
fromwhich the regression parameters can be estimated. The data obtainedwill be
experimental data because control is exercised over the explanatory variable.
When control over the explanatory variable(s) is exercised through random
assignments, the resulting experimental data provide better information about
cause-and-effect relationships than do observational data. The reason is that
randomization tends tohide the effects of anyother variables thatmight affect the
response variable, such as the effect of aptitude of the employee on productivity.

2.6 IMPORTANT DENSITY AND DISTRIBUTION FUNCTIONS

In this section, we discuss the definition and some properties of some important
discrete probability distributions and continuous probability densities that we
encounter most often in the analysis of experiments. A more detailed review
will be provided in Chapter 10.

2.6.1 Distribution Functions

Three important discrete probabilities are discussed. They are the binomial,
Poisson, and geometric distributions.

Binomial Distribution. This distribution is characterized by three parameters
n, p, and k. Typically, it is the distribution of the random variable X, which
counts the number of heads occurring when a coin is thrown n times, assuming
that on any one toss, the probability that a head occurs is p.The distribution
function b(�) is given by the formula

bðn; p; kÞ ¼ n

k

� �
pkð1� pÞn k

Random variable X can be written as the sum X=X1+y+Xn of n
independent variables Xj, taking the value 1 with probability p.

Poisson Distribution. Suppose that we have a situation in which a certain
type of occurrences (such as phone calls) happen at random over a period of
time. We want to model this situation so that we can consider the probabilities
of events such as there are more than n occurrences in a time interval. To
compute such probabilities, we can assume that the average rate, i.e., the

2.6 IMPORTANT DENSITY AND DISTRIBUTION FUNCTIONS 47

average number of occurrences per time unit, is constant. This rate is denoted
by l. Let us consider the random variable X to be the number of occurrences in
a given time interval. We want to calculate the distribution of X. For the sake
of simplicity, we assume that the time interval is of length 1. If this interval is
divided into n equal subintervals, then the probability of occurrence of an event
in a subinterval is equal to p ¼ l

n
.

We then can deduce that PðX ¼ 0Þ ¼ ð1� pÞn ¼ bðn; p; 0Þ ¼ ð1� l
n
Þn: For

large n, this is approximated by e l. More generally, we can prove that
PðX ¼ kÞ � lk

k! e
l using the recursive formula:

bðn; p; kÞ
bðn; p; k� 1Þ ¼

l� ðk� 1Þp
kð1� pÞ

Geometric Distribution. Consider a Bernoulli trials process continued for an
infinite number of trials. An example is a station sharing a communication
medium with other stations. The station can keep sending a packet until it is
received. A packet is assumed to have a probability p to get in collision with
other packets. We can compute the distribution for any discrete random
variable X related to the Bernoulli trials process, provided that, for any k,
the probability P(X=k) can be determined using a finite number of elements.
For example, let X be the number of packet transmission until a success. Then

PðX ¼ 1Þ ¼ p;PðX ¼ 2Þ ¼ pð1 � pÞ;PðX ¼ kÞ ¼ pð1 � pÞk 1; k � 1

Obviously, the sum
P
k�1

PðX ¼ kÞ is equal to

X
k�1

pð1� pÞk 1 ¼ p
X
k�0
ð1� pÞk ¼ 1

2.6.2 Probability Density Functions

We consider in this subsection three of the most used density functions also
called probability density functions (pdf): the gamma, and exponential, normal
densities.

Exponential Density. The exponential probability density function is
defined by

f ðxÞ ¼ le lx; x � 0

0; otherwise

(

where l is a positive real number dependent on the experiment. The cumulative
distribution function (CDF) of the exponential density can be determined
easily. For this, let X be an exponentially random variable with parameter l.

48 PROBABILITY THEORY REVIEW

Then, the cumulative distribution function F is given, at x Z 0, by:

FðxÞ ¼ PðX � xÞ ¼
Z x

0

le ludu ¼ 1�e lx

In addition, one can prove that PðX > xþ r X > rj Þ ¼ PðX > xÞ: This is called
the memoryless property.

Gamma Density. The gamma probability density function, with parameters l
and n, is defined by:

gnðxÞ ¼
lððlxÞn 1

ðn 1Þ! e
lx; x � 0

0; otherwise

8<
:

One can easily show iteratively that the cumulative distribution function (CDF)
related to gn is given by:

GnðxÞ ¼
1� e lx Pn

k¼1
ðlxÞk 1

ðk 1Þ! ; x � 0

0; otherwise

8><
>:

Normal Density. The normal probability density function with parameters m
and s is defined by:

f ðxÞ ¼ 1

2p
p

s
e ðx mÞ2=2s2

It is shown that parameter m represents the expected value of the density
function and the parameter s represents its standard deviation. Because the
cumulative function associated with the normal density cannot be written in
terms of usual function, its computation is made numerically and special tables
are used for it. A special transformation of the form X = sY+ m transforms a
normal random variable X with parameter m and s into a normal random
variable Y with parameter 0 and 1. Now, assume that we need to compute the
cumulative function FX(x), at x W 0, then we can write

FXðxÞ ¼ PðX � xÞ ¼ PðY � x� m
s
Þ ¼ FY ðx� m

s
Þ

The rightmost term in the last equation can be found in a table of values of the
cumulative distribution function FY(�) [11].

2.6 IMPORTANT DENSITY AND DISTRIBUTION FUNCTIONS 49

2.6.3 Multivariate Distributions

Random variables that are vector valued are called multidimensional variables.
They can be treated in a similar way as the simple valued random variables. The
following definitions represent a natural extension [12, 13].

Definition 3. The multidimensional distribution function of a random vector
X=(X1,y,Xn) is defined as

FXðxÞ ¼ FðX1;:::;XnÞðx1; :::; xnÞ ¼ PðX1 � t1; :::;Xn � tnÞ

The expectation E(X) of X is the vector (E(X1),y,E(Xn)). When the random
variable is continuous, a density fX(s) is used to define FX(x) as follows:

FXðxÞ ¼
Z x1

1

Z x2

1
:::

Z xn

1
f ðs1; :::; snÞds1:::dsn

Definition 4. Let X=(X1,y,Xn) be a random vector and v=(v1,y,vn) a real
vector having integer components, the nth moment of X, denoted by mn(X) is
equal to:

mnðXÞ ¼ EðXnÞ ¼ EðXv1Xv2 :::XvnÞ

If X is continuous with density function f, the vth moment is given by:

mvðXÞ ¼
Z 1
1

Z 1
1
:::

Z 1
1
sv11 :::s

vn
1 f ðs1; :::; snÞds1:::dsn

Example. The random vector X = (x2, y3, z4) on the unit cube O=[0, 1]3 with
Lebesgue measure; then E(X)= (1/3, 1/4, 1/5). If v=(2, 3, 2), then

mvðXÞ ¼
Z 1

0

Z 1

0

Z 1

0

x4y9z8dxdydz ¼ 1

450

2.7 MARKOV PROCESSES

AMarkovprocess canbedefinedbya familyof randomvariablesX ¼ Xt t 2 Tjf g,
where T is a set that can be any subset of the real numbers such that for integer n,
any increasing sequence of n+1 indexes inT, say 0= t0ot1oyotnotn+1, and
n+1 values xj, the conditional distribution function (CDF [14]):

CDFXðt; sÞ ¼ PðXtn � snjXtn 1
¼ sn 1; ::;Xt1 ¼ s1;Xt0 ¼ s0Þ

depends only on the last previous value of Xtn 1
[1]. This means that

CDFXðt; sÞ ¼ PðXtn � snjXtn 1
¼ sn 1Þ

50 PROBABILITY THEORY REVIEW

2.7.1 Discrete-Time Markov Chain

The Markov process is called discrete or continuous if its random variable, Xt,
is discrete or continuous, respectively. A discrete-time Markov chain (DTMC)
X is a discrete Markov process satisfying the following relation for every integer
n, time t, and state s:

CDFXðt; sÞ ¼ PðXtn ¼ snjXtn 1
¼ sn 1Þ

Starting from state s0, a DTMC evolves, step by step, over time using one-step
probability transitions. To explain this, assume for the sake of simplicity that
the state space S of X is reduced to the set of integers. Let the probability pi,j(n)
be given by pi;jðnÞ ¼ PðXnþ1 ¼ snþ1 ¼ jjXn ¼ sn ¼ iÞ. Then the following holds:

pi;jðnÞ ¼ PðXnþ1 ¼ jjXn ¼ iÞ

¼ PðX1 ¼ jjX0 ¼ iÞ

Then, starting from a state i, the DTMC can move to some state j with
probability pi,j(n), such that S pi,j(n) = 1. Probabilities pi,j= pi,j (n) form a
nonnegative matrix called the stochastic transition matrix P defined by:

p0;0 p0;1 :::

p1;0 p1;1 :::

::: ::: :::

0
B@

1
CA

The DTMC can be graphically represented as a state transition diagram, where
state i is depicted by a vertex, and a one-step transition from state i to state j is
depicted by an edge labeled with the probability pi,j. The following figure
depicts an example of DTMC.

Now let psi;jðt; t0Þ be given the probability that the DTMCmoves from state i,
at time t, to state j, at time t’. psi;jðt; t0Þ is called the s-step transition probability.
We have:

psi;jðt; t0Þ ¼ PðXt0 ¼ jjXt ¼ iÞ; 0 � t � t0; s ¼ t0 � t

Then, the following statements hold:

�
P

j p
s
i;jðt; t0Þ ¼ 1; 0 � t � t0; s ¼ t0 � t

� pt
0 t
i;j t; t0ð Þ ¼ pt

0 t
i;j t; t0ð Þ ¼ pt

0 t
i;j t; t0ð Þ ¼

� The matrix P(s) of s-step transition probabilities is given by P(s)=P �P(s-1)

=Ps

Example. The one-step transition probability matrix of a DTMC X having a
two state space {0, 1} is given by:

2.7 MARKOV PROCESSES 51

P ¼
2
3

1
3

1
2

1
2

 !

A transition of the DTMC from state 0 to 1 is made with probability 0.75,
where as the DTMC remains in state 0 with probability 0.25. Figure 2.3 depicts
the two-state DTMC.

Two types of state can be of interest for a DTMC, the reachable states and
the absorbing states. A state j is called reachable from any other state i if there is
an integer n such that the n-step transition probability pt

0 t
i;j t; t0ð Þ is nonnull.

State j is called absorbing for the DTMC if no other state can be reachable from
j. Finally, let us notice that the time between two state changes plays an
important role in the dynamics of a DTMC. At every instant, the probability of
leaving a state is given by:

pi ¼ 1� pi;i ¼
X
i 6¼j

pi;j

Applying this many times would define a random variable Xi equal to the sojourn
time at state i. Variable Xi satisfies the following:

PðXi ¼ kÞ ¼ ð1� pi;jÞpk 1
i;j ; for all k40

EðXiÞ ¼ 1

1� pi;i
; sðXiÞ ¼

pi;i
p
1� pi;i

2.7.2 Continuous-Time Markov Chain

Like DTMC, a continuous-time Markov chain (CMTC) provides modeling
tools. The following equation is referred to as the transition probability:

PðXtn ¼ snþ1jXtn ¼ sn; ::;Xt1 ¼ s1;Xt0 ¼ s0Þ ¼ PðXtn ¼ snþ1jXtn ¼ snÞ

The transition probability defined by:

1/22/3
1/3

1/2

0 1

FIGURE 2.3. Example of DTMC.

52 PROBABILITY THEORY REVIEW

pi;jðs; tÞ ¼
PðXs ¼ j Xt ¼ iÞ ; s 6¼ tj
1 ; s ¼ t; i ¼ j

0 ; otherwise

8><
>:

When s= t, the transition probability is defined by

pi;jðs; sÞ ¼
1; i ¼ j

0; i 6¼ j

(

If the transition probabilities pi, j (s, t) depend only on the time difference t� s,
and on the values of s and t, then the CTMC is called time-homogeneous and
the following holds:

pi;jðtÞ ¼ pi;jðs; tÞ ¼ PðXsþt ¼ j Xs ¼ iÞj ¼ pðXt ¼ j X0 ¼ iÞj ; 8u

Like the discrete-time case, the transition probability Pi � j(s,t) is related to any
time w in [s, t] by the following:

pi;jðs; tÞ ¼
X
k2S

pi;kðs;wÞ � pk;jðw; tÞ; 0 � s � wot

But unlike the DTMCs, this equation is difficult to solve and used to deduce the
state probabilities. This will require establishing a partial differential equation
as follows.

Consider the period of time [t, t+Dt] for a small Wt. Assume that the
following limits exist:

qi;jðtÞ ¼ lim
Dt!0

pi;jðt; tþ DtÞ
Dt

; i 6¼ j

qi;iðtÞ ¼ lim
Dt!0

pi;iðt; tþ DtÞ � 1

Dt
; i ¼ j

Then the aforementioned equation can be written in (t, t+ Wt) as follows:

pi;jðs; tþ DtÞ � pi;jðs; tÞ ¼
X
k2S

pi;kðs;wÞðpk;jðw; tþ DtÞ�pk;jðw; tÞÞ

This allows the establishment of the following equation:

@pi;jðs; tÞ
@t

¼
X
k2S

pi;kðs; tÞqk;jðtÞ; 0 � sot

If the CTMC is homogeneous, then the rates qi,j are time independent and the
following differential equation can be deduced and solved:

2.7 MARKOV PROCESSES 53

dpi;jðtÞ
dt

¼ dpi;jð0; tÞ
dt

¼
X
k2S

pi;kðtÞqk;j; 0ot

In this case, the unconditional state probabilities pi(t) at time t can be written
as follows:

dpjðtÞ
dt
¼

@
P
k2S

pi;kðs; tÞpkðsÞ
@t

¼
X
k2S

qk;jpkðtÞ

2.8 LIMITS

2.8.1 Chebychev-Markov Inequality

Let X be a random variable; the next theorem provides a lower bound for
Pr(X Z k).
Theorem (Chebichev-Markov inequality). Let X be an arbitrary random
variable that is non-negative and h: R - R be a positive function. Suppose
that h(X) is integrable. Then, the next result is obtained.

hðkÞPrðX � kÞ � EðhðXÞÞ for all k R ð2:2Þ

Proof. Let wXZk be the characteristic function of the subset {X Z k} (i.e., wXZk

(o) = 1 3 X (o) Z k). Integrating the inequality gives us:

hðcÞwX�k � hðXÞ

Using the monotonicity and linearity of the expectation would lead to the
required result.

Two cases are found of interest: (a) h(x)= x and (b) h(x)= x2. The first case
provides a simple probability bound by stating:

PrðX � kÞ � EðXÞ
k

The second case considers the Chebychev-Markov inequality applied to
X�E(X). The following inequality can be easily deduced:

Prð X � EðXÞj j � aÞ � s2ðXÞ
a2

for all real a

54 PROBABILITY THEORY REVIEW

2.8.2 Laws of Large Deviation

Consider a sequence Xn, n Z 1, of random variables on a probability space (O,
A, P) Let us consider now the sum Sn= X1+ ..+ Xn and study the
asymptotic behavior and convergence of Sn for n-N. The following theorem
holds [15, 16].

Theorem. Assume a large number of random variables Xi, i r n, having

common expectation E(Xi) = m o N, and satisfying supn
1
n

Pn
i¼1

s2ðXjÞo1: If

Xi, i r n, are pairwise uncorrelated, then:

lim
n!1

Sn

n
¼ m; i � n in probability.

The result provided by the theorem states that, for all e W 0,

lim
n!1Pð Sn

n
�m

����
���� � eÞ ¼ 0:

Proof. Using the fact that s2(X + Y)= s2(X) + s2(Y) + 2cov(X, Y) and that
Xi, ir n, are pairwise uncorrelated, we can deduce that s2(Xj+Xk)= s2(Xj)+
s2(Xk).Because the expectation is linear, we can deduce the following two
statements:
� EðSn

n Þ ¼ m

� s2
Sn

n

� �
¼ E

S2
n

n2

� �
� EðSnÞ2

n2
¼ s2ðSnÞ

n2
¼ 1

n2

Xn
k¼1

s2ðXkÞ

Obviously, limn!1 ð 1n2
Pn
k¼1

s2ðXkÞÞ ¼ 0: Using the Chebytchev-Markov (2.9)

inequality obtained for h(x) = x2, we deduce that

Pð Sn

n
�m

����
���� � eÞ � s2ðSn

n
Þ

e2

2.8.3 Central Limit Theory (CLT)

The central limit theorem of probability is one of the major theorems used with
random variables. It states that if Sn is the sum of n mutually independent
random variables, then the distribution function of Sn is well approximated by
a function fm,s known as a normal density function given by [17]:

fm;s ¼ 1

2ps
p e ðx mÞ2=2s2

In this subsection, we will discuss the applications of the CLT in the case
where random variables are identically distributed; knowing that the theorem

2.8 LIMITS 55

can apply for more general cases. For this, let j denote the function f0,1. We

have fðxÞ ¼ 1
2p
p e x2=2:

CLT for continuous independent variables. Let Sn=X1 +..+ Xn be the sum of n
independent continuous random variables with common density function f,

having expected value m and standard deviation s. Let S
n ¼ Sn nm
n
p

s . Then the

CLT states that:

lim
n!1PðaoS
nobÞ ¼ 1

2p
p

Z b

a

e x2=2dx

A proof of this assertion is out of the scope of this chapter. A complete proof
can be found in many references [2, 18]. A proof can be sketched as follows.
Each variable Xi has the same moment generating function g (t). Function g(t)

is defined by gðtÞ ¼ P1
k¼0

mkt
k

k! ¼
R1
1 etxf ðxÞdx, where f is the density function of

Xi. The sum Sn has moment generating function gn(t)= (g(t))n, and the
standard sum S
n has moment generating function g
nðtÞ ¼ ðgð t

n
p ÞÞn . Then,

using the unicity of the moment generation function, one can show that

lim
n!1 g
nðtÞ ¼ et

2=2 and that et
2=2 is the moment generating function of

fðxÞ ¼ 1
2p
p e x2=2: Finally, the distribution functions G
nðxÞ of the sum S
n are

shown to be convergent to the distribution function of F
Norm of the normal

variable Norm, which means that

F
NormðaÞ ¼ PðS
n � aÞ !
n!1

1

2p
p

Z 0

1
e x2=2dx

In addition, the density f
n ðxÞ of S
n is shown to converge to fðxÞ ¼ 1
2p
p e x2=2:

CLT for discrete independent variables. Let Sn = X1 +..+ Xn be the sum of n
independent discrete random variables with common distribution having
expected value m and standard deviation s. Then the CLT states that

lim
n!1PðaoSn � nm

n
p

s
obÞ ¼ 1

2p
p

Z b

a

e x2=2dx

A proof of this statement can be made in the same way used for the case of
continuous variables.

56 PROBABILITY THEORY REVIEW

2.9 COMPARING SYSTEMS USING SAMPLE DATA

2.9.1 Confidence Interval

A confidence interval (CI) for a population parameter is an interval of real
number of the form [a, b] along with an associated probability p, which is
generated from a random sample of the population, such that whenever the
sampling is repeated and the confidence interval recalculated from the used
sample using the same method, a proportion p of the confidence intervals
would contain the population parameter.

If X and Y are observable random variables whose probability distribution
depends on some unobservable parameter Y and x is a real in [0, 1] such that:

PrðXoYoYÞ ¼ x

then the random interval (X,Y) is a called the 100 � x% confidence interval forY.
The number x (or 100 � x%) is called the confidence level. The selection of a
confidence level for an interval determines the probability that the confidence
interval produced will contain the true parameter value. Often, confidence
intervals are stated at the confidence level of 0.90, 0.95, and 0.99. In the case of
normal density, for example, a 95% confidence interval covers 95%, the prob-
ability of observing a value outside of this area is less than 0.05. For a confidence
intervalwith levelC, the value p is equal to (1�C)/2.As shown inFigure 2.4, three
areas can be distinguishedwhen the confidence level c is fixed: the central area and
the areas in each tail of the curve. These areas equal to c, 1 c

2 , and 1 c
2 , respectively.

The confidence interval [X,Y] with level c can be deduced as follows.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
�3 �2

�z* z*
�1 0 1 2

Area �
1�C

2
——

Area �
1�C

2
——

Area � C

3

FIGURE 2.4. Example of confidence levels.

2.9 COMPARING SYSTEMS USING SAMPLE DATA 57

The value Y representing the point on the standard normal density curve
such that the probability of observing a value greater than Y is equal to p is
known as the upper p critical value of the standard normal distribution. For
example, if p=0.025, then:

PðZ4YÞ ¼ 0:025; or PðZ � YÞ ¼ 0:975; implies that Y ¼ 1:96:

A 95% confidence interval for the standard normal distribution is the interval
[� 1.96, 1.96], since 95% of the area under the curve falls within this interval.

Example. Suppose that we are measuring the delay observed for the transmission
of a packet in an optical fiber and observing the readings (in s) on six different
samples:

x1 ¼ 102:5; x2 ¼ 101:7; x3 ¼ 103:1; x4 ¼ 100:9; x5 ¼ 100:5; and x6 ¼ 102:2

We then calculate the sample mean to be 101.82. If one knows that the standard
deviation for this procedure is 1.2 ms, then the confidence interval for the
population mean at a confidence level c, is used to estimate the true mean delay
of the fiber using the results of the aforementioned measurements.

If the measurements follow a normal distribution, then the sample mean will
have the distribution Nðm; s

n
p Þ . By standardizing we get a random variable:

Z ¼ X � m
s= n
p ¼ X � m

0:49

dependent on m, but with a standard normal distribution independent of the
parameter m to be estimated. Hence it is possible to find numbers � z and z,
independent of m, where Z lies in between with probability 12 a, a measure of
how confident we want to be. We take 1� a=0.95. So we have:
Pð�z � Z � zÞ ¼ 1� a ¼ 0:95 . The number z follows from:

FðzÞ ¼ PðZ � zÞ ¼ 1� a=2 ¼ 0:975

z ¼ F 1ðFðzÞÞ ¼ F 1ð0:975Þ ¼ 1:96

and we get

0:95 ¼ 1� a ¼ Pð�z � Z � zÞ ¼ Pð�1:96 � X � m
s= n
p � 1:96Þ

¼ PðX � 1:96
s
n
p � m � X þ 1:96

s
n
p Þ

¼ PðX � 1:96� 0:49 � m � X þ 1:96� 0:49Þ
¼ PðX � 0:98 � m � X þ 0:98Þ

58 PROBABILITY THEORY REVIEW

This might be interpreted as follows. With probability 0.95, one will find the
parameter m between the stochastic end points. The use of confidence intervals
occurs in two different cases:

Confidence Intervals for Unknown Mean and Known Standard Deviation. For a
population with unknown mean m and known standard deviation s, a
confidence interval for the population mean, based on a simple random

sample of size n, is X 7 z� s
n
p , where z is the upper (1–c)/2 critical value

for the standard normal distribution. Therefore, an increase in sample size
will decrease the length of the confidence interval without reducing the level
of confidence. This is because the standard deviation decreases as n
increases.

Confidence Intervals for Unknown Mean and Unknown Standard Deviation. In
most practical cases, the standard deviation for the population of interest is
not known. In this case, it is replaced by the estimated standard deviation
s, which is also known as the standard error. Because the standard error is
an estimate for the true value of the standard deviation, the distribution of
the sample mean x is no longer normal with mean m and standard deviation
s
n
p . Instead, the sample mean follows the t distribution with mean m and
standard deviation s

n
p . The t distribution is also described by its degrees of

freedom. For a sample of size n, the t distribution will have n� 1 degrees of
freedom. The notation for a t distribution with k degrees of freedom is
t(k). As the sample size n increases, the t distribution becomes closer to the
normal distribution, because the standard error approaches the true
standard deviation s for large n.

For a population with unknown mean m and unknown standard deviation, a
confidence interval for the population mean, based on a simple random sample

of size n, is X 7 t� s
n
p ; where t is the upper (1� c)/2 critical value for the t

distribution with n� 1 degrees of freedom, t(n� 1).

2.9.2 Hypothesis Test

A statistical hypothesis is a statement about the distribution of the data variable
X. The hypothesis specifies a set of possible distributions of X. Hypothesis
testing aims at checking whether there is a sufficient statistical evidence
available to reject a presumed null hypothesis, say H0, in favor of a conjectured
alternative hypothesis, denoted by H1, [7, 19]. Thus, a hypothesis test is a
statistical decision; the conclusion will either be to reject the null hypothesis or
fail to reject it. The decision must be based on variable X and aims at finding a
subset R of the sample space O and reject H0 if and only if X in R. The set R is
known as the rejection region. Usually, the critical region is defined in terms of a
statistic W(X), which is known as a test statistic [20, 21].

2.9 COMPARING SYSTEMS USING SAMPLE DATA 59

In a hypothesis test, a type I error occurs when the null hypothesis is rejected
when it is in fact true; that is, H0 is wrongly rejected. The ultimate decision may
be correct or may be in error. There are two types of errors, depending on
which of the hypotheses is actually true:

� A type 1 error is rejecting the null hypothesis when it is true.

� A type 2 error is failing to reject the null hypothesis when it is false.

If H0 is true (that is, the distribution of X is specified by H0), then P(X A R)
is the probability of a type 1 error for this distribution. If H1 is true (that is, the
distribution of X is specified byH1), then PðX 2 RÞ is the probability of a type 2
error for this distribution. If H1 is true (that is, the distribution of X is specified
by H1), then P(X A R), the probability of rejecting H0 (and thus making a
correct decision), is known as the power of the test for the distribution.

Tests of theMean in theNormalModel.Suppose thatX1,X2,y,Xn is a random
sample from the normal distribution with mean m and standard deviation s. To
construct hypothesis tests for m, the test procedure is different, depending on
whether s is known or unknown. For this reason, s is called a nuisance parameter
for the problem of testing m. The key elements in the construction of the tests are

the sample mean X ¼ 1

n

Xn
i¼1

Xi and sample variance s ¼ 1
n

Pn
i¼1
ðXi � XÞ2

s
, and

the properties of these statistics when the sampling distribution is normal.
Suppose first that the standard deviation s is known. Thus, the parameter

space is {m: m in R}, and a hypothesis can be any subset of this space. The basic
test statistic that we used is as follows:

Z0 ¼ ðM � m0Þ
s= n
p

Note that Z0 gives the directed distance from the sample mean to m0 in units of
standard deviations. Thus, Z0 should give good information about competing
hypotheses with m0 on the boundary. It has the normal distribution and
standard deviation given by [21]:

EðZ0Þ ¼ ðm� m0Þ
s= n
p ; ðZ0 ¼ 1Þ

In particular, if m= m0, then Z0 is the standard normal distribution. The
following tests have significance level r:

� Reject H0: m= m0 versus H1: m 6¼ m0 if and only if Z0 W z1 r/2 or
Z0 o � z1 r/2.

� Reject H0: m r m0 versus H1: m W m0 if and only if Z0 W z1 r.

� Reject H0: m Z m0 versus H1: m o m0 if and only if Z0 o z1 r.

60 PROBABILITY THEORY REVIEW

Knowing that the power function for a test of m isQ(m)=P(RejectH0 | m), we
can compute the power function explicitly in terms of the standard normal
distribution function G, in the following tests:

H0 : m � m0 versus H1 : m4m0 at significance level a; s

We can easily show that:

QðzÞ ¼ Gð�z1 r þ m� m0
s= n
p Þ; and Qðm0Þ ¼ r

Consider now the more realistic statement that s and m are unknown. In this case,
the parameter space is {(m, d): m in R, d W 0} and the hypotheses are defined by
subsets of this space. The basic test statistic that can be used for tests about m is

T0 ¼ M m0
S= n
p . T0 is called the Student’s t-distribution with n � 1 degrees of freedom.

It will be studied later in chapter 3. When m 6¼ m0, the distribution of T0 is known
as the non-central t-distribution. Let us denote by tk,p the order p for the
t-distribution T0. It can be shown that the following tests have significance level r:

� Reject H0: m= m0 versusH1: m 6¼ m0 if and only if T0 W tn 1, 1 r/2 or T0 o
tn 1, 1 r/2.

� Reject H0: m r m0 versus H1: m W m0 if and only if T0 W tn 1,1 r.

Tests in the Bernoulli Model. Suppose that X1, X2,y, Xn is a random sample
from the Bernoulli distribution with unknown parameter p in]0, 1[. They are
independent indicator variables taking the values 1 and 0 with probabilities p
and 1–p, respectively. To build hypothesis tests for the parameter p, the
parameter space selected is {p: 0 o p o 1}, whereas the hypotheses are defined
by any subset of this space. Recall that N=X1 + y + Xn has the binomial
distribution with parameters n and p. It has a mean and variance equal to np
and np(1 � p), respectively.

For r in]0, 1[, let b(r, n, p) denote the quantile of order r for the binomial
distribution with parameters n and p. Because the binomial distribution is
discrete, only certain quantiles are possible. The following tests have signifi-
cance level r:

� Reject H0: p= p0 versus H1: p 6¼ p0 if and only if N o b(r/2, n, p0) or N W
b(1� r/2,n, p0).

� Reject H0: p o p0 versus H1: p W p0 if and only if N W b(1� r,n, p0).

When n is large, the distribution of N is approximately normal according to
the central limit theorem.

2.9 COMPARING SYSTEMS USING SAMPLE DATA 61

Thus, an approximate normal test can be constructed using the test statistic:

Z0 ¼ N � np0

np0ð1� p�aÞ
p

Obviously, Z0 is the standard score of N, under the null hypothesis. If n is large,
then the following tests have approximate significance level r:

RejectH0: p= p0 versusH1: p 6¼ p0 if andonly ifZ0W� z1 r/2 orZ0o� z1 r/2.

2.10 SUMMARY

This chapter has studied the basic properties of the probability theory,
regression models, random processes, and Markov chains. The chapter gives
also some examples where these entities have been used to study the behavior
and features of computer and communication systems. The comparison of
systems using sample data has also been addressed, and some methods for
hypothesis testing and confidence interval definition have been presented. The
chapter contains different examples to illustrate the presented concepts.

REFERENCES

[1] A. Allen, ‘‘Probability, Statistics, and Queueing Theory with Computer Science

Applications,’’ 2nd Edition, Academic Press, New York, 1990.

[2] H. P. Shu, Probability, Random Variables and Random Processes. McGraw Hill,

New York, 1997.

[3] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi, Queueing Networks and

Markov Chains, John Wiley, New York, 1998.

[4] R. L. Chambers and C. J. Skinner (Eds.), ‘‘Analysis of Survey Data,’’ Wiley, New

York, 2003.

[5] W.G. Cochran, ‘‘Sampling Techniques,’’ Wiley, New York 1977.

[6] F. Daly, D. L. Hand, M. C. Jones, A. D. Lunn, and K. J. McConway, ‘‘Elements of

Statistics,’’ Addison Wesley, Boston, MA, 1995.

[7] E. L. Lehmann, ‘‘Testing Statistical Hypotheses,’’ 2nd Edition, Springer, New York,

1997.

[8] J. S. Long, ‘‘Regression Models for Categorical and Limited Dependent Vari

ables,’’ Sage Publishers, Thousand Oaks, CA, 1997.

[9] Ch. A. Charalambides, M. V. Koutras, and N. Balakrishnan, ‘‘Probability and

Statistical Models with Application,’’ CRC Press, Boca Raton IL, 2001.

[10] G.A.F. Seber, andC. J.Wild., ‘‘NonlinearRegression’’. JohnWiley,NewYork, 1989.

[11] H. L. Harter, and D. B. Owen, ‘‘Selected Tables in Mathematical Statistics,’’ Vol. 3,

Institute of Mathematical Statistics, American Math Society, Providence, RI, 1975.

[12] N. L. Johnson, S. Kotz, and N. Balakrishnan, ‘‘Discrete Multivariate Distribu

tions,’’ John Wiley, New York, 1997.

62 PROBABILITY THEORY REVIEW

[13] S. Kotz, N. Balakrishnan, and N. L. Johnson, ‘‘Continuous Multivariate Distribu

tions, Volume 1: Models and Applications,’’ 2nd Edition, John Wiley, New York,

2000.

[14] O. C. Ibe, Markov, ‘‘Processes for Stochastic Modeling,’’ Academic Press, New

York, 2008.

[15] A. Dembo, and O. Zeitouni, ‘‘Large Deviation and Applications,’’ 2nd Edition,

Springer, New York, 1998.

[16] A. Weiss, An Introduction to Large Deviations for Communication Network,

Journal on Selected Areas in Communications Vol. 13, pp. 928 952, 1995.

[17] M. Rosenblatt, ‘‘A Central Limit Theorem and a Strong Mixing Condition,’’

Proceedings of theNationalAcademyof ScienceUSA,Vol. 42,No. 1, pp. 43 47, 1956.

[18] H. Tijms, ‘‘Understanding Probability: Chance Rules in Everyday Life,’’ Cam

bridge University Press, Cambridge, UK, 2004.

[19] D. R. Anderson, K. P. Burnham, and W. L. Thompson, ‘‘Null Hypothesis Testing:

Problems, Prevalence, and an Alternative,’’ Journal of Wildlife Management Vol.

64, pp. 912 923. 2000.

[20] E.L.Lehmann,Testing StatisticalHypotheses, 3rdEdition, Springer,NewYork, 2005.

[21] M. S. Obaidat, and G. I. Papadimitriou (Eds.),’’ Applied Systems Simulation:

Methodologies and Applications,’’ Springer, New York, 2003.

EXERCISES

1. Assume that an urn contains n ¼Pk
i¼1

ni balls, partitioned into k colors,

and assume that the urn contains nj balls of color j. A user draws m balls
without replacement.

a. What is the probability that the user has at least one ball of each color?

b. Assume k= 5 and nj=8 for all j. Define how many balls does the
user need to draw to have at least 0.8 probability of getting a full set.

c. Suppose now k is initially unknown and that n=60. Drawing out 24
balls, the user finds three different colors. i) Show that k satisfies:
3rkr33; ii) Is there a narrower interval k1rkrk2 that can be stated?

2. Let X be a random variable with distribution function fX(*) defined by
fX(� 1)=1/5; fX(0)=1/5; fX (1)=2/5; fX (2)=1/5

a. Let Y be the random variable defined by the equation Y=X+n.
Find the distribution function fY (*) of Y.

b. Let Z be the random variable defined by the equation Z=Xn,
for n W 0. Find the distribution function Z.

3. Let O be the sample space O={0,1,2,3,y.} and define the following
function f:

f ðjÞ ¼ ð1� gÞjg

For some fixed real value g, 0o g o1, and for 0,1,2,3, ..

EXERCISES 63

a. Show that f is a distribution for O.
b. Assume that the probability that a packet arriving to a switch node

with error is equal to r and that an erroneous packet is immediately
resent to that node. Compute the probability that a packet arrives
correct at the jth transmission. Compute also the average number of
packet retransmission.

4. LetX1, X2, andX3 be independent random variables with common
distribution f.

a. Find the expression using f of distribution of the sum
S3=X1+X2+X3.

b. If the distribution f is given by:

f ¼
0
1
4

1
1
2

2
1
8

3
1
8

 !

c. Find the distribution of the sum S3.

5. The price of a stock on a given trading day changes according to the
distribution g given by

g ¼
�1
1
4

0
1
2

1
1
8

2
1
8

 !

Find the distribution for the change in stock price after three (indepen-
dent) trading days.

6. Corporation A sells an imported copier on a franchise basis and performs
preventive maintenance and repair service on this copier. The data below
have been collected from 45 recent calls on users to perform routine
preventive maintenance service; for each call, X is the number of copiers
serviced and Y is the total number of minutes spent by the service person.
Assume that simple regression model is appropriate.

1 : 1 2 3 � � � 43 44 45

X1: 2 4 3 � � � 2 4 5

Y1: 20 60 46 � � � 27 61 77

a. Obtain the estimated regression function.

b. Plot the estimated regression function and the data. How well does
the estimated regression function fit the data?

c. Interpret b0 in your estimated regression function. Does b0 provide
any relevant information here? Explain.

d. Obtain a point estimate of the mean service time when X=5 copiers
are serviced.

64 PROBABILITY THEORY REVIEW

7. Consider the simple linear regression model Y= b0 + b1X + e, where
the intercept b0 is known.
a. Find the least squares estimator of 1 for this model. Does this answer

seem reasonable?

b. What is Var(b̂1 ,) for the least squares estimator b̂1 found in the
previous question?

c. Compare this estimator with the one found for the case where both
slope b1 and intercept b0 are unknown?

8. Consider the power function for a test of m is Q(m)=P(Reject H0 | m).
For the test
H0: m= m0 versus H1: m 6¼ m0 at significance level r, associated with a
normal distribution with mean m0, show the following results for the
function Q:

a. Q(m)=G[� z1 r/2+ (m� m0)/(d/n
1/2)]+G[� z1 r/2� (m� m0)/(d/n

1/2)]

b. Q(m) is symmetric about m0.
c. Q(m) decreases for m o m0 and increases for m W m0.
d. Q(m0)= r.

e. lim
m!1QðmÞ ¼ 1 and lim

m! 1QðmÞ ¼ 1:

9. Suppose we choose independently 30 numbers at random (uniform
density) from the interval [0; 24].

a. Find the normal densities that approximate the densities of their sum
S36, their standardized sum S
36 ,and their average A36.

b. Let N be the normal approximation of A36, FðxÞ ¼
PðjA36 � 12j � xÞ; f ðxÞ ¼ PðjN � 12j � xÞ; and gðxÞ ¼ 4

3x2
: Compare

how f(x) and g(x) are as estimates for F(x).

10. A die is rolled 36 times. Use the central limit theorem to estimate the
probability that:

a. The sum is greater than 90.

b. The sum is equal to 90.

11. Given a two-state DTMC having the following transition probability
matrix:

P ¼ 1� a a

b 1� b

� �
; 0 � a; b � 1; 1� a� bj jo1

a. Show that n-step transition probability matrix P(n) is given by

PðnÞ ¼ 1

aþ b

bþ að1� a� bÞn a� að1� a� bÞn
b� bð1� a� bÞn aþ bð1� a� bÞn

 !

b. Compute the limit of P(n) when a ¼ 1
4
; b ¼ 1

2
; and n - N.

12. Consider the CMTC with the transition diagram shown below. Identify
all the 3-tuples (a, b, c) in R3

þ that make the CTMC reversible.

EXERCISES 65

CHAPTER 3

MEASUREMENT/TESTING TECHNIQUE

The measurement technique of performance evaluation of computer and
telecommunication systems is considered the most credible technique; however,
it is the most expensive. The measurement or testing technique can be
implemented on the real system or the prototype version of the system intended
to be built. System performance measurement involves monitoring the system
under study while it is being subjected to a particular set of workload or
benchmark application programs. It is vital that the system performance
analyst understand the following concepts before invoking the task of perfor-
mance measurements: (a) system application, (b) performance metrics (mea-
sures) of interest to the analyst, (c) method of system instrumentation and how
the system under study is monitored, (d) representative of workload to real
applications, (e) methods of presenting performance results, and (e) techniques
to design measurement monitors [1–21].

This chapter focuses on the fundamental concepts of the measurement
technique, tracing, tools, as well as issues and solutions.

3.1 MEASUREMENT STRATEGIES

In the measurement technique, different kinds of performance metrics are
usually needed depending on the nature of the system under test and application.

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

66

From the viewpoint of event type, these metrics can be categorized into the
following classes [1–3, 7]:

� Event-count metrics. This class includes metrics that are simply counts of
the number of times a specific event takes place, such as the number
of packets that arrive with noise, number of cells discarded because of
congestion or deadlock, and number of cache misses.

� Profiles. In computer systems, a profile represents an aggregate metric for
characterizing the overall behavior of a program or a whole system.
For example, degree of parallelism (DOP) represents the total number of
active processors in a parallel computer system at each instant of time
during the execution of a specific application program.

� Auxiliary-event metrics. Auxiliary metrics note the values of secondary
system parameters when a specific event happens.

The strategy used to measure the performance metric of interest can be decided
based on the event type classification discussed above. The chief strategies are
as follows [2, 6, 17–21]:

� Event-driven strategy. This scheme records the needed information to
calculate the metric whenever the events of interest occur. For instance,
the desired metric may be the number of cells lost in a computer network’s
or the number of cache miss in a computer system. To find this number, the
analyst should provide a way to record these events whenever they occur
and update the appropriate counter. At the end of the session, a mechanism
should be provided to dump the content of the counter. This strategy has
the advantage that the overhead needed to monitor the event of interest
is spent only when the event happens. However, this characteristic is
considered as a drawback when the event occurs frequently.

� Tracing strategy. This scheme relies on recording more data than only a
single event. This means that we need more storage space for this strategy
compared with the event-driven scheme.

� Indirect. This scheme is used when the performance measure (metric) of
interest cannot be measured directly. In such a case, the analyst should
look for a metric that can be measured directly and from which the
required metric can be derived.

� Sampling. This strategy relies on recording the system’s state needed to
find out the performance metric of interest. Clearly, the sampling fre-
quency here determines the measurement overhead. The latter is deter-
mined by the resolution needed to sample the required events.

3.2 EVENT TRACING

In general, a trace consists of an ordered list of events and their related variables.

3.2 EVENT TRACING 67

Such captured information is gathered using profiling tools, and it provides
a summary representation of the overall execution of a task. The events of a
trace can be a time-ordered list of all instructions executed by a program,
sequence of cache addresses by a program, sequence of disk blocks referenced
by a file system, and so on. Events may be represented at several levels of
details, such as variable trace, procedure trace, or event trace. It is worth
mentioning that tracing adds additional processing overhead. Thus, it is
important to provide switches to enable or disable tracing as needed.

The traces can be investigated and analyzed to characterize the behavior of a
program or a system. In simulation tasks such as cache memory simulation and
communication network simulation, traces can be used to drive the simulation
programs. Other examples include paging algorithms, central processing units
(CPUs) scheduling schemes, and deadlock avoidance algorithms in parallel and
distributed systems, among others. Because the size of such traces is usually
large, trace compression is often used in such cases to expedite the process of
simulation.

Traces are also often used to verify simulation models and to analyze and
tune resource management algorithms. However, it is worth pointing out here
that trace-driven simulation has many advantages, including [1–10]: (a) better
credibility, (b) fair comparison of alternative schemes; (c) less randomness and
more close to real operating conditions; (d) more detailed, which helps to find
the best trade off alternative; and (e) easier to validate.

The main drawbacks of trace-driven simulation include (a) single point
validation, because traces give only one point of validation; (b) unnecessary
high-level details as traces are generally long; (c) trace-driven simulation is
complex as it requires a more detailed simulation of the system; (d) finiteness
characteristic as a detailed trace of a minute or so may fill an entire disk and a
simulation result based on such a few minutes may not represent the behavior
of the system under study; and (e) poor representation, as traces may become
obsolete faster than other forms of workload types.

Any tracing system consists of three key parts (a) the application program
being traced that generates the traces; (b) the trace consumer, which is the
program that uses the information (e.g., simulator); and (c) the disk file to
store the traces. The latter may not be needed in cases where the traces are too
large to fit in a disk. In such a case, the traces are used online. Figure 3.1 shows
a simplified block diagram of a tracing system.

Traces can be generated using several techniques. These are as follows:

� Software exception. Some microprocessors have a mode of operation
called the trace mode. A special control bit called the trace bit is used,
and when it is enabled, tracing is performed. This is a sort of software
exception, which slows down the program being executed.

� Modification of source code. In this technique, the source program to be
traced is modified so that when it is compiled and executed, extra
statements are executed to generate the required traces. This scheme

68 MEASUREMENT/TESTING TECHNIQUE

allows the performance analyst to trace specific events, which reduces the
need to store a huge volume of traces. The main drawback of this scheme
is that inserting the trace points is prone to error as it is a manual process.

� Modification of microcode. This approach was used when microprocessors
were used to execute their instruction sets using interpretation. In such
processors, it was possible to modify the microcode to generate traces of
each executed instruction. However, in today’s state-of-the-art micropro-
cessors, there is no microcode, which limits the applicability of this scheme.

� Emulation. In this scheme, the emulation program is modified to trace the
execution of the application program. Keep in mind that emulation enables
us to execute a program by emulating a processor’s instruction sent.

� Modification of the executable code produced by the compiler. In the
technique, we add supplementary instructions at the beginning of each
block in order to mark when the block is inserted.

One major concern when generating traces is the large volume of data
produced in a very short time. This prompted performance analysts to devise
schemes to compress the traces without affecting the degree of representation.
The major techniques that can be used to reduce the size of information
produced by tracing are as follows [2]:

� Data compression. This technique relies on applying data compression
techniques to reduce the size of traces. It has the potential to reduce the
size of traces by a factor of 25% of the original size. The tradeoff in using
this scheme is the additional time needed to compress and uncompress the
traces when traces are generated and consumed, respectively.

� Compression of traces online. The idea here is to consume the traces online
as generated without the need to store them for later use. This saves the
need to have a large disk system to store the traces; however, there is a
possible problem in multitask environments. There is no guarantee that
the next time the program is traced, the same succession of events will
occur because system events happen asynchronously with respect to a
traced program. Clearly, this is of great concern when repeatability in
generating traces is needed.

� Sampling of traces. The main idea here is to save only a relatively small
part of the trace sequences scattered throughout the collected or generated

Disk

Trace
consumer

(such as the
simulator)

Application
program

FIGURE 3.1. A simplified block diagram of a tracing system.

3.2 EVENT TRACING 69

trace data. Because such samples are considered statistically representative
of the entire trace data, they can be used to drive the simulator. This has
the advantage of storing a small part of the trace data. It is worth
mentioning here that there is no theoretical basis to help the performance
analysts decide on the size of each sample as well as the sampling rate. This
technique has been used in the simulation of cache memory systems.

� Abstract execution. This scheme separates traces into the following two
stages: (a) compiler analysis of the program to be traced to identify a small
part of the entire trace that can be used later on to reproduce the entire
trace and (b) execution of special trace-generation procedures to convert
this small part of the trace data into the full trace data. Empirical studies
have shown that this tracing scheme slows down the execution of the
program being traced by an average factor of 6, which is not higher than
other tracing schemes. Moreover, because this scheme records information
only about the changes that actually occur during run time, it can reduce
the volume of trace data stored by a factor of several hundreds.\

3.3 MONITORS

Monitors are defined as tools that are used to observe and record the activities
of a system under testing and analysis. The main functions of a monitor used in
performance evaluation are to: (a) observe the performance of the system, (b)
collect performance statistics, (c) analyze the data collected, and (d) display the
results if possible. Hardware monitors have gone through several generations
of developments. State-of-the art hardware monitors are intelligent and have
programmable devices as well as smart components such as processors and
needed peripherals. Almost all monitors when embedded in the system under
test cause overhead. It is desired to reduce the monitor overhead [1–5].

Monitors can be categorized based on the implementation level, trigger
mechanism, and display capability. From point of view of the levels at which
monitors are implemented, we have the following types of monitors: (a)
hardware monitors, (b) software monitors, and (c) hybrid or firmware
monitors. A brief description of each of them is given below.

3.3.1 Hardware Monitors

A hardware monitor is a device that consists of several components. It is
attached to the system to be monitored and analyzed to collect information
related to events of specific interest. Probes are usually used to connect the
components of the hardware monitor to the system under test. In general, a
hardware monitor consumes no system resources, and it has a lower overhead
as compared with to a software monitor. Hardware monitors are usually faster

70 MEASUREMENT/TESTING TECHNIQUE

than software monitors. The basic building blocks of a hardware monitor are as
follows:

� Probes. These are used to connect the monitor to the circuit or hardware
points of interest of the system under test. A probe in general has high
impedance.

� Logic gates. These components are needed to construct various functional
units that help to indicate events that may increment counters or test
conditions.

� Counters. These devices are needed to increment or decrement the
occurrence of events of interest.

� Timers. These are needed for time stamping or triggering a sampling
operation.

� Comparators. Such components are used to compare contents of counters
and to test for specific conditions.

� Storage device. Almost all hardware monitors have built-in storage devices,
such as tapes or compact disk (CD) drivers, to store observed data.

3.3.2 Software Monitors

These types of monitors are basically computer programs that are embedded in
the operating system. They are meant to observe events in the operating system
and higher level software, such as in databases and networks. It is essential to have
the operating rate of the monitor high enough so that it can observe the needed
events and collect the needed data properly. Also, the overhead should be small.

In general, software monitors have lower input rates, lower resolution, and
higher overhead when compared with hardware monitors. However, they
have higher input width and recording capacities than hardware monitors.
Also, they are less expensive and easier to implement than hardware monitors.
Because software monitors have high overhead, they should be designed so that
their function can be easily disabled when needed using a simple flag.

In designing any software monitor, several issues should be considered.
Among these are the following:

1. Buffer size. The size of the buffer memory should be optimal. This means
that it should be large enough so that the rate of writing to the auxiliary
storage is reduced, and at the same time, it should be small so that the
time lost per writing operation is not too large.

2. Number of buffers. The minimum number of buffers should be two.
This is because if there is only one buffer, then the monitoring (filling of
buffer) and recording (emptying) processes cannot be performed
simultaneously.

3.3 MONITORS 71

3. Method of activation. This refers to the way by which the software
monitor’s data collection procedure is triggered. Among these methods
that are used in microprocessor systems are: (a) trace mode, (b) trap
instruction(s), and (c) timer interrupt.

The trace mode is available in most microprocessors. In this scheme,
the execution of instructions is interrupted after each instruction, and
control is passed on to a special procedure to collect data. This technique
suffers from a high overhead.

The trap instruction-based scheme relies on using a trap instruction in
the middle of the code where it is inserted at selected points. When the
trap instruction is executed, program execution is transferred to a special
data collection procedure.

The timer interrupt-based scheme is provided by the operating system
to transfer control of execution to a special data collection procedure at
fixed intervals. One interesting characteristic of this scheme is that it has
low overhead because the overhead is independent of the event rate.

4. Enable/Disable. Because of the overhead incurred when the software
monitor is enabled, it is desired to disable the software monitor easily
when monitoring is no longer needed. Moreover, such an on/off cap-
ability permits debugging of the code.

5. Overflow management. There is always a possibility that the monitor’s
buffer reaches the overflow state. To avoid losing traces, designers of
software monitors should provide a mechanism by which the monitoring
process is stopped whenever the buffer overflows. The choice between
overwriting the buffer or not depends on the application and needs of the
analyst. The goal here is to detect the occurrence of buffer overflow.

6. Programming language. To reduce overhead and latency, it is desired to
write the monitor code in low-level languages such as assembly language.
However, because the monitor is embedded in the system software,
therefore, it is better to have both written in the same programming
language.

7. Monitor priority. To minimize the effect of the monitor’s on system’s
operation, it should be given a low priority, especially if the monitor is
run asynchronously. However, if it is required to observe important
timely observations, then the monitor should be given a high priority.

3.3.3 Hybrid Monitors

This type of monitors is also called by other authors as firmware monitors.
These monitors are often used for applications where speed and timing
consideration prevent the use of software monitors, and difficulty of accessing
probe points prevents the use of hardware monitors. They are popular to
monitor networks where existing interfaces can be easily microprogrammed

72 MEASUREMENT/TESTING TECHNIQUE

to monitor the flow of traffic. Furthermore, they can be used to generate
address profiles of microcode, which are used to optimize the code to improve
the speed of execution.

Hybrid monitor use software and hardware means for their operation. When
implemented properly, hybrid monitors have the potential of providing the
high-resolution characteristics of hardware monitors and the data reduction
capabilities of software monitors.

It is worth mentioning in this context the distributed-system monitors that
are used to monitor distributed and parallel systems. In such a case, the
monitor itself must be distributed and should be made of several components
that are supposed to work concurrently. The main functions of a distributed
and parallel-system monitor are:

1. Gathering of data from individual system’s components.

2. Collection of data from different observers.

3. Analysis of data collected using special statistical routines that summarize
the data characteristics.

4. Preparation of performance reports.

5. Interpretation of performance reports using either human experience or
expert systems.

6. Based on result’s interpretation, a special entity is supposed to make
decisions to set or change system parameters or configurations. The
component that performs this task is often called the manager, and it is
implemented in advanced monitors with automated monitoring and
control features [1–4].

3.4 PROGRAM OPTIMIZERS

Program execution monitors or program execution analyzers (program opti-
mizers) are of great interest to performance evaluation analysts. Monitoring the
execution of a computer program is needed for the following reasons:

1. To locate the execution path of a code

2. To determine the time spent in various sections of a program

3. To locate the most frequent or most time-consuming segment of the
program

4. To test the relationship between the variables and parameters of a
program

5. To establish the adequacy of a test run of the program

In general, programs to be monitored are chosen depending on the following
criteria: (a) frequency of use, (b) time criticality, and (c) resource demand.

3.4 PROGRAM OPTIMIZERS 73

The chief issues in designing a program execution (optimizer) monitor are
pretty much similar to these for software monitors. In addition there are several
issues that are specific to the optimizer monitors, including [1, 4] the following:

1. Frequency and time histogram. Almost all program monitors produce an
execution profile with different levels of hierarchy, such as summaries
by modules, for each module by procedures, and for each procedure by
statement. Monitors have the capability to scale up or down the amount
of detail.

2. Measurement units. An execution program divides the program into
smaller units called modules, procedures, high-level language statements,
or machine instructions. Data associated with each unit are noted and
shown in the final report. Lower level reports such as machine instruction
profiles may be too comprehensive for certain applications.

3. Measurement methods. We can have two basic measurement schemes:
sampling and tracing. The sampling scheme makes use of the system’s
timer convenience, and it records states at cyclic intervals. If the elapsed
time sampling approach is used, then the program may be in a wait state,
until an input/output (I/O) operation or some other event is completed.
The tracing scheme uses either explicit loops or the trace mode of a
microprocessor.

4. Instrumentation means. In this scheme, instrumentation can be added
before compilation, during compilation, before linking (after compila-
tion), or during run time. To instrument a source code, a high-level
routine call statement is added at a strategic location in the program. This
call statement transfers control to the monitor procedure that it is
supposed to collect data [2].

3.5 ACCOUNTING LOGS

Accounting logs provide interesting useful information about the usage and
performance of the system; therefore, many analysts consider them software
monitors. It is recommended that before creating a monitor, the analyst should
benefit from the data provided by accounting logs.

Accounting logs can be used without extra efforts as they are built into the
system. Data collected using accounting logs are accurate as they represent real
operation with little overhead. However, accounting log analysis programs are
not generally provided. For a more accurate analysis, a system analyst should
develop additional analysis programs, including statistical analysis programs.

In general, the precision of accounting logs is not high, and most of them
contain no system-level information including device utilization, queueing time,
or queue length. In addition to the queueing time, the elapsed time includes the

74 MEASUREMENT/TESTING TECHNIQUE

service time of resources. Moreover, almost all accounting logs do not record
the time spent waiting for user inputs; therefore, this time cannot be distin-
guished from the queueing time. The typical information provided by an
accounting log include the program name, program start time, program end
time, CPU time used by the program, number of disk reads and writes, number
of terminal reads and writes, and so on.

The main usages of accounting logs are to know: (a) usage of resources, (b)
programs that users should be trained to use more efficiently, (c) programs that
need better code optimization, (d) which application programs are I/O bound,
(e) programs that have poor locality of reference, (f) number of jobs that can be
run at the same time without performance degradation, and (g) programs that
provide the best opportunity for better human interface [1, 2, 4].

3.6 SUMMARY

This chapter presented the main aspects of the measurement/testing technique
of performance evaluation of computer and telecommunication systems. In
particular, we studied the strategies to be followed when invoking into a
measurement task, which include the event-driven, tracing, and sampling
strategies. We also studied the main performance metrics that depend on the
applications and objectives of the performance evaluation study. Then we
studied event tracing and its significance, drawbacks, applications, approaches,
components, and methods of trace compression. Software, hardware, and
hybrid monitors have been investigated along with their functions, types,
and design issues. We also have shed some light on program optimizers or
program execution analyzers. In particular, we reviewed the main issues in their
design such as frequency and time histogram, measurement unit and methods,
and instrumentation means. The last section covered in this chapter is
accounting logs. Although accounting logs are not accurate, they provide a
rough estimate of the performance of resources, especially their use. Account-
ing logs provide interesting useful information about the usage and perfor-
mance of the system; therefore, many analysts consider them software
monitors. It is recommended that before creating a monitor, the analyst should
benefit from the data provided by accounting logs. Also, we addressed the main
applications and characteristics of accounting logs.

REFERENCES

[1] M. S. Obaidat, and G. I. Papdimitriou (Eds.), ‘‘Applied System Simulation:

Methodologies and Applications,’’ Springer, New York, 2003.

[2] R. Jain, ‘‘The Art of Computer Systems Performance Analysis,’’ Wiley, New York,

1991.

REFERENCES 75

[3] K. Kant, ‘‘Introduction to Computer System Performance Evaluation,’’ McGraw

Hill, New York, 1992.

[4] D. J. Lilja, ‘‘Measuring Computer Performance,’’ Cambridge University Press,

Cambridge, UK, 2000.

[5] M. S. Obaidat, ‘‘Advances in Performance Evaluation of Computer and Tele

communications Networking,’’ Computer Communication Journal Vol. 25, No.

11 12, pp. 993 996, 2002.

[6] M.S. Obaidat, ‘‘ATM Systems and Networks: Basics Issues, and Performance

Modeling and simulation,’’ Simulation: Transactions of the Society for Modeling

and Simulation International, Vol. 78, No. 3, pp. 127 138, 2003.

[7] M.S. Obaidat, ‘‘Performance Evaluation of Telecommunication Systems: Models

Issues and Applications,’’ Computer Communications Journal, Vol. 34, No. 9,

pp. 753 756, 2001.

[8] M. Ghanbari, C. J. Hughes, M. C. Sinclair, and J. P. Eade, ‘‘Principles of

Performance Engineering for Telecommunication and Information Systems,’’

IEE, Herts, UK, 1997.

[9] K. Hwang, and Z. Xu, ‘‘Scalable Parallel Computing,’’ McGraw Hill, New York,

1998.

[10] M. Arlitt, and T. Jin, ‘‘Workload Characterization of the 1998 World Cup Web

Site,’’ HP Technical Report 1999 35R1, Hewlett Packard, 1999.

[11] M. Arlitt, and C. Williamson, ‘‘Internet Web Servers: Workload Characterization

and Performance Implications,’’ IEEE/ACM Transactions on Networking, Vol. 5,

No. 5, pp. 631 645, 1997.

[12] L. K. John, and A. M. G. Maynard, (Eds.)’’ Workload Characterization

of Emerging Applications,’’ Kluwer Academic Publisher, Dordrecnt, The

Netherlands, 2001.

[13] J. L. Hennessy, and D. A. Patterson, ‘‘Computer Architecture: A Quantitative

Approach,’’ 3rd edition Morgan Kaufmann, New York, 2003.

[14] J. Banks, J. S. Crason II, B. L. Nelson, and D. Nicol, ‘‘Discrete Event System

Simulation,’’ 3rd edition, Prentice Hall, Upper Saddle River, 2001.

[15] S. M. Ross, ‘‘Simulation,’’ 2nd edition, Harcourt Academic Press, San Diego, CA,

1997.

[16] M. S. Obaidat, ‘‘Performance Evaluation of the IMPS Multiprocessor System,’’

Journal of Computer and Electrical Engineering, Vol. 15, No. 4, pp. 121 130, 1989.

[17] The Standard Performance Evaluation Corporation: http://www.spec.org.

[18] http://imls.lib.utexas.edu/redesign/slideshow/tsld009.html.

[19] NAS Parallel Benchmarks: http://science.nas.nasa.gov/software/npb/.

[20] Parkbench Parallel Benchmarks: http://www.netlib.org/parbench/.

[21] Transaction Processing Council (TPC) Benchmarks: http://www.tpc.org/.

EXERCISES

1. What are the strategies that can be used for the measurement technique
of performance evaluation?

76 MEASUREMENT/TESTING TECHNIQUE

2. Compare and contrast hardware and software monitors.

3. What are the main applications of accounting logs?

4. Which programs must be chosen for I/O optimization? Explain.

5. Choose an IEEE 802.11 wireless local area network (WLAN), review
published articles related to its performance evaluation, and make a list
of the benchmarks used in these articles.

6. Choose a multiprocessor computer system architecture. Review the
related published articles on its performance evaluation, and make a
list of the used performance metrics.

7. Select a measurement study of the performance evaluation of a computer
system or a communication network in which hardware monitors are
used in the study. Explain how useful such monitors are for providing
accurate and real measurement about the behavior of the system. Discuss
whether you can replace the hardware monitor by a software monitor,
and give the advantages and disadvantages for doing so.

8. A workstation uses a 500-MHz processor with a claimed 100-MIPS
rating to execute a given program mix. Assume a one-cycle delay for
each memory access.

a. What is the effective cycle per instruction (CPI) of this machine?

b. Suppose that the processor is being upgraded with a 1000-MHz clock.
However, the speed of the memory subsystem remains unchanged,
and consequently, two clock cycles are needed per memory access. If
30% of the instructions require one memory access and another 5%
require two memory accesses per instruction, what is the performance
of the upgraded processor with a compatible instruction set and equal
instruction counts in the given program mix?

9. A linear pipeline processor has eight stages. It is required to execute a
task that has 600 operands. Find the speedup factor, Sk, assuming that
the CPU runs at 1.5 GHz. Note that the speedup factor of a
liner pipeline processor is defined by the following expression:
Sk=speedup= (time needed by a one-stage pipeline processor to do
a task)/(time needed by k-stage processor to do the same task)=T1/Tk.

10. Devise an experiment to find out the performance metrics for an IEEE
802.3 local area network (LAN)

a. The throughput of the network as a function of the number of nodes
in the LAN.

b. The average packet delay as a function of the number of nodes in the
LAN.

c. The throughput-delay relationship.

EXERCISES 77

CHAPTER 4

BENCHMARKING AND CAPACITY
PLANNING

This chapter deals with benchmarking and capacity planning of performance
evaluation for computer and telecommunication systems. We will address types
of benchmark programs and common mistakes in benchmarking. Examples of
popular benchmark programs will be surveyed. The main procedures for
capacity planning and tuning as well as the problems encountered in such a
task will be studied as well. Benchmarks are designed for particular types of
environments, and hence, we need to select the specific benchmark that suits the
system under study. Most often, benchmarks evaluate the systems only
by calculating the performance of the application services and the load by
undermining the architecture and the underlying protocols on which the
application is based. Moreover, it is difficult to estimate the performance
characteristics of a system accurately with the help of a benchmark, as it may
not address all the properties of the system. To enable the system, server, or
network to provide high performance, we must optimize the load on the
network and servers, as well as optimize the use of input/output (I/O)
resources. This can be handled with the help of capacity planning. The chapter
discusses the issues related to capacity planning along with the problems
associated with it. We dedicated a section that deals with the capacity planning
for providing efficient Web service. This section addresses the scalability,
architecture, and network capacity along with server overloading issues for

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

78

improving the performance of Web servers. A summary of the main points
reviewed in this chapter will be given at the end.

4.1 INTRODUCTION

The best computer programs that should be used to evaluate the performance
and behavior of a computer system or network are the ones that are often used
by the user/application. However, this is not usually feasible or cost effective as
it often requires a substantial amount of time and effort to port the application
programs to the system under test, especially if the aim is to find the
performance of a new system when such an application is run on it. Clearly,
because of such difficulties in running the user’s application programs on the
systems being evaluated, surrogate programs called benchmark programs are
used. The hope is that such benchmark programs can characterize the behavior
of the intended applications. The results of running such benchmark programs
can be used to predict the performance and behavior of the system for the
intended application. The accuracy of these predictions when validated with
real applications can determine the quality of such benchmarks.

Benchmarking can be defined as the process of running a particular program
or workload on a specific system and measuring the resulting performance. This
process provides an accurate assessment of the performance of the system under
study for that considered workload. Benchmark programs can be either whole
applications, kernels (most executed parts of a program), or synthetic programs.

Benchmarking is an important scheme to compare the performance of two or
more systems for various purposes, including procurement, capacity planning,
and tuning. Because different application areas have different execution char-
acteristics and behavior, a spectrum of benchmark programs have been devel-
oped to address these different domains and environments. For example,
designers of processors use (at the early stages of the design) small benchmarks
that can aid in estimating performance using simulation. However, for procure-
ment, the analysts use more complex benchmarks because decisions to purchase
such expensive systems are based on such measurements. Benchmark programs
should be easy to use, port to different systems, and execute [1–47].

It is interesting to point out that there is no complete agreement within the
system performance evaluation community on what makes a good benchmark
program. The strategies that can be followed to measure a system’s perfor-
mance are as follows [1–29]:

1. Fixed computation technique. Here, the total time needed to execute the
specific computation task of the benchmark is used as a metric.

2. Fixed time. Here, we fix the amount of time the system is allowed to
execute the benchmark program and use the total amount of computa-
tion it completes in this time as a metric.

4.1 INTRODUCTION 79

3. A combination of execution time and amount of computation completed

within this time is used as a performance metric. Example on this includes
the quality of improvements per second (QUIPS) that is used in the
HINT benchmark.

Capacity planning can be defined as the process by which we ensure that
adequate system resources will be available to meet future demands in a cost-
effective way without violating performance objectives. Another process that is
related to capacity planning is called capacity management. This process deals
with making sure that present resources are used efficiently to provide the
utmost performance.

In general, benchmarking consists of a set of programs, that are used for
performance evaluation purposes. It can even be used to compare the
performance of other systems over different architectures. The performance
evaluation results obtained by benchmarking are often not easy to draw up
conclusions about the system performance. Benchmarks rarely evaluate the
system on the basis of the mixed workloads, which is a similar comparison with
that of the real workload. Also, they do not evaluate the I/O resource usage and
memory accesses in the system. With the evolution of new types of networks,
such as grids and cluster environment, some workloads that are used for
evaluation are grid friendly, whereas others are not. Most of the time bench-
marks evaluate quality of service (QoS) on the basis of the system’s raw
performance. Moreover, benchmarks evaluate the performance of the
system on the basis of application services and loads at the system and
network by ignoring the underlying architecture and the protocols used by
the system. Benchmarks are not developed on the basis of standards, but they
are developed with respect to a particular type of computer system or an
environment.

4.2 TYPES OF BENCHMARK PROGRAMS

A benchmark is a performance testing program that is meant to catch
processing and data movement characteristics of a group of applications.
Benchmark programs are used to measure and forecast the performance of
systems and reveal their behavior as well as strong and weak aspects. Also, we
define a benchmark suite as a set of benchmark programs jointly with a set of
well-defined rules governing test conditions and procedures, including platform
environment, input and output data, and performance measures.

Benchmark programs (benchmarks) can be categorized into macro and
micro benchmarks. Micro benchmarks measure a specific aspect of a system,
such as memory or I/O speed, processor speed, network throughput or latency,
and so on. However, macro benchmarks measure the performance of a system
in its entirety. The latter is important for applications that require comparing
competitive systems or designs, and that is why it is often used to compare

80 BENCHMARKING AND CAPACITY PLANNING

different systems with respect to a certain application category, especially for
procurement purposes.

Others classify benchmarks based on application types, such as network
services, business applications, interactive applications like airline reservation
and financial applications, scientific computing, multimedia and signal proces-
sing, and so on. Moreover, benchmarks can be full-fledged applications or
kernels. The latter types are usually much smaller and simpler programs taken
out from applications while upholding the main characteristics. A benchmark
can be a real program that performs a real application or a synthetic one that is
usually designed specifically to exercise certain functional units or subunits at
various working conditions.

In general, benchmarks used for comparing the system’s performance can be
broadly categorized into the following major types:

1. Addition instruction: When computers were introduced initially, the most
expensive component of the system was the processor. Hence, the system’s
performance was measured as the performance of the processor [1, 16–23].
Few instructions were supported initially, and the addition instruction
was most frequently used. The system used to compute these addition
instructions at a faster rate was supposed to perform better. Hence, the
performance metric used for measuring the systems performance was
the time used for executing the addition instruction.

2. Instruction mixes: With the advancement in the design of processors, the
number of instructions supported by the CPU also increased. Hence,
calculating the time required for executing the addition instruction was
no longer sufficient for evaluating the performance of the computer
system. Hence, the frequencies of different instructions used on the
real system were to be measured so as to use them as a weighing factor
for performance evaluation [1–4, 8–15]. Thus, an instruction mix can be
defined as the description of various instructions with their frequencies.
By using the above information, the computational time required for
executing the instructions on each of the processors can be calculated and
can be compared with the performance of the other competing proces-
sors. Several such instruction mixes exist. Among those available in the
computer industry is the Gibson mix. In the Gibson mix, the instructions
are classified into 13 different categories, which contain the execution
time for each of these instructions. The weights for these instructions
are based on the relative frequencies of the operations [1, 2]. Certainly,
some disadvantages are associated with these instruction mixes. With the
innovation in computer technology, the instructions nowadays are more
complex and these changes are not reflected in the instruction mixes.
These changes are not reflected in the mixes provided for some proces-
sors. Normally, the execution time is calculated in terms of millions
instructions per second (MIPS) and millions floating-point operations

4.2 TYPES OF BENCHMARK PROGRAMS 81

per second (MFLOPS). Moreover, the instruction mixes only calculate
the processor speed. Keep in mind that the system performance depends
not only on the processor speed but also on the other components, which
are not addressed in the instruction mixes.

3. Kernels: Because of the introduction of new mechanisms, such as various
addressing schemes, caching and pipelining, and prefetching, the execu-
tion time of the instruction is highly variable. Hence, it is more important
to find the execution time of a function or service provided by the
processor that comprises a set of instructions rather than evaluating
the execution time for single instruction [2, 16–29]. Most kernels defined
in the literature do not consider the input and output devices, and they
characterize the systems performance only on the basis of the processor
performance. Hence, these are also referred to as processing kernels.
Kernels can be defined as instruction mix generalizations. We can identify
several applications and then compare the performance of the processor
based on the kernel performance. Most disadvantages that apply to the
instruction mixes also apply to the kernels [2–10]. A major disadvantage
of using the kernels is that they do not make use of I/O devices for
calculating the system’s performance. Hence, the performance of the
kernel will not visualize the performance of the system as a whole.

4. Synthetic programs: The kernels that are used for evaluating the system’s
performance do not use the services offered by the operating system or
the input and output devices. Most applications designed these days are
not only used for processing but also cater to a lot of input/output
operations with the help of external devices. Hence, these have become an
integral part of the workload, which needs to be considered for evaluating
the system’s performance in the real world [3, 23–29]. The performance
of the input/output is measured by using the exerciser loops, which make
the input/output requests. These loops help in calculating the average
amount of time required for executing a single service call or an input/
output request. These loops are termed ‘‘synthetic programs’’ and are
usually written in high-level languages. The loops that are defined can be
controlled with the help of control parameters so as to ensure that they
make a limited number of input/output requests. Apart from calculating
the amount of time required for executing input/output requests, the
exerciser loops can also be used for measuring the services provided by
the operating system, such as creating the process, forking the child
processes, and allocating the memory requirements. A major advantage
of the exerciser loops is that they can be developed quickly. Apart from
this, they can be easily modified so that they can be executed on different
platforms [1–4]; they are also easily portable. Moreover, these loops have
measurement capabilities, which are built in. Thus, the process of
measurement is automated, which can be used to run these loops several
times on the system so as to measure the performance gain and losses of

82 BENCHMARKING AND CAPACITY PLANNING

the system. The major drawback of these exerciser loops is that they are
too small. Mechanisms such as page faults and disk cache are not
generally addressed. More precisely, these are not well suited for
multiuser environments.

5. Application benchmarks: Application benchmarks are mainly used to
evaluate the performance of systems, which are used for a particular
application, such as airline reservation, banking, sorting, weather fore-
casting, and so on [1–4, 16–23]. For such applications, benchmarks are
defined as a collective group of functions, which make use of all the
resources of the system.

4.3 BENCHMARK EXAMPLES

This section sheds some light on most known benchmark programs.

� WebTP: This benchmark is mainly used for evaluating the Web system’s
performance and in particular the order management system. This system
is basically used on the web for purchasing the services and the goods over
the Internet [2–4, 30]. It is also considered as one of the most important
electronic applications. An integrated order management system may
include modules such as product information, vendors, purchasing, and
receiving; marketing (catalogs, promotions, pricing, etc.), customers,
and prospects; order entry and customer service, including returns and
refunds; financial processing; order processing such as selection, printing,
picking, packing, shipping, data analysis, and reporting; and financial
matters, such as accounts payable and accounts receivable. The order
management system is an integral application of e-commerce, and there-
fore, WebTP has applicability to all types of e-businesses applications.

The Web application performance depends on the technology on which
it is developed, and this is supported by different versions of WebTP.
The transactions supported by such Web-based systems are specified in the
TPC-C benchmark, which is used by the WebTP [2, 3, 30]. The TPC-C
benchmark supports five types of transactions, such as new order,
payment, order status, delivery, and stock-level transactions.

The Transaction Processing Council (TPC) was established with the
goal of developing benchmark programs for systems that perform online
transaction processing (OLTP). The latter application includes airline
reservation systems, automatic teller machine (ATM) systems, credit card
verification systems, and inventory control systems. In such systems, it is
important to perform the transaction within a given response time limit,
maintain a consistent data flow, and be available essentially all the time.

The TPC devised several benchmark programs, including the TPC-A,
which was based on an early Debit-Credit benchmark that was intended to
stimulate kinds of transactions that would be likely to occur in an ATM

4.3 BENCHMARK EXAMPLES 83

system environment. In this benchmark the actual program to be executed
is not specified; instead a high-level function is specified. The main
performance requirement was that 90% of the transactions must complete
in less than 2 s. The performance metric used was transactions per minute.
There are other versions of TPC including the TPC-D, which deals with
decision-support systems, and TPC-W, which focuses on e-commerce
applications.

The benchmark programs that are used to characterize the performance
of client-server systems are typically run on the clients, which send a
stream of files-access commands or other types of requests to the server.
Common performance metrics that are often used for such an environ-
ment are the number of requests that can be completed per unit time and
the average time needed to react to the requests.

An example on such benchmark programs is the SFS/LADDIS 1.1
benchmark that was designed to measure the throughput of UNIX-based
servers, which run theNetwork File System (NFS) protocol. Others call this
program as LADDIS, which is the acronym of the companies that coop-
erated to develop it, namely, Legato, Auspex, Digital, Data General,
Interphase, and Sun. The SFS 2.0 is a new version of SFS that was released
in 1997 and is an improved version of SFS 1.1. SFS 2.0 has many
improvements including larger and more recent workloads that reflect the
mix of operations observed in more than 1,000 NFS application environ-
ment and it can support TPC and UDP network transmission protocols.

The Standard Performance Evaluation Corportion (SPEC) developed a
benchmark program in order to measure the throughput rates of Web
servers. This was called the SPECweb benchmark and it was developed on
the framework of SFS/LADDIS benchmark. The SPECweb benchmark
programs continuously sendHTTP requests to aWeb server system at a rate
that is progressively increased until the server can no longer reply within the
predefined upper limit response time. The value of the rate at which requests
can be served before the server’s response time starts to decrease is
considered the reported performance metric for the system under study
[18–20, 42].

� Probing. Probing stands for purchaser-oriented benchmarking. Most of
the benchmarks look for services, but probing mainly concentrates on the
activity [1–30]. The process of benchmarking is performed in four stages in
the case of probing, which are as listed below:

1. Planning: In this stage, we need to: (a) identify the subject for the
benchmark, (b) identify the partner for the benchmark, and (c)
identify the method for collecting the data.

2. Analysis: This stage involves identifying: (a) the competitive gap and
(b) future performance of the project.

3. Integration: This deals with communications and functional goal
establishment.

84 BENCHMARKING AND CAPACITY PLANNING

4. Action: This stage includes: (a) creating the action plans, (b) deploying
the plans and then monitoring the results obtained, and (c) recalibrat-
ing benchmarks.

Each of the single item is identified is benchmarked during the
planning phase of probing. Based on the information obtained during
the analysis phase, it can be directly used in the next steps of the
benchmarking.

� NpBench. NpBench is a benchmarking tool that is mainly used for
networking applications. In this benchmark, all the applications are
classified into three functional groups [31–33, 46]. These are traffic
management and QoS group (TQG), security and media group (SMG),
and packet processing group (PPG).

Most of the benchmarks designed for network applications addressed
only data plane applications, whereas NpBench is designed to address
both data plane and control plane applications [3–7, 23, 46]. NpBench
supports 12 different types of workloads and more; see Figure 4.1.
Multiple processing engines are encapsulated in the architecture of the
NpBench. Often, these processing elements are arranged either in a
pipelined or in a parallel manner. To increase the performance of the
processing elements, multithreading is deployed in the architecture. This
helps in making the context switch faster between the applications.

Processing Engine

Shared
Memory

Control
Processor

SRAM
Controller

DRAM
Controller

Network
Interface

Fabric
Interface

Lookup
Engine

Hardware
Support

FIGURE 4.1. NpBench architecture.

4.3 BENCHMARK EXAMPLES 85

The processing of the control functions are supported by the user interface
[3–7, 46]. The workloads are categorized as data workload and control
workload. Network applications are classified as data plane and control
plane applications. The processing requirements are more complex in case
of control functions when compared with that of data functions. The
functions in the NpBench benchmark are broadly categorized as data
plane functions and control plane functions.

� Grey Relation Analysis (GRA). The performance of a system can be
evaluated with the help of performance metrics/indicators. For the process
of evaluation, if all the performance indicators are used, then the process of
collecting the data will become highly difficult [24]. Also, this leads to
wasted resources. To reduce the number of indicators used, benchmarking
is used for identifying the relevant performance indicator so as to reduce
the overall complexity. The main purpose of using the GRA is to identify
the relevant performance indicators and to reduce the overall indicators
used for evaluating the performance. The selection of these performance
indicators can be based on clustering. The performance indicators are then
selected only when the amount of data collected is large enough so as to
ensure that the data distribution is normal [24]. However, most often the
data collection is incomplete. Hence, these incomplete data are referred to
as grey elements.

� NetBench. NetBench is a benchmarking tool that is mainly used for the
performance evaluation of the network processors. There are nine applica-
tions in the NetBench benchmark, which are similar to that of the
applications supported by the network processors [25]. For these applica-
tions, packet processing is supported at all levels. The NetBench suite is
composed of benchmarking applications, which are divided into three
levels. These include the low level or the microlevel routines, Internet
Protocol(IP)-level programs, and the application level programs. The
microlevel routines are used for processing the simpler tasks, which act
as a component for the complex tasks. The applications which are
supported at the routing level are processed with the help of the IP-level
programs. Programs that need to make some wise decisions based on
the information in the data packets are processed with the help of the
application-level benchmarks. These applications are highly time consum-
ing, as the requirements consume a lot of processing time.

� Sieve kernel. The performance of microprocessors and the personal
computers can be compared and evaluated with the help of the Sieve
kernel. The design of the Sieve kernel revolves around an algorithm called
the Eratosthenes Sieve algorithm. This algorithm is mainly used for
computing the list of all of the given prime numbers that are less than
‘‘n’’. The algorithm works as follows. First, we write the list of all the
numbers up to ‘‘n’’ from 1 [26–27]. Then, we try to cancel out all the
multiples of k, where k equals 2 to square root (n). For example, if we want

86 BENCHMARKING AND CAPACITY PLANNING

to know the list of prime numbers between 1 and 20, then the steps are as
follows:

1. List all numbers between 1 and 20 and consider all the numbers as
prime.

2. From the given list of primes, try removing all multiples of 2.

3. Repeat the above step by removing multiples of 3.

4. Because the next number from the sequence is 5 and because its square
is greater than 20, the rest of the list is considered to be prime
numbers.

� Ackermann’s function. The performance evaluation of the procedure-
oriented languages such as ALGOL is done with the help of this kernel.
The kernel is a function that supports two parameters that are recursively
defined. Systems are compared based on the following criteria: (a) the
average time of execution per call, (b) the number of instructions executed
for each such call, and (c) the amount of space occupied for each of such
function calls [26, 27]. This kernel is designed by using the SIMULA
programming language. It is worth mentioning that SIMULA is consid-
ered one of the earliest object-oriented languages, and some people
consider it the earliest. It was designed in the early 1960s to facilitate
simulation analysis. It has been used in a wide range of applications, such
as simulating algorithms, protocols, graphics, and very large-scale inte-
gration (VLSI) designs. SIMULA influenced all other later widely used
object-oriented languages such as C++.

� Whetstone. The Whetstone kernel consists of 11 modules, which have been
designed to match the frequency of the operations in the ALGOL
programs. All the operations of the processor such as addressing of
arrays, arithmetic using fixed and floating point, subroutine calls, and
passing the parameters using referencing are addressed. These modules
can be translated into other programming languages such as Fortran. The
performance assessment in Whetstone is measured in KWIPS, which
stands for Kilo Whetstone Instructions Per Second [25–27]. Because
different permutations of this kernel exist, we need to make sure that
the source code is the same before evaluating it on different systems. Even
though it supports a mixture of operations, it is often considered a floating
point benchmark. This benchmark is mainly used for evaluating the
scientific and engineering applications, which are relatively small. The
design of the modules in Whetstone is such that it reduces the compiler
optimizations.

� Dhrystone. Dhrystone is a kernel whose source code consists mainly of
several function calls that are used to represent the programming environ-
ment of the system. This kernel was implemented in programming
languages known such as C, Ada, Fortran, and Pascal. Among all these
implementations, the C implementation is popular. The performance

4.3 BENCHMARK EXAMPLES 87

assessment is represented as DIPS, which stands for dhrystone instructions
per second. The function calls in Dhrystone usually have a lower depth of
nesting. For each function call defined, the number of instructions
executed is usually low [25–27]. Also, most of the execution time is spent
in copying the strings and in characters and in comparing them. This
benchmarking is famous for evaluating the integer performance and
does not support the floating point and processing of input and output.
It does not focus on issues related to compiler optimization. Dhrystone
attempts to represent the result more eloquently than MIPS, because
MIPS cannot be used across different instruction sets (i.e., CISC vs RISC)
for the same computation requirement from users. Hence, the main grade
is just Dhrystone loops per second. Others use another representation of
the Dhrystone benchmark that is called the Dhrystone MIPS, (DMIPS),
obtained by dividing the Dhrystone score by 1757, which is the number of
Dhrystones per second obtained on the VAX 11=780 computer machine.

� Lawrence Livermore loops. The workload in this benchmark consists of 24
distinct tests that are mainly focused on the scientific calculations. This
benchmark can be executed on a laptop computer as well as on a
supercomputer. It is usually difficult to interpret the results obtained
from this benchmark, as they are too complex to understand. The unit of
performance measurement in this benchmark is MFLOPS [27]. The results
display the arithmetic, geometric, and harmonic means along with the
minimum and maximum performance levels. Most often, (say about 60%
of the time) scientific applications are consumed in calculating the floating
point operations. These kernels are developed using the Fortran program-
ming language. They are used as a standard for evaluating the perfor-
mance of the computational systems. This kernel highly resists
vectorization and does evaluate the performance of single-precision and
double-precision floating-point calculations.

� Debit-Credit Benchmark. This benchmark is used as a standard for
comparing the performance of the processing systems that are based on
transactions. A banking network which is distributed is represented by this
benchmark [26, 27]. The performance is evaluated in terms of transactions
per second (TPS) such that more than 90% of the transactions have a
response time less than 1 s. The response time in these systems is measured
as the time required for sending the last bit on the communication line and
the arrival of the first bit. The comparison of the performance of different
transaction systems is based on the price-performance ratio [26, 27]. The
workload supports four record types, which are teller, account, history, and
branch. The benchmark is written in the COBOL programming language.

The Debit-Credit benchmark was devised in the 1970s to test the
performance of computer systems that run a fledgling online teller network
at the Bank of America. This benchmark represents the transaction
processing load of a supposed bank with one or more branches and

88 BENCHMARKING AND CAPACITY PLANNING

many tellers. The transactions are made of the debits and credits to
customers accounts with the system maintaining track of customers
account, the balance of each teller and branch, and a history of the banks
up to date transactions.

� NAS Parallel Benchmarks. The NAS Parallel Benchmarks (NPBs) are a set
of programs designed to assist and evaluate the performance of parallel
computers. They are derived from computational fluid dynamics (CFD)
applications. NAB benchmark programs consist of five kernels and three
pseudoapplications. They come in several types. NPB is a benchmark suite
that is mainly used for evaluating the parallel computer systems. This
benchmark comprises of eight programs, which deal with several relevant
issues of parallel systems [27]. Apart from these programs, it also has three
pseudo applications and five kernels. The output derived from the kernel
consists of the data that represent the execution time along with Mega
operation per second. NPB consists of three versions NPB1, NPB2, and
NPB3. For benchmarking the grid applications, GridNPB3 is used. These
benchmarks are implemented in FORTRAN and Java programming
languages. The source code for the programs is implemented using the
message passing interface (MPI) mechanisms. NAS seeks NPB 1 results
from all sources, especially computer vendors. Such results are assembled
in a tabular manner in periodic reports posted on the Web by NASA.

� PARKBENCH. The Parallel Kernels and Benchmarks committee (PARK-
BENCH) was established in 1992 by professionals who were interested in
benchmarking for parallel processing. The committee established a set of
performance measures and notations. The main objectives of the PARK-
BENCH group are as follows [39]:

1. To establish a comprehensive set of parallel benchmarks that is
generally accepted by both users and vendors of parallel systems

2. To provide a focus for parallel benchmark activities and avoid
duplication of effort and proliferation of benchmarks

3. To set standards for benchmarking methodology

4. To make the benchmarks and results freely available to the public.
The initial interest of the parallel benchmarks is the new generation

of scalable distributed memory message-passing architectures for
which there is a notable lack of existing benchmarks. That is why
the initial benchmark release focuses on Fortran77 message-passing
codes using the widely-available Parallel Virtual Machine (PVM) MPI
for portability. Release 2.0 of the benchmark suite adopted the MPI. It
is expected that future releases will include Fortran90 and High-
Performance Fortran (HPF) versions of the benchmark [30, 40].

The PARKBENCH committee makes a benchmarking suite used
for parallel computer systems. This suite consists of three application
sets, which are low-level benchmarks, kernel benchmarks, and com-
pact application benchmarks [4, 39]. The parameters on which the

4.3 BENCHMARK EXAMPLES 89

architecture of a parallel system is based are measured with the help of
a low-level benchmark. The kernel benchmarks are used to evaluate
the parallel systems over a wide range of applications, which are
intensively computational. Some of the source code for these bench-
marks is taken from NAS, Genesis, and so on which are also the
parallel benchmark suites. Compact application benchmarks are
mainly used for evaluating the parallel systems for research-based
applications. These applications differ from the kernel applications in
that they produce results that are scientifically useful.

� LINPACK. The LINPACK is basically a collection of Fortran subroutines,
which analyze and solve linear equations and linear least-squares problems.
The matrices involved can be general, banded, symmetric indefinite,
symmetric positive definite, triangular, and tridiagonal square. LINPACK
was created by Jack Dongarra at the University of Tennessee. In general,
this benchmark is easy to use and can give a good indication about the
numerical computing capability of the system under study. The LINPACK
benchmark is mainly designed for evaluating supercomputers. This bench-
mark is written in the Fortran programming language. It is composed of a
single application that is used to solve the linear algebraic problems. It
evaluates the performance based on Gaussian elimination [27]. The results
are represented as MFlops. It is available in three flavors: (100*100),
(1000*1000), and variable size. To measure the performance of large-scale
distributed systems, we use high-performance LINPACK (HPL). The
matrix sizes are varied and for each size the benchmark is run so as to
check as to which matrix size the benchmark performance increases.

� LMBENCH. The LMBENCH is another example on microbenchmarks
that is maintained by Larry McVoy. It was designed to measure the
overheads of operating systems and capability of data transfer among
the processor, cache, main memory, network, and disk on various UNIX
platforms. This benchmark is useful for finding bottlenecks in the design
and for design optimization. The results of LMBENCH are available for
major computer vendors, including SUN, IBM, HP, and SGI [32, 47].

� STREAM. The STREAM benchmark is synthetic. It was created by
John McCalpin while he was at the University of Delaware. The
motivation for the creation of this benchmark is to study the effect of
limited memory bandwidth on system’s performance, as these days
processors are becoming fast, and application programs are limited by
the memory bandwidth, not by processor’s speed. The main operations
performed by STREAM are copy, scale, sum (addition), and triad. The
latter is often called after the operation of the form: A(i)=B(i)+
k�C(i). STREAM measures real-world bandwidth sustainable from
normal user programs [33].

� HINT. HINT is a benchmarking tool that stands for hierarchical integra-
tion. This tool was developed at the Scalable Computing Laboratory,

90 BENCHMARKING AND CAPACITY PLANNING

which is funded by the U.S. Department of Energy. The hierarchical
integration tool is neither used to fix the problem size nor the time required
for calculation [27]. It is used to measure the system performance using a
new measure called QUIPS. This enables the hierarchical integration tool
to present the machine speed for a given specification of the machine and
the size of the problem. The change in speed while accessing the main
memory and the disk memory is clearly displayed by the hierarchical
integration tool. This tool is highly scalable and portable. It can be scaled
down to an extent that it can be run on a calculator, and it can also be
scaled up to run on a supercomputer.

� SPLASH. The Stanford Parallel Applications for Shared Memory
(SPLASH) is a benchmark that is used for the performance evaluation
of parallel systems. The benchmark is written in the C programming
language except for one application, which is written in Fortran language.
These applications use the fork/join models for supporting the parallelism
[4, 27]. The benchmark consists of two parts known as kernels and
applications. These two components are used for performance evaluation
of the systems. The latest version of benchmark available in SPLASH is
SPLASH-2. The performance of the system is measured in MIPS.

� COMSS. COMSS is a low-level benchmark that is used for evaluating the
performance of parallel systems. The three variants of this benchmark
are known as COMMS1, COMMS2, and COMMS3. COMMS1 evaluates
the communication system performance by transmitting messages of
variable length among various nodes [27]. Another name for the COMMS1
benchmark is ping pong benchmark. COMMS2 also functions the same
way as that of COMMS1 except that the exchange of messages between the
nodes is simultaneous. COMMS3 evaluates the parallel systems perfor-
mance by incrementally varying message lengths between nodes. The total
bandwidth available to the communication link is estimated by transmit-
ting the messages. Every process in the system sends a message to all nodes
and then waits to receive all the sent messages [27–29]. The length of the
messages is incrementally increased until the saturation of the bandwidth.
At the end, the benchmark displays available total bandwidth and the
bandwidth that can be allocated to each processor.

� Bit to the User. Bit to the User (BTU) is a benchmark that is used for
evaluating the performance of the system over a network [28]. The BTU
benchmark was developed to take into consideration both concurrent
activities within a workstation and concurrent activities on the network.
The BTU benchmark can produce results at various levels of abstraction
that range from a single number that exemplifies average performance to a
report of how all the individual test suite components performed. It deals
with the specification of the source code along with the test bed for
duplicating the results. The performance is represented by calculating a
BTU number, which indicates the workstations’ communication

4.3 BENCHMARK EXAMPLES 91

performance. Along with the BTU number it also specifies the penalty
factor, which indicates the degradation of the performance. Not only are
BTU numbers used for representing workstation communication perfor-
mance, but also they can be used for assessing the performance of any
individual application along with its respective penalty factors [28]. The
performance data are compiled for independent components of the
benchmark test. If the test result is abnormal, then for such type of
results, BTU provides the results with a TCP time sequence chart, which
can be used for analyzing the results in depth.

� TinyBench. TinyBench is a benchmark which is used for evaluating the
performance of wireless-based sensor network devices [29]. TinyBench is a
single-node benchmark suite. This benchmark simplifies the process of
code development and function development across multiple platforms.
Four classes of benchmarks are related to sensor network nodes: (a) level
microlevel benchmarks for components of hardware, (b) stressmarks at
node level, (c) real applications at the node level, and (d) real applications
at the network level. TinyBench measures the performance of the
applications at the node level and the stressmarks at the node level. Based
on the class of the application, the characteristics of the hardware differ
[30]. Apart from evaluating the performance of the systems, it also shows
the amount of power consumed for each operation performed.

� Express. This is a benchmark used for evaluating the performance of
parallel systems. The type of programming model used in Express is
host-node model, where host represents the master and node the worker
[30]. It uses a host-free programming model to avoid writing programs
to the host, which is known as Cubix. The design of Express follows a
layered approach. The implementation consists of three layers as
follows:

1. The layer at the lowest level contains the utilities that are mainly used
for controlling hardware that includes processor allocation and
program loading, among others.

2. The layer at the medium level provides the support for partitioning the
problem. Apart from this it also allows the communication between
the nodes and also between the control processor and the node.

3. The layer at the highest level consists of the facilities that are used by
the programs in the node for performing the input output operations.
Also, it consists of utilities that can be used for accessing the operating
system at the host.

Because of the layered approach design, the tool is portable. The
design follows a top-down approach.

� Parellel Virtual Machine. The Parallel Virtual Machine (PVM) is used for
assessing the performance of parallel systems that consist of heterogeneous
computers. This benchmark is portable similar to that of the Express. PVM
contains the functions that can be used for starting the tasks automatically

92 BENCHMARKING AND CAPACITY PLANNING

on the virtual machine. It also allows the tasks to interact with each other
by communicating and allows them to synchronize. Tasks are basically
units of the computation. Apart from evaluating the performance of the
heterogeneous computers in the parallel systems, heterogeneous applica-
tions can also be evaluated. Routines are provided by PVM, which helps in
creating and transmitting the messages between tasks. It can evaluate both
synchronous and asynchronous transmissions. Apart from this it also
models the fault tolerance in the parallel system [30, 40]. It can even detect
the dynamic addition and removal of hosts to the parallel system.

� GENESIS. This benchmark is used for evaluating the distributed and
parallel systems [31]. The GENESIS benchmarks are written in the
FORTRAN programming language. Each GENESIS benchmark has a
sequential and a parallel version. The sequential benchmark is used for
defining the problem and also provides the algorithm that needs to be used
for solving the problem [31, 32]. The parallel version of the GENESIS
benchmark uses message passing for defining the programming model. In
all 16 codes are supported by GENESIS for measuring the machine
parameters related to synchronization and communication. The design of
the GENESIS benchmark follows a hierarchical structure approach. The
application kernels in GENESIS are used for evaluating the applications
for the distributed and parallel systems. It also performs code optimiza-
tions for improving the performance of the parallel systems [32].

� Space-Time Adaptive Processing. The Parallel Space-Time Adaptive Pro-
cessing (STAP) suite benchmark suite is basically a set of real-time, radar
signal processing programs developed at Massachusetts Institute of
Technology (MIT) Lincoln Laboratory [33]. STAP is a computationally
demanding technique for mitigating clutter as viewed by airborne radar.
Delivered processing power on-major STAP kernel computations is of
major importance because of the real-time nature of radar processing
systems. Because algorithm requirements for STAP systems are under
continuous development, the scalability of processing power both in terms
of machine and problem size is of great interest. Such an increased interest
has led us to consider Single Instruction, Multiple Data (SIMAD) streams
parallel architectures as possible candidates for a STAP processor. The
original version of STAP that was developed at Lincoln Laboratory was
sequential. STAP has been converted to a parallel STAP at the University
of Southern California to evaluate massively parallel systems (MPPs) by
Hwang and his group. The STAP benchmarks are considered computa-
tion-intensive as they require in the order of 1010 to 1014 floating point
operations over 100 to 10,000 MB of data in a fraction of a second. The
STAP consists of five programs [4, 33] as follows:

� The Adaptive Processing Testbed (APT) performs a Householder
Transform to generate a triangle learning, which is used in a later
step called beamforming to null the jammers and clutter.

4.3 BENCHMARK EXAMPLES 93

� The High-Order Post-Doppler (HO-PD) has two adaptive beamform-
ing steps that are combined into one step.

� The Beam Space PRI-Staggered Post Doppler (BM-Stag) is similar to
HO-PD; however, it uses a staggered interference training algorithm in
the beam space.

� The Element Space PRI-Staggered Post Doppler (EL-Stag) is also
similar to the HO-PD; however, it uses a staggered interference training
algorithm in the element space.

� General (GEN) consists of four independent component programs to
perform sorting (SORT), Fast Fourier Transform (FFT), Vector multi-
plication (VEC), and Linear Algebra (LA).

The first four benchmark programs start with a Doppler Processing step,
where the program performs a large number of one-dimensional FFT opera-
tions. All of these four programs end with a Target Detection step.

� PERFECT. The Performance Evaluation of Cost-Effective Transforma-
tion (PERFECT) club benchmark suite consists of a set of 13 Fortran
application programs drawn to characterize the range of applications that
need to be run using high performance computing systems. Such programs
characterize computational fluid dynamics, physical and chemical model-
ing, signal processing and engineering design applications. The main goal
of this benchmark was to evaluate the effectiveness of compiler transfor-
mations for automatically converting serial programs to parallel form so
as to execute them on parallel systems [4].

� SPEC. There is a popular benchmark family called SPEC, which has been
developed by a nonprofit organization called Standard Performance
Evaluation Corporation (SPEC). The latter stresses developing real
applications benchmarks and SPEC suites are updated every few years
in order to reflect new applications. SPEC started with benchmarks that
measure the performance of processors (CPUs), but now it has bench-
marks that evaluate client/server platforms, I/O subsystems, commercial
applications, WWW applications, and so on. For more updated informa-
tion, suites, and news, visit www.spec.org.

SPEC was founded in 1988 by Apollo/Hewlett-Packard, Digital
Equipment, MIPS, and Sun Microsystems. The goal was to provide a
standard set of application programs and standard methodology for
running the programs and reporting results to have a fair comparison.
The first SPEC benchmark program, SPEC89, had four programs
written in C and six programs written in Fortran. Every few years,
SPEC provides a new version of its benchmarks [4, 18–20, 42]. SPEC
has expanded recently to include Open System Group (OSG), High-
Performance Group (HPG), and Graphics Performance Characterization
Group (GPCG).

94 BENCHMARKING AND CAPACITY PLANNING

SPEC scheme is based on providing the benchmarker with a standar-
dized suite of source code relied on current applications that have already
been moved to a wide variety of platforms by its users. The evaluator then
takes this source code, compiles it for the system under consideration and
then can tune the system in order to obtain the best results. Using an
already accepted and ported code can greatly reduce unfair performance
comparison among systems manufacturing and avoid problems that may
occur such as the game ratio.

SPEC started with a group of workstations vendors aiming at devising
CPU metrics. Now, SPEC has grown into a big organization that includes
three main groups: OSG, HPG, and Graphics and Workstation Perfor-
mance Group (GWPG). A brief description of each is given below:

1. Open System Group. This group is basically the founding group of
SPEC. It concentrates on benchmarks for high-end workstations,
desktop systems, and servers running open systems environments.
OSG includes several subcommittees:
� CPU subcommittee. This includes all persons who devised SPEC-
marks and the other CPU benchmarks such as SPECint, SPECfp,
and SPECrates.

� JAVA subcommittee. This includes those who devised JVM98,
JBB2000, and JBB2005; the Java client and server-side benchmarks;
and the jAppServer Java Enterprise application server benchmarks.

� MAIL subcommittee. It includes persons who devised SPEC-
mail2001, the consumer Internet Service Provider (ISP) mail server
benchmark.

� POWER AND PERFORMANCE subcommittee. This sub-
committee started the development of the first-generation SPEC
benchmark for evaluating the energy efficiency for server class
computers.

� SFS subcommittee. It is the subcommittee who developed the SFS93
(LADDIS), SFS97, and SFS97_R1. It is also working now on other
file server benchmarks.

� SIP subcommittee. This subcommittee started the development of
the first-generation SPEC benchmark for comparing performance
for servers using the Session Initiation Protocol (SIP).

� Virtualization subcommittee. This subcommittee started the first
generation SPEC benchmark for comparing virtualization perfor-
mance for data center servers.

� WEB subcommittee. It is the subcommittee who developed the
WEB96, WEB99, WEB99_SSL, WEB2005, and the web server
benchmarks.

2. High Performance Group HPG. The HPG is involved in establishing,
maintaining, and endorsing a suite of benchmarks that characterize
high-performance computing applications for standardized and

4.3 BENCHMARK EXAMPLES 95

cross-platform performance evaluation. Such benchmark programs
are aimed at high-performance system architectures, including sym-
metric multiprocessor computer systems, clusters of workstations,
parallel systems with distributed memory, and conventional vector
parallel computers.

3. Graphics and Workstation Performance Group. This group includes
groups that build reliable and well-known graphics and workstation
performance benchmarks and reporting procedures. The main GWPG
project groups are the SPECapc and SPECgpc.
� SPECAPC group. The Application Performance Characterization
(SPECapcSM) group was established in 1997 to provide a broad-
ranging set of standardized benchmarks for graphics and work-
station applications. Its present benchmarks cover popular CAD/
CAM, visualization, and digital content creation applications.

� SPECgpc group. This group started its work in 1993. Basically, it
establishes performance benchmarks for graphics systems running
under OpenGL and other application programming interfaces
(APIs). One of its popular benchmark is SPECviewperf(r), which
is meant to be used for evaluating performance based on popular
graphics applications [42].

Other Benchmarks. Other examples of benchmark programs include:

� Winbench and WinStone from Ziff-Davis, which are used for Windows
PC applications and Windows PC graphics and disks.

� AIM benchmark from AIM Technology, which is used for UNIX work-
stations and server systems evaluation.

� NetBench from Ziff-Davis, which was developed for PC file server
applications.

� SYSmarks from BAPC0, which was developed for retail PC software
packages.

� MacBench from Ziff-Davis, which was developed for general Apple
Macintosh computer performance measurement.

� Business Benchmark, which was developed by Nelson and Associates to
benchmark Unix server throughput.

� MediaStones, which was developed by Providenza and Boekelheide for PC
file server benchmarking.

4.4 FREQUENT MISTAKES AND GAMES IN BENCHMARKING

There are frequent mistakes that many performance analysts fall in because of
inexperience or lack of awareness of fundamental concepts. Also, tricks are

96 BENCHMARKING AND CAPACITY PLANNING

played by experienced analysts to fool customers and to promote their products
unethically. Let us start with the following main frequent mistakes [1, 38]:

1. Misalignment. This deals with selecting a benchmarking area that is not
aligned with the general policy and objectives of the business. Bench-
marking has to be overseen by a leader at the strategic level to make sure
that it is in line with what is going on in the business.

2. Only mean behavior is represented in the benchmark program. In this
case, the workload ignores the variance and only average behavior is
represented in the workload.

3. The process is too large and multifaceted to be manageable. It is
recommended to avoid trying to benchmark a whole system as it will
be enormously costly and difficult to remain focused. The approach is to
select one or a few processes that form a part of the total system, work
with it in the beginning, and then move on to the next part of the system.

4. Using device utilizations for performance comparisons. Utilizations of the
devices are also used for comparing the performance measurements of the
systems. In such situations, lower utilization is considered. But in certain
environments, such measurements seem to be meaningless. For example,
if we have two systems where one of the system has a faster response time,
then in such a case the number of requests generated is higher, thereby
increasing the device use. The second system is a bit slower, and hence,
the device utilization is less in the second case compared with the first one
[1–4]. This does not mean that the second system is better. Here, the right
way to compare the performance is to measure it in terms of throughput
with respect to the requests generated per second. One more mistake here
is validating the models based on these device utilizations. The predicted
utilization of the model if matched with the model in the real time
environment does not ensure the validity of the model.

5. Inadequate buffer size. If the buffer size considered in a performance
study is insufficient, then it will affect the performance measures. Keep
in mind that the size and number of buffers are important parameters,
and their values in performance measurement and testing should
represent reasonable values similar to real-world systems.

6. Uneven distribution of I/O request. Many performance studies assume
that I/O requests are evenly distributed among all peripherals. However,
practically, this is not always the case. Such inaccurate assumption may
lead to inaccuracy in predicting the response time of computer and
network systems.

7. Ignoring the cache effect. In state-of-the art systems, such as Web systems,
caching has become a de-facto standard. However, most benchmark
programs do not represent the behavior of caching accurately, specifically
the fact that cache memory is sensitive to the order of requests. Such order
is lost in almost all workload characterization studies.

4.4 FREQUENT MISTAKES AND GAMES IN BENCHMARKING 97

8. Ignoring monitoring overhead. In almost all measurement performance
studies, hardware, software, or hybrid monitors are often used to collect
data about the system’s resources performance. Ignoring the monitor
overhead may lead to erroneous results and conclusions.

9. Ignoring validation of measurement results. Performance results obtained
through testing or measurement on real systems should be validated.
The analyst should not assume always that measurement results are
accurate, because any misplacing of a probe or a device may lead to
error in the measurement.

10. Disregarding sensitivity analysis. If the performance results are sensitive
to the initial conditions or input parameters, then more factors should
be added to the benchmark program model. Moreover, in such a case, a
more thorough sensitivity analysis should be conducted.

11. Ignoring transient performance. Some systems are most often in tran-
sient, moving from one state to another. Therefore, analyzing their
performance under steady-state conditions does not really represent the
real system’s performance. Of course, this applies to measurement and
simulation models as well as testing/measurement settings.

12. Collecting too much data, but not much data analysis. In many studies,
you will find the team collecting a huge volume of data results, but little
analysis is performed with such data. It is important to analyze the data
using statistical techniques. Hence, it is important to have the needed
expertise in the performance analysis team, especially someone who has
a good knowledge of statistical analysis and inference, in addition to a
system engineer, statistician/mathematician, programmer, and a good
technical writer.

13. Skewness of device demand is ignored. The basic assumption is that the
requests for the input/output are evenly distributed among all the
resources that accept these input/output requests [1–7]. However, this is
not the case in a real environment. All the requests for the input/output
follow to a single device that serves these requests, which leads to queuing
of these requests and higher delays. This strategy is not represented in the
test workload, and hence, ignoring this will show the bottlenecks that are
created to the devices in the real-time environments.

14. Loading level is controlled inappropriately. Several parameters are used
in the test workload for increasing the level of the load on the system.
For example, the number of users using the system could be increased,
the resource demand for each user could be increased, and also the users
think time can be decreased. The results for all the above options are not
the same. A more realistic approach of increasing the number of users is
by increasing the number of resources. To do this, the other two
alternatives can be used [1–4]. One possibility is changing the users
think time, but this is not equivalent to the first option, as this
alternative would not change the order of arrival of requests to the

98 BENCHMARKING AND CAPACITY PLANNING

various devices. Because of this reason, the number of misses in the
cache is less when compared with the system with more users. The
workload is changed significantly by the second alternative, and hence,
it could not be a correct representation of the real environment.

15. Not ensuring the same initial conditions. Whenever a benchmark is run,
the system state is changed. This change in the state of the system could
be caused by a change in disk space or change in the contents of the
records. Hence, we need to make sure that all the initial conditions are
reset [1–9]. This could be possibly done by removing the files created
while executing the benchmark and by retaining the changed contents
of the records to its original state. Another approach could be determin-
ing the results of sensitivity during the phenomena. The workload
should be added with more factors provided the sensitivity of the results
is higher with respect to the initial conditions.

16. Only mean behavior is represented in test workload. The test workload is
designed so as to represent the real workload. The resource demands
that are required during the test workload are designed by the analysts
so as to represent the resource demand similar to that of a real-time
environment. Here, only the average behavior of the environment is
represented by ignoring the variance. For example, in certain scenarios,
the average number of resource requests in the test workload may be
similar to that of the resource demand in the real environment.
However, if the arrival of requests for the resource takes an exponential,
Poisson, Weibull, or other distributions, then in such a case we may have
to represent the resource demand in the form of variance or a much
detailed representation must be used.

As for the games that are played by experienced performance analysts to
boost unethically the reputation of their systems or products, following is a list of
these games that result in a benchmarking study that is disingenuous or unfair:

1. Compilers are arranged in a way to optimize workload. In such a case, the
compiler is set up in a way to completely do away with the main loop in a
synthetic benchmark program, thus giving better performance results
than competing systems.

2. Small benchmark sizes. Using a small benchmark may mean 100% cache
hit, thus, ignoring the effect of overhead of I/O and memory units.
Undoubtedly, it is important to use several workloads in any perfor-
mance analysis study rather than relying on a small benchmark program.

3. Biased test specifications. It is important to have the test specifications
more general rather than biased to specific system or network.

4. Manual optimizing of benchmarks. In such a case, obtained performance
measures depend on the capability of translator rather than the system
under study.

4.4 FREQUENT MISTAKES AND GAMES IN BENCHMARKING 99

5. Running benchmarks on two systems with different configurations. In this
case, you will find that the benchmarks are being run in two systems with
different memory and I/O configurations.

4.5 PROCEDURES OF CAPACITY PLANNING AND RELATED
MAIN PROBLEMS

Capacity planning is considered an important process in any performance
analysis study as it ensures that sufficient computing resources are available to
meet future workload demands in a cost-effective method while meeting overall
performance goals. The term performance tuning is related to capacity
planning and is defined as the procedure to modify system parameters to
optimize performance. Another process related to capacity planning is capacity
management, which deals with current systems, while capacity planning deals
with future systems and settings [1–40].

To invoke into a capacity planning process, the analyst should follow the
following steps:

1. Implement the system under study.

2. Observer system usage.

3. Describe workload.

4. Forecast performance under different configurations and environments.

5. Select the most cost-effective alternative.

In the first phase, we should make sure that there are proper device setup for
the process, such as suitable counters, monitors, and hooks in the system to
record current usage. Accounting log facility that is usually built-in in any
operating system can be used as well. In the second phase, the usage of the
system is monitored to collect needed data about the behavior of the operation
of the system. Then, the workload is characterized and data are collected for
some time. Such data are analyzed and summarized in a way so that it can be
input to a system model to carry out performance prediction/estimation and
analysis. Different configurations and future workloads are input to a model of
the system to perform the needed model experimentation. If the goal is to
conduct a capacity management rather than a capacity planning study, then the
current configurations and workloads are input into a tuning model, usually a
simulation model that gives what changes in the system parameter settings
should be made to meet the needed objectives.

In the process of capacity planning, we usually start by predicting the
workload based on monitoring the system under test for a long period of time.
Next, various configurations and potential workloads/benchmarks are entered
to a model to forecast performance. In this context, we call the process of
choosing equipment ‘‘sizing.’’ Many performance analysts employ analytic
modeling for the sizing process [1–6, 15–30].

100 BENCHMARKING AND CAPACITY PLANNING

Performance analysts who work on capacity planning experience many
problems, including lack of unique standard for terminology, difficulty in mea-
suring model input in many cases, and difficulty to model distributed environ-
ments, among others. A brief description of these difficulties is given below.

Currently, there is no standard definition of the term ‘‘capacity’’; some define
it in terms of maximum throughput, and others define it in terms of maximum
number of users that the system can provide for while meeting a specified
performance goal. Also, it seems that each vendormakes capacity planning tools
with goals and functions in mind that are different from what the analysts need.
For example, some vendors integrate capacity planning and management and
call the technique a capacity planning tool. There are not many vendor-
independent workloads; most of the available benchmarks are vendor depen-
dent. Each system has three different types of capacities. These include the knee
capacity, nominal capacity, and usable capacity. Nominal capacity for a system
can be defined as the maximum throughput that can be achieved by the system
when the workload conditions are ideal. In case of computer networks,
bandwidth is defined as the nominal capacity. This is represented in terms of
bits per second [1–5, 12]. Usable capacity can be defined as the maximum
throughput that canbe achievedwithin the specified response time that is fixed. In
most applications, the optimal operating point is considered the knee of the
response-time curve or the knee of the throughput. The throughput at knee is
termed as the systems knee capacity; see Figure 4.2.

In capacity planning, we plan for the expected future workload; however,
expectations are not always accurate. For example, mainframe computers are
no longer around as they have been replaced by more cost-effective work-
stations. This means that the predictions that mainframe computers will stay
around us were wrong.

Nominal
Capacity

Load

T
hr

ou
gh

pu
t

Knee
Capacity

Knee

Usable
Capacity

FIGURE 4.2. System capacity representation.

4.5 PROCEDURES OF CAPACITY PLANNING AND RELATED MAIN PROBLEMS 101

Some inputs used in analytic and simulation models are not exactly
quantifiable, such as the think time used in analytic models. In almost all
analytic models, this does not consider interruptions caused by tea or coffee
breaks, for example.

The validation of projected operation is not an easy task; although
validation on current system configuration is not difficult, projection validation
is difficult as it requires changing workloads and configurations, as well as
confirming that the model output matches the changed real system’s perfor-
mance. It is hard to manage workload configurations on a real system.

It is important to point out here that performance is one part of capacity
planning; cost is crucial as well. When we talk about cost in this context, not
only do we mean the cost of hardware, but also we should include the cost of
software, maintenance, personnel, power, humidity control, and so on.

In today’s computing systems, distributed systems are pretty much common.
This means focusing too much on capacity planning on individual device is no
longer vital. However, such systems are not easy to model. These days, you can
find special commercial tools for capacity planning with built-in models for
specific systems as well as workload analyzers and monitors that recognize the
accounting logs of such systems.

4.6 CAPACITY PLANNING FOR WEB SERVICES

Capacity planning for Web services is considered unique because: (a) Web
servers rely on large-scale systems of computers, networks, programs, and
users; (b) they are complex; and (c) they are used by a large number of users
who request service at random. The latter aspect makes management and
planning of such systems complicated and challenging. Web systems are
characterized by being dynamic, requiring high quality of service (QoS) and
high performance, and needing to integrate with different systems, such as
databases, scheduling, planning, management, and tracking systems [34–37].

TheWorldWideWeb (WWW) is an evolving information technology system
that grows at an impressive exponential rate. It has experienced extraordinary
growth and has become the dominant application in both the public Internet
and internal corporate intranet environments. Some recent research studies
have found out that over 75% of the traffic on the Internet backbone is
Hypertext Transfer Protocol HTTP-based [4, 24–40]. Many applications such
as e-commerce, including mobile commerce (m-commerce), e-government,
e-services, digital libraries, distance learning, and video-on-demand, are all
based on the Web infrastructure. Moreover, such applications have even
become more and more widely used because of the proliferation of wireless
networks and devices. Popular websites such e-government, and digital library
sites get millions of requests per day, which increase the average response time
of such sites. Clearly, this has become an important issue for website admin-
istrators and IT managers of all kinds of organizations. Identifying the

102 BENCHMARKING AND CAPACITY PLANNING

bottlenecks, forecast future capacities, and finding out the best cost-effective
approach to upgrade the system to cope with the expected increase in the
workload are essential for any proper web service. In web services, it is
important to support the increase in load without sacrificing the response
time. Capacity planning is vital for web services as it: (a) guarantees customer
satisfaction, (b) prevents potential money losses, (c) protects the image of the
organization/company, and (d) provides proper plans for future expansion.

Most websites these days can fall in the following main categories: (a)
interaction as used for registration in conferences, booking in hotels, airline
reservation, and so on, (b) informational as used for online newspapers,
magazines, and books; (c) web portals, such as electronic shopping malls,
search engines, and webmail services; (d) shared environment as in collabora-
tive design tools; (e) transactional, as in online banking and stock trading; (f)
workflow, as in online scheduling and inventory systems; (g) news groups, as in
online discussion groups; and (h) online auction [4, 37].

A web server is basically a mixture of hardware devices, operating systems,
and application software/contents that cooperate and collaborate to provide
satisfactory service. The characteristics of these components and the way they
interact/connect with each other influence the overall performance of the Web
servers and intranets.

The major performance metrics for any web system are: (a) end-to-end
response time and site response time, (b) throughput in request/sec or/and in
Mbps, (c) visitors per day, (d) hit value, (e) errors per second, (f) startup
latency, and (g) jitter. The latter two metrics are important for streaming
services. The QoS of Web services is crucial to keep current customers and
attract new ones. The QoS metrics of Web services should represent response
time, availability, reliability, predictability, security, and cost [4, 37].

The main components of a Web system are the browser, network, and
server. The user usually clicks on a hyperlink to request a document. Then, the
client browser tries to find the needed document in the local cache; if it is found,
then we say we have a hit. Otherwise, we say that we have a miss, and in such a
case, the browser asks the Domain Name System DNS service to map the
server hostname to an IP address. Then, the client opens a Transmission
Control Protocol (TCP) connection to the server defined by the URL of the
link and sends an HTTP request to the server, which provides a response. Next,
the browser formats and displays the document and provides the needed
document. The latter is stored in the browser’s cache.

The network enforces delays to bring information from the client to the
server and back from the server to the client. Such delays are a function of
the different components located between the client and server including
modems, routers, communication links, bridges, and so on.

When the request arrives from the client, the server parses it according to the
operation of the HTTP protocol. Then, the server executes the requested
method, such as GET, HEAD, and so on. If the method, for example, is a GET,
then the server looks up the file in its document tree using the file system where

4.6 CAPACITY PLANNING FOR WEB SERVICES 103

the file can be in the cache or on disks. Then, the server reads the file and writes
it to the network port. Now, when the file is totally sent, the server closes the
connection. As the number of clients and servers increases, end user perfor-
mance is usually constrained by the performance of components such as
bridges, routers, networks, and servers along the path from client to server.
Obviously, identifying the device/component that limits the performance is
essential. Such a device/component is called the bottleneck device.

Among the techniques that can be used to improve the performance in terms
of reducing the mean access time and the bandwidth needed to transfer the
document and security of Web systems are: (a) proxy, (b) cache, and (c) mirror.
The proxy server is used to act as both a server and client. Figure 4.3 shows an
overall organization of a Web proxy server.

As shown in Figure 4.3, a proxy accepts requests from clients and forwards
them to Web servers. The proxy in turns passes responses from remote servers
to the clients. Proxy servers can also be configured so that they can cache
relayed responses and become a cache proxy. Caching reduces the mean access
time by bringing the data as close to the users in need of it as possible. In
addition, caching reduces the overall server load and improves the availability
of the Web system by replicating documents among servers. In caching, we
need to: (a) decide for how long to keep the document and (b) make sure that
the updated version of the document is in the cache.

The main metrics used to evaluate caching are as follows:

� Hit ratio: This is defined as the ratio of number of requests satisfied by the
cache to the total number of requests. The miss ratio, which is (1-hit ratio),
is also used in this context.

� Byte hit ratio: It is used instead of the traditional hit ratio because there is
a high variability of web document sizes. Basically, this is hit ratio
weighted by the document size.

� Data transferred: This metric represents the total number of bytes
transferred between the cache and outside environment during an opera-
tional session.

Proxy Server

Users

Request

Response

Web servers

Overall web proxy organaization

FIGURE 4.3. Overall Web proxy organization.

104 BENCHMARKING AND CAPACITY PLANNING

The growth of Internet usage during the last several years has increased in an
exponential manner. Different applications over the Web have different
requirements. To provide the quality of service guarantees we need to identify
and separate the services with different service characteristics. Also, we should
focus on managing the load on the Web servers to provide efficient service [34].
Hence, we need to deal with the challenges posed by the network as well as by
the Web servers. That is, we should scale up the capacity of the server by
keeping in mind the network capacity available for providing a service.

Below is a brief description of what needs to be addressed for scaling the
Web services so as to meet the needed quality of service guarantees:

1. Improving the LAN speed. To support a server throughput of 1 Gb/s, it is
not sufficient to have the Gigabit Ethernet. This is because the server
may not be able to provide the required throughput due to several
drawbacks in the protocols, chip-set, and operating system. To over-
come these issues and to support the required server throughput, we
need to have at least 10-G Ethernet [34–35]. Also, this could not be the
only possible solution; rather, we also need to look into several issues
that caused the performance bottlenecks. Moreover, to meet the
increasing performance demand, we need to have a layered server
architecture for the server that is distributed. It is important to avoid
the bottleneck caused by the operating system and should support the
user-level I/O.

2. Handling the dynamic content. Using the intercache protocols for com-
munication, push and pull proxies have reduced the latency for getting
the information and have reduced a lot of load on the server [35].
However, the major challenge that needs to be addressed is the dynamic
content of the Web, which is constantly increasing. To solve this, we need
to track the dynamic Web pages for the individual components and define
a structure for these pages. This not only allows caching but also allows
the functionality such as inserting the dynamic content at different
hierarchy levels of the Web server. The main advantage of this structure
is that it helps in pushing the content to the servers at the edge. The
proxies, which do the transformation of the content, support both
the wireless and wired applications [36]. To support this, we need to
enhance the Internet-based protocols. To reduce the overhead created by
the dynamic content, novel management techniques are used.

3. Web server scaling to store large content and increase hit rates. Scaling
the Web servers using a traditional approach performs the balancing of
the load on the server with the help of a load distributor at the front end.
Looking in depth, this solution is not a scalable one, because if the
operation of the front end takes place at the transport layer, then there
will be a problem with the scalability because of content duplication in
the cache of the servers. However, there will be a bottleneck with the

4.6 CAPACITY PLANNING FOR WEB SERVICES 105

load distributor itself if the amount of work exceeds what is expected
[35–36]. To resolve this issue, we need to address on-demand requests
with the help of service control points. We can use clustered servers
instead of independent servers for improving the scalability. Scalability
can be increased by implementing the lightweight communication
protocols for the clustered environment.

4. Internet service distribution. The Internet model that is used currently
more or less is a centralized model that stores all the information in a
single repository. Such a model is not scalable. To increase the scal-
ability, the current model needs to be shifted to a distributed environ-
ment. This has several security and access issues that need to be
addressed. To overcome this, the infrastructure for the Internet is viewed
as a collection of servers where each server holds the data. Moreover, the
efficiency of the Internet is measured not by the method used for
accessing the required data, but rather by how the services are supported
efficiently [34–37]. To implement the distributed services efficiently, there
is a need to modify the existing protocols to address the related issues.

5. Large servers engineering and management. The operation support
system and capacity planning procedures are used to support telecom-
munication systems. Web servers lack such a kind of support. With the
increase in volume and complexity of the traffic in the Web servers, there
is a need for developing efficient engineering practices that support the
characterization of the traffic at the Web servers. It becomes compli-
cated because of the bursty nature of the traffic, nonstationary nature
over small intervals, and the complexity in estimating the requirements
for the dynamic content of the web pages [35, 36]. With server pool
supporting thousands of servers, the issue of managing these servers
efficiently by considering the performance, recovery, replication and
high availability becomes difficult. The challenge here is to find a viable
solution for managing the increase in the number of the servers.

6. Issues pertaining to I/O and architecture. Usually the performance of the
Web servers are measured only in terms of application services and
the underlying protocols that support them by neglecting the influence
of the operating system and the hardware [34–36]. With the increase in the
I/O and the processing requirements, the issues relating to architecture
are important as they prevent scalability. One such example is improper
event recognition techniques, which could lead to bottlenecks. Most of
the multiprocessor systems performance degrades because of the spinning
on locks by the processor for the shared resources. Most I/O operations
require copying of data from one memory to another, which reduces the
performance. Also, most often, processing of the protocols is not cache
friendly. Because cache hits are becoming less and that the increase in
demand on the servers would increase cache misses, the server’s perfor-
mance would degrade. With the increase in audio and video streaming,

106 BENCHMARKING AND CAPACITY PLANNING

the servers must be able to support an excess of 10,000 streams or so. To
provide this, the cache hits should be high and the number of I/O should
be less. As the bandwidth for the local area network (LAN)/wide area
network (WAN) is increasing rapidly, the amount of data sent per request
is almost unrelated when compared with the I/O requests.

7. Issues pertaining to QoS. With the evolution of different networks, the
types of traffic supported by these networks are also increased [35, 36].
All these traffic types should be provided with quality service at the
server level and also at the network level. Examples of the traffic types
include discrete data traffic, continuous data traffic, variable data traffic,
real-time data traffic, non-real-time data traffic, and so on. Hence, all
these traffic types should be differentiated, and the service parameters
for each should be served. One such possibility is negotiating with the
network if the network has the necessary characteristics to support
the traffic across it. If it addresses all the quality of service (QoS)
parameters, then the service is provided. But this is addressing only QoS
at the network and not at the server, which should also be looked at. If
this issue is not addressed at the server, then it could lead to bringing the
traffic from the network and dropping at the server.

8. Issues related to performance and scaling for back-end systems. Usually,
the focus of the Internet servers has been on the front-end servers, but
because of the evolution of e-commerce and e-business applications, the
focus needs to shift to the system as a whole [35, 36]. The issues for
scaling are difficult with respect to the back-end systems at the web
server. This is because inherent dependencies exist when accessing the
data. Hence to avoid this problem it is better to use databases at
the clustered or distributed environment.

9. Controlling the overload at the Internet server. The Internet server
performance is measured by the server throughput and the response
time for serving a client request. The server throughput enhances up to a
certain level known as the threshold; thereafter, it decreases because of
overload. This threshold is termed as the overloading point. Because
of overload, the response time also increases to a larger extent. To
control the load on the Web server, we use efficient mechanisms for
overload control [34–37]. These mechanisms do not allow the load on
the Web server to exceed the overload point. To implement the overload
control efficiently, the data packets need to be classified at the lowest
level of the protocol stack. Overload control is nonexistent for the Web
servers [38]. Hence, a need exists to design schemes for overload control
and denial of service scenarios.

10. Secure transaction performance issues. Using the Secure Socket Layer
(SSL) protocol for e-commerce applications takes a high processing time
because of the overhead incurred. This leads to a slow response from the
Web server. However, SSL provides the most secure e-commerce

4.6 CAPACITY PLANNING FOR WEB SERVICES 107

transactions however it has a bottleneck because of excessive overhead.
The security feature provided by the IPSec introduces these issues at the
network stack lower level [38]. Also, we need to consider the type of
transactions the server handles (i.e., whether the transactions are secure
or nonsecure). If dedicated servers are used to handle SSL, then the
overload needs to be addressed. Also, we need to devise mechanisms
that tradeoff caching as caching conflicts with the security.

11. Data repository for server performance. The performance of the server is
logged in HTTP logs. To address the issues on performance caused by
architecture, we need more detailed information [35–38]. We should
have standard encoding schemes for HTTP, and traces obtained from
the bus should secure the information. This information is recorded
from the sites when they are extremely busy with no impact on the
performance of these sites. Even the log stored by the HTTP does not
characterize the traffic. Apart from this, the total size of the requested
web page and the time taken to process the request needs to be logged
into the logs [34–38].

It is worth mentioning that Web traffic is bursty, which means that data are
transmitted randomly with peak rates exceeding the mean rates by a high factor
that usually ranges between 9 and10.The termburtness is defined as the peak rate
divided by the mean rate. The bursty behavior of Web systems makes it difficult
to size the server’s capacity and bandwidth demand created by load spikes/
burtness. The effect of peak spikes on performance of the website is critical.

4.7 SUMMARY

Benchmarking and capacity planning are essential procedures in the perfor-
mance evaluation of most computer systems and networks ranging from single
computer systems, multiprocessor computer systems, distributed and parallel
systems, local area networks, metropolitan area networks, wide area networks,
wireless networks, client-server systems, and web systems.

Because of changes in the traffic and in the architecture of the various
systems, new techniques need to be designed for evaluating computer systems
and networks. Most benchmarks used for grid and cluster performance
assessment use the Message Passing Interface (MPI) for evaluating these
environments. Apart from these, computer system benchmarks have also
been developed for evaluating the websites’ performance. The performance
of the Web server is evaluated on the basis of the server load and the network
load. Each benchmark used has different mechanisms for representing the
performance evaluation results. To improve the performance of the websites,
we need to optimize the load on the Web server’ which requires capacity
planning strategies. Different applications over the Web have different

108 BENCHMARKING AND CAPACITY PLANNING

requirements, and to provide the required quality of service we need to identify
and separate the resources with different service characteristics and also should
focus on managing the load on the web servers so that it does not exceed the
overloading point. This helps in optimizing the load and providing efficient
service. Also, the resource use for I/O should be optimized.

Experimentation is often used instead of analytic analysis that uses approx-
imate queueing and other mathematical models. It is essential to implement the
needed experiments properly to have confidence in all performed tests under
various operating conditions and environments. Of course, such an arrange-
ment should be done in a cost-effective manner without affecting the credibility
of the obtained results and conclusions. It is expected to get some variations in
the results obtained from the experiments because of all types of errors or
noncontrolled variables; however, such errors should be taken into account
when the results are analyzed. Constructing the confidence intervals is an
important analyzing step to determine the integrity of the chosen workloads
and benchmarks. Finally, it is essential that the performance analyst avoids the
common mistakes and myths that many performance analysts fall into in order
to have a credible analysis and results.

REFERENCES

[1] R. Jain,‘‘ The Art of Computer System Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation and Modeling,’’ John Wiley, New

York, 2001.

[2] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, ‘‘Performance by Design:

Computer Capacity Planning by Example,’’ Prentice Hall, Upper Saddle River, NJ,

2004.

[3] D. A. Menascé, and V. A. F. Almeida, ‘‘Capacity Planning for Web Services:

Metrics, Models, and Methods,’’ Prentice Hall, Upper Saddle River, NJ, 2001.

[4] D. J. Lilja, ‘‘ Measuring Computer Performance: A Practitioner’s Guide,’’

Cambridge University Press, Cambridge, UK, 2000.

[5] K. Hwang, and Z. Xu, ‘‘ Scalable Parallel Computing: Technology, Architecture

and Programming,’’ MCGraw Hill, New York, 1998.

[6] J. Ward, ‘‘Space Time Adaptive Processing for Airborne Radar,’’ MIT Lincoln

Laboratory Technical Report 1015.

[7] W. L. Melvin, ‘‘Space Time Adaptive Processing and Adaptive Arrays: Special

Collection of Papers,’’ IEEE Transactions on Aerospace and Electronic Systems,

Vol. 36, No. 2, pp. 508 510 2000.

[8] A. Choudhary, W K Liao, D. Weiner, P. Varshney, R. Linderman, and R. Brown,

‘‘Design, Implementation and Evaluation of Parallel Pipelined STAP on Parallel

Computers,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 36,

No. 2, pp. 528 548, 2000.

[9] K. Hwang, Z. Xu, and M. M. Arakawa, ‘‘Benchmark Evaluation of the IBM SP2

for Parallel Signal Processing’’, Vol. 13, No. 4, pp. 50 66, 1996.

REFERENCES 109

[10] C. J. Wang, C. L., Wang, and K. Hwang, ‘‘ STAP Benchmark Evaluation of the

T3D, SP2, and Paragon,’’ Proceedings of the 1997 Intl. Conference on Parallel and

Distributed Computing Systems, New Orleans, CA, October, 1997.

[11] J. L. Hennessy, and D. A. Patterson, ‘‘Computer Architecture: A Quantitative

Approach, 3rd Edition’’ Morgan Kaufmann, San Francisco, CA, 2003.

[12] D. A. Menascé, and V. A. F. Almeida, ‘‘Scaling for E Business: Technologies,

Models, Performance, and Capacity Planning,’’ Prentice Hall, Upper Saddle River,

NJ, 2000.

[13] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, ‘‘Capacity Planning and

Performance Modeling: fromMainframes to Client Server Systems,’’ Prentice Hall,

Upper Saddle River, NJ, 1994.

[14] C. Milsap, ‘‘Optimizing Oracle Performance: A Practitioner’s Guide to Optimizing

Response Time’’ O’Reilly, Sebastopol, CA, 2003.

[15] B. Wong, ‘‘Configuration and Capacity Planning for Solaris Servers,’’ Prentice

Hall, Upper Saddle River, NJ, 1997.

[16] A. Cockcroft and R. Pettit,’’ Sun Performance and Tuning,’’ 2nd Edition, Prentice

Hall, Upper Saddle River, NJ, 1998.

[17] P. Nicopolitidis, M. S. Obaidat, G. Papadimitriou, and A. S. Pomportsis, ‘‘Wireless

Networks,’’ Wiley, New York, 2003.

[18] M. S. Obaidat, and G. Papadimitriou, ‘‘Applied System Simulation: Methodologies

and Applications,’’ Kluwer, Doidvecht, The Netherland, 2003.

[19] M. S. Obaidat, H. Khalid, and K. Sadiq, ‘‘A Methodology for Evaluating the

Performance of CISC Computer Systems Under Single and Two level Cache

Environments,’’ Microprocessing and Microprogramming: The Euromicro Jour

nal, Vol. 40, No. 6, pp. 411 426, 1994.

[20] M. S. Obaidat, and H. Khalid, ‘‘Estimating Neural Networks Based Algorithm for

Adaptive Cache Replacement,’’ IEEE Transactions on Systems, Man and Cyber

netics, Part B: Cybernetics, Vol. 28, No. 4, pp. 602 611, 1998.

[21] H. Khalid and M. S. Obaidat, ‘‘KORA: A New Cache Replacement Scheme,’’

Journal of Computers & EE, Vol. 26, No. 3 4, pp. 187 206, 2000.

[22] H. Khalid, and M. S. Obaidat, ‘‘Application of Neural Networks to Cache Replace

ment,’’ Neural Computing & Applications Journal, Vol. 8, pp. 246 256, 1999.

[23] K. Khalil, J. C. Hand, and M. S. Obaidat, ‘‘Methodologies for Characterizing

Traffic in Wide Area Networks: Analysis and Benchmarking,’’ International

Journal of Communication Systems, Vol. 8, No. 2, pp. 117 127, 1995.

[24] B. Lee, and L. John, ‘‘NpBench: A Benchmark Suite for Control Plane and Data

Plane Applications for Network Processors,’’ Proceedings of the 21st International

Conference on Computer Design, Vol. 3, 125 132, 2003.

[25] C. Ho, and Y S Wu, ‘‘Benchmarking Performance Indicators for Banks,’’ Bench

marking: An International Journal, Vol. 13, No. ½, pp. 147 159, 2006.

[26] G. Memik, W. H. M. Smith, and W. Hu, ‘‘NetBench: A Benchmarking Suite for

Network Processors,’’ Proceedings of the 2001 International Conference on

Computer Aided design, pp. 39 42 2001.

[27] R.W. Hockney, ‘‘The Science of Computer Benchmarking (Software, Environment

and Tools),’’ SIAM Books, Philadelphia, PA, 1995.

110 BENCHMARKING AND CAPACITY PLANNING

[28] G. Alfonsi and L. Muttoni, ‘‘Performance Evaluation of a Windows NT Based PC

Cluster for High Performance Computing,’’ Journal of Systems Architecture,

pp. 345 359 2004.

[29] K. Maly, A. Gupta, and S. Mynam, ‘‘BTU: A Host Communication Benchmark,’’

Computer, Vol. 31, No. 5, pp. 66 74, 1998.

[30] M. Hempstead, M. Welsh, and D. Brooks, ‘‘TinyBench: The Case for a Standar

dized Benchmark Suite for Tiny OS based Wireless Sensor Network Devices,’’

Proceedings of the 29th Annual IEEE International Conference on Local Area

Networks, pp. 12 13, 2004.

[31] I. Ahmad, ‘‘Express Versus PVM: A Performance Comparison,’’ Journal of

Parallel Computing, pp. 783 812, 1997.

[32] B. K. Szymanski, Y. Liu and R. Gupta, ‘‘Parallel Network Simulation under

Distributed Genesis’’, Proceedings of the 17th Workshop on Parallel and Distrib

uted Simulation, pp. 212 219, June 2003.

[33] V. S. Getov, A. J. G. Hey, R. W. Hockney, and I. C. Wolton, ‘‘The GENESIS

Benchmark Suite: Current State and Results,’’ Proceedings of Workshop on

Performance Evaluation of Parallel Systems, pp. 182 190, 1993.

[34] K. Hwang, C. Wang, C. L. Wang, and Z. Xu, ‘‘Resource Scaling Effects on MPP

Performance: The STAP Benchmark Implications,’’ IEEE Transactions on Parallel

and Distributed Systems, Vol. 10, No. 5, pp. 509 527, 1999.

[35] N. Boudriga, andM. S. Obaidat, ‘‘Intelligent Agents on the Web: A Review,’’ IEEE

Journal of Computing in Science and Engineering, pp. 35 42, 2004.

[36] K. Kant, and P. Mohapatra, ‘‘Scalable Internet Servers: Issues and Challenges,’’

ACM SIGMETRICS Performance Evaluation Review, Vol. 28, No. 2, pp. 5 8,

2000.

[37] D. Ardagna, and C. Francalanci, ‘‘A Cost Oriented Methodology for the Design of

Web Based IT Architectures,’’ Proceedings of the 2002 ACM Symposium on

Applied Computing, pp. 1127 1133, March 2002.

[38] M. Arlitt, D. Krishnamurthy, and J. Rolia, ‘‘Characterizing the Scalability of a

Large Web Based Shopping System,’’ ACM Transactions on Internet Technology,

Vol. 1, No. 1, pp. 44 69, 2001.

[39] A. Eucens, ‘‘Avoid these Ten Benchmarking mistakes.’’ Available at: http://

www.benchmarkingplus.com.au/mistakes.htm.

[40] http://www.netlib.org/parkbench/html/.

[41] ‘‘Index for PVM3 Library,’’ Available at: http://www.netlib.org/pvm3/.

[42] ‘‘The Message Passing Interface (MPI) standard,’’ Available at: http://www unix

.mcs.anl.gov/mpi/index.html.

[43] ‘‘Standard Performance Evaluation Corporation,’’ Available at: http://www.spec.org/.

[44] ‘‘BenchmarkprogramsandReports,’’Available at: http://www.netlib.org/benchmark/.

[45] ‘‘Benchmark Applications’’ Active Hardware, Available at: http://active hardwar

e.com/english/benchmarks/benchmarks.htm.

[46] ‘‘Web TP,’’ Available at: http://webtp.eecs.berkeley.edu/.

[47] ‘‘NP Bench,’’ Available at: http://projects.ece.utexas.edu/ece/lca/npbench/.

[48] ‘‘LMbench Tools forperformanceanalysis’’Available at: http://www.bitmovera.com/

lmbench/.

REFERENCES 111

EXERCISES

1. Search the literature and review a few recently published articles on
benchmarking and capacity planning. Investigate whether the studies
have any mistakes.

2. What are the aims of capacity planning of a computer system or network?

3. Go to the Standard Performance Evaluation Corporation, SPEC, website
(http://www.spec.org/), and write a report on its recent benchmarks.

4. What are the advantages and disadvantages of synthetic benchmarks?

5. List good performance measures for a multiprocessor computer system
and a local area network. Discuss commonalities and differences.

6. Explain the difference, if any exists, between the capacity planning of a
computer systems and a local area computer network.

7. State and compare some of the potential measures of computation in a
computer system.

8. Amdahl’s law pointed at the inherent limitations in trying to improve
computer system performance by using multiple processors. Express
mathematically the speedup formula and discuss what sort of limitations
we have in this regard.

9. An 800-MHz processor was used to execute a benchmark program with
the following instruction mix and clock cycle counts:

Instruction Type Instruction Count Clock Cycle Count

Integer Arithmetic 450,000 1

Data Transfer 320,000 2

Floating Point 15,000 2

Control Transfer 8,000 2

Determine the effective cycle per instruction (CPI) rate, MIPS rate, and
execution time for this program.

112 BENCHMARKING AND CAPACITY PLANNING

CHAPTER 5

DATA REPRESENTATION
AND ADVANCED TOPICS ON
VALIDATION MODELING

Modeling a computer system assumes the availability of techniques, models,
and methodologies to handle data structures, activities, practices, tools, and
deliverables applied at every phase of the system’s life cycle. This ensures that
the system will be designed, implemented, and operated to meet various
functional and nonfunctional requirements defined for the systems. The major
models to achieve these objectives include the following:

� The representation of data occurring in the exchanged messages, input and
outputs of the major components of the systems, and properties that the
system needs to fulfill.

� The performance modeling of the system based on the measurable
variables that characterize the quality of service it can provide and that
can be used to plan, dimension, and operate it.

� The specification model of the protocols that describe a set of standard
rules for data representation, signaling, authentication, and error detec-
tion required to send information over the entities of the system. The
behavioral modeling reproduces the required behavior of the original
analyzed system, in a way that there is a one-to-one correspondence
between the behavior of the real system and the model representing

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

113

the system. This implies, in particular, that the model uniquely predicts
future system states from its past system states.

� The verification and validation models aim at checking that the system
meets its specifications and that it fulfills its intended purpose. Although a
validation technique establishes documented evidence that provides a high
degree of assurance that the system accomplishes its intended require-
ments, the verification is a quality process that is used to evaluate whether
the system complies with a specification or conditions imposed at the start
of a development phase.

� The simulation modeling that is represented by a mathematical model and
a computer program whose role is to represent and simulate the behavior
of the communication system.

All the aforementioned techniques and models have become a useful part of
any mathematical and experimental model of many systems. Moreover, they
are part of the process of engineering new technologies to achieve insight into
the operation of those systems or to better observe their behavior.

A validation process can generally be categorized into the following two
classes:

� Prospective validation: This class includes the tasks conducted before new
items are released to make sure that the characteristics of the items are
functioning properly and meet the standards.

� Proactive validation: This class includes the tasks conducted after items are
set up to make sure that the characteristics of the items are functional and
meet the specifications after these specifications have been modified.

Although the performance modeling and simulation modeling have been
largely studied in the other chapters of this book, the models needed to
understand data representation, measurements, errors measurements, and
program profiling have not been discussed. In addition, little has been done
for the study of systems behavior and validation models on a formal basis. The
objective in this chapter is to address these two issues.

5.1 DATA REPRESENTATION

In the near future, larger volumes of data need to be collected and analyzed
than ever before for different needs of analysis, engineering, and management
of communication networks and computer systems. The complexity of the data
will grow rapidly, because communication nodes are increasing tremendously
their capabilities of performing computations, exchanging messages, and
displaying structured data. This process will achieve ways that were literally
unreachable only several years ago. It also will have a great impact on the

114 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

design, modeling, and analysis of the systems themselves. An essential compo-
nent of the design will be data collection, data modeling, and data analysis to
predict/determine the system performance.

As more and more data are gathered for design and analysis, iterations may
need to be carried out to achieve better granularity and description. It is
therefore essential that the data be structured at the beginning of the data
collection, storage, and display. This structure can be referred to as a
representation model. All these models should be easy to translate into analytic
or simulation models, which may be needed to be performed at any time in the
life cycle of the communication and computer system. The translation process
can be particularly used during initial design, development, manufacturing,
system operations, and system maintenance. Analytic models can help in
getting accurate performance evaluation of the system for which the collection
data process has been performed. However, simulation models provide useful
and effective tools to direct analytical evaluation of system performance.

Typically, the output data from a network modeling or simulation is
presented in a table, or a matrix, showing how data were impacted by the
changes in the simulation parameters. However, it can be easily noted that
some trends could quickly be better perceived by examining graphs or even
moving images generated from the data. For example, the prediction of some
complex events can be better deduced from observing a moving chart faster
than scanning tables of related parameters.

5.1.1 Graphical Representation

Among the most used representation models, one can find the graphic charts.
A graphical chart provides a visual display of numerical information that
otherwise would be presented in a table. Ideally, a chart conveys ideas about the
data that would not be readily visible if they were displayed in a table or as text.
Graphic charts such as line charts, pie charts, and histogram charts are used for
different reasons including the easiness they provide to look at the figure they
produce to deduce quickly the major features of the system under study. Graphic
charts also can help simplifying the study of a particular property.

Designing good charts, however, presents more challenges than the tabular
display as they draw on the talents of both the scientist and the artist. Indeed,
the designer has to know and understand the data and needs a good sense of
how the reader will visualize the chart’s graphical elements. Such graphical
displays, which go beyond the set of numbers and formulas, sometimes lead to
output that lacks coordinate grid or omitted timestamps, as if straying too far
from numeric data displays. Our main objective in this chapter is to describe the
known technique for data representation and measurement errors.

Graphical representation allows the display of qualitative and quantitative
variables. As opposed to a quantitative variable, a graphical chart provides a
visual display of numerical information that otherwise would be presented in a
table. Preferably, a chart expresses special features about the data that would

5.1 DATA REPRESENTATION 115

not be readily apparent if they were displayed in a table or as part of a text. The
design of good charts, therefore, presents more challenges than tabular display
as it requires the talents of both the scientist and the artist. One has to know
and understand the data, but he also needs a good sense of how the reader will
visualize the chart’s graphical elements.

Two features are important for a graphical chart: the efficient display of
meaningful and unambiguous data. In fact, it is essential for the charting process
to choose meaningful data, to define clearly what the variables represent, and to
present the data in a manner that allows the reader to comprehend quickly
what the data mean. In addition, it is worth noticing that data ambiguity in
charts originates from the failure to define exactly what the data represent. Two
problems may also arise in charting. First, poor choices in graphic design can
provide a distorted picture of the numbers and the relationships they represent.
Second, hiding what the data might tell or allowing a design that distracts the
chart reader from quickly finding the meaning of the evidence presented in the
chart may induce unacceptable errors in the analysis of the systems under
display.

Three basic components are shared by most charts. They are the textual
labels, the chart’s graphical elements, and the X- and Y-axes. Figure 5.1 depicts
the components of a generic graphic chart. The textual labels define the numbers
and are represented in the chart including the chart’s title, axes titles, axes labels,
legends, and notes. The chart’s graphical elements represent the magnitudes of
the numbers and include, but are limited to, bars, pie slices, and lines. The X- and
Y-axes define the scale of the numbers represented in the chart.

Charts can be classified into four basic categories: pie charts, bar charts, time
series charts, and scatterplots. Choosing the category of chart depends mainly on

Chart title
(subtitle)

X-axis
label 2

X-axis title

X-axis
label 1

X-axis
label 3

80

71

43 42

5048

76

70

60

50

40

Legend

Gridlines

Data label

Plotarea
border

Chart area
border

Data series 1

Data series 2

Data series 3

Y-
ax

is
 s

ca
le

FIGURE 5.1. Components of a chart.

116 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

the characteristics of the data and the relationships to be displayed. Pie charts are
used to represent the distribution of the categorical components of a single
variable. One can notice here that this feature induces the fact that pie charts
should be rarely used, because multivariate comparisons provide for more
meaningful analysis than do single-variable distributions. However, bar charts
typically display the relationship between one or more categorical variables with
one or more quantitative variables represented by the length of the bars. The
categorical variables are usually defined by the categories displayed on the X-axis.

The time series chart is one of the most efficient means of displaying a large
amount of data, whereas the two-dimensional scatterplot is the most efficient
medium for the graphical display of data. A simple scatterplot will relay better
information about the relationship between two interval-level variables than
any other method of presenting such data.

The title, which is depicted in Figure 5.1, is typically used to define the data
series, without imposing any data interpretation on the reader. The magnitude
of the graphical elements of a chart is defined by the axis scale and the
individual data labels. If it seems necessary to label every value in a chart, then
consider that a table is probably a more efficient way of presenting the data.
Legends are used when a chart has more than one data series. They are typically
needed for bar charts. With time series charts, labeling usually works better
than a separate legend, and sometimes it can eliminate the need to distinguish
the lines with additional markers. If legends are used, then they should be
ordered to correspond to the ordering of the graphical elements they represent.

5.1.2 Proper Results Plotting

Various guidelines have been provided to enhance the graphical representations
of modeling results. Among the important guidelines, one can consider the
following:

� The representation of results should require a minimum effort from the
reader of the chart. In fact, the level of effort required from the reader to
understand the chart can be an efficient metric to measure the goodness of
the graphic chart. Individual curves should be, in particular, individually
labeled, and the units of measurement well indicated.

� The graphic chart should be self-sufficient: The chart should contain
sufficient information to achieve this goal. In particular, the labels should
be as informative as possible, and appropriate key words can be used
instead of symbols. In particular, the title of the chart should be self-
explanatory and concise.

� The graphic chart should maximize the information-to-ink ratio;
unnecessary information should be avoided. In particular, the grid lines
used in the chart should be kept hidden unless they are needed to provide
the value of a parameter accurately. In addition, the number of curves
should be reasonably small.

5.1 DATA REPRESENTATION 117

� Commonly accepted practices should be used and ambiguity should be
avoided when drawing a graphic chart. Common practices include
representing causes on the X-axis and plotting the effects on the Y-axis,
for example. Ambiguity can be avoided, in particular, by applying simple
rules such as showing axes, scales, and origin. In addition, the minimum
and maximum ranges should be shown on the axes.

In additions, one should avoid many mistakes that have been frequently seen
in the graphic charts reporting performance results. Among those mistakes, one
can mention the following:

� Presenting too many alternatives on a single graphic chart: In fact, it has been
noticed that the average reader cannot take hold of more than a few messages
at a time. Thus, a chart containing too many curves should be avoided.

� Presenting too many Y-variables on a single chart: Plotting a large number
of Y-variables saves space; but it can leave the task of associating the
curves with the appropriate scale to the reader. Limiting the number of
different graphs would allow the chart to be clear and unambiguous.

� Using symbols instead of clear text: A chart with unknown symbols would
be difficult to read and comprehend. It may require from the reader an
extra effort to search for the meaning of these symbols. In such a case, the
messages conveyed by the graphic chart may be lost.

� Selecting scale ranges improperly: It is often necessary to override
manually the automatic rules that select and specify the ranges of scales
to be shown for one or more parameters. In that case, a particular care has
to be provided in the selection of ranges.

� Using the line chart in place of the column chart and vice versa: Typically,
the line chart and the column chart are used to convey different messages.
Whereas the former allows the interpolation of intermediate values using
the lines joining successive points, the latter reports on some features
related to the partition of a set. Thus, it seems clear that the chart should
be appropriately selected.

� Plotting random values without showing the confidence interval: In this
case, the measurement of random parameters would not give the same
results, and the variance would be high when they are repeated. To handle
this, it is necessary to repeat the measurement many times, plot the average
value, and provide the confidence interval.

5.2 MEASUREMENTS

Physical variables cannot be measured with perfect certainty because there are
always errors in any measurement. This means that measuring a physical
quantity and then repeating the measurement will almost certainly provide two

118 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

different values. However, when taking greater care measuring and applying
more refined experimental methods, one can reduce the errors and, thereby,
gain greater confidence that the measurements approximate more closely the
true value. The notion of measurement is closely related to data representation.
Two concepts are frequently related to the meaning of measurement error.
They are precision and accuracy. The concept of precision refers to the
reproducibility of a measurement. It measures how closely two or more
measurements agree with each other. It is sometimes referred to as repeatability
or reproducibility because a measurement that is highly reproducible tends to
give values that are close to each other. Accuracy is a measure of the nearness
to true value. It measures how close a measured value is to the true value or
accepted value.

A common belief considers that no measurement is meaningful unless it is
accompanied by an estimate of its uncertainty or error, no measurement can be
considered exact, and an error is always associated with an experimental
measurement. In fact, the experimental equipment and measuring instruments
have limitations that prevent a user from determining a measurement with
sufficient accuracy. Because a true or accepted value for a physical quantity
may be unknown, it is sometimes not possible to determine the accuracy of a
measurement. All experiments, no matter how thoroughly they are planned and
executed, have some level of uncertainty. In computer and communication
systems, one should be able to know how to identify, correct, or evaluate
sources of an error in an experiment and how to express the accuracy and
precision of measurements operated when collecting data or reporting values
about a system.

5.2.1 Measurement Errors

Three general types of errors occur in measuring communication and computer
systems: random errors, systematic errors, and gross errors. Random errors are
caused by uncontrollable variations and unpredictable changes in the values of
variables that affect experimental results. Changes may occur in the measuring
instruments or in the environmental conditions. Examples of causes of random
errors are as follows:

� An electronic noise in the circuit of an electrical instrument

� Irregular changes in the temperature collector because of changes in the
system environment

Random errors often have a Gaussian normal distribution. In such cases,
statistical methods may be used to analyze the data. The mean m of several
measurements of the same quantity is a good estimate of that quantity, and the
standard deviation s of the measurements shows the accuracy of the estimate.
The standard error of the estimate m is s

n
p , where n is the number of

5.2 MEASUREMENTS 119

measurements. The estimated standard deviation is typically reported with
measurements because random errors are difficult to eliminate.

Systematic errors are errors that affect the accuracy of a measurement. They
can be instrumental, methodological, or caused by personal mistakes producing
irregular data, which is consistently deviated from the exact value. The
accuracy of measurements subject to systematic errors cannot be improved
by repeating those measurements. In addition, systematic errors cannot easily
be analyzed by statistical analysis. They can be difficult to detect; but once
detected, they can be reduced only by refining the measurement technique.
Examples of systematic errors include the instrumental error results, such as
spectrometer deviations away from its calibrated settings or a personal error
that can occur when an experimenter records only even numbers. Systematic
errors can be identified and eliminated after careful inspection of the experi-
mental methods, cross-calibration of instruments, or assessment of techniques.
Finally, gross errors are caused by experimenter’s carelessness or equipment
failure.

Precision of a set of measurements. A data set of repetitive measurements
is often expressed as a single representative number called the mean or average.
The mean m is the sum of individual measurements (xi) divided by the number
of measurements (n). Precision s is indicated by the deviation from the mean m,

m ¼ 1

n

Xn
i¼0

xi; s2 ¼ 1

n2

Xn
i¼0

m� xið Þ2

Widely scattered data results in a large average deviation indicating poor
precision. A small average deviation indicates that data points are clustered
closely around the mean and good precision.

Percent error (or fractional difference) measures the accuracy of a measure-
ment by the difference between a measured value M and a true or accepted
value R. The percent error, denoted by %Error, is calculated from the
following equation:

%Error ¼M � R

R
� 100

The relative average deviation is the average deviation divided by the average
of the measurements. Relative average deviation shows how significant the
average deviation is in proportion to the measured value. The relative average
deviation is commonly expressed as a percent:

Percent relative average deviation¼ 100
AverageDeviation

Average

� �

Example. An engineer made four independent measurements of the number of
packets of a constant bit rate traffic on a communication link. He obtained the

120 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

values 1541 packets/s, 1567 packets/s, 1575 packets/s, and 1505 packets/s. The
average deviation of this set of measurements can be computed as follows:

The average is

m ¼ 1541þ 1567þ 1575þ 1505

4
¼ 1547 packets=s

The deviation of each of these measurements from the average is:
1541� 1547=�6
1567� 1547=20
1580� 1547=33
1505� 1547=�42
The average deviation of this set of measurements is:

�6þ 20þ 33� 42

4
¼ 1:25

The relative average deviation is:

1:25

1547
� 100 ¼ 0:08%

Accuracy of a result. The accuracy of a measured result can be measured by
computing the percent error, which is only found if the true value is known. The
percent error is usually expressed as an absolute value; however, it can be given
a negative or positive sign to indicate the direction of error with respect to its
true value.

Rejection of measurements can be decided on the deviations they may have
with respect to the true values. The Q-test, which can be used for rejecting data,
determine whether an individual measurement should be rejected or retained.
For this, the quantity Q is the absolute difference between the measurements
(denoted by xs) under study and the next closest measurement (denoted by xn)
divided by the spread (o), which is the difference between the largest and
smallest measurement of the entire set of measurements:

Q ¼ xs � xn

o

If Q is greater than a particular confidence level, then the measurement
should be rejected. If Q is less than this value, the measurement should be
retained. It is worth noticing that, although a set of measurements may have a
high precision (characterized by small standard deviations), the measured
results can be inaccurate because of systematic error, for example. However,
experimental measurements with poor precision (with large standard devia-
tions) from random errors can still give an average result close to true value.

5.2 MEASUREMENTS 121

5.2.2 Ratio Game

Ratios have a numerator and a denominator, which is referred to as the base
of the ratio. Two ratios with different bases are not comparable in general.
The techniques of using ratios with incomparable bases and combining
them are called the ratio game. Ratios games can be applied even when more
than two communication or computer systems (or metrics) are involved.
A particular form where the ratio games are used is by selecting a suitable
performance metric that is computed as the average of two different
metrics. The following example shows a simple example of the use of the ratio
game.

Example. Let A and B be two nodes linked by links, S1 and S2, having 622
Mbps and 155 Mbps capacity, respectively. Assume that during the time period
[t, t+ a[link S1 usage ratio is 65% and that during the time period [t, t+ b[,
where b o a, link S2 usage is 25%. Then, three ways can be selected to average
the utilization of the connection from S1 to S2:

– Take the average of the two ratios: This gives a ratio equal to 45% for the
period [t, t+a[.

– Compute the whole capacity (= 777 Mbps) and the sum of the traffic sizes
(0.65 � 622+0.25� 155), per second, and deduce the ratio. This gives
about 57% (=(404.3+38.75)/777)

– Apply the second method for the two periods of time [t, t+ b[and [t+ b,
t+ a[. This gives the ratio 57% for the first interval and 52% for the
second interval.

The simplest way to use ratios is by presenting the performance of n systems
on various workloads and then using the average ratio to show that one’s
proposed system is better than the others. Therefore, it can be shown that by
appropriately choosing the base system, one can easily reverse the conclusion of
the performance evaluation under discussion.

Several practical approaches have been introduced to provide the conditions
under which the conclusions related to the performance evaluation of a
communicating system can be reversed by changing the base in a ratio game.
These approaches have highlighted the following guidelines. If one system
is better on all metrics, then contradicting the conclusions cannot be
achieved. Contradicting the conclusions means that one system can be shown
to be better performing than the second one on some base, and the other is
performing better on other bases. Thus, if a system is performing better on
some benchmark and worse on others, then contradicting conclusions is easy to
achieve.

Consider now the case of two systems S1 and S2 with two benchmarks B1
and B2. Assume that the performance of S1 on B1 and B2 is a and b,
respectively, and the performance of S2 on B1 and B2 is x and y, respectively.

122 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

Using these data, one can say that system S1 is performing better than S2 if,
and only if, the following inequality stands:

y o� a
b
xþ aþ b

b

The analysis of this inequality shows the following. On the one hand, if
system S1 is used as a base, then it will be considered better if and only if:

xþ y

2
o 1 or y o 2� xð Þ

On the other hand, if system S2 is used as a base, then system S1 will be
considered better if and only if:

1

x
þ 2

y
> 2 or y o x

�1þ 2x

� �

5.3 PROGRAM PROFILING AND OUTLINING

Profiling is a well-known technique for recording program behavior and
measuring program performance. It is commonly used to measure instruction
set use, estimate program execution times for code optimization, and identify
program bottlenecks. Typically, program profiling involves counting specific
events of interest, such as entering a basic block or taking a particular control
flow edge. Events are counted each time they happen during the execution of a
program. These data are written out at the end of the program’s execution.
Profile programming typically involves two steps: During the first step, the
program is rewritten to insert additional code, called the profiling code, which
records the runtime events of interest as they occur. During the second step, the
modified program is executed with the same input; it generates the output data
of the original program, denoted by data-gen, and writes the profile data,
denoted by program-counts [1].

On the one hand, to obtain execution counts for each basic block (or a
straight-line sequence of instructions) in a program, one can insert specific code
into each basic block of the program to increment a block-specific counter each
time that block is used. On the other hand, more sophisticated profiles,
including path profiles, require more complex processing, but the general
scheme remains the same. Profilers may also use more sophisticated profiling
logic to reduce runtime overheads.

It is worthy to notice that two independent types of errors can be added in
the profiling process. The first type includes instrumentation errors that occur
when rewriting the program to insert the profiling code (or instrument). The
second type includes profiling code errors that appear when a bug in the code
records runtime events. The instrumentation errors produce incorrect profile

5.3 PROGRAM PROFILING AND OUTLINING 123

data regardless of the type of profiling code that is inserted. In particular, when
we consider the case of the basic block profile, one can induce an error in the
rewriting process, for example, that does not update branches correctly and
causes the profiling code to be skipped in some occasion. If the profiling code
has an error, such as using a block-specific counter that is too small, it is
possible to overflow the counter. In both cases, the result of the profile data
does not match the actual execution of the program.

On the other hand, in addition to inserting profiling code for the need of
counting and recording profiling events in a program, a profiler may require
allocation of memory space for the profile counters he or she has inserted. The
number of counters and the size of the memory space can be determined
statically by examining the program, in simple cases such as the basic block
profiles; however, for more complex profiles, it may not be possible to determine
statically how many counters and memory space are required. In this situation,
the counters may have to be dynamically allocated during execution. In both
cases, data addresses in the original program would change and the errors in the
profile data that result can be thought of as profiling errors.

Therefore, the act of inserting profiling codes into a program can slightly
modify its behavior. Thus, in implementing a profile checker, the profiler can
avoid the program being profiled to help identify profiling errors. The checker
observes the runtime behavior of a program the same way a human uses a
debugger to debug a program: by single stepping, setting breakpoints, running
until breakpoints are reached, and examining the memory space of the
program. In the process, the checker counts the profiling events as they appear
and checks whether the resulting counts match those generated by the profiler.
The checker also controls the execution of the original program on the original
input file and takes the event counts data as an input and produces diagnostics
and verification output as appropriate.

Various techniques can be used to provide program profiling. To explain the
typical steps in these techniques, let us first discuss some basics of graph theory.

A control-flow graph (CFG) is a rooted directed graph, say G= (V, E), that
corresponds to a procedure in a program such that each vertex in V represents a
basic block of instructions (or a straight-line sequence of instructions) and each
edge in E represents the transfer of control from one basic block to another. In
addition, the CFG includes a special vertex EXIT that corresponds to
procedure exit, and the root vertex represents the first basic block in the
procedure. Finally, a directed path from the root to every vertex and a directed
path from every vertex to EXIT are assumed to exist in the CFG.

A weighting W of a CFG G is a function that assigns a non negative value
(an integer or a real) to every edge and that satisfies the Kirchoff’s flow law, in
the sense that, for each vertex v, the sum of the weights of the incoming edges to
v must be equal to the sum of the weights of the outgoing edges from v. The
weight of a vertex is the sum of the weights of its incoming (or outgoing) edges.
The cost of a set of edges and/or vertices is the sum of the weights of the edges
and/or vertices in the set. An execution of a procedure is represented by a

124 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

directed path EX in the CFG that begins at the root vertex (procedure entry)
and ends at EXIT. The frequency of a vertex v or edge e in an execution EX is
the number of times that v or e appears in EX. If a vertex or edge does not
appear in EX, its frequency is zero.

A spanning tree of a directed graph G= (V, E) is a subgraph H= (V, T),
where TrE, such that every pair of vertices in V is connected by a unique path
(i.e., H connects all the vertices in V and there are no cycles in H). A maximum
spanning tree of a weighted graph is a spanning presenting a maximal cost of
the tree edges. The maximum spanning tree for a graph can be computed
efficiently using a variety of algorithms.

Now let us get back to program profiling. To determine the number of
executions of each basic block in a program, counting code can be inserted to
the program at every basic block. However, some drawbacks to such an
approach can be observed, including the fact that many counters may be
unnecessarily added.

Program profiling can be solved by addressing the vertex profiling problem,
denoted by Vprof (cnt), or the edge profiling problem, which is denoted by Eprof
(cnt). The first problem aims at determining a placement of counters cnt (a set of
edges and/or vertices) in program CFG such that the frequency of each vertex in
any execution of G can be deduced exclusively from the graph and the measured
frequencies of edges and vertices in cnt. In addition, on the one hand, to reduce
the cost of profiling, the set cnt should minimize cost for a weighting mapW. On
the other hand, Eprof (cnt) aims at determining a placement of counters in cnt in
CFG G such that the frequency of each edge in any execution of G can be
deduced from the CFG G and the measured frequencies of edges and vertices in
cnt. Let us finally notice that a solution to the edge frequency problem obviously
implies a solution to the vertex frequency problem by summing the frequencies
of incoming or outgoing edges of each vertex.

Knowing that one can place counters on vertices or edges, a counter
placement can be classified into three forms: a set of edges (Ecnt), a set of
vertices (Vcnt), and a mixture of edges and vertices (Mcnt). Mixed placements
are of some interest because of two reasons: (a) placing counters on vertices
rather than on edges would remove the need to insert unconditional jumps and
(b) the fact that a vertex is executed more frequently than any of its outgoing
edges implies that it might be valuable to add code at some outgoing edges
rather than the vertex.

Various profiling problems can be solved by providing an optimal solution,
including the following three problems [2]: the Vertex Profiling with Vertex
Counters [Vprof (Vcnt)], the Edge Profiling with Edge Counters [Eprof (Ecnt)],
and the Vertex Profiling with Edge Counters [Vprof (Ecnt)]. For the sake of
space, let us focus only on how to solve Eprof [Ecnt] .

To see how a placement is done, consider a CFG denoted by G and a set
Ecnt such that E�Ecnt is a spanning tree of G. Assume that each edge e 2 Ecnt
has an associated counter that is initially set to 0 and is incremented once every
time edge e is executed. If vertex v is a leaf in the spanning tree (i.e., only one

5.3 PROGRAM PROFILING AND OUTLINING 125

tree edge is incident to v in the spanning tree), then all remaining edges incident
to v are in Ecnt. Because the edge frequencies for an execution satisfy Kirchoff’s
law, the unmeasured edge’s frequency is uniquely determined by the flow
equation for v and the known frequencies of the other incoming and outgoing
edges of v. The remaining edges with unknown frequency still form a tree, so
this process can be repeated until the frequencies of all edges in E�Ecnt are
uniquely computed. If E�Ecnt contains no cycles, but is not a spanning tree,
then E�Ecnt is a forest of trees. The above approach can be applied to each
tree separately to determine the frequencies for the edges in E� Ecnt.

Example. Consider the following simple program P. Figure 5.2 shows a
weighting CFG graph (which includes six vertexes associated with simple
blocks in P), its maximum spanning tree, and a solution for the Eprof (Ecnt)
problem. Eprof (Ecnt) has been solved by placing a counter on the outgoing
edges of each vertex having at least two outgoing edges. However, it can be
shown that this placement uses more counters than necessary (Six counters, as
represented by dots on the related edges).

Program P

While P do
if Q then A else B
if R then break
C

end

(a): the CFG

1

1

1

10

10

65

56

P P

a

b

c

d
b

f

hg

Q

R

EXIT

C
10

BA

(b): spanning tree (c): profiling

1

10

1056

Q

R

EXIT
EXIT

C
10

BA

FIGURE 5.2. A CFG with a weighting, its maximum spanning tree, and a profiling

solution.

126 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

5.4 STATE MACHINE MODELS

State machine models are ubiquitous models for specifying, setting up, and
verifying different aspects of computing and telecommunication systems. The
idea behind a state machine is simple: A computer or communication system is
characterized by a set of states (or values of the variables constituting the
system activity) that it handles. The system receives a series of inputs that may
cause the machine to produce an output and/or move to a different state,
depending on its current state. A finite state machine is a state machine that can
be in only one of a limited number of states. More powerful and complex state
machine models allow a larger and possibly infinite number of states.

An example of finite state machines is given by a simplified state diagram of
a telephone activity, for which the states can be reduced to belong to the finite
set {idle, dial tone, dialing, ringing, talking}; the events that cause the system to
go from one state to another include the following:

� Lifting the handset: This event causes a move from state ‘‘idle’’ to state
‘‘dial tone.’’

� Touching a digit: This event causes a move from ‘‘idle tone’’ to ‘‘dialing,’’
or from ‘‘dialing’’ to ‘‘dialing.’’

� Answering: The answering event causes the shift from ‘‘ringing’’ to
‘‘answering.’’

� Hanging up: The event leads the machine from state ‘‘answering’’ to state
‘‘idle.’’

Figure 5.3 depicts the finite-state machine (FSM) characterizing the afore-
mentioned telephone activity.

The concept of the state machine as a model of computing applications was
set up a long time ago. It has been demonstrated that such a machine could
serve as a general-purpose computer and communication system. In both
academia and industry, related models were proposed and studied during
several decades, resulting in a definitive paper demonstrating the tractability of
limited models [3]. This work enabled the finite state machine to reach maturity
as a theoretical model.

Nowadays, it is well understood that the design of correct communication
protocols is a non trivial task. The application of the formal methods to the
analysis of such protocols resulted in many improvements in the accuracy of
the protocols, including special protocols such as the security protocols. In
particular, the recent two decades have viewed considerable progress in the field
of formal analysis of security protocols, which has generated a large number of
methods and tools for protocol verification [4]. Similarly, the last several
years have observed progress in the field of system verification. Many
approaches have emerged for the need of specifying and checking many
interesting properties of communication systems using state machines.

5.4 STATE MACHINE MODELS 127

Formally, a finite state machine is defined as a 5-tuple, (Q, S, T, q0, F), where
Q is finite set of states, S is a finite set of input events, T is a transition function
T: Q � S - Q, q0 (q0 2 Q) is a an initial state, and F is a set of states
distinguished as accepting (or final) states (F D Q). When the transition
function has its images in the power set of Q, say T : Q � S - P(Q), the FSM
is called nondeterministic, which means that, for any input event, the next state
is not uniquely determined but may be any one of several possible states
selected by T.

However, a communicating FSM can be defined as a nondeterministic FSM
(Q, M, T, q0, F), where Q is a finite, nonempty set of states, q0 is an element of
Q, the initial state, as defined above, M is a set of message queues, and T is a
state transition relation. Communicating FSMs can be managed through two
major operations: the execution of machines and the minimization of machines.

Consider a system of n communication state machines, with possibly
overlapping sets of messages, and let qj0; j � n; the initial state of the jth

machine and M the set of all messages. An execution of the communicating
finite state machines is a sequence of states (q0, q1,y,qn) by applying the
following rules, where the elements related to the ith finite state machine are
referred to with a superscript i:

8i : 9j; qi � qj0 _ 9e; k : koið Þ; qi 2 Ti qk; eð Þ� �
The set of all executions can be obtained by the application of the following

three-step algorithm:
Step 1. Set all machines in their initial state, and initialize all message queues

to empty.

Idle Ringing

Talking

Dialing

FIGURE 5.3. Example of state machine.

128 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

Step 2. Select an arbitrary machine i and an arbitrary transition function Ti

with Ti (q,ei) not empty and execute it; meaning that a new state in Ti(q, ei) is
selected as the new state of the ith machine.

Step 3. If no executable transition functions remain, then the algorithm
terminates.

However, the optimization is based on the concept of equivalent machines.
Two machines are said to be equivalent if they can output the same sequence of
actions when they are offered the same sequence of input actions. When the
communication FSMs are nondeterministic, two equal machines can behave
differently when offered the same input symbols. Thus, the rule for equivalence
is that the machines must have equivalent choices to be in equivalent states.
Two states within a machine are said to be equivalent if the machine can be
started in any one of these states and generate the same set of possible
sequences of outputs when offered any given test sequence of inputs.

Using the equivalence concept, the set of states of a communicating finite-
state machine can be minimized, without changing the external behavior of the
machine, by replacing every set of equivalent states with a single state.

5.4.1 FSM Validation

FSM validation is the problem of verifying the logical consistency of the FSM.
Most automated validation systems are based on exhaustive reachability
analysis, which attempts to generate and look over all the states of a distributed
system that are reachable from a given initial state. Implicitly, the approach
constructs all possible execution sequences. To establish the observance of state
invariants, then, it suffices to verify their correctness with a simple Boolean test
for each state that is reachable from a given initial system state.

The three main approaches of reachability analysis are the full search, the
controlled partial search, and the random simulation. The full search is a simple
procedure. It performs the most thorough analysis of the search algorithms;
however, it can only analyze a reduced class of protocols. The controlled partial
search tries to optimize the quality of the reachability analysis specifically for
those cases where a full search is infeasible. It attempts the analysis by selecting
an optimal portion of the full state space that can be searched using given
constraints of memory and time. Finally, the random simulation techniques are
specifically meant for the validation of systems of large complexity.

Full search. An exhaustive reachability analysis tries to determine which states
are reachable and which are not. Every reachable state and every sequence of
reachable states can be checked for a given set of correctness criteria. These
criteria can be general conditions that must hold for any protocol, such as the
absence of deadlocks or buffer overruns, or they can be protocol-specific
requirements, such as a temporal claim about the proper working of a message
retransmission discipline. In many cases, protocol-specific requirements can be

5.4 STATE MACHINE MODELS 129

formalized as state invariants, the correctness of which can be verified with a
simple Boolean test in every reachable system state.

The reachability analysis process typically handles two sets, a set of states
that have been analyzed, called A, and a working set of system states to be
analyzed, called B. When the reachability analysis terminates, it should have
examined all the reachable system states. The order in which states are retrieved
from working set B and moved seems irrelevant at a first look; however, it turns
out to be an important control point. In fact, if the states are stored in set B in
first-in–last-out order, the algorithm applies a depth-first search of the state
space tree. If the states are stored and removed in a first-in– first-out order, the
algorithm will perform a breadth-first search

A breadth-first search has the advantage to find the shortest error sequences
first, whereas a depth-first search presents the advantage to require a smaller
work set B. The depth of the search tree depends on the maximum length of the
execution sequences. The width of the tree, however, is defined by the maximum
number of distinct execution sequences, which is usually a much larger number.

Controlled partial search. If the state space is large (in the sense that the
available memory cannot accommodate, the aforementioned exhaustive search
effectively), then the methods are performed to implement a partial search that
guarantees, in some sense, that the most important parts of the space of states
are inspected. This new class of algorithms, which specifically try to exploit the
benefits of a partial search, is based on the assumption that, in most realistic
cases, the maximum number of states that can be analyzed, A is only a fraction
of the total number of reachable states R. A controlled partial search, then, has
the following objective: to select the set of states A in such a way that the
probability of finding any given error is better than the coverage A/R.

An algorithm implementing the partial search should be similar to the full
search algorithm, with only one difference: Not all successor states are
analyzed. However, it adds some rules to select the next states to analyze.
The selection can also be based on a heuristic that supports executions that are
likely to reveal design errors. Many different ways of organizing a controlled
partial search have been developed. Among the most important selection
methods, one can mention the probabilistic searches, the depth-bounds, and
the partial orders.

In a probabilistic search, the next states are explored in decreasing order of
their probability of occurrence. All transitions in the FSM are labeled,
minimally with a value that defines probability of occurrence; these labels are
used as the selection criteria. The depth-bounds search is a simple partial search
technique that places a bound on the length of the execution sequences that are
analyzed. It limits the search to a useful subset of behaviors, eliminating
degenerate cases of multiple overlapping executions. Such a search allows us to
restrict the maximum size of the set B.

The partial orders aims at avoiding the state space explosion problem by
reducing number of possible interleavings of concurrent events and make use of

130 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

the fact that not all interleavings are necessarily relevant in the search for error
states. To do so, a method can use one among the following heuristics: the fair
progress state exploration and the maximum progress state exploration. Both
heuristics implement a search priority to the processes. In particular, the number
of transitions that are inspected during the search can be limited, with a
preference assigned to the transitions that belong to higher priority processes.

Random simulation. This technique is independent of the size and complex-
ity of the network being modeled by the FSM and can be applied when the size
is infinite. A random simulation discards sets A and B from the partial search
algorithm and explores the state space using the random walk approach. The
algorithm does not terminate but outputs a message any time an error state is
found. However, an exhaustive coverage can be guaranteed, for finite state
spaces, provided that a sufficient amount of time is allowed for the simulation.

5.4.2 FSM-Based Conformance Testing Validation

A conformance test of a communication system aims at checking whether the
external behavior of a given implementation of a communication system is
equivalent to its formal specification. In particular, a FSM specifying a
communication would be based on the conformance test of the system. Finite
state machines, thus, can be used to validate a communication protocol and
detect the anomalous behavior in the traffic, flowing under the control of this
protocol, by describing the progression of a connection through all the states,
which result from events based on header content of the flowing packets.

Assume now that we are given a known reference specification in FSM
format, and an unknown implementation, which is considered as a black box
that can be executed on a finite set of inputs and for each input it is able to
generate an output. Assume also that the only task that can be performed with
the black box is to provide it with sequences of input actions (or messages) and
examine the resulting outputs. The conformance of the implementation to test,
referred to as the IT, is stated if all observed outputs match those prescribed by
the FSM. In that case, the set of input sequences that is used to examine the
conformance of the IT is called a conformance test suite (CTS). The CTS is
derived from the reference specification, ideally by a mechanical procedure.

The first attempt to build an effective CTS has two main goals:

� To prove that the IT implements all the functions required by the FSM,
over the full range of parameter values

� To demonstrate that the IT properly rejects erroneous inputs in a way that
is consistent with the FSM

The conformance testing typical scheme operates through a three-step
procedure that is applied for all combinations of a state i and an input signal j.

5.4 STATE MACHINE MODELS 131

First, a resetmessage is used to take the IT to the initial state, and then use a set a
message to move the IT to state i. Second, the signal j is submitted to the IT and
the output received is checked if it matches the output required by the FSM.
Third, a status message is used to interrogate the IT about its final state and the
final state is checked whether it matches the one required by the FSM.

Conformance testing schemes have become a challenging issue when
the administrators of a (public or private) data networks have to assess the
adequacy of commercial solution that can be acquired and used on their
networks. The test verifies that the solution can correctly perform all state
transitions in the FSM. Moreover, the CST should include specific messages
such as the set, reset, and status. If the assessment passes positively, the
implementation can reproduce the behavior of the FSM; however, it remains
unknown whether the solution is capable of any other behavior. In particular, if
the solution to assess is faulty, then it may violate the fact the solution
implements a finite-state machine with a known maximum number of states
and with a known input and output vocabulary. The acceptance of an input
signal that is outside the official input vocabulary may then cause a transition of
the faulty solution into a set of states that produces erroneous behavior. The
cost of the test can be expressed using the length of the test suite, that is, as
the total number of messages that is sent to the IT. Assume that the FSM
contains n states and has an input vocabulary of v distinct messages, including
the set, reset, and status messages. Then the cost is equal to 4nv.

5.4.3 FSM-Based Validation of TCP

To study the use of finite-state machines, we consider the Transmission Control
Protocol (TCP). To do so, let us recall some features of TCP, which is a reliable
protocol whose behavior follows a pattern that is predictable to some extent.
TCP is based on a three-step process: The first step is a three-way handshake. The
second step is the data exchange, and the final step is a closing procedure.
The content of the TCP header expresses the commands that carry a connection
through these stages. A TCP packet has a header, which includes source and
destination Internet Protocols (IPs) and ports, sequence numbers, acknowl-
edgement number and some flags that carry information important to the
progression of the connection. TCP connection anomalies can impart informa-
tion that is important to the network management functions, such as unrespon-
sive hosts and behaviors that lead to resource consumption, and problems in
network security [5].

A TCP connection is negotiated by the user and the server via TCP three-
way handshake. For this, the user requests the establishment of a connection by
sending a packet with a SYN flag (denoted by S). The server agrees to open a
connection by transmitting it using a packet (denoted by SA or SYN acknowl-
edgement). Whenever a packet is sent, the receiver must acknowledge receipt by
transmitting a packet with the ACK flag set so that the sender knows that the
packet was received. These acknowledgments are usually piggybacked on other

132 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

packets to reduce network charge. A packet acknowledging SA completes the
handshake and data transfer may begin. On closing, either the client or the
server may request that the connection be ended with transmission of a FIN
packet (denoted by F), and the other agrees to close the connection by
transmitting its own FIN packet (denoted by FA). In addition, the different
steps of a connection are only allowed to exist for an amount of time to free up
resources that are not being used. Figure 5.4 depicts the use of the flags.

By defining the states of a finite-state machine to reflect the steps of a
connection activity and using the flags as the events that bring about transitions
among the states, we can model a TCP connection as an FSM. In addition, the
FSM can be made to handle anomaly detection; for this, a failure state can be
introduced to indicate the occurrence of a disallowed event or an attempted
illegal transition. When the time-ordered flags of a TCP connection are
submitted to the FSM, then the connection is flagged as anomalous if
the connection enters a failure state or does not complete. The state that the
connection was in and the event that led to the failure can be stored to give an
indication of the reason that the failure occurred.

The resulting FSM can be used to detect some network management issues
and network security events as well as a tool to study the behavior of TCP on

Data transfer

S

ServerClient

A

A

A

FA

FA

SA

FIGURE 5.4. The three step process of TCP.

5.4 STATE MACHINE MODELS 133

the Internet. More precisely, the FSM is constructed as follows; the events are
determined by flags including the following values:

– U: For urgent pointer valid, meaning that the data contained in packet is
urgent)

– A: For acknowledgement number valid (acknowledge receipt)

– P: For push data (clear the buffer)

– R: For reset connection

– S: For synchronize sequence numbers (i.e. initiate connection)

– F: For no more data (i.e., finish connection)

Seven states can be defined in the FSM as follows:

– The listen state is the imaginary starting point for all connections.

– Connection requested and connection established are two states needed to
establish the connection and complete the handshake by passing through
two states.

– The Data transfer is a state where the connection may enter after its
establishment.When the connection is in this state, data can be transmitted

– The closing and closed states are used to allow a graceful termination of
the connection. If it is terminated abruptly, then it may skip closing and
proceed directly to closed.

– The failure state represents that the connection has got lost from the
protocol specification by attempting to access a state out of order or by
introducing an illegal event.

Let us now describe the effect of the events. A TCP connection progresses
from one state to another based on the information contained in the headers of
the packets exchanged (mainly defined by the flag). It should start in a listen
state. When the first SYN is sent, the connection moves to the connection
requested state. When the SYN is acknowledged, the connection enters the
connection established state. When the handshake is complete and until
the closing begins, the connection is in a data transfer state. If the connection
is terminated gracefully, the closing state is entered when one side has sent a
FIN packet. If the connection is terminated via a RST packet or the second
FIN packet, then the connection moves to the closed state and remains there. If
an event or transition that is not specified occurs, the connection enters the
failure state and stays there. The resulting FSM is depicted by Figure 5.5, where
the failure state is omitted.

Twenty-two specified events can be distinguished in the above description.
Table 5.1 describes these events. It can be mentioned that among these events,
four events can be used for acknowledgement, seven events can be used to request
a connection closure, and seven events are used to tear down a connection.

134 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

5.5 PETRI NET-BASED MODELING

A Petri net is a mathematical representation of discrete distributed systems. It
represents graphically the structure of a distributed system, such as a commu-
nication network, as a directed bipartite graph. Petri Nets constitute a very
powerful tool for both qualitative and quantitative system analysis. Unlike
queueing networks, they can easily be used to model blocking and synchroni-
zation aspects. However, they present the disadvantage that they do not
provide any means for direct representation of scheduling strategies [6, 7].

The major components of a Petri net are the places, transitions, and directed
arcs. Arcs take place between places and transitions. The places from which an
arc is issued to a transition are called the input places of the transition; the
places to which an arc arrives from a transition are called the output places of
the transition. Places may contain any number of tokens. For this, a distribu-
tion of tokens over the places of a Petri net is used; it is referred to as amarking.
Transitions act on the input tokens by a process called firing. A transition is
enabled if it can fire, meaning that there are tokens in each of its input places.
When a transition fires, it consumes a predefined number of tokens from each
input place, performs some processing task, and places a specified number of
tokens into each of its output place. After firing a transition, the marking of the

Connection
requested

S

SA

S

S�SA APU

APU

RAPU

F1
APU

F2
APU � RAPU

APU � F1
APU

Connection
established

Data
transfer

Closed

ClosingListen APU � F1,2 � RAPUAPU

FIGURE 5.5. The FSM of TCP connection.

TABLE 5.1 The FSM events

Event label Flag set Event description

S {S} Request to open connection

SA {SA} Agree to open connection.

APU {A, PA, AU, PAU} Acknowledgement of receipt.

FAPU {F, FA, FP, FU, FPA, FPU, FAU, FPAU} Request to close connection.

RAPU {R, RA, RP, RU, RPA, RPU, RAU, RPAU} Tear down connection.

5.5 PETRI NET BASED MODELING 135

input and the places of the transition are changed accordingly. A transition fires
atomically, meaning that the firing process can be performed in one non-
interruptible step, provided that the input places contain the required number
of tokens. In addition, the execution of Petri nets is nondeterministic, in the
sense that multiple transitions can be enabled and fire at the same time or in any
order [8].

5.5.1 Basic-definitions

Formally, a Petri Net (PN) can be defined as a 5-tuple PN=(P, T, Iinp, Iout,
M0), where:

� P is a finite and non-empty set of places,

� T is a finite and nonempty set of transitions

� P - T= F.
� Iinp, Iout: P �T-N are called backward and forward incidence functions,
respectively.

� M0: P - N is the initial marking.

The incidence functions Iinp and I+ specify the interconnection between
places and transitions. If Iinp (p; t)> 0, then there is an arc leading from place
p to transition t and several tokens, equal to Iinp (p; t), are deduced from place p
when t is fired. If Iout (p; t) W 0, then there is an arc starting from transition t
and arriving to place p and several tokens, equal to Iout (p; t), are added to
place p when t is fired. The incidence functions assign natural numbers to arcs,
which are referred to as weights of the arcs. When each input place of transition
t contains at least as many tokens as the weight of the arc connecting it to t, the
transition is said to be enabled.

An enabled transition t0 may fire, in which case it deletes tokens from its
input places and adds tokens in its output places of t0, changing the markingM
into a new marking M’ as follows:

Mu(p)= M(p) � Iinp (p; t0)
Mu(p)= M(p)+ Iout(p; t0)
Mu(p)= M(p) in the other cases

The initial arrangement of tokens in the net (called initial marking) is given by
the function M0, which specifies how many tokens are contained in each place.
Figure 5.6 illustrates a basic Petri net with four places and two transitions.

Example. Consider the Petri depicted by Figure 5.6, where the initial markingM0

is defined byM0(P1)=1,M0(P2)=0,M0(P3)=2, andM0(P4)=1. In addition,
the backward and forward incidence functions Iinp and Iout are given by:

Iinp (P1; T1)= Iinp (P2; T2)= Iinp (P3; T2)=1
Iout (P2; T1)= Iout (P3; T1)= Iout (P4; T2)= Iout (P2; T2)=1

136 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

At the initial state, only transition T1 is firable.
The state of a Petri net, observed at an instant t, is nothing but an n-tuple
S=(s1,y,sn),

where n is the number of places in the Petri net and sj is the number of tokens
present, at the instant t, in jth place of the Petri net. A state-transition list L,
L= (S1,t1;y; Sm,tm) or simply (t1,y, tm) is called a firing sequence if each
transition tj, j r m, is firable on the marking Sj (i.e., there are enough tokens in
the input places of tj occurring in Mj for transition tj) and that Sj+1 is the state
obtained from Sj after firing tj. In this case, the marking Mn is called reachable
from M0 through the firing sequence. Formally, the last marking Mn in the
sequence L is written as M0[L>Mn. The set of all firing sequences that can be
reached, in the Petri net N, starting from the initial marking M0 are noted as
Reach (N, M0).

Finally, let us define the state transition matrices W and W+by the
number of tokens taken by each transition from each place and the number of
tokens given by each transition to each place, as defined by Iinp, Iout,
respectively. The sum W=W+�W is involved in the following equation:

M0 �Mn ¼WT :s

where s is a vector defining how many times each transition is fired in the
sequence. Note that the equation can be carried out if there are enough tokens
for each transition to fire. This means that the satisfiability of the equation is
required, but not sufficient, so that state Mn can be reached from state M0.

Getting back to the above example, the state transition matricesW ,W +,
and W are given by:

WI ¼

 t1 t2

p1 0 1

p2 1 0

p3 1 0

p4 0 1

0
BBBBBB@

1
CCCCCCA
; W ¼

 t1 t2

p1 1 0

p2 0 1

p3 0 1

p4 0 0

0
BBBBBB@

1
CCCCCCA
; W ¼

 t1 t2

p1 � 1 1

p2 1 � 1

p3 1 � 1

p4 0 1

0
BBBBBB@

1
CCCCCCA

P3

P2 P4

T2T1P1

FIGURE 5.6. Example of a Petri net with initial marking.

5.5 PETRI NET BASED MODELING 137

Three issues are important to the study of the dynamics of a Petri net. They
are the reachability, liveness, and boundedness. We describe in the following
the major features of these properties.

Reachability. The reachability in a Petri net aims at finding erroneous
marking that are reachable from an initial marking M0. It is dealt with using
the reachability graph (GR), which is a directed graph whose nodes represent
the Petri net states (or markings) and arcs represent the transitions between the
pairs of states, if any. The graph can be built as a result of the following
process: starting from the initial state (M0), represented as the root of GR, all
possible transitions are explored and the resulting states are added to GR. At
the ith state, the transitions from the newest nodes states are explored and the
resulting states are added to GR, if any.

As the graph may be infinitely large, reaching all markings seems impractical
by the traditional methods, such as the depth-first search. Although reach-
ability seems to be a useful tool to find erroneous states, the constructed graph
usually has too many states to explore. To alleviate this problem, some
techniques can be used to prove that erroneous states can be reached without
a complete expansion of GR. Such tools include the definition of new classes of
Petri nets that can represent generic nodes and transitions.

Liveness. Petri nets can be described as having four levels of liveness; L0,y,
L4. A Petri net is considered Lk live, k r 4, if all its transitions are Lk live. A
Petri net transition t is:

� L0 live, or dead, if it cannot be fired; meaning that it is not in any firing
sequence reachable from M.

� L1 live if it can possibly be fired. This means that t may occur in a firing
sequence starting from M0 (or there is an achievable marking on which t
can be fired).

� L2 live if, for any positive number k, transition t can be fired at least k
times in a firing sequence starting from M0.

� L3 live if there exists a firing sequence where t is fired infinitely

� L4 live if, in any reachable state M, transition t is L1 live

It is worth it to notice that the aforementioned liveness properties are
increasingly stringent requirements; this means, for instance, that if a transition
is L3 live, it is automatically L1 and L2 live as well. The use of these properties is
very important in modeling communication networks and distributed compu-
ter systems. In particular, they can be used to state that nodes in a commu-
nication network can never lock up.

Boundedness. A Petri net is inherently k-bounded if any place in any
reachable state does not contain more than k tokens. A Petri net is safe if it

138 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

is 1-bounded. A Petri net is inherently bounded if all of its reachability graphs
are finite. Formally, boundedness can be addressed using the function
K : S ! Nþ assigning to each place s 2 S some positive number n 2 Nþ

defining the maximum number of tokens that can occupy that place. Bounded-
ness is typically used to model system resources such as a switching capacity
and buffer size.

Extensions of ordinary Petri Nets take into consideration different issues that
need to be integrated into the net description such as the temporal aspects. In
particular, colored Petri nets (CPNs) allow transitions to fire in different modes
and stochastic Petri nets (SPNs) attach an exponentially distributed firing delay
to each transition, which specifies the time the transition should wait after being
enabled before it fires. Generalized stochastic Petri nets (GSPNs) allow two types
of transitions to be used: immediate and timed. Once enabled, immediate
transitions fire without waiting any time. However, if more than one immediate
transition is enabled at the same time, the transition to fire is chosen based on
some firing weights (or probabilities) assigned to these transitions. Timed
transitions fire after a random exponentially distributed firing delay.

Let us now give a formal definition of the CPN. One can say that a Petri net
PN=(P, T, Iinp, Iout,M0) is a CPN if it is equipped with color function C: P U
T - ColorSet, where ColorSet is a fixed set of colors, such that the following
property holds:

For each transition t, Iinp (p; t)W 0 or Iout (p; t)W 0 implies C(t)=C(p).
For all places p, all the tokens in p considered by M0(p) have the color Cp.

5.5.2 Queueing Petri Nets

Petri nets have the disadvantage that they do not provide any means for the
direct representation of scheduling strategies. The attempts to eliminate this
disadvantage have led to the emergence of the queueing petri nets (QPNs). The
main idea in the creation of the QPN formalism was to add queueing and
timing aspects to the places of colored Petri nets. This is done by allowing
queues (or service stations) to be integrated into the places of CPNs. A place
that has an integrated queue is called a queueing place and consists of two
components: a finite queue and a depository for tokens that have completed
their service at the queue. The behavior of the net is summarized as follows.
When a transition is fired, the tokens output to an output place of the transition
are inserted into the queue of the place according to the queue’s scheduling
strategy. Tokens in a queue of a place are not available for transitions until they
finish their services. After completion of its service, a token is immediately
moved to the depository, where it becomes available for output transitions of
the place. The queueing place is called a timed queueing place. Figure 5.7
depicts a queueing place in a QPN.

In addition to timed queueing places, a QPN also introduces immediate
queueing places, which are called untimed places. Tokens in immediate
queueing places can be viewed as being served immediately. Scheduling in

5.5 PETRI NET BASED MODELING 139

such places have priority over scheduling/service in timed queueing places and
firing of timed transitions. An enabled timed transition fires after an exponen-
tially distributed delay according to a specific policy. Enabled immediate
transitions fire according to relative firing frequencies and their firing has
priority over that of timed transitions.

We now give a formal definition of a QPN and then present an illustrative
example. A queueing Petri net is a 8-tuple QPN=(P, T, Iin, I+,M0, C, Q,W),
where:

1. The 6-tuple (P, T, Iout, Iin, M0, C) is a colored Petri net with color
function C.

2. Q is a finite vector of values, sayQ=(q1,y, qn), where n is the number of
places in P and the jth component qj denotes the description of the queue
in pj, if pi is a timed place, or j=’’U’’, if pi is an untimed place.

3. W is a finite vector of functions (W= (w1,y,ws)) having s components,
where s is the number of transactions in T. The jth component wj, inW, is
defined on C(tj) such that for all c in C(tj), wj(c) is the description of a
probability distribution function specifying the firing delay due to color c,
if transition tj is a timed transition. It defines the weight specifying the
relative firing frequency caused by color c in C(tj), if transition tj is an
immediate transition.

Example. Let us consider a communication system taking data packets from
several terminals and then multicasting those over three channels. A QPN
model, which is depicted in Figure 5.8, gives a representation of this system.
The QPN contains seven places and nine transitions. Place p2 represents several
terminals, where users start jobs (modeled with tokens of color ‘‘o‘‘) after a
certain thinking time.

These jobs request service at the CPU (represented by the -/C/1-PS queue,
where C stands for Coxian distribution) and two disk subsystems (represented
by the -/C/1-FCFS queues). To enter the system each job has to allocate a
certain amount of memory. For the sake of simplicity, the amount of memory
needed by each job is assumed to be the same, which is represented by a token
of color ‘‘m’’ on place p1.

QUEUE DEPOSITORY

FIGURE 5.7. A queueing place.

140 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

To model time using a Petri net, positive numbers greater than zero, d(P) or
d(T), are associated to place P and transition T, describing the occurrence of
nonprimitive events. The delay may be modeled either as a deterministic or
stochastic variable. However, if a stochastic model is used, then calculations
consider usually the expected values. To illustrate this, let us consider the
example depicted by Figure 5.9, where two types of resources are processed, r1
and r2. The method is illustrated as follows. The arrival of resource j, for j=1,
2, is made through Tj1 with input flow Ij. After its arrival, resource rj eventually
waits in place Pj1 for a token to be in place P0. When this happens, starting the
processing of rj is enabled (and transition Tj2 is fired). During processing,
whose duration is assumed to last a second, the related token resides in Pj3.
Finally, at the end of processing, transition Tj3 fires and the resource becomes
available, as marked by the return of the token to P0.

Two types of time computations can be performed in a timed Petri net: the
time duration spent to move from marking M to marking M’ and the total
expected steady-state use rm at station m, which is the sum of its expected usage
by each class of customers.

t1 t4

t5

t6

t7

t8

t9

p5

p6

p7

p1

p2 t2 p3 t3 p4

FIGURE 5.8. A QPN model server system.

T12 T13

T23

(t13)

(t23)

T11

T11 T22

�1 �1

�2 �2 �2

�1
P13

P23

P11

Po

P21

FIGURE 5.9. An example of a timed Petri net.

5.5 PETRI NET BASED MODELING 141

5.5.3 Invariants

A general definition of an invariant considers that it is simply a predicate that is
true for all markings, given an initial marking. A particular invariant that we
consider in this subsection is called the place-invariant (or S-invariant). The S-
invariant is an integer n-vector v, where n is with dimension equal to the number
of places in the Petri net. The ith component of this vector, say vi, corresponds
to the ith place. It is a non-negative integer attached to the marking or token
content of the i-th place (or weight). The invariant gives the definition
for conservation in the Petri net by stating that the weighted sum of the token
content of the places in the Petri net is constant for any firing sequence.

A formal definition of the S-invariant is given as follows. A non-negative
integer vector v which is in the kernel or null space of the transpose of the
incidence matrix, Ct. By the definition of the kernel of Ct, vector v satisfies
the relation:

Ct:v ¼ 0

The set of places whose corresponding components in an S-invariant v is
strictly positive is called the support of the invariant v and is denoted by ovW.
The support is said to be minimal if and only if it does not contain the support
of another invariant but itself and the empty set. The support of an S-invariant
v is a set of places of the Petri net. It characterizes naturally a subnetwork,
denoted by [v] and called S-invariant net, whose set of places is ovW and
whose transitions are the input and output transitions of the places occurring in
ovW. Therefore, an S-invariant net is a Petri net whose set of places is the
support of an S-invariant.

Example. Consider the Petri net depicted by Figure 5.10 (a) along with the
incidence matrix C.

C ¼

1 � 1 0

1 0 � 1

�1 1 0

�1 0 1

2
6664

3
7775

Then, an S-invariant v should satisfy the following equations:

v1 þ v2 � v3 � v4 ¼ v2 � v1 ¼ v4 � v2 ¼ 0

Solving the aforementioned equations yields v1= v3 and v2= v4. Thus, two
minimal support S-invariants can be deduced. They are deduced by setting:

v1 ¼ 1; v2 ¼ 0 or v1 ¼ 0; v2 ¼ 1

The corresponding S-components are shown in Figure 5.10(b).

142 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

5.6 PROTOCOL VALIDATION

Networking protocol validation is usually done using a combination of
simulation and testing techniques. These two techniques are valid approaches
and complement each other to some point. In fact, simulation offers the
possibility to run a large set of tests under identical circumstances and allows
some parameters to be varied and their effects to be studied and analyzed. On
the one hand, the goal of simulation is to debug and investigate the system
design. On the other hand, live testing is often applied during protocol
development. Live testing poses the difficulty of conducting several comparable
tests, but if it can be done in a structured way, it may expose errors or problems
that are not visible in simulation. Testing and simulation are not exhaustive
methods and cannot guarantee that there are no undiscovered subtle errors or
design flaws in a protocol. A third alternative allows using formal verification
to cover all situations possible in a system model. The objective of formal
verification is to improve the testing reliability by reasoning about the systems
based on mathematical logic. In particular, a formal system model can be
checked to comply fully with a given set of requirements.

Another approach to the challenge of developing correct communication
systems and security protocols is to build an executable model of the system.
Constructing an executable model usually leads to a more complete specifica-
tion facilitating a systematic investigation of scenarios, which can considerably
decrease the number of design errors. Finite-state machines [10] and colored
Petri nets [11], among others, can be used to provide such executable models.
They define graphical languages for constructing models of communication
systems and analyzing their properties.

The preceding sections have shown that the two forms of Petri nets are
ordinary Petri nets and high-level Petri nets. In the ordinary Petri nets, a system

P3 P3

P1

P2

P4

P2

t1
t3

t2

t3

t2

t1

t1

P4

(a) The Petri net (b) The S-invariant net

P1

FIGURE 5.10. Example of Petri net and S invariant net.

5.6 PROTOCOL VALIDATION 143

can be modeled by a graph, which has two kinds of nodes, places and
transitions. In the high-level Petri nets, such as the colored Petri nets,
predicated and transition nets, and numerical Petri nets, each token can hold
and represent different information and data. CPNs, which can be used in a
graph, have four essential elements: places, transitions, arcs, and tokens. As
finite-state machines and other tools, CPNs can be used to detect protocol
failures and check properties.

There are also many other useful usages of the CPNs [12, 13]. The usages are
mainly based on various features, such the availability of a graphical repre-
sentation, an explicit description of states and actions, and well-defined
semantics, which unambiguously define the behavior. CPNs can integrate the
specification of control and synchronization with the description of data
manipulation, to provide a semantics that builds on true concurrency, instead
of interleaving. Many formal analysis methods may be defined by which
properties of CPNs can be proved.

CPNs can be simulated interactively or automatically. An interactive
simulation provides a way to ‘‘walk through’’ a CPN model while investigating
different scenarios in detail and checking whether the CPN works as expected.
During the interactive simulation, the modeler is responsible for determining
the next step by selecting the event between the enabled events in the current
state. He can observe directly the effects of the individual steps on the
representation of the CPN model. In addition, the modeler typically sets up
breakpoints and stop criteria to facilitate the testing process. However, FSM
verification methods are based on exhaustively simulating all the possible
behaviors of a closed protocol model.

Finite-state machines and CPNs are used by many different special-purpose
verification systems for the validation and verification of security protocols.
Some of these systems are fully automatic and contain a theorem prover,
whereas some others need user guidance and are, in some sense, proof checkers
rather than proof generators. In particular, a large work has addressed, during
the last decade, the representation of security and cryptographic protocols,
verify cryptographic and security protocols, and compute their weaknesses
using CPNs. For this, the validation of a security protocol is mainly done
through the following five steps:

� Step 1: It describes the protocol in a CPNs form.

� Step 2: It defines the acceptance check steps (ACS).

� Step 3: It describes the intruder model.

� Step 4: It finds the insecure states.

� Step 5: It applies the matrix analysis steps and then solve the following
equation:

Mn ¼ M0 þ A
Xm
i¼1

sti

144 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

where Mn is the insecure state, M0 is the initial marking, A is the matrix
description, and si

t is a transpose vector, which determines the firing states.
Let us now analyze and verify a key agreement protocol using colored Petri

nets and observe how some of these steps work. The protocol is based on Diffie-
Hellman-like scheme. However, it assumes that the entities A and B that use it
have private keys to sign their message. The protocol scenario includes the
exchange of three messages:

� A - B: IDA,gx
� A ’ B: IDB,gy,Ek(SigB(gx,gy), kB)

� A - B: IDA,EK(SigA(Bx,By), kA)

where IDA is the identity of A, x and y are random values generated by A and B,
respectively, kB is the public key of entity B, gx=gxmod p, gy=gymod p,
k=gxy mod p , Ek is the encryption function using the key k, and SigB (gx,gy) is
the signature of B made on (gx,gy).

For the lack of space, we only depict the CPN that can be defined to handle
all the transitions and places required by the protocol; see Figure 5.11. One can
notice that the CPN contains six transitions: sign, send, receive, encrypt,
decrypt, and verify, three places denoted by M1, M2 and M3 related to the
three messages exchanged through the protocol; and a fourth place called
‘‘reject’’ that characterizes the state of the system (sender or receiver) after a
message is rejected.

The process developed by the intruder, say I, which is a man in the middle,
can be represented by a CPN using the same transitions and places. In the case
of man-in-the-middle attack, we can notice that the intruder can modify the
outgoing messages from the client to the server, and conversely. Hence,
the intruder CPN adds three places, so that the six messages are related
to the following messages:

� M1:IDA, gx
� Mu1:IDA, gz
� M2:gy,Ek2(SigB(gz,gy), kB)

� Mu2:gz,Ek1(SigB(gz,gx), kB)

� M3:Ek1(SigA(gx,gz), kA)

� Mu3:Ek2(SigA(gz,gy), kA)

The man-in-the-middle attack has the ability to control the negotiation
between the sender (or client) and the receiver (or server). The intruder shares
k1 with the sender and k2 with the receiver. The above attacks are explained as
follows:

� The intruder I intercepts M1, stores the needed information, and sends its
own data instead of A’s data to B as in Mu1.

5.6 PROTOCOL VALIDATION 145

S
en

de
r

A
1

�
x

B
1

�
y

X
M

1

a1 a2

a5

a4

M
1

M
1

V

b1

c1 M
2

M
2

c2

M
2

M
3

b4

b3

M
2

M
3

a7

M
2

c2

de
cr

yp
t

de
cr

yp
t

K

E
nc

ry
pt

re
je

ct
K

S
ig

n

a3 a6

V
er

ify

V
er

ify

re
je

ct
A

cc
ep

t

a3

K
A

g�
1

K
B

g�
1

R
ec

ei
ve

r

S
ig

n
M

2

E
nc

ry
pt

 M
2

b2

b5M
3

b6
b7

M
2

Compute M1

Send M1

receive M1

Receive M2 Receive M2

Receive M2Send M2

F
IG

U
R
E

5
.1
1
.
T
h
e
C
P
N

o
f
th
e
se
n
d
er
-r
ec
ei
v
er

p
ro
to
co
l.

146

� B then gets the shared key k2 with the intruder. He then signs a message by
its private key, encrypts it with the shared key, and assumes that he is
sending M2 to A.

� Intruder I intercepts M2 then stores B’s data and decrypts it to get B’s
public key and verifies the signature. Also, I signs a new message using its
secret key, encrypts it with the shared key k1 with A, and sends it to A.

� A receives the message M, decrypts it to get the public key from it, and
validates the signature in the message for acceptance or rejection. Then,
the client signs, encrypts a new message M3, and believes that it could be
sent to the server.

� Intruder I intercepts the messageM3, decrypts it to get the public key, and
validates the signature. Then, the intruder can fabricate the new message
M and impersonate the server by it.

� B decrypts M and validates the signature. Then it decides to accept or
reject the negotiation.

From the analysis above, it is clear that the intruder can now eavesdrop,
store, insert, modify, or delete all subsequent messages. The secure state M and
the insecure state Mn can also be easily determined.

5.7 SUMMARY

When modeling and evaluating the performance of computer and communica-
tion systems, complex system components (involving networks, switches, and
traffic control mechanisms) as well as complex behaviors and workloads (often
a mix of constant bit rate traffic, interactive and real-time traffic, and bursty
traffic) need to be taken into account to achieve trustworthy performance
measures. Often, this need leads to the use of measurement-based approaches
implementing high-level techniques for the performance evaluation and data
representation models that can reproduce a real representation of the data
processed by the system, and validation models.

Much work has been done to develop ways to check automatically that a
profile does, in fact, reflect the actual execution behavior of a system. Another
set of works has addressed the formal validation of communication systems.
This chapter describes the most used models to provide the aforementioned
needs. In particular, the finite-state machines, the Petri nets, the program
profilers, and ratio gaming are described and reviewed. Several case studies
have been presented to show how these models are used in modeling and
validation of communication systems.

REFERENCES

[1] T. Ball, and J. R. Larus. ‘‘Efficient Path Profiling’’. In proceedings of the 29th

Annual International Symposium on Microarchitecture, pp. 46 57, 1996.

REFERENCES 147

[2] T. Ball, and J. R. Larus, ‘‘Optimally Profiling and Tracing Programs,’’ ACM

Transactions on Programming Languages and Systems, Vol. 16, No. 4, pp. 1319

1360, 1994.

[3] M. O. Rabin, and D. Scott, ‘‘Finite Automata and their Decision Problems,’’ IBM

Journal of Research and Development, Vol. 3, No. 2, pp. 115 125, 1959.

[4] L. Vigan’o. ‘‘Automated Security Protocol Analysis with the AVISPA Tool.’’

Electronical Notes Theoretical Computer Science, Vol. 155, pp. 61 86, 2006.

[5] J. Padhye, and S. Floyd, ‘‘On Inferring TCP Behavior.’’ In Proceedings of the ACM

SIGCOMM ‘01 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, pp. 287 298, 2001.

[6] F. Bause,. ‘‘QN+PN QPN Combining Queueing Networks and Petri Nets.’’

Technical report no. 461, University of Dortmund, Germany, 1993.

[7] F. Bause, and F. Kritzinger,. ‘‘Stochastic Petri Nets An Introduction to the

Theory.’’ Vieweg Verlag, 2002.

[8] T. Murata, ‘‘Petri Nets: Properties, Analysis and Applications,’’ Proceedings of the

IEEE, Vol. 77, No. 4, pp. 541 580, 1989.

[9] J. Desel, and G. Juhás, ‘‘What Is a Petri Net? Informal Answers for the Informed

Reader,’’ Hartmut Ehrig et al. (eds.), Unifying Petri Nets, LNCS 2128, pp. 1 25, 2001.

[10] G. J. Holzmann, ‘‘Design and Validation of Computer Protocols,’’ Bell Labora

tories, Prentice Hall, Englewood Cliffs, NJ, 1991.

[11] K. Jensen, ‘‘Colored Petri Nets: Basic Concepts, Analysis Methods and Practical

Us Practical Use,’’ Vol. 3. Springer, Berlin, Germany, 1997.

[12] K. Jensen, ‘‘A Brief Introduction to Colored Petri Nets,’’ Workshop on the

Applicability of Formal Models, pp. 55 58, Aarhus, Denmark, 1998.

[13] K. Jensen, L. M. Kristensen, and L. Wells, ‘‘Coloured Petri Nets and CPN Tools

for Modelling and Validation of Concurrent Systems,’’ International Journal of

Software Tools Technology Transfer , Vol. 9, pp. 213 254, 2007.

EXERCISES

1. Two experiments were repeatedly performed on two systems S1 and S2.
Each experiment is declared either passed or failed. The results collected
are presented in the first two columns of Table 5.2.

a. Compare the two systems by taking each experiment individually,
depict in a single chart the results, and show in that case that system
S2 performs better in both experiments.

TABLE 5.2 Results of experiments in Exercise 1

S1 S2

Test Total Passed %passed Test Total Passed %passed

1 240 60 25 1 40 12 30

2 60 4 6.6 2 480 40 8.3

300 64 520 48

148 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

EXERCISES 149

b. Add the results of the two experiments and plot the result in a graphic
chart. Can you conclude that in that case S2 performs better?

2.

a. Define the state transition machine that represents the behavior of a
‘‘close’’ button on a typical window on a computer screen. The button
is assumed to perform as follows:
� The button changes its appearance as soon as the mouse button
pressed down with the pointer over the button. However, the
window does not close immediately.

� The window only closes if the mouse button is released with the
arrow still over the button.

� If the pointer is dragged away from the button, holding the mouse
button down, the ‘‘close’’ button of the window simply changes its
appearance back to the ‘‘up’’ position and the window remains open.

b. Give a definition of the sets of states and transition.

c. Check whether this machine is optimized and optimize it if that is not
the case.

d. Modify the finite-state machine to allow the window start the display
of information for a few seconds after the ‘‘close’’ button has been
pushed and before the window is closed.

e. Consider the finite-stetmachine depictedby the followingfigure (Figure
5.2) and representing a communication systems. Assume the system
receives single input values (0 or 1) and outputs a single output value (0
or 1) for each input. A transition is labeled by an expression of the form
a/b where a is the input and b is the expected output of the system.

f. Define the state transition table under the following form:

Current state Input New state Output

g. Define the output sequence of the system if the following sequence
is submitted starting from state S0=00111001000011110000; see
Figure 5.12.

3. Consider the following Petri net shown in Figure 5.13.

a. Give the incidence matrix.

b. Study the dynamics of the Petri net and compute all its possible
markings.

4. We consider a communication node where packets are preprocessed by a
machine M1, stored in a temporary buffer, and finally assembled by a
second machine M2; see Figure 5.14. A single robot R moves the parts
between the input line, M1, the buffer, M2 and the output line. The buffer
can hold at most seven preprocessed items.

a. Use a Petri net to describe this system

b. Show that the obtained Petri net is live and bounded.

b

e

f

a dc

FIGURE 5.13.

Partially
processed parts

Finished
part

Raw part

M2

M1

R

FIGURE 5.14.

Start

0/0

1/0

0/1 1/0

S2

0/0

S1

1/1

S0

FIGURE 5.12.

150 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING

c. Extend the Petri net such that the output of M1 can be transferred
directly to M2 without being stored in the buffer.

5.

a. Determine the minimal support S-invariants of the Petri net shown in
Figure 5.15.

b. More generally, determine the minimal support S-invariants of the
Petri net deduced from the above Petri net by adding to the middle
line n pairs of (places, transitions).

p4

t2

p1

p3p2t1 t3

FIGURE 5.15.

EXERCISES 151

CHAPTER 6

BASICS OF QUEUEING THEORY

Queueing theory typically represents a useful field of applied probability theory
[1, 2]. It is known to have various applications in a large spectrum of domains,
such as communication networks, computer systems, and transportation.
Queueing theory has attracted a great interest and has generated a huge
number of publications and tools. A large list of interesting introductory
documents on queueing theory organized around some useful textbooks and
some interesting courses can be found on the Internet. The subject of queueing
theory can be described as follows. Consider a service system and a population
of customers (or items), which at some times enter the service system to access a
service (or to be provided a service). It is often the case that the service system
can only serve a limited number of customers. If a new customer arrives and the
service is exhausted, the customer enters a waiting line (or queue) and waits
there until the service facility becomes available. Therefore, three major
components constitute a service system (called also service center): the
population of customers, the service facility, and the waiting queue.

6.1 QUEUE MODELS

6.1.1 Simple Queues

The scope of queueing theory includes the study of cases where several service
systems are organized into a network. In such a network, a single customer

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

152

(called also a job) can walk through a specific path, visiting several service
systems and accessing services [3, 4].

Several situations can show how queueing theory is useful as follows:

� In data communication, for example, standard frames called packets (or
cells in specific networks) are transmitted over wireless or wired links from
one switch to another. In each switch, incoming packets can be buffered
when the arriving demand exceeds the switching or output link capacity.
When the buffer is full, incoming packets will be lost. Estimating the
packet delay at the switches, the loss rate, and the buffer occupation would
help to manage the traffic efficiently in the communication network.

� In multiprocessor computer systems, nodes (individual computers/proces-
sors) may need to access a shared memory at the same time. In such a case,
we need a service policy to decide which node can use the shared resource
first and who comes next. Clearly, some nodes have to wait for their turn
to use the shared resource. Queueing theory schemes can be used to
estimate the mean waiting time and mean queueing time for the node in
the system.

� Other examples of the use of queueing theory are in networking. Consider
more complicated tasks such as the dimensioning of buffers in routers or
multiplexers, determining the mean number of trunks in a central office,
calculating end-to-end throughput in networks, and so on. Therefore,
queueing theory tries to find performance metrics of communication
networks such as: (a) the mean waiting time in the queue, (b) the mean
usage of the service facility, (c) the mean system response time (waiting
time in the queue plus service times), and (d) the distribution of the
number of customers in the queue and the distribution of the number of
customers in the system. These metrics are typically investigated in a
stochastic scenario, where parameters, such as the interarrival times of the
customers and the service times, are assumed to be random.

� Another set of examples can be given by call centers working on behalf of
commercial enterprises (or insurance companies). The call center responds
by phone to customer’s questions related to the activity of the enterprise.
The call center establishes work organization, where each team helps
customers from a specific city (or specific subactivity) only. Using queue-
ing theory would help in estimating how long customers have to wait until
an operator becomes available, how long a communication can be
authorized, or whether the number of incoming phone lines is acceptable.

� A final example of queueing theory can be given by a service center that
represents an airline counter, where passengers are expected to check in
before they can go on board the plane. The check-in is usually done by one
or several employees. However, there are often multiple passengers. A
newly arriving passenger proceeds directly to the end of the queue, if the
service center is busy. This corresponds to a first-in–first-out FIFO service

6.1 QUEUE MODELS 153

discipline. Queueing theory in such a case can help reducing the waiting
time for customers and optimizing the number of employees needed to
perform the task.

The simplest queuing system contains a server as a central component [as
depicted by Figure 6.1(a)]. The server provides a given service to customers.
Customers arrive at the system to be served. If the server is idle, then a customer
is served immediately. Otherwise, the arriving customer joins a waiting area/
queue. When the server has completed serving a customer, the customer leaves
the system. If customers are waiting in the queue, then one of them is
immediately scheduled for service depending on the service policy used. The
server in this model can represent any entity that performs a specific function or
provides a well-specified service for a given population of customers. Examples
of entities include: (a) a computer/processor that provides service to other
processes, (b) a transmission line that provides a transmission service to data
packets, and (c) a printer that provides a printing service for job requests.

Figure 6.1(b) shows a generalization of the simple model we have been
discussing for multiservers, all of which share a common queue. If an item
(customer) arrives and at least one server is available, then the item is
immediately sent out to that server. It is assumed that all servers are identical;
thus, if more than one server is available, it makes no difference which server is
chosen for the item. If all servers are busy, then a queue begins to build for the
waiting customers. As soon as one server becomes free, an item is accepted
from the queue using the discipline in use.

Departures

Server1

ServerQueue

Queue

Server2

Arrivals

Arrivals DeparturesService
dicipline

(a) Single server

(b) Multiserver

FIGURE 6.1. Queue models.

154 BASICS OF QUEUEING THEORY

6.1.2 Basic Models

A basic model of a service center is shown in Figure 6.2. The customers arrive
to the service center in a random way. The service facility can have one or
several servers; each server can serve one customer at a time. The service times
needed for all customers are also modeled as random variables. Throughout
this chapter and the next chapters, unless otherwise specified, we assume that
the following assumptions are satisfied by the basic queueing models:

� The customer population is of infinite size, the nth customer Cn arrives at
time tn. The interarrival time tn between two customers is defined as:
tn= tn – tn-1. We assume that the interarrival times tn are independent and
identically distributed (iid) random variables, meaning that they are
independent from each other and all tn are drawn from the same
distribution, which is denoted by distribution function A(t)=Pr(tnWt).
The related probability density function (generally referred to as the pdf)
a(.) is given by the derivative of function A (i.e., aðtÞ ¼ dA

dt
ðtÞÞ:

� The service times xn for customerCn are also assumed iid random variables
with the common distribution function (denoted byB(t)) and the respective
pdf b(t). Obviously, a(t) and b(t) are considered independent.

Queueing systems may differ not only in their distributions of the inter-
arrival and service times but also in the number of servers, the size of the
waiting line (infinite or finite), the service discipline, and so forth. Some
common service disciplines are as follows:

� First-come, First-out (FIFO): A customer that finds the service center busy
goes to the end of the queue. This discipline is also referred to as first-
come, first-served (FCFS).

� Last-In, First-Out (LIFO): A customer that finds the service center busy
proceeds immediately to the head of the queue. It will be served next, given
that no more customers arrive.

� Preemptive LIFO (P-LIFO): After arrival to the system, a customer
immediately enters service and pushes the customer in service, if any,
back to the head of the queue. Customers may be pushed out of service
several times before completing service and leaving.

� Random Service: The customers in the queue are served in random order,
meaning that when completed, the next customer to enter service is
randomly chosen among the customers waiting in the queue.

� Round Robin: Every customer gets a time slice. If its service is not
completed, then it will reenter the queue.

� Processor sharing: Whenever n customers (nW 0) are present in the system,
the server processes all of them simultaneously, but at a uniform rate of
1/n each. This means that all current customers are in service.

6.1 QUEUE MODELS 155

� Priority Disciplines: Every customer in the queue has a (static or dynamic)
priority; the server selects always the customers with the highest priority.
This scheme can use the preemption discipline.

� Shortest Job First (SJF): When service is completed, the customer to enter
service next is the customer in queue with the smallest remaining service
time. If a customer arrives with a service time smaller than the customer in
service, then the new customer enters service immediately, forcing the
current customer to get back into the queue. As with P-LIFO, customers
can enter service several times before finally completing service and
departing.

It is obvious that the customer delay in the aforementioned service
disciplines might change.

6.1.3 Kendall Notation

The Kendall Notation can be used to give a short characterization of queueing
systems. In this notation, a queueing system description has the form A/B/m/N/
S, where:

� A denotes the distribution of the interarrival time (i.e., the distribution
followed by the aforementioned function A).

� B denotes the distribution of the service times (i.e., distribution described
by the aforementioned function B).

� m denotes the number of servers.

� N denotes the maximum size of the waiting line in the finite case (if N is
infinity then this letter is omitted).

� S is an optional parameter that denotes the service discipline used (FIFO,
LIFO, RR, etc.).

If S is omitted, then the default service discipline is FIFO. For A and B, the
following abbreviations are common:

� M (Markov): This distribution denotes the exponential distribution with
A(t)CDF= 1� e lt and a(t)=pdf= le lt, where lW0 is a parameter.
The name M comes from the fact that the exponential distribution is the
only continuous distribution with the Markov property, meaning that it is
memoryless.

� D (Deterministic): This is a deterministic distribution where all parameters
are constant (i.e., have the same values).

� Ek (Erlang-k): Erlangian distribution with k phases (k Z 1). The Ek

distribution is given by:

156 BASICS OF QUEUEING THEORY

AðtÞ ¼ 1� e klt

P
O�j�k 1 kmtð Þj

j!

 !

where mW0 is a parameter. This distribution is used in modeling telephone
call arrivals at a switch node.

� Hk (Hyper-k): This defines a hyperexponential distribution with k
phases, where we have A tð Þ ¼ S0� j�k l qj l � e

mjt
� �Þ, and mj W0; qjW0,

and i A {1.k} are parameters. In addition, the equality S0rjrk qj=1 must
hold.

� G(General): This stands for general distribution with very few parameters
specified. In most cases, the set of specified parameters include at least the
mean and the variance.

The simplest queueing system, the M/M/1 system (with FIFO service), can
then be described as follows. Consider a single server, such as an infinite waiting
line, in which the customer interarrival times are iid and exponentially
distributed with some parameter l, and the customer service times are also
iid and exponentially distributed with some parameter m. One can be mainly
interested in steady-state solutions, where the system after a certain running
time tends to reach a stable state, meaning that the distribution of customers in
the system does not change after that. This is well distinguished from transient
solutions, where the short-term system response to different events is
investigated.

A general tendency in queueing theory is presented as follows. If both
interarrival times and service times are exponentially distributed, then large set
service-related quantities can be estimated. If one among the two distributions
is not exponentially distributed, but the other is, then the computation gets
harder. Unfortunately, the computation of parameters is quasi unfeasible for
the case of G/G/1 queues. For example, one cannot do a lot in calculating the
mean waiting times.

6.2 QUEUE PARAMETERS

Some important parameters are generally associated with a queuing model.
Their determination is important to the engineering of the real system
associated with queue model. The relevant performance parameters in the
queueing models are as follows:

� The distribution of the waiting time and the sojourn time of a customer.
The sojourn time is the waiting time plus the service time.

6.2 QUEUE PARAMETERS 157

� The distribution of the number of customers in the system (including or
excluding the one or those in service).

� The distribution of the amount of work in the system. That is the sum of
service times of the waiting customers and the residual service time of the
customer in service.

� The distribution of the busy period of the server. During this time, the
server is working continuously.

In particular, one may be interested in the mean (average) of performance
measures, such as the mean waiting time and the mean sojourn time. Customers
arrive at the system at some average rate (computed as the number of arriving
customers per second) l. At any given time, a certain number n (n Z 0)
of customers w‘ill be waiting in the queue; the average number waiting w can
be estimated, and the mean time that an item must wait, Tw, can be determined
in various situations. Tw is averaged over all incoming customers, including
those that do not wait at all. Figure 6.2 illustrates the structure of a queueing
system and its main parameters.

The server handles incoming customerswith an average service timeTs. This is
defined by the time interval between the acceptance of a customer into the server
and the departure of that customer from the server. The utilization parameter, r,
is the fraction of time that the server is busy,measured over some interval of time.
Two additional parameters applying to the system as a whole can be defined, as
follows: the average number of customers staying in the system, including the
item being served (if any), and the customers waiting; and the average time Tr
that a customer spends in the system, waiting and being served.

If we assume that the capacity of the queue is infinite, then no customers are
ever lost from the system; they are just delayed until they can be served. Under
such circumstances, the number of departures should be equals to the number
of arrivals (measured may be at a different moments). As the arrival rate
increases, the utilization along with congestion increases. The number of

Ts � service time
� � utilizationw � customers

waiting

Tw � waiting
time

� � arrival rate DeparturesService
discipline

r � customer staying in queue

Tr � residence time

FIGURE 6.2. A single server queueing system structure.

158 BASICS OF QUEUEING THEORY

waiting customers becomes higher, which increases the waiting time. When r
reaches the value 1, the server becomes saturated, working 100% of the time.
Therefore, the theoretical maximum input rate that can be handled by the
system is Ts. However, queues become large near system saturation, growing
without bound when r=1. Practical considerations, such as response time
requirements or buffer sizes may limit the input rate for a single server.

To work well with a queueing model, one needs to make the following
assumptions on queues, services, and customers [5]:

� Assumption on customer population: Population is assumed infinite, which
means that the arrival rate is not altered by the drop of customers. If the
population is finite, then the number of customers available for arrival is
reduced by the number of customers currently waiting in the system. This
would typically reduce the arrival rate.

� Assumption on queue size: Unless otherwise stated, we assume an infinite
queue size. This allows the waiting line to grow without bound. With a
finite queue, it is possible for customers to be dropped from the system. In
practice, any queue is finite. Typically, this will make no noticeable
difference in the model analysis.

� Assumption on service discipline: The discipline FIFO is what is normally
implied when the term queue is used. Another possibility is LIFO, which
may be encountered in practice.

For example, a packet-switching node may choose to send out packets on the
basis of: (a) the shortest first, which generates themost outgoingpackets or (b) the
longest first, which minimizes the processing time. In addition, one can be
interested, in particular, in the variability of various parameters. However,
blocking can occur when some of the aforementioned assumptions are not
satisfied. It puts more complexity on the system analysis. A queue may be either
blocked or unblocked at any given time t. Typically, a queue is blocked when a
packet is in transit between that queue and its downstream neighbor (which may
have, inmost cases, the queue occupied). A blocked queuewill remain blocked as
long as its downstream link is busy and the queue has at least one packet to send.

Now let us notice that, with the exception of utilization, all the parameters
used in single queue analysis apply to the multiserver case. These parameters
keep the same interpretation. If N identical servers are used in the queueing
model and r is the utilization of each server, then we can consider Nr to be the
utilization of the entire system. The term Nr is often referred to as the traffic
intensity, u. Therefore, the theoretical maximum utilization is N � 100% and
the theoretical maximum input rate is:

lmax ¼ N=Ts

where Ts is the service time.

6.2 QUEUE PARAMETERS 159

One can say that the key characteristics typically chosen for the multiserver
queue correspond to those for the single-server queue. That is, we assume an
infinite population and an infinite queue size, with an infinite queue shared
among all servers. Unless otherwise stated, the service discipline is FIFO.
Moreover, if all servers are assumed identical, the selection of a particular
server for a waiting item should have no effect on service time [6].

By way of contrast to multiserver queue, one can consider the structure of
multiple single-server queues (as depicted in Figure 6.3). As we will see later,
this apparently minor change in structure between multiserver queue model and
the multiple single-server queue model has a significant impact on the expres-
sion of the performance parameter.

6.2.1 Examples of Simple Queueing Models

Several examples can be considered to explain the nature of simple queueing
models. We describe in the following three queueing models.

The Infinite-Server Queue. This model belongs to the class of the simplest
models. It allows the availability of an infinite number of servers so that no
customers have to wait in a queue. After arrival at time tn, the nth customer Cn

enters service immediately at any available server. It then leaves at time tn+Sn.
The customers should cause no congestion to each other and are not subject to
collision. LetLN(t) denote the total number of customers in service at time t, and
VN(t) denote the workload (i.e., the sum of all the remaining service times). The
workloadVN(t) is defined as the sum of all remaining service times in the system
at time t. The computation of LN(t) and VN(t) gives:

L1ðtÞ ¼
X
n; tn�t

w Sn > t� tnf g

V1ðtÞ ¼
X
n; tn�t

Sn �min Sn; t� tnf gÞð

where w Sn > t� tnf g is the indicator function of the event Sn > t� tnf g;
meaning that:

w Sn > t� tnf g ¼ 1 3 Sn > t� tn:

This is true because, for tn= t, the remaining service time of Cn is exactly
Sn � min{Sn, t � tn}.

The Split and Match Queue. The split and match models are applicable to
manufacturing and production systems, where customers (or jobs) are instan-
taneously split into components that are served at separate parallel single-
server FIFO queues, after the arrival to the facility. Then, match up again when
all components have finished service. The split and match queue model is
composed of c FIFO single-server stations placed in parallel and are jointly fed
by one common arrival process.

160 BASICS OF QUEUEING THEORY

Server 1

Server 2

(a) Multiserver queue

(b) Multiple single-server queues

Departures
Dispatching
discipline

Queue

Server N

Server 1

Server 2

Server N

Departures

Arrivals

� � arrival
rate

Arrivals

� � arrival
rate

�
—
N

�
—
N

�
—
N

�
—
N

�
—
N

�
—
N

FIGURE 6.3. Multiserver versus multiple single server queues.

6.2 QUEUE PARAMETERS 161

Assume that customer Cn arrives to the system, say at time tn, with a job
consisting of c components, and assume the ith component requires service at
the ith station. Then, after arrival to the system, the job instantaneously is split
into components. When all the c components have finished service, the
components match up again into the original job, and the customer departs
as one unit. Let now kn ¼ ðSn;1; :::;Sn;cÞ be the vector of service times Sn,j and
define Dn ¼ ðDn;1; :::;Dn;cÞ, where Dn,j is the work in system at the ith station at
time tn (or just before tn), which satisfies the recursion:

Dnþ1;j ¼ maxðDn;j þ Sn;j � ðtnþ1 � tnÞ; 0Þ

It is exactly the delay in the ith queue of the ith component of the nth job, not
including ith service. The sojourn time Wn of Cn is then given by

Wn ¼ max Dn; j þ Sn;j 1 � j � cj
 �
The FIFO Multiserver Queue. This is a multiserver model including s servers

offering their services in parallel and only one queue for the arrival of
customers that will wait for service. The queue is assumed to have infinite
length and the service discipline is FIFO. Like the single-server models,
customer Cn takes a service time Sn, goes to the first available server, gets
served, and then departs. The workload vector, which is denoted by
Xn ¼ ðXn;1; :::;Xn;cÞ; where Xn,j is precisely how long it will take the server j
to complete processing all the customers currently in the queue at time t (in the
absence of any new arrivals and in collaboration with the other c centers), is
defined by the recursion:

Xn ¼ RoðXn þ Sn : I1 � ðtnþ1 � tnÞ : IeÞ; 0Þ
with I1= (1,0,0,y,0), Ie =(1,1,y,1), and Ro is the reordering operator,
which rewrites the coordinates of a vector in the ascending order. One can
easily show that Xn,l is exactly the delay of customer Cn.

6.3 LITTLE’S LAW

In this section, we consider some important laws in queueing systems dealing
with customer arrivals and sojourn time. The most known result is referred to
as Little’s law [7], which asserts that the average number of customers, L, in a
queueing system is equal to the rate at which customers arrive, l, multiplied
by the mean sojourn time of a customer, W. Little’s law and similar other
laws are based on a sample path analysis with no a priori specific stochastic
assumptions are considered. Little’s law is a general result that applies to all
models including G/G/1-queues. Moreover, it holds for different service
disciplines [8].

162 BASICS OF QUEUEING THEORY

6.3.1 The Formula

Let us consider a queueing system in which customers arrive from the outside,
spend some time in the system, and then leave the system. Cn denotes the nth
customer; assume that Cn arrives and enters the system at time tn. The process
{ tn : n Z0} is assumed to be an increasing sequence of non-negative numbers
with counting process {N(t)}, where N(t)= the number of arrivals during
interval (0,t]. We also assume that after entering the system, Cn spends Wn=0
units of time in the system and then leaves at time tdn ¼ tn þWn. Note that the
departure times are not necessarily ordered. This means that we do not require
that customers depart in the same order that they arrived. Finally, let us
consider that {Nd(t)} denotes the counting process for departure times. Note
that:

NdðtÞ � NðtÞ; t � 0

The number L (t) of customers in the system at time t, is defined explicitly by:

LðtÞ ¼
X
n: tn�t

P Wn > t� tnf g

The value l can be viewed as the long term arrival rate. Assume that the
arrival rate in the system, the mean sojourn time, and mean number in
the system are given by the limits (when they exist) of the following real
numbers, respectively:

l ¼ lim
t!1

NðtÞ
t
; w ¼ lim

n!1
1
n

Pn
j¼1

Wj ; L ¼ lim
t!1

1
t

R t
0
LðsÞds

Theorem. If l and w exist and are finite, then L exists and L= lw.
Proof. Let us first notice in order to derive the following inequalities:

X
j: tdj 1

Wj �
Z t

0

LðsÞds �
XNðtÞ
j¼1

Wj

and that the theorem is valid if we can state that:

lw � lim
t!1

1

t

X
j: tdj 1

Wj � L ¼ lim
t!1

1

t

Z t

0

LðsÞds � lim
t!1

1

t

XNðtÞ
j¼1

Wj � lw

6.3 LITTLE’S LAW 163

However, a rigorous computation of
R t
0 LðsÞds can be conducted, as follows:

R t
0 LðsÞds ¼

R t
0

P
j: tj�s�t

P Wj > s� tj

 �()

ds

¼ P
j: tj�t

R t
t1
P Wj > s� tj

 �

ds

¼ P
j: tj�t

min Wj; t� tj

 � ¼ P

j: tjþWj�t
Wj þ

P
j: tj�t� tjþWj

ðt� tjÞ

But, because wj Z t � tj for all j occurring in the second sum of the right term
of the last expression, we obtain an upper bound of

R t
0
LðsÞds by considering:

X
j: tjþWj�t

Wj þ
X

j: tj�t� tjþWj

ðt� tjÞ �
X

j: tjþWj�t
Wj þ

X
j: tj�t� tjþWj

Wj ¼
X
j: tj�t

Wj

¼
XNðtÞ
j¼1

Wj

Deriving the upper bound by t, we get:

1

t

Z t

0

LðsÞds � NðtÞ
t

� �
1

NðtÞ
XNðtÞ
j¼1

Wj

Taking the limit, as t - N, gives:

lim
t!1

NðtÞ
t

� �
1

NðtÞ
XNðtÞ
j¼1

Wj ¼ lw

Let us now prove that:

lim
t!1

1

t

X
j: td

j
1

Wj

0
@

1
A � lw:

For this, let us notice that an easy computation can prove that lim
n!1

Wn

tn
¼ 0.

Thus, for all e, there is n0 such that, for all j � n0; tdj ¼ tj þWj � 1þ eÞtj. This
means that if tj r t/(1+ e) and jZ n0, then customer Cj has left by time t. Thus,
there are exactly Nð t

1þeÞ � ðn0 � 1Þ such customers. From this, it follows that:

X
j: td

j
�t
Wj �

XN� t
ð1þeÞ
�

j¼m
Wj ¼

XN� t
ð1þeÞ
�

j¼1
Wj �

Xm 1

j¼1
Wj

164 BASICS OF QUEUEING THEORY

Dividing by t and taking t to infinity gives us:

lim
n!1

1

t

X
j: tdj �t

Wj � lim
n!1

1

t

XN� t
ð1þeÞ
�

j¼m
Wj ¼ lim

n!1
1

t

XN� t
ð1þeÞ
�

j¼1
Wj �

Xm 1

j¼1
Wj

0
B@

1
CA

� lim
n!1

1

t

XN� t
ð1þeÞ
�

j¼1
Wj

0
B@

1
CA ¼ lw

1þ e
; 8e:

Example. Assume that messages enter and leave a network via one of D ports.
The network contains K nodes (or packet switches). At node k we measure Rk

packets per second for a mean throughput rate. The mean flow time of a
packet, waiting plus switching time, at node k is given by E(Fk). The mean flow
time of a packet through the network is denoted by E(F), whereas the total
mean external arrival rate at port j is denoted by lj, and we denote by l the
aggregate total network throughput rate:

l ¼
XD
j¼1

lj

From Little’s law, we deduce that: EðFÞ ¼ 1
l

PK
k¼1

RkEðFkÞ. Because packets can
be switched through more than one internal switch, the packet throughput rate
within the network can go above the external packet arrival and departure rate:

R ¼¼
XK
k¼1

Rk �l ¼
XD
j¼1

lj

Rewriting the mean flow time E(F) gives:

EðFÞ ¼ R

l

XK
k¼1

Rk

R
EðFkÞ

Because we can identify the mean number of nodes visited per packet, N, and
the mean flow time,

V ¼ R

l
and Z ¼

XK
k¼1

Rk

R
EðFkÞ;

then we deduce that the mean time a packet spends in the network is equal the
mean number of nodes visited per packet multiplied by the mean time per node.

6.3 LITTLE’S LAW 165

6.3.2 Applications

Assume a queueing system with customer arrival times tn, arrival rate l with
counting process N(t) and a continuous time quantity of interest, denoted by
H(t), such as queue length and workload. Let gn(t) denote the contribution
by the nth customer Cn at time t to the quantity H(t), and this contribution is
nonzero only for a finite interval of time of length ln starting from arrival time
tn. This implies that a customer does not have an effect on the quantity H(t)
before its arrival. Let Gn denote Cn’s cumulative contribution over the interval
[0, N], H be the time average of H(t), and G the empirical average of all
the Gn.

When ln=Wn and gn(t) =1, for t 2 tn; tn þWnð Þ; one can show that:

Gn ¼Wn;H tð Þ ¼ L tð Þ; andH ¼ L:

Thus, the following result holds.

Theorem. If l and G exist and are finite, then H exists and H= lG, provided
that lim

n!1 ln=n ¼ 0
The proof is similar to the Little’s law. One can easily derive the following

inequalities:

X
j: tjþlj

Gj �
Z

0;t½ �
HðsÞds �

X
1�j�NðtÞ

Gi

The rest of the proof follows the same way as Little’s law has been
established.

Let us now compute the average workload V(t) in a single-server FIFO
queue. Let us recall that the delay of customer Cn is the work found by Cn upon
its arrival at time tn (without including the service Sn required by Cn) and that
Dn=V(tn). Our goal is to derive an expression for average workload:

EðVÞ ¼ lim
t!1

1

t

Z t

0

VðsÞds

using the relation H= lG, for H(t)=V(t). Because V(t) is the sum of
all remaining service times in the system, we can set ln=Wn=Dn+Sn and gn
(t) as:

gnðtÞ ¼
Sn; tn � t � tn þDn

Sn � tþ ðtn þDnÞ; tn þDn � t � tn þDn þ Sn

0; else

8><
>:

The quantity denotes the remaining service time of customer Cn at time t.
After entering service at time tn+Dn, the remaining service time decreases

166 BASICS OF QUEUEING THEORY

at rate 1 until completion of service at time tn+Dn+Sn. Thus, V(t) is given
by:

VðtÞ ¼
X1
n¼1

gnðtÞ:

An easy computation of Gn gives:

GnðtÞ ¼
XtnþDnþSn

tn

gnðsÞds ¼ Sn :Dn þ S2
n=2:

Now assume that l exists and is finite. Assume also that the following limit
exists and is finite:

G ¼ 1

n

Xn
j¼1

Sj :Dj þ S2
j =2:

Finally, assume that:

lim
n!1

1

n
Wn ¼ 0:

Then we can conclude that:

EðVÞ ¼ lðEðS :DÞ þ EðS2Þ=2Þ:

6.4 PRIORITY MANAGEMENT

Priority occurs in queueing theory when some types of customers require to be
serviced before other types. More specifically, one can consider an M/G/1
queue with n types of customers. The type i customer arrives according to a
Poisson stream with rate li, 1 r i r n. The service time and residual service of
a type i customer is denoted by Bi and Ri, respectively. The type i customer has
a higher priority than type j if i o j. Two rules can be set up to provide service
to customers with priority in a queueing model: the non preemptive priority
rule and the preemptive-resume priority rule [9].

The non-preemptive priority rule states that higher priority customers may
not interrupt the service time of a lower priority customer, but they have to wait
until the service time of the low priority customer has been completed. With
the preemptive-resume priority rule, interruptions are allowed and after the
interruption the service time of the lower priority customer resumes at the point

6.4 PRIORITY MANAGEMENT 167

where it was interrupted. In a preemptive system, the queue can stop the current
entry half way through its execution to start the new one.

Non-preemptive priority. Let us denote the mean waiting time of a type i
customer by E (Wi) and the number of type i customers waiting in the queue by
EðLq

i Þ. In addition, let ri ¼ liEðBiÞ. For the highest priority customers, we

have EðWiÞ ¼ EðLq
i ÞEðB1Þ þ

Pn
j¼0

rjEðRjÞ: Combining this with the Little’s law,

which states that EðLq
i Þ ¼ l1EðW1Þ, produces the following:

EðW1Þ ¼
Pn

j 1 rjEðrjÞ
1� r1

The computation of the mean waiting time for the lower priority customers
is more difficult. Consider type i customers (for i W 1). The waiting time of a
type i customer can be divided in many portions C1,C2,. . .Cn,. . .. The first
portion C1 is the amount of work associated with the customer in service and
all customers with the same or higher priority present in the queue at
the customer’s arrival. The second portion, C2, is the amount of higher priority
work arriving during C1. The third portion C3 is the amount of higher priority
work arriving during C2, and so on.

Therefore, for the first portion of work, an arriving type i customer has to
wait for the sum of the service times of all customers with the same or higher
priority present in the queue plus the remaining service time of the customer in
service. Thus,

EðCiÞ ¼
Xi

j 1
EðLq

j ÞEðBjÞ þ
Xn

j¼1 rjEðRjÞ:

To complete the determination of E(Ck), let us consider the density function
fk(x) and the relation between E(Ck+1) and E(Ck). One can easily show that:

ðCkþ1Þ ¼
Z 1
t¼0

EðCkþ1 Ck ¼ tÞfkðtÞdt ¼j
Z 1
t¼0
ðl1tEðB1Þ þ : : :þ li 1tEðBi 1ÞÞfkðtÞdt

¼
Xi 1

j¼1 rj
�

EðCkÞ

This finally shows that: EðCkÞ ¼
Pi 1

j¼1 rj
� k

EðC1Þ, for k W 0. In addition,
E(Wi) can be determined by:

EðWiÞ ¼ EðC1Þ
1� ðr1 þ : : :þ ri 1Þ

for i � 2:

168 BASICS OF QUEUEING THEORY

Preemptive-resume priority. For a type i customer, no lower priority custo-
mers exist because of the preemption rule. Thus, we can assume that li+ j=0.
for all 1r jr n� i. The waiting time of a type i customer can again be divided
into portions {Ci}i Z1.C1 is equal to the total amount of work in the system after
arrival because we assumed that no lower priority customers exist. Moreover,
one can recognize the total amount of work in the system does not depend on the
order in which the customers are served. Therefore, at each moment, it is exactly
the same as in the system where the customers are served according to the non-
preemptive priority rule. Thus, {Ci}iZ1 and {Wi}nZ iZ1 have the same
distribution as in the system with non-preemptive priorities (assuming that
li+ j =0, for all 1r jrn� i).

Conservation law. Let us consider a single-server queue with n types of
customers. Type i customers arrive according to a general arrival stream with
rate li for all 1 r i r n). The mean service time and mean residual service time
of type i customer are denoted by E(Bi) and E(Ri), respectively. Let us define
ri ¼ liEðBiÞ and assume that:

Xn
j¼0

ljEðRjÞo1:

One can state that the server can handle the amount of work offered per unit of
time. Customers enter service in an order independent of their service times,
and they may not be interrupted during their service (e.g., the customers may be
served according to FCFS, random or a non-preemptive priority rule). The
conservation law [10, 11] for the mean waiting times states that:

Xn
j¼0

rjEðWjðSDÞÞ is constant with respect to service discipline ðSDÞ:

This states that a weighted sum of these mean waiting times is independent of
the service discipline. This implies that an improvement in the mean waiting of
one customer type because of a service discipline will always degrade the mean
waiting time of another customer type. Let EðVðSDÞÞ and EðLq

i ðSDÞÞ denote
the mean amount of work in the system and the mean number of type i
customers waiting in the queue, respectively, for discipline SD. EðVðSDÞ is
given by:

EðVðSDÞ ¼
Xn

i¼1 EðL
q
i ðSDÞEðBiÞþ

Xn

i¼1 riEðRiÞ:
The first term is the mean amount of work in the queue, whereas the second
term is the mean amount of work at the server. Clearly, the latter does not
depend on the discipline SD. One can make the observation that the amount of
work in the system does not depend on the order in which the customers
are served. The amount of work decreases with one unit per unit of time

6.4 PRIORITY MANAGEMENT 169

independent of the customer being served. When a new customer arrives, the
amount of work is increased by the service time of the new customer. Therefore,
the amount of work does not depend on SD. Consequently, by using the above
equation and L

q
i ðSDÞ ¼ liEðWiðSDÞ, one can deduce the deviation law.

6.5 ANALYSIS OF M/M/1 SYSTEMS

The M/M/1-Queue has iid interarrival times, which are exponentially distrib-
uted with parameter l and also iid service times with exponential distribution of
parameter m. The system has only a single server and uses the FIFO service
discipline. The waiting line is of infinite size. It is easy to find the underlying
Markov chain. As the system state, we use the number of customers in the
system. The M/M/1 system is a pure birth/death system, where at any point in
time, at most one event occurs, with an event either being the arrival of a new
customer or the completion of a customer’s service. What makes the M/M/1
system really simple is that the arrival rate and the service rate are not state
dependent [12]. The state-transition-rate diagram of the underlying continuous
time Markov chain (CTMC) is shown in Figure 6.4.

6.5.1 Steady-State Probabilities

We denote the steady-state probability that the system is in state k(k is natural
integer) by pk, which is defined by pk= limt-NPk(t), where Pk(t) denotes the
probability that k customers are in the system at time t. We note that the
steady-state probability Pk is not dependent on t. We focus on a fixed-state k
and look at the flows into and out of the state. The state k can be reached from
state k � 1 and from state k+1 with the respective rates lPk 1(t) (the system
is with probability Pk 1(t) in the state (k � 1) at time t and goes with the rate l
from the predecessor state k � 1 to state k) and mlPk+1(t) (the same from state
k+1). The total flow into the state k is then:

lPk 1 tð Þ þ mlPkþ1 tð Þ:
The state k is left with the rate lPk(t) to the state k+1 and with the rate mlPk(t)
to the state k � 1 (for k=0 there is only a flow coming from or going to state

0

�

1

�

2

�

3

�

� � � �

4 …

�

�

FIGURE 6.4. Flow diagram for the M/M/1 queue.

170 BASICS OF QUEUEING THEORY

1). The total flow out of that state is then given by lPk(t)+ mlPk(t). The total
rate of change of the flow into state k is then given by the difference of the flow
into that state and the flow out of that state:

dPk tð Þ
dt

¼ l Pk 1 tð Þ � Pk tð Þð Þ þ m Pk 1 tð Þ � Pk tð Þð Þ:

However, in the limit (t-N), we require that dPk(t)/dt=0. So, we arrive at the
following steady-state flow equations:

0¼ mp1 � lp0
¼ l pk 1 � pkð Þ þ m pk 1 � pkð Þ; for all k41

An easy resolution of these equations gives pk ¼ l
m

� k
p0. Furthermore, because

pk are probabilities, the normalization condition: (
P

0rj pj=1) can be trans-

lated into the following:

1 ¼ p0 þ
X

0�j pj ¼ p0
X

0�k
l
m

� �k
 !

¼ p0 1� l
m

� �� � 1

This gives:

p0 ¼ 1� l
m

and pk ¼ l
m

� �k

1� l
m

� �
:

Obviously, in order for p0 to exist, it is required that lo m; otherwise, the series
will diverge. This is the stability condition for the M/M/1 system. It also makes
sense intuitively; when more customers arrive than the system can serve, the
queue size goes to infinity.

6.5.2 Estimating System Characteristics

Several characteristics can be extracted easily. These include the queue utiliza-
tion, the mean number of the customers in the queue, the mean response time,
and the tail probability. The utilization u gives the fraction of time that the
server is busy. In the M/M/1 case, this is simply the complementary event to
the case where the system is empty. The utilization can be observed as the
steady-state probability that the system is not empty at any time in the steady
state. Therefore, we have:

u ¼ 1� p0 ¼ l
m
¼ r:

6.5 ANALYSIS OF M/M/1 SYSTEMS 171

The mean number of customers in the system is given by:

E N½ � ¼
X1
k¼0

kpk ¼ p0
X1
k¼0

krk
 !

¼ 1� rð Þ r

1� rð Þ2 ¼
r

1� r
;

given that the equality
P

0�k kx
k ¼ x 1� xð Þ2 holds. Therefore, the mean num-

ber of customers in the system for varying utilizations can be analyzed. As it
can be observed for instance, E(N) grows to infinity as r-1. Thus, for higher
utilizations, the system tends to become unstable.

The mean response time T is the mean time a customer spends in the system,
i.e., waiting in the queue and being serviced. We simply apply Little’s law to
find the following:

E Tð Þ ¼ E Nð Þ
l
¼

1

m

� �
1� rð Þ ¼

1

m� lð Þ

Finally, let us show how the Tail Probabilities in an M/M/1 system can be
computed in the case where the number of customers is finite. If a customer
arrives at a full system, it is lost. We want to determine the size of the waiting
line that is required to lose customers only with a small probability. As an
example, consider a router for which the buffer space is finite and packets can
be lost with probability 10 6. We assume we use an M/M/1 queue (with infinite
waiting room) as an approximation. We are now interested in the probability
that the system has k or more customers. The probability Pr (N W k) is called a
tail probability and thus would lose a customer in reality. We have:

Pr N > k½ � ¼ 1� Pr N � k½ � ¼ 1�
Xk
v¼0

pv ¼ 1� p0
1� rkþ1

1� r
¼ rkþ1:

Example. Let A and B be two routers and assume that: (a) A sends an average of
10 packets per second to B, (b) the packet size is exponentially distributed with
mean size equal to 480 bytes, and (c) the line speed is 128 kbit/s. The question is
to determine howmany packets are waiting in router A for transmission or being
transmitted and what is the probability that this number is 16 or more.

Using the previous formulas, one can perform the following:

� The utilization r of the line between A and B is r=12 packet/s� 480
bytes/packet� 8 bits/byte=0.72

� E (N) is equal to 0.72/(1� 0.72)=2.57

� The probability that the number of packets is 16 or more is:

Pr N � 16½ � ¼ ð1� rÞ
X1
i¼16

ri ¼ r16 ¼ ð0:72Þ16:

172 BASICS OF QUEUEING THEORY

Example. (Increasing arrival and service rates by the same factor): Given an
M/M/1 system, suppose that we increase the arrival rate and the service rate by
a factor of k. The impact of the factor on utilization, throughput X, mean
number in the system E [N], and mean time in system E [TS] is determined as
follows:

Given that lnew ¼ kl and mnew ¼ km, we have:

� The utilization is unchanged because U ¼ kl
km
¼ l

m
:

� The throughput is increased by a factor of k.

� The mean number in the system is unchanged, EðNÞ ¼ rnew
1� rnew

¼ r
1� r

� The mean time in the system is divided by k, EðTnewÞ ¼
1

mnew � lnew
¼ 1

kðm� lÞ

6.5.3 Handling Priorities

In this subsection, we consider an M/M/1 system serving different types of
customers. For the sake of simplicity, we assume that there are two types
only, say type 1 and type 2; but, the analysis can easily be extended to
situations involving more types of customers. Type 1 and type 2 customers
arrive according to independent Poisson processes with rate m1, and m2,
respectively. The service times of all customers are exponentially distributed
with the same mean 1/m. We assume that r1m1+ r2m2 o1, where ri= li/m is the
occupation rate due to type i customers. Type 1 customers are treated with
priority over type 2 jobs. In the following subsections, we will consider
two priority rules, namely the preemptive-resume priority and non-preemptive
priority.

Preemptive-resume priority. In the preemptive-resume priority rule, type 1
customers have absolute priority over type 2 jobs. Absolute priority means that
when a type 2 customer is in service and a type 1 customer arrives, the type 2
service is interrupted and the server proceeds with the type 1 customer. Once there
are no more type 1 customers in the system, the server resumes the service of the
type 2 customer at the point where it was interrupted.

Let the random variable Li denote the number of type i customers in the
system and Si the random variable denoting the sojourn time of type i
customers. To determine E(Li) and E(Si), for i=1, 2, We have:

EðS1Þ ¼
1

m
1� r1

and EðL1Þ ¼ r1
1� r1

:

6.5 ANALYSIS OF M/M/1 SYSTEMS 173

Knowing that the service times of all customers are exponentially distributed with
the same mean, the total number of customers in the system does not depend on
the order in which the customers are served. So this number is the same as in the
system where all customers are served in order of arrival. Therefore, we have:

EðL1Þ þ EðL2Þ ¼ r1 þ r2
1� r1 � r2

This allows the computation of E(L2) and the deduction of E(S2), using the
Little’s law. Therefore, we have:

EðL2Þ ¼ r1
ð1� r1Þð1� r1 � r2Þ

and EðS2Þ ¼
1

m
ð1� r1Þð1� r1 � r2Þ

:

Non-preemptive priority. We now consider the situation that type 1
customers have nearly absolute priority over type 2 customers. The difference
with the previous rule is that type 1 customers are not allowed to interrupt the
service of type 2 customers. This priority rule is called non-preemptive. The
mean sojourn time of type 1 customers is given by:

EðS1Þ ¼ ðEðL1Þ þ 1þ r2Þ
1

m
:

The term r2
1
m indicates that an arriving type 1 customer finding a type 2

customer in service has to wait until the service of the type 2 customer has been
completed. Using the following property, called the PASTA property, the
probability that the arriving type 1 customer finds a type 2 customer in service
is equal to the fraction of time the server spends on type 2 customers, which is
r2. Then using the Little’s law (i.e., E(L1)= l1E(S1)), we find the following:

EðS1Þ ¼ ð1þ r2Þ=m
ð1� r1Þ

;EðL1Þ ¼ ð1þ r2Þr1
ð1� r1Þ

and EðL2Þ

¼ r2ð1� r1ð1� r1 � r2ÞÞ
ð1� r1Þð1� r1 � r2Þ

By applying Little’s law, one can deduce E(S2) as:

EðS2Þ ¼ ð1� r1ð1� r1 � r2ÞÞ=m
ð1� r1Þð1� r1 � r2Þ

PASTA Property: Assuming arrivals to a queue form a Poisson stream, each
arriving job will view the queue length distribution that is equal to the long-
term steady-state queue length.

An intuitive proof of the PASTA property can be stated as follows. Let Lt,
t Z 0, be the random variable representing the number of customers in the
queue. The probability of Poisson arrival during the interval of time [t�Dt, t] is
given by the probability of a Poisson event in the interval [0, Dt], as denoted by

174 BASICS OF QUEUEING THEORY

Pr(N(Dt) Z1). Because the interval times are exponentially distributed, we
deduce that:

PrðNðDtÞ � 1 Lt Dt ¼ iÞj ¼ PrðNðDtÞ � 1Þ
¼ PrðNðDtÞ � 1Þ � PrðLt Dt ¼ i Þ
¼ PrðLt Dt ¼ i jNðDtÞ � 1Þ ¼ PrðLt Dt ¼ i Þ
¼ PrðLt Dt ¼ i Þ:

AsDt goes to 0, we find out that the probability that a customer arriving at time t
will view the system in state Lt= i and set the results.

6.5.4 Estimating the Busy Period

We can distinguish cycles in a server life. A cycle is the time that lasts between
two consecutive arrivals finding an empty system. Clearly, a cycle starts with a
busy period (denoted by BP) during which the server is serving customers,
followed by an idle period (denoted by IdP) during which the system is idle (the
queue is empty). Due to the memoryless property of the exponential distribu-
tion, an IP is exponentially distributed with mean 1/l.

In the sequel, we compute an estimation of the mean and the distribution of
a BP. It is clear that the mean busy period divided by the mean cycle length is
equal to the fraction of time the server is working, so one can deduce that

EðBPÞ
EðBPÞ þ EðIdPÞ ¼

EðBPÞ
EðBPÞ þ 1=m

¼ r:

This gives the value of E (BP) as
1=m
1� r

:

Let the random variable Cn be the time till the system is empty again if n
customers are now present in the system. Clearly, C1 is the length of a busy
period, because a busy period starts when the first customer after an idle period
arrives, and it ends when the system is empty again. The random variables Cn

satisfy the following recursion relation. Suppose n (W 0) customers are in the
system. Then, the next event occurs after an exponential time with parameter
l+ m: with probability l/ (l+ m), a new customer arrives, and with probability
m/ (l+ m), service is completed and a customer leaves the system. Then, if V is
an exponential random variable with parameter l+ m, then variables Cn satisfy
the following, for n � 1:

Cn=V+Cn+ 1 with probability l/ (l+ m)
Cn=V+Cn 1 with probability m/ (l+ m)

6.5 ANALYSIS OF M/M/1 SYSTEMS 175

6.6 THE M/M/M QUEUE

The M/M/m-Queue (m W 1) has the same interarrival time and service time
distributions as the M/M/1 queue (exponential interarrival times with mean
1/l); it operatesm servers in the system, and the waiting line is infinitely long. As
in the M/M/1 case, a complete description of the system state is given by the
number of customers in the system (because of the memoryless property). The
state-transition-rate diagram of the underlying CTMC is shown in Figure 6.5. In
the following, we will analyze the M/M/mmodel, where customers are served in
order of arrival. The occupation rate, r= l/mm, per server, is assumed to be
smaller than one.

Steady-state probabilities.Using the above described technique of evaluating
the flow equations together with the well-known geometric summation yields
the following steady-state probabilities:

lpn 1=min (n, c) mpn, n Z 1

Iterating this formula gives the following:

pk ¼
p0

mrð Þk
k! : k � m

p0
rkmm

m! : k � m

8><
>:

The probability p0 is deduced from normalization:

p0 ¼
Xm 1

k¼0

mrð Þk
k!
þ mrð Þm

m!

� �
1

1� r

" # 1

where r= l/m. In addition, the probability Pwait that a customer has to wait
(or the delay probability) can be computed by:

Pwait=SjWmpm+j= pm/1� r. The mean number of customers in the
system is given by:

E N½ � ¼
X1
k¼0

kpk ¼ mrþ r
mrð Þm
m!

p0

1� rð Þ2 ¼ Pwait
r

1� r
:

c�1 c n�1

c� (c�1)� n�

n ……0 1

� 2�

…

FIGURE 6.5. Flow diagram for the M/M/m queue.

176 BASICS OF QUEUEING THEORY

The mean response time again can be evaluated simply using Little’s formula:

E S½ � ¼ Pwait
1

ð1� rÞcm :

Distribution of the waiting time. To evaluate the probability that an arriving
customer must enter the waiting line because of the nonavailability of servers,
we compute Pr(N W t) and use random variables Dk, k Z 1, which determine
the kth interdeparture time. We have:

PrðN > tÞ ¼
X1
n¼0
ðP

Xnþ1
k¼1

Dk > t

 !
pmþn

The random variables Dk are independent and exponentially distributed with
mean 1

m
m. In a similar way, we find that:

PrðN > tÞ ¼
X1
n¼0

Xn
k¼0

ðmtmÞk
k!

e mmtpmrn

PrðN > tÞ ¼ pc

1� r

X1
k¼0

ðmtrmÞk
k!

e mmt ¼ Pwait � e mmð1 rÞt; t � 0:

Let us notice that this probability is often used in communication networks. It
states that the probability that a newly arriving call at a central office will get no
trunk, given that the interarrival times and service times (call durations), are
exponentially distributed can be calculated as follows:

Pr Queueing½ � ¼
X1
k¼m

p0 ¼
X1
k¼m

p0
mrð Þk
m!

1

mk m

¼
mrð Þm
m!

� �
1

1� r

� �
Xm 1

k¼0
mrð Þk
k1
þ mrð Þm

m!

� �
1

1� r

� �" #

and is often called the Erlangs C formula.

6.7 OTHER QUEUES

Two queue models with single servers are of interest: the M/Er/1 queue and the
M/G/1 queue.

6.7 OTHER QUEUES 177

6.7.1 M/Er /1 Queue

The Erlang distribution can be used to model service times with a low
coefficient of variation (less than one), but it can also arise naturally. For
instance, a job has to pass, stage by stage, through a series of r independent
production stages, where each stage takes an exponentially distributed time.
The analysis of the M/Er/1 queue is similar to that of the M/M/1 queue
shown in Figure 6.6.

We consider a single-server queue. Customers arrive according to a Poisson
process with rate l and are processed in the order of their arrival. The service
times are Er distributed with mean r/m. In addition, the occupation rate r that is
equal to lr/m is less than one. To describe the state of a nonempty system, we
use a two-dimensional description, with the pair (k, l): note that k designates
the number of customers in the system and l represents the remaining number
of service phases of the customer in service. An alternative way to describe the
state is by counting the total number of not completed phases of work in the
system, which is equal to the number (k � 1)r+ l.

Let pn be the equilibrium probability of n phases in the system comparing the
flow out of state n and the flow into state n; one can obtain the following:

lp0 ¼ mp1

ðlþ mÞpn ¼ mp1 þ n for 1 � n � r� 1

ðlþ mÞpn ¼ lpn r þ mp1þ n for r � n

Looking for a solution under the form pn =xn, the above system of equations
leads to the equation= l� (l+m) xr+m xr+1=0. Thus, it can be demon-

strated that this equation has exactly r roots xk satisfying |xk|o1, whereas x=1

is another root. A general solution has the form pn ¼
Pr
k¼0

ckx
n
k. This is a linear

combination of the coefficients ck. An easy computation shows that:

ck ¼ 1� r

Pk 6¼j 1� xj

xk

� �

Now, let qn be the probability of having i customers in the system. Clearly, we
have the following:

… …0

� �

1 2

� �

r r�1

�

FIGURE 6.6. One dimensional flow for M/Er/1.

178 BASICS OF QUEUEING THEORY

q0 ¼ p0

qn ¼
Xir

k¼1þrði 1Þ
pk ¼

Xr
k¼1

ckðx1 r
k þ x2 r

k þ : : :þ 1ÞðxrkÞi

Example. Consider an M/E2/1 queue with l=1 and m=4. The equilibrium
probability pn is given by

p0 ¼ 4p1; 5pn ¼ 4p1þ n for 1 � n � r� 1 and 5pn ¼ pn r þ 4plþ n

This leads to equation 4x3� 5x2 +1=0, the roots of which are 1, 9/64,
and � 25/64. Setting that, for n Z 0,

pn ¼ c1
9

64

� �n

þ c2
�25
64

� �n

where

c1 ¼ 1� r

1� x2

x1

¼ 27

136
and c2 ¼ 1� r

1� x1

x2

¼ 75

64

We can deduce the numerical value of the equilibrium probabilities. Let us now
compute the distribution of the waiting times. For this, let the random variable
L denote the number of phases working in the system and Bi the amount of
work for the ith phase. Thus, the random variables Bi are independent and
exponentially distributed with mean 1/m. We have the following result for E(L):

EðLÞ ¼
X1
n¼1

npn ¼
X1
n¼1

Xr
k¼1

cknx
n
k ¼

X1
k¼1

ckxk

ð1� xkÞ2

Because the waiting time can be expressed as W ¼ PL
k¼1

Bk; the estimation of P
(WW t) gives the following:

PðW > tÞ ¼
X1
n¼1

P
Xn
k¼1

Bk > t

 !
pn

¼
X1
n¼1

Xn 1

k¼0

ðmtÞk
k!

e mt:
Xr
k¼1

ckx
n
k

¼
Xr
k¼1

ck

1� xk
xke

mð1 xkÞt

6.7 OTHER QUEUES 179

6.7.2 M/G/1 Queues

Customers in the M/G/1 queue arrive according to a Poisson process with rate l.
They are served following a FIFO discipline [5]. In addition, the service times are
iid. The state of the M/G/1 queue can be described by a pair (n, x), where n
denotes the number of customers in the system and x represents the service time
already received by the customer in service. This is a two-dimensional case. The
first dimension is discrete, and the second dimension is continuous. This adds
some complexity to the computation of the related parameters. However, if one
looks at the system just after departures, then the state description can be
simplified to first dimension only, because x=0 for the new customers in service.

Let ND
k be the number of customers left behind by the kth departing

customer. The number of customers left behind by the (k+1) th customer is
clearly equal to the number of customers present when the kth customer
departed minus one plus the number Ak+ 1 of customers that arrived during the
customer’s service time. Therefore, we can write

ND
kþ1 ¼ ND

k þ Akþ1

We now discuss the transition probabilities pi;j ¼ PðND
kþ1 ¼ j!ND

k ¼ iÞ. Clearly,
one can establish the following expression for Pi,j

Pi,j=0 for j o i � 1

In addition, for all j Z i� 1, Pi,j defines the probability that exactly j� i+1
customers arrived during the service time of the (k+1)th customer. This is
valid for i W 0. In state 0, the kth customer leaves behind an empty system and
then P0,j defines the probability that during the service time of the (k+1)th
customer, exactly j customers arrived. Hence, the matrix P of transition
probabilities takes the following form:

P¼

a0 a1 a2 a3 � � �
a0 a1 a2 a3 � � �
0 a0 a1 a2 � � �
0 0 a0 a1 � � �
: : : : � � �

0
BBBBBB@

1
CCCCCCA

where aj is the probability that during a service time, exactly j customers arrive.
If the service times are independent and identically distributed with distribution
function FB(.) and density function fb(.), it is easy to show that:

aj ¼
Z 1
0

ðltÞj
j!

e ltfBðtÞdt:

The transition probability diagram is depicted in Figure 6.7.

180 BASICS OF QUEUEING THEORY

Now, let N(t) be the random variable defining the number of customers at

time t. We have also: dn ¼ lim
k!1

PðND
k ¼ nÞ and pn ¼ lim

t!1PðNðtÞ ¼ nÞ. Cleary
we have Pn= dn, for all n Z 0. Because it can be deduced using dk and ak , for

kon. We can state that:

pn ¼ dn ¼ dnþ1a0 þ dna1 þ : : :þ d1an þ d0an; for all n � 0:

To solve and analyze this system, we need to compute the following generating
functions P(z) and Q(z) and noting that d0= p0=1 � r:

PðzÞ ¼
X1

n¼0 dnz
n and QðzÞ ¼

X1
n¼0 anz

n:

The computation of P gives the following:

PðzÞ ¼
X1

n¼0 ðdnþ1a0 þ dna1 þ : : :þ d1an þ d0anÞzn

¼ 1

z
QðzÞðPðzÞ � d0Þ þ d0QðzÞ:

This shows that

PðzÞ ¼ ð1� rÞð1� zÞQðzÞ
PðzÞ � z

:

However the computation of Q(z) gives:

QðzÞ ¼
X1

n¼0

Z 1
0

ðltÞn
n!

e ltfBðtÞdt
� �

zn ¼
Z 1
0

X1
n¼0

ðltzÞn
n!

 !
e ltfBðtÞdt

¼
Z 1
0

e lð1 zÞtfBðtÞdt:

The working out of the distribution of the sojourn time and the time spent in
the system by a customer can be performed in a similar way.

n�1

�1
�2

�3

�k�n�1

n n�1 n�2

�0

… …… k

FIGURE 6.7. Transition probability diagram for M/G/1.

6.7 OTHER QUEUES 181

6.7.3 G/M/1 Queues

In a G/M/1 system, customers arrive one by one with an interarrival times
identically and independently distributed according to an arbitrary distribu-
tion function F and a density function f. The mean interarrival time is equal
to 1

l. The service times are exponentially distributed with mean equal to 1
m.

For the sake of stability, we assume that the occupation rate r is smaller
than one.

The state of the G/M/1 queue is typically described by a pair (n, x) where
n denotes the number of customers in the system and x is the elapsed time
since the last arrival. It is worth to notice that, as in the M/G/1 queue, the
state description is much easier at special points in time. If we look at
the system on arrival instants, then the state description can be reduced to n
only. For this, let ak denote the number of customers in the system just
before the kth arriving customer. In the following, we will determine the
limiting distribution pn ¼ lim

k!1
Prðak ¼ nÞ and then compute the sojourn time

in the system.
Sequence akf gk�0 defines a Markov chain with transition probabilities:

pn;m ¼ Prðakþ1 ¼ m ak ¼ nj Þ

. Obviously, one can determine that:

� For m r n+1, Pn,m is equal to the probability that exactly m+1� n
customers are served during the interarrival time of the (k+1)th customer

� For m W n+1, Pn,m is equal to zero

� For all n, m, nu, mu such that n+1�m= nu+1�mu= i, Pn,m= ai ,
because they are both equal to the probability that i customers are served
during the interarrival of the (k+1)th customer. The determination of ai
is done by noticing that, given the time duration t of the interarrival time,
the number of customers served is Poisson distributed with parameter m.t.
Therefore, one can have:

ai ¼
Z 1
tþ0

ðmtÞi
i!

e mtf ðtÞdt:

The determination of transition probabilities is terminated by noticing that

pn;0 ¼ 1�Pn
i¼1

ai. Figure 6.8 depicts the Markov chain (MC) defined by the

sequence akf gk�0.
Now, it easy to deduce the relations linking the elements in the sequence

akf gk�0. We can have:

182 BASICS OF QUEUEING THEORY

a0 ¼
X1
i¼1

aipi;0; an ¼
X1
i¼1

an 1þiai n � 1:

To solve this system of equilibrium equations, one can attempt a solution
under the form xn. Substituting this form into the second equation, we deduce
that:

x ¼ P1
i¼1

aixi;

x ¼ P1
i¼1

xi
Z 1
tþ0

ðmtÞi
i!

e mtf ðtÞdt ¼
Z 1
tþ0

X1
i¼1

ðxmtÞi
i!

e mtf ðtÞdt; and

x ¼
Z 1
tþ0

e mð1þxÞtf ðtÞdt:

The determination of x is made using the Laplace-Stieljes transform, and
taking 0 o x o 1. Finally, by using the normalization condition, we obtain
an ¼ ð1� xÞxn.

An arriving customer finds n customers in the system with probability an. Let
A be a random variable denoting the number of customers n, and the system is
found on the arrival of a customer. The mean number of customers in system is
given by:

EðAÞ ¼
X1
n¼0

nan ¼
X1
n¼0

nð1� xÞxn ¼ x

1� x
:

Knowing that the mean sojourn time E(S) is given by EðSÞ ¼ 1
m ðEðAÞ þ 1Þ

and by applying Little’s theorem, we can write:

EðSÞ ¼ x

1� x
þ 1

� 1
m
¼ 1

mð1� xÞ :

1 n0

Pn,0

n�1n�1n�2 	2
	3

	n

	1 	0

… …

FIGURE 6.8. Markov model for G/M/1

6.7 OTHER QUEUES 183

6.8 QUEUEING MODELS WITH INSENSITIVE LENGTH
DISTRIBUTION

In this section, we consider queueing systems for which the queue length
distribution is insensitive to the distribution of the service time, but it only
depends on its mean. We also address the problem of blocking probability. For
the sake of simplicity, we consider two cases: infinite length queues and the loss
systems.

6.8.1 Infinite Queue Systems

In this model, customers arrive according to a Poisson process with rate l.
Their service times are iid with some general distribution function. The number
of servers is infinite. So a server is always available for each arriving customer.
Hence, the waiting time of each customer is zero, and the sojourn time is equal
to the service time. Thus by Little’s law, we immediately obtain that E(L)=
lE(B), where lE (B) denotes the mean amount of work that arrives per unit of
time. We now determine the distribution of L by computing the probabilities pn
that n customers are in the system. To this end, we consider two models
M/M/N and M/D/N.

In the M/M/N model, the service times are exponentially distributed with
mean 1/m. Figure 6.9 depicts such a model. By equating the flow between states
(n� 1), n, and (n+1) we obtain:

pn 1l ¼ pnnm:

We then deduce

pn ¼ l
nm

pn 1 ¼ r
n
pn 1 ¼ : : : ¼ rn

n!
p0:

Because the sum of the probabilities pn is equal to 1, it holds:

1 ¼
X
0�n

pn ¼ p0
X
0�n

rn

n!
¼ p0 : e

r; p0 ¼ e r; and pn ¼ rn

n!
e r:

We therefore deduce that the number of customers in the system has a Poisson
distribution with mean r. Let us now consider the model M/D/N and let b
denote the constant service time. The probability pn(t) that exactly n customers

… …0

� � �

1 2

� 2�

n�1 n

�

FIGURE 6.9. Flow diagram for M/M/8.

184 BASICS OF QUEUEING THEORY

are in the system at time t can be shown to be equal to the probability that,
during the interval [t� b, t], exactly n customers have arrived. Because the
number of customers arriving in a time interval of length b is Poisson
distributed with mean lb, we deduce that:

pnðtÞ ¼ ðlbÞ
n

n!
e lb ¼ rn

n!
e r:

6.8.2 Loss Systems

In this section, we only consider models where customers arrive according to a
Poisson process with rate l. Their service times are independent and identically
distributed with some distribution function. Assume that c servers are available
under use and that each newly arriving customer enters immediately a service, if
there is a server available; otherwise, the customer is lost. When the distribution
function is general, this system is referred to as the M/G/c loss system.

Our objective now is to determine the probabilities pn of n customers in the
system. We also address the particular case of pc, where c is the number of
servers. Probability pc is the so-called blocking probability, denoted by B(c, r).
For this, let us consider the queue model M/M/c/c. We also have:

pn 1l ¼ pnnm:

And we can deduce the following:

pn ¼
ðl
m
Þn 1
n!X

ðl
m
Þn 1
n!

¼
rn

1

n!Xc
n¼0

rj
1

j!

; 0 � n � c:

It can be stated that, for a general service time distribution, that the
probabilities pn are given by:

pn ¼ rn=n!Pc
n¼0

rj=j!
; where 0 � n � c; and r ¼ lEðBÞ:

We thus have:

Bðc; rÞ ¼ pc ¼ rc=c!Pc
n¼0

rj=j!
; where r ¼ lEðBÞ:

Using the Little’s law, we obtain the equality E(L)= r(1�B(c,r)).
A recursive formula for the blocking probability B(c,r) can be established as

follows. Let us write it first as:

6.8 QUEUEING MODELS WITH INSENSITIVE LENGTH DISTRIBUTION 185

Bðc; rÞ ¼ rc=c!Pc
n¼0

rj=j!
¼ rc=c!Pc 1

n¼0
rj=j!þ rc=c!

¼
rc
a:c!

1þ rc

ac!

; for a ¼ Pc 1

n¼0
rj=j!:

Because

Bðc� 1; rÞ ¼ rc 1=c!Pc 1

n¼0
rj=j!

¼ rc 1=c!

a
;

we can deduce the following recursion:

Bðc; rÞ¼ rBðc� 1; rÞ
cþ rBðc� 1; rÞ

Bð0; rÞ¼ 1:

6.9 SUMMARY

We have considered and analyzed in this chapter the use of M/M/1, M/M/c,
M/Er/1, and M/G/1 queues. We also developed the basics, formal techniques
that can be used to determine various helpful functions and parameters
including the distribution of the waiting time and sojourn time of a customer,
distribution of the customer in the system, and distribution of the busy period
of the server.

For the sake of simplicity, we have omitted the study of G/G/1 because this
type of queueing system is difficult to handle and is intimately linked to the
complexity of the distribution of the interarrival time. Finally, the chapter
includes several examples that illustrate the concepts and models presented.

REFERENCES

[1] A. O. Allen, ‘‘Probability, Statistics, and Queueing Theory With Computer

Science Applications, Computer Science and Applied Mathematics,’’ Academic

Press, New York, 1978.

[2] R. Nelson, ‘‘Probability, Stochastic Processes, and Queueing Theory The Mathe

matics of Computer Performance Modeling,’’ Springer Verlag, New York, 1995.

[3] W. Feller, ‘‘An Introduction to Probability Theory and Its Applications’’, Vol. 1,

Wiley, New York, 1968.

[4] W. Feller, ‘‘An Introduction to Probability Theory and Its Applications,’’ Vol. 2,

Wiley, New York, 1968.

186 BASICS OF QUEUEING THEORY

[5] M. Eisenberg, ‘‘Queues with Periodic Service and Changeover Time,’’ Operations

Research, Vol. 20, No. 2, pp. 440 451, 1972.

[6] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi, ‘‘Queueing Networks and

Markov Chains’’ 2nd edition, Wiley, New York, 1998.

[7] J. D. C. Little, ‘‘A proof of the Queueing Formula L lW,’’ Operational Research,

Vol. 9, pp. 383 387, 1961.

[8] T. Takine, ‘‘Distributional Form of Little’s Law for FIFO Queues with Multiple

Markovian Arrival Streams and Its Application to Queues with Vacations,’’

Queueing Systems, Vol. 37, Nos.1 3, pp. 31 63, 2001.

[9] J. A. Hooke, ‘‘A Priority Queue with Low Priority Arrivals General,’’ Operations

Research Vol. 20, pp. 373 380, 1972.

[10] L. Schrage, ‘‘An Alternative Proof of a Conservation Law for the Queue G/G/1,’’

Operational Research, Vol. 18, pp. 185 187, 1970.

[11] Kleinrock, ‘‘A Conservation Law for a Wide Class of Queueing Disciplines,’’ Naval

Research Logistic Quart, Vol. 12, pp. 181 192, 1965.

[12] L. Kleinrock, ‘‘Queueing Systems, Vol. 1: Theory’’, Wiley, New York, 1975.

EXERCISES

1. In a work station, orders arrive according to a Poisson arrival process
with arrival rate l. An order consists of N independent jobs. The
distribution of N is given by

P N ¼ kð Þ ¼ 1� pð Þpk 1; k � 1

Each job requires an exponentially distributed amount of processing time
with mean 1/m.
a. Derive the distribution of the total processing time of an order.

b. Determine the distribution of the number of orders in the system.

2. A printer is attached to the LAN of an enterprise. The printing jobs are
assumed to arrive with a Poissonian rate l, and the printing service times
are assumed to obey the exponential distribution with rate m. Because
the capacity of the printer has become insufficient with regard to the
increased load, three alternatives can be used to improve the printing
service:

a. Replace the old printer by a new one twice as fast, i.e., with service
rate 2m.

b. Add a similar printer (service rate m) and divide the users in two
groups of equal size directing the printing works in each group to their
own printer. The arrival rate of jobs to each printer is l/2.

c. Add a similar printer, constitute a single printing queue where all jobs
are accepted. The job at the head of the queue is sent to whatever
printer becomes free first.

EXERCISES 187

d. Compute, in each case, the mean sojourn of a job j (i.e., time in system
from the arrival of j until its full completion).

e. At heavy load, compare the sojourn time in case b) and c) with respect
to case a).

3. Consider two machines working in parallel having a common buffer.
Assume that: a) jobs arrive according to a Poisson stream with rate l; b)
the processing times are exponentially distributed with mean 1/m1 on
machine 1 and 1/m2 on machine 2; c) m1is bigger than m2; and d) jobs are
processed in order of arrival. Finally, we assume that r= l/(m1+ m2) is
smaller than one and that a job arriving when both machines are idle is
assigned to the faster machine.

a. Compute the distribution of the number of jobs in the system.

b. Determine the mean number of jobs in the system.

c. Determine when it is better to not use the slower machine at all.

4. Consider the M/E2/1 queue with an arrival rate of 8 customers per hour
and a mean service time of 6 minutes.

a. Compute the distribution of the waiting time.

b. Determine the fraction of customers that have to wait longer than
4 minutes.

5. Customers arrive at a post office according to a Poisson process with a
rate of 40 customers per hour. Half of the customers have a service time
that is the sum of a fixed time of 10 and an exponentially distributed time
with a mean of 12. The other half has an exponentially distributed service
time with a mean of 2 min.

Determine the mean waiting time and the mean number of customers
waiting in the queue.

6. Determine the distribution of the sojourn time in case of exponentially
distributed service times with mean 1 and hyperexponentially distributed
interarrival times with distribution function:

FðtÞ ¼ 1

2
ð1� e t=2Þ þ 1

4
ð1� e t=8Þ:

7. The distribution of the interarrival time in a queueing system is assumed
to be given by:

FðtÞ ¼ 7

12
ð1� e 2tÞ þ 5

12
ð1� e 3tÞ; t � 0

The service times are assumed exponentially distributed with a
mean of 1/3.

a. Determine the distribution of the number of customers in the system
just before an arrival.

b. Determine the distribution of the waiting time.

188 BASICS OF QUEUEING THEORY

8. A small company offering phone services has six resources available. The
costs are $6 per resource per day for resource maintenance, depreciation,
etc.). Customers are assumed to arrive according to a Poisson process
with a rate of 5 customers per day. A customer uses a resource for an
exponential time with a mean of 1.5 days. Using a resource costs $7 per
day. Arriving customers for which no car is available are lost (they will go
to another company).

a. Determine the fraction of arriving customers for which no resource is
available.

b. Determine the mean profit per day.

c. The company is considering to make available more resources. How
many resources should be provided to maximize the mean profit per
day?

EXERCISES 189

CHAPTER 7

QUEUEING NETWORKS

A queueing network is a collection of interconnected queues (or service stations)
that are used for representing the structure of many systems, including computer
and telecommunication systems with several of resources that provide service to
a collection of customers [1, 2]. The customers’ competition for the resource
service corresponds to queueing into the service queues. The analysis of
the queueing network consists of evaluating a set of performance measures,
such as resource utilization, throughput, and customer response time. The
success of using queueing network models in system performance evaluation is
mainly due to the possibility of reaching high accuracy in the performance
results and good efficiency in the model analysis and evaluation.

In this chapter, we describe the fundamental properties of queueing net-
works. In particular, we present major classes of queueing networks, including
the class of open networks, the class of closed networks, and the product form
networks. We will also give examples on these models.

7.1 FUNDAMENTALS OF QUEUEING NETWORKS

In a distributed computer environment, for instance, isolated queues are
unfortunately unable to perform efficient analysis of a given problem. Often,
the problem to be analyzed consists of several interconnected queues. Figure
7.1 illustrates this situation.

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

190

� The partitioning and merging of traffic, as illustrated by nodes 1 and 5,
respectively.

� The existence of queues in tandem, or series, as illustrated by nodes 3 and 4.

To deal with partitioning and merging of traffic streams, we assume that traffic
arrives at a queue (e.g., node N5) with a mean arrival rate of l, and that there are
two paths, A and B, by which an item (i.e., a customer) may leave (to nodes N3
andN4).When an item is serviced, it leaves via path Awith probability p and via
path B with probability (1 – p). The traffic distribution of streams A and B will
differ from the incoming distribution. It is worth noticing that, if the incoming
distribution is Poisson with mean rate l, then the two departing traffic flows will
also have Poisson distributions, with mean rates of pl and (1–p)l. A similar
situation exists for traffic merging. If, for example, two Poisson streams with
mean rates of l1 and l2 are merged, the resulting stream is Poisson with a mean
rate of l1+ l2. Both of these results can be generalized tomore than two arriving
streams for merging and more than two departing streams for partitioning.

Partitioning and merging are used in models of parallel and distributed
computer systems. Moreover, another feature can occur in queueing net-
works, which does not occur in single queues. It is called blocking. Blocking
takes place when a customer waiting for a departure from a server is unable
to join the next queue because of limited waiting space, and therefore, the
customer stays in server (blocking it). No exact method has been developed
for analyzing general queuing problems that have such characteristics.
However, if the traffic flow is Poisson and the service times are exponential,
an exact solution exists.

7.1.1 Queueing Network Models Classification

Queueing network models, in general, are more complex than simple single-
server queueing networks. The simple queueing systems have been applied to
analyze congestion in computer and communication systems. Queueing net-
work models represent such systems as a network of interacting service centers
whose analysis often provides reasonably accurate prediction of their perfor-
mance. Despite the assumptions of the class of queueing networks, queueing

N1

N2

Merging Partioning

N0

N5

N3

N4

FIGURE 7.1. Example of a queueing network.

7.1 FUNDAMENTALS OF QUEUEING NETWORKS 191

network models have been observed to be robust models. Queueing network
models can be analyzed by analytical methods or by simulation. Analytical
methods require that the model satisfies a set of assumptions and constraints
and are based on a set of mathematical computable relationships that
characterize the system behavior. Simulation is a general technique of wide
application and flexibility, but its main drawback is the potential high
development and computational cost to obtain accurate results.

Systems modeled by queueing networks can roughly be grouped into three
categories [3]. They are as follows:

1. Open networks: Customers, in open networks, arrive from outside the
system to be served, and then they depart. Thus, a queueing network is
called open if jobs can enter the network (from outside) and jobs can get
out of network. An example of an open network is given by a packet
switched data network.

2. Closed networks: A fixed number of customers (say K) are confined inside
the queueing network and circulate among the queues. An example of a
closed network is the CPU job scheduling problem. Thus, the queueing
network is said to be closed if jobs cannot enter or leave the network. This
leaves the number of jobs within the network to be constant.

3. Mixed networks: Customers, in mixed networks, belong to different
classes. Customers in the same class see the network the same way,
open or closed. A mixed network can be any combination of the two
aforementioned types.

A queueing network can also have population constraints. If the network is
closed, this means that a customer (or job), can enter a queue, be served, then
depart to another queue, and remain in the network. If the network is open, this
means that customers arrive from outside the system if there is room in the
network, are served, and then depart to another queue or leave the network
(and are immediately replaced by another customer(s)). This constraint is called
fixed number of customers. Another property, called limited buffer capacity,
allows a bounded number of customers to enter the network.

A set of queues sharing a common service gives an example of networks with
population requirements. Two other classes of queueing networks are of interest:
the tandem (or cyclic) networks and product form networks [2, 4]. They will be
discussed extensively in this chapter. A tandem network is a set of single-server
queues organized sequentially and defining only one path to follow by the cus-
tomers. In a tandem queue, the input for each queue except the first one is the
output of the previous queue. Figure 7.1 gives an example of a set of single-server
queues organized sequentially or in tandem (i.e., subnetwork reduced to the
subset queues N0 andN2). Assume, for example, that the input to the first queue
in the tandem is Poissonian. Then one can say that, if the service time of each
queue is exponential and the waiting lines have infinite capacity, the output of

192 QUEUEING NETWORKS

each queue is a Poisson stream statistically identical to the input. When the
output streamof a queue is fed into the next queue, the delays at the second queue
are the same as if the original traffic had bypassed the first queue and had been fed
directly into the second queue. Thus, the queues are independent and can be
analyzed one at a time, and the mean total delay for the tandem network is equal
to the sum of the mean delays observed at each queue.

On the other hand, the precise characterization of the class of product form
network is not easy [4–9]). Product form queueing network characterization
holds under special assumptions. The product form characterization is related
to some properties of the queueing network model that are defined on the
Markov process underlying the queueing model. Product form networks have
the special structure such that their solutions can be obtained without
generating their underlying state space. Some sufficient conditions for product
form characterization based on these properties have been derived. Two
important properties can be considered: the local balance property and the
quasi-reversibility property [10]. Informally speaking, the quasi-reversibility of
a service center states that the current state, past departures, and future arrivals
are mutually independent. Examples of quasi-reversible queues are: (a) a
multiclass service center with first come-first served queueing discipline and
exponential service time distribution, identical for each customer class and (b) a
multiclass service center with processor sharing scheduling and arbitrary phase-
type service time distribution. The local balance property states that the rate at
which the customers leave a single node of the network is equated to the rate at
which they enter it. The local balance property is concerned with a local
situation and reduced the computational effort in the determination of the
system steady state. Finally, let us say that product form queueing networks
have a simple closed form expression of the stationary state distribution that
allows defining efficient algorithms to evaluate average performance measures.

In this chapter, we first classify the queueing networks and then present the
approaches that have been developed to perform queuing analysis. We
introduce product form queueing networks and their properties. We finally
study the resolution of product-form networks that satisfy the local balance
property and discuss special classes of queueing networks, including the
Jackson networks and BCMP networks.

7.1.2 Queueing Network Models with Finite Capacity Queues

Queueing networks with finite capacity queues have been used to represent
systems with finite capacity resources and population constraints. When a
queue reaches its maximum capacity, in such systems, the flow of customers
into the service center is stopped and the blocking phenomenon originates.
Various blocking mechanisms have been defined and analyzed in the literature
to provide various behaviors of real systems with limited resources [11].

Exact solution algorithms, for the performance analysis of queueing net-
works, have been proposed to evaluate parameters such as the average

7.1 FUNDAMENTALS OF QUEUEING NETWORKS 193

performance indices, queue length distribution, and passage time distribution
[12]. In some special cases, queueing networkswithblocking showaproduct form
solution, under particular constraints, for various blocking types [4]. A queueing
network model with blocking is formed byM nodes (or service centers) and a set
of customers. For each service center, we define the number of servers s, the
service time distribution, the queue capacity, and the service discipline.

Let Si denote the state of node i, which includes the number of customers in
node i, denoted by ni. Let mi denote the service rate of node i, (meaning that 1/
mi is the average service time). Let Bi denote the maximum number of
customers admitted at node i, that is, in the queue and in the servers
(Bi= c+ s), 1rirM. Thus, the total number of jobs in node i satisfies the
constraint ni=Bi. When the queue reaches the finite capacity (ni=Bi), the
node is said to be blocked.

Various blocking types have been defined to provide system behaviors.
Three major blocking types can be distinguished. These are as follows:

� Blocking after service (BAS): If a job attempts to enter a full capacity
queue j upon completion of a service at node i, it is forced to wait in the
server of node i, until the destination node j releases a job. The server of
source node i stops processing jobs. It will be resumed as soon as a
departure occurs from node j. At that moment, the job waiting in node i
immediately moves to node j. If more than one node is blocked by the
same node j, a scheduling policy must be applied.

� Blocking before service (BBS): A job declares its destination node j before it
starts receiving service at node i. If at that time node j is busy, the service at
node i does not start and the server is blocked. Moreover, if node j
becomes busy (full) while a job whose destination is j is served at node i,
node i service is interrupted and the server is blocked. The service of node i
will be resumed as soon as a departure occurs from node j.

� Repetitive service blocking (RS): A job upon completion of service at node i
attempts to enter its destination, node j. If node j is busy (full), the job is
looped back into the sending queue i, where it receives a new service
according to the service discipline. Two subclasses can be distinguished
depending on whether the job, after receiving a new service, chooses a new
destination node independent of the one that it had selected previously:
RS-RD (Repetitive Service-Random Destination) and RS-FD (Repetitive
Service-Fixed Destination).

Queueing networks with finite capacity queues and blocking can have dead-
lock. Deadlock prevention or resolution techniques must be applied. Deadlock
prevention for closed queueing networkswith blocking types BAS, BBS, andRS-
FD requires that the overall network population N is less than the total buffer
capacity of the nodes in each possible cycle in the network. ForRS-RDblocking,
it is sufficient that routing matrix P is irreducible and thatN is less than the total

194 QUEUEING NETWORKS

buffer capacity of the nodes in the network. Deadlock prevention for open
queueing networks requires the following additional population constraint for
each possible cycle in the network with finite capacity queues and where each
node in the cycle has a blocking mechanism different from RS-RD.

Blocking mechanisms have been used to model systems with finite capacity
resources in several fields. For example, blocking mechanisms can model
specific communication protocols of store-and-forward communication net-
works. Blocking mechanisms have been extensively applied to production and
manufacturing systems.

7.2 MODEL INPUTS AND OUTPUTS IN QUEUEING NETWORKS

We discuss, in this section, the inputs and outputs of general networks of
queues that consist of separable queueing networks. For the sake of
simplicity, we first present this material in the context of models with a
single customer class. Then, we discuss certain computer system character-
istics that cannot be represented directly using the inputs available for
separable models and certain performance measures that cannot be obtained
directly from the available outputs.

The basic entities in queueing network models are service centers, which
represent system resources, and customers comprising users, jobs or transactions.

Customers: They are represented by the workload intensity, which may be
described in any of three ways:

1. A transaction workload has its intensity specified by a parameter A,
indicating the rate at which requests (customers) arrive. A transaction
workload has a population that varies over time. Customers that have
completed service leave the model.

2. A batch workload has its intensity specified by a parameter N, indicating
the average number of active jobs (customers); N need not be an integer.
A batch workload has a fixed population. Customers that have completed
service can be thought of as leaving the model and as being replaced
instantaneously from a backlog of waiting jobs.

3. A terminal workload has its intensity specified by two parameters: N,
indicating the number of active terminals (customersW, and Z, indicating
the average length of time that customers use terminals (‘‘think’’) between
interactions; again, N does not need to be an integer.

7.2.1 Model Inputs

A terminal workload is similar to a batch workload in that its total population
is fixed. In fact, a terminal workload with a think time of zero is in every way
equivalent to a batch workload. On the other hand, a terminal workload is

7.2 MODEL INPUTS AND OUTPUTS IN QUEUEING NETWORKS 195

similar to a transaction workload in that the population of the central
subsystem (the system excluding the terminals) varies, provided that the
terminal workload has a nonzero think time. Note that N is an upper bound
on the central subsystem population of a terminal workload, whereas no upper
bound exists for a transaction workload.

Often models with transaction workloads are referred to as open models,
since there is an infinite stream of arriving customers. Models with batch or
terminal workloads are referred to as closed models, since customers ‘‘recircu-
late.’’ This distinction is made because the algorithms used to evaluate open
models differ from those used for closed models. It highlights the similarity
between batch and terminal workloads.

Service centers may be of two types: queueing and delay centers. Customers at
a queueing center compete for the use of the server. The time spent by a customer
at a queueing center has two components: time spent waiting and time spent
receiving service. Queueing centers are used to represent any system resource at
which users compete for service (e.g., the CPU and I/O devices). Customers at a
delay center each (logically) are allocated their own server, so that there will be
no competition for service. Thus, the residence time of a customer at a delay
center is exactly that customer’s service demand there. The most common use of
a delay center is to represent the think time of terminal workloads.

Delay centers are useful in situations where it is necessary to impose some
known average delay. For instance, a delay center could be used to represent
the delay incurred by sending large amounts of data over a dedicated low-speed
transmission line.

The service demand of a customer at center k, denoted by Dk, is the total
amount of time the customer requires in service at center k. The set of service
demands characterizes the behavior of the customer in terms of processing
requirements. In a single class model, customers are indistinguishable with
respect to their service demands, which can be thought of as representing the
‘‘average customer’’ in the actual system. Dk can be computed as the
measured busy time of device k divided by the number of system completions
(Dk=Bk/C), or may be thought of as the product of the number of visits
that a customer makes to center k and the service requirement per visit
(Dk=Vk�Sk). For simplicity and the need to reduce the number of
parameters and facilitate obtaining their values, we generally will choose to
parameterize models in terms of Dk and define D to be the total service
demand of a customer at all centers.

7.2.2 Model Outputs

The list of the outputs obtained by evaluating a single-class queueing network
model contains two types of outputs: system measures and center measures.
System measures include the response time R, the system throughput X(N) for
a batch or terminal class with population sizeN and the average queue length at
center k for a transaction class with arrival l, say Qk (l).

196 QUEUEING NETWORKS

Center measures include the utilization of center k, the average residence
time at center k, the throughput of center k, and the average queue length at
center k.

Utilization: The utilization of a center may be interpreted as the proportion
of time during which the device is busy, or equivalently, the average
number of customers in service there.

Residence Time: Similar toDk, the total service demand of a customer at center
k, residence time Rk is the total residence time of a customer at center k
(considering several visits). Thus, the average time spent per visit at center k
can be calculated as Rk/Vk. Obviously the system response time R
corresponds to the sum of the residence times at the various centers.

Queue Length: The average queue length at center k, Qk, includes all
customers at that center, whether waiting or receiving service. The
number of customers waiting can be calculated as Qk�Uk, since Uk,
can be interpreted as the average number of customers receiving service at
center k. Q denotes the average number in the system. For a batch class,
Q=N. For a transaction class, Q=XR (According to Little’s law [13]).
For a terminal class, Q=N�XZ (Q=XR and R=N/X�Z.).

7.2.3 Multiple Class Models

Inputs. Multiple class models consist of C customer classes, each of which has
its own workload intensity (lc, Nc, and Zc) and its own service demand at each
center k (Dc.k). Within each class, the customers are indistinguishable. Multiple
class models that consist entirely of open (transaction) classes are referred to as
open models. Models that consist entirely of closed (batch or terminal) classes
are referred to as closed.

The overall workload intensity of a multiple class model is described by a
vector with an entry for each class: l=(l1,y,lC) if the model is open and
N=(N1,y,NC) if it is closed. Similar to the case for single class models, the
scheduling discipline at a queueing center does not have to be specified.
Roughly, the assumption made is that the scheduling discipline is class
independent. The same performance measures will result from any scheduling
discipline that satisfies this assumption, along with the earlier assumption that
exactly one customer is in service whenever there are customers at the center.

Outputs. All performance measures/metrics can be obtained on a per-class
basis (e.g., Uc,k and Xc) as well as on an aggregate basis (e.g., Uk and X). For
utilization, queue length, and throughput, the aggregate performance measure

equals the sum of the per-class performance measures (e.g., Uk ¼
PC
c¼1

Uc;k. For

residence time and system response time, however, the per-class measures must

7.2 MODEL INPUTS AND OUTPUTS IN QUEUEING NETWORKS 197

be weighted by relative throughput, as follows:

R ¼
XC
c¼1

RcXc

X
and R ¼

XC
c¼1

Rc;kXc

X

7.3 OPEN NETWORKS

Let us assume that the open queueing network is serving a single class of
customers (or jobs). The arrival rate li of customers for node i in an open network
is computed by considering two types of arrivals: the arrivals from outside and
the arrivals from the other nodes. The arrival rate li can be written as follows:

li ¼ l0;i þ
XM
j¼1

ljqj;i; i ¼ 1; :::;M

where l0,i designates the arrival rate of customers from outside and qj,i is the
probability that a customer is transferred to node i after service completion at
node j. A similar equation holds for the destination D. Since the total stream
exiting the networkmust be equal to the stream entering to the network, we have:

q0,0 0 and

l ¼
XM
j¼1

l0; j ¼
XM
j¼1

ljqj;0

The last equations are called traffic equations. Solving the traffic equationswould
allow for determining the so-calledmean number of visits to node i, referred to as

ei ¼ liPM
j 1

l0;j

. Let p0,i be the probability that a customer entering the network from

outside first enters node i. The mean number of visits ei can be written as follows:

ei ¼ p0;i þ
XM
j¼1

ejqj;i

The most important performance metrics for open queueing networks are:
(a) the steady-state probability p(k) that each node i contains exactly ki
customers; (b) the utilization of node i, denoted by pi; (c) the mean number of
customers at node i, denoted by E(Ci); (d) the mean response time at node i; and
(e) the mean waiting time at node i. For this, let the network state be
determined by the vector, N=(N1,y,,NM), where M is number of nodes in
the queueing network and Ni designates the number of customers in node i.
Its possible values are denoted by n=(n1,y,nM), and the network is said to
be at state n if N=n; i.e., N1=n1, y, NM=nM. The steady-state

198 QUEUEING NETWORKS

probability p(n)=P{N= n}, which represents the probability that the system
is at state n is an important object in the analysis of the open queueing
network because the mean value of all other performance metrics can be
computed using such probabilities. The computation of these metrics can
be done as follows:

� The utilization ri of node i is given by ri ¼
P1
k¼1

piðkÞ, where piðkÞ is the

probability that node i is at state k. It is worth noticing that
piðkÞ ¼

P
ki¼k

pðk1; :::; kMÞ.

� The throughput li of node i represents the rate at which customers leave
the node. If the service rate at node i is denoted by mi, then li is shown to be

equal to li ¼
P1
k¼1

mipiðkÞ.
� The mean number of customers E(Ci), the mean response time E(Ti), and
the mean waiting time E(Wi) at node i can be easily computed as:

EðCiÞ ¼
P1
k¼1

kpiðkÞ, EðTiÞ ¼ EðCiÞ
li

, and EðWiÞ ¼ EðTiÞ � 1
mi
, respectively.

Let us now consider that the queueing network is serving customers
belonging to various classes. The customer classes differ in their service time
and routing probabilities. Then, if the number of the rth class at node i is
denoted by kr,i and the state of node i is Si= (ki,1,y,ki,R) where R is the
number of customer classes, the probability that the ith node is in state Si= k is
given by:

piðkÞ ¼
X
Si¼k

pðS1; :::;SMÞ:

� The utilization ri,r of the ith node for customers in the rth class is given by:

ri;r ¼
1

mi

X
k;kr>0

piðkÞ ki;r
ki

Min mi; kif g

where mi is the number of parallel servers at node i and ki ¼
PR
r¼1

ki;r.

� The throughput li,r of node i with respect to the rth class is given by:

li;r ¼
X

k: kr>0

mi
ki;r

ki
piðkÞ:

7.3 OPEN NETWORKS 199

In addition, the mean number of customers, mean response time, and mean
waiting time at node i with respect to the rth class can be determined,
respectively, by:

EðCi;rÞ ¼
X

k: kr>0

krpiðkÞ;EðTi;rÞ ¼
EðCi;rÞ
li;r

; and EðWi;rÞ ¼ EðTi;rÞ �
1

mi;r

7.3.1 Jackson Networks

The simplest type of network is an open network called the Jackson network
which has the following three assumptions: (a) It is an arbitrary network of M
queues, (b) the service time of any queue i is exponentially distributed with rate
mi, and (c) the arrivals from outside the network to queue i represent a Poisson
process with mean rate li. In addition, upon departure from queue i, a customer
chooses the next queue j randomly with the probability qi,j or exits the network
with the probability qi,d (this is referred to as probabilistic routing). The model
can be extended to cover the case of predetermined routes. The network is open
to arrivals from outside of the network (source or node s). From the source s
customers arrive as a Poisson stream with intensity l, where a fraction qs,i of
them enter queue i (intensity l qs,i). Figure 7.2 depicts a Jackson network with
four nodes.

The openness of the network requires that from each node there is at leastone a
path to the sink 0; i.e., the probability that a customer entering the network will
ultimately exit the network is 1. The conservation of flows can be stated as follows.
Let l be the average customer flow through node i. Stream li is composed of the
direct stream from the source and the split output streams from other nodes:

li ¼ lq0;i þ
XM
j¼1

ljqj;i; i ¼ 1; . . . ;M:

N1

Source 0

Sink 0

� �q0,2

�q0,3

�q0,1 �1q1,2

�3q3,2 �3q3,4

�3q3,0

�4q4,0 �4q4,1

�1q1,0

�1q1,4

N3

N2 N4

FIGURE 7.2. Example of a Jackson network.

200 QUEUEING NETWORKS

The conservation laws constitute a set ofM linear equations fromwhich the li can
be retrieved.

Example: Assume that M is equal to 1. One should have l1 ¼ lþ ql1. This
gives the following expression for l1:

l1 ¼ l
1� q

Jacksons theorem. The state probability p(k) of a Jackson network is given by:

pðkÞ ¼ p1ðk1Þ � . . .� pMðkMÞ ¼ P
M

i¼1
piðkiÞ

where k is the system state, ki is the number of customer at node i,

piðkiÞ ¼ ð1� riÞrkii , and ri ¼ li
mi
:

The theorem shows that: (a) the network behaves as if it were composed of
independent M/M/1 queues, (b) the state probability has a product form
(showing the independence), and (c) the number of customers in one node does
not impact the number of customers in the other nodes.

Proof of Jackson’s Theorem

Let li,j and qi,j be the rate at which jobs leaving queue i go to queue j, and the
probability that a job departing queue i moves directly to queue j, respectively.
During an interval of length Dt, only four possible events may occur:

1. A customer arrives from outside the network

2. A customer leaves the network to the outside world

3. A customer leaves one queue and enters another queue

4. None of the above.

These four events are integrated into the following equation:

pðk1;k2; :::;kn tþDtj Þ ¼
XM
j¼1

pðk1; ::;kj 1;kj�1;kjþ1; ::;kn tj Þl0;jDt

þ
XM
j¼1

pðk1; ::;kj 1;kjþ1;kjþ1; ::;kn tj Þmjqj;0Dt

þ
XM
i¼1

XM
j¼1

pðk1; ::;ki 1;kiþ1;kiþ1; ::;kj 1;kj�1;kjþ1; ::;kn tj Þ

miqi;jDtþpðk1; ::;kn tj Þð1�Dt
XM
j¼1
ðl0;jþmjÞ

7.3 OPEN NETWORKS 201

This gives after moving pðk1;k2; :::;knÞ to the left-hand term, dividing all objects
by Dt, and taking limits when Dt tends to 0:

d

dt
pðk1;k2;:::;kn tj Þ¼

XM
j¼1

pðk1;::;kj 1;kj�1;kjþ1;::;kn tj Þl0;j

þ
XM
j¼1

pðk1;::;kj 1;kjþ1;kjþ1;::;kn tj Þmjqj;0

þ
XM
i¼1

XM
j¼1

pðk1;::;ki 1;kiþ1;kiþ1;::;kj 1;kj�1;kjþ1;::;kn tj Þmiqi;j

�pðk1;k2;:::;kn tj Þ
XM
j¼1
ðl0;jþmjÞ:

Since

d

dt
pðk1;k2;:::;kn tj Þ¼0 forljomj;1�j�M;

we can deduce that;

pðk1;k2;:::;kn tj Þ
XM
j¼1
ðl0;jþmjÞ¼

XM
j¼1

pðk1;::;kj 1;kj�1;kjþ1;::;kn tj Þl0;j

þ
XM
j¼1

pðk1;::;kj 1;kjþ1;kjþ1;::;kn tj Þmjqj;0

þ
XM
i¼1

XM
j¼1

pðk1;::;ki 1;kiþ1;kiþ1;::;kj 1;kj�1;kjþ1;::;kn tj Þmiqi;j

Assume that pðk1;k2;:::;knÞ¼P
M

i¼1
ð1�riÞrkii , substituting this into Equation 7.1,

one can deduce that:

XM
j¼1
ðl0;jþmjÞ¼

XM
j¼1

l0;j
rj
þ
XM
j¼1

rjmjqj;0þ
XM
i¼1

XM
j¼1

ri
rj
miqi;j:

Identifying each term would give:

�
PM
j¼1

l0;j
rj
¼PM

j¼1
l0;jmj
lj

rjqj;0

�
PM
j¼1

rjmjqj;0 ¼
PM
i¼1
ð1�PM

j¼1
qÞ ¼PM

i¼1
li �

PM
i¼1

PM
j¼1

liqi; j ¼
PM
i¼1

l0;i

�
PM
i¼1

PM
j¼1

ri
rj
miqi; j ¼

PM
j¼1
ðmjlj
PM
i¼1

liqi; jÞ ¼
PM
j¼1

mj
lj
ðlj � l0; jÞ ¼

PM
j¼1

mj �
PM
j¼1

mjl0;j
lj

202 QUEUEING NETWORKS

Replacing these terms back into previous equation ðl ¼PM
j¼1

l 0; j ¼
PM
j¼1

ljqj; 0Þ
gives the following perfect identity, which completes the proof of the theorem:

XM
j¼1

l0;j þ
XM
j¼1

mj ¼
XM
j¼1

mjl0; j
lj
þ
XM
j¼1

l0; j þ
XM
j¼1

mj �
XM
j¼1

mjl0; j
lj

A particular consequence can be deduced from Jackson’s theorem related to the
fact that a Jackson network satisfies the local balance property:

mipðk1; k2; :::; knÞ ¼ lipðk1; ::; ki 1; ki þ 1; kiþ1; ::; knÞ

This can easily be checked using li ¼ rimi for all 1rirN.

Example: Let us consider the open queueing network depicted by Figure 7.3,
where two nodes are considered (representing the CPU and an I/O device)

One can deduce that l1 ¼ lþ l2 and l2 ¼ ql1. This determines l1 and l2 as
given by:

l1 ¼ l
1� q

; l2 ¼ lq
1� q

:

Using the fact that ri ¼ li
mi
, for i=1,2, and pðk1; k2Þ ¼ ð1� r1Þrk11 ð1� r2Þrk22 ,

we can determine the major performance parameters. The mean number of
customers and the mean waiting time, for example, are given by:

� Mean number of customers at node i: EðCiÞ ¼
ri

1� ri

� Mean waiting time at node i: EðWiÞ ¼ EðTiÞ � 1

mi
¼ 1

mi

ri
1� ri

Let us now consider the problem of minimizing the mean number of
customers N in the queueing network or, equivalently, the mean time T spent
by customers in the network. Assume that the capacities mi can be freely chosen

except for the constraint (e.g., cost constraint)
PM
i¼1

mi ¼ A. The problem is

�1

CPU

I/O

�2

�2

� �1 �1 (1�q)�2

q�2

FIGURE 7.3. An open queueing network.

7.3 OPEN NETWORKS 203

equivalent to finding a minimum of:

EðCÞ ¼
XM
i¼1

EðCiÞ ¼
XM
i¼1

li
mi � li

:

This can be achieved by considering the following function:

f ðm; l; xÞ ¼
XM
i¼1

li
mi � li

þ
XM
i¼1

mi � A

 !

When considering @f
@mi
¼ 0, one can deduce that mi ¼ li þ ðlixÞ1=2. By inserting

this expression into the expression of the constraint, one can obtain:

1

x
p ¼

A�PM
j¼1

lj

PM
j¼1

lj
p :

Consequently, we have:

mi ¼ li þ li
p
PM
j¼1

lj
p ðA�

XM
j¼1

ljÞ:

7.4 CLOSED QUEUEING NETWORKS

A closed queueing network consists of M nodes. In contrast to an open
network, there is no external source or sink. A constant population of K
customers is in the network. Since no customer can enter or leave the network,
the arrival li for node i=1,y,N of a closed network is computed using the
following equations:

li ¼
XN
j¼1

ljpj;i

where pj,i is the probability that a customer leaves node j to join node i. The
mean number of visits (or visit ratio) ei, at node i=1,y,N, can also be
computed directly using the routing probabilities pi,j. This gives a set of n
equations:

ei ¼
X

ejpj;i; fori ¼ 1; . . . ;N:

The system described by above equation has only N� 1 independent homo-
geneous linear equations in closed networks. The visit ratios, therefore, can

204 QUEUEING NETWORKS

only be determined up to a constant factor, for example e1. These visit ratios
are determined assuming that e1 1.

The probabilities piððk1; :::; kNÞ that node i (=1,y,N) contains exactly ki
customers, assuming that the closed network contain K customers, is given by:

piðkÞ ¼
X

k1þ::þkN¼K
ki¼k

pðk1; ::; kNÞ:

Knowing the value piðkÞ will help the determination of the performance
parameters in a way similar to that used in open queueing networks.

Example: Consider a closed queueing network containing two nodes (node 1
and node 2) and serving m customers (as described in Figure 7.4). The system
of equations to compute the steady-state probability vector says that the flow of
departures from a state is equal to the flow of arrivals to that state. This
conservation property, which is written as:X

j2S
pjðmÞqj;i ¼ piðmÞ

X
j2S

qi;j

where S is the state space and m ¼ ðm1;m2Þ is a state, shows the following three
cases based on the different values of ðm1;m2Þ:

� pðm; 0Þm1 � pðm� 1; 1Þm2 ¼ 0 or pðm; 0Þ ¼ pðm� 1; 1Þ
� �pð1;m� 1Þm1 þ pð0;mÞm2 ¼ 0 or pð1;m� 1Þ ¼ pð0;mÞ
� pðm1;m2Þðm1 þ m2Þ � pðm1 þ 1;m2 � 1Þm1 � pðm1 � 1;m2 þ 1Þm2 ¼ 0

2pðm1;m2Þ�pðm1�1;m2þ1Þ¼ pðm1þ1;m2�1Þ1 form1 6¼ 0 and m2 6¼ 0

In addition, a numerical resolution shows that a unique solution can be
determined knowing the values of m1 and m2. Once the steady state is known,
the other performance measures can be determined. For example, the mean
number of customers, the mean response times, throughput, and utilizations
are given by:

mu�1/3

1/2

1/2

mu�1/3

FIGURE 7.4. Example of a closed Jackson network.

7.4 CLOSED QUEUEING NETWORKS 205

� Mean number of customers: EðM1Þ ¼
PM
j¼1

jp1ðjÞ and EðM2Þ ¼
PM
j¼1

jp2ðjÞ

� Mean response time: EðT1Þ ¼ EðM1Þ
l1

and EðT2Þ ¼ EðM2Þ
l2

� Throughput: l ¼ l1 ¼ l2 ¼ r1m1 ¼ r2m2
� Utilization: r1 ¼ 1� p1ð0Þ and r2 ¼ 1� p2ð0Þ

7.4.1 The Closed Jackson Networks

A closed queueing network is called a closed Jackson network (representing a
production of N workstations [9], serving one type of customers) if the
following assumptions are true:

1. The probabilities of arrivals from ‘‘outside’’ to node i and departures
from node i are equal to zero (l0;i ¼ 0 and li;0 ¼ 0).

2. Service times for each server at node i are independent, exponentially
distributed with mean 1=mi and the processing order is FCFS.

3. The probability of moving from node i to node j (after the service at node
i is completed) is Pi;j and it is state-independent.

Let us assume that there are m customers moving among the N nodes. The
routing of customers through the network is Markovian. When the service at
node i is completed, the customer joins the queue in front of server j, j=1,

2,y,k with probability Pi;j, and
PN
j¼1

Pi;j ¼ 1. Let P denote the matrix of routing

probabilities Pi;j. We assume that P is irreducible, meaning that a customer can

reach from each node any other node in one or more transitions.
Since the processing times are assumed to be exponential and the routing is

Markovian, this network can be described by a Markov process with states
k ¼ ðk1; ::; kNÞ, where ki denotes the number of customers in workstation i. The

possible states are the ones for which k W 0 and
PN
j¼1

kj ¼M.

This means that the number of possible states is finite since it is equal to the
binomial coefficients:

N þ K � 1

N � 1

� �
¼ k!ðN � 1Þ!
ðN þ k� 1Þ!

Let p(k) denote the equilibrium probability of state k. By equating the flow out
of and into state k, we obtain:

206 QUEUEING NETWORKS

pðk1; k2; :::; knÞ
XM
j¼1

mj

¼
XM
i¼1

XM
j¼1

pðk1; ::; ki 1; ki þ 1; kiþ1; ::; kj 1; kj � 1; kjþ1; ::; knÞmiqi; j

A product form solution can be found under the form:

pðk1; k2; :::; knÞ ¼ Cxk11 xk22 :::xkNN

Substitution of this form into the balance equation gives that the xi
0s should

satisfy:

ximi ¼
XN
j¼1

xjmjPj;i:

Setting ei ¼ ximi gives the following system of equations:

ej ¼
PN
i¼1

eiPi;j; j ¼ 1; ::;N

PN
j¼1

Pi;j ¼ 1:

8>>>><
>>>>:

It is clear that ei can be interpreted as the relative visiting frequency or relative
arrival rate to node i. The above set of equations does not have a unique
solution, and therefore, we have to add a normalization equation, such as
e1 =1. Thus, e1 denotes the mean number of times a customer has to visit node
i before returning to node 1. Therefore, we will have:

pðk1; k2; :::; knÞ ¼ Cðe1
m1
Þk1ðe2

m2
Þk2 :::ðeN

mN
ÞkN :

The state description of the multiple customer-type system is more complex
than the single-customer type system that we just described. The state vector
k=(k1,y,kN), where ki denotes a subvector describing the (aggregate) situa-
tion at workstation m; that is, ki ¼ ðki;1; ::; ki;NÞ with ki,r indicating the number
of type r customers in node i. It is worth noticing that the stochastic process
with state k is not a Markov process. To predict the future at time t, we actually
have to know the exact order of customers at each node in addition to their
number because the routing is customer-type dependent.

Let ei;r be the relative visiting frequency of type r customers to node i. For
each customer of type r, the frequencies e1;r; e2;r; ::; eN; r satisfy the following set
of equations:

7.4 CLOSED QUEUEING NETWORKS 207

ej;r ¼
XN
i¼1

ei;rP
r
i;j; j ¼ 1; ::;N:

Assuming that e1;r ¼ 1, this system of equation has a unique solution. There-
fore, it can be stated that the equilibrium equation still has a product form:

pðk1; k2; :::; knÞ ¼ Cp1ðk1Þ:::pNðk1Þ

where

piðkiÞ ¼
ðPN
j¼1

ki;jÞ!

QN
j¼1
ðki; j !Þ

YN
j¼1
ðei;j
mi
Þki;j

Let us write C=1/G(M,K); then G(M,K) should guarantee that {p(n)} is a
valid probability distribution. This shows that:

GðM;KÞ ¼
X

n1þ::þnM¼M

YK
i¼1

rni :

An iterative computation of G(M,K) is performed using the following steps:

1. For any m and k (m=0,y, M; k=1,y, K), define:

Gðm; kÞ ¼
X

n1þ::þnM¼m

Yk
i¼1

r
ni

i

2. For a closed network of single-server queues, G(M,K) can be computed
iteratively using the following recursive relation:

Gðm; kÞ ¼ Gðm; k� 1Þ þ rkGðm� 1; kÞ

For the boundary conditions, we can write:

Gðm; 1Þ ¼ rm1 ; Gð0; kÞ ¼ 1; for m ¼ 0; 1; . . . ;M and kþ 1; 2; . . . ;K :

The above recursive equation can be stated easily. In fact, for k W 0, we can
split G(m,k) into two sums over disjoint sets of states corresponding to nk 0
and nk W0. This gives:

208 QUEUEING NETWORKS

Gðm; kÞ ¼
X

n1þ::þnM¼m

Yk
i¼1

r
ni

i ¼
X

n1þ::þnM¼m
nk¼0

Yk
i¼1

r
ni

i þ
X

n1þ::þnM¼m
nk>0

Yk
i¼1

r
ni

i

Gðm; kÞ ¼
X

n1þ::þnM¼m

Yk 1

i¼1
r

ni

i þ
X

n1þ::þnM¼m
nk>0

Yk
i¼1

r
ni

i

The first sum in the right term is obviously G(m, k 1). Finally, observing that
nk W0, one can define a new variable n

0
k, such that nk ¼ n

0
k þ 1, and show the

second sum is equal to rkGðm� 1; kÞ.
Example: Let us consider the queueing network depicted by Figure 7.5 where

l1 ¼ l2 ¼ l3 ¼ l4; l5 ¼ l1 þ l2; r ¼ l
m

r1 ¼ r2 ¼
l1
2m

; r3 ¼ r4 ¼
l3
m
; r5 ¼

l3
l

Letting l1 ¼ 2m, we deduce that:

r1 ¼ r2 ¼ 1; r3 ¼ r4 ¼ 2; r5 ¼ 4=r:

The computation of G(2,2), for example, based on the iterative algorithm using
these values, can be performed, which gives:

Gðm; 1Þ ¼ rm1 ; Gð0; kÞ ¼ 1;Gð1; 2Þ ¼ 2;Gð1; 3Þ ¼ 4; and Gð2; 2Þ ¼ 3

7.5 PRODUCT FORM NETWORKS

The closed Jackson queueing networks and open Jackson networks have the
particular feature that steady-state probability of these networks can be
expressed as the product of the state probabilities of the individual nodes.
This property is very important because it allows for determining a solution for

N1

N3

�

N2

N5
�5

�2

�4

�1

�3

2� 2�

� �

N4

FIGURE 7.5. Example of a closed product form network.

7.5 PRODUCT FORM NETWORKS 209

the steady-state probability without generating the underlying state space.
Queueing networks that have this property are referred to as product form
networks [7, 14].

Early in the 1960s, Jackson [8, 9] introduced product form queueing network
models for open exponential networks. On the other hand, Gordon and Newell
[15] discussed several assumptions on the model characteristics and provided a
simple closed form expression of the stationary state distribution and some
average performance indices. The class of product form models was extended
to include various interesting and useful characteristics to represent more
complex systems. These features include different types of customers of the
networks, various queueing disciplines, state-dependent service rate, state-
dependent routing between the service centers, and some constraints on the
population of subnetworks. One of the most important results concerning
product form queueing networks was introduced by Basket, Chandy, Muntz,
and Palacios (BCMP) [3], and known as BCMP theorem. It defines the well-
known class of BCMP queueing networks with product form solution for open,
closed, or mixed models with multiple classes of customers and various service
disciplines and service time distributions.

The stationary state distribution is expressed as the product of the distribu-
tions of the single queues with appropriate parameters and, for closed net-
works, with normalization constant. An important property of queueing
networks with product form is the arrival theorem, which states that the
distribution at arrival times at a node is identical to the distribution at arbitrary
times of the same network, for open networks, and of a network with one less
customer for closed networks [16]. This induced the definition of a series of
recurrence equations between average performance measure for closed net-
works from which we derived a recursive computational algorithm, the mean
value analysis (MVA [17]), that avoids the direct computation of the normal-
ization constant.

Product form queueing networks provide detailed results and operational
analysis in terms of performance indices such as queue length distribution,
average response time, resource utilization, and throughput. These perfor-
mance indices are evaluated for each component and for the overall network.
Product form network analysis is based on a set of assumptions on the system
parameters that leads to a closed form expression of the stationary state
distribution.

7.5.1 Local Balance

Numerical techniques operating on the global balance equations can derive the
steady-state solution. These equations balance the rate at which customers
leave a state with the rate at which they enter that state. The problem in solving
numerically the global balance is that the number of equations increases
tremendously with the number of states and can reach high complexity.

210 QUEUEING NETWORKS

To reduce the computational efforts, another set of balance equations can be
set up. To this end, two sets of balance properties have been defined [6]:

1. The local balance property: This property means that the departure rate
from a state of the queueing network caused by the departure of one
customer from node i equals the arrival rate to this state because of an
arrival of a customer to that node.

2. The station balance property: A service discipline is said to have station-
balance property if the service rates at which the customers in a position
of the queue are served are proportional to the probability that a
customer enters this position.

With the local balance property, one can say that the rate at which
customers enter a single node of the network is equal to the rate at which
they leave it. With the station balance property, one can state that the queue of
a node is partitioned into positions and the rate at which a customer enters this
position is equal to the rate at which the customer leaves this position. It has
been shown that each of these properties can be considered as sufficient (but
not necessary) conditions for the existence of a unique product - form solution
of the system of global balance.

Let us consider the development made in [5] to develop a formal description
of the local balance property. For this, we assume that the queueing network
can be represented by a continuous Markov chain with a state space S. A state
n of the system is a vector n=(nl,y,nk), where ni is the number of customers at
node i. A transition from state n to state n’ is determined by three vectors: the
vector of remaining customers, say m; the vector of leaving customer from the
state say g; and the set of entering customer to set nu, meaning that:

n ¼ mþ g; and n0 ¼ mþ g0:

We denote such a transition by q(m,g,gu). The transition rate from n to nu is
then given by:

qðn; n0Þ ¼
X

mþg¼n
mþg0¼n0

qðm; g; g0Þ:

In addition, in a transition from n to nu, the routing groups g and gu are
completely determined if m is fixed. Let us assume that the Markov chain is
irreducible, there is a unique stationary distribution p, and q(n) is uniformly
bounded by a constant C (i.e., q(n)oc, for all n). Based on these assumptions,
the distribution is stationary if and only if for all state m+g, we have:

pðnÞ
X

m;g0:mþg¼n
g6¼g0

qðm; g; g0Þ ¼
X

m;g0:mþg¼n
g 6¼g0

pðmþ g0Þqðm; g; g0Þ:

7.5 PRODUCT FORM NETWORKS 211

Distribution p (or the related queueing network) satisfies the group local
balance property if for all states the following equality is satisfied:

pðmþ gÞ
X
g0 6¼g

qðm; g; g0Þ ¼
X

m;g0 6¼g
pðmþ g0Þqðm; g; g0Þ

In addition, p satisfies the local balance property if groups g and gu occurring in
the preceding equality satisfy the equation:

XK
i¼1

gi ¼
XK
i¼1

g
0
i ¼ 1

Obviously, group local balance property is a generalization of local balance
property. For the rest of this section, we will only focus on the local
balance property. However, the product form solution that will be discussed
for networks satisfying the local balance property applies to the group local
balance property [5].

7.5.2 The BCMP Networks

The results obtained for Jacksons networks have been extended in [3] to
queueing networks having several customer classes, different queueing strate-
gies, and generally distributed service times. They are called BCMP networks
and can be open, closed, or mixed. The BCMP networks fulfill the following
assumptions in the case of the FIFO queueing discipline (different assumptions
are stated for the three other disciplines):

� Distribution of the service times: The services times should be exponen-
tially distributed and class independent (mi,1= mi,2=y= mi,R).

� Local-dependent service rates: The service rate of a node is only allowed to
depend on the number of customers at this node.

� Arrival processes: If the network is open, the arrival process is Poisson
where all customers arrive at the network from one source with an overall
arrival rate l (l can depend on the number of customers in the network).
The arriving process of customers of class r to node i is assumed to be
distributed according to probability P0,i,r such that:

XN
i¼1

XR
j¼1

p0;i;r ¼ 1

For the sake of clarity, we made the choice to not describe the assumptions
related to the three remaining disciplines. In addition, we have not considered
the case where the arrival process consists of U Poisson flows with the FIFO
queueing discipline. However, it is worth noticing that the first assumption does

212 QUEUEING NETWORKS

not apply for the three aforementioned disciplines, meaning that a node
implementing one of the three disciplines can have any kind of service time
discipline and the service rate for a particular class of customers can depend on
the number of that class. In addition, one can state that these assumptions lead
to four product form node types and the local balance property. The types are
referred to as follows:

Type-1: -/M/m – FIFO

Type-1: -/G/2 – LIFO-PR

Type-2: -/G/3 – PS

Type-3: -/G/? – IS

where PR stands for PRiority queue, PS stands for Processor Sharing queue
and IS stands for Infinite Server queue.
BCMP theorem Version 1: The steady-state probabilities of a BCMP closed
network have the following product form:

pðkÞ ¼ 1

GðKÞ P
N

i¼1
FiðSiÞ

where G is a normalizing constant,N is the number of nodes, S= (S1,y, SN) is
the global state, Si= (ki,1,y,ki,R) is the state of node i, K is the total number of
customers, and Fi(Si) is a function that depends on the type and state of each
node. Functions G(K) and Fi (Si) are given by

GðKÞ ¼
X
PN
i 1

Si¼K

P
N

i¼1
FiðSiÞ

FiðSiÞ ¼

ðkiÞ! 1
biðkiÞ :ð

1
mi
Þki QR

r¼1
1
ðki;rÞ! :e

ki;r
i;r type 1

ðkiÞ!
QR
r¼1

1
ðki;rÞ! ð

ei;r
mi;r
Þki;r type 2; 3

QR
r¼1

1
ðki;rÞ! ð

ei;r
mi;r
Þki;r type 4

8>>>>>>>><
>>>>>>>>:

where ki ¼
PR
r¼1

ki;r represents the total number of customers of all classes at

node i, ei,r is the visit ratio, and bi(ki) is given by:

biðkiÞ ¼
ki! mi � ki

mi!:ðmÞÞki mi mi � ki

1 mi ¼ 1

8><
>:

7.5 PRODUCT FORM NETWORKS 213

BCMP theorem Version 2: The steady-state probabilities of the BCMP open
network, under a load- independent arrival, have the following product form:

pðk1; ::; kNÞ ¼
YN
i¼1

piðkiÞ

where

ki ¼
XR
r¼1

ki;r

represents the total number of customers of all classes at node i and pi(ki) is
given by:

piðkiÞ ¼
ð1� riÞrkii for type 1; 2; 3

e ri r
ki
i

ki !
for type 4:

8<
:

Also, we have:

ri ¼
XR
r¼1

ri;r with

ri;r ¼
lr

ei;r
mi

type 1

lr
ei;r
mi;r

type 2; 3; 4:

8<
:

Proof of the BCMP theorem:
The proof of this theorem is very complex. We give here the basic idea used for
BCMP of type 1. A complete solution can be found in several places, including
[3]. To find a solution for the steady-state probabilities p(S), the following
global balance equations have to be solved:

pðSÞ State transition rate

from state S

� 	
¼
X
S0

pðS0Þ State transition rate

from state S0 to state S

� 	

with the normalization condition:X
S

pðSÞ ¼ 1:

Inserting the equation provided in the BCMP theorem in the above equations
can lead to a system of local balance equations [17].

214 QUEUEING NETWORKS

7.6 MEAN VALUE ANALYSIS

Mean value analysis (MVA) has been developed by Reiser and Lavenberg for
the analysis of closed networks with product form solution [18]. The MVA is
based on two laws:

� The Little’s theorem [13]: This law expresses, as stated in Chapter 2, a
relation among the mean number of customers, the throughput, and the
mean response time of a node or the overall system.

� The Arrival theorem [19]: This theorem applies for all networks admitting
a product form solution. It states, for example, that in an open network a
customer entering any queue sees the same state probabilities (the
probability the system is in a state just before the arrival) are the same
as the equilibrium probabilities p(n).

At first we discuss the proof of arrival theorem. Consider first an open
network with product form solution. Assume we have a customer transiting
from queue i to queue j. Insert between these queues a virtual queue 0 with a
very high service rate m0. In the limit m - N, it is clear that the added queue
has no effect on the system performance because customers transiting from
queue i to queue j will spend an infinitesimal time in the added virtual queue.
The virtual queue, however, enables ‘‘catching’’ the transiting customer. The
transition occurs precisely in the short interval when there is a customer in
queue 0, i.e., when N0(t)= 1. The state distribution seen by the transiting
customer is the distribution of the other queues conditioned on N0=1.
Now make use of the fact that the extended system also is a Jackson network
with a product form solution. Denote the state vector of the extended system by
nu; i.e. nu= (n0,n1,y,nM). Then, the following holds:

pðn0Þ ¼ pðN 0 ¼ n0Þ ¼
YM
i¼0

piðniÞ

The theorem is stated when showing that pðN1 ¼ n1; :::; NM ¼
nM N0 ¼ n0Þ ¼ pðnÞj . This can be deduced from the following:

pðN1 ¼ n1; :::;NM ¼ nM N0 ¼ 1Þ ¼ pðN0 ¼ 1;N1 ¼ n1; :::;NM ¼ nMÞ
pðN0 ¼ 1Þ ¼ pðnÞ

����
Let us consider in the sequel closed Jackson networks. Then we have the
following results listed under the form of propositions.
Proposition 1. In a closed Jackson network with M customers and normal-
ization function occurring in the product form solution denoted by G(M), we
have the following:

7.6 MEAN VALUE ANALYSIS 215

1. The probability that at steady - state, the number of customers in station j
greater than or equal to m is:

P ni � mf g ¼ rmj
GðM �mÞ
GðMÞ ; 0 � m �M:

2. The probability that in steady state there are m customers at station j is:

P nj ¼ m

 � ¼ rmj

GðM �mÞ � riGðM �m� 1Þ
GðMÞ ; 0 � m �M:

3. The average number of customers and the average throughput of queue j
are given by:

NjðMÞ ¼
XM
m¼1

rmj
GðM �mÞ
GðMÞ and gjðMÞ ¼ lj

GðM �mÞ
GðMÞ :

Proof. Property 1 can be deduced by computing P nj > m

 �

, for 0 r m r M.
This gives:

P nj > m

 � ¼ X

n1þ::þnK¼M
nj�m

rn11 ::::r
nK
K

GðMÞ

¼ rn11
GðMÞ

X
n1þ::þnK¼M
nj�0

rn11 ::::r
nK
K ¼

rn11
GðMÞGðM �mÞ

The second, third, and fourth properties can be deduced easily by considering
that:

P nj ¼ m

 � ¼ P nj � m

 �
_P nj � mþ 1

 �

NjðMÞ ¼ EðnjÞ ¼
XM
m¼1

P nj � m

 �

gjðMÞ ¼ mjP nj � 1

 �

Example: Consider the tandem network depicted in Figure 7.6 where we
assume that: l1=y= lK=1 and l1= m. This shows that li=1 for all i.
Then G(M) and p(n) can be computed for all states n.

216 QUEUEING NETWORKS

GðMÞ ¼
X

n1þ::þnK¼M
rn11 ::::r

nK
K

¼
X

n1þ::þnK¼M
nj�0

1 ¼ ðM þ K � 1Þ!
M!ðK � 1Þ!

pðnÞ ¼ 1

GðnÞ
aK
j¼1

rnjj ¼
M!ðK � 1Þ!
ðM þ K � 1Þ!:

For queue j, using Proposition 1, we can deduce the average throughput gj(M),
the mean number of customers Ni (M), and the mean time delay Tj (M). For
example, we have:

gjðMÞ ¼ lj
GðM �mÞ
GðMÞ ¼ m

ðM þ K � 2Þ!
ðM � 1Þ!ðK � 1Þ!�

M!ðK � 1Þ!
ðM þ K � 1Þ! ¼

M

M þ K � 1

Let us now consider the use of the Arrival theorem with closed Jackson
networks.

Theorem (Arrival theorem): In a closed Jackson network withM customers, the
occupancy distribution seen by a customer upon arrival at queue j is the same
as the occupancy distribution in a closed network with the arriving customer
removed.

Proof. A reading of the theorem shows that in a closed network with M
customers, the expected number of customers found upon arrival by a customer
at queue j is equal to the average number of customers at queue j, when the
total number of customers in the closed network is M� 1. This means, for
example, that an arriving customer sees the system at a state that does not
include itself.
Now, let us consider the computation of performance measures in the presence
of M customers:

� Nj(M): Average number of customers in queue j.

� Tj(M): Average time a customer spends (per visit) in queue j.

� gj(M): Average throughput of queue j.

N1 N2
�1 �2

� �

Nk
�k

�

FIGURE 7.6. A k station cyclic network.

7.6 MEAN VALUE ANALYSIS 217

MVA allows the calculation Nj(M) and Tj(M) directly, without the need for
computing G(M) or deriving the stationary distribution of the network. An
iterative computation can be performed to determine Nj(M) and Tj(M). Using
the Arrival theorem, one can show that the expected number of customers that
an arrival finds at queue j is Nj(m� 1). Since the service rate for all customers at
the queue is mj, we have:

TjðmÞ ¼ 1þNjðm� 1Þ
mj

; j ¼ 1; . . . ;K;m ¼ 1; . . . ;M

On the other hand, the throughput gj (m) is directly derived from

gjðMÞ ¼ lj
GðM �mÞ
GðMÞ

Using Little’s theorem, we can say that:

NjðmÞ ¼ gjðmÞTjðmÞ ¼ lj
GðM �mÞ
GðMÞ TjðmÞ; m ¼ 1; . . . ;M

Knowing that m ¼PK
i¼1

NiðmÞ, gives us the following expression:

m ¼
XK
i¼1

NiðmÞ ¼
XK
i¼1

li
GðM �mÞ
GðMÞ TiðmÞ ¼ GðM �mÞ

GðMÞ ð
XK
i¼1

liTiðmÞÞ

Then GðM mÞ
GðMÞ can be derived by:

GðM �mÞ
GðMÞ ¼ mPK

i¼1
liTiðmÞ

:

Therefore, we can deduce that the throughput of and mean number of
customers at node j is equal to:

gjðMÞ ¼
mljPK

i¼1
liTiðmÞ

;NjðmÞ ¼ mljTjðmÞPK
i¼1

liTiðmÞ

7.7 ANALYSIS USING FLOW EQUIVALENT SERVERS

The flow equivalent server (FES) method is based on the Norton’s theorem that
has been established for electronic circuits [20]. It represents a good tool for the
exact analysis of product form closed networks and their approximation
analysis. The main idea behind the FES method is the reduction of the
queueing network based on the selection of a set L of subnetworks that
partitions the original network and combines all the nodes of each subnetwork

218 QUEUEING NETWORKS

into a flow equivalent server, while guaranteeing that the reduced network has
the same behavior as the original network. The reduced queueing network is
easier to analyze. Two cases are considered: (a) two subnetworks are selected
(9L9=2), and (b) more than two subnetworks are selected.

7.7.1 The Case 9K9=2 and One Subnetwork is Reduced to One Node

Assume that the closed network serves K jobs, to determine the service rates mc,k
of the FES node c, the selected node, say node 1, is short circuited by setting the
mean service time in that node to zero. The throughput lsc1;k in the short-circuit
path with job k, for k r K, is computed as a function of the number of jobs
using one of the product-form solutions provided in the preceding sections.
Then, we construct an equivalent reduced network consisting only of the
selected node, node 1, and the FES node (cyclic or tandem network). The visit
ratios in both nodes are set equal to the original ratio e1. The load-dependent
service rate of node c is the throughput along the short-circuit path when there
are k jobs in the network Thus:

mc;k ¼ lsc1;k; 1 � k � K :

Figure 7.7 depicts graphically the reduction of a given closed network with four
nodes.

The case 9K9 W 1. The reduction of a closed product form network when
more than one is selected assumes that the network is partitioned into several
subnetworks. The reduction allows the analysis of the subnetworks indepen-
dently from each other. A subnetwork j is analyzed by short-circuiting the
nodes that do not occur in that subnetwork. The computed throughputs of the
short-circuited network, associated with subnetwork j, define the load-depen-
dent service rates of FES node j.

The FES approach is achieved using a four-step procedure:

� In a first step, the original network is divided into M subnetworks.

� During the second step, a short-circuited network is built and analyzed for
each subnetwork. The short-circuited network associated with subnetwork

Node 1

⇒

FIGURE 7.7. Reduction of a closed product form network.

7.7 ANALYSIS USING FLOW EQUIVALENT SERVERS 219

j is denoted by the SC-j network. It is obtained by short-circuiting all
nodes that do not belong to subnetwork j. The analysis is made using any
product-form algorithm.

� In the third step, subnetwork j is replaced by a unique node, called FES
node j, and an equivalent reduced network is built using the original
network and the new nodes. The load service rates of the FES node j are
set equal to the throughputs of subnetwork j, for j=1,y, M.

� During the forth step, the normalizing constant of the reduced network is
set identical to the convolution product of the normalizing constant of the
constituting networks. The performance metrics/measures of the original
network are then computed.

7.8 SUMMARY

This chapter has dealt with using queueing networks in the analysis of
computer and communication systems. The product form networks have
been discussed, and the mean value analysis has been presented. The Jackson
and BCMP networks are also analyzed and investigated. The analysis using
(FES) also has been discussed. Various examples have been presented and
explained to show the applicability of the presented theorems and concepts.

REFERENCES

[1] L. Kleinrock, ‘‘Queueing systems, Volume I: Theory,’’ Wiley, New York, 1975.

[2] L. Kleinrock, ‘‘Queueing systems, Volume II: Computer Applications,’’ Wiley,

New York, 1976.

[3] S. Balsamo, and V. De Nitto Personè, ‘‘A Survey of Product Form Queueing

Networks with Blocking and Their Equivalences,’’ Annws of Operation Research

Vol. 48, pp. 31 61, 1994.

[4] S. Balsamo, V. De Nitto Personè, and R. Onvural, ‘‘Analysis of Queueuing

Networks with Blocking,’’ Springer, Dordrecht, The Nether lands, 2001.

[5] R. Boucherie, and N. M. Van Dijk, ‘‘Product Forms for Queueing Networks with

State Dependent Multiple Job Transistions,’’ Advance in Applied. Probability,

Vol. 23, pp. 152 187, 1991.

[6] K. Chandy, J. Howard, and D. Towsley, ‘‘Product Form and Local Balance in

Queueing Networks,’’ Journal of the ACM, Vol. 24, No. 2, pp. 250 263, 1977.

[7] N. M. Dijk, ‘‘Queueing Networks and Product Forms,’’ Wiley, New York, 1993.

[8] J. R. Jackson, ‘‘Networks of Waiting Lines,’’ The Journal of Operations Research

Society of America Vol. 5, pp. 518 521, 1957.

[9] J. R. Jackson, ‘‘Jobshop Like Queueing Systems,’’ Management Science, Vol. 10,

pp. 131 142, 1963.

[10] R. D. Nelson, ‘‘The Mathematics of Product Form Queuing Networks,’’ ACM

Computing Surveys, Vol. 25, No. 3, pp. 339 369, 1993.

220 QUEUEING NETWORKS

[11] R. O. Onvural, ‘‘Survey of Closed Queueing Networks with Blocking,’’ ACM

Computing Surveys. Vol. 22, No. 2, pp. 83 121, 1990.

[12] J. D. C. Little, ‘‘A Proof of the Queueing Formula L W,’’ Operational Research,

Vol. 9, pp. 383 387, 1961.

[13] K. M. Chandy, and A. J. Martin, ‘‘A Characterization of Product Form Queuing

Networks,’’ Journal of the ACM, Vol. 30, No. 2, p. 286 299, 1983.

[14] W. J. Gordon, and G. F. Newell ‘‘Cyclic Queueing Networks with Exponential

Servers,’’ Operations Research, Vol. 15, No. 2, pp. 254 265, 1967.

[15] F. Basket, K Chandy, R. Muntz, and F. Palacios, ‘‘Open, Closed, and Mixed

Networks of Queues with Different Classes of Customers,’’ Journal of the ACM,

Vol. 22, No. 2, pp. 248 260, 1975

[16] K. S. Sevcik, and I. Mitrani, ‘‘The Distribution of Queueing Network States at

Input and Output Instants,’’ Journal of the ACM, Vol. 28, No. 2, pp. 358 371,

1981.

[17] M. Reiser, and S. Lavenberg, ‘‘Mean Value Analysis of Closed Multichain

Queueing Networks,’’ Journal of the ACM, Vol. 27, No. 2, pp. 313 322, 1980.

[18] K. Chandy, ‘‘The Analysis and Solutions of General Queueing Networks,’’

Proceedings of the 6th Annual Princeton conference on Information Sciences and

Systems, pp. 224 228. 1972.

[19] S. Lavenberg, and M. Reiser, ‘‘Stationary State Probabilities at Arrival Instants for

Closed Queueing with Multiple Types of Customers,’’ Journal of Applied Prob

ability, Vol. 17, pp. 1048 1061, 1980.

[20] K. Chandy, U. Herzog, and L. Woo, ‘‘Parametric Analysis of Queueing Net

works,’’ IBM Journal of Research and Development, Vol. 19, No. 1, pp. 43 49,

1975.

EXERCISES

1. Consider the following queueing network in Figure 7.8. Suppose the
second server is replaced by one exactly twice as fast.

a. Is there a significant improvement in the mean response time of the
above network? Justify your answer.

mu�1/3

N�6

1/2

1/2

mu�1/3

FIGURE 7.8. An example of a queueing network with two queues.

EXERCISES 221

b. Given the replacement has been made, is there any further modifica-
tion you would propose to improve the mean response time in the
closed system that does not involve spending more money? By how
much would the modification improve the system performance?

c. If the above system were an open system, would the replacement cause
the mean response time to improve?

2. Consider anopennetwork consisting of twonodes (node 1 and2).Customers
arrive to node 1 from outside with a rate r1 customers/s. Customers arrive to
node 2 from outside with a rate r2=10 customers/s. Thirty percent of the
customers completing service at node 1 will move to next queue up at node 2
(the rest leave the system). Fifty percent of the customers completing service
at node 2 will next queue up at node 1 (the rest leave the system). The mean
service time at node 1 is E{S1}=0.1 sec. The mean service time at node 2 is
E{S2}=0.05 sec.

a. In this network, how high can we make r1?

b. When r1 is maximized, how much does the utilization of node 2 become?

3. A packet-switched Jackson network routes packets among two routers,
according to the routing probabilities shown in Figure 7.9. Notice that
there are two points at which packets enter the network, and two points
at which they can depart.

a. What is the maximum allowable rate for r1 that the network can
tolerate?

b. Let r1-max be the maximum allowable rate. Set r1=0.9 r1-max. What
is the mean response time for a packet entering at the router 1 queue?

4. In all parts of this exercise assume all packets come from a single class.

a. The system consists of a single (FCFS) server. Jobs arrive according to
a Poisson process with rate l. The service rate at the server depends on

Source Sink

2/3
1/3

R1 pkt/sec

1/3

�� ��2

FIGURE 7.9. A packet switching Jackson network with two queues.

222 QUEUEING NETWORKS

the number of jobs in the system. When there are n jobs in the
system, the job in service is served with rate m (n). This is called a
‘‘load-dependent service rate.’’ Determine the limiting probability, pi,
of having i jobs in the system.

b. Your system is now a Jackson network of load-dependent servers. The
state of the network is (n1,n2,y,nk), where ni denotes the number of
jobs at server i. Let mi(ni) denote the service rate at server i when there
are m jobs at server i.
i. Solve for the limiting probabilities p(n1,n2,y,nk) using the local

balance approach. This will not be a closed form.
ii. Prove that the limiting probabilities have a product form solution.
iii. Check the solution by making the service rate constant at each

server; i.e., mi (ni)= mi, for all ni.
iv. What is the limiting probability that there are n1 jobs at server 1?

c. The system is now a Jackson network, where each server is an M/M/m
m-server queue. Determine the limiting probabilities, p(n1,n2,y,nk).

5. Consider a mixed queueing network depicted in Figure 7.10. Assume that
four classes of customers are served. Class 1 and Class 2 are open. Class 3
and Class 4 are closed. Assume also that Node 1 is of Type -/G/1 and that
node 2 is of Type -/G/1. The dashed lines represent the open traffic.

Assume the mean service times are given by

1

m11
¼ :4;

1

m12
¼ :8;

1

m13
¼ :3;

1

m14
¼ :5;

1

m21
¼ :6;

1

m22
¼ 1:6;

1

m23
¼ :5;

1

m24
¼ :8

Source Sink

N1 N2

�2�1

FIGURE 7.10. Mixed queueing network with two queues.

EXERCISES 223

The routing probabilities are as follows:

p0;11 ¼ p0;11 ¼ p21;11 ¼ p22;12 ¼ p23;13 ¼ p24;14 ¼ 1; p0;13 ¼ p0;14 ¼ p11;11
¼ p12;12 ¼ 0;

p13;13 ¼ p11;21 ¼ p13;23 ¼ :5; p12;22 ¼ p14;14 ¼ :6; p14;24 ¼ :4

a. Compute the utilization, by Class 1 and 2, of the two nodes.

b. Using the (MVA) scheme, analyze the closed queueing network
obtained by leaving out the customers of open classes.

c. Find the performance measures of the open classes (mean response
time and mean number of customers).

6. Terminals are connected to a front-end processor to a computer system.
Each terminal has a dedicated 300-bit-per-second line. Each operator at a
terminal is repeating the same job, spending a certain amount of time
reading and thinking and typing, denoted Tth, and then striking a send
key. Then, the screen data are transmitted over the link to the front
end processor; on the average, 400 bits of data are input. The front-end
processor is connected to the computer system by a high-speed data link.
Each job enters a staging queue where it waits until it can enter the
computer system for processing. The computer system can hold at most
five jobs at a time: If there are less than five jobs in the system, a job in the
staging queue will enter the system immediately; otherwise, jobs are
queued for entry in order of arrival.

The system consists of a single processor and a single disk, and each
job requires an average of Tproc=2 seconds of processor time and
Ndisk=30 disk accesses. Each disk access requires a 50-msc access time.
Once the job completes execution, it is transmitted back over the high-
speed link to the front-end processor, and the terminal displays the
output. On the average, each screen has 4800 bits of information for
output. Assume times for signals to propagate are negligible.

a. Show each step of processing a job, the resources required for that
step, and the mean time duration of that step.

b. What is the bottleneck resource in this system?

c. Determine an upper bound on the mean throughput rate versus the
number of active terminals.

d. Mean response time is defined as the time interval from when the
operator initiates transmission of a screen of data until the start of
output on the screen. Plot a lower bound on mean response time
versus the number of active terminals. Clearly label all regions and
breakpoints in terms of model parameters.

e. Suppose that the terminals’ links are replaced with 56,000-bits-per-
second links connected to a front end that is now connected to a space
satellite earth station and that propagation time of signals between

224 QUEUEING NETWORKS

the terminals and the front end is negligible. The one-way propaga-
tion time of signals from the front end to the computer system is one
fourth second. Re-answer the preceding questions.

7. In the queueing network presented in Figure 7.11, two subnetworks are
considered: subnet1 and subnet2. The following values are given:

N= 4, K= 2 jobs, m1 ¼ 1; m2 ¼ 2; m3 ¼ 3; m4 ¼ 1
The routing probabilities are given by

p1;2 ¼ p1;3 ¼ 0:5; p2;1 ¼ p2;2 ¼ 0:3; p2;4 ¼ 0:4;

p3;4 ¼ p3;1 ¼ 0:5; p4;2 ¼ 0:6; p4;2 ¼ 0:4:

a. Compute the visit ratios.

b. Use the MVA to compute the load-dependent throughputs and
normalizing constants of the two subnetworks.

c. Determine the reduced network and compute its normalization
constant.

d. Compute the mean number of jobs at each node, throughputs, and
mean response times.

Subnet1

P1,2

P3,1

P4,2

P3,2

P4,3

�1

�2

�3

�4

Subnet2

FIGURE 7.11. An example of a queueing network with two subetworks.

EXERCISES 225

CHAPTER 8

OPERATIONAL AND MEAN VALUE
ANALYSIS

In this chapter, we consider the quantitative aspects of queueing models and
introduce the input parameters and performance metrics that can be obtained
from the queueing network models. The notions of service times, arrival rates,
service demands, usage, queue lengths, response time, throughput, and waiting
time are discussed here in more precise terms. We also introduce a set of
operational laws, which represent the basic quantitative relationships between
performance quantities. We present first the approaches known as operational
analyses [1], which are used to establish relationships among quantities based
on measured or known data about the systems. Many variations and uses are
presented for the Little’s formula. In addition, the mean value analysis (MVA),
approximate MVA, and the bounding analysis are discussed and reviewed.

8.1 OPERATIONAL LAWS

To address the problem of establishing relationships among quantities based on
measured data, some commonly accepted operational analysis notation is
required for the measured data. The following is a partial list of such measured
quantities:

� T: The length of time during which we observed the system

� K: Number of resources in the system

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

226

� Bi: Total busy time of resource i in the observation period T

� Ai: Total number of service requests (i.e., arrivals) to resource i in the
observation period T

� A0: Total number of requests submitted to the system in the observation
period T

� Ci: Total number of service completions from resource i in the observation
period T

� C0: Total number of requests completed by the system in the observation
period T

From these known measurable quantities, which are referred to as opera-
tional variables, a set of derived quantities can be obtained. A nonexhaustive list
contains the following:

� Si: Mean service time per completion at resource i; Si ¼ Bi

Ci

� Xi: Throughput, or the number of completions per unit time, at resource i;

Xi ¼ Ci

T
� X0: System throughput; X0 ¼ C0

T
� Ui: utilization of resource i; Ui ¼ Bi

T
� l: Arrival rate (arrivals per unit time) at resource i; li ¼ Ai

T
� Vi: Average number of visits per request to resource i; Vi ¼ Ci

C0

From these measurements, we can establish several relationships. We can
therefore derive the first fundamental law. Algebraically, it holds:

Ui ¼ Bi

T
¼ Ci

T
� Bi

Ci
¼ Xi � Si

Equation Ui ¼ Xi � Si is referred to as the utilization law of the resource i.
The notation presented above can be easily extended to the case where

multiple classes are served by the system. The definition and relationships are
simply modified by adding the class number r (r 2 1; 2; ::;Rf g) to the subscript.
Therefore, the utilization law applied to class r and resource i is given by:

Ui;r ¼ Xi;r � Si;r ; 1 � i � K ; 1 � r � R:

To show how the operational approach might be applied, consider the
following example.

Example 1. Assume during an observation period of 180 s that: (a) a single
resource located at a node in the network is observed to be busy for 30s, (b) a
total of 1200 transactions were observed to arrive to the node, and (c) the total

8.1 OPERATIONAL LAWS 227

number of observed completions is 1200 transactions (meaning that as many
completions as arrivals occurred in the observation period).

Let us determine the mean service time per transaction, the utilization of the
resource, and the system throughput.

To solve this in a straightforward manner using operational analysis, let us
consider that the measured quantities are as follows:

T=180 s, K=1 resource, B1=30 s, A1=A0=1200 transactions, and
C1=C0=1200 transactions

Thus, the required metrics are as follows:

� The service time per transaction is S1 ¼ B1

C1
¼ 30

1200
¼ 1

40
¼ 0:025 s per

transaction

� The utilization of the resource is U1 ¼ B1

T
¼ 30

180
¼ 16:66%

� The system throughput is X0 ¼ C0

T
¼ C0

T
¼ 1200

180
¼ 6:66 tps (transaction

per second)

8.1.1 Service Demand Law

Service demand law is an important tool for performance modeling. The
concept of service demand is tightly linked to a resource and the requests
applying to use the resource. Denoted by Di, it is typically defined as the total
average time spent by a request of a specific class being served at resource i. The
service demand of a request is the sum of all service times during all visits to a
given resource. More precisely, when considering a set of requests using the
same resource, one can compute the service demand at the resource as the
average, for the whole set of requests, of the sum of the service times at that
resource. It is worth noticing, however, that the service demand does not
include queuing time, because it is the sum of service times. Additionally,
service demands are input parameters for queueing network models.

There is an easy way to obtain service demands from resource utilizations
and system throughput. By multiplying the utilization Ui of resource i by the
observation interval T, one can deduce the total time during which the resource
was busy. If this time is divided by the total number of completed requests,
denoted previously by C0, then the average amount of time that the resource
was busy serving the requests can be estimated. The following defines precisely
the service demand:

Di ¼ Ui

C0
� T ¼ Ui

C0=T
¼ Ui

X0

The above relationship is referred to as the service demand law. It can be
rewritten as follows:

228 OPERATIONAL AND MEAN VALUE ANALYSIS

Di ¼ Ui

X0
¼ Vi � Si; 1 � i � K :

In the case of a multiclass model, let us denote the service demand of class r at
resource i by Di,r. Then, one can deduce the following formula:

Di;r ¼ Ui;r

X0
¼ Vi;r � Si;r; 1 � i � K ; 1 � r � R

8.1.2 Forced Flow Law

There is an easy way to relate the throughput of resource i, Xi, with the system
throughput, X0. The forced flow law describes this relationship. It states that:

Xi ¼ Vi � X0; 1 � i � K

This can be stated as follows. Assume that every request that completes service
at the database server performs an average of Vi visits to resource i. Because X0

requests are completed per second, the throughput of resource i is
Vi � X0ð¼ XiÞ visits per second. In other words, the throughput Xi of resource
i is equal to the average number of visits (Vi) made to that resource multiplied
by the system throughput (X0).

The multiclass formula of the forced flow law is given by:

Xi;r ¼ Vi;r � X0; 1 � i � K ; 1 � r � R

Example 2. Consider a storage network with one server and n nodes used to
support the database server. Each node includes a local storage and database
component. Assume that all database transactions have similar resource
demands and that the database server S0 is under a constant load of
transactions. Therefore, the storage network can be modeled using a single-
class closed queueing network (as depicted in Figure 8.1). Finally, the server

S0

S1

S2

Sn

FIGURE 8.1. Closed queueing network storage server.

8.1 OPERATIONAL LAWS 229

assumes that S0 is labeled as resource 1 and the database at node Si, ion, is
labeled resource i+1. Measurements taken during an observation interval of 1
hour duration provide the number of transactions executed, the number of
reads and writes per second on each storage and their utilization, as shown in
Table 8.1. Let us determine the throughput of each resource, the average service
time per request on each node, and the average number of inputs/outputs (I/Os)
on each node.

The throughput of each resource Xi (i W 1), is the total number of I/Os per
second (i.e., the sum of the number of reads and writes per second). This value
is depicted in the fourth column of the table. Using the utilization law, we can

deduce the average service time: Si ¼ Ui

Xi
. Therefore, we have

Si ¼ Ui

Xi
¼ 0:30

32þ i � 1
; i � 2

The throughput, X0, of the database server is given by X0 C0/T.
However, the value of Vi for each disk i, according to the forced flow law,

can be obtained as Xi/X0. The database server throughput is 3.8 tps and the
throughput of each disk in I/Os per second is given in the fourth column of
Table 8.1. Thus,

V1=X1/X0 = 32/3.8=8.4 visits to resource 1 per database transaction

V2=X2/X0 = 36/3.8=9.5;

V3=X3/X0= 50/3.8=13.2;

etc.

8.1.3 The Flow Balance Assumption

Often, it is convenient to assume that the system under analysis satisfies the so-
called Flow Balance Property, namely, that the number of arrivals (A) equals
the number of completions (C), and thus the arrival rate (l) equals the
throughput (X) of the system. Formally, this is written as follows:

TABLE 8.1 Measurement Data

Source Number of reads/sec Number of writes/sec Total I/Os/s Utilization

1 32 10 42 0.30

2 32 11 43 0.30

3 32 12 44 0.30

n 32 10+ n 1 32+ n 1 0.30

230 OPERATIONAL AND MEAN VALUE ANALYSIS

A ¼ C) l ¼ X

The flow balance assumption can be tested over any measurement interval, and
it can be strictly satisfied by careful choice of the measurement interval.

8.2 LITTLE’S FORMULA

A system is responsible for processing n jobs. All jobs are ready for processing
at time t=0. Let J(t) be the number of jobs in the system processed at time t.
We wish to determine the mean number of jobs in the system over the time
interval starting at zero until the system becomes empty. Let Lk denote the time
at which the kth job completes its execution and leaves the system. Because
there are a total of n jobs and the last job leaves at Ln, we should have J(0)= n
and J(Ln)=0.

The mean number of jobs in the system, denoted by E(j) is easily computed
over the observation interval [0, Ln], as equal to:

Eð jÞ ¼ 1

Ln
ðnL1 þ

Xn 1

i¼1
ðn� iÞðLiþ1 � LiÞ ¼ 1

Ln

Xn
i¼1

Li

 !
:

Let Fk denote the total time spent in the system by job k. One can determine
that job 1 spends L1 amount of time in the system, job 2 spends L1+L2

amount of time in the system, and job j spends
P
k�j

Lk amount of time in the
system. Therefore, we can observe that:

EðjÞ ¼ 1

Ln

Xn
i¼1

Fi

 !
:

We now reorganize this expression, by inserting a multiplication and a division
by n. This gives:

EðjÞ ¼ n

Ln

1

n

Xn
i¼1

Fi

 !
:

We recognize form the above formula the mean throughput rate, l ¼ n
Ln
,

and the mean time for a job to flow through the system, EðFÞ ¼ 1
n

Pn
i¼1

Fi:

Finally, we obtain the result stating that the mean number in system equals
the mean throughput rate multiplied by the mean time in system. This is
called Little’s law:

8.2 LITTLE’S FORMULA 231

EðJÞ ¼ l� EðFÞ

Little’s law defines a relationship between three quantities: the mean number of
jobs in system, the mean arrival rate, and the mean time in system [2]. If these
quantities are unknown, one can try to bound each of them using the best
available information. The more restrictive the information, the better the
bounds.

Now, let us try to relax the assumptions that we have stated to obtain Little’s
law by allowing the arrivals to occur at arbitrary points in time, rather than
having all jobs occurring at time zero for processing. Let Ak denote the arrival
time or ready time of the job k. The quantity Fk � ðLk � AkÞ; 1 � k � n;
denotes the flow time of the job k, from arrival (Ak) to departure (Lk). Then, we
can compute E (J) as follows:

EðjÞ ¼ n

Ln

1

n

Xn
i¼1

Fi � ðLi � AiÞ
 !

:

Because

EðFÞ ¼ 1

n

Xn
i¼1

Fi � ðLi � AiÞ;

we can also write

EðJÞ ¼ l� EðFÞ:

Now, let us notice that Little’s law holds exactly when the system is initially
empty (or idle) with no work, and after a period of observing its operation, we
stop collecting information when the system is empty (or entirely idle). In
practice, this may not be true because observations may be collected over a
finite time interval, and the state at the start of observation and the state at the
end of observation may not satisfy the all empty (or all idle) state assumption.

8.2.1 Variants of Little’s Law

Under various technical conditions, Little’s law may still hold. However, some
weaker statements such as the Little’s Inequality can hold. To make the latter
precise, let us consider that the observation interval of a system under
operation starts at T, which is chosen so that: (a) n jobs are observed to both
start and finish; (b) Lk is the leaving instant of the job k, k=1,y,n; (c) J(.)
denotes the total number of jobs in the system at any point in time, and (d) Fk,
k=1,y,n, denote the time in system or flow time for job k. From these
definitions and applying the above results, we can state that:

232 OPERATIONAL AND MEAN VALUE ANALYSIS

Mean number of jobs=EðJÞ ¼ 1
Ln

R TþLn

T JðtÞdt
Note that a job may have entered the system prior to T, but not yet left,

entered prior to T and left, or entered during the measurement time, but not yet
left. This implies that:

E (J)=Mean number in system � n
Ln
� 1

n

Pn
k¼1

Fk:

Assuming that n is large and that the end effects are negligible, which can only be

checked with controlled experimentation), then we identify 1
n

Pn
k¼1

Fk as the mean

time in the system. This shows that E (J) is close and bigger than lxE (F).
Finally, assume that jobs perform multiple steps and consider the following

analysis. Each job has S types of steps, and requires one or more resources at
each step for a mean time Tk, k = 1,y,S. Consider the system is observed over
an interval with n job completions occurring at time instants Lk, k=1,y,S.
We denote J (t) the S-tuple J (t)= (J1 (t),y, JS(t)) as the number of jobs in
execution in each step, meaning that Jk(t) denotes the number of jobs
in execution in step k in the system. The state space is of feasible S-tuples
J(t) and is denoted by O. The fraction of time the system is in state J(t) over
the observation interval is denoted by p(J). From Little’s law and the linearity
of the expectation, we can deduce that:

EðJkÞ ¼
X
J2O

Jk � piðJÞ � l � Tk

where the mean throughput rate is simply the total number of jobs divided by
the observation time interval, l ¼ n

Ln
, and Tk is given by averaging it over the

fraction of time the system is in each state as follows:

Tk ¼ 1

N

X
TkpðJkÞ

Example 1. (Telephone Traffic): Consider that voice telephone calls are made
between two locations. Assume that the data available can be characterized as
follows. During a peak busy hour of the day, on average, ltel calls are arriving
per minute that are successfully completed, with a mean holding time per
successful call of Ttel. A total of C circuits are made available. The problem is to
compute the number L of links that are actually needed, supposing that one
link can handle one voice telephone.

The mean number of calls in progress during the busy hour is given by
Little’s law:

Mean number of calls in progress= ltel � Ttel

8.2 LITTLE’S FORMULA 233

Consider that the number of calls in progress at any instant of time t is denoted
by J(t) (AO). The system is observed over a time interval of duration T and
the fraction of time the system is in a given state is assumed to have stabilized at
p(J). Hence,

EðminðJ;CÞÞ ¼
X
J2O

pðJÞminðJ;CÞ ¼ ltel � Ttel:

Because each link can handle one call, we can deduce that we need approxi-
mately L links, where L is given by:

L ¼ ltel � Ttel:

In practice, we would put in more than L links as given by Little’s law
because we will have fluctuations about the mean value and some calls attempts
will be blocked or rejected because all links are busy. We will return to this topic
later on.

When used in conjunction with the other basic laws, Little’s law can help the
determination of various parameters. For instance, combined with the flow
balance assumption and the forced flow law, Little’s law allows the calculation
of the device utilizations for systems whose workload intensities are described
in terms of an arrival rate. The next example discusses such an issue.

Example 1. Consider the queueing network model depicted in Figure 8.2, which
includes three devices (a central processing unit [CPU] and two disks) and
shows three types of jobs (compilation, execution, and editing sessions).

Assume the data gathered for the system is given in Table 8.2.
To calculate the utilization of a device in this system, we apply the utilization

law separately to each job class, then sum the results. Let us consider, for
example, the CPU utilization. We have:

Disk 1

CPU

C
E

S

Disk 2

FIGURE 8.2. Computing utilization using Little’s and flow balance laws.

234 OPERATIONAL AND MEAN VALUE ANALYSIS

Ut CPUð Þ ¼ 360� 4:0þ 180x� 8:0þ 120� 0:6ð Þ=3600¼ 0:4þ 0:4þ 0:02¼ 0:82

Thus, the total CPU utilization must be equal to 82%. The flow balance
assumption states that the throughput of the system will be the same as the
arrival rate to the system.

Little’s Law has been established for continuous random variables in a more
general environment in a previous chapter.

8.2.2 Interactive Response Time Law

Consider an interactive system composed of a database server serving M users
each using a workstation to access the server system interactively. Users work
independently and can be either in a thinking state (i.e., composing and sending
requests to the server) or a waiting state (i.e., waiting for a response from the
server). Let Z and R be the average think time and the average response time,
respectively. On the one hand, the think time Z of a user is defined as the time
spent between the moments when the customer receives a reply to a request
until a subsequent request is submitted. On the other hand, the response time is
the duration of the interval of time elapsed between two successive think
intervals made by the user.

Let Th and Wa be the average number of clients thinking and the average
number of users waiting for a response, respectively. Depending on whether the
users are in think state, Th and Wa define the average numbers of users at the
workstations and at the database server, respectively. Thus, we can state clearly
that:

ThþWa ¼M:

By applying Little’s law to the queueing subnetwork containing just the
workstations, it holds:

M ¼ X0� Z

This is true because the average number of requests submitted per unit time (or
throughput of the set of clients) must be equal to the number of completed
requests per unit time (system throughput X0). Similarly, by applying Little’s
law to the subnetwork containing just the database server, we have:

TABLE 8.2 Data gathered from the system described in the above example

Job type Arrival rate Service demand (second/job)

CPU Disk 1 Disk 2

Compilation 360 4.0 0.8 0.5

Execution 180 8.0 6.0 5.2

Editing session 120 0.6 0.4 0.3

8.2 LITTLE’S FORMULA 235

N ¼ X0 � R

where R is the average response time. By adding the two equations, we obtain

M ¼ X0 Z þ Rð Þ:

Equivalently, we can deduce that:

R ¼ M

X0
� Z:

This formula is known as the interactive response time law. The multiclass
version of the interactive response time is given by:

Rr ¼ Mr

X0;r
� Zr

where Rr, Mr, Zr, and X0, r represent the average response time, the number of
users, the average think time, and the system throughput for class r,
respectively.

8.3 BOTTLENECK ANALYSIS

A bottleneck in a system is an obstacle to movement or progress. If the forced
flow assumption holds, we can show that at high loads, system performance is
determined by the device with the highest utilization, which is the bottleneck.
The ratio of the completion rates of any two devices, using the forced flow law
is given by the ratio of their visit ratios:

Xi

Xj
¼ Vi � X

Vj � X
¼ Vi

Vj

Because the utilization is given by Ui=Xi � Si, we can deduce a similar
relationship between the utilizations of the two given devices:

Ui

Uj
¼ Xi � Si

Xj � Sj
¼ Vi � Si

Vj � Sj

If the Vi’s are intrinsic properties of the customers and each Si is independent of
the queue length at device i, then the system has load independent parameters.
In such a case, the throughput and utilization ratios are the same for all loads
on the system. This observation can be used to determine asymptotes for
system throughput X and response time R.

We say that device i is saturated if its utilization approaches 1. Devices that
operate near full utilization tend to have long queues; a saturated device is a

236 OPERATIONAL AND MEAN VALUE ANALYSIS

bottleneck device. We will use the subscript b to denote a device capable of
saturating. In general, every network has at least one bottleneck device.
Because the utilization ratios are fixed, the device with the largest Vi . Si will
be first to achieve 100% of utilization as N increases. Let Ub be the largest
utilization. So, we have:

Vb � Sb ¼ Vb � Sb K � i � 1jf g:

As N becomes large, we have Ub - 1 and

Xb ! 1

Sb
: Because XVb ¼ Xb;we deduce that:

Xmax ¼ Xb

Vb
! 1

VbSb

is the maximum possible value of the throughput as N increases. The total of all
service required by a job while in the system is given by:

Rmin ¼
XK
i¼1

ViSi:

This denotes the smallest possible value of mean response time. In fact, Rmin is

the response time when N=1. This implies that X ¼ 1
Rmin

; when N=1 and that

X � N
Rmin

; when N W 1.

Figure 8.3 depicts the throughput as a function of the load, N. The system
throughput, X, increases monotonically from 1/Rmin, at N=1, to the asymp-

tote y ¼ 1
VbSb

and remains below the straight line X ¼ N
Rmin

as shown in

Figure 8.3.
If we were to hypothesize that k jobs (where k r K, the total number of

devices in the k system) always manage to avoid each other in the network so
that X ¼ N

Rmin
, we would require that:

k

Rmin
� 1

VbSb
or k � N

where N* represents a load beyond which queueing is certain to exist some-
where in the network. N* is given by:

N
 ¼ Rmin

VbSb
¼
PK

i¼1 ViSi

VbSb
:

Consider now that a customer at the terminal is in the thinking mode, that is,
the system is waiting for it to do something. The think time, Z, is the average
time a user spends between receiving a prompt and typing a command;

8.3 BOTTLENECK ANALYSIS 237

otherwise, a customer is somewhere inside the central subsystem either being
served or waiting to be served. The aforementioned results give the values of
response time for the interactive system described earlier with M terminals and
an average think time:

R ¼M

X
� Z

When M=1, we must have R=Rmin. The throughput, X, cannot exceed the
value 1

VbSb
. Thus, it holds:

R �MVbSb_Z �MViSi � Z; 1 � i � K

where the first inequality approaches an equality for largeM. Figure 8.4 depicts
the response time asymptote and its intersection with the horizontal axis (as

given by Mb ¼ Z
VbSb

).

The response time asymptote crosses the minimum response time Rmin at a
value M

b such that M

bVbSb � Z ¼ Rmin. Therefore, M

b is given by:

M

b ¼

Rmin þ Z

VbSb
¼ N
 þMb:

In the case where there are more than M

b terminals, queueing is inevitable in

the central system.

100

1/VbSb

1/Rmin

0
0 1 N* 400

N

X

FIGURE 8.3. System throughput versus system load.

238 OPERATIONAL AND MEAN VALUE ANALYSIS

8.4 STANDARD MVA

The most popular exact solution method for closed product form queuing
networks is the classical Mean Value Analysis (MVA) technique [3]. The MVA
is an efficient technique that allows analyzing product form queueing networks
and obtaining mean values for performance metrics such as queue length,
response time, and throughput. The efficiency comes with a price—MVA does
not compute the joint probability distribution for queue lengths. However, in
many (if not most) performance evaluation situations, the mean values are the
performance metrics of interest.

8.4.1 Single Class Systems

We start the discussion of mean value analysis with systems serving a single job
class. These systems may either be open or closed.

Open systems: Let Dm be the total demand of a single customer for queue m,
Vm be the visit ratio for queue m, queue 0 be the queue representing the
‘‘outside world,’’ and mm be the service rate at queue m. Thus, Vm is the average
number of visits a single customer makes to queue m.

In addition, one can see that Dm ¼ Vm

mm
, and that the maximum throughput

for the system occurs at the value of the arrival rate that saturates the queue
with the largest demand. Assume that the arrival rate is equal to l then we have:

� Maximum throughput=
1

max Dm 1 � mjf g ¼ lsat

� Throughput for queue m at l olm is lm= lVm=Xm(l).

Response time, R

Rmin

Mb Mi
Terminals, M

MVbSb-Z

MViSi-Z

FIGURE 8.4. Response time Versus number of terminals.

8.4 STANDARD MVA 239

� Utilization of queue m at l o lm is rm ¼ lm 1
mm
¼ lDm:

� Response time at queue m when l o lm is Rm(l).

1. For an infinite server (IS) queue, Rm (l) is given by:

RmðlÞ ¼ Vm
1

mm
¼ Dm

2. For a first-come-first-served FCFS queue: Rm (l) is characterized by
the sum of two factors, when the arrival rate is equal to l we have

RmðlÞ ¼ Vm
1

mm
ð1þ AmðlÞÞ ¼ ð1þ AmðlÞÞDm

where Am(l) is the average number of customers at queue m as observed by an
arriving job.

However, the network has a product form serving a single open class. The
average number of customers at queue m is equal to the expectation Qm(l) of
the length of queue m when the arrival rate is equal to l It holds:

AmðlÞ ¼ QmðlÞ:

Because Qm(l)= lRm (l), we have:

RmðlÞ ¼ Dmð1þ lRmðlÞÞ

RmðlÞ ¼ Dm

1� lDm
¼ Dm

1� rmðlÞ
:

This gives, in the cases of IS and FCFS, the following expressions:

� Queue lengths: Qm ¼ lRm ¼
rmðlÞ; for IS

rmðlÞ
1� rmðlÞ

; for FCFS

8><
>:

� System response time: RðlÞ ¼ PM
m¼1

RmðlÞ

� Average number of customers: QðlÞ ¼ lRðlÞ ¼ PM
m¼1

QmðlÞ:

When the queueing is closed, the three quantities of great interest are Q, R,
and X. They are defined by the following three equations:

240 OPERATIONAL AND MEAN VALUE ANALYSIS

XðNÞ ¼ NPM
m¼1 RmðNÞ

QmðlÞ ¼ XðNÞRmðNÞ

RmðNÞ ¼
Dm; for IS

Dmð1þ AmðNÞÞ; for FCFS

8<
:

where RmðNÞ is the response time at center m when the total number of
customers in the system is N. The other quantities are defined similarly. The
knowledge of AmðNÞ would complete the computation of RmðNÞ; XðNÞ; and
QmðNÞ:Unfortunately, the equality QmðNÞ ¼ AmðNÞ does not hold and cannot
be used. However, if the network has a product form, we have the following
relation [4]:

QmðN � 1Þ ¼ AmðNÞ:

This gives us the following iterative system (called MVA) that can be easily
solved using an algorithm of linear complexity and the fact that Qmð0Þ ¼ 0; for
all m smaller then M.

XðNÞ ¼ NPM
m¼1 RmðNÞ

QmðlÞ ¼ XðNÞRmðNÞ

RmðNÞ ¼
Dm; for IS

Dmð1þQmðN � 1ÞÞ; for FCFS

8<
:

8.4.2 Multiple Class Systems

In a multiple class queueing networks, each job class may have its own demand
for each queue. The routing of jobs between queues and the per-visit service
demand are assumed to be class dependent. The results for mean value analysis
will distinguish between an open and closed system in this subsection.

Open systems: To develop MVA for multiple class systems, we need the
following quantities:

C: Number of classes

l : Arrival rate vector ðl1; :::; lCÞ, where lj is the arrival rate for class j

mj;m : Service rate of class j at queue m

Vj;m : Visit ratio for class j at queue m

8.4 STANDARD MVA 241

Dj;m : Average total demand of class j at queue m

rmðlÞ : Utilization of queue m by all jobs

rj;m : Utilization ratio of queue m by class j

Rj;mðlÞ : Average stay time of class j jobs at queue m

Qj;mðlÞ : Average number of jobs of class j at queue m

Xj;m : Throughput for class j at queue m

Aj;mðlÞ : Expected number of jobs of class j at queue m at an arrival instant

Obviously, we can have the following:

rj;mðlÞ ¼ Xj;mðlÞ : 1

mj;m
¼ ljDj;m

rmðlÞ ¼
XC

j¼1 ljDj;m

Xj;mðlÞ ¼ ljVj;m

Rj;mðlÞ ¼
Dj;m; for IS

Dj;mð1þ Aj;mðlÞÞ; for FCFS

8<
:

The computation of the above system of equations is easy in the case of IS. Let
us consider the FCFS case and assume that the network has a product form.
We have:

Aj;mðlÞ ¼ QmðlÞ ¼
XC

k¼1 Qk;mðlÞ:

This shows that Aj;mðlÞ is independent of j, 1 r j r C. Thus, the computation
of Rj;mðlÞ=Rk;mðlÞ gives:

Rj;mðlÞ
Rk;mðlÞ ¼

Dj;m

Dk;m
and Rk;mðlÞ ¼ Dk;m

Dj;m
: Rj;mðlÞ:

However, because Rj;mðlÞ ¼ Dj;mð1þ Aj;mðlÞÞ, we can deduce that:

Rj;mðlÞ ¼ Dj;mð1þ
XC

k¼1 Qk;mðlÞÞ:

This can be written as follows:

Rj;mðlÞ ¼ Dj;m 1þ
XC
k¼1

lkRk;mðlÞ
 !

:

242 OPERATIONAL AND MEAN VALUE ANALYSIS

Using the above formula, this implies that:

Rj;mðlÞ
Dj;m

¼ 1þ
XC
k¼1

lk
Dk;m

Dj;m
: Rj;mðlÞ

 !

Rj;mðlÞ
Dj;m

¼ ð1þ Rj;m

Dj;m

XC
k¼1

lkDk;mðlÞÞ:

We then deduce that:

Rj;mðlÞ
Dj;m

¼ 1

ð1� PC
k¼1

ljDk;mÞ
and Rj;mðlÞ ¼ Dj;m

ð1� PC
k¼1

ljDk;mÞ
:

Thus, we have:

Rj;mðlÞ ¼ Dj;m

1� PC
k¼1

rk;mðlÞ
¼ Dj;m

1� rk;mðlÞ
:

In addition, we have:

XjðNÞ ¼ NjPM
m¼1 Rj;mðNÞ

; 1 � j � C:

Finally, knowing the values of the quantities Dj;m; rk;mðlÞ;
Xk;mðlÞ; Vk;m; and lk;m; one can deduce the quantities X, Q, and R.

Closed systems: Consider the vector N ¼ ðN1; :::;NCÞ of customers, where Nj

is the number of customers of class j in the system. Then, similar to the case where
a single class is considered in a closed system, the following equations hold:

XjðNÞ ¼ NjPM
m¼1 Rj;mðNÞ

Qj;mðNÞ ¼ XjðNÞRj;mðNÞ

Rj;mðNÞ ¼
Dj;m; for IS

Dj;mð1þ Aj;mðNÞÞ; for FCFS:

8<
:

The above expression is easy to explain. Consider, for example, the case of
FCFS queues and assume that all classes of customers must observe the same
service time distribution. Then, we can establish that Dj;m ¼ Dk;m for all classes
j and k. Also, we assume that the distribution of the residual lifetime of an
exponential random variable is identical to the original distribution, so that it

8.4 STANDARD MVA 243

does not matter how long a job has been in service at the arrival instant.
Finally, assume the network has a product form solution.

Let us denote by N � Ij the vector:

N � Ij ¼ N1; :::;Nj 1;Nj � 1;Njþ1; :::;NCÞ; 1 � j � C:

For the closed product-form networks, we have:

Aj;mðNÞ ¼ Qj;mðN � IjÞ for all j and m:

Thus, the following system can be easily computed using the initial state of Qj;m

and an algorithm of time complexity:

C �M
YC
k¼1
ðNj � IjÞ:

8.5 APPROXIMATION OF MVA

The preceding section shows that by using MVA, the first moment of sojourn
times and the moment of the number of customers in each queue can be
obtained based on the arrival instant distribution theorem and the Little’s law.
Because of the high memory requirements of the exact solution algorithms,
approximation methods have been developed to compute the mean values,
including the well-known self correcting approximation technique (SCAT) [5],
which is simply an approximation of MVA. There are many extensions of
MVA considering the type of service centers that have product form or multiple
customer classes. The moment analysis (MA) [6] is a generalization of MVA
that also allows the derivation of higher moments of the population at any
queueing station.

Consider a closed separable queueing network with C classes of customers
and K load-independent service centers. The customer population of the
queueing network is represented by vector N ¼ ðN1; :::;NCÞ where Nk is
the number of customers belonging to class k, for krC. The total number
of customers in the network is denoted by Nj j ¼ N1;þ::þNC: The
mean service demand of class c at center k is denoted by Dc;k: Now let
us recall that an exact MVA algorithm involves repeated applications of the
following equations:

244 OPERATIONAL AND MEAN VALUE ANALYSIS

Ac;kð~nÞ ¼ Qkð~n� IcÞ

Rc;kð~nÞ ¼ Dc;k � ð1þ Ac;kð~nÞÞ; Rcð~nÞ ¼
XK
k¼1

Rc;kð~nÞ

Qc;kð~nÞ ¼ Rc;kð~nÞ � Xcð~nÞ; Qkð~nÞ ¼
XC
k¼1

Qc;kð~nÞ

Xcð~nÞ ¼ nc

Zc þ Rcð~nÞ

with initial conditions Qkð0Þ ¼ 0; for all k; where~n ¼ ðn1; ::; nCÞ is a population
that ranges from~0 toN and Ac;kð~nÞ is the average number of customers a class c
customer finds at center k when it arrives to that center, given that the network
population is ~n:

The approximate MVA algorithms improve the time and space complexities
by substituting approximations for Ac;kð~nÞ that are not recursive. Among all
approximate algorithms for separable queueing networks, we will consider the
Bard-Schweitzer proportional estimation algorithm, the Chandy-Neuse Line-
arizer algorithms, and the Zahorjan-Eager-Sweillam aggregate queue length
algorithm [7–10].

8.5.1 The Bard-Schweitzer Proportional Estimation Algorithms

The Bard large customer population (LCP) is an approximate MVA algorithm
[9]. Unlike other algorithms, LCP allows the knowledge of error bounds. It is
based on the following approximation:

Qj;kðn*� IcÞ � Qj;kðn*Þ; for any class j:

This is because when the population is large, there is not a significant change in
mean queue length at any center by reducing a class population by one
customer. Thus, the approximation equation of the LCP becomes:

Ac;kðn*Þ ¼ Qkðn*� IcÞ ¼
XC
j¼1

Qj;kðn*� IcÞ � Qkðn*Þ

This can be used to solve iteratively the MVA equations. It has been
demonstrated that the solutions of the LCP algorithm exist and are unique.
Unfortunately, the algorithm does not provide accurate solution when the
population size is small. However, the Bard-Schweitzer proportional estimation
algorithm (PE) [10] requires lower execution time and reduces space require-
ments than the exact MVA algorithm. PE uses the LCP algorithm and defines
relatively accurate solutions for product-form queueing networks with large

8.5 APPROXIMATION OF MVA 245

population and small population as well. It is based on the following
approximation:

Qj;kðN � IcÞ �
Nc 1
Nc

Qj;kðNÞ; c ¼ j

Qj;kðNÞ; c 6¼ j

(

Using this equation gives us the following approximation of the PE algorithm:

Qc;kðNÞÞ ¼ QkðN � IcÞ ¼
XC
j¼1

Qj;kðN � IcÞ � QkðNÞ � 1

Nc
Qc;kðNÞÞ:

The time and space complexities of PE algorithm are of the form O (KC). In
addition, it has been shown that the PE algorithm has a unique solution and
that the iterations converge to that solution.

8.5.2 The Chandy-Neuse Linearizer Algorithms

A Chandy-Neuse Linearizer algorithm is an iterative approximate MVA
algorithm. It works by deriving an algebraic expression equivalent to
QkðN � IcÞ: The algorithm is based on the following equation:

Ac;kðNÞÞ ¼
XC
j¼1
ðNj � yj;cÞ:ðQj;kðNÞ

Nj
þ dj;c;kðNÞÞ

where

yj;c ¼
1; j ¼ c

0; j 6¼ c

(
and dj;c;kðNÞ ¼ Qj;kðN � IcÞ

Nj � yj;c
�Qj;kðNÞ

Nj

Whereas the following assumption holds:

dj;c;kðN � IcÞ ¼ dj;c;kðNÞ

The approximation used in the PE algorithm is equivalent to assuming that all
the d-terms are vanishing. The Chandy-Neuse Linearizer algorithm uses
iterations to determine successively better approximations for the d-terms
using the following five-step procedure:

Approximate d Procedure

Initialization step: Set dj;c;kðN � IjÞ ¼ dj;c;kðNÞ ¼ 0 for 1 � c � C; 1 � i �
C; 1 � j � C; and � k � K

Step 1: Solve the six equations characterizing the MVA algorithm at
population N.

246 OPERATIONAL AND MEAN VALUE ANALYSIS

Termination step: If termination conditions are satisfied then stop.

Step 2: Solve the six equations characterizing the MVA algorithm at each
population N� Ii for All 1 � i � C

Step 3 (Updating): Update the d-terms using:

dj;c;kðNÞ ¼ Qj;kðN � IcÞ
Nj � yj;c

�Qj;kðNÞ
Nj

and dj;c;kðN � IcÞ ¼ dj;c;kðNÞ:

Typically, the linearizer algorithm is used with only three iteration for the d-
terms, because it is computationally expensive.

8.5.3 The Zahorjan-Eager-Sweillam Aggregate
Queue Length Algorithm

The Zahorjan-Eager-Sweillam aggregate queue length (AQL) algorithm pre-
sents a modification of the linearizer algorithm. It is more efficient and obtains
similar accuracy as the linearizer algorithm. The AQL bases its approach on the
following approximation:

Ac;kðNÞÞ ¼ ðN � 1ÞðQj;kðNÞ
N

þ rj;c;kðNÞÞ

where

rc;kðNÞ ¼
QkðN � IcÞ

N � 1
�QkðNÞ

N
:

In addition, the AQL algorithm uses the following approximation:

rc;kðN � IjÞ ¼ rc;kðNÞ; for all j

The iteration is used in AQL to determine better approximations for the
r-terms. Like the linearizer algorithm, the AQL algorithm different implemen-
tation methods have been provided to implement AQL. A typical implementa-
tion is described using the following five-step procedure.

Approximate d Procedure

Initialization step: Set rc;kðN � IjÞ ¼ rc;kðNÞ ¼ 0 for; 1 � c � C; 1
� j � C; and 1 � k � K.

Step 1: Solve the six equations characterizing the MVA algorithm at
population N.

Termination step: If termination conditions are satisfied then stop.

8.5 APPROXIMATION OF MVA 247

Step 2: Solve the six equations characterizing the MVA algorithm at each
population N� Ii� i for All 1 � i � C:

Step 3 (Updating): Update the r-terms using:

rc;kðNÞ ¼
QkðN � IcÞ

N � 1
�QkðNÞ

N
and rc;kðN � IjÞ ¼ rc;kðNÞ:

The accuracy of the AQL algorithm depends, as in the linearizer algorithm, on
the termination conditions. Zahorjan et al. in [8] suggested that termination
after three iterations is not sufficiently accurate.

8.6 BOUNDING ANALYSIS

In this section, we describe techniques to compute two classes of performance
bounds: the asymptotic bounds and the balanced system bounds. Asymptotic
bounds hold for a larger class of systems than do balanced system bounds
[11–13]. They also are simpler to compute. The compensating advantage of the
balanced system bounds is that they provide more precise information than
asymptotic bounds. Several characteristics of bounding techniques make them
interesting and useful. These characteristics include:

1. The development of these techniques provides important insight into the
basic factors influencing the performance of communication systems. In
particular, the critical influence of the system bottleneck can be high-
lighted and quantified.

2. The bounds can be computed rapidly. Bound analysis, therefore, is
suitable as a first estimation modeling technique that can be used to
remove inadequate alternatives at an early stage of the analysis.

In many cases, several alternatives can be treated together, with a single
bounding analysis providing useful information about them all. In contrast to
the bounding techniques discussed here, more sophisticated analysis techniques
require considerably more computations, which are infeasible to perform by
hand. However, bounding techniques are most useful in system-sizing studies.
Such studies can be relevant to long-range planning and consequently often are
based on basic estimates of system characteristics. Bounding techniques also
can be used to estimate the potential performance gain of alternative upgrades
to existing systems.

For the sake of clarity, we restrict our discussion of the bounding analysis to
the single class of jobs. Multiple class generalizations can be established, but
they are not commonly used. In addition, the bounding techniques are most
constructive for capacity studies of the bottleneck problem, for which single
class models are enough. Additionally, a major attraction of bounding

248 OPERATIONAL AND MEAN VALUE ANALYSIS

techniques in practice is their simplicity, which would be lost if multiple classes
were included in the models.

The models we consider in this section can be typically described by: (a) the
number of service centers, say K; (b) largest service demand at any single
center, denoted by Dmx; (c) sum of the service demands at the centers, D; (d)
type of the customer class (i.e., batch, terminal, or transaction); and (e) average
think time (if the class is of terminal type).

For models with transaction type workloads, the throughput bounds
indicate the maximum customer arrival rate that can be processed by the
system, whereas the response time bounds reflect the largest and smallest
possible response times that these customers could experience as a function of
the system arrival rate. For models with batch or terminal type workloads, the
bounds indicate the maximum and minimum possible system throughput and
response time as functions of the number of customers in the system.

We refer to throughput upper and response time lower bounds as optimistic
bounds (becuase they indicate the best possible performance), and we refer to
throughput lower and response time upper bounds as pessimistic bounds
(because they indicate the worst possible performance). Although we treat
only bounds on system throughput and response time in this section, the
generalization of these methods to other performance measures, such as service
center throughputs and utilizations, is easy to perform.

8.6.1 Asymptotic Bounds

Asymptotic bounding analysis provides bounds on system throughput and
response time in single class queueing networks [1]. Asymptotic bounds are
derived by considering the (asymptotically) extreme conditions of light and
heavy loads. The validity of the bounds depends on the following assumption:
The service demand of a customer at a center does not depend on how many
other customers currently are in the system or at which service centers they are
located.

Transaction workloads. For transaction workloads, the throughput bound
indicates the maximum possible arrival rate of customers that the system can
process successfully. If the arrival rate exceeds this bound, then an accumula-
tion of unprocessed jobs (or customers) grows continually as jobs arrive. Thus,
in the long run, an arriving job has to wait an indefinitely long time (because it
can find any number of jobs already waiting in queue when it arrives). This is
what is often called a saturated system case. The throughput bound thus should
be the arrival rate that separates feasible saturation from processing.

The main tool to determining the throughput bound is the utilization law,
Uk ¼ Xk:Sk; 1 � k � K ;, for each center k. If l denotes the arrival rate to the
system, then Xk can be determined as Xk ¼ l:Vk. Thus, the utilization law can
be rewritten as: Uk ¼ l:Dk, where Dk is the service demand at center k. To
compute the throughput bound, we can note that as long as all centers have
utilizations less than 1, an increased arrival rate can be accommodated.

8.6 BOUNDING ANALYSIS 249

However, when a center reaches a utilization equal to 1 (i.e., getting saturated),
the entire system becomes saturated because no increase in the arrival rate of
customers can be handled successfully. Therefore, we define the throughput
bound as the smallest arrival rate, denoted by lsat, at which a center in the
system saturates. Let k0 be the index of the bottleneck center. Then:

Uk0ðlÞ ¼ lDk0 � 1 and l ¼ 1=Dk0 ;

Therefore, the system can process arrival rates less than 1=Dk0 ; but, it saturates
for arrival rates greater than or equal to 1=Dk0 .

Batch and terminal workloads. To derive the bounds on the throughput,
one can consider the heavy load situation. As the number n of customers in
the system becomes large, the utilizations of all centers grow, but clearly no
utilization can exceed one. From the utilization law, we have for each
center k:

UkðnÞ ¼ XðnÞDk � 1

Because the bottleneck center (i.e., center k0) is the first to saturate, it restricts
system throughput most severely. We conclude that:

XðnÞ ¼ 1=Dk0 :

This is easy to state, because if each customer requires on average Dk0 time

units of service at the bottleneck center, then in the long run jobs cannot be
completed any faster than one every Dk0 time units. Now, consider the light

load case. At the extreme, a single customer alone in the system gets a
throughput of 1/D+Z, because each interaction consists of a period of service

of average length D ¼ PK
k¼1

Dk and a think time of average length Z. As more

customers are added to the system, there are two bounding situations as
follows:

� The smallest achievable throughput occurs when each additional customer
is queued and served after all the customers are already in the system. In
such a situation, (n� l)/D time units are spent queued behind other
customers, D time units are spent in service, and Z time units are spent
thinking. Thus, the throughput of each customer is l/(nD+Z) and the
system throughput is n/(nD+Z).

� The largest achievable throughput occurs when the additional customers
are not delayed by the customers in the system. In this case, no time is
observed in queueing, D time units are spent in service, and Z time units
are spent thinking. Thus, the throughput of each customer is l/(D+Z),
and system throughput is n/(D+Z).

250 OPERATIONAL AND MEAN VALUE ANALYSIS

The aforementioned observations can be summarized as the asymptotic
bounds on the system throughput:

n

nDþ Z
� XðnÞ � minð1=Dk0 ;

n

Dþ Z
Þ:

Figure 8.5 depicts the general form of the asymptotic bounds on throughput.
Bounds on the response time R(n) can be deduced by transforming the

throughput bounds using Little’s law. Replacing X(n) and inverting the three
components in the previous inequalities gives the following:

maxðDk0 ;
Dþ Z

n
Þ � RðnÞ þ Z

n
� nDþ Z

n
:

This implies that:

maxðD; nDk0 � ZÞ � RðnÞ � nD

8.6.2 Balanced Systems Bounds

With little additional amount of computation compared with what is required
for asymptotic bounds, tighter bounds can be obtained. These bounds are
called balanced system bounds because they are based on systems that are
balanced, in the sense that the service demand at every center is the same (i.e.,
D1= D2=y= DK). To perform this, we first set up some particular
properties of balanced systems [14]. Then, we give details on how these
properties can be used to determine bounds that complement the asymptotic

System throughput, X(N)

N/D�Z

N/ND�Z

N/(D� (N�1)Dmax)

1/D

X(N)

1/DKo

100

0
10 N* 300

Load, N

FIGURE 8.5. Asymptotic bounds on throughput.

8.6 BOUNDING ANALYSIS 251

bounds. However, the analysis of balanced systems requires that various
assumptions be made about the system being modeled. This is in contrast to
asymptotic bounds, which require only that the service demand of a customer
at a center does not depend on how many other customers are currently in the
system or at which centers they are located.

Intuitively, one can see that the utilization of center k is given by:
UkðnÞ ¼ n=ðnþ K � 1Þ. Using the utilization law, the system throughput is
given by:

XðnÞ ¼ Uk

Dk
¼ n

nþ K � 1
� 1

Dk

where Dk is the the service demand at center k.
Let Dk0 ;Dk1 ; and Dk2 denote the maximum, average, and minimum service

demands at the centers of the model that we wish to evaluate. We bound the
throughput of that system by the throughputs of two related balanced systems:
one with service demand Dk2 at every center, and the other with service demand
Dk0 at every center:

n

nþ K � 1
� 1

Dk0

� XðnÞ � n

nþ K � 1
� 1

Dk2

:

These inequalities hold because of all systems with K centers, n customers, and
maximum service demand Dk0 , the one with the lowest throughput is the
balanced system with demand Dk0 at each center. Similarly, of all systems with
K centers, n customers, and minimum demand Dk2 , the one with the highest
throughput is the balanced system with demand Dk2 at each center. Corre-
sponding bounds on average response times are given by:

ðnþ K � 1ÞDk2 � RðnÞ � ðnþ K � 1ÞDk0

Tighter balanced system bounds can be obtained by constraining the total
demand, D, or equivalently, the average demand Dk1 . Among all systems

having a given total service demand D ¼ PK
k¼1

Dk; the system with the highest

throughput (and the lowest average response time) is the one in which all
service demands are equal (i.e., sDk ¼ D=K ; k � 1). Thus, the following
(optimistic bounds) are given by:

XðnÞ � n

nþ K � 1
� 1

Dk1

¼ n

Dþ ðn� 1ÞDk1

RðnÞ � Dþ ðn� 1ÞDk1 :

Similarly, of all systems with total demand D and maximum demand Dk0 , the
one with the lowest throughput has D/Dk0 centers with demand Dk0 and zero

252 OPERATIONAL AND MEAN VALUE ANALYSIS

demand at the remaining centers. Therefore, ‘‘pessimistic’’ bounds can be
deduced as follows:

n

nþ D
Dk0

� 1
� 1

Dk0

¼ n

Dþ ðn� 1ÞDk0

� XðnÞ

Dþ ðn� 1ÞDk0 � RðnÞ:

The throughput curve for the bottleneck and the balanced bounds are depicted
in Figure 8.6. The lower balanced system bound asymptotically approaches the
bottleneck upper bound at high loads. This means that:

lim
N!1

ð N

Dþ ðN � 1ÞDmax
Þ ¼ 1

Dmax

The asymptotic bottleneck bound 1
Dmax

and the optimistic balanced bound
intersect at N+ such that

1

Dmax
¼ Nþ

Dþ ðN � 1ÞDav

8.6.3 Illustrative Example

A company has m geographically distributed sites where three types of systems
need to be deployed. A modeling study was initiated to determine those sites at

System throughput, X(N)

N/D�Z

N/ND�Z

N/(D� (N�1)Dmax)

1/D

X(N)

1/DKo

100

0
10 N* 300

Load, N

FIGURE 8.6. Balanced system bounds.

8.6 BOUNDING ANALYSIS 253

which the less expensive system would be placed. A bounding model was used to
assess the performance to be expected from each of the three systems. Figure 8.7
depicts the queueingnetwork. Theparameters used in thismodel are the following:
the numberK of service centers is equal to 2; the type of customer class is terminal;
and parameters D, Dmax, and think time are described by Table 8.3.

Applying the model of each of the three systems leads to the computation of
the optimistic asymptotic bounds. The pessimistic bounds are easy to perform.

These bounds reveal the following:

� At heavy load conditions, performance of system 2 will be inferior to that
of the system 1. This is a consequence of the fact that the CPU is slower,
which is the bottleneck device.

� Rather than a performance gain of 1.5 to 2, a performance degradation
could be expected in moving from systems 1 to systems 2 whenever the
number of active terminals exceeded some threshold.

� A performance gain can be obtained when moving from systems 1 to
systems 3 although not the expected factor of two or more.

TABLE 8.3 Data about system described in Figure 8.7

System 1 System 2 System 3

Dmax 4.6 s 5.1 s 3.1 s

D 8.6 7.0 5.0

Think time 60 min 60 min 60 min

m

CPU Disk

�1 �2

2

1

Terminals

FIGURE 8.7. A queueing model for the case study.

254 OPERATIONAL AND MEAN VALUE ANALYSIS

� The performance gain of system 2 over system 1 at lighter loads is
negligible.

Consequently, there is no performance reason to invest in systems for any
sites. Eventually, the company can decide to install system 3. Without the
simple modeling study, the company might have ordered system 2 without
doing the needed benchmark tests on it, which could lead to disappointing
results.

8.7 CASE STUDY: A CIRCUIT SWITCHING SYSTEM

On arrival, each call in a switching network must find a path through the
switching network to an idle receiver; if no path is available, then a decision is
made concerning more call processing. Each call requires temporarily a receiver
for messages and call handling services; if no receiver is available, then the
system decides what subsequent action is required for that call.

We assume that, in switching networks, each call on arrival must be assigned to
one of S channels (or paths or links); if no channel is available, then the call is
blocked or cleared from the system, and presumably it will retry later. If a call is
accepted, then it holds a link and then requires a receiver; if no receiver is available,
then calls queue until a receiver is available. R receivers are present in the system.

We propose in this case study to determine the capacity of the switching
system, which is the joint choice of number of links and receivers that allow the
largest possible mean completion rate of calls while still meeting call setup delay
goals. We also show that the number of links and the number of receivers are
coupled. In fact, we show that it is possible to choose jointly the number of
links and receivers to achieve capacity superior to that when each is chosen
separately.

The state of the system at any instant of time is given by a pair (i, j), where i
denotes the number of calls in the setup phase and j represents the number of
calls in the talking phase. The space of states O is given by:

O ¼ ði; jÞ 0 � i þ j � S; 0 � i; j � Sjf g:

The space W is organized as O ¼ SS
k¼0

Ok; where Ok denotes the set of states

where there are only k calls in setup and talking phase:

Ok ¼ ði; jÞ 0 � i; j � S; i þ j ¼ kjf g:

The arrival statistics of calls are assumed to be Poissonian, meaning that the
sequence of interarrival times of calls is independent exponentially distributed
random variable, with mean arrival rate l. The first step of call setup involves

8.7 CASE STUDY: A CIRCUIT SWITCHING SYSTEM 255

holding a link and a receiver for a mean time interval denoted by Tctr. The
second step of talking involves holding a link for a mean time interval denoted
by Ttlk.

Mean value analysis. At any time t, the mean number of receivers busy with
call setup and the number of links or trunks busy with call setup or talking are
given by:

lTctr ¼ EðminðR; iÞÞ; lðTctr þ TtlkÞ ¼ EðminðS; jÞÞ

The mean throughput rate is upper bounded by:

l � minð S

Tctr þ Ttlk
;
R

Tctr
Þ:

Thus, two bottlenecks can occur here, as follows:

� If links are bottleneck, then one can conclude that
S

Tctr þ Ttlk
:

� If receivers are bottleneck, then one can deduce that
R

Tctr
:

Jackson analysis. Given these assumptions made previously, one can state
that the system is a Jackson network. The fraction of time the system is in state
(i, j), averaged over a suitably long time interval, denoted by p(i, j), is given by:

pði; jÞ ¼ 1

G

Yi
k¼0

lTctr

frecðkÞ
Yj
k¼0

lTtlk

ftrkðkÞ

where frecðkÞ and ftrkðmÞ are given by:

frecðkÞ ¼
1; k ¼ 0

minðR; kÞ; k > 0

(
; frecðkÞ ¼

1; k ¼ 0

minðS; kÞ; k > 0:

(

Blocking analysis. The fraction of time that an arriving call finds the S links
busy and is cleared or blocked from entering the system is called the blocking
probability, denoted by B. The approach used to compute blocking probability
involves calculating the fraction of time the system has all S links occupied. It
holds that:

256 OPERATIONAL AND MEAN VALUE ANALYSIS

B ¼
X
ði;jÞ2Ok

pði; jÞ ¼ GS

G
; G ¼

XS
k¼0

Gk

Gk ¼
X
ði;jÞ2Ok

Yi
m¼0

lTctl

frecðmÞ:
Yj
n¼0

lTtlk

ftrkðnÞ; 0 � k � S:

Waiting Time Distribution. Let pacc(i, j) denote the fraction of time that the
system is in state (i,j) and an arriving call is accepted. This can be easily
computed by:

paccði; jÞ ¼ pði; jÞ
1� B

¼ 1

ð1� BÞG
 :
Yi
m¼0

lTctl

frecðmÞ:
Yj
n¼0

lTtlk

ftrkðnÞ; ði; jÞ 2 Oa ¼
[S 1

k¼0
Ok

where

G
 ¼
X
ði;jÞ2O

Yi
m¼0

lTctl

frecðmÞ:
Yj
n¼0

lTtlk

ftrkðnÞ

Let now p(i) be the marginal distribution of paccði; jÞ, meaning that:

pðiÞ ¼
XS i 1

j¼0
paccði; jÞ:

Let X be the random variable denoting the time interval from when an
accepted call arrives until it is first assigned a receiver. Recall that calls are
processed in order of arrival. If (R� 1) or fewer receivers are busy, the accepted
call does not wait at all. Thus the probability P(X=0) that an accepted call
does not wait is determined by:

PðX ¼ 0Þ ¼
P

0�i�R 1 pðiÞ; RoS

0; R ¼ S

(
:

The probability that an accepted call waits greater than n W 0 to start receive
processing is computed by:

8.7 CASE STUDY: A CIRCUIT SWITCHING SYSTEM 257

PðX > nÞ ¼
PR 1

i¼0
pðiÞ þ PS 1

i¼R
pðiÞ:ð R

RþzTrec
Þi Rþ1; RoS

1; R ¼ S

8><
>:

The total call setup delay, denoted by Tset, is the sum of the waiting time X plus
the receiver processing time Y, Tset=X+Y. Using Little’s law, we obtain:

EðTsetÞ ¼ 1

lð1� BÞ
XS
i¼0

XS 1

j¼0
ipði; jÞ:

Asymptotic behavior. Now, assume given R receivers and S links, with mean
setup time Trec and mean call talking time Ttlk, we consider the problem of
finding the largest mean arrival rate l such that the blocking B is lower than
some threshold d, and the fraction of time a call waits in setup before it starts
processing is acceptable; meaning that probability P(X W n) is lower than a
small threshold e. Thus,

Bod; PðX > n > 0Þoe:

As l grows to infinity, we observe that the long term time averaged distribution
becomes concentrated in the states where all S links are always busy (i.e., as soon
as a call completes, another is ready to take the link). We have:

lim
l!1

pði; jÞ ¼
1
G

Qi
m¼0

lTrec

frecðmÞ:
Qj
n¼0

lTtlk

ftrkðnÞ ði; jÞ 2 O S

0; i þ joS:

8><
>:

As the arrival rate becomes infinite, the blocking approaches one. In fact, we
have:

B ¼ 1� lmax

l
þ . . . ; l!1

The mean throughput rate is given by:

Mean call throughput rate= lim
l!1
ðlð1� BÞÞ ¼ lmax ¼ minð R

Trec
; S
TtlkþTrec

Þ:
In particular when R=S, we have:

258 OPERATIONAL AND MEAN VALUE ANALYSIS

lmax ¼ S

Ttlk
:

1
1

Trec
þ 1

Ttlk

:

In fact, it is also possible for the interaction between links and receivers to limit
the maximum mean call completion rate below either of these upper bounds.
Because the network or links are used for two purposes, control or call setup
and talking or data transfer, it is possible for lmax to be less than S/Ttlk, which
would be the limit because of links being a bottleneck.

8.8 SUMMARY

Performance metrics that can be obtained from the queueing network models
are discussed in this chapter. In particular, the notions of service time, arrival
rate, service demand, utilization, queue length, response time, throughput,
waiting time, and response time are analyzed here in more precise terms and
their computation (or estimation) is developed for the systems. A particular
interest has been given, in this chapter, to the standard MVA, the approxima-
tion of MVA, and the bounding analysis. We also presented several examples
to illustrate the applications of these algorithms and laws.

REFERENCES

[1] P. J. Denning, and J. P. Buzen, ‘‘The Operational Analysis of Queueing Network

Models,’’ Computing Surveys, Vol. 10, No. 3, pp. 225 261, 1978.

[2] J. D. C. Little, ‘‘A Proof of the Queueing Formula L l.W,’’ European Journal of

Operations Research, Vol. 9, pp. 383 387, 1961.

[3] M. Reiser, and S. S. Lavenberg, ‘‘Mean Value Analysis of Closed Multichain

Queueing Networks,’’ Journal of the ACM, Vol. 27, No. 2, pp. 313 322, 1980.

[4] S. S. Lavenberg, and M. Reiser, ‘‘Stationary State Probabilities at Arrival Instants

for Closed Queueing Networks with Multiple Types of Customers,’’ Journal of

Applied probability, Vol. 17, No. 4, pp. 1048 1061, 1981.

[5] D. Neuse, and K. M. Chandy, ‘‘SCAT: A Heuristic Algorithm for Queueing

Network Models of Computing Systems,’’ ACM Sigmetrics Performance Evalua

tion Review, Vol. 10, No. 3, pp. 59 79, 1981.

[6] J.C. Strelen, ‘‘A Generalization of Mean Value Analysis to Higher Moments

Moment Analysis,’’ ACM Sigmetrics Performance Evaluation Review, Vol. 14, No.

1, pp. 129 140, 1986.

[7] K.M. Chandy, and D. Neuse, ‘‘Linearizer: A Heuristic Algorithm for Queueing

Network Models of Computing Systems,’’ Communications of the ACM, Vol. 25,

No. 2 pp. 126 134, 1982.

REFERENCES 259

[8] J. Zahorjan, D. L. Eager, and H. M. Sweillam, ‘‘Accuracy, Speed, and Convergence

of Approximate Mean Value Analysis,’’ Performance Evaluation, Vol. 8, No. 4, pp.

255 270, 1988.

[9] Y. Bard, ‘‘Some Extensions to Multiclass Queueing Network Analysis,’’ in

Performance of Computer Systems, M. Arato, A. Butrimenko, and E. Gelenbe

(eds.), North Holland, the Amsterdam, The Netherlands, 1979.

[10] P. J. Schweitzer, ‘‘Approximate Analysis of Multiclass Closed Networks of

Queues,’’ Proceedings of the International Conference on Stochastic Control and

Optimization, pp. 25 29, Amsterdam, The Netherlands, 1979.

[11] L. Guan, M. E. Woodward, and I. U. Awan, ‘‘Bounding Delay through a Buffer

using Dynamic Queue Thresholds,’’ 20th International Conference on Advanced

Information Networking and Applications Vol. 1 (AINA’06), pp.623 628, 2006.

[12] H. Kobayashi and B.L. Mark, ‘‘System Modeling and Analysis,’’ Prentice Hall,

Upper Saddle River, NJ, 2008.

[13] J. C. S. Lui, R. R. Muntz, and D. Towsley, ‘‘Bounding the Mean Response Time of

a Minimum Expected Delay Routing System: An Algorithmic Approach,’’ IEEE

Transactions on Computes, Vol. 44, No. 12, pp. 1371 1382, 1995.

[14] J. Zahorjan, K. C. Sevcik, D. L. Eager, and B. I. Galler. ‘‘Balanced Job Bound

Analysis of Queueing Networks,’’ Communications of ACM, Vol. 25, No. 2,

pp. 134 141, 1982.

EXERCISES

1. The average delay experienced by a packet when traversing a computer
network is 100 ms. The average number of packets that cross the network
per second is 128 packets/s. What is the average number of concurrent
packets in transit in the network at any time?

2. A computer system has one CPU and two disks: disk 1 and disk 2. The
system is monitored for 1h and the utilization of the CPU and disk 1
are measured to be 32% and 60%, respectively. Each transaction makes
five I/O requests to disk 1 and eight to disk 2. The average service time at
disk 1 is 30 ms and at disk 2 is 25 ms.

a. Find the system throughput.

b. Find the utilization of disk 2.

c. Find the average service demands at the CPU, disk 1, and disk 2.

d. Find the system throughput, response time, and average queue length
at the CPU and the disks. when the degree of multiprogramming is n,
for 1 r n r 4.

e. Based on the above results, define a good approximation for the
average degree of multiprogramming during the measurement
interval.

260 OPERATIONAL AND MEAN VALUE ANALYSIS

3. Consider an interactive system with a CPU and two disks. The following
measurement data were gathered by observing the system during an
interval of 1 hour:

Active terminals 30, Think time 12 s

Completed transactions 1,600 Disk1 accesses 48,000

Disk2 accesses 24,000 CPU busy 720 s

Disk1 busy 480 s Disk2 busy 640 s

a. Determine the visit counts (Vk), service times per visit (Sk), and service
demands (Dk) at each center.

b. Give optimistic and pessimistic asymptotic bounds on throughput and
response time for 5, 10, 20, and 40 active terminals.

4. Consider the interactive system shown in Figure 8.8. The visit counts and
average service times have been measured as presented in Table 8.4 and
assume that Z=20 s.

a. Discuss whether an 8-s response time is feasible with 30 users logged
on. If this is not the case, then propose the changes required to
achieve it.

b. Discuss whether a 10-s response time is feasible when 50 users are
logged on the system. If not, compute how much CPU speedup is
required.

5. A communication system contains N=12 identical nodes organized into
a ring. We assume that each node transmits to only one other node, each
node receives from only one other node, and all nodes are connected by
identical one way transmission links with transmission rate C =106 bits/
s. All packets are routed around the ring in one direction. Packets can
arrive at any node and are transmitted to any other remaining node, and
then they leave the system. All packets have a fixed size B. The fraction
of the total network packet load entering at node I and departing at a
node that is J nodes away is denoted by FI, I + J, where I and J are
considered as elements of Z/12 (i.e., integers modulo 12). The total mean
packet arrival rate to the system is denoted by l.

TABLE 8.4 Data about the system described in Exercise 4

Number Device S2 VI DI VISI

1 CPU 0.05 20 1.00

2 Disk 0.08 11 0.88

3 Fast disk 0.04 8 0.32

Rmin 2.20

EXERCISES 261

Finally, assume that:

a. All nodes are statistically identical, meaning that the value of FI,I+ J is
independent of I.

b. No node can send packets to itself (i.e., FI ;I ¼ 0; I 2 0; 1; ::; 11f g.
c. Any packet in the network has a unique source and a unique

destination; meaning that:

X11
I¼0

X11
J¼1

FI ;IþJ ¼ 1:

i. Assume that FI ;IþJ ¼ 1
NðN 1Þ (=120), then find an upper bound on

the maximum mean packet switching rate for this system.
ii. Determine the value(s) of FI,I+ J, 0 o I,J,oN� 1, that provide the

largest mean packet switching rate.
iii. Determine the value(s) of FI,I+ J, 0 o I,J,oN� 1, that provide the

smallest mean packet switching rate.

6. A variable bandwidth circuit switch consists of two input links, each
capable of handling two time slots per frame; two output links,
each capable of handling two time slots per frame; and a central switch,
capable of switching four time slots per frame. Assume that two types of
calls are switched: one requiring one slot per frame and the other two
slots per frame. The arrival process for each call type is assumed to be a
simple Poisson. The sequence of call holding times for each call type is
assumed to be independent and identically distributed random variables.

CPU Fast disk

Disk

Terminals

FIGURE 8.8. Interactive system described in Exercise 4.

262 OPERATIONAL AND MEAN VALUE ANALYSIS

Finally, assume that each call type is equally likely to go from any input
link to any output link.

a. Determine the blocking for each call type versus the fraction of
arrivals that are low bandwidth assuming:
i. The two call types have identical call holding times of one frame.
ii. The low-bandwidth call has a holding time of 10 frames, and the

high bandwidth call has a holding time of 1 frame.
iii. The high-bandwidth call has a holding time of 10 frames, and the

low bandwidth call has a holding time of 1 frame.

b. Assume all the high-bandwidth calls arrive on 1 input link and are
destined for one output link. Assume the low-bandwidth calls arrive
on the other input link and are all destined for the other output link.
Repeat all the above.

c. Repeat all the above if the switch capacity is increased to eight slots
per frame.

7. The queueing network model in Figure 8.9 has three job classes 1, 2, and
3. We assume the followings:

� Class 1 is an open class, whereas 2 and 3 are closed classes.

� Class 2 has two jobs, whereas class 3 has only one job.

� Class 1 arrival rate is l1=1. Class 1 jobs leaving queue 1 go to
queue 2 with probability 0.2 or to queue 3 with probability 0.8.
Class 1 jobs leaving queues 2 and 3 always leave the system.

� Class 2 jobs departing queue 1 are routed to queue 2 or queue 3
with equal probability.

� Class 3 jobs departing queue 1 always go to queue 2.

� The queueing network has a product form, and the mean service
times are given by:

1

m1;1
¼ 0:2;

1

m1;2
¼ 1;

1

m1;3
¼ 0:5;

1

m2;1
¼ 0:05;

1

m2;2
¼ 0:1;

N2

N1
�1

N3

N4

FIGURE 8.9. The queueing network model of Exercise 7.

EXERCISES 263

1

m2;3
¼ 1

m2;4
¼ 0:04;

1

m3;1
¼ 0:1;

1

m3;2
¼ 0:4;

1

m3;4
¼ 0:2

a. Find the queue utilizations by class 1 jobs.

b. Find the visit ratios Vj,m and the demands Dj,m, for j=1,2,3 and
m=1,y,4.

c. Find the response times for open class 1.

d. Compute the total queue utilizations.

264 OPERATIONAL AND MEAN VALUE ANALYSIS

CHAPTER 9

INTRODUCTION TO SIMULATION
TECHNIQUE

In general, simulation is the process of designing a model (replica) of a real
system to study its behavior using experiments that are run under different
operating conditions and environments. The goal is to understand the behavior
of the system under study or investigate the performance using various
operating strategies, designs, and settings depending on whether the system
or a prototype of it exists in reality or is just a design on paper. It is important
to note that simulation measures the performance of the model of the system,
not the real system. In Webster’s Collegiate Dictionary, simulation is defined as
an assemblage of objects united by some form of regular interaction or
interdependence.

The act of simulating anything usually corresponds to certain important
characteristics or behaviors of a chosen physical or abstracted system. This
chapter introduces the fundamental concepts of simulation as a performance
evaluation technique for computer and telecommunication systems. Principles
and basics of simulation techniques, simulation terminology; and random-
number-generation techniques, which include linear congruential generators,
Tausworthe generators, mixed generators, and extended Fibonacci generators
are reviewed. The chapter also sheds some light on the commonly used random-
number generators, seed selections, and various tests for testing random-number
generators. Finally, the chapter concludes by discussing the concepts related to
the popular pseudorandom-variate-generation techniques, including the inverse
transformation, rejection, characterization, convolution, and composition.

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

265

9.1 INTRODUCTION

Simulation analysis is considered an important performance-evaluation tech-
nique. It is more accurate than the analytic modeling and less accurate than the
measurment technique. However, it is not as expensive as the measurement
scheme. Simulation is generally used before altering an existing system or
before building a new system to minimize the failure chances to meet
requirements and remove unanticipated bottlenecks, to avoid underuse or
overuse of resources, and to increase the system performance. With the help of
simulation, one can answer queries, such as follows: For a new telecommunica-
tion network or computer system, what is the best possible design available?
What should be the necessary resource requirements? Does a new design or
topology provide better performance than existing ones? In case of traffic load
raises by 50%, what will be the performance of the system or network? To
increase the performance of system, which type of protocol should be used? In
case of link failure, what will be the impact?

Simulation is a general term that is used in many disciplines, including
performance evaluation of computer and telecommunications systems. It is the
procedure of designing a model of a real system and conducting experiments
with this model for the purpose of understanding its behavior, or of evaluating
various strategies and scenarios of its operation. Others defined simulation as
the process of experimenting with a model of the system under study using
computer programming. It measures a model of the system rather than the
system itself [1–14].

In this context, a model is a description of a system by symbolic language or
theory to be deserved as a system with which the world of objects can be
expressed. Hence, a model is a system interpretation or implementation of a
theory that is true. Shannon defined a model as, ‘‘the process of designing
a computerized model of a system and conducting experiments with this model
for the purpose either of understanding the behavior of the system or of
evaluating various strategies for the operation of the system [1–35]’’.

According to the above definition of a model, we can redefine simulation as
the use of a model, which may be represented using various ways, such as a
flowchart, pseudocode, block diagram, or as schematic diagram, before coding
it into a computer program often called a ‘‘simulator’’ to conduct experiments
that, by deduction, communicate an understanding of the behavior of the
system under study. Simulation experiments or runs are essential in any
simulation study because they help to: (a) ascertain something unknown or
test an assumption and (b) aid to find candidate’s solutions and (c) offer a mean
for assessing them.

The simulation of any system including computer and telecommunication
systems involve three types of entities: (a) a real system, (b) a model, and (c) a
simulator (simulation program). These entities are to be understood in their
interrelation to one another as they are related and dependent on each other in
one way or another. Keep in mind that the real system is a source of raw data,

266 INTRODUCTION TO SIMULATION TECHNIQUE

whereas the model is a set of instructions for data gathering. The simulator is a
tool for carrying out model instructions. We need to validate any simulation
model to make sure that the assumptions, distributions, inputs, outputs, results,
and conclusions are correct. We also have to verify the simulator to make sure
that the model assumptions have been implemented by the simulationist
properly and that the simulator has been debugged from all programming
errors [1–35].

The simulation of a particular system can be defined as an operation to be
performed on a model of that system. Reconfiguration with the model can
be done. However, it is impossible, expensive, and impractical when using the
real system. Operations that are related to the model can be easily studied, so
the properties that are concerned with the performance of the genuine system
can be assumed. To estimate the performance of the already available or yet to
be proposed systems under various conditions or configurations, one can
consider simulation as the best possible tool. Simulation is generally used
before altering an existing system or before building a whole new system to
reduce the failure possibilities to meet requirements and to remove unforeseen
bottlenecks; it is also used to avoid less or over access of resources and to
enhance the system is performance. With the help of simulation, one can
answer queries like: For a new telecommunications network, what is the best
possible topology design available? What should be the necessary resource
requirements? In case of traffic load raises by 50%, what will be the
performance of the telecommunications network? To increase the performance
of a network, which type of routing protocol should be used? In case of link
failure, what and how will be the impact? Whereas on the other side, weather
simulators and flight simulators that are continuous simulators will always try
to enumerate the changes related to system constantly as a part of response
towards controls. When compared with continuous simulation, discrete simu-
lation is less featured and its implementation part is much simpler, so that is
why discrete simulation is extensively used in a variety of situations, especially
the simulation of computer and telecommunication systems.

Systems in general canbe divided into deterministic and stochastic types [1–10]:

� In deterministic systems, the new state of the system is completely
established by the preceding state and by the activity or input.

� In stochastic systems, the system encloses a certain amount of uncertainty
or randomness in its movement from one state to another. A stochastic
system can enter more than one possible state after a state in response to
an input or activity. Obviously, a stochastic system is nondeterministic
from the point of view that the next state cannot be explicitly forecasted if
the current and the stimulus are known.

Simulation analysis is an attractive tool to predict the performance of any
systems for the following reasons [1–20]:

9.1 INTRODUCTION 267

1. Simulation can be rewarding in terms of time and efforts.

2. Simulation encourages full solutions.

3. Simulation conveys skill, information, and knowledge together.

4. Simulation can promote innovative attitude for trying new concepts or
ideas. Various organizations have under used resources and systems,
which if fully used, can result in notable improvements in quality and
efficiency. Simulation can be worthwhile tool to communicate, experi-
ment with, and assess such proposed solutions, scenarios, schemes,
designs, or plans.

5. Simulation can forecast results for possible courses of action in a speedy
manner.

6. Simulation can justify the effect of variances occurring in a node, element,
or a system. It is essential to note that performance computations based
mainly on mean values neglect the effect of variances, which may lead to
incorrect conclusions.

To perform a methodical and successful simulation study and analysis, the
following steps should be followed [1–5, 10]. Figure 9.1 summarizes these major
phases.

PLANNING

MODELING

VERIFICATION/

APPLICATION

Validation

Experiments

Model Building

Model

Implementation/
documentation

Verification

Analysis

Data acquisition

Strategic/tactical planning

Problem
definition

Model Scoping

FIGURE 9.1. Overview of the simulation methodology.

268 INTRODUCTION TO SIMULATION TECHNIQUE

I. Planning Phase. In the planning phase, the following tasks have to be
identified:

1. Problem outlining: If a problem statement is being developed by the
analyst, it is important that policy makers comprehend and concur
with the formulation. Keep in mind that a problem well defined is half
solved. So, it is important to establish the problem statement and aims
of the simulation task ahead of time.

2. Resource assessment: An approximate of the resources required to
gather data and analyze the system under study should be performed.
Resources including time, money, personnel, and equipment must be
planned for and thought of. It is better to amend objectives of the
simulation study at early phase than to fall short because of a lack of
vital resources.

3. System and data analysis: This step includes a thorough investigation
in the literature of previous schemes, techniques, and algorithms for
the same problem. Many projects have not succeeded because of
misinterpretation of the problem at hand. Identification of factors,
variables, initial conditions, and performance metrics is made in this
phase. In addition, the level of detail of the model must be agreed on.

II. Modeling Phase.Here, the simulationist constructs a system model, which
is an imitation of the real system understudy or a representation of some
aspects of the system to be analyzed.

� Model construction: This task consists of abstraction of the system into
mathematical relationship with the problem formulation.

� Data acquirement: This task entails identification, description, and
gathering of data.

� Model transformation: This task involves preparation and trouble-
shooting of the model for computer processing.

Models can be classified into the following types: (a) descriptive models, (b)
physical models such as the ones used in aircrafts and buildings, (c) mathema-
tical models such as Newton’s law of motion, (d) flowcharts, (e) schematics, and
(f) computer pseudocode.

The chief phases in model building consist of: (a) preliminary simulation
model diagram; (b) building of flow diagrams; (c) assessment of model diagram
with a team; (d) launching of data gathering; (e) adjusting the top-down design;
testing; and validation for the required degree of granularity; (f) total data
collection; (g) iteration through steps above (e) and (g) until the required degree
of granularity has been achieved; and (h) ultimate system diagram, transforma-
tion; and verification.

It is necessary to mention the following two important concepts in this
context [1–11]:

9.1 INTRODUCTION 269

� Model scooping: This refers to the method of finding out what process,
entity, function, device, and so on, within the system should be taken into
account in the simulation model, and at what granularity.

� Level of details: This is established based on the element’s effect on the
steadiness of the analysis. The proper level of details will differ depending
on the modeling and simulation aims.

� Subsystem modeling.When the system to be evaluated is large, a subsystem
modeling is carried out. All subsystem models are later tied properly. To
characterize subsystems, there are three common methods, as follows:

� Flow scheme: This technique has been employed to study systems that
are characterized by the flow of physical or information entries through
the system such as pipeline computer systems.

� Functional scheme: This scheme is valuable when no directly visible
flowing entities are in the system, such as manufacturing processes that
do not use assembly lines.

� State-Change scheme: This is helpful in systems that are described by a
large number of interdependent relationships and that must be tested at
regular intervals to identify state changes.

� Variable and parameter assessment. This is performed normally by
gathering data over some period of time and then figuring out a frequency
distribution for the needed variables. This kind of analysis may aid the
modeler to come across a well-known variate/distribution that can
characterize the activities of the system or subsystem.

� Selection of a programming language/simulation software package. The
simulationist should choose whether to use: (a) a general-purpose pro-
gramming language such as Java, C++, or C; (b) a simulation language
such as SIMSCRIPT III, MODSIM III, CSIM, or JavaSim; or (c) a
simulation package such as Opnet, NS2, NS3, Network III, Comnet III,
QualNet, and GloMoSim. In general, using a simulation package may
save money and time; however, it may not be flexible and effective to use
simulation packages as they may not contain capabilities to do the task
such as modules to simulate some protocols or some features of the
network or system under study.

III. Verification and Validation (V&V). Verification is the procedure of
noting whether the model realizes the assumptions considered accurately
or not. Others consider it basically the process of troubleshooting
the simulation program (simulator), which implements the model of the
system under study. It is possible to have a verified simulator that
actually represents an invalid model. Also, it is possible to have a valid
model that represents an unverified simulator.

270 INTRODUCTION TO SIMULATION TECHNIQUE

The validation procedure refers to making sure that assumptions
considered in the model are realistic in that, if properly realized, the
model would generate outcomes close to these obtained in real systems.
Model validation is basically aimed at validating the assumptions, input
parameters and distributions, and output values and conclusions. Valida-
tion can be carried out by one of the following schemes: (a) relating the
results of the simulation with results previously obtained by the real
system working under the same environments, (b) expert insight (intui-
tion), (c) analytic results via queueing theory or other mathematical
schemes, (d) another simulation model, and (e) artificial intelligence and
expert systems.

IV. Applications and Experimentation. Following the verification and valida-
tion of the model, the simulator has to be run under different operating
conditions and environments to reveal the behavior of the system under
study. Keep in mind that any simulation study that does not include
experimentation with the simulation model is not useful. It is through
testing and experimentation the analyst can appreciate the system and
make recommendations about its design and most favorable operational
modes. The level of experiments relies mainly on the cost to approximate
performance measures, sensitivity of performance metrics to particular
variables, and the correlation among control variables [1–5, 10, 11].

The realization of simulation results into practice is an essential task that is
performed after testing and experimentation. Documentation is crucial and
should contain a full record of thewhole project activity, not just a user’smanual.

Factors which should be given special attention in simulation analysis
include: (a) pseudo random number generators (RNGs), (b) random variates
(RVs) or observations, or observations (c) programming errors, (d) specifica-
tion errors, (e) duration of simulation, (f) sensitivity to parameters, (g) data
gathering, (h) optimization parameter errors, (i) incorrect design, and (j)
influence of seed values or initial conditions.

The chief advantages of the simulation technique include [1–5, 10–12]:

� Flexibility: Simulation permits controlled experiments free of risk. Some
important experiments cannot be conducted on the real physical system
due to inconvenience, risk, and cost.

� Speed: It permits time compression operation of a system operation over
extensive period of time. The results of conducting experiments can be
obtained much faster than real-time experiments on the real physical
system.

� Simulation modeling allows sensitivity analysis by manipulating input
variables to find the design parameters that are critical to the operation of
the system under study and that influence its operation notably.

9.1 INTRODUCTION 271

� It is a good training tool: In any simulation study, the simulation group
consists of experts in programming, mathematics, statistics, system
science, and analysis, as well as in technical documentation. The commu-
nication between the team members provides tremendous training
opportunity.

� It does not disturb the real system; simulation analysis can be performed
on the system without the need to disturb the physical system under study.
This is critical as running tests on the real system may be pricey and also
can be catastrophic. In addition, in some cases the physical system does
not exist physically and it is only design on paper.

The major disadvantages of simulation are as follows [1–11]:

� Simulation may become costly in terms of time, money, and manpower.

� In simulation modeling, we usually make a hypothesis about input
variables and parameters, and distributions and if these assumptions are
inaccurate, then the obtained outcomes may not be credible.

� It is not easy to select initial conditions, and not doing so may influence the
reliability of the model.

Figure 9.2 represents a simplified illustration of the simulation process. The
nature of the process involved here is iterative. All simulation experiments and

Actual World Study of Simulation

Model

Simulation
experiment

Analysis of
simulation

Results

Changed system

System
under study

FIGURE 9.2. Overall simulation process.

272 INTRODUCTION TO SIMULATION TECHNIQUE

changes do not incur cost in hardware parts, and any change can be made in the
simulation model easily and risk free. Almost all simulation software tools have
this efficient feature. To achieve success in simulation analysis, well-qualified
problem formulators, simulation modelers, and analysts are much needed and
crucial.

The process of producing a model is called modeling. With the help of the
model, the analyst can easily predict the impact of changes on the system. The
model should always be a close representation of the actual system, and most of
its significant features should be included. In the same way, the model should
not be too compound to understand and to experiment with. Practitioners who
practice simulation always advocate the increase in the complication of the
model iteratively. Model validity is an important issue in modeling.

In most simulation studies, the models that generally used are mathematical
models. Various classifications are involved in mathematical modeling, which
include deterministic, in which both the input variables and output variables
are fixed, or stochastic; in this case either, input or output variables is
probabilistic. Classifications also include static or dynamic. Generally, simula-
tion models of computer systems and networks are classified as dynamic and
stochastic.

Many stages are involved in simulation modeling process, which include the
following [1]:

1. Defining the project and identifying its goals

2. Providing Model abstraction

3. Representing the model in digital form

4. Performing experiments with the model and generating the entire
documentation of the project

This process represents an iterative method until a level of granularity is
reached. Scientific disciplines, such as software engineering, artificial intelli-
gence (AI), math, statistics, and databases, are applying foremost influence on
the simulation modeling process (SMP) because of the advances in their
respective fields that can help to provide a credible model and simulator. As
shown in Figure 9.3, the simulation task is a data-concentrated process.

A study related to a system begins in the following cases:

1. When a problem persists with the present surviving system

2. When experimenting with the real (actual) system is not possible, or when
the system is under construction

The modeler should always choose a combination of assumptions, which are
appropriate, realistic, and adequate. After devising a conceptual model, it should
be changed into a digital model. However, the digital model reliability is affected
directly by the accuracy of verification and validation phases. After acquiring a

9.1 INTRODUCTION 273

precise and reliable digital model, the simulation modeler proceeds toward the
experimental stage. To meet the goals of the study, statistical tests are designed.
Monitoring a model under a single combination of experimental condition gives
inappropriate information. That is why always within a framework, various
combinations of experimental conditions should be considered.

Now, we will take up the issue of randomness in simulation. Few simulations
accept inputs only in the form of nonrandom and fixed values, which typically
correspond to factors that illustrate the model and the particular alternative
that we are going to evaluate. If the system that is to be simulated is
like the above, then one can achieve a simulation model that is deterministic.
The one thing good about this deterministic simulation model is that because
the input has no randomness, there will no randomness in size and the
interarrival times that exist between consecutively incoming parts in batches.
Deterministic values for the input are represented by the big dots, and the big
dots that are on the outputs also stand for the performance of the output

Formulation
of

problem Design

Analysis and
production runs

More
Runs?

Study of document
and reporting

results

Implementation

Objective and final
project plan setting

Model
structure

Collection
of data

Code

If verified

no

yes

yes

Yes

No

no

no If validated

FIGURE 9.3. The simulation modeling process.

274 INTRODUCTION TO SIMULATION TECHNIQUE

(deterministic), which is achieved by converting the input into output by means
of simulation’s logic. Figure 9.4 illustrates a deterministic-in–deterministic-out
(DIDO) simulation paradigm. Several different runs are to be made to evaluate
the unlike input-parameter combinations before dealing with the tentative
output. Most systems have some type of randomness or uncertain input, so that
is why the simulation models that are practical should also offer for such
variable input; such models are called stochastic simulation models. Actually, if
the randomness in the input is ignored, then it may cause errors in the output of
simulation model. A random-in–random-out (RIRO) simulation paradigm is
illustrated by Figure 9.5.

9.2 TYPES OF SIMULATION

Usually, simulation models can be grouped into three different categories [3]:
(a) static versus dynamic simulation model, where a static model is an
illustration of a system at a specific time or one that may be used to characterize
a system in which time plays no role such as Monte Carlo models, whereas a
dynamic simulation model characterizes a system as it advances over time; (b)
deterministic versus stochastic models where a deterministic model does not
include any probabilistic elements whereas stochastic model has as a minimum
some random input elements; and (c) continuous versus discrete simulation
models where a discrete-event simulation is related to modeling of a system as it
changes over time by illustration in which the state variables vary straight away

Simulation Model and
Expression in Software

Cycle times Interarrival times Size of batch

Input

Output
Production (hourly) Utilization of machine

FIGURE 9.4. DIDO simulation.

9.2 TYPES OF SIMULATION 275

at separate points in the time frequently called events. However, continuous
simulation deals with modeling of a system by an illustration in which the state
variables change continuously with respect to time.

To keep track with the up-to-date value of simulation time during any
simulation study, we require a mechanism to move forward simulation time
from one value to another. The variable that provides the current value of
simulation time is called simulation clock. The means that can be employed to
move forward simulation clock are [1–3]: (a) fixed-increment time advance
scheme and (b) next-event time advance, which is used most often.

� Fixed-Increment Time Advance: In this scheme, the simulation clock is
moved forward in fixed treads. After each update of the clock, a test
is made to discover whether any events should have taken place during the
previous fixed period (step). If some events were listed to have occurred
during this period/interval, then they are viewed as if they have occurred at
the end of the interval, and the system state is updated to reflect this.

� Next-Event Time Advance: In this case, the initial value of simulation clock
is set to zero, and the times of occurrences of future events are found out.
Then, the simulation clock is progressed to the time of occurrence of the
most pending event in the future event list, after that the state of the system
is updated consequently. Additional future events are found out in a similar

Simulation Model

Production (hourly) Utilization of machine

Cycle times Interarrival times Size of batches

Output

Input

FIGURE 9.5. RIRO simulation paradigm.

276 INTRODUCTION TO SIMULATION TECHNIQUE

way. This technique is reiterated until the stopping condition/criterion is
satisfied. Figure 9.6 summarizes the next-event time advance scheme.

Note that the fixed-increment time advance technique is not exploited in
discrete-event simulation because of the following disadvantages: (a) it is
difficult to establish which event to process first when events that are not
simultaneous in actuality are treated as such in this method and (b) mistakes
are presented because events are handled at the end of the step/interval in which
they occur, which is inaccurate.

The key components that are instituted in most discrete-event simulation
models via the next-event time advance scheme are as follows [1–15]: (a) system
state that is the set of state variables required to explain the system at a specific

Main program

Report generator

0

1

i

No

Yes

Initialization Routine

Event routine “i”

Library routines

Generate
random variates
(observations)

End of simulation?

1. Compute estimates of
interest final report.

Stop

Start

Timing routine

2

1. Determine
the next
event type, i.

2. Advance
the simula-
tion clock.

1. Initialize simula-
tion clock = 0.

2. Initialize system
state and statistical
counters.

3. Initialize event list

0. Invoke the
initialization routine

1. Invoke the timing
routine

2. Invoke event
routine, i
process 1 and 2
repeatedly.

1. Update system
state

2. Update statistical
counters

3. Generate future
events and add to
event list

FIGURE 9.6. Summary of the next event time advance scheme.

9.2 TYPES OF SIMULATION 277

time, (b) simulation clock that is a variable that gives the present value of
simulated time, (c) statistical counters that are the variables employed for saving
statistical information regarding system performance, (d) initializing routine
that is a method applied to initialize the simulationmodel at time zero, (e) timing
routine that is method that establishes the next event from the event list and then
moves forward the simulation clock to the time when that event is to happen,
(f) event routine that is a method that brings up to date the system state when a
specific type of event occurs, (g) library procedures that are a set of subroutines
employed to produce random observations from probability distributions,
(h) report originator that is a subroutine that figures out estimates of the needed
metrics of performance and produces a report when the simulation finishes, and
(i) main program that is a method that calls up the timing routine to find out the
next event and then moves control to the related event routine to update
the system state, appropriately tests out for termination and calls on the report
originator/generator when the circumstances for ending the simulation are met.

The simulation process starts at time 0 with the main program calling on the
initialization routine, where the simulation clock is set to zero, the system state
and statistical counters are initialized appropriately as well as the event list.
Once control comes again to the main program, it will call on the timing routine
to determine the most eminent routine. If event i is the most eminent one, then
simulation clock is moved forward to the time that this event will happen and
control is returned to the main program.

In general, the available programming languages/packages for computer
and networks simulation are as follows:

� General purpose languages such as Java, C++, C, C#, Fortran, and Visual
Basic.

� Special Simulation Languages such as SIMSCRIPT III, SIMSCRIPT II.5,
MOSIM III, SLAM II, SIMULA, GPSS, GASP IV, CSIM.

� Special Simulation Packages such as the computer and computer com-
munication-based packages; examples include NS3, NS2, OPNET, Qual-
Net, GloMoSim, COMNET III, and Network II.5.

Classification in simulation is performed based on the system type it studies,
which means simulation can be either continuous or discrete. In discrete-event-
driven simulation, the modeler has to think in event terms that can change the
systems condition. However, the systems status is delineated by the set of
variables like queue number, server condition, number of servers it works on,
and so on. The system that varies its state instantly at certain discrete time
points employs discrete event simulation (DES). Computer and telecommuni-
cation systems are usually modeled using discrete event simulation. Discrete
event simulation has three major stages: construction of the model, testing
design, and execution of experiments. To accomplish distributed discrete event
simulation, one has to think about what type of simulation is used for it.

278 INTRODUCTION TO SIMULATION TECHNIQUE

The following gives a brief description on the execution of discrete event
simulation on a uniprocessor system and the results that are anticipated from it.
Changes in the state of the system being represented are described by discrete
events. Many future events are created and scheduled by these jobs. In the
process of executing simulation trial, discrete event system events are accumu-
lated in an event-list prearranged based on simulation time at which they take
place. In the event list, first the event with lowest simulation-time is eliminated,
and this removed event is first executed and then necessary updates are made in
the simulation state and probably other events are scheduled. This process of
execution proceeds until all the other events are executed or if any other
stopping criterion is met. The simulation-time advance rate (STAR) rely on
both the simulator hardware and the simulation software. Under experimental
operating circumstances, the discrete event system model’s characteristics are
described by discrete system event trials statistics, which include resource uses
and response times. To demonstrate variability clearly, confidence levels are
needed, as here the statistics may fluctuate from one simulation trim to other
simulation trim. More and more estimation methods in confidence interval are
introduced, which include independent replications, batch means, regeneration,
and estimations regarding spectral and automatic regression schemes. The
autoregressive method is highly recommended as it is more accurate and
convenient although it is not extensively used. To acquire any confidence
intervals more quickly, the design part of the experiment has to be applied with
techniques that are a set of transforms like variance reduction schemes.
Techniques such as alteration of event probabilities are also used. It is worth
mentioning that these discrete event system statistical techniques are also valid
for distributed discrete event systems. They are hardly ever mentioned as
variance reduction techniques; they are only a part of experimental design, and
the essentials of the distributed discrete event system algorithm are complicated
by confidence interval generation. They slow down the simulation-time
advance rate. Generally, if the events are not assured to happen at normal
intervals and if there is no good grip on the time step, which means the time
should not be too small as it makes the simulation run longer than that
it should. Moreover, the time should not be too large as it makes the events out
of control, in such a case an event-driven simulation is preferred [1–20].

9.3 SOME TERMINOLOGY

Each and every simulation model corresponds to a system of some sort of form.
However, in general, a system can be a network comprising computers, a
multiprocessor computer system, an assembly line, a facility providing service,
or a health care system. When compared with each other, all these systems are
completely different, but when comparison is made in terms of components,
they are not that dissimilar. Dynamic entities and resources are the general
system components. Objects that move along the system and that ask for

9.3 SOME TERMINOLOGY 279

services that are provided by resources of system are called dynamic entities. An
entity has attributes through which it describes its characteristics. If an event
occurs inside the system, then it is called as an endogenous event, and if
it occurs outside the system then it is called an exogenous event.

Services to an entity are provided be means of resources. However, these
resources are again categorized depending on the service type they provide,
which include servers that can be machines or can be persons. Resources are
connected to activities; these activities can be time periods of particular length.
The system’s state is a set of variables that are required to illustrate the
performance of the system. With the help of the simulation clock, which is an
internal one, sampling occurs from a random number stream, and over time,
the system’s random behavior can be modeled by simulation. Each and every
time when a function is called up, new numbers are generated. This series of
numbers is also called random number stream or sequence. Computers cannot
generate true random numbers. However, only pseudorandom numbers are
generated by computers, and these numbers are arithmetically random so they
can be used in simulation modeling.

9.4 RANDOM-NUMBER-GENERATION TECHNIQUES

RandomNumber Generators (RNGs) are considered as a major building block
in any simulation model. Most programming languages have built-in proce-
dures/subroutines that can generate pseudorandom numbers according to one
generation algorithm or another. From these random sequences, we can
generate random variates using various algorithms. The generator function
that is used to produce random number sequences should have desired
characteristics that include the following [1, 10, 11, 31]:

1. The period should be large, as a small period may cause the generated
sequence to recycle, which limits the useful length of simulation runs and
ends up producing incorrect results.

2. It should not be computational expensive. The generation of random
numbers should not take too much time, as simulation analysis requires
thousands of random numbers per run.

3. Correlation between consecutive generated numbers should be small. In
addition to the requirement of having independent successive values,
these values should be uniformly distributed.

The third requirement is not easy to establish. That is why several techniques
have been devised to test for this requirement. It is found that when generating
random numbers, certain departures from ideal randomness may occur.
Among these the following:

280 INTRODUCTION TO SIMULATION TECHNIQUE

1. The variance of produced numbers may be high or low.

2. The average of the produced numbers may be high or low.

3. The generated numbers may not follow the uniform distribution.

4. It is possible to have cyclic variation. Examples on this problem include:
(a) autocorrelation between numbers and (b) some numbers above the
average followed by some below average.

Special tests are used to test RNGs. If some generation schemes fail any of
the tests, then such schemes should be dropped in favor of others that pass all
possible tests. Careful thoughtfulness and checking should be considered when
generating random numbers (RNs), including: (a) the procedure should be
portable to different platforms and computer systems, (b) the procedure must
be fast, (c) the period of the generated sequence should be long, (d) produced
Random Numbers (RNs) must have ideal statistical uniformity and indepen-
dence characteristics, and (e) the generated RNs should be reproducible under
same initial conditions (seed value).

Below is a description of the commonly used techniques to generate
pseudorandom numbers.

Linear Congruential Generators (LCGs) LCGs are the most popular RNGs.
Lehmer discovered in 1951 that the remainders of consecutive powers of a number
have good randomness characteristics. Basically, he got the nth number in the
string by dividing the nth power of an integer ‘‘a’’ by another integer ‘‘m’’ and then
taking the remainder:

Xn ¼ an mod m

Another way to compute Xn relies in knowing Xn 1:

Xn ¼ aXn 1 mod m

The parameter ‘‘a’’ is called the multiplier, and ‘‘m’’ is the modulus. Lehmer has
chosen a=23, m=108+1 and such values were implemented on the eight-
digit decimal early computer, the electronic numerical integrator and computer
(ENIAC). The latter was designed by John Mauchly and J. Presper Eckert of
the University of Pennsylvania and is considered the first electronic computer.

Most of today’s RNGs are based on Lehmer’s scheme and generally follow
the following expression:

Xn ¼ aXn 1 þ b mod m

where Xn values are integers between 0 and (m� 1), whereas ‘‘a’’ and ‘‘b’’ are
non-negative constants.

The LCGs are widely accepted because they can be studied without difficulty
and definite assurance can be made about their characteristics employing the
theory of congruence. In the literature, the name linear congrunetial generators
is often used as a short name for mixed linear congruential generators. The
word ‘‘mixed’’ refers to the fact the multiplication and addition operators are

9.4 RANDOM NUMBER GENERATION TECHNIQUES 281

used to generate such random numbers. Many researchers have investigated
these generators, and the following observations have been found:

1. The period cannot exceed m because X values should be between 0 and
(m� 1). Clearly the modulus m should be large to have good randomness
characteristics.

2. If the value of b is nonzero, the maximum value of m is obtained if and
only if:

a. Each prime number that is a factor of m is also a factor of (a� 1).

b. The integers ‘‘m’’ and ‘‘b’’ have no shared factors other than 1.

c. The value of (a� 1) is a multiple of 4, if the integer m is a multiple of 4.

3. The value of the modulus m should be a power of 2 so as to have efficient
computation of m.

LCGs takes the following forms: (a) multiplicative LCGs m=2k, and (b)
multiplicative with m 6¼ 2k. When m=2k, we obtain a full period. The highest
value of the period of the multiplicative LCG withm=2k is only one fourth the
full period, which is achieved only when the multiplier is of the form a=8i7 3
and the seed value is an odd integer.

In the field of simulation andMonte Carlo calculations, the most widely used
generator that generates random numbers are the LCGs because they maintain
nominal state space when compared with other generators. Moreover, their use
in the environment related to parallel computing is much more attractive. To
generate streams of pseudorandom numbers, LCGs are a good choice. Because
LCGs are associated with a combination of least state space and rapid
generation speed, they can be rapidly used with Monte Carlo simulation.
Moreover, LCGs are also popular for distributed and parallel simulation.

To generate many pseudorandom number streams of high quality, two ways
exist to use congruential random number generators. One approach is to divide
the sequence arriving from single congruential random number generator into
many possible small subsequences. The other scheme is to give a separate
generator for each and every stream.

We define the splitting method by providing dissimilar initial points on a
single congruential random-number generator for each and every substream,
which means we have here:

Xi;nþ1 ¼ bXi;n þ c mod mð Þ
Because Ui,n=Xi,n/m, many different initial values Xi,0 in the interval [0, 1] are
achieved. An exclusive set of numbers is allocated to each and every substream
from the initial point along the congruential random number generator
sequence to the subsequent starting point. Overlapping is also permitted. The
behavior of (Un, Un+1yUn+s 1) is examined via special tests such as
the standard spectral test by means of locating parallel hyper planes, which
are the most extensively spaced system and cover all s-tuples.

282 INTRODUCTION TO SIMULATION TECHNIQUE

Combined Linear Congruential Generators. Recent advances in computer
and communication technology have helped greatly to speed up simulators;
however, applications of modeling and simulation have also increased. Many
systems such as communication networks, aerospace systems, airplanes, aero-
space shuttles, weather forecasting, and environment monitoring and protec-
tion have become more and more complex; therefore, it is essential to develop
simulation models and study them in a speedy manner to choose the optimum
design and operational mode. When dealing with complex and large simulation
models, it important to rely on RNGs that have longer periods and other good
randomness characteristics. One good scheme to address this is to combine two
or more multiplication congruential RNGs in a way to get a new RNG that has
excellent statistical characteristics as well as longer period [1–35].

Tausworthe Generators (TGs). For applications such as cryptography,
random number streams of long period are required to get good encryption
characteristics. To increase the length of the period and to enhance the
generators statistical properties, the best way is the combination approach.
However, there will be no assurance for improvement if the combinations are
blind. Understanding the resulting generator structure is important. Combined
multiple recursive generator and Tausworthe or generalized feedback shift
registers are the generators that are effectively analyzed among the combined
generators class.

The general form for Tausworthe is:

bn ¼ cq 1bn 1 cq 2bn 2 . . . c0bn q

ci and bi are binary variables

The symbol stands for the exclusive or (XOR) logic operation. The generator
uses the last q bits of the sequence. Tausworthe generators can be implemented
by hardware using the linear feedback shift registers (LFSRs) concept. The
period of Tausworthe generator depends on the characteristic polynomial.
The period is the smallest positive integer n for which (Xn – 1) is divisible by the
characteristic polynomial. The maximum possible period is with a poly of order
(q=2q� 1). Such polynomials are called primitive polynomials [1, 10, 23].

Example 1. We can use the polynomial: X7+X3+1 to produce a random
sequence of length 127 as shown below.

We start by having:

b0 ¼ b1 ¼ b2 ¼ b3 ¼ b4 ¼ b5 ¼ b6 ¼ 1

By using the XOR operation in place of addition mod 2, we get

bnþ7 bnþ3 bn ¼ 0

9.4 RANDOM NUMBER GENERATION TECHNIQUES 283

or we can rewrite this as follows:

bn ¼ bn 4 bn 7

Based on the above expression, we obtain the following results:

b7= b3 b0=1 1=0

b8=0, b9=0, b10=0, b11= 1, b12=1, b13=1, b14=0,

b15=1, b16=1, b17=1, b18=1, b19=0, b20=0, and so on.

The final results are

Seed=1111111

0000111

0111100

1011001

0010000

0010001

0011000

1011101

0110110

0000110

0110101

0011100

1111011

The period of this generator is 127 bits, which is equal to 27 � 1. Clearly, the
above polynomial is a primitive one.

The drawbacks of Tausworthe Generators are as follows [1, 10, 22]:

1. TGs have no reasonable local behavior even though their series generate
reasonable test results in a full cycle.

2. In case of runs up and down test, their performance is disappointing.

3. Even though the sequential correlation is zero, it is believed that some
prime polynomials might offer reduced correlations of high order.

4. Only few primal polynomials are good enough.

It is worth noting here that LFSRs have been used to generate random
element stereogram (numbers) to generate visual patterns that can be used to
test whether infants or noncommunicative people perceive depth in seeing
objects or not. For more details on this application, see references [36–39].

Midsquare Generator. In this technique, the random number seed is used to
generate the next random number, which in turn is transformed into the new

284 INTRODUCTION TO SIMULATION TECHNIQUE

seed value. The algorithm was proposed by John von Neumann and Metroo-
polis in the 1940s. It can be summarized as follows:

– Start with an intial 4-digit positive integer seed, X0
– Square it to get an integer with up to eight digits
– Take the middle four digits as the next four-digit number, X1
– Place a decimal point at the left of X1 and repeat the process

This method is straightforward to implement; however, it has the following
drawbacks:

1. Short repeatability periods.

2. Numbers may not bypass randomness test.

3. When a 0 is produced, all next generated numbers will be 0. This may
bring about trouble in simulation.

Example:

Let X0=5497

(5497)2=30217009, thus X1=2170 and R1=0.2170

(2170)2=04708900, thus X2=7089 and R2=0.7089

(7089)2=50253921, thus X3=2539 and R3=0.2539 and so on.

Extended (Additive) Fibonacci Generators. Fibonacci sequences are gener-
ated using the relationship below:

Xn ¼ Xn 1 þ Xn 2

Another method to generate such sequences is to employ the following
expression:

Xn ¼ Xn 1 þ Xn 2 mod m

The latter expression produces sequences with disfavored randomness char-
acteristics, particularly its high serial correlation characteristic. Others have
expanded the latter approach by absorption the 5th and 17th recent values as
shown next:

Xn ¼ Xn 5 þ Xn 17 mod 2k

This last generator has been shown to pass many statistical examinations.

Blum Blum Shub (BBS) Technique. This scheme was suggested in 1986 by
Lenore Blum, Manuel Blum, and Michael Shub [40]. The BBS has the general
form shown below:

9.4 RANDOM NUMBER GENERATION TECHNIQUES 285

xnþ1 ¼ xnð Þ2 mod M

In the above expression, M= pq and it is the product of two considerable
primes p and q. On every step of the algorithm, some output is produced from
xn. The output is typically either the bit parity of xn or one or more of the least
significant bits of xn.

The two prime numbers, p and q, must both be congruent to 3 (mod 4) so as
to guarantee that each quadratic residue has one square root that is also a
quadratic residue and the greatest common divisor, gcd(f(p� 1), f(q� 1))
should be small in order to have the cycle length large.

Any random value, xi, can be computed directly from the expression:

xi ¼ x
2i mod p 1ð Þ q 1ð Þ
0

�
modM

The BBS generator is not appropriate for use in simulations; its chief
application is in cryptography because it is not very fast.

Mersenne Twister Algorithm. This pseudorandom number generator was
devised in 1997 by Makoto Matsumoto and Takuji Nishimura [36]. It is based
on a matrix linear recurrence over a finite binary field. It can produce high-
quality pseudorandom numbers. The name of this generator is originated from
the fact its period length is chosen to be a Mersenne prime. When 2n� 1 is
prime it is said to be a Mersenne prime. It is worth mentioning that as of
August 2007, only 44 Mersenne primes are known; the largest know prime
number, (232,582,657� 1), is a Mersenne prime. For the last many years, it has
been found that the largest known prime has nearly always been a Mersenne
prime.

The prevalent and regularly used variant of the algorithm is the Mersenne
Twister MT19937, with 32-bit word length. There is another alternative with a
64-word length, MT19937-64, which produces a different sequence. Inherently,
this method is not good for cryptography application [1–35].

For many other applications, however, the Mersenne twister is becoming the
pseudorandom number generator of choice. Given that the library is portable,
freely available, and generates good quality pseudorandom numbers quickly, it
is rarely a bad choice.

The Mersenne twister is designed with Monte Carlo simulations and other
statistical simulations in mind. The often used variant of Mersenne Twister,
MT19937, has the following major characteristics [1, 24, 30, 35, 40]:

1. It is deemed to be a fast scheme.

2. It was intended to have a period of 219937� 1. In general, there is no reason to
use larger ones, as the bulk of applications do not necessitate 219937 unique
combinations, where the latter quantity equals 4.315425 � 106001 in decimal.

3. There is negligible serial correlation between successive generated values,
which provide good randomness characteristics.

286 INTRODUCTION TO SIMULATION TECHNIQUE

4. It was found to pass almost all available randomness tests.

The Mersenne Twister algorithm is basically a twisted generalized feedback
shift register (TGFSR). It is describe by the following parameters:

w: word size

n: degree of recurrence

m: middle word, or the number of parallel sequences, 1=m= n

r: separation point of one word, or the number of bits of the lower bitmask,
0= r=w – 1

a: coefficients of the rational normal form twist matrix

b, c: TGFSR(R) tempering bitmasks

s, t: TGFSR(R) tempering bit shifts

u, l: additional Mersenne Twister tempering bit shifts with the constraint
that 2nw r� 1 is a Mersenne prime. Such a preference simplifies the
primitivity check and k-distribution test that are needed in the parameter
search.

For a word x that is w bits wide, we can write:

xkþn : ¼ xkþm xukjxlkþ1
� �

A k ¼ 0; 1; . . .

with 9 as the bitwise OR and as the bitwise XOR function. In addition, xu, xl

are the upper and lower bitmasks applied.
Here, the twist transformation A is defined in a rational, normal way:

A ¼ R ¼
0 Iw 1

aw 1 aw 2;...a0

� � !

where, In 1 is the (n� 1) � (n� 1) identity matrix. The rational normal form
has the advantage that it can be efficiently written as:

xA ¼
x� 1 x0 ¼ 0

x� 1ð Þ a x0 ¼ 1

(

where

x :¼ xuk j xlkþ1
� �

k ¼ 0; 1; . . .

For the sake of achieving the 2nw r� 1 theoretical superior limit of the period,
fB(t) should be a primitive polynomial. Having fB (t) a characteristic poly-
nomial of:

9.4 RANDOM NUMBER GENERATION TECHNIQUES 287

B ¼

0

..

.

Iw

..

.

0

0

S

Iw

..

.

0

0

0

� � �

. .
.

� � �
� � �
� � �

0

..

.

Iw

0

0

0

..

.

0

Iw r

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
 mth row

S ¼ 0

Iw r

Ir

0

 !
A

The twist procedure can enhance the classical GFSR with the following major
characteristics:

1. The period can accomplish the theoretical upper limit of 2nw r � 1, not
including if the seed value is 0.

2. The likelihood of having equidistribution in n dimensions; the LCGs at
best can manage with realistic distributions in five dimensions.

Parallel Random Number Generation Issues. Sequential random number
generators should always have efficient randomness properties and possess
constant generation time for each random number. By indicating the starting
state, which is also known as ‘‘seed,’’ a random number generator is started.
Parallel random number generation is needed for several simulation applica-
tions, especially in the area of computational science and engineering. For some
applications such as Monte Carlo simulations, it is vital that the random
number generator has good randomness properties. In large-scale simulations
on parallel computers, we use enormous quantities of random numbers and
necessitate parallel algorithms for random number generation. Therefore,
making sure that such random number sequences have good randomness
characteristics is essential to have proper and credible simulation analysis [25,
29, 30, 33].

Different parallel random number generators have been proposed in the
literature. However, most of them use the same basic idea, which is to
parallelize a sequential generator by taking the elements of the sequence of
pseudorandom numbers it generates and distributing them among the proces-
sors of the parallel system using one way or another. Among these schemes a
scheme that relies on dividing the sequence into nonoverlapping adjacent parts,
each of which is produced by a different processor. Clearly, this approach
permits an arbitrary element of the sequence to be computed. Of course, it is

288 INTRODUCTION TO SIMULATION TECHNIQUE

possible to divide the period of the generator by the number of processors/
nodes of the parallel system and hop ahead in the sequence by this quantity for
every node. Otherwise, the length of each part of numbers could be selected
much larger than could be used by any node.

Below is a list of the requirements for a parallel random number generator:

1. Efficient randomness must be exhibited by each sequence produced on
each processor of the parallel computer system.

2. Any sequence that is generated on any processor pair must not have any
mutual correlations.

3. For a random number of processors, the generator must work.

4. The application output should always be regenerated, without showing
impact on the number of processors on which the application runs.

5. Every processor on its own must generate a sequence that must not be
reliant on the other processors.

6. The memory required for each processor should be predetermined and
must not vary.

The limited number of efficient sequential generators prevents the opportu-
nity of using a separate generator for each processor. Hence, the random
number sequence produced by the sequential generator must be split into
different parallel processors. The same generator and dissimilar seed for each
processor cannot be used. This may result in the considerable overlie in the
generated sequences depending on the starting seeds choice. Thus, it is
imperative to assign subsequences that are disjoint of the real sequence to
other processors. The subsequence selection must be such that each subse-
quence can be produced proficiently. Two major accepted policies are used to
perform such allocations: the contiguous subsequence and leapfrog techniques.
A brief description of each is given below.

1. Contiguous Subsequence Technique. The only way to assign subsequences
of the original sequence to the processors is to allow each subsequence to
be adjacent to the original subsequence. If T is the subsequence length
assigned to each processor, processor j here must produce:

xjT ; xjT þ 1; xjT þ 2; . . . :; xð jþ1ÞT þ i

Because the starting element as required is given, each processor should
calculate its subsequence without depending on the other processors.
Here, the T value must be greater than the number of random numbers
for each processor as needed by the application. Or else, the two
subsequences produced on the other processors will overlap [25, 29,
30, 33].

9.4 RANDOM NUMBER GENERATION TECHNIQUES 289

Using the contiguous subsequence technique for parallelizing a gen-
erator, one need to find an efficient way of producing the seeds as needed
for the parallel generator extracting from the sequential generator seed.
Once the above procedure is completed, every processor can produce its
own subsequence without depending on the other processors. This can be
considered as the primary advantage in this contiguous subsequence
technique. However, it also posses many disadvantages. It might not be
achievable to calculate the random numbers needed on every processor.
In this case, the T value must be large so that the application is definite in
not using more than T numbers on other processor. This means that the
random numbers that are used always depend on the processors on which
the application runs. It is not possible to write code so that the
application result is not reliant on the processors on which it runs.

Consider an example to parallelize a generator using the above
technique. A linear congruential generator is considered

yr ¼ byr 1 þ cð Þ mod n

By recursion for the above equation, it can be observed that yr=
(Bkyr k+Ck) mod n, where Bk= bk mod n and Ck= c(bk� 1) / b� 1
mod n. Using this, we can calculate: yjT as (BjTy0+CjT).

2. Leapfrog Technique. This scheme depends on dividing the original
sequence to protect the reproducibility and properties of randomness.
Let y0, y1, y2,ybe a random number sequence produced by a sequential
generator. In this technique, processor j produces all Lth numbers in the
random number series starting at yi, where L is the number of processors.
Here the j processor produces yj, yj+L, yj+2L. In this technique, as each
processor leaps over the original sequence L numbers, it is called the
leapfrog technique. Multiple streams produced here are nonoverlapping
and jointly produce successive terms of the original sequence. This allows
the user to make a code that makes the results identical with implementa-
tion of the single processor and it is not dependent on the number of
processors which are already used [25, 29, 30, 33].

It is not simple to execute a parallel random number generator with the
leapfrog technique and protect all the conditions stated earlier. As an
example, consider a linear congruential generator given by

yr ¼ byr 1 þ cð Þ mod n

Here, yj is the seed and yr is the r
th random number. When considering an

L processor system, the processor calculates yr and has to wait for the
calculation of yr 1, which again has to remain for the calculation of yr z

and so on. To satisfy the requirement for noncommunication, a method

290 INTRODUCTION TO SIMULATION TECHNIQUE

for calculating yr by means of only yr nL need to be established and for
the generation of yr, only a stable number of operations must be used.
As the random-number generator is described as an equation recitation
of the calculation of the rth random number yr, the same equation
recursive application must be calculated for describing all the best
possible ways for calculating yr from earlier numbers. If a method of
calculating yr is achievable using several operations, which are constant
and earlier produced random numbers on the same processor, these can
be employed to parallelize the generator with the leapfrog technique.
Considering the linear congruential generator, this is specified by an
equation of the following form:

yr ¼ byr 1 þ cð Þ mod n

By using the recursive application of the above equation, we get yr=(Bk

yr k+Ck) mod n; here Bk= bk mod n. By selecting k=L, the above
equation permits for computing the next number on every processor by
using the earlier number on the similar processor. After the calculations
of the seeds for every processor and BL and CN are calculated, a parallel
stream is produced at the sequential generator rate [1, 3, 16–30].

9.5 SURVEY OF COMMONLY USED RANDOM
NUMBER GENERATORS

a. Currently, the most widely accepted multiplicative linear congruential
generator is

ym ¼ 75ym 1 mod 231 � 1
� �

In the above equation (231� 1) is referred to as a prime number where its
primitive root is 75. This generator has the full period of 231� 2.

This Multiplicative Linear Congruential Generator is extensively used in the
systems listed below [1, 10, 24, 25, 30–32, 35]:

1. SIMPL/I systems also referred to as IBM 1972.

2. IBM’s APL system.

3. IMSL Scientific library.

4. PRIMOS Operating System.

b. After a thorough search by Fishman and Moore of all full period
multiplicative RNGs with modulus 231� 1, it was found that the
following two RNGs were the best form the point view of randomness
characteristics and efficiency of implementation [5, 26]:

9.5 SURVEY OF COMMONLY USED RANDOM NUMBER GENERATORS 291

ym ¼ 48; 271ym 1Mod 231 � 1
� �

ym ¼ 69; 621ym 1Mod 231 � 1
� �

Currently, the most preferred way to generate random numbers is by using
multiplicative congruential random number generator.

c. The most popular IBM’s randomizer, which was devised in the 1960, is
RANDU IBM’s RANDU is a kind of the linear multiplicative con-
gruential randomizer. To achieve uncomplicated computation, RAN-
DU’s modulus and multiplier are selected to be primes. Its expression is
given by:

ym ¼ ð216 þ 3Þym 1 mod 231 ¼ 65539 ym 1 mod 231

By using shift and add instructions, the multiplication by
216+3=65,538 can be achieved effortlessly. There is no scope for
complete period in IBM’s RANDU, and it is shown as erroneous in
many aspects. It lacks properties related to efficient randomness. Just like
all other linear congruential generators, the bits with low order possess a
small period. The generator is no longer used. Because it fails spectral
test badly for dimensions greater than 2 and other reasons, many
simulation results that relied on using it as a RNG in the 1970s are
considered doubtful.

d. SIMULA language, which is a process-oriented language based on
discrete simulation, uses the following generator:

ym¼ 513ym 1 mod 235

where 233 is the maximum available possible period and the disadvantage
with the SIMULA RNG is that it lacks efficient randomness properties.

e. The Unix Operating system uses the following generator:

ym¼ ð1; 103; 514; 245ym 1 þ 12; 345Þ mod 232

Like all other linear congruential generators with modulus equal 2k, the
binary version of the produced ym values has a recurring bit form.

9.6 SEED SELECTION

The seed of a RNG is pretty much like a key of a cipher. In fact, some ciphers
such as RC4 use a RNG on the inside, seeded by the key, to combine
pseudorandom output with plain text to produce cipher text. The invention
of a RNG’s seed is like the finding of a cipher’s key. One should guard the

292 INTRODUCTION TO SIMULATION TECHNIQUE

RNG seed from illegal release. The simulationist should select the RNG seed in
such a way that it is not easily guessed.

A seed can be described as a number that has the ability to determine
whether the random number generator creates a new random number set or
replicates the exact series of random numbers. The seed value that we use to
initialize a random number generator should be such that it should not affect
the simulation results. Conversely, an incorrect grouping of a seed and a
random generator results in invalid and wrong conclusions. When simulating
simple systems where we have only one variable, the seed value can take any
value. When simulating more complex systems where random number
sequences are needed to generate several variables, seed selection should be
chosen with caution. This simulation type is known as multistream simulations
and most simulations are of multistream type [1, 10, 24, 25, 30–32, 35].

The key recommended rules to select the seed for a RNG are listed below
[1, 10, 30–32]:

1. Stay away from using zero. Using zero as a seed may be fine for some
generators; however, it may not work for others. To be in the safe side, do
not use zero as a seed. For instance, in mixed linear congruential
generators, the seed value can be zero. Nevertheless, a zero seed makes
the multiplicative linear congruential generator and Tausworthe genera-
tor stay at zero. This may cause serious and confusing problems in the
simulation results.

2. A random number stream should not be subdivided. A common error
committed by some simulationists is to use a single stream for all the
variates. With the help of single seed, say v0, the sequence (v1, v2, v3yy)
is generated. Here the analyst can use v1 to produce random interarrival
times, v2 to produce random service times, and so on. This might lead to a
strong correlation between the two generated random variates. It is
essential to make sure that streams selected are not overlapping. Each
stream should possess a separate seed. Otherwise, we will get wrong
simulation results, which leads to erroneous results and confusing
conclusions.

3. Seeds have to be used in consecutive replications. When experiments
related to simulation are repeated many times, the random-number
stream should not be reinitialized; instead, the seeds that are left over
from the earlier run can be used. It is imperative that the analyst does not
use a random seed.

4. Select an odd value for the seed. Even though an even number may work
in some cases, it does not work for others. Therefore, it highly recom-
mended avoiding choosing an even value for the seed.

9.6 SEED SELECTION 293

9.7 RANDOM VARIATE GENERATION

Random variate generation (RVG) is a vital part of the domain of any
discrete event simulation study. It comes into play whenever there is a need to
simulate the uncertainty in the conduct of an entity in the system under study.
When the sample of randomness of the entity to be analyzed is identified, the
operation of entity is said to follow a particular stochastic distribution.
Otherwise, the behavior is simulated using empirical approaches.

Any random process is described by: (a) gathering of data on the random
phenomenon, (b) approximating the acquired data to a known probability
distribution, and (c) inference of parameters of the probability distribution.

Simulation of the random process begins when the random phenomenon has
been identified. For instance, if the random operation is arrival of packets to a
server system, then the interarrival times of packets to the system can be
characterized to follow an exponential distribution with a known mean. To
simulate this stochastic process, we will need random values for interarrival
times of packets sampled from an exponential distribution with the same mean.

In general, a random variable is a real-valued function that maps a sample
space into the real one. For instance, the interarrival times of packets to a server
system can be represented by random variable. In general, the term random
variate refers to a particular value of a random variable. The process of random
variate generation refers to the generation of random variates for a
given random variable. The method that is responsible for generating random
variates is called a RVG. For instance, a random variate generator for the
Poisson distribution generates random variates that satisfy the Poisson prob-
ability distribution. It is important to mention here that random variate
generators are of two types: univariate and multivariate. The former involves
the generation of a single variate at a time, whereas the latter involves the
generation of a vector of variates at a time, which do not show mutual
independence.

A variable that is taken from an identical distribution of pseudorandom
numbers is called a random variate. Stochastic models, while simulating are
often referred to by random variates. Random variates may possess uniform
distributions or nonuniform distributions. The term random deviate is used for
nonuniform random variates. The major techniques that are often used to
generate random variates are explained below [1, 10, 24, 25, 30–32, 35].

9.7.1 Inverse-Transform Method

This technique is considered the easiest route to generate a sample. The general
form of the inverse transform scheme is obtained by computing the probability
density function (pdf) of X= g(x) for some function g, and then trying to find a
function g such that the required pdf is obtained.

294 INTRODUCTION TO SIMULATION TECHNIQUE

Let us assume that X is a random variable with CDF FX (x). Because FX (x)
is a nondecreasing function, the inverse function FX

1 (y) may be defined for
any value of y between 0 and 1 as shown below:

FX
1 (y)= in f{x: FX (x) W= y} 0o= y o=1

FX
1 (y) here is the value x for which F(x)= y.

Let U be uniformly distributed over the interval (0, 1), then we can write

X ¼ F 1
X ðUÞ has theCDFFX ðxÞ:

To prove this, we write

PðXo ¼ xÞ ¼ PðF 1
X ðUÞo ¼ xÞ ¼ P ðUo ¼ FX ðxÞÞ ¼ FX ðxÞ:

To obtain a value, such as x, of a random variable X, get a value, say u, of a
random variable U, then compute the inverse function, FX

1 (U), and put it
equal to x.

Algorithm for the Inverse -Transform Method:

1. Produce U from U (0, 1),

2. Return X=F 1 (U).

Example. Produce a random variable from the uniform distribution given by U
(a, b):

fxðxÞ ¼ 1

ðb� aÞ ; a � x � b

fx ¼ 0; otherwise

For this pdf, the CDF is given by:

FðxÞ ¼
Z

f ðxÞ � dðxÞ

Therefore, we get

FðxÞ ¼
0 xoa

x a
b 1

a � x � b
1 x > b

0
@

1
A

And U is given by

U ¼ x� a

b� a

X ¼ F 1x ðUÞ ¼ aþ ðb� aÞU:

9.7 RANDOM VARIATE GENERATION 295

Example. Produce a random variable with the pdf given below:

fXðxÞ ¼
2x 0 � x � 1

0 otherwise

� �

From the given pdf, we can easily obtain the cumulative distribution
function (CDF), F(x):

FðxÞ ¼
0 ; xo0R1
0

2x:dx ¼ x2 ; 0 � x � 1

1 ; x41

8><
>:

U=X2

Thus, the random variate can be generated using: X=F 1x ðUÞ ¼ ðUÞ1=2
The algorithm to generate discrete distributions using the inverse transforms

method can be summarized as follows:

1. Generate D B dj (0, 1).

2. Locate the least possible integer, which is positive m, such that D r G
(Xck) and return

Xc ¼ xck

In step 2, many numbers of comparisons are being made, which means
much execution time is vested in step 2 itself. However, with the help of
proficient search techniques, the execution time can be minimized.

The algorithm to generate empirical distribution using the inverse transform
method can be summarized as follows:

1. Generate D B dj (0, 1)

2. Locate the least possible integer, which is positive m (0rmrn� 1) such
that DrG(xm), and return the value:

Xc ¼ G Dð Þ ¼ bm þ D� G bmð Þ½ � bmþ1 � bmð Þ= G bkþ1ð Þ � G bmð Þ½ �:

Usually, when applying the inverse transform method to empirical distribution,
we need the fundamental cumulative distribution function G(xc), which should
be there in some form so that its related inverse function G (xc) can be found
algorithmically or analytically. Exponential and uniform are some applicable
distributions. However, for many probability distributions, finding the inverse
transform is either very hard or impossible.

The inverse transformation scheme is a popular and powerful random
variate generation scheme. This technique can be used to generate the following
random variates: exponential, geometric, logistic, and Weibull. It cannot be
used to generate normal random variates, as CDF is not available in a closed
form for the Normal distribution.

296 INTRODUCTION TO SIMULATION TECHNIQUE

9.7.2 Acceptance—Rejection Method

Both the inverse-transform method and the composition method deal directly
with the CDF of the variate that is to be produced. Because of their direct
dealing, these techniques are direct techniques whereas the acceptance-rejection
method (ARM) is an indirect method. In cases where the direct schemes, such
as the inverse transform and the composition methods fail or if they are
inefficient, the acceptance-rejection method can then be used. The latter
method then specifies a function Ø, which majors the original probability
density function, g(x).

To carry out the acceptance-rejection method let g(x) be given by:

gðxÞ ¼ C:iðxÞhðxÞ
The probability density function, g(x) is majorized by Ø(x)=C.i(x), which
means that the value of Ci(x) Z g(x) for all the values of x. We also have:

0oh xð Þ ¼ g xð Þ � xð Þ � 1:

Now using the above criteria, two variates are to be generated, D from dj (0, 1)
and Y from i(y) and the inequality D r h(Y) has to be tested. We recognize
from g(x), that Y has a requisite variate if the inequality holds; otherwise, the
pair (D, Y) is rejected and we try until it is successful. See Figure 9.8.

Formally, we can summarize the accept-reject algorithm for the generation
of random variate as follows:

1. Generate D from dj (0, 1).

2. Generate Y from i(y), independent of D.

3. If D= g(Y), return Xc=Y. Otherwise, go to step number 1.

Example.Generate a random variate from the probability distribution function:

gðyÞ ¼ 2y; 0 � y � 1; otherwise, it is 0:

using the acceptance-rejection method.
For ease, take the value of i(y) as 1, y value ranges from (0, 1) i.e., 0r yr 1.

Take the value of C as 2.
In this situation, h(x)=½ g(x)= x; with this criterion the above algorithm

can summarized as follows:

1. Generate D from dj (0, 1).

2. Generate Y from dj (0, 1); independent of D.

3. If D r Y, return Xc=Y. Otherwise, go to step number 1.

The efficiency of this scheme depends mainly on being able to decrease the
number of rejections.

9.7 RANDOM VARIATE GENERATION 297

9.7.3 Characterization Method

The characterization method depends on several particular features of some
other distributions. Such features allow variates to be produced using the
algorithms modified for them.

For instance, if the random interarrival times are distributed exponentially
with a mean value of 1/l, then m, which is the number of arrivals during a
specified period T, has a Poisson distribution with parameter lT. By con-
tinuously producing exponential variates up to the sum value surpass T, a
Poison variate can be achieved easily and will return back the number of
variates produced as Poisson variates.

9.7.4 Convolution Method

In this scheme, the desired random variate X can be expressed as a sum of other
random variates that are independent and identically distributed (iid) and can
be generated more easily than direct generation of X. Thus, the convolution
method is basically based on summing two or more random independent
variables to obtain a newly random variable with the desired distribution.
Binomial and Erlang variates can be realized using this convolution method. In
case of the convolution technique, the cumulative distributive frequency of the
required distribution is not significant, but what matters is the relation to other
variates that are simply generated.

The convolution algorithm can be summarized as follows:

1. Generate Y1, Y2, y, Yn independently from their distributions

2. Return: X=Y1+Y2 +y+Yn

3. The pdf of X can be obtained mathematically by the convolution of the
pdf’s of Y1, Y2,yand Yn. The name of this scheme ‘‘Convolution’’ came

g (x)

g (x)

0 x

Ø(x)

Ø(x)

FIGURE 9.8. The acceptance rejection method.

298 INTRODUCTION TO SIMULATION TECHNIQUE

from here, although no mathematical convolution process is needed in
this case.

This needs at least n uniforms. Examples of random variables that can be
expressed as sums like this include the Erlang, hypoexponential, triangle, and
binomial distributions.

Following are some examples of the applications of this scheme [1, 3, 10]:

1. The chi-square distribution with V degrees of freedom is a sum of squares
of v unit normal variates N (0, 1).

2. The summation of m geometric variates is a distribution described as the
Pascal distribution.

3. The summation of k exponential variates is an Erlang-K variate. This
means that we can produce an Erlang variate by generating k exponential
variates and then adding them.

4. We can produce normal variaes by relying on the property that the sum
of a large number of variates from any distribution has a normal
distribution.

5. The triangle variate can be produced by relying on the property that the
sum of two uniform variates is a triangle distribution [1, 10, 28, 0, 31, 35].

9.7.5 Composition Method

In this method the CDF, F(x) is given in terms of a weighted sum of other
CDFs as shown below:

F xð Þ ¼
X

n
j¼1 pjFj xð Þ

In the above expression, pj=0 and
P

j¼1 Pj
n =Number of functions, n, which

is selected on the basis of best fit and effort to produce F(x).

9.8 TESTING OF RANDOM NUMBER SEQUENCES

The testing of pseudorandom sequences entails comparison of the sequence
with what would be supposed from the uniform distribution. This is because a
true random sequence should follow a uniform distribution. The general
method for testing a random number sequence can be summarized as follows:

1. Devise a null assumption H0 about the single chance experiment, which
was replicated N times to produce a sequence of N values. To check a
sequence of apparently random numbers, our null hypothesis H0 is that
each result of the chance experiment is evenly likely, and that each test of
the probability experiment is autonomous of all preceding trials.

9.8 TESTING OF RANDOM NUMBER SEQUENCES 299

2. Set up a real valued function g, which by some means tests the null
hypothesis H0. To check a sequence of allegedly random numbers, our
function g may be one that tallies the number of events of a particular
outcome.

3. Define mathematically a sequence of N random variables:

(X1, X2, y, Xn)

and relate the function g to the sequence of N random variables
producing a new random variable y:

y= g(X1, X2, y, Xn)

Next, find out the pdf of y either by mathematical computation or by
obtaining a table of the specific probability density function that is of
interest.

4. Take the particular sequence of values supposedly acquired by conduct-
ing a probability experiment N times:

(x1, x2, y, xn)

and apply the function g to obtain a particular value y:

y= g(x1, x2, y, xn)

5. Decide from the pdf of y how possible or unsure we are to get our value of
y assuming our null hypothesis H0 is true. If the probability is little, then
we may discard our hypothesis H0 as being most probably inaccurate.

The major desirable properties of random numbers are consistency and
autonomy. Many tests have been applied to ensure that the wanted properties
are achieved. These tests aim at providing a quantitative measure that embeds
desired randomness characteristics, including long period and little or no
correlation between produced numbers.

The major techniques that are used to test random sequences are described
below.

9.8.1 Frequency Analysis or Chi-Square Test

Basically, a frequency test or chi-square (w2) test examines whether the
frequency of different random numbers is consistent with the subsequences
that would be produced by a uniform distribution. This test is broad and can
be employed for any distribution. It can be used to test random numbers that
are (iid) uniformly between 0 and 1, as well as for testing random variate

300 INTRODUCTION TO SIMULATION TECHNIQUE

generators. The Chi-square scheme checks the assumption that the probability
distribution for a given outcome experiment is as specified. For the die tossing
experiment, it tests the probability that each possible outcome is equally likely
with a probability of 1/6.

Among the examples of chi-squared tests where the chi-square distribution is
only approximately valid, we can mention the following:

1. Probability-ratio tests, which are employed for testing if there is indica-
tion of the necessity to shift from a straightforward model to a more
complex one.

2. Pearson’s chi-square test, which is also called the chi-square goodness-of-
fit test or chi-square test for independence.

3. The portmanteau test in time-series analysis, which tests for the existence
of autocorrelation. It basically tests whether any of a group of auto-
correlations of a time series is not zero. Examples on portmanteau tests
include the Ljung-Box test and the Box-Pierce test.

The steps for Chi-square test are summarized below:

1. Create a histogram of the observed data (random numbers). The numbers
are grouped into cells (tiers or classes).

2. Evaluate observed frequencies with those obtained from the specific
density function. For K classes, let Oi be the observed frequencies and
Ei be the expected frequencies. The difference, D, is given by

D ¼
X

Oi�Eið Þ2=Ei

This is done for i=1 to K.

3. For a precise match (fit) between the observed frequencies and expected
frequencies, D should be equal to zero, but because of randomness
characteristics, D usually is not equal to zero.

4. The disparity or difference (D) can be proved to have a chi-square
distribution with (K� 1) degree of freedom, whereK is the number of cells.

5. Finally, use significance level, a, for not rejecting or confidence level
(1� a) depending on the requirements. The null assumption (hypothesis)
that the observations are from the particular distribution cannot be
rejected at the specified a value if the calculated difference, D, value is
smaller than the critical value found from the chi-square tables using the
entry w2 [(k 1), (1 a)]; see Table 9.1.

It is worth mentioning that not only are excessively large values of chi-
square regarded as highly impossible but also are excessively small values of
chi-square.

9.8 TESTING OF RANDOM NUMBER SEQUENCES 301

T
A
B
L
E
9
.1

C
h
i-
S
q
u
a
re

ta
b
le
.

1
�

a

D
eg
re
es

o
f

F
re
ed
o
m

0
.0
1

0
.0
2
5

0
.0
5

0
.1
0

0
.2
5

0
.5
0

0
.7
5

0
.9
0

0
.9
5

0
.9
7
5

0
.9
9
0

1
0
.0
0
0

0
.0
0
0
9

0
.0
0
4

0
.1
5
8

0
.1
0
2

0
.4
5
5

1
.3
2

2
.7
1

3
.8
4

5
.0
2

6
.6
3

2
0
.2
0

.0
5
1

0
.1
0
3

0
.2
1
1

0
.5
7
5

1
.3
8
6

2
.7
7
3

4
.6
0
5

5
.9
9
1

7
.3
7
8

9
.2
1
0

3
0
.1
1
5

0
.2
1
6

0
.3
5
2

0
.5
8
4

1
.2
1
3

2
.3
6
6

4
.1
0
8

6
.2
5
1

7
.8
1
5

9
.3
4
8

1
1
.3
4
4

4
0
.2
9
7

0
.4
8
4

0
.7
1
1

1
.0
6
4

1
.9
2
3

3
.3
5
7

5
.3
8
5

7
.7
7
9

9
.4
8
8

1
1
.1
4
3

1
3
.2
7
7

5
0
.5
5
4

0
.8
3
1

1
.1
4
5

1
.6
1
0

2
.6
7
5

4
.3
5
1

6
.6
2
6

9
.2
3
6

1
1
.0
7
0

1
2
.8
3
2

1
5
.0
8
6

6
0
.8
7
2

1
.2
3
7

1
.6
3
5

2
.2
0
4

3
.4
5
5

5
.3
4
8

7
.8
4
1

1
0
.6
4
5

1
2
.5
9
2

1
4
.4
4
9

1
6
.8
1
2

7
1
.2
3
9

1
.6
9
0

2
.1
6
7

2
.8
3
3

4
.2
5
5

6
.3
4
6

9
.0
3
7

1
2
.0
1
7

1
4
.0
6
7

1
6
.0
1
3

1
8
.4
7
5

8
1
.6
4
6

2
.1
8
0

2
.7
3
3

3
.4
9
0

5
.0
7
1

7
.3
4
4

1
0
.2
1
9

1
3
.3
6
2

1
5
.5
0
7

1
7
.5
3
5

2
0
.0
9
0

9
2
.0
8
8

2
.7
0
0

3
.3
2
5

4
.1
6
8

5
.8
9
9

8
.3
4
3

1
1
.3
8
9

1
4
.6
8
4

1
6
.9
1
9

1
9
.0
2
3

2
1
.6
6
6

1
0

2
.5
5
8

3
.2
4
7

3
.9
4
0

4
.8
6
5

6
.7
3
7

9
.3
4
2

1
2
.5
4
9

1
5
.9
8
7

1
8
.3
0
7

2
0
.4
8
3

2
3
.2
0
9

1
1

3
.0
5
3

3
.8
1
6

4
.5
7
5

5
.5
7
8

7
.5
8
4

1
0
.3
4
1

1
3
.7
0
1

1
7
.2
7
5

1
9
.6
7
5

2
1
.9
2
0

2
4
.7
2
5

1
2

3
.5
7
1

4
.4
0
4

5
.2
2
6

6
.3
0
4

8
.4
3
8

1
1
.3
4
0

1
4
.8
4
5

1
8
.5
4
9

2
1
.0
2
6

2
3
.3
3
7

2
6
.2
1
7

1
3

4
.1
0
7

5
.0
0
9

5
.8
9
2

7
.0
4
2

9
.2
9
9

1
2
.3
4
0

1
5
.9
8
4

1
9
.8
1
2

2
2
.3
6
2

2
4
.7
3
6

2
7
.6
8
8

1
4

4
.6
6
0

5
.6
2
9

6
.5
7
1

7
.7
9
0

1
0
.1
6
5

1
3
.3
3
9

1
7
.1
1
7

2
1
.0
6
4

2
3
.6
8
5

2
6
.1
1
9

2
9
.1
4
1

1
5

5
.2
2
9

6
.2
6
2

7
.2
6
1

8
.5
4
7

1
1
.0
3
7

1
4
.3
3
9

1
8
.2
4
5

2
2
.3
0
7

2
4
.9
9
6

2
7
.4
8
8

3
0
.5
7
8

1
6

5
.8
1
2

6
.9
0
8

7
.9
6
2

9
.3
1
2

1
1
.9
1
2

1
5
.3
3
9

1
9
.3
6
9

2
3
.5
4
2

2
6
.2
9
6

2
8
.8
4
5

3
2
.0
0
0

302

1
7

6
.4
0
8

7
.5
6
4

8
.6
7
2

1
0
.0
8
5

1
2
.7
9
2

1
6
.3
3
8

2
0
.4
8
9

2
4
.7
6
9

2
7
.5
8
7

3
0
.1
9
1

3
3
.4
0
9

1
8

7
.0
1
5

8
.2
3
1

9
.3
9
0

1
0
.8
6
5

1
3
.6
7
5

1
7
.3
3
8

2
1
.6
0
5

2
5
.9
8
9

2
8
.8
6
9

3
1
.5
2
6

3
4
.8
0
5

1
9

7
.6
3
3

8
.9
0
7

1
0
.1
1
7

1
1
.6
5
1

1
4
.5
6
2

1
8
.3
3
8

2
2
.7
1
8

2
7
.2
0
4

3
0
.1
4
4

3
2
.8
5
2

3
6
.1
9
1

2
0

8
.2
6
0

9
.5
9
1

1
0
.8
5
1

1
2
.4
4
3

1
5
.4
5
2

1
9
.3
3
7

2
3
.8
2
8

2
8
.4
1
2

3
1
.4
1
0

3
4
.1
7
0

3
7
.5
6
6

2
1

8
.8
9
7

1
0
.2
8
3

1
1
.5
9
1

1
3
.2
4
0

1
6
.3
4
4

2
0
.3
3
7

2
4
.9
3
5

2
9
.6
1
5

3
2
.6
7
1

3
5
.4
7
9

3
8
.9
3
2

2
2

9
.5
4
2

1
0
.9
8
2

1
2
.3
3
8

1
4
.0
4
1

1
7
.2
4
0

2
1
.3
3
7

2
6
.0
3
9

3
0
.8
1
3

3
3
.9
2
4

3
6
.7
8
1

4
0
.2
8
9

2
3

1
0
.1
9
6

1
1
.6
8
9

1
3
.0
9
1

1
4
.8
4
8

1
8
.1
3
7

2
2
.3
3
7

2
7
.1
4
1

3
2
.0
0
7

3
5
.1
7
2

3
8
.0
7
6

4
1
.6
3
8

2
4

1
0
.8
5
6

1
2
.4
0
1

1
3
.8
4
8

1
5
.6
5
9

1
9
.0
3
7

2
3
.3
3
7

2
8
.2
4
1

3
3
.1
9
6

3
6
.4
1
5

3
9
.3
6
4

4
2
.9
8
0

2
5

1
1
.5
2
4

1
3
.1
2
0

1
4
.6
1
1

1
6
.4
7
3

1
9
.9
3
9

2
4
.3
3
7

2
9
.3
3
9

3
4
.3
8
2

3
7
.6
5
2

4
0
.6
4
6

4
4
.3
1
4

2
6

1
2
.1
9
8

1
3
.8
4
4

1
5
.3
7
9

1
7
.2
9
2

2
0
.8
4
3

2
5
.3
3
6

3
0
.4
3
5

3
5
.5
6
3

3
8
.8
8
5

4
1
.9
2
3

4
5
.6
4
2

2
7

1
2
.8
7
9

1
4
.5
7
3

1
6
.1
5
1

1
8
.1
1
4

2
1
.7
4
9

2
6
.3
3
6

3
1
.5
2
8

3
6
.7
4
1

4
0
.1
1
3

4
3
.1
9
4

4
6
.9
6
3

2
8

1
3
.5
6
5

1
5
.3
0
8

1
6
.9
2
8

1
8
.9
3
9

2
2
.6
5
7

2
7
.3
3
6

3
2
.6
2
0

3
7
.9
1
6

4
1
.3
3
7

4
4
.4
6
1

4
8
.2
7
8

2
9

1
4
.2
5
6

1
6
.0
4
7

1
7
.7
0
8

1
9
.7
6
8

2
3
.5
6
7

2
8
.3
3
6

3
3
.7
1
1

3
9
.0
8
7

4
2
.5
5
7

4
5
.7
2
2

4
9
.5
8
8

3
0

1
4
.9
5
3

1
6
.7
9
1

1
8
.4
9
3

2
0
.5
9
9

2
4
.4
7
8

2
9
.3
3
6

3
4
.8
0
0

4
0
.2
5
6

4
3
.7
7
3

4
6
.9
7
9

5
0
.8
9
2

4
0

2
2
.1
6
4

2
4
.4
3
3

2
6
.5
0
9

2
9
.0
5
1

3
3
.6
6
0

3
9
.3
3
5

4
5
.6
1
6

5
1
.8
0
5

5
5
.7
5
8

5
9
.3
4
2

6
3
.6
9
1

5
0

2
9
.7
0
7

3
2
.3
5
7

3
4
.7
6
4

3
7
.6
8
9

4
2
.9
4
2

4
9
.3
3
5

5
6
.3
3
4

6
3
.1
6
7

6
7
.5
0
5

7
1
.4
2
0

7
6
.1
5
4

6
0

3
7
.4
8
5

4
0
.4
8
2

4
3
.1
8
8

4
6
.4
5
9

5
2
.2
9
4

5
9
.3
3
5

6
6
.9
8
1

7
4
.3
9
7

7
9
.0
8
2

8
3
.2
9
8

8
8
.3
7
9

7
0

4
5
.4
4
2

4
8
.7
5
7

5
1
.7
3
9

5
5
.3
2
9

6
1
.6
9
8

6
9
.3
3
4

7
7
.5
7
7

8
5
.5
2
7

9
0
.5
3
1

9
5
.0
2
3

1
0
0
.4
2
5

8
0

5
3
.5
4
0

5
7
.1
5
3

6
0
.3
9
1

6
4
.2
7
8

7
1
.1
4
4

7
9
.3
3
4

8
8
.1
3
0

9
6
.5
7
8

1
0
1
.8
8
0

1
0
6
.6
2
9

1
1
2
.3
2
9

9
0

6
1
.7
5
4

6
5
.6
4
7

6
9
.1
2
6

7
3
.2
9
1

8
0
.6
2
5

8
9
.3
3
4

9
8
.6
5
0

1
0
7
.5
6
5

1
1
3
.1
4
5

1
1
8
.1
3
6

1
2
4
.1
1
6

1
0
0

7
0
.0
6
5

7
4
.2
2
2

7
7
.9
2
9

8
2
.3
5
8

9
0
.1
3
3

9
9
.3
3
4

1
0
9
.1
4
1

1
1
8
.4
9
8

1
2
4
.3
4
2

1
2
9
.5
6
1

1
3
5
.8
0
7

a
C
h
i-
sq
u
a
re

v
a
lu
es

in
th
e
fo
ll
o
w
in
g
ta
b
le
a
re

sh
o
w
n
in

’d
eg
re
e
o
f
fr
ee
d
o
m
’
v
a
lu
es

a
n
d
(1
�
a)

v
a
lu
es
.
T
h
e
a
v
a
lu
e
d
ep
en
d
s
o
n
th
e
ch
o
se
n
si
g
n
ifi
ca
n
ce

le
v
el
.
F
o
r

ex
a
m
p
le
,
in

ca
se

o
f
1
0
%

si
g
n
ifi
ca
n
ce

le
v
el
,
a

=
0
.1

a
n
d
th
e
(1
�
a)

v
a
lu
e
w
il
l
b
e
0
.9
0
.

303

Another note about the chi-square distribution, most tables of the chi-
square distribution go up to 30 degrees of freedom (DF). Over this limit, the
distribution comes close to the normal distribution. If the probability experi-
ment has more than 30 degrees of freedom, which is equal to (number of
possible outcomes� 1), then the chi-square distribution for DFW30 is con-
verted into the normal distribution with mean=0 and variance=1.

One difficulty with chi-square test is the correct selection of cell boundaries.
The cell sizes influence the overall conclusions; however, there are no concrete
procedures for choosing the right sizes. This suggests that a chi-square test is
always inexact, whereas the kolmogorov-smirnov (K-S) test to be covered next
is exact as long as all factors of the expected distributions are identified. A final
note about chi-square test is that it is used for discrete distributions when
sample sizes are large. However, if it is used for continuous distributions, then
the test is considered only an approximation.

9.8.2 Kolmogorov-Smirnov (K-S) Test

The major drawbacks of the chi-square test are the choice of the number and
size of the intervals, as well as the fact that it is designed for discrete
distribution, which means if it is used for continuous distributions, then the
result is only an approximation. K-S test is intended to resolve these problems.
Given the assumed distribution function F, this test compares F with the
observed distribution function, F u, of the samples.

The K-S test statistic D is the biggest total departure between F(x) and F u(x)
over the range of the random variable:

D ¼Max F 0 xð Þ � F xð Þf g
where F u(x) is defined as:

F u(x)= [number of samples= x]/N
In the above expression, N is the number of samples. To test against a

uniform distribution, we should follow the following steps:

1. Normalize the produced numbers between 0 and 1.

2. Sort the samples in an ascending order:

U1=U2=y Un where 0rUir1

3. Calculate K+ and K� , which are defined as the maximum observed
deviation above and below the expected CDF in a sample size n,
respectively. These valves are given as

K+= n
p

Max [Fo(x) – Fe(x)]
K� = n

p
Max [Fe(x) – Fo(x)]

304 INTRODUCTION TO SIMULATION TECHNIQUE

Keep in mind that the K-S test is based on the observation that the
difference between observed CDF, Fo(x), and expected CDF, Fe(x),
should be small.

4. A check is made to determine whether the values of K+ and K� are
smaller than the critical value picked up from the K-S Table,K[n, (1 a)]; see
Table (9.2, where a is the significance level. The observations are said to
come from the specified distribution at the level of significance, a or the
confidence level (1� a). The value n signifies the number of random
numbers. Again, by comparing the computed K+ and K� with the
values listed in the above mentioned K-S table, we can determine whether
the numbers under test or observations are uniformly distributed.

One final note, because the K-S-test does not group samples into cells, it is
more susceptible to outliers. Therefore, the K-S test makes better use of each
sample and is considered to be more accurate than the chi-square test. Both the
K-S test and the chi-square test are suitable for testing the consistency of a
sample statistics, provided that sample size is high. However, basically the K-S

TABLE 9.2 Standard table for K-S Test.

Sample Size (N) Level of Significance for D MAXIMUM [F0(X) Sn(X)]

0.20 0.15 0.10 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995

2 0.684 0.726 0.776 0.842 0.929

3 0.565 0.597 0.642 0.708 0.828

4 0.494 0.525 0.564 0.624 0.733

5 0.446 0.474 0.510 0.565 0.669

6 0.410 0.436 0.470 0.521 0.618

7 0.381 0.405 0.438 0.486 0.577

8 0.358 0.381 0.411 0.457 0.543

9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.410 0.490

11 0.307 0.326 0.352 0.391 0.468

12 0.295 0.313 0.338 0.375 0.450

13 0.284 0.302 0.325 0.361 0.433

14 0.274 0.292 0.314 0.349 0.418

15 0.266 0.283 0.304 0.338 0.404

16 0.258 0.274 0.295 0.328 0.392

17 0.250 0.266 0.286 0.318 0.381

18 0.244 0.259 0.278 0.309 0.371

19 0.237 0.252 0.272 0.301 0.363

20 0.231 0.246 0.264 0.294 0.356

25 0.210 0.220 0.240 0.270 0.320

30 0.190 0.200 0.220 0.240 0.290

35 0.180 0.190 0.210 0.230 0.270

Over 35 1.07/ N 1.14/ N 1.22/ N 1.36/ N 1.63/ N

9.8 TESTING OF RANDOM NUMBER SEQUENCES 305

test is the dominant among the two tests. Moreover, the K-S test can be applied
to small sample sizes, whereas the chi-square is used only for large values, say a
minimum of 50 or so [1, 10, 20–35].

9.8.3 Serial Test

This test basically measures the extent of randomness between consecutive
numbers in a sequence. The steps for this test can be summarized as shown
below [1, 4, 5, 10]:

a. Produce a sequence of M successive sets of N random numbers each.

b. Divide the number range into k periods.

c. For each group, build an array of size k X k. The arrays are initialized to
0. Check the string of numbers from left to right pairwise. Make sure not
to check any number twice. If you find the left member of the pair is in
interval i while the right member is in interval j, then increase the (i, j)
element of the array by 1.

d. Although an array has been built for each cluster, compare the outcomes
of the M group with everyone and with the likely value using the chi-
square scheme.

9.8.4 Runs Test

The runs test is exploited to check the randomness of oscillation of numbers in
the string. The steps for this test are summarized below [1, 3, 5, 10]:

a. Make sure that you have or that you produced N random numbers.

b. Construct a binary string such that for any two successive numbers, such
as xi and xi+1 of the stream, the ith bit is 0 if xi+1 W xi and 1 if not.

c. Put into a table the occurrence of happening of runs, i.e., successive 1s or
0s of each length. Contrast the tabulated occurrences with the expected
values. It is not feasible to use the chi-square method directly because
successive runs are not autonomous.

9.8.5 Serial Correlation Test

Let us have a string of random numbers; therefore, we can calculate the
covariance between numbers that are k values spaced out, that is to say,
between xn and xn+k. This is also called autocovariance at a lag of k and is
often represented by Rk, which is given by the following expression:

Rk ¼ 1= n� kð Þ
X

Un � 0:5ð Þ Unþk � 0:5ð Þ

306 INTRODUCTION TO SIMULATION TECHNIQUE

In the above expression, for large values of n, Rk is normally distributed with
an average zero and a variance of 1/{144 (n� k)}. The 100(1� a) % confidence
interval for the autocovariance is given by

Rk � Z1 a=2=12 n� kð Þ0:5

Here, the value of a is called the significance level and k=1. Now, if this range
does not contain a zero, then we can say that the string has a large correlation.

9.8.6 Spectral Test

This test is employed to verify for a flat spectrum by examining the observed
estimated spectral density function with the K-S test. Cleary, it tests the
autonomy of adjacent sets of numbers. Basically, this test determines
the maximum distance between neighboring hyper planes; the bigger the
distance, the more inferior the generator [1, 3, 4, 5, 10].

9.9 SUMMARY

Simulation modeling is an important technique that can help to predict and
evaluate effectively and economically the performance evaluation of computer
and telecommunication systems. Because of the availability of abundant
computation power and high-speed communication networks and systems,
this scheme is becoming more and more widely accepted and used. In this
chapter, we introduced and explained the basic concepts and foundations of the
simulation technique of performance evaluation.

We investigated various phases that are needed to construct a simulation
model, simulate experimental design, and perform simulation analysis. The
simulation modeling process and various stages involved in simulation analysis
were also discussed. Simulation types have been reviewed with particular
attention to discrete event simulation. Various random-number-generation
techniques like linear congruential generators, Tausworthe generators, com-
bined generators, and extended Fibonacci generators were discussed along with
their properties. A survey on commonly used random-number generators was
also given.

Various random-variate generation techniques are also discussed, which
include inverse transformation method, acceptance-rejection method, charac-
terization method, convolution method, and composition method. Finally,
various techniques involved in testing random number sequences are discussed,
which include the K-S test and Chi-square test.

9.9 SUMMARY 307

REFERENCES

[1] M. S. Obaidat and G. I. Papadimitriou (eds.), ‘‘Applied System Simulation:

Methodologies and Applications,’’ Kluwer, Dordrecht, The Netherlands,

[2] H. Kobayashi, and B. L. Mark, ‘‘System Modeling and Analysis,’’ Pearson

Education, Upper Saddle River, NJ, 2008.

[3] A. M. Law, and W. D. Kelton, ‘‘Simulation Modeling and Analysis,’’ 4th Edition’’,

McGraw Hill, New York, 2007.

[4] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, ‘‘Discrete Event System

Simulation’’, 4th Edition, Prentice Hall, Upper Saddle River, 2005.

[5] G. S. Fishman, ‘‘Discrete Event Simulation: Modeling, Programming, and Analy

sis,’’ Springer Verlag, New York, 2001.

[6] T. Altiok, and B. Melamed, ‘‘Simulation Modeling and Analysis with ARENA,’’

Elsevier, New York, 2007.

[7] S. M. Ross, ‘‘Simulation, 4th edition, Academic Press, New York, 2006.

[8] U. Pooch, and J. Wall, ‘‘Discrete Event Simulation A Practical Approach,’’ CRC

Press, Boca Raton, FL, 1993.

[9] B. P. Zeigler, H. Praehofer and T. G. Kim, ‘‘Theory of Modeling and Simulation,’’

2nd Edition, Academic Press, New York, 2000.

[10] R. Jain, ‘‘The Art of Computer Systems Performance Evaluation,’’ Wiley

New York, 1991.

[11] M. S. Obaidat, ‘‘Simulation of Queueing Models in Computer Systems,’’ in

S. Ozekici (ed.), Queueing Theory and Applications, Taylor and Francis, London,

UK, 1990.

[12] D. Kelton, ‘‘Statistical Issues in Simulation,’’ Proceedings of the 1996 Winter

Simulation Conference, pp. 47 54, 1996.

[13] G. Gordon, ‘‘System Simulation, 2nd edition’’, Prentice Hall, Upper Saddle River,

NJ, 1978.

[14] B. J. T. Morgan, ‘‘Elements of Simulation,’’ Chapman & Hall, London, UK, 1984.

[15] W. Biles, ‘‘Statistical Considerations in Simulation on a Network of Microcom

puters’’, Proceedings of the 1985 Winter Simulation Conference, pp. 388 393, 1985.

[16] B. Schmidt, ‘‘Determination of Confidence Intervals in the Simulation of Stochastic

Discrete Events,’’ Summer Computer Simulation Conference, pp. 241 27, 1982.

[17] G. Marsaglia, ‘‘Random Numbers Fall Mainly in the Planes,’’ Proceedings of

National Academy of Sciences, pp 25 28, 1968.

[18] P. L’Ecuyer, F. Panneton ‘‘A New Class of Linear Feedback Shift Register

Generators,’’ Proceedings of the 2000 Winter Simulation Conference, pp. 690

696, 2000.

[19] M. Sakamoto, and S. Morito, ‘‘Combination of Multiplicative Congruential

Random Number Generators with safe Prime Modulus,’’ Proceedings of the

1995 Winter Simulation Conference, pp. 309 315, 1995.

[20] P. L’Ecuyer, ‘‘Uniform Random Number Generators: A Review,’’ Proceedings of

the 1997 Winter Simulation Conference, pp. 127 134, 1997.

308 INTRODUCTION TO SIMULATION TECHNIQUE

[21] M. J. Durst, ‘‘Using Linear Congruential Generator for Parallel Random Number

Generation,’’ Proceedings of the 1989 Winter Simulation Conference, pp. 462 466,

1989.

[22] S. K. Park, and K. W. Miller, ‘‘Random Number Generators: Good Ones Are

Hard to Find’’, Communications of the ACM, pp. 1192 1201, 1988.

[23] P. L’Ecuyer, ‘‘Maximally Equidistributed Combined Tausworthe Generators,’’

Mathematics of Computations, Vol. 65, No. 213, pp. 203 213, 1996.

[24] P. L’Ecuyer, ‘‘Efficient and Portable Combined Random Number Generators,’’

ACM Transactions on Modeling and Computer Simulation (TOMACS), Vol. 1,

pp. 99 112, 1991.

[25] S. Aluru, ‘‘Parallel Additive Lagged Additive Fibonacci Random Number Gen

erators,’’ Proceedings of the 10th International Conference on Super Computing,

pp. 102 108, 1996.

[26] G. S. Fishman, and L. R. Moore, ‘‘An Exhaustive Search for Optimal Multipliers,’’

Proceedings of the 1984 Winter Simulation Conference, pp. 198 200, 1984.

[27] J. R. Koza, ‘‘Evolving a Computer Program to Generate Random Numbers Using

the Genetic Programming Paradigm,’’ Proceedings of the Fourth International

Conference on Genetic Algorithms, San Diego, CA, pp. 37 44, 1991.

[28] J. Soto, ‘‘Statistical Testing of Random Number Generators,’’ Proceedings of the

22nd National Information Systems Security Conference, Crystal City, VA, 1999.

[29] M. Mascagni, ‘‘Parallel Linear Congruential Generators with Prime Module,’’

Communications of the ACM, Vol. 24, No. 5 6, pp. 923 936, 1998.

[30] R. Y. Rubinstein, B. Melamed, ‘‘Random Numbers, Variates, and Stochastic

Process Generation,’’ in Modern Simulation and Modeling, Wiley, London, UK,

1998.

[31] S. Tezuka, P. L’Ecuyer, ‘‘Efficient and Portable Combined Tausworthe Random

Number Generators,’’ in ACM Transactions on Modeling and Computer Simula

tion, pp. 99 112, 1991.

[32] M. Pidd, ‘‘An Introduction to Computer Simulation,’’ in Proceedings of the 1994

Winter Simulation Conference, Orlando, Fl, pp. 7 14, 1994.

[33] P. D. Hortensius, and R. D. Mcleod, ‘‘Parallel Random Number Generation for

VLSI systems Using Cellular Automata,’’ IEEE Transactions on Computers, Vol.

38, No. 10, pp. 1466 1473, 1989.

[34] R. G. Sargent, ‘‘Verifications and Validations of Simulation Models,’’ Proceedings

of the 2003 Winter Simulation Conference, Washington, D.C., pp. 121 130, 2003.

[35] P. L’Ecuyer, ‘‘Testing Random Number Generators,’’ Proceedings of the 24th

conference on Winter simulation, pp. 305 313, 1992.

[36] M. Matsumoto and T. Nishimura, ‘‘Mersenne Twister: A 623 Dimensionally

Equidistributed Uniform Pseudo Random Number Generator,’’ ACM Transac

tions on Modeling and Computer Simulation (TOMACS), Vol. 8, No. 1, pp. 31 30,

1998.

[37] M. S. Obaidat, and L. E. Leguire, ‘‘A Dynamic and Static Microcomputer based

Stereogram Generator,’’ IEEE Transactions on Systems, Man and Cybernetics,

Vol. 21, No. 01, pp. 228 2231, 1991.

REFERENCES 309

[38] M.S. Obaidat, and D. S. Abu Saymeh, ‘‘A Microcomputer based Video Pattern

Generator for Binocular Vision Test,’’ IEEE Transactions on Instrumentation and

Measurement, Vol. 43, No. 1, pp. 89 93, 1994.

[39] M. S. Obaidat, and D. S. Abu Saymeh, ‘‘A Real time Video Pattern Generator for

Use in Ophthalmology,’’ Journal of Medical Engineering & Technology, Vol. 23,

No. 4, pp. 127 143, 1999.

[40] L. Blum, M. Blum, and M. Shub, ‘‘A simple Unpredictable Pseudo Random

Number Generator,’’ SIAM Journal of Computing, Vol. 2, 1986.

EXERCISES

1. Describe what do you think would be the most effective way to study
each of the following systems:

a. A wireless local area network that consists of 100 nodes.

b. A 1000-procesor massively parallel computer system.

c. The performance of an Asynchronous Transfer Mode (ATM) based
local area network LAN system.

d. The operation of a simple bank branch in a town.

2. For each of the systems in problem 1, assume that it has been decided to
make a study via a simulation model. Discuss whether the simulation
should be static or dynamic, deterministic or stochastic, and continuous
or discrete.

3. The technique for producing an exponential random variate with mean
interarrival time of 1/l uses the formula, � 1/l Ln U, where U is a
uniformly distributed random variate between 0 and 1, U (0, 1). This
approach could correctly be modified to return � 1/l Ln (1�U).
Explain why this is possible.

4. Which type of simulation would you use for the following problems:

a. To model traffic in a wireless cell network given that the traffic is
bursty.

b. To model scheduling in a multiprocessor computer system given that
the request arrivals have a geometric distribution.

c. To verify the value of p, which is defined as the ratio of a circle’s
circumference to its diameter; C/D.

5. Using the multiplicative congruential method, find the period of the
generator for a=17, m=26, and X0=1, 2, 3, and 4. Comment on the
produced numbers and resulting periods.

6. Generate five 6-bit numbers using the Tauseworthe method for the
following characteristic polynomial starting with a seed of
X0= (0.111111)2

X6+X+1.

310 INTRODUCTION TO SIMULATION TECHNIQUE

7. Generate 15,000 numbers using a seed of X0=3 in the following
generator:

Xn=75 Xn 1 mod (231� 1).
Group the numbers into 20 equal-size cells and test for uniformity using
the chi-square test at 90% confidence. Show all of your work.

8. Generate 15 numbers using a seed of X0=7 in the following generator:
Xn=(5Xn 1+1) mod 16.
Perform a K-S test and check whether the sequence passes the test at

95% confidence level.

9. Given a random variate that has the following pdf.
f(x)=min (X, 2�X) 0=X=2.
Develop algorithms to generate this variate using each of the

following methods:

a. Inverse transformation.

b. Rejection.

c. Composition

10. Write a computer program to generate an exponentially distributed
random variate. Generate 3000 values.

11. Write a computer program to generate a Poisson distributed random
variate. Generate 5000 values.

EXERCISES 311

CHAPTER 10

COMMONLY USED DISTRIBUTIONS
IN SIMULATION AND THEIR
APPLICATIONS

When the random variable takes values in the set of real numbers, the
probability distribution can be specified by the cumulative distribution function
(CDF). The value taken by a CDF at a real x is the probability that the random
variable is smaller than or equal to x. The concept of the probability
distribution and the random variables that they describe underlies the dis-
ciplines of simulation and probability. Probability distributions are often a
more appropriate way to describe real quantities because there is variability in
almost any value that can be measured in a population or a system. In addition,
almost all measurements are made with some intrinsic error.

A probability distribution is called discrete if its cumulative distribution
function only increases in jumps. It is called continuous if its cumulative
distribution function is continuous. Various probability distributions have
been used in various different applications. Examples on the most important
ones are the exponential distribution, normal distribution, Poisson distribution,
geometric distribution, and binomial distribution. We present in the following
the description and the properties of the probability distributions, which are
widely used in the simulation of computer and telecommunication systems.

Probability distributions are used on both theoretical and practical levels.
Among the most practical uses of the probability distributions are the
following:

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

312

� To compute confidence intervals for parameters and define critical regions
for hypothesis tests.

� To determine a reasonable distributional model for the data or
phenomenon.

� To allow simulation studies with random numbers generated from a
specific probability distribution.

10.1 EXPONENTIAL DISTRIBUTION

10.1.1 Definition

The exponential distribution constitutes a specific important class of contin-
uous probability distribution [1]. It is being used to model many systems. The
probability density function (pdf) of an exponential distribution has the
following form:

f ðt; lÞ ¼ le lt; t � 0

0 ; t � 0

(

where lW0 is a parameter of the distribution, often called the rate parameter.
The distribution is supported on the interval [0,N]. If a random variable X has
this distribution, the CDF is the integration of pdf and is given by:

Fðx; lÞ ¼ 1� le lt; x � 0

0 ; x � 0

(

Figure 10.1 depicts the probability density function and the cumulative
distribution function for the exponential distribution for different values of l.

Exponential distributions are often used to model the time between
independent events that happen at a constant average rate. The exponential
distribution is used to model systems where a component, initially in state s0,
changes to state s, at time t, with constant probability per unit time l.
Therefore, the integral from 0 to t of the exponential distribution function is
the probability that the system is in state s at time t. In real-world scenarios, the
assumption that l is constant is rarely satisfied; but in different situations, l can
be assumed constant during an interval of time. For example, the rate of
incoming phone calls differs according to the time of day. But if we focus on a
time interval during which the rate is roughly constant, such as around a rush
hour, the exponential distribution can be used as a good approximate model for
the time until the next phone call arrives.

Exponential variables that can also be used to model the interarrival times
(i.e., the times between customers entering the system) are often modeled as

10.1 EXPONENTIAL DISTRIBUTION 313

exponentially distributed variables. However, the length of a process that can
be thought of as a sequence of several independent tasks is better modeled by a
variable following the sum of several independent exponentially distributed
variables. Reliability theory also makes use of the exponential distribution,
because of the memoryless property of this distribution. It is also convenient
because it is so easy to add failure rates in a reliability model. The exponential
distribution is however not appropriate to model the overall lifetime of systems
or technical devices, because the ‘‘failure rates’’ here are not constant. In fact,
more failures are likely to occur in the beginning and end of the life cycle of a
system.

10.1.2 Properties of Exponential Distributed Variables

Mean and variance. The expected value and variance of an exponentially
distributed random variable X with rate parameter l are given by:

EðXÞ ¼
Z 1
0

e ytdt ¼ 1

l
; and

VðXÞ ¼ s2ðXÞ ¼
Z 1
0

ðe yt � 1

l
Þ2dt ¼ 1

l2
:

Example. If one is expecting to receive phone calls at an average rate of two per
unit interval, then one can expect to wait half of the unit interval every call.

1.8

2
f

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 1 2 3

(a) Density function

4 5 x

lambda�0.5
lambda�1
lambda�1.5

f

(b) Cumulative distribution function

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 x

lambda�0.5
lambda�1
lambda�1.5

FIGURE 10.1. Probability density function and cumulative distribution function of the

exponential distribution.

314 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

Memorylessness. A major feature of the exponential distribution is its
memorylessness. Memorylessness completely characterizes the exponential
distribution, i.e., the only probability distribution that enjoys (continuous)
memorylessness is the exponential distribution. This states that if a random
variable X is exponentially distributed, then its conditional probability obeys
the following relation:

PðX > sþ t X > sÞ ¼ PðX > tÞ; for all s; t � 0j
Here, X measures the time to wait until the first arrival of a packet in a

computer system or telecommunication network, and s and t represent real
numbers.

Quartiles. The inverse cumulative distribution function (or quantile func-
tion) for the exponential distribution with parameter l is given by:

F 1ðp; lÞ ¼ � lnð1� pÞ
l

; for 2 0; 1½ �:

Estimation of the rate parameter k. Assume we know that a given variable X
is exponentially distributed, the likelihood function for l, given an independent
and identically distributed sample x=(x1,y,xn) drawn from variable X, is
given by:

LðlÞ ¼
Yn
j¼1

le lxj ¼ lne lðx1þ:::þxnÞ ¼ lne lnx

where x is the sample mean given by x ¼ 1

n

X
1�j�n

xj.

10.2 POISSON DISTRIBUTION

10.2.1 Definition

The Poisson distribution is a discrete probability distribution. It expresses
the probability of a number of events occurring in a fixed period of time
if these events occur with a known average rate and are independent of the
time since the last event. The Poisson distribution was first defined by S.D.
Poisson (in 1837) when approximating formulas for the binomial distribu-
tion, knowing that the number of trials is large and the probability of success
is small.

The Poisson distribution is a one parameter discrete distribution that takes
non-negative integer values [2]. The probability that there are exactly k
occurrences (k being a non-negative integer, k A N) is given by the so-called
Poisson probability distribution function:

f ðk; lÞ ¼ lke l

k!

10.2 POISSON DISTRIBUTION 315

where l is a positive real number to the expected number of occurrences that
occur during the given interval. Figure 10.2 depicts the Poisson distribution
function for different values of l. The horizontal axis and the connecting lines,
in the figure, represent the index k and guide to indicate the three functions).
The expectation value of X is given by:

EðXÞ ¼
X1
k¼0

l
lke l

k!
¼ le l

X1
k¼0

lk

k!
¼ le lel ¼ l

In addition, the parameter l is not only the mean number of occurrences of
events but also its variance. Thus, the number of observed occurrences
fluctuates about its mean l with a standard deviation of l

p
. These fluctuations

are referred to as Poisson noise. Therefore, as the size of the numbers in a
particular sample of Poisson random numbers gets larger, so does the
variability of the numbers.

The Poisson distribution is appropriate for applications that involve count-
ing the number of times a random event occurs in a given interval of time, area,
or distance or similar parameter. It applies to various phenomena of discrete
nature, whenever the probability of the phenomenon happening is constant in
time or space. Sample applications that involve Poisson distributions include:
(a) the number of phone calls at a call center per minute, (b) the number of
viruses that can infect a systems connected to a given network during a unit
of time, (c) the number of packets entering a communication switch in a unit of
time, (d) the number of times a Web server is accessed per minute, and e) the
number of flaws per 100 meters of video tape. Other examples include various
events occurring in different domains such as: (a) the number of Geiger counter
clicks per second, (b) the number of spelling mistakes one makes while typing a
single page, and (c) number of animals killed found per unit length of a road.

0.4
f

0.3

0.2

0.1

0
0 5 10 15 20x

lambda�1
lambda�4
lambda�10

FIGURE 10.2. Poisson distribution function.

316 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

We will show in the following that the Poisson distribution is related to the
exponential distribution and the binomial distribution. Particularly, we will
show that: (a) if the number of counts follows the Poisson distribution, then the
interval between individual counts follows the exponential distribution; and (b)
the Poisson distribution is the limiting case of a binomial distribution where n
approaches infinity and p goes to zero while np= l.

If l is observed to be the average number of occurrences per unit time, let Nt

be the number of occurrences before time t then we have:

PðNt ¼ kÞ ¼ f ðk; ltÞ ¼ ðltÞ
ke lt

k!
:

The waiting time X until the first occurrence is a continuous random variable
with an exponential distribution (with parameter l). The probability distribu-
tion for X can therefore be derived as

PðX > tÞ ¼ PðNt ¼ 0Þ ¼ e lt

10.2.2 Properties of Poisson Distribution

Sums of Poisson-distributed random variables. If random variables Xi, i=1yn
follow a Poisson distribution with parameter li and Xi are independent, then

the sum S ¼Pn
i¼1

Xi also follows a Poisson distribution whose parameter is the

sum: l ¼Pn
i¼1

li.

The moment-generating function. The moment generating function of the
Poisson distribution with expected value l is given by:

EðetXÞ ¼
X1
k¼0

etXf ðk; lÞ ¼
X1
k¼1

etk
lke l

k!
¼ elðe

t 1Þ

Maximum likelihood. Given a sample of n measured values ki, to estimate
the value of the parameter l of the Poisson population from which the sample
was drawn, one can form the log-likelihood function defined by:

LðlÞ ¼ logð
Yn
i¼1

f ðki; lÞ

¼
Xn
i¼1

logðf ðki; lÞÞ ¼
Xn
i¼1

logðe
llki

ki!
Þ

¼ �nlþ ðlog lÞð
Xn
i¼1

kiÞ�
Xn
i¼1

logðki!Þ

10.2 POISSON DISTRIBUTION 317

To compute a maximum, we can determine the derivative of function L, with
respect to l, and equate it to zero. This gives

dLðlÞ
dl

¼ �nþ 1

l

Xn
i¼1

ki ¼ 0

Solving for l yields the maximum-likelihood l̂ estimate of l using

l̂ ¼ 1

n

Xn
i¼1

ki

.

10.3 UNIFORM DISTRIBUTION

10.3.1 Basics on the Uniform Distribution

The uniform distribution is a discrete distribution that has a constant prob-
ability distribution function between two parameters, called the minimum
(denoted by a) and the maximum (denoted by b). The uniform distribution
appears in probability theory as an exact distribution in some problems and as
a limit in others. The concept of a uniform distribution on [a, b] corresponds to
the representation of a random choice of a point from the interval.

The standard uniform distribution is a special case of the beta distribu-
tion, obtained by setting both of its parameters to 0 and 1, respectively.
The cumulative uniform distribution function of the Uniform distribution
is given by:

Fðx; a; bÞ ¼ x� a

b� a
w½a;b�ðxÞ

where w½a;b� is the function defined by: w½a;b�ðxÞ ¼ 13x 2 ½a; b�:
A discrete uniform distribution can be characterized by the following

property: If a random variable has n possible values ki,ykn that are equally
probable, then it has a discrete uniform distribution. Therefore, the probability
of any outcome ki is 1/n. The cumulative distribution function of a discrete
uniform distribution is given by

Fðx; nÞ ¼ 1

n
w k1: : : knf gðxÞ

where w{k1ykn}
is the function defined by: w{k1ykn}

(x)=1 3 x A{k1,k2,y,
kn 1,kn}. Figure 10.3 depicts an example of CDF, F, with 10 values given by
{k1=0, k2=1, k9=8, k10=9}. For this example, F is given by

Fðx; 10Þ ¼ i

10
; x 2 ½i � 1; i�

318 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

Example. A simple example of the discrete uniform distribution is throwing a
fair die. The possible values of k are 1, 2, 3, 4, 5, and 6. Each time the die is
thrown, the probability of a given score is 1/6.

The discrete uniform distribution can be used to represent random occur-
rence with several possible outcomes.

The continuous uniform distribution is one of the simplest distributions to
use. It is commonly used if a random variable is bounded and no additional
information is available, for example:

a. Distance between source and destination of message on a computer
network.

b. Seek time on a disk of a computer system.

10.4 NORMAL DISTRIBUTION

10.4.1 Definition

The normal distribution is a two-parameter family of curves. The first
parameter, denoted by m, is the mean, and the second parameter, denoted
by s, is the standard deviation. The pdf of normal distribution is given
below [3]:

f ðx; m; lÞ ¼ 1

2p
p

s
e ðx mÞ2=2s2

The Gaussian function jðxÞ ¼ 1
2p
p e x2=2 is the density function of the

‘‘standard’’ normal distribution, i.e., the normal distribution with parameters
m=0 and s=1. The first use of the normal distribution has been as a
continuous approximation to the binomial through the central limit theorem,
which states that the sum of independent samples from any distribution with

10
9

i/n

8

5
6
7

0
1
2
3
4

�1
0 1 2 3 4 5 6 7 8 9 10x

FIGURE 10.3. Cumulative distribution function for a discrete uniform distribution.

10.4 NORMAL DISTRIBUTION 319

finite mean and variance converges to the normal distribution as the sample size
goes to infinity.

The CDF evaluated at real number x of the normal distribution, see Figure
10.4, and computed in terms of the density function as shown below:

Fðx; m; sÞ ¼ 1

2p
p

s

Z x

1
e ðt mÞ2=2s2dt

¼ F
x� m
2s

�
where F(x) is the cumulative distribution function of the standard normal
distribution (or F(x,0,1)).

Fðx; 0; 1Þ ¼ 1

2p
p

Z x

1
e t2=2dt:

The standard normal cumulative distribution function can be expressed in
terms of the so-called Gaussian error function (Ger):

FðxÞ ¼ 1

2
1þ Ger

x

2
p
� �� �

where Ger(�) is defined by:

GerðxÞ ¼ 2

p
p

Z 1
0

e t2dt:

0.9

f

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1�1 0 2�2 3�3

(a) Probability density function

4�4 5�5 x

��0,
�0.2
��0,
�1

��0,
�5

��2,
�0.5

(b) Cumulative distribution function

f

0.8

0.6

0.4

0.2

0
1�1 0 2�2 3�3 4�4 5�5 x

��0,
�0.2
��0,
�1

��0,
�5

��2,
�0.5

FIGURE 10.4. Probability density function and cumulative distribution function of the

normal distribution.

320 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

The expression of Ger(x) cannot be evaluated in closed form in terms of
elementary functions [4].However, it can be expanded in aTaylor series as follows:

GerðxÞ ¼ 2

p
p

X1
n¼0

ð�1Þn
2nþ 1

� x
2nþ1

n!

The Tailor series converges for every real number x. In addition to
approximation based on Taylor series, the values of F(x) may be approximated
by a variety of methods, such as numerical integration, asymptotic series, and
continued fractions.

Finally, let us notice that the normal distribution has various applications in
different domains including modeling errors of any type.

10.4.2 Properties

Quantile function. The inverse standard normal cumulative distribution func-
tion, or quantile function, can be expressed in terms of the inverse Gaussian
error function by F 1ðyÞ ¼ 2

p
Ger 1ð2y� 1Þ: More generally, the inverse

cumulative distribution function can be expressed as:

F 1ðy; m; sÞ ¼ mþ s 2
p

Ger 1ð2y� 1Þ
Moment generation function: The moment generating function is defined as

the expected value of etx, wherever this expectation exists. The moment-
generating function generates the moments of the probability distribution. It
can be determined for a normal distribution whose moment-generating func-
tion is given by:

EðetxÞ ¼
Z 1
1

1

2p
p

s
e ðx mÞ2=2s2etxdx ¼ emtþðstÞ

2=2

Because the moment-generating function exists in an interval around t=0,

and EðetxÞ ¼ 1þP1
j¼1

tjmj then the nth moment is given by:

dðnÞEðetxÞ
dtn

t¼0j

Parameter estimation for the normal distribution. To use statistical para-
meters such as mean and standard deviation reliably, it is important to have a
good estimator for them. The maximum likelihood estimates (MLEs) provide
one such estimator. However, an MLE might be biased, meaning that the
expected value of the parameter under estimation might not be equal to this
parameter. An unbiased estimator that is commonly used to estimate the
parameters of the normal distribution is the minimum variance unbiased
estimator (MVUE). The MVUEs of parameters m and s2 for the normal
distribution are the sample average and variance.

10.4 NORMAL DISTRIBUTION 321

a) Maximum likelihood estimation of parameters: Suppose X1,y,Xn are
independent and normally distributed random variables with mean value m and
variance s2. The observed values of these random variables make up a sample
from a normally distributed population. It is used to estimate the population
mean m and the population standard deviation s. The joint probability density
function of X1,y,Xn is:

f ðx1; : : :; xn; m; sÞ ¼ a

sn
Yn
i¼1

e ðxi mÞ2=2s2

As a function of m and s, the likelihood function L(m, s) is proportional to:

s ne

Pn
i 1

ðxi mÞ2=2s2

In the method of maximum likelihood, the values of m and s that maximize
the likelihood function are taken to be estimates of the population parameters.

Obviously, the likelihood function is an increasing function when the sumPn
i¼1
ðxi � xÞ2 decreases. Therefore, the maximum likelihood is minimal when this

sum is minimal. Let x be defined by:

x ¼ 1

n

Xn
i¼1

xi

which is the sample mean.

Therefore, the sum
Pn
i¼1
ðxi � xÞ2 is minimized by m= x, that is, the max-

imum-likelihood estimate of m. Then, we substitute x in the likelihood
function. The value of s that maximizes the resulting expression is obtained
using the logarithm of the likelihood function, and we have:

lðsÞ ¼ logðLðx; sÞ ¼ cte� n log s� ð
Xn
j¼1
ðxi � xÞ2Þ=2s2

Applying the derivative to l(s), we obtain:

dlðsÞ
ds
¼ �n

s
þ 1

s3
Xn
j¼1
ðxi � xÞ2 ¼ �n

s3
ðs2 � 1

n

Xn
j¼1
ðxi � xÞ2Þ:

Obviously, it is maximized when s2 ¼ 1
n

Pn
j¼1
ðxi � xÞ2. Consequently, the

computed value is maximum-likelihood estimate of s2, and its square root is
the maximum-likelihood estimate of s. This estimator is biased because, if

322 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

s2 ¼ 1

n

Xn
i¼1
ðXi � XÞ2; where X ¼ 1

n

Xn
i¼1

Xi:

Then:

EðS2Þ ¼ n� 1

n
s2:

b) Unbiased estimation of parameters: Because the maximum likelihood
estimator of the population mean m from a sample is an unbiased estimator of
the mean, the following estimator is used. It is an unbiased estimator of the
variance s2. It can be given by:

S2 ¼ 1

n� 1

Xn
i¼1
ðXi � XÞ2:

This equation is the MVUE associated with s2.

10.4.3 Multinomial Distribution

The binomial distribution with parameters n, p, and k is the distribution of the
random variable X, which counts the number of events that occur when n
successive packets are received (or a coin is tossed n times), assuming that for
any packet, the probability that the packet contains an error (or a head occurs
in the case of coin tossing) is p. The distribution function is given by the
formula:

PðX ¼ kÞ ¼ bðn; p; kÞ ¼ ð n
k
Þpkð1� pÞn k

A straightforward computation shows that the expectation and variance of
X are equal to np and np(1� p).

Binomial distribution arises as a special case of multinomial distribution
defined as follows. The multinomial distribution is the probability distribution
of the number of ‘‘successes’’ in n independent Bernoulli trials, each trial
resulting in one of some fixed finite number k of possible outcomes occurring
with probabilities p1,y,pk, and there are n independent trials. We can use a
random variable Xi to indicate the number of times outcome number i was
observed over the n trials. Then, the multinomial distribution X can be defined
as the distribution of the vector (X1,y, Xn) [5]. The probabilities are given by:

PðX ¼ ðk1; : : :; knÞÞ ¼ PðX1 ¼ k1; : : :;Xn ¼ knÞÞ

10.4 NORMAL DISTRIBUTION 323

¼
n!

k1!: : :kn!

Qn
j¼1

p
kj
j ; if

Pn
j¼1

kj ¼ n

0 ; otherwise

8><
>:

Each component Xj, j A {1,y,n} of random variable X separately has a
binomial distribution with parameters n and pj, and has an expected value equal
to npj and a variance equal to npj(1� pj).

It seems that, because of the constraint that the sum of the components is n,
then variables are correlated. The covariance matrix Covi;j

 �
i;j�n is character-

ized by:

� Theoff diagonal values that are given byCovi;j ¼ covðXi;XjÞ ¼ �npipj; i 6¼ j

� TheelementsofthediagonalthataregivenbyCovi;i ¼ varðXiÞ ¼ �npið1� pjÞ:

It is well known that the Poisson distribution can be used as an approxima-
tion to the binomial distribution when the parameter n is large and p is small.
For this, let us consider a random variable X having a binomial distribution
with parameters n and p. Assume that X counts the occurrences of an event in a
given interval and that there we can observe lt occurrences of an event in a time
interval of length t. If this time interval is divided into n small intervals, then we
should have lt= np Thus, we have:

p ¼ lt
n

When computing P(X= k), one can state the following:

� PðX ¼ 0Þ ¼ bðn; p; 0Þ ¼ ð1� pÞn ¼ 1� l
n

� �n

� bðn; p; kÞ
bðn; p; k� 1Þ ¼

l� ðk� 1Þp
kð1� pÞ ffi l

k
; for large n (and, therefore, small p)

� P(X=1) E le l and PðX ¼ kÞ � lk

k!
e l; for large n.

Thus, one can deduce that when n is large, the distribution of X is the
Poisson distribution.

Example. A network transmits, on the average, one erroneous packet per 106

packets. Assume that it is sending a message of 100 packets. Let X be the
number of erroneous packets for the message. Then the exact probability
distribution for X would be obtained by considering a binomial distribution
with p=10 6. The expected value of X is l =100(1/106)=10 4. The exact
probability that X=10 is b(100; 10 6; 10), and the Poisson approximation
shows that this probability is equal to:

324 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

PðX ¼ 10Þ � 10 40

10!
e 10 4

:

10.4.4 Log Normal

A random variable X has a log-normal distribution if, and only if, its logarithm
is normally distributed. Thus, if X is a random variable with a normal
distribution, then the random variable eX has a log-normal distribution. The
definition is coherent because loga X is normally distributed if and only if logb X
is normally distributed.

The log-normal distribution has the following probability density function
(pdf):

f ðx; m; sÞ ¼ 1

s 2p
p

x
e ðlog x mÞ2=2s2 ; x > 0

where m and s are the median and standard deviation of log(X). The expected
value and the standard deviation of X are given by:

EðXÞ ¼ emþs
2=2 and s2ðXÞ ¼ ðes2 � 1Þe2mþs2

More generally, the kth moment, k Z 2, is given by:

mkðXÞ ¼ ekmþk
2s2=2

To provide the maximum likelihood estimators of the log-normal distribu-
tion parameters m and s, one can use the approach applied to the normal
distribution. Otherwise, one can notice that the density function fL of the log-
normal distribution and the normal distribution, fN, are linked by the formula:

fLðx; m;sÞ ¼ 1

x
fNðlog x; m; sÞ

We can write the log-likelihood function lL(m, s) using the log-likelihood
function lN(m, s) as:

lLðm; sÞ ¼
X
k�n

logðxkÞþlNðm; sÞ

Because the first term in the right side of the equation is constant with
respect to m and s, the logarithmic likelihood functions lL(m, s) and lN(m, s)
reach their maximum with the same values of parameters m and s. Therefore,
the formulas for the normal distribution maximum likelihood parameter
estimators, which we have previously established, can be used to deduce that

10.4 NORMAL DISTRIBUTION 325

m̂ ¼ 1

n

X
k�n

logðxkÞ and ŝ2 ¼ 1

n

X
k�n
ðlogðxkÞ � m̂Þ:

10.5 WEIBULL DISTRIBUTION

The Weibull distribution is one among the most popular statistical models for
life data. It is also used in many other applications, such as weather forecasting
and fitting data of all kinds. It may be employed for traffic engineering analysis
with smaller sample sizes. The Weibull distribution is a continuous probability
distribution with the pdf:

f ðx; k; lÞ ¼
k
l ðxlÞk 1e ðx=lÞ

k

; x � 0; k > 0

0 ; xo0

(

where kW0 is called the shape parameter and lW0 is called the scale parameter
of the distribution [6]. The CDF for the Weibull distribution is given by:

Fðx; k; lÞ ¼ 1� e ðx=lÞ
k

; x � 0; k > 0

0 ; xo0

(
:

It is worth noting that when k=1, the Weibull distribution becomes
exponential. This means that the exponential distribution is a special case of
the Weibull distribution. Figure 10.5 depicts the aforementioned functions for
different values of k and l.

An important quantity called the hazard rate or failure rate in the Weibull
distribution is defined by kxk 1

lk
. The following three situations can occur: (a) if

k o 1 the hazard rate decreases over time; (b) if k=1 the hazard rate is
constant over time and the distribution becomes exponential distribution; and
(c) If kW1 the hazard rate increases over time. To see why this definition is
made, let us recall that, if f(t) and F(t) are a pdf and its CDF, then the hazard
rate is given by:

hðf ÞðtÞ ¼ f ðtÞ
1� FðtÞ :

Substituting pdf and CDF, the exponential distribution for f (t) and F (t)
above yields exactly kxk 1

lk
.

The Weibull distribution is often used to mimic the behavior of other
statistical distributions such as the normal and the exponential. Current
applications also include reliability and lifetime modeling. The Weibull
distribution is more flexible than the exponential for these purposes.

326 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

The Weibull distributions also can be used: (a) for fading channel modeling,
because the Weibull fading model seems to exhibit good fit to experimental
fading channel measurements; (b) to model the dispersion of the received
signals level produced in radar systems; (c) to produce statistical model in
reliability engineering and failure analysis; (d) to represent manufacturing and
delivery times in industrial engineering problems; and (e) to describe wind
speed distributions and weather forecasting models.

The Weibull distribution is closely related the Gamma function. One can
observe, for example, that the expected value, nth moment, and standard
deviation of random variable X having a Weibull distribution are given
respectively by:

EðXÞ ¼ l � G 1þ 1

k

� �
; s2ðXÞ ¼ l2 � G 1þ 2

k

� �
and mn ¼ ln � G 1þ n

k

�

10.6 PARETO DISTRIBUTION

10.6.1 Definition

If X is a random variable, we say it has a Pareto distribution if there are a
positive parameter ‘‘k’’ and a positive real value ‘‘a’’ such that the probability
that X is greater than some number x is given by:

f

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
32 2.5 3.51.5 41

(a) Probability density function

4.50.5 50 x

��0.5, ��2
��1, ��2

��1.5, ��3

��3, ��4

f

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
32 2.5 3.51.5 41 4.50.5 50 x

��0.5, ��2
��0.5, ��2

��1.5, ��3

��3, ��4

(b) Cumulative distribution function

FIGURE 10.5. Probability density function and cumulative distribution function of the

Weibull distribution.

10.6 PARETO DISTRIBUTION 327

PðX > xÞ ¼ a

x

� k
; x � a

It follows that the probability density function is given by:

f ðx; k; aÞ ¼ k
ak

xkþ1
; x � a; k > 0:

The Pareto distribution is a probability distribution that applies to social,
scientific, and geographic situation. It can be applied to many situations in
communication [7]. Pareto distribution is a continuousdistribution (Figure 10.6.)
The expected value and standard deviation (if ko1) of a random variable X
following a Pareto distribution are given as follows:

EðXÞ ¼ ka

k� 1
; and s2ðXÞ ¼ k

k� 2
ð a

k� 1
Þ2 ; ko1

In addition, the nth moment of a Pareto random variate, X, is given by:

mnðXÞ ¼ kan

k� n
:

The moments are only defined for kWn. This means that the moment
generating function, which is just a Taylor series, is not defined.

f

2.5

2

1.5

1

0.5

0
32 2.5 3.51.5 41

(a) Density function

4.50.5 50 x

��3
��1

f

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
32 2.5 3.51.5 41 4.50.5 50 x

��3
��1

(b) Cumulative function

FIGURE 10.6. Pareto probability density function and its cumulative distribution

function.

328 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

This distribution is not limited to describing wealth or financial income, but
it can also be applied to many situations in which equilibrium can be found
using the distribution. The following examples represent typical examples
sometimes observed as approximately Pareto-distributed: Frequencies of words
in longer texts, the file size distribution of communication traffic (using, for
example, the TCP protocol), and the standardized price returns on individual
stocks.

10.6.2 Properties of Pareto Distribution

Parameter estimators. Given a sample x ¼ ðx1; : : :;xnÞ of a Pareto distribution,
the likelihood function L(k, a) for parameters k and a is given by:

Lðk; aÞ ¼
Yn
i¼1

k
ak

xki
¼ knakn

Yn
i¼1

1

xkþ1i

:

Applying the logarithm function to L(k, a), the logarithmic likelihood
function is:

lðk; aÞ ¼ logðLðk; aÞÞ ¼ n logðkÞ þ nk logðaÞ � ðkþ 1Þ
Xn
i¼1

logðxiÞ:

It can be observed that the function logðLðk; aÞÞ is monotonically increasing
with respect to the parameter a. Because xi 2 a; 1½ � for every 1rirn, we can
conclude that the least xi gives an estimation of parameter a (i.e., â ¼ min

i
xi).

To find the estimator for k, we compute the partial derivative with respect to k
and equate it to zero as follows:

@lðk; aÞ
@k

¼ 1

k
þ n logðaÞ �

Xn
i¼1

logðxiÞ ¼ 0

Thus, the maximum likelihood estimator for k is given by:

k̂ ¼ 1= logðaÞ �
Xn
i¼1

logðxiÞ

Generalized Pareto distribution. The generalized Pareto distribution allows a
continuous range of possible shapes that include the exponential and Pareto
distributions. The probability density function for the generalized Pareto
distribution has three parameters, called the shape parameter k, the location
parameter m, and the scale parameter s. It is given by:

10.6 PARETO DISTRIBUTION 329

f ðx; k; m; sÞ ¼ 1

s
1þ k

x� m
s

� ð 1 1
kÞ

The related cumulative distribution function is:

Fðx; k; m; sÞ ¼ 1� ð1þ k
x� m
s
Þð 1

kÞ; for x � m and x � m� s
k
ðif ko0Þ:

When k approaches 0, the probability density function is equivalent to:

gðx; m; sÞ ¼ 1

s
e

x m
s :

In this case, the generalized Pareto distribution is equivalent to the
exponential distribution.

10.7 GEOMETRIC DISTRIBUTION

The geometric distribution is a discrete distribution, defined on the non-
negative integers. It is useful for modeling the runs of consecutive successes
(or failures) in repeated independent trials of a system. The geometric
distribution models the number of successes before one failure in an indepen-
dent succession of tests where each test results in success or failure.

The geometric distribution pdf, is given by:

f ðk; pÞ ¼ pð1� pÞk:
The expected value of a geometrically distributed random variable X is 1/p and
the standard deviation is s2ðXÞ ¼ 1 p

p
. The CDF, is given by:

Fðk; pÞ ¼ PðX > kÞ ¼ 1� ð1� pÞk

For the geometric distribution, the parameter p can be estimated by equating
the expected value with the sample mean. Specifically, let k1; : : :; kn be a sample
such that ki > 1; i � 1. Then p can be estimated by:

p̂ ¼ ð1
n

Xn
i¼1

kiÞ 1

Example. The use of geometric distribution is important in the theory of
waiting queues. Let us assume that a queue of packets is waiting for service at a
switching node. It is often assumed that, in each small time slot, either 0 or 1
new packet arrives to the switch. The probability that a packet (or a customer)
arrives is p and that no customer arrives is q=1� p. Then the time X until the

330 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

next arrival has a geometric distribution. The probability that no customer
arrives in the next n time slots, denoted by P(XWn), can be computed as follows:

pðx >nÞ ¼
Xx
j¼n 1

pqj 1 ¼ qnp
X
j�0

qj ¼ qn

Like the exponential distribution, the geometric distribution is memoryless.
This means that if an experiment is repeated until the first success, then, given
that the first success has not yet occurred, the conditional probability distribu-
tion of the number of additional trials does not depend on how many failures
have been observed. For example, a die that one throws does not have a
‘‘memory’’ of the failures observed. Formally, the memoryless property in this
context states that:

PðX > i þ j X > iÞ ¼ Pð X > i þ jf g \ X > if gÞ
PðX > iÞ

���� ¼ PðX > i þ jÞ
PðX > iÞ

¼ ð1� pÞiþj
ð1� pÞi ¼ ð1� pÞj ¼ PðX > jÞ:

One can notice that the geometric distribution Y is a special case of the
negative binomial distribution with r=1. More specifically, if X1yXn are

independent geometrically distributed random variables with parameter p, then

the random variable Y ¼Pn
j¼1

Xj follows a negative binomial distribution with

parameters r and p.
However, let us consider r and k such that 0oro1, and 0ok rn , then the

random variable Xk has a Poisson distribution with expected value rk/k. The

finite sum: Y ¼Pn
j¼1

jXj has a geometric distribution taking values in the set of

natural integers, N, with expected value r/(1� r).

10.8 GAMMA DISTRIBUTION

10.8.1 Definition

The gamma distribution is a family of continuous probability distributions
characterized by two parameters that represent the sum of k exponentially
distributed random variables, each of which has a mean m[8]. The pdf of the
gamma distribution can be expressed using the gamma function G:

10.8 GAMMA DISTRIBUTION 331

f ðx; a; bÞ ¼ 1

baGðaÞ x
a 1e

x
b; x > 0; a > 0; b > 0

where a is called the shape parameter and b is called the scale parameter of the
gamma distribution (see Figure 10.7). The gamma function is defined by:

GðaÞ ¼
Z 1
0

ta 1e tdt:

Alternatively, another parameterization of the gamma distribution can be
used in terms of the shape parameter and a parameter b, called the rate
parameter, defined by b=1/b. Both parameterizations are commonly used.
Their use is dependent on the nature of the problem to be modeled.

The CDF of the gamma distribution can be expressed in terms of the gamma
function G:

Fðx; a; bÞ ¼
Z x

0

f ðt; a; bÞdt ¼
gða; x

b
Þ

GðaÞ

where the incomplete gamma function g [9] is defined by:

0.45

f

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
128 10 146 164

(a) Probability density function

182 200 128 10 146 164 182 200x
(b) Cumulative distribution function

f

0
x

a�1, b�2
a�2, b�2

a�3, b�2

a�5, b�1

a�9, b�10.5

a�1, b�2
a�2, b�2

a�3, b�2

a�5, b�1

a�9, b�10.5

FIGURE 10.7. Probability density function and cumulative distribution function of the

gamma distribution.

332 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

gða; xÞ ¼
Z x

0

ta 1e tdt

Notice that GðaÞ ¼ gða; xÞ þ R1x ta 1e tdt; x > 0: Figure 10.7 shows the pdf anf
CDF of the gamma distribution.

10.8.2 Properties of Gamma Random Variate

Parameter estimation: LetN be independent and identically distributed random
observations ðx1; : : :; xnÞ. The likelihood function associated with these ob-
servations is given by:

Lða; bÞ ¼
YN
i¼1

f ðxi; a; bÞ:

Computing the logarithm of L(a, b), we obtain the log-likelihood function
l(a, b) as:

lða; bÞ ¼ logðLða; bÞÞ

¼ ða� 1Þ
XN
i¼1

logðxiÞ �
XN
i¼1

xi

b
�Nða logðbÞ � logðGðaÞÞ:

By taking the partial derivative of l(a,b), with respect to b, and equating it to
zero, we can find the maximum likelihood estimate of the b parameter. A direct
computation shows:

b̂ ¼ 1

aN

XN
i¼1

xi:

After substitution into the log-likelihood function, we get:

lða; b̂Þ ¼ ða� 1Þ
XN
i¼1

logðxiÞ �
XN
i¼1

xi

b
�Nða� a log

PN
i¼1

xi

an

0
BBB@

1
CCCA� logðGðaÞÞ:

The maximum of lða; b̂Þ with respect to a is obtained by taking the derivative
and setting it equal to zero. This gives:

logðaÞ � G0ðaÞ
GðaÞ ¼ log

1

n

XN
i¼1

xi

 !
� 1

n

XN
i¼1

logðxiÞ:

This equation does not have a closed-form solution as a function of a. A
numerical solution can be determined, using for example the Newton’s method

10.8 GAMMA DISTRIBUTION 333

and starting with an initial value for a, which can be obtained using the
approximation:

logðaÞ � G0ðaÞ
GðaÞ �

1

2k
þ 1

12kþ 2

Thus, a can be approximated by:

a �
3� sþ ðs� 3Þ2 þ 24s

q
12s

; where s ¼ log
1

n

XN
i¼1

xi

 !
� 1

n

XN
i¼1

logðxiÞ:

Inverse gamma distribution. This is a two-parameter family of a continuous
probability distribution that represents the multiplicative inverse of the gamma
distribution. The inverse gamma distribution’s probability density is defined
over the subset of positive real numbers by:

gðx; a; bÞ ¼ ba

GðaÞ x
a 1e

b
x ; x > 0; a > 0; b > 0

where a and b are called the shape parameter and the scale parameter,
respectively. However, the CDF is given by:

Gðx; a; bÞ ¼
Gða; x

b
Þ

GðaÞ ; where G a;
x

b

�
¼
Z 1
x=b

ta 1e tdt

where Gða; x
b
Þ is the upper incomplete gamma function.

Example. Consider the problemof testing computermemory chips and collecting
data on their lifetimes. Assume that these lifetimes follow a gamma distribution.
Assume that we want to know how long we can expect the average computer
memory chip to last. Parameter estimation is the process needed for determining
the parameters of the gamma distribution that is suitable, in some sense, for the
situation. Sample values (or observations ðx1; : : :;xnÞ) are needed. The observa-
tions are the fixed constants. The variables a, b to be determined are the unknown
parameters. MLE involves calculating the values of the parameters that give the
highest likelihood given the particular set of data as previously explained. The
95%confidence interval can be decided for a and b to give a range of likely values.

10.9 ERLANG DISTRIBUTION

The Erlang distribution is a continuous distribution that was developed by
Agner Krarup Erlang, a Danish engineer and mathematician who invented
queueing theory and traffic engineering disciplines, to study the number of
telephone calls that might be made at the same time to the operators of the
switching stations. It was more generally used in communication traffic
engineering and has been developed to consider waiting times in queueing
systems. The Erlang distribution is characterized by two parameters: an integer
k, called the shape, and a real number l, called the rate [10].

334 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

The probability density function f (2) of the Erlang distribution is given by:

f ðx; k; lÞ ¼ lkxk 1e l

ðk� 1Þ! ; x > 0:

An alternative parameterization can be made by substituting in the above
expression l by 1/y, where y is referred to as the scale parameter. The expression
shows that the Erlang distribution is only defined when the parameter k is a
positive integer.

The Erlang distribution is a special case of the gamma distribution where
the shape parameter k is an integer. When the shape parameter k equals 1, the
distribution simplifies to the exponential distribution.

The cumulative distribution function of the Erlang distribution can be
shown to be equal to:

Fðx; k; lÞ ¼ gðk; lxÞ
ðk� 1Þ!

where g() is the lower incomplete gamma function defined in the previous
section. Figure 10.8 depicts the probability density function and cumulative
distribution function of the Erlang distribution.

The Erlang distribution, which measures the time between incoming calls,
can be used in conjunction with the expected duration of incoming calls to
produce information about the traffic load measured in Erlang units.
Typically, if the mean arrival rate of new calls is l per unit time and the
mean call holding time is h, then the traffic, in Erlangs A is lh. This can be

0.5

0.4

0.3

0.2

0.1

0.8

1

0.6

0.4

0.2

0
128 10 146 164

(a) Probability mass function

182 200 128 10 146 164 182 200

(b) Cumulative distribution function

0

k�1, ��2
k�2, ��2

k�4, ��2.5

k�4, ��1.5

k�1, ��2
k�2, ��2

k�4, ��2.5

k�4, ��1.5

FIGURE 10.8. Probability mass function and cumulative distribution function of Erlang

distribution.

10.9 ERLANG DISTRIBUTION 335

performed to determine the probability of packet loss or delay, according to
various assumptions made about whether blocked calls are aborted (as given
by the Erlang B formula) or queued until served (as given by the Erlang C
formula).

The Erlang B formula assumes an infinite population of sources (e.g.,
telephone subscribers), which jointly offer traffic to N servers. The rate of
arrival of new calls is assumed to be equal to a constant value l. The rate of call
departure is equal to the number of calls in progress divided by the mean
call holding time, say h. Erlang B formula determines the blocking probability
in a loss system, where a request for resources should be aborted if it is not
served immediately. This means that such systems do not queue requests, and
blocking occurs when a new request arrives from a source and finds all the
servers already busy. The Erlang B formula computes the probability of call
loss as follows:

PðN; lhÞ ¼ ðlhÞ
N

N!

Xn
i¼0
1

ðlhÞi
i!

0
B@

1
CA

1

:

To compute the Erlang formula, tables are built based on the following
recursive relations:

Pð0; lhÞ ¼ 1

PðN; lhÞ ¼ lhPðN � 1; lhÞ
N þ lhPðN � 1; lhÞ

where N is the number of resources under request and lh is the total amount of
traffic offered in Erlangs.

Similarly, the Erlang C formula assumes an infinite population of sources,
which jointly offer traffic of lh Erlangs to N servers. Additionally, a request
arriving will be queued if the all the servers are found busy. Moreover, an
unlimited number of requests might be held in the queue. Erlang C formula
determines the probability of queueing offered traffic, assuming that blocked
calls stay in the system until they are served:

PðWÞ ¼ an

n!
� n

n� a

Xon

i¼0

ai

i!
þ an

n!
� n

n� a

 ! 1

; a ¼ lh

where a is the total traffic offered in units of Erlangs, n is the number of
servers, and P(W) is the probability that a customer has to wait for service.
Note that the Erlang unit is a dimenionless unit used generally in telephone

336 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

networks as a statistical measure of the volume of telecommunication
traffic.

10.10 BETA DISTRIBUTION

Beta distributions have two free parameters, which are labeled according to one
of two notational conventions. The beta probability density function is given by:

f ðx; a; bÞ ¼ 1

Bða; bÞ x
a 1ð1� xÞb 1; Bða; bÞ ¼

Z
ta 1ð1� tÞb 1dt

f ðx; a; bÞ ¼ Gðaþ bÞ
GðaÞGðbÞ x

a 1ð1� xÞb 1

where G is the gamma function [11]. The expected value and variance of a beta
random variate X with parameters a and b are given by the expressions:

EðXÞ ¼ a
aþ b

s2ðXÞ ¼ ab

ðaþ bÞ2ðaþ bþ 1Þ
The cumulative distribution function is given by:

Fðx; a; bÞ ¼ gðx; a; bÞ
Gða; bÞ

where gðx; a; bÞ is the incomplete beta function.
Let us have n observations ðx1; : : :; xnÞ and let x and s be the sample mean

and sample standard deviation, respectively:

x ¼ 1

n

XN
i¼1

xi; s2 ¼ 1

n

XN
i¼1
ðxi � xÞ2

The method of moments estimates the parameters as follows:

a ¼ xðxð1� xÞ
s2

� 1Þ

b ¼ ð1� xÞ xð1� xÞ
s2

� 1

� �

10.10 BETA DISTRIBUTION 337

Several generalizations have been proposed to the beta distribution [12].
Examples of generalizations include two random variables as defined by the
following two probability density functions:

� g1ðx; a; b; p; qÞ ¼ aj j
bapBðp; qÞ x

ap 1ð1� ðx
b
ÞaÞq 1; for 0oxaoba; a > 0;

p > 0; q > 0

� g2ðx; a; b; p; qÞ ¼ aj jxap 1

bapBðp; qÞð1þ ðx
b
ÞaÞp q ; for 0oxo1; a > 0; p > 0;

q > 0

The generalized beta variables of first kind, g1, include Pareto and gamma
and some other distributions. For example, the Pareto case is deduced by
Pareto(x, b, p)= g1(x,� 1, b, p,� 1) and the gamma distribution can be
deduced from lim

a!0
g. In addition, the generalized beta of second kind, g2, nests

many important distributions as special cases (or limiting cases), including the
gamma, the exponential, the Weibull, the lognormal, and some other
distributions.

Finally, let us mention that the beta distribution and its generalized
distributions have been shown to be highly useful in the study of family
income, daily stock returns, and the estimation of the slope of regression
models (Figure 10.9). In addition, it can be used as a rough model in the
absence of data distribution of a random proportion such as the proportion of

3.5

f

3

2.5

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5

(a) Probability density function

0.6 0.7 0.8 0.9 1 x x

��	�0.5
��1, 	�2

��4, 	�1

F1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5

(b) Cumulative distribution function

0.6 0.7 0.8 0.9 1

��	�0.5
��1, 	�2

��5, 	�1

FIGURE 10.9. Beta probability density function and cumulative distribution function.

338 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

defective items in a sample, portion of frames/packets that need to be
retransmitted, and part of remote procedure calls (RPCs) taking more than a
particular time.

10.11 BINOMIAL DISTRIBUTION

10.11.1 Definition

Thebinomial distribution is the discrete distribution that is known tobe associated
with the problem that studies number of 1 in a sequence of n independent {0,1}
experiments, where the result yields success with a given probability p. Such a
success/failure experiment is also called a Bernoulli trial. This means that, when
n=1, then the binomial distribution is the Bernoulli distribution (Figure 10.9).
Therefore, the binomial distribution models the total number of successes in
repeated trials from an infinite population under the following conditions:

� Only two outcomes are possible on each of n trials.

� The probability of success for each trial is constant.

� All trials are independent of each other.

A random variable X following the binomial distribution with parameters n
and p (e.g., number of successes in n independent success/failure experiment)
would have a probability of getting exactly k successes given by the probability
mass function (pmf), f, defined by:

f ðk; n; pÞ ¼ n

k

� �
pkð1� pÞn k

for all k=0, 1, 2,y,n

where
n

k

� �
is the binomial coefficient is read as ‘‘n choose k,’’ also denoted as

C(n, k), nCk, or
nCk. The formula can be stated as follows. Because k successes

can occur anywhere in a sequence of n events, provided that krn, the

probability of k successes knowing their location is given by pkð1� pÞn k.
The formula follows from the fact that the number of possible locations of k

successes within a sequence of n events is equal to
n

k

� �
.

Because the probability of computing the probability of n� k successes,
knowing that the probability of a success is equal to 1� p, is nothing but the
probability of having n successes, knowing that the probability of a success is
equal to p, one can deduce that the pmf, f ð�Þ, satisfies the following relation:

f ðk; n; pÞ ¼ f ðn� k; n; 1� pÞ:

10.11 BINOMIAL DISTRIBUTION 339

Reference tables for binomial distribution probability computation are set
up. The cumulative distribution function can be defined as follows:

Fðk; n; pÞ ¼ PðX � kÞ ¼
Xk
j¼0

n

j

 !
pjð1� pÞn j

provided k is an integer and 0= k= n. Figure 10.10 shows the pmf and CDF
for the Bionomial distribution.

Let us finally notice that Bernoulli has derived the binomial distribution in
early times (about 1713), and Pascal had considered the special case where
p=½ earlier than he did.

10.11.2 Properties

Mean and deviation. Let X be a binomial distributed random variable
(denoted by X � Bðn; pÞ), and the expected value and standard deviation of
X are given by:

EðXÞ ¼
Xn
k¼0

kPðX ¼ kÞ ¼
Xn
k¼0

k
n

k

� �
pkð1� pÞn k

¼
Xn
k¼1

np
n� 1

k� 1

 !
pk 1ð1� pÞn 1 ðk 1Þ ¼ np

Xn 1

j¼0

n� 1

j

 !
pjð1� pÞn 1 j ¼ np

p�0.5,
n�24

p�0.75,
n�32

p�0.5,
n�40

p�0.5,
n�24

p�0.75,
n�32

p�0.5,
n�40

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

0.9

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.1

0
0 5 10 15 20

(a) Probability mass function

25 30 35 40x x

f f

0 5 10 15 20

(b) Cumulative distribution function

25 30 35 40

FIGURE 10.10. Binomial pmf and cumulative distribution function.

340 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

s2ðXÞ ¼ EððX � npÞ2Þ ¼ npð1� pÞ:
The variance can be computed directly or by using the following remarks:

� For n=1, it is easily proven that:

s21 ¼ ð1� pÞ2pþ ðO� pÞ2ð1� pÞ ¼ pð1� pÞ
� Now suppose that n is general. Because the trials are independent, we may
add the variances for each trial, assuming that X is the sum of n
independent Bernoulli variables. The following holds:

s2 ¼
Xn
k¼1

s21 ¼ npð1� pÞ

Approximation. Assume that if the parameter is large enough (e.g., in some
sense such as n (p� 1)o10), the binomial distribution B(n, p) can be approxi-
mated by the normal distribution N (np, np(1� p)). In addition, the binomial
distribution converges to the Poisson distribution as the number of trials n grows
to infinity, whereas the product np remains fixed. This means that either p is
assumed nonconstant or p is taken sufficiently small. Therefore, the Poisson
distribution with parameter l= np can be used as an approximation to B(n, p).

Practical experimentations show that we can obtain good approximations in
the following cases:

� If n W20 and npW10, then Nðnp; npð1� pÞÞ � Bðn; pÞ
� If n W20 and po0.05, then ExpðnpÞ � Bðn; pÞ
� If n W100 and npo10, then ExpðnpÞ � Bðn; pÞ.

Parameter Estimation for the Binomial Distribution. Parameter estimation
is the process of determining the parameter, p, of the binomial distribution
that suits well a given set of experiments of a binomial distributed random
variable X. Let us have n observations ðx1; : : :; xnÞ, then p can be approxi-
mated by:

p̂ ¼ 1

n

XN
i¼1

xi:

10.11.3 Negative Binomial Distribution

In its simplest form, the negative binomial distribution models the number of
successes before a specified number of failures are reached in an independent

10.11 BINOMIAL DISTRIBUTION 341

series of repeated identical trials. Its parameters are the probability of success in
a single trial p and the number of failures, which is denoted by r. A special case
of the negative binomial distribution, when r ¼ 1, is the geometric distribution,
which models the number of successes before the first failure as explained in a
previous section. Typically, parameter r can take on noninteger values. The
negative binomial has no interpretation in terms of repeated trials; but, it is
suitable in modeling count data.

When the r parameter is an integer, the negative binomial probability
distribution function is given by:

f ðk; r; pÞ ¼ rþ k� 1

k

� �
prð1� pÞk

When r is not an integer, the binomial coefficient in the definition of the
probability mass function is replaced by an equivalent expression using G
function. This gives:

f ðk; r; pÞ ¼ Gðrþ kÞ
GðrÞGðkþ 1Þ p

rð1� pÞk:

10.12 CHI-SQUARE DISTRIBUTION

10.12.1 Definition and Properties

The chi-square distribution (also referred to as w2 distribution) is one of the most
widely used distributions in statistical significance tests [13]. It is useful because
under reasonable assumptions, easily computed quantities can be proven to have
distributions that can be approximated by w2 distribution if the null hypothesis is
correct [15, 16]. The w2 distribution has one parameter, denoted by k, which is a
positive integer that specifies the number of degrees of freedom as follows:

Consider k random variables Xi, irk, which are independent and normally
distributed with expected value zero and standard deviation 1, then the random
variable X defined by:

X ¼
Xn
k¼1

Xk

is a w2 distributed random variable. (This can be written as X � w2k). The w2

distribution is a special case of the gamma distribution. The pdf of the w2

distribution f(-,-) is defined by:

f ðx; kÞ ¼
1

2k=2Gðx=2Þ x
1þk=2e x=2; x � 0

0 ; xo0

8<
:

where G denotes the gamma function.

342 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

The cumulative distribution function of the w2 distribution X is:

Fðx; kÞ ¼ PðX � xÞ ¼
Z x

0

1

2k=2Gðt=2Þ t
1þk=2e t=2dt

¼ PðX � xÞ ¼ gðk=2; x=2Þ
Gðk=2Þ

where g(-,-) is the lower incomplete gamma function. In addition, the expected
value of a random variable having chi-square distribution with k degrees of
freedom is k and the standard deviation is 2k

p
.

Let now X be a w2 distributed random variable of k degrees of freedom.
When k goes to infinity, the distribution of X goes to the normal distribu-
tion. In fact, it has been shown that 2X

p
is approximately normally

distributed with an expected value equal to 2k� 1
p

and a standard
deviation equal to 1.

It is worth noting that tables of the w2 distribution are widely available and
that the function is included in many spreadsheets and statistical packages. The
distribution was first derived by Karl Pearson in 1900. In Pearson’s original
paper, he used the character w2 for the sum. Ever since, statisticians and
molders have started to refer to this distribution as the chi-square distribution.
The w2 distribution is used whenever a sum of squares of normal variables is
involved, for instance, to model sample variances. Figure 10.11 shows the pdf
and CDF of the chi-square distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4

(a) Probability density function

5 6 7 8

k�1
k�3

k�5

x

f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4

(b) Cumulative distribution function

5 6 7 8

k�1
k�3

k�5

x

f

FIGURE 10.11. Chi square probability density function and cumulative distribution

function.

10.12 CHI SQUARE DISTRIBUTION 343

10.12.2 Related Distributions

Inverse-chi-square distribution. The inverse-w2 distribution is the distribution of
a continuous random variable whose inverse has a w2 distribution. Its pdf is
defined by:

f ðx; kÞ ¼ 1

2k=2Gðk=2Þ x
1 k=2e 1=2x; x > 0:

Chi distribution. The w distribution has only one parameter, denoted by k,
which specifies the number of degrees of freedom (i.e., the number of Xi)
involved in the definition of the related variable. The probability density
function and the cumulative distribution function of a w distributed function
are expressed as follows that:

f ðx; kÞ ¼ 21 k=2

Gðk=2Þ x
k 1e x2=2 and Fðx; kÞ ¼ gðk=2; x2=2Þ

where g (k, x) is called the regularized gamma function. The following
expressions can be easily computed for the expected value and variance:

m ¼ 2
p Gððkþ 1Þ=2Þ

Gðk=2Þ ; s2 ¼ k� m2

This distribution comes when a k-dimensional vector’s orthogonal compo-
nents are independent and each follows a standard normal distribution. The
length of such a vector will then have a w distribution.

F-distribution. The F-distribution is a continuous probability distribution,
also called the Fisher-Snedecor distribution. It is defined using two w2

distributed variables, X1 and X2, as follows:
Let X be the random variable defined below:

X ¼ k2X1

k1X2

Then X has an F distribution if X1 or X2 has a w2 distribution with k1or k2,
respectively. In addition, X1 and X2 should be independent. The F-distribution
arises frequently as the null distribution of a test statistic, and most notably in
the analysis of variance.

The pdf of an F-distributed random variable X(X � Fðk1; k2Þ) is given by:

f ðx; k1; k2Þ ¼ 1

xBðk1=2; k2=2Þ
k1x

k1xþ k2

� �k1=2 k2

k1xþ k2

� �k2=2

where x is a non-negative real value, d1 and d2 are the degrees of freedom, and B
is the beta function.

It is useful in hypothesis testing and can be applied to model the ratio of
sample variates, for example, in the F-test for regression analysis of variances.

344 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

10.13 STUDENT’S T DISTRIBUTION

The t-distribution (or Student’s t-distribution) is a probability distribution that
is used in the problem of estimating the mean of a normally distributed
population when the sample size is small. It was discovered by William V.
Gosset, [14–16] through his work at the Guinness brewery. The t-distribution is
a family of curves depending on a single parameter (the degrees of freedom). As
the degree of freedom I½ goes to infinity, the t-distribution converges to the
standard normal distribution. Suppose that n independent random variables
X1,y,Xn that are normally distributed with expected value m and standard
deviation s and let Xn and Sn be the their sample mean and sample standard
deviation:

Xn ¼ 1

n

Xn
k¼1

Xk;Sn ¼ 1

n� 1

Xn
k¼1
ðXk � XnÞ2

It can be easily shown that the variable Z can be defined by:

Z ¼ n
p
s
ðXn � mÞ

and is normally distributed with mean 0 and variance 1, because the sample
mean Xn is normally distributed with mean m and standard deviation s

n
p . The

variable T defined by:

T ¼ n
p
Sn
ðXn � mÞ

is shown [14] to have the following probability density function:

f ðxÞ ¼ Gðn=2Þ
ðn� 1Þpp

Gððn� 1Þ=2Þ ð1þ x2=ðn� 1ÞÞ n=2

The distribution of T is called the t-distribution and parameter (n� 1) is
called the number of degrees of freedom. It can be observed that the
distribution depends only on n and not m or s. This feature makes
the t-distribution special in theory and practice. For a t-distribution with
n degrees of freedom, the expected value is 0, and its variance is (n� 1)
(n� 3) if n W3.

The t-distribution is related to the F-distribution in the following way. The
square of a t-distributed random variable with n� 1 degrees of freedom is an F
distribution with n� 1 degrees of freedom.

Confidence intervals based on t-distribution: Suppose the number a is
chosen such that:

Pð�aoToaÞ ¼ b

10.13 STUDENT’S T DISTRIBUTION 345

where T is t-distributed with n� 1 degrees of freedom. This inequality is
equivalent to

PðXn � Sn

n
p aomoXn þ Sn

n
p aÞ ¼ b

Therefore, we can conclude that the interval ½Xn � Sn

n
p a; Xn þ Sn

n
p a� is a

b-percent confidence interval for m. There are special tables available for
t-distribution for different degrees of freedom values [14]; See Appendix.

10.14 EXAMPLES OF APPLICATIONS

Noise plays an important role in telecommunication systems and networks. In
theory, it determines the theoretical capacity of the communication channel,
whereas in practice it estimates the number of errors occurring in a digital
communication system using the channel. We will consider in this section how
the noise determines the error rates. Two subsections will be used for this. In
the first subsection we provide a description of noise. In the second subsection,
we investigate how digital communication allows high fidelity. The Binary
Phase-Shift-Keying (BPSK) system, which is a digital modulation scheme, will
be considered as an illustrative example. Finally, we describe how the
bandwidth of the channel carrier may be altered.

10.14.1 Noise Description

Noise is a random signal in the sense that we cannot predict its value and can
only make statements about the probability of it taking a particular value, or
range of values. The probability density function f(x) of a random signal, or
random variable/variate x is defined to be the probability that the random
variable x takes a value between x0 and x0+ dx. We write this probability as
f ðxÞ ¼ Pðx0oxox0 þ dxÞ. The probability that the random variable will take
a value between u and v is then defined as the integral of the probability density
function f over the interval [u, v]:

PðuoxovÞ ¼
Z v

u

f ðtÞdt

If we want to know the probability of, say the noise signal N(t) having the
value 7n, we would evaluate:

Pð�voxovÞ ¼
Z v

v

NðtÞdt

Many naturally occurring noise sources can be described by a normal or
Gaussian random variable as zero-mean, e.g., white noise. The statement that
noise is zero-mean says that on average the noise signal takes the value zero.

346 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

Assuming that the noise is zero mean, we compute the probability Pð�voxovÞ
using the following expression:

Pð�voxovÞ ¼ 1

p
p

Z v

v

e t2dt ¼ crf ðvÞ

where erf ðxÞ ¼ 2
p
p
R x
0 e t2dt is called the error function. The integral is difficult to

evaluate and is approximated by use of tables that exist for various value of x.
The signal-to-noise ratio (SNR) is an important quantity in determining the

performance of a communication channel. The noise power referred to in the
definition of SNR (or S/N) is the mean noise power. It can therefore be
rewritten as:

SNR ¼ 10log10ðS=s2Þ dB
where S is the mean signal power.

10.14.2 Error Estimation

In the absence of noise, the signal, V, from a BPSK system can take one of two
values 7n. In the ideal case, if the signal is greater than 0, then the value that is
read is assigned a 1. If the signal is less than 0, then the value is read as 0. When
noise is present, this distinction becomes blurred. There is a finite probability of
the signal dropping below 0, and thus being assigned 0, even though a 1 was
transmitted. When this happens, we say that a bit-error has occurred. The
probability that a bit-error will occur in a given time is referred to as the bit-
error rate (BER). In actuality, we may decide that our threshold of deciding
whether the signal is interpreted as a 0 or a 1 is set at v/2, such that any signal
detected between a 0 (is read if –v oV o0) and a 1 is v oV o0.

We assume (without loss) that the signal V, has the signal levels 7n noise
N of variance. The probability that an error will occur in the transmission of a
1 is:

PðN þ vo0Þ ¼ PðNo� vÞ

¼ 2

p
p

Z v

1
e t2dt ¼ 1

2
ð1� crf ðvÞÞ ¼ 1

2
crf ðvÞ:

Similarly, the probability that an error will occur in transmission of a 0 is
given by:

PðN � v > 0Þ ¼ PðNovÞ

¼ 2

p
p

Z 1
v

e t2dt ¼ 1

2
crf ðvÞ:

This result guarantees the expression for the probability of error without
reference to which value (1 or 0) is transmitted. It is usual to write these

10.14 EXAMPLES OF APPLICATIONS 347

expressions in terms of the ratio of (energy per bit/ (noise power per unit Hz),
En. The power S in the signal is on average v2, and the total energy in the
signaling period T is v2T. The average energy per bit is, therefore,

E ¼ ðv2T þ v2TÞ=2 ¼ v2T

For BPSK, the signaling period is half of the reciprocal of the bandwidth B
(B=1/2T). Therefore, we have:

PðerrorÞ ¼ 1

2
crfc

E

En

r� �
:

Similarly, other digital modulation techniques can be addressed. For
example, it can be shown that Quadrature Phase-Shift Keying (QPSK) has
twice the error probability of reflecting the fact that with a QPSK, there are
more ways an error can occur. It can also be stated that the narrow-band
Frequency-Shift Keying (FSK) has an error probability rather worse than
QPSK.

Incoherent demodulation schemes always have a higher probability of error
than coherent schemes. Incoherent schemes produce an output proportional to
the square of the input. Power detection always decreases the SNR. To see this,
suppose the input, X, is of the form X=V+N. The input SNRin is:

SNRin ¼ V2

N2

Considering the square of the input signal V, the output is X2 ¼ ðV þNÞ2:
Assume the SNR is large, with respect to N2, and the SNR of the output is
determined by:

SNRout ¼ V4

ð2VNÞ2 ¼
V2

ð2NÞ2 ¼
SNRin

4
:

This decrease in the signal-to-noise ratio induces an increase in the error
probability. The detailed analysis is beyond the scope of the section. Although
poorer, however, their performance is good this. This explains the widespread
use of incoherent FSK.

Error rates are usually quoted asBERs.The conversion fromerror probability
to BER is numerically simple. However, the conversion assumes that the
probabilities of errors from bit to bit are independent. This may be considered
a reasonable assumption. In particular, a loss of timing can cause multiple bit
failures that can increase the BER. When signals travel along the channel, they
are attenuated. As the signal is losing power, the BER increases with the length of
the channel. Regenerators, when placed at regular intervals, can consistently
reduce the error rate over long channels. To determine the BER of the channel
with g regenerators, it is simple to calculate first the probability of no error. This

348 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

probability is the probability of having no error over one regenerator, raised to
the gh power:

P(No error over g regenerators)= (1�P(error))g.

Assuming the regenerators are regularly spaced and the probabilities are
independent. The BER is then determined simply by:

P(error over g regenerators)=1�P(No error over g generators).

10.15 SUMMARY

In this chapter, we have reviewed the aspects of the commonly used distribu-
tions in modeling and simulation of computer and telecommunication systems.
Some of these distributions are continuous whereas the others are discrete.
Among the major probability distributions that are used to model computer
and telecommunication systems, we have investigated the exponential, Poisson
distribution, uniform, normal, Weibull, Pareto, geometric, beta, binomial,
gamma, Erlang, chi-Square, chi-distribution, inverse chi-distribution, F, and
Student’s t-distribution. Case studies and applications of such stochastic
distributions have been presented. In particular, case studies have been given
to show how these distributions can be used to determine the error estimation
and the noise description on a communication link.

REFERENCES

[1] N. Balakrishnan, and A. P. Basu, ‘‘The Exponential Distribution: Theory,

Methods, and Applications,’’ Gordon and Breach, New York, 1996.

[2] J. H. Ahrens, and U. Deiter, ‘‘Computer methods for sampling from Gamma, Beta,

Poisson and Binomial Distributions,’’ Computing, Vol. 12, pp. 223 246, 1974.

[3] Wlodzimierz B. ‘‘Normal Distribution: Characterizations with Applications,’’

Lecture Notes in Statistics, Vol. 100, 1995.

[4] M. Abramowitz, and I. A. Stegun, (eds.) ‘‘Handbook of Mathematical Functions

with Formulas, graphs, and mathematical tables,’’ Dover, New York, 1962.

[5] N. L. Johnson, ‘‘An Approximation to the Multinomial Distribution: Some

Properties and Applications’’, Biometrika, Vol. 47, pp. 93 103, 1960.

[6] W. Weibull, ‘‘A Statistical Distribution Function of Wide Applicability’’ Journal of

Applied Mechanics Vol. 18, pp. 293 297, 1951.

[7] H. J. Malik, ‘‘Estimation of the Parameters of Pareto Distribution,’’ Metrika, Vol

15, pp. 126 132, 1970.

[8] A. C. Atkinson, and M. C. Pearce, ‘‘The Computer Generation of Beta, Gamma

and Normal Random Variables,’’ Journal of the Royal Statistical Society, A, Vol.

139, pp. 431 461, 1976.

REFERENCES 349

[9] G. Arfken, and H. Weber, ‘‘Mathematical methods for physicists,’’ Harcourt/

Academic Press, 2000.

[10] A. K. Erlang, ‘‘Solution of Some Problems in the Theory of Probabilities of

Significance in Automatic Telephone Exchanges’’, The Port Office Electrical

Engineers Journal, Vol. 10, pp. 189 197, 1917.

[11] M. Evans, N. Hastings, and B. Peacock, ‘‘Beta Distribution.’’ In ‘‘Statistical

Distributions, 3rd edition’’, pp. 34 42, Wiley, New York, 2000.

[12] J. B. McDonald, and Y. J. Xu, ‘‘A generalization of the beta distribution with

applications’’, Journal of Econometrics, Vol. 66, Nos. 1 pp. 133 152, 1995,

[13] E. B. Wilson, and M. M. Hilferty, ‘‘The Distribution of Chi Square,’’ Proceedings.

of the National. Academy of Sciences USA, Vol. 17, pp. 688 689, 1931.

[14] W.S. Gosset, ‘‘The Probable Error of a Mean,’’ Biometrika, Vol.6, No. 1, pp. 1 25,

1908.

[15] M. S. Obaidat, and G. I. Papadimitriou, ‘‘Applied System Simulation: Methodol

ogies and Applications’’, Springer, New York, 2003.

[16] G. I. Papadimitriou, B. Sadoun, and C. Papazoglou, ‘‘Fundamentals of System

Simulation,’’ in ‘‘Applied System Simulation: Methodologies and Applications,’’

(M. S. Obaidat and G. I. Papadimitriou, Eds.), Springer, New York, 2003.

EXERCISES

1. The hazard rate function r(�) (or failure rate function) is defined as
follows. Let X be a continuous random variable with probability density
function f(t) and cumulative distribution function F(t) =P(X o t).
Then r(t) is formally defined by r(t) = f(t)/F(t).

a. Consider the probability that a t-year old item will fail during the next
dt seconds. Show that PðX 2 ½t; tþ dt½ X > tÞ ¼ rðtÞdtj

b. Assume that r(t) is constant; show that f(t) is the exponential
probability distribution function.

c. Assume that X is exponentially distributed (XEExp(l), compute
E(X|XWt).

2. Let X be a discrete random variable with the geometric distribution with
p=1/3.

a. Compute the probability P(XWn).

b. Show that EðX > nþ k X > nÞ ¼ PðX > kÞj
3. Consider a random variable X that represents the number of trials until

the first success. Assume that each trial is a success with probability p. X
is distributed geometrically. Assume also that a trial occurs every d steps
(instead of every step). Let Y be the time until the first success.

a. Determine the distribution of Y.

b. Show that P(YWt)= e pt.

4. Assume that given two exponentially distributed independent random
variables X1 and X2 such that X1 E Exp(l1) and X2 E Exp(l2).

350 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

a. Show that PðX1oX2Þ ¼ l1
l1þl2.

b. Let X=min(X1, X2); show that X1 E Exp(l1+ l2).
5. Consider two Poisson processes X1 and X2 having rates l1 and l2,

respectively. Define the merge process X as the process studying the
arrival of all events related to X1 and X2.

a. Show that X is a Poisson process with rate l1+ l2.
b. Reversely, let X be a Poisson process with rate l. Assume the each

event related to X is classified as type 1 with probability p and as
type 2 with probability (1� p).Then show that type i events consti-
tutes a Poisson with rate li. Show that li= lp and li=(1� p).

c. Let N1(t) for i=1, 2, be the number of type i events. Compute the
joint probability P (N1(t) = n1, N2(t) = n2) that there are ni events
of type i, by time t, for all i.

d. Consider now that time interval [0, t] is subdivided into interval of
length d. Show that the probability P(more than 2 type 1 arrivals in
any interval) tends to 0 as d tends to 0.

6. Consider a stream of packets arriving according to a Poisson process
with rate l per second. Suppose each packet is of type 1 with probability
5% and of type 2 with probability 95%. Given that 100 type 1 packets
arrived during the previous second:

a. What is the expected number of type 2 packets which arrived during
the previous second?

b. What is the probability that 2000 type 2 packets arrived during the
previous second?

c. Assume now that the type 1 packets arrive according to a Poisson
Process with rate l1=30 packets/s, type 2 packets arrive according to
a Poisson Process with rate l2=10 packets/s, and the streams are
statistically multiplexed into one stream. Suppose we are told that 60
packets arrived during the second. What is the probability that exactly
40 of those were type 1?

7. Suppose packets arrive according to a Poisson Process with rate l and
that by time 30 s 100 packets have arrived. What is the probability that
20 packets arrived during the first 10 s?

8. The number of packets per unit time arriving at a node in a commu-
nication network is a Poisson random variable X with rate having an
exponential distribution (X E Exp(l)). Find the minimum mean square
error estimation of the rate l given the observation X.

9. Consider an additive noise channel with input signal represented by a
randomvariableXhaving auniformdistribution (XEU(0, 1)) andoutput
signal Y=X +Z, where Z is a Gaussian noise with variance
proportional to the signal, i.e.,XEU(0, 1) Z|{X=x}EN(0,ax)Z|{X=x}
for some constant a>0. Find the minimummean square estimation ofX
given Y.

EXERCISES 351

10. Let X be a discrete random variable (rv) whose range is equal to the set
of all integers 0, 1, 2, 3,y
a. Show that EðXÞ ¼ P1

n¼1
PðX > nÞ.

b. Show that, for all integer r, we have EðXrÞ ¼ P1
n¼1

rnr 1PðX > nÞ.
11. Suppose that the time between requests to a Web server (computed in

seconds) is exponentially distributed with rate parameter 2.5

a. Give the mean and standard deviation of the time between requests.

b. Find the probability that the time between requests is less that 1.

c. Find the median, the first quartile, and the interquartile range of the
time between requests.

12. Suppose that a random variable X has the gamma distribution with
shape parameter k.

a. Show that E(X)= k and V(X)= k.

b. More generally, show that the moments can be computed using the
gamma function G by:
E(Xn)=G(n+ k)/G(k), for nW0; and

E(Xn)= k(k=1)y(k+ n� 1) if n is a positive integer.

c. Assume now that k= 3 and that the random variable X represents the
lifetime of a device (in 100- h units). Find the probability that
the device will last more than 300 h.

13. Assume that the life of a communication device follows a Weibull
distribution with parameters k=2 and l=10,000 h.

a. Determine the probability that the device lasts at least 5000 h.

b. Determine the mean time until failure of a device.

14. Let F(x) =1� 1/xa for xZ 1 where aW0 is a parameter. Show that F is
a distribution function. In particular,

a. Say whether the related density function f is given by f(x)= a/xa+1

for x Z 1.

b. Show that E(Xn)= a / (a� n) if noa and E(Xn)=N if n Za.

c. Show that the expectation and variance are given by: E(X)= a/(a� 1)
if aW1 and V(X)= a / [(a� 1)2(a� 2)] if aW2.

352 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS

CHAPTER 11

ANALYSIS OF SIMULATION RESULTS

The process of analyzing simulation outputs is a vital one, as without such an
analysis, we will not be sure that the simulator is valid and verified (V&V).When-
ever a model needs to be implemented for a real-time purpose, we need to verify
and validate the model to test whether the functionality of the model fulfills our
requirements andmeets the desired aim. This chapter provides a close look at the
various techniques used for verifying and validating a simulation model. It deals
with both the functional and structural verification processes. Major schemes in
verification and validation are investigated and discussed along with examples.
We also will shed some light on various techniques that are used in transient
removal, as transient resultsmay affect the credibility of simulation results if they
are not removed. In addition,wewill review the approaches that are employed for
terminating simulation along with the stop criteria.

11.1 INTRODUCTION

Typically, whenever a concept, strategy, or new system needs to be implemen-
ted in real time, it is first simulated using a simulation model. These models are
largely used for predicting the behavior of the system given a set of experi-
ments, operational scenarios, and conditions, as well as for solving problems.
Furthermore, the results obtained from these simulation models are used in
making decisions, which affect the individuals, the organizations, and their

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

353

infrastructures. Hence, the correctness of these models and their results are of
vital importance and need to be addressed. The process that deals with the
above concern is termed as verification and validation and is often referred to in
the literature using the abbreviation V&V [1–5]. Verification, on the one hand,
is, the process of testing the computer program that simulates the system under
study (usually called the ‘‘simulator’’) to make sure that it is doing what it is
supposed to do. In other words, it is basically troubleshooting the simulation
program (simulator). It tests to make sure that the model has been implemented
in software correctly.

Validation on the other hand is the process of checking to make sure that the
assumptions, inputs, distributions used, results, outputs, and conclusions are
valid. In other words, it is the process of making sure that the model is a
credible representation of the system or subsystem under simulation study.

It is possible that we obtain a simulation model that is

1. Valid and verified

2. Valid but unverified

3. Invalid but verified

4. Invalid and unverified

It is worth noting that in defense simulation we have also a process called
accreditation. The latter refers to the decision about the appropriateness of a
simulation for a particular application, and hence, it is about the simulator’s
credibility. Accreditation can be considered a stamp of approval from a
specialized authority [1–5].

In other words, verification deals with determining whether the implemented
model addresses the customer’s specifications, i.e., itmakes sure that the program
of the model and its implementation are correct [2–5]. Validation determines to
what level the model represents the real world truthfully to the intended
application of the model. Apart from verifying and validating the simulation
models, one more thing needs to be taken into consideration: the model
accreditation. Model accreditation deals with the certification of the model so
that it is acceptable to use for a specific purpose. Usually, models are developed
for a specific purpose, and therefore the validity of the model should be checked
so that it meets the needed aim. If the purpose of the model is to perform several
tasks, then its validity must be tested with respect to each defined task that it
should perform. Usually, various experiments are carried out to check for the
applicability of the model. The model may work perfectly fine for some set of
inputs, but not for another.Hence, amodel is considered valid for a set of inputs if
the accuracy of the output falls within the acceptable range. This accuracy needs
to be defined before the development process begins. Figure 11.1 summarizes the
relationship between validation and verification.

V&V are considered to be a part of the development process of the model. A
major issue associated with the simulator is finding out the accuracy of the

354 ANALYSIS OF SIMULATION RESULTS

simulation model with the representation of the system being studied. The
process of validating amodel for its complete domain is costly, and furthermore,
it is time consuming. To avoid such a setting, tests are conducted to the point that
confidence is gained over the model such that it is regarded to be valid for a
specific application [2–6]. If the experiment of the model for any test input
determines that the model does not support the needed accuracy, then in such a
case the model is considered to be invalid or improper. However, if the model is
truthful for the given set of experimental conditions, then it does not mean that
the model works 100% or is valid for the complete domain to which the
application is relevant. The relationship between the cost of performing the
process of model validation with respect to the value of the model to the user is
represented as model confidence, which is shown in Figure 11.2. This is
important in cases where high model confidence is required [1–4].

Verification and validation methods vary on matters like the phase of the
development life cycle, the degree of risks, abstraction degree, size, complexity,
and the availability of the resources. Many techniques exist for the verification
and validation process. Nevertheless, V&V process is still considered a challenge
to the simulationist.

11.2 FUNDAMENTAL APPROACHES

Several methods are used for deciding the validity of the simulation model. Of
these, let us discuss the major four of these fundamental approaches. One
approach that is frequently used relies on the model development group to come

Draw
inferences

Analysis and
discussions

Perform
verification

Inner
details

Perform
validation

Proxy real
world

Model
accreditation

Build
conceptual

model

Coding
conceptual

model

Programming

Real world

FIGURE 11.1. Verification and validation relationships.

11.2 FUNDAMENTAL APPROACHES 355

to a decision on whether a simulation model is valid. The simulation team/group
typically consists of a programmer, a system engineer, a mathematicians/
statistician, and a technical writer. A subjective assessment is made only on the
basis of the various results achieved, which are conducted as a part of the
development process [1–4]. Nevertheless, if the size of the simulation team is
small, then a better approach is to have the users of the system or model help in
determining the validity of the simulation model. This also gives an idea of how
credible the model is. Another methodology, which is termed as independent
verification and validation, uses a third party for finding out the validity of the
simulation model. This approach is mostly used when the simulation models are
of a huge size. The third party should have complete information about the
planned use of the simulation model to perform independent verification and
validation. This can be conducted in one the following two ways: (a) during the
development stage of the simulation model or (b) after finalizing the develop-
ment of the simulation model. In the first case, the development team gets the
required input from independent verification and validation team and tests for
the validity of the model as it is developed [1–5]. The development of the model
should not move to the next stage pending all the requirements specified for the
validity test are achieved at the current degree. In the second case, the entire set of
simulation inputs is applied by the verification and validation team on the
simulation model to test the validity of the model over its application area. The
latter scheme, which can be used for finding out the validity of model, employs a
scoring model. Scores are established in a subjective way when performing
various stages of the validation process, and these are combined together to
create the category scores and the final score for the simulation model. A
simulation model is deemed to be valid if the final and the category scores are

0% Model confidence 100%

V
al

ue
 o

f m
od

el
 to

 u
se

r

C
os

t
Value

Cost

FIGURE 11.2. Model confidence.

356 ANALYSIS OF SIMULATION RESULTS

greater than the passing score for the model. This method is used infrequently in
practice because of several reasons, which include: (a) amodel could get a passing
score; however, it has a flaw that needs to be addressed or corrected; (b) this
scheme tends to be more objective than subjective and thus cannot be relied
upon; (c) the scores may also guide to overconfidence in the model; and (d) the
scores can also be employed to compare models and choose one over another.

This section shows how the verification and validation processes are related
to the model development process [1–5]. This correlation can be viewed in the
following two different ways: (a) a straightforward view and (b) a complex
view. Let us consider the simple vision of the model development procedure.
The problem entity refers to the system that needs to be modeled. The analysis
and the modeling stage leads to the development of the conceptual model,
where as the programming and completion phase leads to the development of
the computerized model.

The conceptual model validation is defined as the process of checkingwhether
the theories and assumptions based on which the conceptual model is made are
accurate. However, the computerized model verification deals with assuring that
the implementation of the conceptual model in programming is correct. Now, if
the models output performance is truthful with the models domain, then it is
known as operational validation. Data validity guarantees that the experimental
data employed for constructing the model as well as evaluating, testing, and
experimenting with the model are adequate and convincing. Figure 11.3 shows
this in the context of the overall modeling process.

Figure 11.3 illustrates the method used to design a valid simulation model.
During this process, several versions of the model are developed before getting
the final version. To validate the model, several validation methods are used.
The connection between the verification and validation process as related to the
simulation model development is shown in Figure 11.4.

The model comprises two world, namely a real world and a simulation
world. The actual world consists of a problem entity. The actions of the system
are described by the system theory, which is achieved by monitoring the
system and by hypothesizing from the system data and outcomes. Basically,
theory validation compares the theories along with the system data and the
results over an appropriate field. This process necessitates various experiments
to be conducted on the real system.

The simulation world is the compound element of this model. The con-
ceptual model signifies a logical model of the system for a set of particular aims.
The simulation model specification deals with the written constraints of
the programming implementation of the conceptual model. The conceptual
model, which executes on a computer system, can be used to perform a set of
predefined experiments. Simulation model data and outcomes represent the
experimental data used over the simulation model to get the results [2–5].

Conceptual model validation can be defined as a process that helps in finding
out whether the principal theories and assumptions employed for modeling the
system serve the intended objectives.

11.2 FUNDAMENTAL APPROACHES 357

Specification verification guarantees that the software design and the
programming specification, as well as implementation specifications to build
up the conceptual model, are accurate. Implementation verification guarantees
that the realization of the simulation model has taken place according to the
specifications of the model. Operational validation helps in determining
whether the output obtained from the simulation model meets the required
level of accuracy and whether it functions as per the essential aims of the
system. Figure 11.4 shows how system theories and simulation models can be
developed in an iterative manner. In each iteration, the verification and
validation processes are carried out. This procedure is repeated until a valid
accepted system theory is obtained.

11.3 VERIFICATION TECHNIQUES

This section gives a description of the various verification techniques used for
verifying simulation models. Following is a brief description of the main often
used schemes.

Modeling
and analysis

Implementation using
programming

Problem/
system

Building
computer

model

Designing
conceptual

model

Operational
validation

Continuous
trials

Validating
data

Validating
conceptual model

Verifying the
computer model

FIGURE 11.3. Simplified version of the modeling process.

358 ANALYSIS OF SIMULATION RESULTS

11.3.1 Top-Down Modular Design

In this approach, the model is prearranged as a group of modules such as
procedures, subroutines, and so on. These modules cooperate with each other
with the help of interfaces that are well defined. The interface for each module
consists basically of several input and output variables or the data structures
that hold them. On specifying the module function and interface, the module
can be developed, debugged, and maintained autonomously; i.e., the model can
be divided into smaller components and each component can subsequently be
verified independently [1–4]. Every module that is divided has a dissimilar
functionality. These modules can be divided even more into submodules and so
on. This process goes on until the modules are small enough so that the errors
can be easily identified and fixed.

Specification
verification

System
(problem entity)

Theories for
the system

Summarizing

Testing

Theorizing

Authenticate
theories

REAL
WORLD

Simulation model
data/results

Theorizing

Conceptual model

modeling

Simulation model
specification

Detail specifications

Simulation
model

Programming

Conduct tests

Verifying the
model

Conceptual
model validation

Operational
validation

SIMULATION
WORLD

System data
and results

FIGURE 11.4. Verification and validation in simulation modeling.

11.3 VERIFICATION TECHNIQUES 359

11.3.2 Antibugging

In this scheme, test points are set up at different parts of the simulation
program so as to recognize errors, if any exists. This method should be used
from the inception of the design phase rather than after implementing the
model. Every time test points are employed in the program, it should be
possible to illustrate the location and the kind of error so as to fix it [3]. They
should handle unanticipated errors because test points are not written for the
whole test space. For instance, if in a recursive program, the value of a specific
variable needs to be even at any instant of time, then a checkpoint is introduced
in the program to show the value of the variable for every recursion. For each
recursion, the value is printed, which can help in finding an error.

11.3.3 Controlled Walk-Through Scheme

The major purpose of a controlled-walk-through method is to recognize the
errors and rectify them. Here, the simulator is described by the presenter to a
group of people or to a friend. Each person can then go over the program step
by step to discover the bugs in the simulation model [1–4]. Even if the person or
persons who listen to the analyst’s description are not experts in modeling and
simulation, it is possible that analyst finds the error by himself/herself.

11.3.4 Deterministic Models

Here, the events are signified by mathematical expressions. The conduct of the
model is expressed by these functions. The models are verified by randomizing
the variables. Because events are expressed mathematically, it is possible simply
to find out what would be the outcome for a specific input. By running the
simulation program, we can easily troubleshoot it if any variation different
from what is expected at the output is found.

11.3.5 Run Unique Case Studies

Here, the analyst runs various case studies including boundary conditions to
observe how the model behaves. In such cases, the input can be a single variate,
single compute node, single router, or single user. Under such test, the outcome
value of the simulation model is documented. These results are then contrasted
with these from analytical results under similar operating conditions and
environments and are then analyzed. It is worth mentioning that a model
that works fine for simple special cases may not work for more complex case
studies. So this test is necessary, however, passing it is insufficient to say that
the model is verified 100%.

360 ANALYSIS OF SIMULATION RESULTS

11.3.6 Tracing Technique

In general, a trace is a series of events that are appropriately ordered alongside
with their individual variables. The output produced from the trace can be used
in rectifying bugs in the model. The main drawback of the tracing technique is
that it causes an extra processing overhead. Traces can be offered at a variety of
levels of detail, including events, procedures, and variables [1–4]. Consequently,
the user must be permitted to select the granularity of detail in the trace and be
permitted to trace some chosen events, selected procedures as well as special
variables.

11.3.7 Graphic Displays

Normally, running a simulation program takes a long period of time. Graphical
displays can aid in monitoring the status of the execution of the simulation
model at any instant of time. Such a method helps the analyst to get more
insight into the simulation model. If the model departs from the regular
behavior, it indicates the presence of a bug, thus helping the user to trouble-
shoot the model. Instead of trying to locate errors in the program, a graphic
display can easily find such errors. It is worth mentioning here that simulation
packages that have graphical tools and animation for verification purposes are
appealing to the potential customers; the graphic features make the package
salable.

11.3.8 Test for Continuity

In this technique, the simulation program is run for several times under
different inputs. For each variate, a minor change in input must only produce
a small change in the output. However, if produced change is extreme or
huge, then it shows the existence of an error in the simulator that has to be
resolved [1–5].

11.3.9 Degeneracy Tests

Here, the simulation program is checked under different intense or boundary
conditions. Testing for such conditions can aid in finding errors that would not
have been identified otherwise. In addition, this scheme helps the user to test
whether the input parameter is within the permitted limits as dictated by the
system’s specifications.

11.3.10 Test for Consistency

In this approach, the behavior of the simulation model is checked for input
parameters that should produce similar results. For example, two nodes that

11.3 VERIFICATION TECHNIQUES 361

each send at 20 Mbps should load the network similar to four nodes that each
send at a rate 10 Mbps.

11.3.11 Seed Independence

Here, the simulation program should generate same results for different seed
values. In other words, the seed values should not affect the final conclusions.
Any deviation from this will signal some problems in the model.

11.4 VALIDATION TECHNIQUES

In this section, we will introduce the commonly used validation techniques that
are often used to validate simulation models [1–4]. It is highly recommended to
use more than one scheme as this gives better validity to the simulation model.

Below is a description of the major techniques used in the validation of any
simulation model.

11.4.1 Professional Perception

This scheme is perhaps the most widely used in the validation of simulation
models. The results from the simulation program are inspected by a profes-
sional expert who is knowledgeable of the behavior, operation, and design of
the system or subsystem under study. Such a skilled person can tell by just
looking at the values of performance metrics and related performance evalua-
tion plots under different operating conditions and input values whether the
results make sense or not. Moreover, this authority/expert can check to
determine whether the logic of the model is acceptable and whether the
relationship between the input and output is reasonable.

For example, if the mean speedup in a multiprocessor computer system
decreases with the increase in the number of processors/nodes in the system,
then something must be wrong in the model, which can be either caused by a
validation or verification problem. From our experience, we found this problem
occurs more often because of validation problems.

11.4.2 Analytic Results

This scheme relies on developing an analytic model of the system under study
using queueing theory, linear algebra, and so on. In some cases, a ready-to-go
analytic model can be found and can be easily applied to the system being
analyzed. In other cases, the analyst needs to develop the model from scratch,
which could be a challenge as a closed form expression for the required
performance metric as a function of design and input parameters is not easy to
derive.

362 ANALYSIS OF SIMULATION RESULTS

The validation of the simulation model is performed by comparing the
performance results between the analytic (theoretical) and simulation results under
same conditions or close by. It is important to note that the validation of a
simulation model by an analytic one should be considered closely, as both are
approximate. Nevertheless, it is a useful approach and definitely much better than
no validation at all, especially if the results of simulation make sense to an expert.

11.4.3 Testing Results or Real-System Measurements

In this technique, we use real-time measurements on the system itself or on a
prototype version of the system under development. This is the most credible
technique to validate a simulation model; however, in many cases, the system
may not exist physically except as a design on paper. One more thing to be added
is that measurement results may have some inaccuracies because of the setting of
measurement devices and other possible measurement errors; nevertheless, this
approach is the most accurate approach to validate simulation models.

11.4.4 Comparing with Other Simulation Models

In this technique, we compare the results of the simulation model with these
obtained from other valid simulation models performed by independent
groups. It worth mentioning that the two models may not address the same
scenarios, but at least we may find some common case studies or even close
settings. The analyst should be careful not to compare the simulation model
with an invalid model, as this may lead to mistakes.

11.4.5 Degenerate Check

Here, the model’s degeneracy behavior is tested by selecting the proper input
values.

For example, we can conduct a test to determine whether the mean number
in the queue of a single-server model keeps on increasing with respect to time
when the arriving rate is greater than the service rate.

11.4.6 Validity of the Events

In this method, occurrences of events in the simulation model are compared
with these for the real system to observe their similarity. Examples include
testing the exit rate of packets being serviced by an asynchronous transfer mode
(ATM) switch or a router.

11.4.7 Extreme Condition Tests

The outcomes of the simulation model should be reasonable for any extreme
cases of the operation of the system under study. For example, if the number of

11.4 VALIDATION TECHNIQUES 363

nodes in a multiprocessor computer system is zero, then the throughput of the
system should be zero, and the average mean delay of a packet or a message
should be zero as well.

11.4.8 Validation Using Historical Data

If a comparable type of system is being constructed, then part of the historical
data of the current system can be used to test whether the simulation model acts
as required.

11.4.9 Historical Schemes

Three major techniques of validation are rationalism, empiricism, and positive
economics schemes. In the first scheme, we assume that all the basic hypotheses
are true, and everybody concurs with it. Inferences are extracted, which are
used to construct a valid simulation model. In the case of empiricism, each
hypothesis along with its effect must be experimentally validated. As for the
third technique, positive economics, it necessitates that the model should
forecast the future and is not concerned about the assumptions.

11.4.10 Internal Validity

Numerous copies of the stochastic models are employed to determine the
degree of stochastic variability in the simulation model. If a large amount of
variability is found, then this indicates that the model is inconsistent.

11.4.11 Multistage Validation

Here, the historical methods are combined to perform a multistage validation.
The method can be divided into the following three steps: (a) the assumptions
for the simulation model are based on monitoring, theory, and common
understanding; (b) models hypotheses are validated by checking them empiri-
cally; and (c) the last step deals with contrasting the relationship between input
and output with that of a real-world system.

11.4.12 Sensitivity Analysis of Parameter Variability

Here, the values of inputs parameters of the model are varied continuously and
the output is logged. This output behavior should match that of the output of a
real system for the same parameters and conditions.

11.4.13 Predictive Validation

In this technique, the conduct of the model is forecasted ahead of time for a set
of inputs. As the model is run with these inputs, the results are logged and the

364 ANALYSIS OF SIMULATION RESULTS

behavior of the model is compared with the forecasted one to test whether they
are similar.

11.5 VERIFICATION AND VALIDATION IN DISTRIBUTED
ENVIRONMENTS

To verify simulation models in distributed environments, we need to pay
attention to the following four areas: compliance, compatibility, correctness,
and credibility. Compliance suggests that the specific simulations, which are
used for the simulating the distributed environment, must be able to suit the
protocols and constraints for that environment. In case of defense simulation,
distributed interactive simulation (DIS) protocols are employed, here, we use a
special method for validating the distributed simulation [1–5]. One more issue is
compatibility, which tests whether individual simulations have the potential to
work collectively in a well-organized manner. The difficulty here is the necessity
to get interoperability, where the accuracy of simulations working collectively
in a distributed simulation environment has to be monitored. In some cases, it
would be needed to substitute some individual simulations in the distributed
simulation so as to accomplish the required goals [3–6]. The surge of data in
distributed simulation is also significant as it guarantees the validity of the
simulation model. Credibility deals with the level of confidence with which one
can guarantee that the simulation model works correctly by generating the
results. Others refer to it as accreditation.

Validating the data that are used as input to the simulationmodel is vital [6–8]
because the conceptual model is based on such data. Input data are used to
validate the model and conduct the required experiments with the validated
model. A conceptual model can be built only when we have sufficient data so
that the theories can be extended to the problem entity that is used as a
foundation for building the model. In addition, it is used for establishing the
rational relationships among various blocks of the model [2–4, 6].

Behavioral data are used for operational validity to test whether the model
works in the proper way. Good model confidence can be achieved only if
behavioral data exists, as it helps to accomplish satisfactory operational
validity. The main concern with data is that we need to have it accurate,
appropriate, and sufficient, if any modifications are performed on the data,
then these transformations should be done properly and accurately. It is
important to mention that some good methods need to be devised for gathering
and retaining the efficient data. Proper testing of collected data has to be
performed using efficient techniques, such as internal steadiness checks, to
make sure that the available data are accurate and valid [2–8].

The validity of the conceptual model is based on the certainty that: (a) the
theories and the deductions that are used for constructing a conceptual model
are accurate and (b) the makeup of the model, its logical demonstration,
and the relationships between the entities are realistic and serves the intended

11.5 VERIFICATION AND VALIDATION IN DISTRIBUTED ENVIRONMENTS 365

intention, which the model needs to reveal. The fundamentals and assumptions
that are employed for devising the model should be checked either by analytical
analysis or statistical techniques. In addition, an assessment of the theories
should be performed to ensure that they were applied properly. For instance, if
the theory asserts the use of a Markov chain, then we have to determine
whether the system or the model exhibits Markov property and whether all the
states and their transitions are proper [4–10].

The next procedure comprises assessing all the individual submodels and
compeleting one to determine whether they are realistic and meet the intended
aim of the analysis. The assessment process of the model requires us to check if
the model and the components are represented in the proper detail: fine grain,
medium grain, or coarse grain. Moreover, it requires ensuring that the logical
and mathematical relationships have been employed for the model’s intended
purpose [8–12]. Face validation and traces are considered the prime validation
schemes that are used for the evaluation end. The former helps to test whether
the conceptual model is accurate and reasonable. This method uses flowcharts,
graphical models, or model of mathematical expressions. The use of traces
validation scheme helps to discover for each submodel and model whether the
common sense used is realistic and whether the required accuracy is main-
tained. Subsequent to conducting the validation if any mistakes are found in
the model, the conceptual model has to be revised and the process of validation
has to be conducted all over again [8–15].

Computerized model verification is a procedure that is applied to ensure that
the implementation of the conceptual model is accurate. Verification is
influenced by the programming language that is used for implementing the
conceptual model. Implementation of the model can be done using: (a)
standard general purpose programming languages, such as Java, C++, C#,
and C; (b) simulation languages, such as MODSIM III, SIMSCRIPT III,
SLAM II, and GPSS; and (c) special simulation packages that are optimized
for a certain application area, such as GloMoSim, OPNET, NS2, NS3,
QualNet, NETWORK II.5, and COMNET III.

The key advantage of using a simulation language is that it is flexible and
makes the process of building the simulation model easy; it shortens the time of
programming development when compared with standard general purpose
programming languages. In addition, most simulation languages have built-in
features that facilitate the simulation process, such as dynamic-storage alloca-
tion, random-variate-generation procedures, and garbage-collection routines,
among others.

Simulation packages are much easier to use and learn. However, they are not
flexible, and sometimes the analyst may not find the needed model available in
them that will lead him or her to build the required model from scratch using
either a general purpose or a simulation language.

Structured walk through and traces are the popular schemes, which are used
to test whether the simulation model has been programmed properly. If the
model is coded using a general purpose programming language, then the

366 ANALYSIS OF SIMULATION RESULTS

design, development, and implementation must be done using the usual
software engineering techniques, such as object-oriented design as well as
structured and modularity programming. Verification in such a case is
conducted by determining that the simulation functions such as time flow
mechanism, pseudorandom variate generator, and random-variate generator
are working properly.

Static testing and dynamic testing are the two techniques that are applied to
test the simulation model. If static examination is used, then in such a case, the
analysis of the simulation program is performed to check whether it is
reasonable to use the scheme. If dynamic testing is used, then the simulation
program is run under different operating environments and conditions, and
the results collected from the execution are used to check the correctness of
programming and its implementation. Among the techniques used are traces
and inspecting the relationship between input output using various validation
methods, among others. If we have numerous variables, then these can be
combined in a way so that the number of tests performed can be decreased
[11–18].

Operational validation is defined as procedure that is used to check the
output of the model to discover whether it has the required accuracy for
the projected aim of the simulation model behavior over the field of the model’s
application. The schemes can be employed in a subjective or in an objective way
[13–16], see Table 11.1.

A high level of model confidence can be achieved by comparing the model’s
input and output under different conditions and environments [15–22]. We can
achieve this by using the following three different techniques: (a) using graphs,
which represent the model and system behavior that can be employed to make a
subjective assessment; (b) using confidence intervals; and (c) using a method
called hypothesis tests. With these different techniques, it is often desired to use
confidence intervals and hypothesis tests for comparisons because they permit
for objective decisions. However, the issue is that these two techniques cannot
be used regularly because of the following reasons: (a) statistical suppositions
that are made here cannot be fulfilled, and if fulfilled, it is not easy to realize
them and (b) usually there is a lack of availability of data from the system under

TABLE 11.1 Operational validity categorization

Observable System Nonobservable System

Subjective Method � Contrast using graphi

cal displays

� Investigate simulation

model behavior

� Investigate simulation model

behavior

� Contrast with other simulation

models

Objective Method � Contrast using graphi

cal displays

� Contrast with other simulation

models using statistical tests

11.5 VERIFICATION AND VALIDATION IN DISTRIBUTED ENVIRONMENTS 367

study, and therefore, statistical results acquired from the existing data seem to
be pointless. Because of these issues, graphs are normally employed for the
operational validation. Next, let us explain these schemes.

In the graphical evaluation of the data-based scheme, the system and model
behavior can be characterized in the form of graphs under the set of different
operating conditions and experimental settings to determine whether the
behavior of the model meets the required accuracy. These graphs can be
characterized by three ways: histograms, box plots, and scatter plots.

An example on a scatter plot graph is described next. The key aspect that we
would like to look on while validating a model is the parameter on which we
will base the validity of the model; see Figure 11.5.

Confidence intervals are meant to be obtained for the differences in the
averages, variances, and distributions of the simulation model and system
output variables for various operating conditions. It is desired to find the
range of correctness of the models. We can identify this with the help of
confidence intervals, joint confidence regions, and simultaneous confidence
intervals. The statistical schemes employed to deal with the accuracy can be
divided into two approaches: (a) univariate statistical scheme that uses
Bonferroni inequality to find the confidence interval and (b) multivariate
statistical scheme that can be employed to develop simultaneous confidence
intervals and joint confidence regions.

Average reaction time in seconds

S
ta

nd
ar

d
de

vi
at

io
n

of
 r

ea
ct

io
n

tim
e

in
 s

ec
on

ds

2.0

1.5

1.0

0.5

0.0

Real system -

Simulation model -

0.5 1.0 1.5 2.0

FIGURE 11.5. Example of a scatter graph.

368 ANALYSIS OF SIMULATION RESULTS

We can identify two states for hypotheses:

� H0: This shows that for the different operating conditions, the model
satisfies the needed range of the accuracy; hence, the model is considered
to be valid.

� H1: This shows that for different operating conditions, the model does not
satisfy the needed range of accuracy; hence, the model is considered to be
invalid.

When testing the hypotheses, we can find two possible types of errors:
rejecting a valid model and accepting the invalid model as a valid model. The
first error type is called the model builder’s risk and is denoted by a. The second
error type is called the model user’s risk and is signified by b. At all times, the
second type of error, b, should be kept small. The degree of similarity between
the system and the model is known as the validity measure and is usually
represented by l; see Figure 11.6.

11.6 TRANSIENT ELIMINATION

In almost all simulation types, we are interested in the performance of the
simulation model at a steady state. This means that we need to remove

�*

Large
sample
size

Small sample size

P
ro

ba
bi

lit
y

of
 a

cc
ep

tin
g

m
od

el
 a

s
va

lid

	*

�*

Validity measure (�)

FIGURE 11.6. Operating characteristic curves.

11.6 TRANSIENT ELIMINATION 369

the initial part of results from the final results to have accurate conclusions.
This initial fraction is usually called the transient part/state. Identifying the
ending of a transient state is called as transient state removal. The chief issue
about transient state is that it is not easy to define the duration of the transient
state and where it actually finishes. Next, we list the main heuristic techniques
that are usually applied for transient elimination [3–9].

1. Long-run approach. In this method, the simulation program is run for a
long length to the extent that the presence of initial conditions will be
negligible or will not affect the result. This technique seems to be easy,
nevertheless, it wastes the computation resources. Moreover, it is not easy
to decide the length of the simulation run that can diminish the affect of
initial results [2–9].

2. Batch means approach. In this scheme, the simulation is executed for a
long time and then it is divided into several equal durations. Each part of
the division is termed as a batch. The mean observation in each batch is
termed as a batch mean. That is why this technique is called after batch
means. Let us divide a long run of N observations into m batches each of
size n. Assume that xij signifies the jth observation in the ith batch. Then,
the method can be summarized as follows [2–5]:

(a) A batch average is computed for each batch.

(b) The overall average is then computed.

(c) Finally, the variance of the batch means is then calculated.
The above steps (a) and (c) are replicated by varying the size of each
batch n. A graph is then plotted with variance for a range of batch sizes n.
When the variance starts decreasing, the corresponding value of n is
defined as the length of the transient interval [1–4].

3. Truncation technique. In this technique, we assume that the variability in
the transient state is higher than that in the steady state, which is usually a
valid assumption. This scheme measures the extent of the variability, such
as the highest and lowest number of observations. By mapping out these
observations on a graph, we can to observe that the trajectory becomes
stables as the simulation gets to the steady state [3–8].

4. Initial data deletion. Here, some initial observations from the sample are
removed after overall analysis. All through the steady state, the average
does not vary even though the observations are removed. However, the
average can change even during a steady state because of unpredictability
of the observations. This outcome can be minimized by averaging across
several replications [1–10].

Assume that we havem replication each of size n and let xij denote the jth

observation in the ith iterationwhere j varies from 1 to n along the time axis,
and i varies from 1 tom along the replications axis. Then, the approach can
be summarized by the following steps:

(a) By averaging across the replications, a mean trajectory is obtained.

370 ANALYSIS OF SIMULATION RESULTS

(b) Then the overall (general) mean is obtained.

(c) We assume that the length of the transient state is l. The whole
(overall) mean is found by deleting the first l observations, from the
mean path or trajectory.

(d) The relative change in the whole mean is computed.

(e) We then reiterate the steps by varying the values of l from 1 to
(n� 1). The graphs of the general average and relative modification is
plotted to see that after a specific value of l, the relative change plot
calms down. This point is called the knee, which basically gives the
length of the transient interval or marks the end of the transient state
[3–10].

5. Good initialization. In this approach, the simulation program is started in
a state that is close to the expected steady state, which is usually nonzero.
Here, the length of the transient period is reduced, thereby having a small
effect on the overall performance results. For example, the typical queue
length in the input or output buffer of an ATM switch model is not zero,
so in simulation, we initialize the queue with a typical value that is found
from historical data.

6. Moving mean of autonomous replications. This approach is similar to that
of the initial data deletion technique, except that the mean in this scheme
is determined over a moving time interval window rather than by
calculating the overall mean. Let us assume that we have m replications
each of size n. Now, let xij denote the jth observation in the ith iteration,
where j varies from 1 to n across the time axis and i varies from 1 to m
across the replications axis. The steps below summarize the method:

(a) The mean trajectory is obtained by averaging the replications.

(b) We then plot a path or trajectory for the moving average of the
successive 2k+1 values, where k represents the moving time interval
window.

Transient Interval

j

M
ea

n
 X

j

M
ea

n
 X

j

j

FIGURE 11.7. Moving average of autonomous replications.

11.6 TRANSIENT ELIMINATION 371

(c) Repeat step (b) for different values of k = 2, 3,y., and so on until a
smooth plot is obtained.

(d) The length of the transient interval is obtained by finding the knee on
this plot.

Figure. 11.7 shows two different trajectories of moving averages. The plot of
the second trajectory is smooth; hence, identifying the knee is easy.

11.7 STOPPING PRINCIPLES FOR SIMULATIONS

In simulation modeling, it is vital to simulate the system under study for a
sufficient length of time. If the simulation time is short, then the accuracy and
credibility of the results are in doubt. However, if the simulation time is too
long, then we basically waste the computation power and involved resources.
Three main approaches enable the simulation to run until the confidence
interval is reached: autonomous replications, rebirth, and batch means
schemes.

1. Autonomous replications. Here, simulation is repeated with different
seed values to obtain different replications. If we have m replications
that are conducted of size n+ nu, where nu represents the transient interval
length, then we discard the first n0 observations and use the following
steps [2–9]:

(a) For each replication, the average is calculated.

(b) The whole mean is then calculated for all replications.

(c) The variance of these replicate means is then calculated.

(d) The confidence interval is obtained by the summation of the overall
mean and the variance as shown below: Overall mean 7 Z1 a

Var (xu) = xv 7 Z1 a Var (xu), where Z1 a is found from special
tables, such as the quantile unit normal variate table.

The width of the confidence interval is inversely proportional to
the square root of mn. This means that we can get a narrower
confidence interval by either increasing m or n.

2. Rebirth technique. A rebirth or regeneration point is described as the
moment at which the system comes into the independent stage.
The interval between two such points is called the rebirth or generation
cycle. Assume that we have a regenerative simulation that contains m
phases whose sizes are N1, N2, N3yNm. The confidence interval can be
found by performing the following steps:

(a) The cycle sums are computed, and the general mean is found.

(b) The differences between expected and noticeable/observable cycle
sums are computed.

372 ANALYSIS OF SIMULATION RESULTS

(c) The variance for these differences is also calculated along with the
mean cycle length.

The confidence interval is determined by using the overall average,
variance, and average cycle length. We can notice that the rebirth
technique does not necessitate the transient interval to be eliminated.
This scheme has a few drawbacks, which include: (a) the length of cycles
is changeable, (b) most of the variance reduction techniques cannot be
employed as the length of the cycles is variable and cannot be predicted,
(c) the expected values for means and variances are not equal to the
quantity that is being estimated, and (d) it is not easy to find the rebirth
points [1–5].

3. Batch averages. In this approach, the whole length of the simulation
length is partitioned into m batches of similar size n by getting rid of the
transient interval period. The long run of (n+ nu), is partitioned into m
batches by removing the transient interval where nu signifies the transient
interval length and the following steps can be followed for this technique:

(a) For each batch, the average is determined.

(b) After finding the average for all batches, the general average is then
calculated.

(c) The variance of the batch means is then determined.
The confidence interval is then found as the summation of the entire

mean and the variance. The size of the confidence interval is conversely
proportional to square root of mn. Therefore, a thinner confidence
interval can be achieved by either increasing n or m values [1–10].

11.8 ACCREDITATION

Accreditation is the process of management or organizational judgment that
decides whether a simulation is acceptable for a specific application. It is
basically a stamp of endorsement. Others used the term certification or
confirmation to mean the same thing [1–10].

In some cases, accreditation choice for simulation entails an official process
and is usually based on V&V information developed primarily to sustain such a
choice. In other instances, the choice is casual.

In defense modeling and simulation, there are procedures that categorize
who has the power to accredit simulation models for different applications.
Related professional societies have developed policies for V&V and accredita-
tion as well as standards. The assessment for accreditation is typically
performed by a third independent party. It often contains not only verification
and validation but also matters such as documentation and the degree of ease
of use of the simulation. The short form VV&A is often used for verification,
validation, and accreditation. These days, it is common to have a track or
session in a conference as well as a section in a simulation journal called VV&A.

11.8 ACCREDITATION 373

11.9 SUMMARY

Analyzing simulation results and data in general is a vital process for any
modeling and simulation project. The V&V processes of simulation models are
considered the major processes in analyzing any simulation model. The key role
of verification and validation is to lower the risk of improper simulation use.
V&V offer information that permit the risk of unsuitable use of a simulation to
be known or to affirm the state positively.

Regrettably, no set of definite tests can easily be applied to find out the
‘‘accuracy’’ of the model. In addition, no available algorithm can be used to
determine which techniques to use [20–27]. In recent days, especially in defense
modeling and simulation, the process of accreditation has become more
important and verification, validation, and accreditation operations are now
grouped together and called VV&A.

REFERENCES

[1] M. S. Obaidat, and G. I. Papadimitriou, (Eds.), ‘‘Applied System Simulation:

Methodologies and Applications,’’ Kluwer Academic Publisher, Dordrecnt, The

Netherlands, 2003.

[2] D. K. Pace, ‘‘Verification, Validation and Accreditation of Simulation Models,’’

‘‘in M.S. Obaidat and G.I. Papadimitriou, (Eds.). Applied System Simulation:

Methodologies and Applications, Springer, New York, 2003.

[3] R. Jain, ‘‘The Art of Computer Systems Performance Evaluation’’, Wiley, New

York, 1991.

[4] L. Alawneh, M. Debbabi, F. Hassaine, Y. Jarraya, and A. Soeanu, ‘‘A Unified

Approach for Verification and Validation of Systems and Software Engineering

Models,’’ Proceedings of the 13th Annual IEEE International Symposium and

Workshop on Engineering of Computer Based Systems, pp. 409 418, March 2006.

[5] R.G. Seargent, ‘‘Verification and Validation of Simulation Models,’’ Proceedings

of the 37th Winter Simulation Conference, pp. 130 143, December 2005.

[6] T. F. Brady, and E. Yellig, ‘‘Simulation Data Mining: A New Form of Computer

Simulation Output,’’ Proceedings of the 2005 Winter Simulation Conference,

pp. 285 289, December 2005.

[7] A.M. Law, and W.D. Kelton, ‘‘Simulation Modeling and Analysis’’, 4th Edition,

Mc Graw Hill, New York, 2007.

[8] H. Reub, and L. de Moura, ‘‘From Simulation to Verification (and Back),’’

Proceedingsof the 2003Winter SimulationConference, pp. 888 896,December 2003.

[9] N. Robertsen, and T. Perera, ‘‘Automated Data Collection for Simulation,’’

Simulation Modeling: Practice and Theory, pp. 349 364, 2002.

[10] S. Narayanan, and S. A. Mcllraith, ‘‘Simulation, Verification and Automated

Composition of Web Services,’’ Proceedings of the 11th International Conference

on World Wide Web, pp. 77 88, May 2002.

[11] S. M. Ross, ‘‘Simulation, 55th Edition,’’ Academic Press, New York, 2006.

374 ANALYSIS OF SIMULATION RESULTS

[12] B. P. Zeigler, H. Praehofer, and T.G. Kim, ‘‘Theory of Modeling and Simulation,

2nd Edition’’ Academic Press, New York, 2000.

[13] S. Robinson, ‘‘A Steady State Output Analysis,’’ Proceedings of the 37th Winter

Simulation Conference, pp. 763 770, December 2005.

[14] J. M. Paul, A. J. Suppe, and D. E. Thomas, ‘‘Modeling and Simulation of Steady

State and Transient Behaviors for Emergent SOCS,’’ Proceedings of the 14th

International Symposium on System Synthesis, pp. 262 267, September 2001.

[15] P. W. Glynn, ‘‘Initial Transient Problem for Steady State Output Analysis,’’

Proceedings of the 2005Winter SimulationConference, pp. 739 740,December 2005.

[16] L. Chwif, R. J. Paul, M. Ribeiro, and P. Barretto, ‘‘Discrete Event Simulation

Model Reduction: A Casual Approach,’’ Simulation Modeling: Practice and

Theory, pp. 930 944, 2006.

[17] D. Kelton, ‘‘Statistical Analysis of Simulation Output,’’ Proceedings of the 2003

Winter Simulation Conference, pp. 23 30, December 2003.

[18] U. Pooch, and J. Wall, ‘‘Discrete Event Simulation A Practical Approach,’’ CRC

Press, Boca Raton, FL, 1993.

[19] R. Y. Rubinstein, and B. Melamed, ‘‘Modern Simulation and Modeling’’, Wiley,

New York, 1998.

[20] J. Banks, J. S. Carson, II and B. L. Nelson, ‘‘Discrete Event System Simulation’’,

2nd Edition, Prentice Hall, Upper Saddle River, NS, 2004.

[21] O. Balci, ‘‘Verification, Validation, and Testing,’’ The Handbook of Simulation,

Wiley, New York, 1998.

[22] M. S. Obaidat, ‘‘Performance Evaluation of Computer and Telecommunications

Systems,’’ SIMULATION Journal, Vol. 72, No. 5, pp. 295 303, 1999.

[23] M. S. Obaidat, ‘‘Performance Evaluation of High Performance Computing/

Computers,’’ Journal of Computer and Electrical Engineering., Vol. 26, No. 3 4,

pp. 181 185, 2000.

[24] M. S. Obaidat, ‘‘Performance Evaluation of Telecommunication Systems: Models,

Issues and Applications,’’ Computer Communications Journal, Vol. 34, No. 9,

pp. 753 756, 2001.

[25] M. Ould Khaoua, H. Sarbazi Azad, and M.S. Obaidat, ‘‘Performance Modeling

and Evaluation of High performance Parallel and Distributed Systems,’’ Perfor

mance Evaluation Journal, Vol. 60, Nos. 1 4, pp. 1 4, 2005.

[26] M. S. Obaidat, ‘‘Performance Evaluation of Wireless and Communications Sys

tems,’’ Computer Communications Journal, Vol. 29, pp. 923 925, 2006.

[27] M. S. Obaidat, ‘‘Advances in Performance Evaluation of Computer and Tele

communication Systems,’’ Simulation: Transactions of the Society for Modeling

and Simulation Journal, Vol. 83, No. 2, pp. 135 137, 2007.

EXERCISES

1. Compare and contrast verification, validation, and accreditation.

2. For the following sequence of observations, find the length of transient
interval. Show all of your work using a plot of the value versus

EXERCISES 375

observation number. 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 20, 18, 20, 22, 20,
18, 20, 22, 20, 18,y

3. What are the disadvantages of the rebirth technique as a stopping criterio
of simulation?

4. Compare and contrast various techniques that can be used for transient
elimination.

5. Locate several examples of real simulation problems or projects reported
in the literature where the validation issue is discussed. Evaluate whether
the used validation technique is adequate or not.

6. Survey the literature and find out the methods used to verify some
reported simulation models for computer systems or communication
networks. Comment on the adequacy of each approach used.

7. Accreditation of simulation models is an important issue in defense
modeling and simulation. Write a report explaining how this is performed
and show state-of-the art techniques in this area.

376 ANALYSIS OF SIMULATION RESULTS

CHAPTER 12

SIMULATION SOFTWARE AND
CASE STUDIES

Simulation software is essential for building simulation models, as selecting the
right software affects the time needed to develop the simulator and
the flexibility in running simulation experiments under different operating
and load conditions. Simulation models can be designed using regular general-
purpose programming languages, simulation languages, or simulation
packages. Designing the simulation models with regular programming lan-
guages requires much effort, as each and every task needs to be specified by the
programmer. Sometimes it is difficult to implement several scenarios, as
the languages do not have the necessary built-in features to do so. To overcome
this problem, object-oriented languages have been used more often as they are
more efficient in designing real-world entities with the modular approach as
compared with traditional structured programming languages.

The underlying concepts of these languages help the modeler to design every
possible scenario, but everything needs to be programmed from scratch. The
more the programming, the higher is the probability of errors in the simulation
program. Simulation languages have been developed to shorten the time
required to develop the simulation model. However, they are not usually as
flexible as general-purpose programming languages and are considered slower.
Simulation packages are developed for a certain application and require little
programming efforts, if not none. However, they are the least flexible, and

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

377

sometimes, you will not find the needed software module for the specific task/
protocol built into the package.
This chapter discusses the alternatives for selecting software to develop
simulation models. A comparison of the simulation languages with the
general-purpose programming languages is provided to evaluate which lan-
guages are better suited for simulation and what makes one better than the
other. A survey of commonly used simulation packages for modeling computer
and telecommunication systems is given. Finally, the chapter discusses several
case studies where some tools described have been used for simulating several
network-related protocols, topologies, and policies.

12.1 INTRODUCTION

After the conceptual model is devised in detail by showing the event flows, the
next main task ahead is the coding of the model using a selected programming
language or a simulation package. These languages can be general-purpose,
high-level languages like C++, C#, and Java, dedicated simulation languages,
such as MODSIM III and SLAM II, or special simulation packages, such as
OPNET, NS2, NS3, GloMoSim, QualNet, OMNeT++, or Network III. It is
essential to make a clever decision as to which programming tool/language
should be used for developing the simulation model based on the existing
constraints, if any [1–44].

Several aspects can affect the choice of the language/tool to be used for
developing the simulator, including the programmer’s ease of learning or
familiarity with the language, software available on the site where simulation
needs to be conducted, the complexity of the model, requirement for graphical
analysis, and time limitations. In the next sections, we will shed some light on
the different characteristics that simulation software should have. Moreover, a
brief description of how a model can be realized in the chosen simulation
language/tool or general-purpose language will be presented.

12.2 SELECTION OF SIMULATION SOFTWARE

When selecting software tools for simulating a model, we have to consider the
following issues:

� The attention should not be just on the simplicity of using the software.
Instead, we should also think about the accuracy of the software and the
level of granularity to which we can program the model. Moreover, we
need to investigate how the software can be applied to the considered
application [1–6].

� An essential principle when selecting simulation software is its executing
speed. Developing a model accurately relies on the speed of execution

378 SIMULATION SOFTWARE AND CASE STUDIES

[1-10]. This is because when a programmer starts debugging, he may need
to wait for the simulation to run up to a specific point where there is an
error.

� We need to check what features the simulation package provides, for
instance, whether it is possible to add/drop an entity.

� In addition, we need to discover whether the simulation software can be
used to link to the external code, which is written in some high-level
programming language, such as C++, Java, C#, or C. This is a vital
characteristic, as we may want to use procedures, which are developed in
some other language and that match the intended application criteria.

� We must take into consideration how does the simulation software output
the results, whether it produces a report, displays the execution in a
graphical way, or offers animation attributes of the execution with respect
to real time [2–12]. Moreover, we have to test whether the software tool
offers any support for troubleshooting.

12.3 GENERAL-PURPOSE PROGRAMMING LANGUAGES

Most simulation analysts and programmers prefer general-purpose program-
ming languages such as C, C++, C#, and JAVA for coding their simulators.
General purpose programming languages can be divided into the following
main categories:

1. Assembly languages. These languages use low-level mnemonics to model
the underlying hardware and represent computations. Assembler code is
a first-level construct of the hardware. Although assembly languages are
fast when executed; however, each processor has basically its own syntax,
addressing modes and instruction set, which make the transportability of
the code from one platform to another a major concern. In general,
assembly languages are not often used for general simulation problems.

2. Procedural programming languages. In general, a procedural program-
ming language gives a list of procedures that the program should finish to
arrive at the required state. Here, a program is represented like a
cookbook recipe. Every program has an initial state, a list of actions to
complete, and an end point. This scheme is called the imperative
programming. Integral to the concept of procedural programming is
the notion of a procedure call. Procedures, which are also called
subroutines’ or methods, are small parts of code that do a specific
function. A subroutine or a procedure is basically a list of computations
to be done. Through dividing the programming task into small sections,
procedural programming permits a section of code to be reused in the
program without the need to make multiple copies. This approach makes
it easier for programmers to comprehend and maintain program

12.3 GENERAL PURPOSE PROGRAMMING LANGUAGES 379

organization. Examples on this category of programming languages
include Fortran and Basic.

3. Structured programming languages. These languages are a special kind of
procedural programming. They offer additional tools to handle the
problems that larger programs were introducing. Here, the program is
broken into small sections of code that are simple to comprehend. The
program uses variables local to each subroutine. Moreover, structured
languages do not permit the use of the GOTO statement. The top-down
paradigm is employed in designing such programs. Successive design
iterations then put in increasing facet to the sections until the design is
done. Examples of such programming languages include C and Pascal.

Time management is an essential issue when running the simulation
program. Organizing time is simple in the case of procedural-oriented
programming languages. Typically, we have a countervariable termed
CLOCK that is set to 0 when the simulation is begun. If the simulation
model is centered on a cyclic scan, then a predetermined value is increased
for each time the clock requires to move ahead. If the simulation is based
on the event scan (also called the next-event) approach, then the increase
is added to the CLOCK based on the number of imminent events.

All of these high-level languages have good procedural or subprogram
means for simulating the execution of events. Typically, a procedure or
subroutine is defined for every event. As an example, let us consider
simulating the execution of a one-way queuing model, such as the arrival
of a customer for a specific service, the end of service, exit of a customer
from the queue, and what would occur when the queue is filled when a
new customer arrives [1–6]. Now each event is programmed using a
subroutine, which represents the variation of the system state based on
the occurrence of the events.

It is worth noting here that managing queues in C and Pascal is more
efficient when contrasted with that of old languages such as Fortran.
Although Fortran is not used often in simulation these days, we point out
here that it is inefficient in processing of lists. Furthermore, pointer
management is ineffective in Fortran because pointers are used as an
inner part of any multidimensional array. Therefore, it is not easy to
access a particular pointer and consumes a lot of time. This results in
slowing the execution speed [3–8].

One essential aspect that should be considered is that the programmer
must also code for printing the formatted results. Simulation software
packages have a built-in code for showing the outputs, whereas general-
purpose programming languages do not have such a feature. In addition,
routines for diagnosing programming errors should be designed by the
programmer.These shoulddetect errors suchas syntax errors, andundefined
variables [4–12]. To detect logical errors, the programmer should be familiar
with the results that the model produces. Simulation models that are

380 SIMULATION SOFTWARE AND CASE STUDIES

developed using general-purpose programming languages are usually less
expensive to run. Because each feature of the model has to be dealt with, the
programmer should be familiar with the fine details of the model.

4. Object-oriented programming (OOP) languages. This type of program-
ming is relatively new and is considered effective. In this paradigm, the
designer identifies both the data structures and the types of operations
that can be applied to these structures. The blend of a quantity of data
with the actions that can be carried on it is called an object. Hence, a
program is made up of a set of collaborating objects, instead of a list of
instructions. An object can save state information and cooperate with
other objects; however, usually each object has a separate and restricted
task. In OOP, a class is defined as a template from which objects are
formed. Thus, it basically portrays a set of variables and methods. These
methods can be available to all other classes or can have limited access.
Fresh classes can be obtained from a parent class. The derived ones
inherit the traits and behavior of the parent. This is called inheritance.
However, they can also be expanded using new structures and methods.
Additional classes can be added, which use the interfaces of the available
classes. The message passing scheme is used to facilitate communication
among objects.
Encapsulation is an important feature of any object-oriented language. It
refers to how the implementation specifications of a class are concealed
from all objects outside that class. Programmers can detail what informa-
tion in an object can be shared with others. Moreover, OOP has an
important attribute called polymorphism. The latter denotes that objects
of diverse types can get the same message and react in special ways. The
various objects should only have the same interface. The client or the
calling object does not need to be familiar with precisely what kind of
object it is calling; only that it has a method of a particular name with
described arguments. Typically, polymorphism is often applied to derived
classes that substitute methods of the parent class with special behaviors.
It is worth noting here that together inheritance and polymorphism make
OOP adaptable and simple to extend. OOP programs are simple to
develop and maintain. This approach is widely accepted in larger soft-
ware projects because objects can be divided between teams and devel-
oped concurrently. Examples on object-oriented languages include Java,
Visual Basic, C#, and C++.

12.4 SIMULATION LANGUAGES

Simulation languages are special programming languages that are optimized
for simulation applications. In this regard, we indentify two categories of

12.4 SIMULATION LANGUAGES 381

simulation languages: object-oriented simulation languages and traditional
simulation languages.

1. Object-Oriented Simulation Languages: Object-oriented simulation lan-
guages offer basically the same advantages as that of the normal object-
oriented languages. Among the major advantages here is that because the
language is used primarily for simulating different situations, the lan-
guage offers the system analyst a library that includes a set of modules
that are used to characterize the entities in the real setting. Essentially, all
the modeler needs to do is to reuse these modules in building the model.
The simulationist has to adjust the modules with the needed factors to
produce the required report. This is possible as such languages have built-
in routines for report generation. Furthermore, such languages permit the
modeler to develop his or her own suite of modules to satisfy model
conditions. Examples include MODSIM III, SIMSCRIPT III, and
Modelica.

2. Traditional Simulation Languages: These languages are mainly designed
for coding and executing the simulation applications. They have built-in
features and routines that make the task of the simulationist easy.
Examples on such languages include General-Purpose Simulation System
(GPSS), General Activity Simulation Program (GASP), SIMSCRIPT
II.5, and Simulation Language for Alternative Modeling (SLAM) II. In
the next section, we review the main aspects of commonly known
simulation languages.

12.4.1 Examples on Simulation Languages

This section reviews examples of popular simulation languages and reviews
their main aspects and features.

General-Purpose Simulation System Language. In 1961, Gordon introduced
the GPSS simulation language. Severral modifications have been made to
GPSS since then, and currently we have version 5 of GPSS. Here, the system is
described as a group of blocks. Any activity in the system under study
is represented with the aid of a block, and each line in the block shows a
path to the subsequent activity [5–15]. GPSS provides some preidentified
blocks, and the analysts are limited to program only with these particular
blocks. Transactions in GPSS are defined as a set of entities that bypass all the
way through the system. For example, a transaction is defined for the arrival of
jobs to a server in a client-server system. Every entity in the simulation model
has several attributes that are characterized as parameters. Part of these
attributes is employed in creating logical assessments for the blocks. Other
symbols or numbers are related with each block. To process this data, every
block gets an amount of time for the operation.

382 SIMULATION SOFTWARE AND CASE STUDIES

Transactions in GPSS use a GENERATE block to come into the system.
The information used for representing the GENERATE block is shown in
Figure 12.1.

As shown in the Figure, letters A, B, C, D, E, F, andG are the operands of the
block. The average interarrival time is given by the operand A, whereas B
represents the averagemodifier.When the first arrival generation occurs, the time
for it is given by C. The total number of arrivals to be generated is given by D
whereas E gives the priority rank for every transaction and F represents the
number of factors/parameters for every transaction. G shows the kind of
the parameter in terms of whether it is full word or half word [5–20]. In the
case where no values are given for a parameter, default values are set. Transac-
tions in GPSS use a TERMINATE block to depart the system. Figure 12.2
depicts the notation used to represent the TERMINATE block. In general, the
TERMINATE block has an operand A, which indicates how much
the termination counter is incremented.

The arrangement of the transactions is performed on a priority basis [5–28].
Priority levels can be in the range of 0–127. The transaction that has the top
priority is run first. When we experience two transactions with the same priority,
the transactions are progressed based on the order of their generation or in a first-
in, first-out (FIFO)manner. The execution of the transaction in the system can be
delayed based on two reasons [6–30]:

1. The transaction might go through an ADVANCE block that is depicted
by the notation shown in Figure 12.3. The ADVANCE block shows some
activity that takes some time such as dealing with the job by the computer
machine.

2. One more reason for which a transaction may be stopped is that a
transaction tries to enter a block if it is currently occupied by another

A, B
C, D, E, F, G

FIGURE 12.1. GENERATE block.

A

FIGURE 12.2. TERMINATE block.

12.4 SIMULATION LANGUAGES 383

transaction. Blocks execute transactions in a sequential manner until the
transaction comes on a TRANSFER block. The notation for this block is
shown in Figure 12.4.

The operand S is the selection factor that basically finds out the path that the
transaction must take. GPSS supports eight random-number generators
(RNGs), which are represented as RN1-RN8. Every RNG is a resource for
uniform random numbers and variates. The inverse transformation technique
is used to generate many types of nonuniform random variates, such as the
exponential variate.

The simulation clock in GPSS is maintained by the control program. The
progress of transactions is monitored by the following two lists: (a) the present
events sequence/chain and (b) the future events sequence/chain. Every transac-
tion includes an attribute called block departure time (BDT), which basically
specifies the time at which the transaction should depart from the current block.
Moreover, the current events chain includes the list of all transactions whose
block departure time is not as much as or equal to that of the current clock
time. All transactions whose block departure time is greater than that of the
present simulation time are saved in the future events chain list. Every time a
transaction in future events chain list has a block departure time that is equal to
that of the simulation time, the transaction is shifted to the current events chain
list. If a transaction in the current events chain list finds an ADVANCE block,
then it is moved to the future events chain list [5–9].

GPSS offers two kinds of resources for which the transactions contend:
facilities and storages. In general, a facility is a resource that may be used by
only one transaction at any instant of time, whereas a storage is a source that
may be distributed by many transactions as long as the limit of the storage is
not exceeded. Figure 12.5 depicts the block diagrams for facility and storage.

In Figure12.5, A stands for the facility or the number of storage. The SIEZE
and RELEASE blocks are used for keeping a facility, whereas the ENTER and

S

FIGURE 12.4. TRANSFER block.

A, B

FIGURE 12.3. ADVANCE block.

384 SIMULATION SOFTWARE AND CASE STUDIES

LEAVE blocks are employed for keeping the storage. The operand B in the
ENTER and LEAVE block describes the storage capacity [5–12].

To gather the statistical data on the result of performance evaluation of the
system under study, we use four control blocks to collect the required data; see
Figure 12.6. The details for these block diagrams are briefly described next.
The QUEUE block is used to enlarge the size of the queue for the transactions
that are waiting in the queue. The length of the queue is reduced whenever a
transaction departs the queue.

The MARK and TABULATE blocks are employed to find out the transit
time between two points of the model for a transaction [6–9].

The subroutines that are used to generate output in the GPSS are precoded
and formatted; therefore, the modeler does not have to worry about showing
the output. One major drawback of GPSS is that its simulation models run
slower, and therefore, they take more time to run when compared with the
models written in other high-level languages, such as C++. Nevertheless,
GPSS is considered a flexible language [6–14].

General Activity Simulation Program. The GASP simulation language was
introduced by A. Pritsker and N. Hurst. The recent version of GASP is GASP

A

A

SEIZE RELEASE

B

A

B

A

ENTER LEAVE

FIGURE 12.5. Block diagrams for storage and facility.

DEPART

A

B A

QUEUE

A

B A

B

TABULATEMARK

FIGURE 12.6. Block diagrams for gathering data.

12.4 SIMULATION LANGUAGES 385

IV. The fundamental functions of the simulation in case of GASP are
performed via the aid of a suite of Fortran subroutines. Such subroutines
are used to develop discrete, continuous, and hybrid simulation models.
Actually, GASP has integrated the discrete event simulation and the contin-
uous event simulation under a common structure [7–19]. The main categories of
the functions performed by GASP are: (a) management of the events, (b) state
variables updating, (c) saving and getting back the data, (d) initialization, (e)
gathering the data, (f) observing the programs, (g) reporting the events,
(h) calculating the statistical information, and (i) producing reports and the
random variables. These features of GASP are sustained by Fortran subrou-
tines. In addition to these subprograms, the GASP simulation language offers
an interface for the user-described subprograms [4–12]. Subprograms described
by the users are employed to simulate the events, report the errors with
messages, and produce outcomes in the required format. The user-described
modules are called stubs or dummy programs.

The multiplicative congruential random-number generation scheme is used
to generate the uniform distributions in GASP. In addition to the normal
DRAND function, which is used to generate uniform distribution, GASP
employs other functions to generate other random variates, such as the
triangular, normal, lognormal, Erlang, beta, gamma, and Poisson distribu-
tions. We can use the function that generates the Erlang variate to generate the
popular exponential distribution.

In GASP IV, time management is performed by the event scan method.
A subroutine is used to move on the simulation clock and to scan the future
events list. This method is used for discrete systems. Because GASP supports
discrete, continuous, and hybrid simulations modeling, the above scheme is
customized to go with both the continuous and hybrid simulation systems
[4–11]. Events that occur at a specific instant of time are often called ‘‘time
events,’’ and these events that occur when the system arrives at a specific state
are called ‘‘state events.’’

The EVNTS subroutine handles all events of GASP; it has a GOTO
statement that calls on the necessary routines. Because GASP has been
developed with the aid of Fortran subroutines, administrating the queues is
inefficient because Fortran does not have the dynamic functionality to enlarge
and reduce the length of the queue. As an alternative, the size of the queue must
be defined ahead of time.

The processes of collecting data as well as computing and generating the
reports are efficient in GASP. In addition to the normal output that the GASP
produces, it also offers flexibility for the user to produce the output when
needed. The only thing the user needs to do is to program the logic for
producing the output in user-described subroutines.

GASP can be installed on any computer that has a Fortran compiler, which
is a nice feature. Furthermore, programmers who are familiar with Fortran
programming language can easily write simulation programs using the GASP.
In GASP, a subroutine called ERROR is used for debugging the model. If there

386 SIMULATION SOFTWARE AND CASE STUDIES

is an illogical situation, the ERROR subroutine is invoked. When executed, the
ERROR subroutine identifies the error that caused the system to depart from
its usual behavior. Moreover, it offers a sample of the system state when the
error takes place. If the user desires to spot the errors aside from the ones that
are recognized by the ERROR subroutine, he may take in the information in a
user described subroutine called UERR.

The key benefit of using GASP is that the language provides many
subroutines that do the required functions. This means that less programming
effort is needed from the modeler/simulationist.

SLAM Language. The SLAM is the first simulation language that permitted
a modeler to devise a system explanation via any combination of three schemes
(world views). Such an incorporated construction allows the SLAM II user to
benefit from the simplicity of the process-oriented technique and expand a
model with discrete event constructs should the process-oriented method
become too limited.

SLAM is a simulation language that is written in ANSI Fortran. It is used to
model both discrete event systems and continuous systems. The recent version
of SLAM is SLAM II. As a simulation language, SLAM can use either an event
orientation or a process orientation approach for modeling the discrete
event system, whereas it uses differential or difference equations for modeling
continuous systems. The hybrid or discrete continuous systems can be modeled
by integrating the continuous oriented scheme with event or process-based
approach. In the case of the process-oriented approach, the structure of the
network is characterized by using some symbols termed nodes and branches.
Nodes are employed to model the entities, and the activities or the events
associated with the entity are represented by the branch [9–16]. The flow of
entities is managed by five nodes: CREATE, COLCT, ACCUMULATE,
TERM, and ASSIGN. A QUEUE node is used to characterize a machine or
a set of machines along with its queue. Routing entities to different queues is
done by the SELECT node. At any time, an entity matches up with a particular
criterion, the stream of the entities is ended by MATCH node. An AWAIT
node is employed to allocate a resource to an entity. As soon as the entity is
done using the resource, it bypasses via a FREE node to free the resource.
When we want to seize a resource from an entity of lower priority and assign it
to the higher priority entity, then this process is conducted by the PREEMPT
node [9–25]. The form of the resource or the availability of the number of the
resources can be modified with the help of ALTER node.

SLAM offers a suite of standard subprograms that conducts the functions
like scheduling of the events, manipulation of files, gathering of statistics, and
producing the random samples. Figure 12.7 shows SLAM organization for
discrete-event modeling. The starting condition for simulation is decided by the
user in a subroutine called INTLC. The EVENT subroutine describes what
would happen to the state of the system when a specific type of event occurs.
User-specified output reports can be produced by using the subroutine
OUTPUT; this is in addition to the standard reports that are provided by

12.4 SIMULATION LANGUAGES 387

the SLAM [14]. The subroutine COLCT is employed for generating the
statistics. Subroutines like COPY, NFIND, RMOVE, and FILEM are used
to conduct file management. The scheduling of different events is performed
using the subroutine SCHDL. Random sample distributions are produced
using the random sample functions. In addition to this, SLAM has subroutines
that perform functions like retrieving entity attributes, connecting and dis-
connecting various entities from files, producing reports, producing histograms
and graphs, tracing the entity, clearing the statistics, and reporting if they
occur; see Figure 12.7.

SLAM uses differential equations for implementing simulation programs for
a continuous model. Such equations illustrate the manners of the state
variables. Usually, the coding of these equations is performed in Fortran by

Subroutine
INTLC

SLAM
Reports

Subroutine COLCT
Subroutine COPY
Subroutine FILEM
Subroutine NFIND

Subroutine RMOVE
Subroutine SCHDL

Random Sample Functions

Main

SLAM
processor

SLAM
Initialization

SLAM
Input

Library

Subroutine
EVENT

Subroutine
OUTPUT

Event 1 Event 2 Event N

FIGURE 12.7. Organization of SLAM for discrete event modeling.

388 SIMULATION SOFTWARE AND CASE STUDIES

using the SLAM specified arrays. Figure 12.8 shows the overall organization of
SLAM for continuous simulation modeling.

The subroutine STATE is used to code the differential equations. The
INTLC subroutine is employed to describe the starting values of these
variables. As for difference equations, a fixed step size (time) is employed.
For differential equations, variable step size is used with the help of Runge-
Kutta-Fehlberg Numerical Integration scheme [14]. RECORD and VAR are
used to draw the input variables over time.

Modelica Language.Modelica is an object-oriented simulation language that
is used for hierarchical modeling of the physical systems. The chief properties of
Modelica when compared with other object oriented languages are as follows:

1. Modeling in Modelica is noncasual and is based on algebraic and
differential equations.

2. Modeling capability is expanded to multidomain; i.e., we can combine
many characteristics, such as mechanical, thermal, and electrical in a
single application model.

Subroutine
INTLC

SLAM
Reports

Main

SLAM
Processor

SLAM
Initialization

SLAM Input Statement Library
INTLC, SEVNT, RECORD,

VAR, CONTINUOUS

Subroutine
STATE

Subroutine
OUTPUT

Subroutine
EVENT

SLAM Variables
and Library

FIGURE 12.8. Overall organization of SLAM for continuous modeling.

12.4 SIMULATION LANGUAGES 389

3. The ideas of templates, multiple inheritance, and object oriented are
combined and described in a single-class construct.

Variables, local-class description, and equations are the basic building
ingredients of a class in Modelica [15]. Functions in Modelica may be thought
of as local class without equations. Reusability of the classes in Modelica is
more when contrasted to the classes in the customary object-oriented lan-
guages. When a class is instantiated and connected, the class adjusts itself to the
data-flow context. Connectors in Modelica are also normal classes. Graphical
editor is employed for developing the simulation charts. To set up a link
between different objects that are instantiated from other classes, we only have
to draw a line between them [15–20].

A Modelica program consists of only classes. Such classes hold variables or
parameters that are used to signify the data. A key difference here is that we use
equations to explain the manners of the system instead of functions. Such
equations may be taken over from other base classes or they can be written
down unambiguously for the specific class. The Connect statement may be used
to describe equations. Connect (V1, V2) stand for the fact that variables V1 and
V2 are tied. Such variables are termed connectors, and the objects are
considered connected objects.

Seven constrained class categories are in Modelica. These are type, con-
nector, model, package, function, and record. This concept is valuable because
the programmer has to identify only the class ideas. The class characteristics, its
syntax, and semantics are all alike for these seven classes [15]. Translating an
object from one kind to another is fairly simple because all that is needed is to
modify the kind of the class.

We may come across some scenarios where it would be simpler to show the
manners of the system by writing procedures instead of using equations. In
such cases, we can carry out the computations in a procedural manner. An
example on this is computing the polynomial value as the degree of the
polynomial is unknown exactly and is bound to vary continuously. To run
such scenarios, Modelica offers a special class called function that has public
inputs, public outputs, and an algorithm section wherever the procedures are
realized and no equations.

The key feature of any simulation model is the quantity of time it requires to
run the simulation model. Consequently, we have to maintain a variable that
keeps track of the time during the execution stage [15–20]. Modelica offers a
predefined system variable called time, which moves ahead through the
simulation run.

MODSIM III Language. MODSIM III is an object-oriented, modular, and
block-structured simulation language that is robustly typed. It has been
developed by CACI. MODSIM III partitions the simulation program into
several modules. Every module is saved in a unique file. The benefit of this
technique is that every module can be compiled independently. Furthermore, a

390 SIMULATION SOFTWARE AND CASE STUDIES

module may be used in many programs. Because MODSIM III is robustly
typed, each task, expression, and data type is verified for steadiness during
compilation [17]. The simulation method supported by MODSIM III is a
process-oriented scheme. MODSIM III is chiefly employed for discrete system
simulation.

In MODSIM III, objects are divided in two separate blocks. The definition
block describes the type of object by specifying the variables and methods that
operate on these variables. In the realization block, the object actions are
described with the help of methods. Generally, each object has ASK and TELL
methods. Executing an ASK method is like executing a procedure call. When
the ASK statement is executed, it points to the object to invoke the method.
Then, it waits until the method ends its execution. Once execution is done, it
moves to the next statement after ASK. The ASK method may be an
appropriate method or it could act as a function that returns the value. ASK
methods are not permitted to pass the simulation time.

Another name for the TELL method is the deferred or delayed method
call. This call is asynchronous. When the TELL statement is executed, it
points to the object to invoke the method [17, 18]. As soon as the method
is invoked, the calling code executes the next statement without waiting for
the method to finish its execution. TELL methods are permitted to bypass
the simulation time and they act only as a proper method and do not return
any value.

One more method, known as WAITFOR, exhibits both the characteristics of
the ASK method and TELL method. In case of WAITFOR methods, the
simulation time is passed with the assistance of the WAIT statement.

MODSIM III has a prebuilt Resource object in its library, which assists in
forming the resource objects as and when required. The use of inheritance
attribute helps to get new objects from the presented objects, which are
employed as general interface that offers additional potential.

MODSIM III includes a graphical interface that explains the scenarios of the
system on the screen as an animation operation. Moreover, plots are developed
when the simulation is executing, which can be used to examine the behavior of
the system [17]. In addition to displaying the results, it also proposes various
alternatives that can be realized to enhance the efficiency. Thus, this aids
the modeler to comprehend and evaluate the system in a better way. Such a
scheme helps the modeler to recognize the errors in a speedy manner. This
technique reduces the overall time needed to execute the simulation model.
Furthermore, the graphical editor makes it easy to describe a scenario by just
dragging and dropping the icons in the editor. Such icons are then linked to
explain the interrelationships between themselves.

The development setting in MODSIM III is made of the following
components: compilation manager, the object manager, and the debugging
manager. These three means together help in modeling the advanced systems
proficiently.

12.4 SIMULATION LANGUAGES 391

The compilation manager tool is used to find out repeatedly the modules
that have been edited or modified since the previous compilation. It recognizes
such modules and recompiles only these modules and the modules that depend
on the edited ones.

The object manager component aids the modeler to surf the object, its
variables, and the procedures associated with it. The object manager offers an
abstract outlook of the compound objects beside their attributes, and proce-
dures, along with the inheritance charts for the objects. The inheritance
characteristics comprise all the capabilities that objects hold after extending
from another class.

Whenever we stopover an object, this information is recorded, which
assists the modeler to return to the preceding object. The browsing feature
explains which ancestor object described the method and which object
actually realized it.

The debugging manager tool provides great features. When a runtime error
occurs during the execution of the model, the MODSIM III goes into a
debugging mode, thus permitting the modeler to find out where the error took
place and then helps him to check the variables. Because a trace of the
execution is kept, the modeler can always go back and forth and examine
the order of execution of the modules and procedures at the time of error.

SIMSCRIPT III Language. SIMSCRIPT III is an object oriented lan-
guage that is supported by CACI. It has a modular design that is an extension
to the features of SIMSCRIPT II.5. The object-oriented features of the
SIMSCRIPT III like these occur in many object-oriented languages like
Java, C++, and so on.

The program organization in SIMSCRIPT III is made up of a preamble,
which is a block of declarations and is followed by a number of procedures [18].
All declarations that are made in the preamble are global, which means they
can be used by whichever routine in the main program.

The essential data types in SIMSCRIPT III are called modes. These include
real, double, integer, alpha, text, and pointer. Integer is a signed 32-bit value.
Real and double are floating point values. Alpha resembles a character that is
enclosed within double quotations. Text symbolizes a string of characters and
pointer is a reference to a 32-bit address in the system.

Variables are described with the given data types. A possible kind of variable
declaration is ‘‘define fin as a real variable.’’ If this declaration is made in the
preamble, then the variable is termed a global variable. If it is defined inside a
routine, then it is called a local variable. Arrays are also declared in the same
format as variables.

SIMSCRIPT III can support both arithmetic and logical expressions.
A single line in the SIMSCRIPT program can contain many statements. The
read statement is used to read the formatted input, and the write statement is
used to show the formatted output. Moreover, print performs the same
functionality as that of write [18]. The ‘‘if’’ statement tests whether the

392 SIMULATION SOFTWARE AND CASE STUDIES

condition is satisfied, and if yes, it executes the statement below, and if the
condition is not satisfied, the statements following the else are executed. The
select statement works like that of a case statement in C++. SIMSCRIPT III
supports various kinds of looping structures such as while loop, for loop and do
while loop. The Leave statement is used for ending the loop. A Find statement
can also be used to terminate the loop. But Find can be used to terminate only
for the first iteration of the loop.

Functions and subroutines are both procedures except for the fact that
function returns a value whereas the subroutine does not. Functions are
pronounced with the help of a define statement. Whenever we want to invoke
these functions, we invoke them using a Call statement.

The declaration for the classes starts with the begin class block. Classes in
SIMSCRIPT III have three elements, i.e., variables, methods and sets. An
object is an instance of class. Objects are generated by executing the Create
statement. Once created, all the object variables are initialized to zero, and the
object reference is assigned to a reference variable. Whenever we want to
remove an object, we use Destroy statement, which deallocates the memory
assigned to the object and eliminates its reference.

Attributes in the class are described with the help of Define statement. The
declaration is similar to defining variables. Methods in classes are declared with
the aid of Every statement. The arguments are declared using a Define
statement. If there is no Define statement, then the method is supposed to be
a subroutine. Sets are doubly linked lists that are used to hold the objects [18].
The file statement conducts the act of inserting an object into the set. To
eliminate the object from the set, we use the Remove statement.

In order to generate, Uniform Pseudo Random sequences in SIMSCRIPT
III, the linear congruential generators (LCGs) are used. An array termed
SEED.V contains 10 seed values. These values are chosen by using a stream
number. Several distributions such as Poisson, exponential, Erlang, Binomial,
Gamma, Triangular, and lognormal can be produced with the help of the linear
congruential generator.

Process methods in SIMSCRIPT III are subroutines that can be executed
either by issuing a Call statement or a Schedule statement. The Call statement
is used to execute the process method right away. If we want to execute
the process method at some simulation time, then we can do so by using the
Schedule statement. The Interrupt statement can then be used to remove
the routine from the future events list. The put on hold routines can be
resumed by issuing the Resume statement. Statistics in SIMSCRIPT III are
computed using the Accumulate or Tally statement [18].

Yet Another Network Simulation Language (YANSL). The YANSL is
primarily designed for network simulation via the object-oriented methodol-
ogy. This language has the key facets sustained by GPSS, SLAM, SIMAN, and
INSIGHT. The classes for the YANSL package are selected from the available
modeling frameworks. YANSL is created by gathering all of these classes. Such

12.4 SIMULATION LANGUAGES 393

characteristics can be used to design more sophisticated structures [17–22]. The
simulation classes that are used here are for statistics gathering, variate
production, and administrating simulation time. Figure 12.9 depicts the
hierarchy of the nodes in YANSL. As observed in Figure 12.9, the higher level
nodes are used directly by the modeler. These comprise: the assign node,
activity node, queue node, source node, and sink node. Nodes that are
described at the lower level are abstract and less explicit. As an example, the
QueueNodeBase class does not contain characteristics such as producing
statistics. Sink and queue nodes are destination nodes because they can have
the transactions split whereas the source node is called a departure node. Every
action in a network has some kind of necessities for the resource [17–29]. In
YANSL, the nodes permit the transaction to be generated at the source node,
stay at queue node and obtain the jobs at the assignment node. The delay is
initiated by the activity nodes and the transaction departs the network via the
sink nodes.

Activity nodes supply resources to the transactions. The structure for the
resources in YANSL permits the resources to be recognized as individuals,
teams, or a member in other groups.

Node

Departure
Node

Destination
Node

Branching Nodes
<choice>

Source
Node
Base

Delay
Node

Queue
Node
Base

Sink
Node
Base

Source
Activity
Node
Base

Queue
Node

(Rank)

Assign Activity SinkQueue<Rank>

FIGURE 12.9. Hierarchy of node in YANSL.

394 SIMULATION SOFTWARE AND CASE STUDIES

The Resource choice scheme is used when there is a selection for the resource
service. Such options offer a greater flexibility for in making function decisions,
without using a separate class for each function Figure 12.10.

YANSL classes are made up of the choice classes within themselves. The
choice consists of various schemes, which help the resources to make a decision
on what to choose and what to do next, as well as categorizing the choices for
several transactions at the queue [17].

SIMULA Language. Simula is an object oriented simulation language, which
encapsulates the idea of objects. Actually, there are two versions of Simula:
Simula I and Simula 67. They were developed by the Norwegian Computing
Center and were influenced heavily by the Algol 60 programming language [21].

The data types supported by the simula language are integer, real, and
Boolean. This language consists mainly of two main concepts: the class and the
reference variables. Doubly linked lists in Simula are employed with the help of
routines that are described in the class called Simset. Discrete-event simulation
programs are written using the simulation class that contains the procedures,
routines, and concepts. Below is the simple definition of the class in Simula [21]:

Begin class C1;
Begin Outtext (‘‘This is program in Simula’’);
End;
Reference (C1) test;
test:- new C1;
End;

Whenever a procedure is called, all the statements in the body of the
procedure are executed, and it returns the information by some of its

Resource
Selection

Simulation Element Choice

Resource
Base

Requirements Resource
Decision

Resource
Resource

Team
Resource

Group

FIGURE 12.10. Resource framework.

12.4 SIMULATION LANGUAGES 395

parameters [21]. However, the class is called with the help of the new operator
that then instantiates the object. The attributes of the class are accessed using
the dot notation. Whenever we instantiate several objects, we have to manage
these objects well. Such information about the objects is sustained with the aid
of a reference variable that may be of type real or an integer.

The syntax for defining the reference variable is given by:
Ref(classname) ReferenceVariable;
Classes can be described in the hierarchy block structure, which is achieved

by the help of prefixed classes.
Doubly linked lists that are also called sets are administered by the

routines that are described in the class called SIMSET. At least one member
exists in the set, and the first object in the set is called HEAD. The subclass
to SIMSET is HEAD. LINK is one more member, which is a subclass to
SIMSET [21–24]. The reference variables for HEAD and LINK are termed
as SUC and PRED, respectively. Here, SUC denotes successor and PRED
means predecessor. The sets are managed by the procedures that are
explained in HEAD and LINK. Several procedures defined in the HEAD
are FIRST, LAST, and EMPTY. The reference to the former member and
last member of the set are given by the FIRST and LAST procedures,
respectively. If the set is empty, then the EMPTY procedure when executed
on the set returns true.

SIMULATION is considered a subclass of SIMSET. It consists of several
processes that are prefixed by the PROCESS. The PROCESS object may be in
any one of the three possible states: active, passive, and suspended. In addition,
there is one more state called terminated, which means that the running of the
object is done.

The event list in Simula can be managed with the help of the three key
procedures: HOLD, PASSIVATE and ACTIVATE. If there is an object on
which we execute the statement HOLD (8), then, this indicates that the object is
rescheduled to be active as soon as the simulation time advances by 8. Until
then, the object is put in the event list.

Each time we execute the PASSIVATE procedure on any object it puts the
active object in the passive status by moving the object from the event list. This
will start the next object in the list to be active [21].

Hierarchical Simulation Language (HSL). In HSL, the program module
starts with the model keyword and finishes with the end keyword. The syntax is
given as below:

model test
y.
y
End test;

Global variables in HSL can be described using four fundamental data types:
integer, Boolean, real, and string. Every time we define a variable, we can either
give a value to the variable or just pronounce it without giving the value for it.

396 SIMULATION SOFTWARE AND CASE STUDIES

If not specified, the variable is set with a default value. Arrays are declared in
the following format [22]:

odata typeW arrayname [];

Constant values in HSL are defined using a constant keyword. Statistics for
every variable may be acquired by declaring the required variable with stat
keyword. Furthermore, there exists a data structure called queue that is
employed for seizing the entities. Resources used in the simulation model are
confirmed using the resource keyword.

Type casting of the objects in HSL can be performed using the entity class
[22]. The entity class is also useful for declaring the abstract attributes. Syntax
for entity class declaration is as shown below:

Entity odeclared nameW
Abstract data types and definitions
End odeclared nameW
The hierarchy of the entities is set up by using the object-oriented

characteristics of inheritance. The entities that are described in the model
may be allocated with priorities. The setPriority keyword is employed to give a
priority for the entity that is employed in the system. Hierarchical simulation
modeling may be used for process-oriented modeling as well. The start
declaration in the program states the set of processes that will be run when
the simulation is executed. To end these processes for the period of the
simulation, conditions for ending are specified with the aid of a stop statement.
The clock keyword follows the simulation clock by moving the time based on
the criteria put by the modeler. The trace of simulation can be generated via the
keyword called trace which is described in the program where the analyst
senses to know about the state of the system at that point of time.

The report keyword is used for producing the reports whilst running the
simulation. All the statistical data such as the use of resources, queues, entities,
and processes are presented in the report.

The process definition in HSL is made up of the name of the process, the
listing of parameters allocated to the process, entity parameter, and statement
sequence [22]. The passing forms for parameter might be in, out, or inout. The
designation for function in case HSL consists of the name of the function, its
kind, and the string of statements. When a return statement is executed, only
the function run ends.

Some HSL statements are essential for programming in simulation as they
modify the running time of the simulation run. The process can be postponed
for a specific duration of time by running the delay statement. If we want to
delay the process for an endless duration of time, then it can be performed by
executing the suspend statement. Now, if we desire to continue running the
process, then it may be done by executing the awaken statement.

If an entity desires a particular type of resource to perform an activity, it can
obtain the resource by executing the request statement. Following the

12.4 SIMULATION LANGUAGES 397

completion of the activity, the resource can be given away by executing the
release statement.

In HSL, the random variates are produced using the rand01 function. The
initial values for random-number generators are produced using the setseed
function. The Uniform function generates uniform distributions or variates.
Moreover, the Expo function and Erlang function produce exponential and
Erlang variates, respectively. Statistical data about the simulation run are
produced using the stat function [22].

12.5 SIMULATION SOFTWARE PACKAGES

Simulation packages are becoming popular in academia and industry because
of their ease of use for developing quick models and teaching. They help in
designing simulation models using graphical user interface without knowing
the fundamental details of the simulation languages. Normally, these packages
are application specific and can deal with the modeling aspects for a specific
domain. Because using simulation packages will entail little coding by the
modeler, there are few chances of syntactic errors. Nearly all the functionalities
are predefined and are saved in the simulation libraries. Some of these packages
are available free of charge as an open resource; however, some of them are not.
Nevertheless, some simulation package companies offer a free site license for
academic institutions after signing on a special contract.

Below, we describe briefly main software simulation packages that are used
for computer and telecommunication systems.

Network Simulator 2 (NS 2). Network simulator 2 is a simulation package,
which was developed for computer networks simulation. This simulation
package supports several network protocols. Many network protocols such
as Transmission Control Protocol (TCP), User Datagram Protocol (UDP),
Hypertext Transfer Protocol (HTTP), and Dynamic Host Configuration
Protocol (DHCP) can be modeled using this package [26]. In addition to
this, several kinds of network traffic types, such as constant bit rate (CBR),
available bit rate (ABR), and variable bit rate (VBR), can be generated easily
using this package. It is a popular simulation tool for modeling several network
topologies.

Moreover, NS 2 models use the object-oriented approach. It supports two
kinds of nodes: the unicast node and multicast node. The unicast node carries
out unicast routing, whereas the multicast node deals with multicast routing.
The default nodes are the unicast nodes.

Connections between the nodes are created using the compound objects.
Queue objects and snoop queue objects are employed for monitoring the queues
in the network simulator package. The AtEvent handler used by the simulator is
employed for scheduling the events in the model.

NS 2 has been developed by using C++ programming language and OTcl
[26–28]. OTcl is a relatively new language that uses object oriented aspects. It

398 SIMULATION SOFTWARE AND CASE STUDIES

was developed at Massachusetts Institute of Technology (MIT) as an object-
oriented extension of Tool command language (Tcl). Figure 12.11 illustrates
class hierarchy in NS 2.

The tracing in the NS 2 package is made with the help of trace-all and nam-
trace-all commands.

To view the animation of the model, we use the NAM tool, which is the
network animator. The graphical user interface depicts the traces of the
network under various topologies. Packet level animation can also be demon-
strated by NS 2.

The network animator is invoked by running the NAM command. Figure
12.12 shows the network animator interface [26–29].

TCL scripts are employed to describe the models in NS 2. In order to design
a model using NS 2, one must have a deep perceptive of the TCL language.
Agents in the NS 2 are generated using the set command. The agent is run by
executing the start command on the agent name. The recv and timeout are the
main methods that should be described in the agent class. Packets are generated
by using the packet class in the package [26–28].

TCL Object

Ns Object

Connector Classifier

Address
Classifier

Multicast
Classifier

Queue
Delay

Agent

In

Out

Drp

Edrp

Snoop
Queue

Drop
Tail RED

TCP UDP

Enq

Deq

Drop
Recv

Trace

Reno Sack

FIGURE 12.11. Class hierarchy in NS 2.

12.5 SIMULATION SOFTWARE PACKAGES 399

Optimized Network Engineering Tool (OPNET). The OPNET was basically
designed by OPNET Technologies, Inc. to analyze the performance of com-
munication networks. The performance is predicted by modeling the commu-
nication systems using discrete event simulation [32, 44]. OPNET Technologies
Inc. improves the package continuously and every few years develops a new
version of the package. The latest version as of the writing of this book is
known as the OPNET Modeler 10.5. The key features of the OPNET are as
follows:

� Simulation and Modeling Cycle: It has powerful tools that help in model
building, simulation running, and analyzing the simulation outputs.

� It supports hierarchical configuration of modeling.

� It includes a rich set of library modules that support communication
protocols and network-related topologies and mechanisms.

� It contains a good troubleshooting facility and the model can be readily
compiled and easily run.

The three types of editors in OPNET for modeling three types of networks
are as follows:

FIGURE 12.12. Network animator interface showing the topology of nodes and packet

traversal in NS 2.

400 SIMULATION SOFTWARE AND CASE STUDIES

� Network topology models are modeled using the Network editor.

� Data flow models are designed using the Node Editor.

� Control flow models are expressed by using the Process Editor.

Furthermore, the simulation can be run by using the simulation tool or
debugging tool. The simulation tool is used for executing the model in a normal
manner; however, if we want to interact while executing the simulation, then it
is preferred to run it using the debugging tool [32].

Many available tools can be used for analyzing the simulation results. The
probe editor is used for collecting the data. The statistical results are acquired
by employing the analysis tool. Data processing is performed with the aid of the
filter tool. The dynamic actions of the model can be observed using the
animation viewer.

Entities in the network model are represented as nodes, and interaction
between the entities is facilitated with the help of a link. To broadcast data from
one entity to all others, we employ bus link and radio link for mobile
communication. To decrease complexity, networks are abstracted as subnet-
works. Figure 12.13 illustrates the interface of an optical network engineering
tool showing connection of nodes in the Network Editor [32–36, 44].

Interrupts can be used to facilitate the communication among the
processes. The probe editor in the OPNET contains various kinds of probes
for collecting output data. The statistic probe is used to acquire statistics

FIGURE 12.13. Interface of optical network engineering tool in OPNET showing

connection of nodes in the Network Editor.

12.5 SIMULATION SOFTWARE PACKAGES 401

like the bit-error rate and throughput performance metrics. To produce the
animation effect, sequences in the simulation automatic animation probe are
used. The custom animation probe can be used to collect the animation
characteristics for process and link models. The statistic probe gathers the
data; however, it does not produce the output results. To produce the
statistical output data, statistic probe is used. The analysis tool in OPNET
is used to show the information in terms of graphs. Analysis panels are used
to present these graphs. Filter models in OPNET are described as block
diagrams that are linked together using the filter elements. Filter models are
represented in the hierarchical order; the functions on the vectors that are
discrete. The input vectors may be described as the vectors that are supplied
to the filter. The resulting vector that is produced after processing the filter
is called the output vector [44].

OMNeT++ simulation package. OMNeT++ is an open-source discrete-
event simulation package that is used for simulating the computer commu-
nication networks and distributed computer systems. The programming feature
in OMNeT++ follows a modular approach. This package supports three kinds
of modules: simple, complex, and system modules. Components in the model
communicate with each other using message passing [27]. Modules that are
active are called active modules. Complex modules are structured by assem-
bling the simple modules. Messages are transmitted using the gates in case of
simple modules. The input interface and the output interface are termed
‘‘gates.’’ Links are used to connect the input and output gates.

Functionalities in the modules can be coroutine based and event processing
based. In the coroutine-based programming, the code in the module runs on its
own by producing a thread that is managed by the kernel, which bypasses the
events.

In event-processing function-based approach, the task is called by the kernel
that passes the message as an argument. This message is handled by the
function and is sent back.

The network topology can be altered dynamically. Moreover, there is
flexibility to include and remove modules when the simulation is running.
Links in the model can be reorganized during the run of the simulation model.

OMNeT++ simulation package offers a standard library that described
some standard modules that can be employed during the modeling process of
the system under study [27]. Modules for troubleshooting, tracing, and
animating are efficient in this package. Figure 12.14 shows an example of an
OMNeT++ graphical interface between routers and nodes in a model for a
network [27]. The library contains the message classes, container classes,
routing classes, random-number generator classes and statistical classes.
Statistical classes are used for gathering the data when the simulation is on
the run to assess the performance of the simulated system. Message classes are
employed to offer message packets for different sorts of networks. Container
classes offer different storing services, such as queues, and stacks, and these
services maintain the general actions on these classes. Routing classes offer the

402 SIMULATION SOFTWARE AND CASE STUDIES

foundation for using a variety of routing schemes for moving the message
packets in the network. Tracing and simple debugging are considered the key
features of OMNeT++ package [27]. To trace the behavior of the system,
OMNeT++ employs three methods: automatic animation, module output
windows, and object inspectors. Figure 12.15 shows a snapshot of a debugging
and trace interface example in OMNeT++ [27–29].

In OMNeT++ model animation, the model is executed and the behavior is
tested to determine whether it is correct. Every time we model, we may produce
textually some data as a checkpoint for troubleshooting. The kind of data that
are used for debugging is exhibited in the module output window [27]. The
status of the object at any point of time may be shown using object monitors.

GloMoSim Simulation Package. GloMoSim is a simulation package that is
primarily used for simulating wireless network systems. It is being designed
using the parallel discrete-event simulation capability provided by PARSEC.
The name GloMoSim has been derived from the words: global mobile system
simulator. The GloMoSim library consists of a set of modules in which each
module simulates a particular wireless protocol.

Figure 12.16 depicts the main parts of the GloMoSim software package.
There are two options of GloMoSim: one for simulating the models in a shared
memory setting and the other one for simulating the models in a distributed
memory environment.

Parallel Simulation Environment for Complex Systems PARSEC is a
parallel simulation language that is coded in C. PARSEC has been developed

FIGURE 12.14. OMNeT++ graphical interface showing the interconnection between

nodes and routers in a network model.

12.5 SIMULATION SOFTWARE PACKAGES 403

FIGURE 12.15. Screenshot of debugging and trace interface in OMNeT++.

Application
Layer (Ftp,
Telnet …)

Transport Layer
(TCP, UDP, RTP)

IP, Mobile IP

Wireless Network Layer:
VC Support

Wireless Network
Layer: Routing

Propagation Model/
Mobility Model

Radio Model

Data Link
MAC

Clustering (optional)

Traffic
Generator

FIGURE 12.16. Architecture of GloMoSim package.

404 SIMULATION SOFTWARE AND CASE STUDIES

by the Parallel Computing Laboratory at UCLA, for sequential and parallel
execution of discrete-event simulation models. It can also be used as a parallel
programming language. PARSEC can be used to describe the library in
GloMoSim [40]. Rather than coding each and every component, a graphical
environment called PAVE is provided, which can be used to develop the
simulation models. PARSEC defines each node as an entity.

This method has some drawbacks, as each node needs extra memory for
running the process, and also the simulation time is enhanced as overhead of
context switching exists among the entities. This will affect the overall
simulation performance negatively. To overpower these problems, GloMoSim
launched a new scheme called node aggregation. This method helps GloMoSim
to simulate several nodes in a network by only using a single entity. In an entity,
the status of every node is shown by a data structure. For sequential simulation,
a single entity is enough, as there is only one processor. However, for parallel
simulation, the number of entities that must be described is equal to the number
of processors on which the simulation operation is executed.

The overall design of GloMoSim is based on a layered approach where
layers interact with each other via different application programming interfaces
(APIs). Thus, the entity in each layer is represented differently. By increasing
the number of layers, the number of entities increases in the simulation. The
dilemma that occurs here is that at some point of time during the simulation,
entities at various layers might require to get into a common variable. This is
not doable as the entities exist in various layers. Such a situation can be
overcome by announcing the variable as global ones.

GloMoSim maintains three kinds of routing algorithms: Ad hoc On-
Demand Distance Vector Routing Algorithm (AODV), Fisheye State Routing
protocol (FSR), and Wireless Routing Protocol (WRP). In addition to the
protocols present in GloMoSim, it also offers the capability of adding new
protocols to the library. The graphical setting requires the Java environment to
be installed on the system. Figure 12.17 shows an interface of GloMoSim in a
metropolitan ad hoc network simulation [40].

QualNet Developer Simulation Package. QualNet is a simulation software
package that was initially developed as a command line simulation tool, but
afterward it was improved using a graphical user interface. QualNet is basically
developed using the main aspects of GloMoSim. The graphical user interface in
QualNet is built using Java programming language. Every network-related
protocol has been coded using the C programming language. Program design in
QualNet follows a modular oriented style [34]. QualNet is primarily used for
discrete-event modeling. QualNet can be applied to simulate all kinds of
networks including Metropolitan and Hoc Network Simulation MANET,
fixed, and wireless networks, which include cellular wireless networks, data
wireless networks, and satellite networks. The key benefits in using the QualNet
developer are: (a) modularity of the program design, (b) flexibility in terms of
scalability, (c) support of the automatic creation of objects using rapid
prototyping, (d) availability of graphical user interface for modeling the

12.5 SIMULATION SOFTWARE PACKAGES 405

protocols, and (e) the ability to measure the performance characteristics of the
protocol at each layer. Figure 12.18 illustrates a QualNet interface showing the
connection of nodes using TCP [34].

The structure of QualNet pursues a layered approach that is similar to that
of physical networks. Layers used in QualNet are the application layer,
transport layer, network Layer, Internet Protocol (IP) layer, Medium Access
Control (MAC) layer, and physical Layer. The layers communicate with each
other using messages that are encoded in the structure of packets. The QualNet
simulation package consists of several tools and components that aid the
modeler to simulate and analyze the model powerfully, see Figure 12.19.

The main components of QualNet are QualNet animator, QualNet designer,
QualNet analyzer, and QualNet tracer. The animator is the means that aids the
analyst to set up the experimental and picture the running of the simulation
visually. QualNet designer is used to model the protocols where the prototyping
is founded on the finite-state machine (FSM) paradigm. The analyzer is used
for gathering the statistical data when the simulation is on the run and the
statistical information is depicted graphically. The QualNet tracer is employed
to display the execution trace at the packet level. Models can be built either by
using the command line interface or by using the graphical user interface [34].
When designing using command line, we can use the config text files. If the
model is built using the graphical user interface then we may use the animator.
After executing the simulation program, statistical data can be collected. The

FIGURE 12.17. Interface of GloMoSim showing Metropolitan Ad hoc Network

simulation.

406 SIMULATION SOFTWARE AND CASE STUDIES

FIGURE 12.18. A QualNet interface showing the linking of nodes using TCP.

Application Layer
(Ftp, Telnet …)

Transport Layer
(TCP, UDP...)

IP Layer
(IPv6 …)

Network Layer
(Open Shortest Path First …)

MAC Layer
(IEEE 802.11 …)

Physical Layer
(Wired, free space …)

FIGURE 12.19. Layered approach in QualNet architecture.

12.5 SIMULATION SOFTWARE PACKAGES 407

packet traces of the network model can be taken from the trace file, and the
trace dump can be found at trace.dmp files.

Network II.5 Simulation Package. Network II.5 is an object-oriented
simulation package that is based on the SIMSCRIPT II.5 simulation language.
It is supported by CACI. Network II.5 consists of three major hardware
elements and four software elements. These hardware and software elements
are considered the data structures of the package. The hardware elements
consist of the storage device, transfer device, and the processing element,
whereas the software elements consist of instructions, messages, semaphores,
and modules. The processing elements in Network II.5 can carry out one or
more instructions and can dispatch many messages over transfer devices to
storage devices and other processing elements. The transfer device element in
Network II.5 can run several protocols such as ALOHA, Token ring, and
Ethernet. A set of instructions that can execute one or more processing
elements is called as a module. Messages in Network II.5 have a specific
name and a predetermined length [35].

The main functions of Network II.5 are system definition, simulating the
system, and analyzing the system functions. The form-based interface and
graphical layout of the hardware elements define the piece features and manage
the system definition. The graphical user interface is employed for building the
simulation model. Fundamentally, no programming is needed when using
Network II.5. Thus, a lot of time is saved when using it to simulate a network
or a computer system. The simulation and the event traces are produced when
the simulation is run [35].

Network II.5 offers several tools for investigating the simulation outcomes.
Animation is considered a major tools. The animation interface can aid in
seeing the working simulation model. The package can plot graphs based on
the information collected during the simulation run. Such graphs are useful for
the analysis of the network performance [35].

The structure that is developed graphically in Network II.5 using the form-
based graphical interface is saved in the description data file in textual format.
In addition to being able to analyze the system by using traces, we also can use
the snapshots of the simulation for additional analysis. The topology informa-
tion of a network can be imported automatically. The animation interface
permits the modeler to execute the animation using a step by step manner or a
run continuously manner.

Different kinds of reports can be produced by Network II.5, which include,
the graphical reports, tabular reports, trace reports, and snapshot reports. The
trace reports, and snapshot reports are called the interactive reports. Moreover,
the trace report offers information about the simulation trace step by step. The
processing element block handles the process data. The transfer device building
block handles the transfer data, whereas the storage device building block
processes the stored data. The major task of the transfer device is to link the
processing elements and the storage devices. Every storage device (memory)
that is described in Network II.5 has a limited size that is given in bits. If an

408 SIMULATION SOFTWARE AND CASE STUDIES

action occurs, such as reading a file, then the instruction confirms the availability
of the file on the memory/storage device. If we have a write operation, then it
checks whether there is enough space to perform the requested operation. A
storage device can function as a multiported memory; therefore, a single storage
device can be used to provide service to multiple processing elements [35].

COMNET III Simulation Package. COMNET III is a simulation package
supported by CACI and is meant to be used for the performance analysis and
evaluation of communication networks. It is developed using the object-oriented
approach. The analyst does not need to do any kind of programming; rather, he
needs to use the elements and libraries to simulate a given communication
network. Themodeler can adjust the components byprogramming themusing an
object-oriented language environment called MODSIM II. The latter is a
popular object-oriented simulation language supported also by CACI. In
addition to the standard objects that exist in the library the analyst can describe
his own objects in the library [39]. An incorporated graphical environment is
offered byCOMNET III that is used for generating, executing, and analyzing the
model of the communication network under study. Moreover, the analyst can
communicate with the model during the execution.

Aside from simulating the computer communication networks, COMNET
III can also be used to simulate application scheduling and storage resources
scheduling. Subnetworks are described hierarchically in a COMNET III model.

FIGURE 12.20. Interface in COMNET III showing the ATM topology.

12.5 SIMULATION SOFTWARE PACKAGES 409

Nodes and links are employed to characterize the network topology. These can
be configured hierarchically to produce subnetworks. Two kinds of nodes can
be supported in COMNET III: application nodes and communication nodes.
Applications are executed using these application nodes [39]. They can also
include the storage devices. Communication nodes are basically used for
switching and routing when linking to a subnetwork. A message generator is
employed for producing the messages at a node.

COMNET III can be used to model a synchronous transfer mode (ATM)
systems and networks. It is designed for discrete-event simulations. The com-
munication nodes in object library of COMNET III can be classified into four
node objects: the router node, computer group node, ATM switch node, and
computer and communication node. Every node has the functionality of
producing and receiving the traffic. Figure 12.20 depicts an interface in
COMNET III showing the ATM topology [39]. The integrated graphical
environment in COMNET III has a simulation set of choices that is used for
providing the parameters to execute the simulator. The nodes and links that
are used to describe the network are generated with the help of the create menu.
The node and link attributes for a particular type of network are described by
using the define menu. The statistics of the nodes, links or the network are
introduced using the report menu. If a node is generated and any characteristics
for the node are not given then the default values are assigned to the node using
the archive menu. The Integrated Development Environment (IDE) of
COMNET III offers a different kind of reports such as node reports, link
reports, application reports, message and response reports, session reports,
transport and command reports [39].

The analyst needs to verify the model by executing the verify command
before running the simulation model. Then the parameters for running the
simulation program are set by using run parameters from simulate menu. In
order to see the simulation execution, the animate option should be used. This
shows the model to work at the packet level. As soon as the parameters are set,
we can execute the simulation model by running the start simulation command
from the simulate menu. Then, after running the simulation model, the reports
are produced in the text file. Such reports may be used for additional analysis of
the system under study [39]. In addition to these reports, COMNET III can
offer snapshots of the system at various points of time to know the behavior of
the system under analysis. When a model is produced in COMNET III, it
should be saved for running the simulation as many times as needed under
different operating conditions and environments.

OptSim simulation software. OptSim is a simulation software package that
offers the environment for designing and simulating optical networks. It is
basically used for evaluating the performance of optical communication net-
work systems. Optical networks, such as the ones based on Dense Wave
Division Multiplexing (DWDM), and Time Domain Multiplexing (OTDM),
Optical LANs, and others, can be modeled and simulated uisng OptSim
simulation environment [37].

410 SIMULATION SOFTWARE AND CASE STUDIES

The communication system in OptSim is modeled as a collection of blocks or
icons that are linked to each other. A system function is represented with the help of
an icon. The flow of data is modeled from one icon to the other as they are hooked
up. For instance, if we have two icons representing laser diode andoptical fiber, then
itmeans the optical transmission of laser goes into the fiber [37]. The performance of
the communication network can be predicted with the ability with which the
different types of tools offer. Moreover, OptSim can aid in optimizing the design
and operation of the present optical communication network.

The factors for each of the elements can be represented as functions that
involve statistical values and the variables. Based on the impact that these
values make on the system’s performance, these factors or parameters may be
optimized in accordance with the on hand design to increase the performance.

Simulation modeling of the optical network can be performed using the
graphical user interface offered by the OptSim simulation environment. Models
designed using OptSim are usually accurate and can minimize the overall cost
when designing complex systems. The outcome of the simulation model is
demonstrated on the screens using the OptSim environment. Figure 12.21 gives
an example of an OptSim interface.

There are about 400 element/component models that are included in the
library of the OptSim. These components are categorically divided. Among
these are signal generators, light emitting devices and Lasers, different types of

FIGURE 12.21. Interface of OptSim.

12.5 SIMULATION SOFTWARE PACKAGES 411

optical amplifiers, optical fiber, filters, and decision devices. In addition, users
can specify their own component models using C++ and can integrate them
easily into the simulation framework [36, 37].

The outcomes acquired can be shown in the form of graphs, plots, wave-
forms, spectrums, scattering diagrams, and polarization plots. The graphical
interface is user interactive, and thus the analyst can modify the parameters to
change the plot without rerunning the simulation for analysis purpose; see
Figure 12.21. The results generated by OptSim can be analyzed using third-
party tools. The performance analysis can be conducted at the component level
based on the test function and the current factors or parameters provided by
the component.

Queuing Network Analysis Tool (QNAT). The QNAT is a simulation
package that is used for modeling and analyzing queuing networks. It is
designed for windows platforms. The calculations required for the model are
performed using Mathematica, which is a computational software tool. The
computational processes carried on are unseen by the user. The information
about the design of the network is advanced to Mathematica with the help of an
ASCII file, which is an internal element of the package [42]. It is hard for the
graphical user interface when the network is large to forward the information,
and hence, the changes can be made directly in the text file in order to inform
about the configuration of the network.

The logical organization of QNAT is shown in Figure 12.22. At first, the
classification is based on the availability of the nodes, i.e., whether there is finite
or infinite number of nodes. Such a feature is important because the methods
used for analysis vary a lot.

If the buffer size for all the nodes in the network is infinite, then fork join
nodes and multiple classes can be employed. When we have queues with infinite
buffer size, then the following parameters are considered for the analysis of the
network: (a) availability of different classes of the customers in the network; (b)
the type of network that can be nonblocking or the blocking network; (c) if the
network is open, closed, or mixed; (d) availability of the nodes in the network;
and (e) total number of customers who are available in every closed class.

In addition to these examples, some other information about the availability
of servers in the queue, external arrivals for the node, and time for servicing at
the node for each class of customers are needed. In case of fork join nodes, the
number of sibling queues and synchronizing queues also has to be defined [42].

Anylogic 5.0.1 Tool. This simulation tool is used for many strategic
applications that are at an operational level, such as logistics, transport
systems, and telecommunication networks. It integrates the behaviors of both
the discrete and continuous systems. In Anylogic, the design of simulation
models is carried out with the help of comprehensive features of Unified
Modeling Language (UML).

Java programming language is used for designing the models in Anylogic;
hence, it facilitates the execution of the simulation models on any platform [23].
Nevertheless, the package is developed to run only on the windows operating

412 SIMULATION SOFTWARE AND CASE STUDIES

system environment. Figure 12.23 depicts the interface of the Anylogic
simulation model.

Given that the models in Anylogic are designed using Java programming
language, the architecture of these models is very much tending to the structure
of Java. This indicates that the package library in anylogic maintains attributes
such as polymorphism, inheritance, classes, and objects.

The modeling language in Anylogic is centered on the UML Active objects
are the basic building blocks in the Anylogic package, as they describe the
makeup of entities beside their behavior. Because of the characteristic of
inheritance, active objects also encapsulate other objects to a required depth.
Active objects use boundary objects to cooperate with the environment.

Discrete modeling employs message passing means for interacting with other
objects. Ports are used for transmitting and getting the messages. If an object
desires to send a message, then the message is sent out to all the ports. When a
message is delivered at the port, it will either be saved in the queue or advanced
to the object directly [23]. State charts can be used by Anylogic to define the
states, events, and conditions. Anylogic can support static and dynamic timers.

In Anylogic, continuous modeling employs differential equations and
algebraic equations, and it also uses the blend of both differential and algebraic

Mixed

BLOCKING NON-BLOCKING

OPEN CLOSED
SINGLE
CLASS

MULTIPLE
CLASSES

QNAT

Transfer Repetitive

Rejection

Open Closed

Normal
Node

Fork Join,
with s/q

Fork Join,
without s/q

FIGURE 12.22. QNAT logical structure.

12.5 SIMULATION SOFTWARE PACKAGES 413

equations with variables changing always. As for hybrid modeling in Anylogic,
the name itself implies that continuous models are modeled using discrete-event
methods. An essential aspect of hybrid modeling is the hybrid state charts that
map equations to the events. Anylogic can use only two dimensional (2-D)
animations that are performed using Java [23].

MetroWAND Package. This simulation software package is used to model
communication networks, and it helps the vendors to streamline several function-
alities, streamline such as modeling the network and planning for the network
services.MetroWAND is mainly used for modeling networks such as Synchronous
OpticalNetworks (SONET),WaveDivisionMultiplexing (WDM)-basednetworks,
and Synchronous Digital Hierarchy (SDH)-based networks. In such networks, the
package canbe used for simulating the routingmethods, failure scenarios, analyzing
the various types of traffic types, and analyzing system performance in terms of
throughput, capacity allocation, and system usage [36].

The recent version of MetroWAND available is MetroWAND 3.3. Metro-
WAND simulation package has an Extensible Markup Language (XML)-
based graphical user interface. It is available in two tool packages known as
MetroWANDRing andMetroWANDMesh packages. MetroWAND includes
an equipment library that is highly valuable when designing network models.
This library aids in creating a bill of materials (BOM), which is useful for
providing an efficient solution. This aspect helps the library to follow changes
that occur when designing a network model. In addition of being able to design
the network, it also can find out the cost of building the network and
maintenance cost. The Network Management System (NMS) of the Metro-
WAND is employed in designing bandwidth capacity allocation [36–37].

FIGURE 12.23. Example interface of the Anylogic simulation package.

414 SIMULATION SOFTWARE AND CASE STUDIES

The SONET, SDH, and WDM ring networks can be modeled using the
MetroWANDRing tool. Optimization of the number of rings, rings placement,
and traffic routing in various ring technologies is facilitated by MetroWAND
Ring. It also facilitates interconnection of the single-or-dual ring topologies.
Figure 12.24 depicts the main architectural blocks of the package.

MetroWAND tool helps the modeler simply to determine whether there are
any links or nodes dead for various settings and configurations of the network
[37]. Moreover, it helps in building a mesh network over a ring network. Figure
12.25 depicts an example on an interface of MetroWAND [37].

NetRule 7.1 Tool. This network modeling software tool is used for modeling
local area networks (LANs) and wide area networks (WANs). The cost and
performance of the network is found out before hand by using analytic analysis
on the simulation operation [45]. Good accuracy is obtained by using the
analytical analysis. In addition to designing new models, existing network
topologies may be brought in. We can optimize already existing networks using
this tool. The simulation model is run faster when compared with other
simulation packages. The NetRule needs a Java environment that supports
graphical user interfaces for running the simulation models. NetRule’s library
specifies protocols and entities that are used for simulating the network model.

The objects in the library are stored in the form of .net (extension) text files.
The on-hand library can be changed to satisfy the requirements of the network
model to be realized.

When the simulation model is run, the results obtained from the analytical
calculations are given in the form of tables. Many tabular formats are
supported by the NetRule interface, which can be used to display the tables
in the reports. Several parameters are predefined for all of the objects, and the
results are gathered only for these predefined parameters. In addition to
showing the results in tabular columns, the package also offers the animation
features that can be used to observe the flow of entities in the networks. The key
drawback is that the parameters for gathering the results are predefined, and

NMS
Network

Information

Equipment
Library

Metro WAND
Design of Network

Bill of
Materials

FIGURE 12.24. MetroWAND architecture for design tool.

12.5 SIMULATION SOFTWARE PACKAGES 415

thus the user cannot specify his parameters for the analysis purpose. Objects
that are represented in the network topology can be traversed using the
NetRule graphical user interface [45].

The package can be used to compare the performance of various network
configurations under different scenarios. Instead of removing or adding the
entities used in the model, the package enables the entity if it is required in the
network topology or disables it if not required. The major benefits of simulating
the networkmodel using this package is that the execution of themodel is fast, as
mathematical calculations are used for determining the simulation performance.
Subnet objects are employed for hierarchical modeling in NetRule. A subnet can
be thought of as a set of nodes that are interconnected together.

Objects needed for modeling are present in the NetRule library. To match
the objects for the required network model, the object parameters can be
modified. Most time parameters, which are changed, are used for setting out the
metrics at lower layers such as the physical or data link layer. The Transport
layer is the highest layer that can be configured by altering the parameters [45].
Moreover, the library includes the modules that support the queuing and flow
control means for diverse protocols at the transport layer. Because NetRule is
based on the object-oriented approach for developing the simulation models,
the modules used for developing them can be reused. In addition to the
standard library, the package also allows the analyst to specify his on her own
user libraries. Animation results can be displayed only at the network level and

FIGURE 12.25. An example interface of MetroWAND.

416 SIMULATION SOFTWARE AND CASE STUDIES

not at the node level. In addition to displaying the results in tabular format,
they can also be shown as diagrams and plots [45].

12.6 COMPARING SIMULATION TOOLS AND LANGUAGES

The most essential decision to be made when developing a simulation model is
selecting the simulation tool whether it is a general purpose programming
language, a simulation language, or a simulation package. The flexibility of the
software and its easiness of use determine in a way the degree of flawlessness of
the model.

Simulation languages are usually optimized for the simulation task. These
can be object-oriented or structured-based simulation languages. Examples
include MODIM III, SIMSCRIPT III, JavaSim, GPSS, and SLAM II. The
main advantages of using simulation languages when coding the simulation
program are summarized below:

1. Simulation languages decrease the amount of programming time.

2. They have basic building blocks that are akin to Simulation.

3. They have better error detection.

4. They are flexible.

5. Some simulation languages provide dynamic storage allocation during
execution, which is a nice feature that helps to avoid running out of
memory when running the simulation program.

Simulation languages in general have built-in mechanisms/functions that
help to shorten the development time of the simulation program. The major
ones are: (a) generation of random variates, (b) managing simulation time, (c)
handling routines to simulate event executions, (d) managing queues, (e) data
collection, (f) data analysis, and (g) formulating output results.

On the negative side, simulation languages have some disadvantages. The
major drawbacks of simulation languages are: (a) the modeler needs to learn a
special language, (b) the user will find himself using an unusual compiler, (c)
there might be a portability problem, and (d) simulation languages, in general,
have some processing inefficiencies. Simulation languages differ from each
other in various aspects. Among these include: (a) initialization requirements,
(b) time management, (c) mode and nature of data entry, (d) methods for
random number and variate generation, (e) base code language, (f) data
collection and analysis methods, (g) output format, (h) ease to learn and use,
and (i) proper documentation and technical support [1–40].

When evaluation one simulation language against another, we look basically
at the following aspects:

1. Flexibility: Degree of supporting various concepts.

2. Portability: Availability of language/compiler.

12.6 COMPARING SIMULATION TOOLS AND LANGUAGES 417

3. Debugging capabilities.

4. Ease of learning.

5. Run-time consideration: The interest here is the run time and computa-
tional speed.

6. Programming facilities: Ease of programming, availability of simulation
constructs, dynamic storage management, standard report facilities, and
compiling requirements.

General-purpose programming languages do not offer any capability
directly optimized for simulation purposes. This means that the modeler has
to program all details of the event scheduling, time advance scheme, statistics
collecting capability, generation of random variates from the required distribu-
tions, and report generation procedure. The good thing about general-purpose
programming languages in this context is that they are more flexible than
simulation languages or simulation packages. However, for large models, the
models become complex and difficult to debug. Also, such complex models are
slow when they are run unless a carefully organized approach and efficient list
processing techniques are used [1–4].

Currently, numerous simulation packages are designed to model and
simulate computer systems and networks. Some are less expensive than the
others, although you can find free good simulation packages such as NS 2.
Some package are generic and can be used for not only modeling and
simulation of computer systems and/or networks, whereas others are optimized
for simulation of only computer systems or computer networks and telecom-
munication systems. Of course, you will find some of these packages powerful
and flexible, while the others are basic and inflexible. In general, simulation
packages are excellent solutions for teaching purposes, but for advanced
research they may not flexible enough [1–20].

12.7 CASE STUDIES ON SIMULATION OF COMPUTER
AND TELECOMMUNICATION SYSTEMS

In this section, we will present examples of the simulation of computer and
telecommunication systems using various tools.

12.7.1 Case Study 1: Simulation of an IEEE 802.11 Wireless
Networks Using NS 2

In this example, simulation is used to evaluate the performance of wireless
LANs under different configurations and operating conditions. In general,
wireless networks have high bit-error rate (BER). The major reasons for high
BER are atmospheric noise, multi path propagation, and interference.

418 SIMULATION SOFTWARE AND CASE STUDIES

In wireless networks, signal decay is higher than in wired networks. Thus,
diverse transmission results can be detected for different transmission rates
because of radio propagation characteristics. Such a propagation environment
guides to phenomena including the hidden terminal problem. In this case study,
we used NS2, which is simulation a package, to model the wireless LAN under
study. NS 2 is basically an extension of Object Tool command language
(OTCL); therefore, it looks more like a scripting language that can output some
trace files. Nevertheless, a companion component called NAM (for Network
Animator) permits the user to have a graphical output.

Here, we present the simulation results of IEEE 802.11 standard/Direct
Sequence (DS) with transmission rates of 2, 5 and 11 Mbps. The model used is
an optimized model for the IEEE 802.11 MAC scheme. We varied the number
of nodes using 2, 5, 10, 15, and 20 nodes in the WLAN system. Traffic is
assumed to be generated with large packets of size 150 bytes and the network
was simulated for different load conditions ranging from 10% to 100% of the
channel capacity. The model allows us to determine the maximum channel
capacity of the IEEE 802.11 standard. The obtained results are shown in
Figures 12.26-12.28 [1, 8].

As shown in Figures 12.26-12.28, the normalized channel throughput
decreases as the number of nodes increases. Basically, this is a general
result of the Carrier Sense Multiple Access (CSMA) protocol. As shown in
Figure 12.29, we also analyzed the broadcast mode of operation and found that
the collision rate is more than 10% for a load larger than 50% of the channel
capacity. This low performance for broadcast traffic is a familiar matter in
IEEE 802.11 WLAN standard [1].

Maximum Channel Capacity at 2 Mbps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered Load (packets/slot)

T
h

ro
u

g
h

p
u

t
(p

ac
ke

ts
/s

lo
t)

2 nodes
5 nodes
10 nodes
15 nodes
20 nodes

FIGURE 12.26. Throughput versus offered load for a 2 Mbps WLAN.

12.7 CASE STUDIES ON SIMULATION 419

12.7.2 Case Study 2: Simulation of Adaptive ABR Voice Over ATM
Networks

In this example, we analyze the performance of voice quality when sent over the
ABR service in ATM networks using simulation. Sources can adjust the rate at
which they send traffic to the network based on the feedback provided by the
Resource Management (RM) cells. As the conflict to network resources
increases, bandwidth in this case, sources begin reducing the rate at which
they send traffic. The effectiveness of the scheme under various scheduling/drop
policies and other operating conditions is assessed using simulation analysis. In
addition, sensitivity analysis is applied to various key parameters, such as

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered Load (packets/slot)

2 nodes
5 nodes
10 nodes
15 nodes
20 nodes

Maximum Channel Capacity at 5 Mbps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
T

h
ro

u
g

h
p

u
t

(p
ac

ke
ts

/s
lo

t)

FIGURE 12.27. Throughput versus offered load for a 5 Mbps WLAN.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered Load (packets/slot)

T
h

ro
u

g
h

p
u

t
(p

ac
ke

ts
/s

lo
t)

2 nodes
5 nodes
10 nodes
15 nodes
20 nodes

Maximum Channel Capacity at 11 Mbps

FIGURE 12.28. Throughput versus offered load for a 11 Mbps WLAN.

420 SIMULATION SOFTWARE AND CASE STUDIES

queue size, and average interval length, to investigate their effect on the
performance metrics.

Figure 12.30 shows the framework under which we investigated the
efficiency of adapting compressed voice sources in a rate-controlled network.
Uncompressed voice (64 kbps) is fed to an encoder that decreases the number
of bits required to represent the voice signal. We assumed that the encoder can
support coding voice to match a target size (in bits).

It is worth noting that the number of bits used to encode voice influences
the quality of the compressed voice. The output bit stream from the encoder
is inserted into the network. This rate relies on the feedback sent by the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered Load (packets/slot)

T
h

ro
u

g
h

p
u

t
(p

ac
ke

ts
/s

lo
t)

Success Rate of Broadcast Traffic

FIGURE 12.29. Throughput versus offered load in the broadcast mode of operation

with 10 stations.

ATM
Interface

Voice
Encoder

Compressed Voice
at encoded rate

Request a rate/send
data at allocated rate

Feedback of explicit
rate

ATM
Uncompressed
Voice (64 kbps)

FIGURE 12.30. General framework for ABR voice over ATM (an explicit rate

environment).

12.7 CASE STUDIES ON SIMULATION 421

explicit-rate ABR congestion-control scheme, in which a source first demands
a rate from the network and the network reacts with an allowed rate, based
on the contention for the network bandwidth [12, 13].

Voice is transmitted over the ATM Adaptation Layer type 2 (AAL2). The
latter is used for bandwidth efficient transmission of low-rate, short, and
variable length packets in delay susceptible applications, such as packetized
voice and video where a timing relationship is required between the source and
the destination [46, 47]. This adaptation layer exploits bandwidth use by
multiplexing multiple low-rate connections (logical channels) in a single Virtual
Circuit (VC). Because carriers charge is based on the number of open VCs, this
multiplexing results in savings in bandwidth and overall costs.

Network switches run the Explicit Rate Indication for Congestion Avoid-
ance (ERICA) Algorithm. The full explanation of the ERICA switch algorithm
and the Pseudo-code can be found in Ref. [48], and based on that Pseudo-code,
the pertinent parts of the ABR service were realized in the simulations.

Modeling of voice traffic has been studied widely in the literature. Normally,
these models characterize speech as a Markov chain with various number of
states. The more the number of states in the model, the more complex it is. A
Markov chain is a mathematical model that captures the behavior of a closed
system. The probabilities of a Markov chain are typically inserted into a
transition matrix that represents which state follows which other state. Usually,
a Markov chain is characterized by a weighted directed graph in which the
weights correspond to the probability of that evolution. This means that the
weights are non-negative and that the total weight of outgoing edges is positive.
If the weights are normalized, then the overall weight, including self-loops, is 1.
The common model used for voice traffic is the ON-OFF model first proposed
in Ref. [49], where a two-state sequence is assumed. The two states relate to
the talk spurt and silence phases; A Talking, B Silent (ATBS) and A Silent,
B Taking (ASBT).

Figure 12.31 depicts the model and an example of its event sequence [12, 46–49].
As shown in Figure 12.32, the activities are special, which means that while A
is talking, B is silent, and vice versa. A similar thing applies to the silence
state. This means that the model does not consider double talk and mutual
silence. Therefore, it does not model two-way conversations exactly. Here,
we consider the holding time in the talk state and the silence state time
are exponentially distributed with average times of 352 ms and 650 ms,
respectively [23].

Figure 12.33 depicts the network model used in our simulation modeling.
This model has N ABR sources, which send voice traffic to switch1, where the
link capability between the sources and this switch is 64 Kbps. The link between
the two switches, Link, has a rate of T1 (1.544 Mbps). It is assumed the source
and destination are placed at the east and west coasts of the United States with
about 4800 km.

As a cell moves from the source to the destination, it experiences the
following delay components:

422 SIMULATION SOFTWARE AND CASE STUDIES

1. End-to-End Propagation Delay: The time needed for the cell to go from
the source to the destination. This is the electromagnetic delay, and in our
simulation model, the end-to-end propagation delay is set to 25 ms.

ATBS
1

1�p 1� r

ASBT
2

p

r

FIGURE 12.31. A two state Markov chain representing ON OFF voice.

1State

Speaker A
Time

Speaker B

1 2 2 2 2 1 1 2 1 2 1 1 1 1

FIGURE 12.32. The event sequence in the ON OFF voice model.

Src 1

Src 2

Src
N�1

Src
N

Dest 1

Dest 2

Dest
N�1

Dest
N

Link 1
Swch 1 Swch 2

FIGURE 12.33. The N ABR source configuration.

12.7 CASE STUDIES ON SIMULATION 423

2. Packetization/Depacketization Delays: This is the time required to fill up
an ATM cell payload at the voice encoding rate: 5.5 ms+5.5 ms=11 ms
(for plain PCM), assuming AAL2 is used. If the voice is compressed,
packetization will need more time.

3. Queuing Delay: This is the time cells must to wait in the switch buffer
until they get time to be served. It depends on the buffer size, and the
existing load.

4. Switching Delay: This is the time needed to set up a path and time needed
for propagation through the switch. We neglected in our simulation
model.

5. Serialization Delay: The time required to clock out the cell from the
output buffer to the link (0.275 ms to clock out at the 1.544 Mbps T1
rate).
Serialization delay= frame size (bits) / link bandwidth (bps).

Given the above, the total delay is:
Total Delay=Dprop+Dpack/depack+Dqueuing+Dserialization+Dswitching

In the context of this problem, the target delay is the delay bound beyond
which quality is considered underprivileged. In the simulation model, the target
delay is 125 ms, assuming echo chancellors are employed. If we allow an
average of five switches (see Figure 12.34), the delay deviation introduced by
every switch is as follows:

125� 25� 5:5� 5:5

5
¼ 12:8 ms

To support high-quality voice, we consider delay-variation bounds of 10 ms
and 20 ms, and thus, we have two types of voice traffic based on the delay
variation bound: one that can afford a 35 ms end-to-end delay and an other
that can afford 45 ms. This does not include the Packetization delay nor the
additional delay incurred by compression. The main assumptions considered in
the model are:

1. It is assumed that the switches support only Available Bit Rate (ABR)
traffic.

2. Sources can send traffic from the beginning of the simulation until the
end, following the two-state Markov model.

S Switch Switch Switch Switch Switch D

5.5 x x x x x 5.5

FIGURE 12.34. Delay components encountered from the source to the destination.

424 SIMULATION SOFTWARE AND CASE STUDIES

3. The link data rate is fixed at T1 rate of 1.544 Mbps.

4. Packetization delay is restricted to 5.5 ms, and in case of encoding at a
rate less than 64 Kbps, cells are sent partially filled.

5. The per-VC queuing scheme is used.

6. Switching delay is equal to the time taken by the switch fabrics to setup
the path plus the propagation time in the switch. We have assumed this is
negligible (in other words, if there is no queuing, the throughput is 100%
and equal to the link capacity).

7. Service time is assumed to be constant.

8. Since it is assumed the only traffic serviced by the switch is voice, no
weighted queuing is necessary [46–50].

The Quality of Service (QoS) metrics that have been considered are as
follows:

1. Mean cell transfer delay (CTD), which is a function of the propagation
delay, queuing delay, and packetization/depacketization delay.

2. Cell loss ratio (CLR), which is the number of cells lost divided by the total
number of transmitted cells.

3. Cell delay variation, (CDV), which is not a major concern here because
ATM has a low CDV, and because this can be taken care of by the
playout buffer [1–10, 46–50].

In addition, another performance metric that has been introduced by the
authors in references [12–13] and called the degradation of voice quality
(DVQ), which is defined as:

DVQ ¼ Number of cells lost þ Number of cells above the delay threshold

Total number of cells
:

Scheduling is important to guarantee fairness between users; several sche-
duling policies have been investigated to determine how they affect the overall
voice quality without taking into account the fairness of each algorithm or the
computational cost: (a) earliest deadline first (EDF), (b) longest queue first
(LQF), and (c) round robin (RR).

A drop policy is required so that when a specific threshold is reached, cells
can be dropped. The drop policies considered are as follows:

1. Tail-drop: Cells are dropped if there is no buffer to include them in.

2. Selective discard: If a particular threshold is reached, cells from sources
that are used more from the buffer are dropped, and hence fairness can be
achieved.

12.7 CASE STUDIES ON SIMULATION 425

The simulation model was implemented using C++. The model includes
two classes, a Switch class, and a Node class. The Switch class implements all
the functions performed by an ATM switch, namely, receiving cells from
sources, scheduling, switching, and running the ERICA congestion avoidance
algorithm. The class is driven by the following two events: (a) arrival of a new
connection and (b) arrival of a new cell.

The Node class essentially simulates nodes whether sources or destinations.
This class simulates all what sources and destinations do such as sending data
and forward resource management (FRM) cells, handling arriving backward
resource management (BRM) cells, and computing the demand. The class is
driven by the next departure time. At the beginning, the module tests if any
awaiting BRM cells have arrived before this departure. If yes, it calls the serve
BRM cell module. Then the algorithm checks whether the cell can be produced
within the current talk spurt; if not, then the time for the silence state is
determined, and the current time is moved forward by this amount. This means
that no cells are produced during this quiet (silence) state.

To determine whether to send a data cell or an FRM cell, the number of cells
sent so far is checked to determine whether it is divisible by 32. If yes, then a
FRM cell is sent; otherwise, a data cell is sent. The current time is moved
forward by the time needed to generate a cell, which depends on the current
source rate.

When a BRM cell arrives to the source, it has to adjust its current rate if it is
more than what the network can accommodate. The source compares the
explicit rate value in the BRM cell with its current rate; if the ER value is less,
then; the source has to decrease its rate to that amount and alters the time
needed to generate a cell. The simulator was run under various conditions and
operating environments.

Figure 12.35 depicts how sources modify their rate as a result of more
conflict on the bandwidth. As can be observed, the higher the number of
sources, the lower the rate at which sources can send. This can be used by the
operator to offer a variety of levels of service based on the customer or
application requirements.

Figure 12.36. depicts DVQ for a delay threshold of 35 ms. As shown in
Figure 12.35, the higher the number of sources the worse the quality of voice.
This can be explained as follows. The higher the number of sources, the higher
the traffic load on the system and, hence, the greater the probability of cells
being dropped and/or delayed in the switches.

Figure 12.37 shows the consequence of increasing the number of sources on
cells lost and cells delayed.

As observed in Figure 12.38, the voice quality has been degraded for
different queue sizes. The results can better be construed if we look at Figure
12.39 where the CLR starts to decline as the queue size increases. Furthermore,
as the queue size grows up, the number of cells delayed will increase because
more cells are delayed rather than go down by the switch. This means that the

426 SIMULATION SOFTWARE AND CASE STUDIES

shorter the queue size, the better the quality of service and usage of the
bandwidth.

The consequence of drop policies on the voice quality was analyzed, and
Figure 12.40 shows this effect. As depicted in Figure 12.40, the buffer size is 200

0

20000

40000

60000

80000

0 100 200 300 400

Number of Sources (NS)

S
o

u
rc

e
R

at
e

(b
it

s/
se

c)

Source Rate

FIGURE 12.35. Source rate versus number of sources.

0

0.2

0.4

0.6

0.8

0 200 400

Number of Sources (NS)

D
eg

ra
d

at
io

n
 in

 V
o

ic
e

q
u

al
it

y
(D

V
Q

)

DVQ (35 ms)

FIGURE 12.36. DVQ versus number of sources (35 ms threshold).

0
25000
50000
75000

100000
125000
150000

0 200 400

Number of Sources (NS)

N
u

m
b

er
 o

f
ce

lls

of cells lost

cells delayed
beyond the 45 ms
threshold

cells delayed
beyond the 35 ms
threshold

FIGURE 12.37. Number of cells lost versus number of sources.

12.7 CASE STUDIES ON SIMULATION 427

cells, and the threshold is 80% occupancy level. Under low load conditions,
both drop policies offer about similar results. While the load grows, selective
discard scheme gives better voice quality.

Analytic analysis has been employed to validate the results of simulation.
Figure 12.41 depicts the analytic and the simulation results for the source rate.
As shown, the results are close.

12.8 SUMMARY

Computer and telecommunication system models can be simulated using
general-purpose programming languages whether structured or object-oriented
languages, simulation languages, or simulation software packages. When
developing simulation models using general-programming languages, the
modeler will need to exert more efforts and time into the development of the
simulation model, thereby increasing the time and efforts of the simulation
task. Furthermore, the more the programming, the higher is the probability of
the errors in the code. There might be some problems that cannot be modeled
easily using traditional general-purpose programming languages, as they lack
the necessary features to simulate the model smoothly. Object-oriented

0

0.02

0.04

0.06

0 20 40 60

Queue Size (Cells)

D
V

Q DVQ (35 ms)

DVQ (45 ms)

FIGURE 12.38. DVQ versus queue size.

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60

Queue Size (cells)

N
u

m
b

er
 o

f
ce

lls

of cells lost

10 ms delay threshold

20 ms delay threshold

FIGURE 12.39. Number of cells lost/delayed versus queue size.

428 SIMULATION SOFTWARE AND CASE STUDIES

languages can overcome the shortfalls of the general languages as they use the
object concept. These are helpful in realizing the real-world scenarios. How-
ever, still, everything has to be developed from the scratch. Therefore, the cost
of development increases. To reduce the programming time, simulation
languages are used. These have built-in features that make the simulation
task easier. These modules from the library can be reused, and the user can
define their own modules to create the simulation model. In this case, the
modeler needs to have knowledge of the simulation language. Simulation
packages offer a graphical user interface to develop the simulation models.
Such models can be executed using the animation interface that demonstrates
the execution of the simulation on the run. Statistics are gathered during the
execution and reports are produced automatically by the report tool provided
by almost all state-of-the-art simulation packages. The only disadvantage
associated with the use of simulation packages is that the execution of the
simulation takes longer, and most packages are developed for particular
applications. In addition, such packages are inflexible. We concluded the
chapter by presenting two detailed case studies on the use of modeling and
simulation to predict the performance of telecommunication systems: an IEEE
802.11 wireless LAN and adaptive ABR voice over ATM networks.

0
0.02
0.04
0.06
0.08
0.1

tail
24

tail
50

tail
60

tail
75

tail
100

tail
120

tail
150

tail
200

Drop Policy/NS

D
V

Q DVQ (35 ms)

DVQ (45 ms)

FIGURE 12.40. DVQ versus drop policy.

Simulation and Analytic
Results for Source Rate

0

20000

40000

60000

80000

0 100 200 300

Number of Sources (NS)

S
o

u
rc

e
R

at
e

Source rate

Caluclated
source rate

FIGURE 12.41. Analytic and simulation results for the average source rate.

12.8 SUMMARY 429

REFERENCES

[1] M. S. Obaidat, and G. I. Papadimitriou (Eds.), ‘‘Applied System Simulation:

Methodologies and Applications,’’ Springer, Norwell, MA, 2003.

[2] G. I. Papadimitriou, B. Sadoun, and C. Papazoglou, ‘‘Fundamentals of Systems

Simulation,’’ in M. S. Obaidat, and G. I. Papadimitriou, (Eds.), ‘‘Applied System

Simulation: Methodologies and Applications,’’ Springer, Norwell, MA, 2003.

[3] A. M. Law, ‘‘Simulation Modeling & Analysis, 4th Edition,’’ McGraw Hill, New

York, pp. 187 213 1999.

[4] R. Jain, ‘‘The Art of Computer System Performance Analysis,’’ 2nd edition,’’ Wiley

New York, 1991.

[5] J. Banks, J. S. Carson II, and B. L. Nelson, ‘‘Discrete Event System Simulation,’’

4th edition,’’ Pearson Prentice Hall, Upper Soddle River, NJ, 2005.

[6] U. Pooch, and J. Wall, ‘‘Discrete Event Simulation,’’ CRC Press, Boca Raton, FL,

1993.

[7] M. S. Obaidat, and N. Boudriga, ‘‘Modeling and Simulation of ATM Systems

and Networks, M. S. Obaidat, and G. I. Papadimitriou,’’ in Applied System

Simulation: Methodologies and Applications,’’ Kluwer Academic Publis, Norwell,

MA, 2003.

[8] M. S. Obaidat, and D. B. Green, ‘‘Simulation of Wireless Networks,’’ in M. S.

Obaidat, and G. I. Papadimitriou, (Eds.) ‘‘Applied System Simulation: Methodol

ogies and Applications,’’ Kluwer Academic Publishers, Norwell, MA, 2003.

[9] T. J Schriber, ‘‘Perspectives on Simulation Using GPSS,’’ Proceedings of 1995

Winter Simulation Conference, pp. 451 456, 1995.

[10] R. C. Crain, J. O. Henriksen, ‘‘Simulation Using GPSS/H,’’ Proceedings of 1999

Winter Simulation Conference, pp. 182 187, 1999.

[11] D. K. Pace, ‘‘Verification, Validation, and Accreditation of Simulation Models,’’ in

M. S. Obaidat, and G. I. Papadimitriou, (Eds.), ‘‘Applied System Simulation:

Methodologies and Applications,’’ Springer, Norwell, MA, 2003.

[12] M. S. Obaidat, and S. Obeidat, ‘‘Modeling and Simulation of Adaptive ABR Voice

Over ATM Networks,’’ Simulation: Transactions of the Society for Modeling and

Simulation International, Vol. 78, No. 3, pp. 139 149, 2002.

[13] S. Obeidat, and M. S. Obaidat, ‘‘Performance Evaluation of Adaptive ABR Voice

over ATM Networks,’’ Proceedings of the 2002 International Symposium on

Performance of Computer and Telecommunication Systems, pp. 422 429, San

Diego, CA, 2002.

[14] D. K. Carter, and A. D. Baker, ‘‘Considerations in Developing a Formally Based

Visual Programming Language Reference Manual: A Case Study on SLAM II

Language,’’ ACM SIGPLAN, Vol. 32, No 6, pp. 34 39, 1997.

[15] M. Otter, and H. Emquivst, ‘‘Modelica Language, Libraries, and Tools Confer

ences, Modelica Association, pp. 1 12, April 2002.

[16] P. Fritzson, and V. Engelson, ‘‘Modelica A Unified Object Oriented Language

for System Modeling and Simulation, ECCOP Modelica, pp. 67 90, 1998.

[17] J. Goble, ‘‘MODSIM III A Tutorial,’’ Proceedings of the 1997 Winter Simulation

Conference, pp. 601 605, 1997.

430 SIMULATION SOFTWARE AND CASE STUDIES

[18] S. V. Rice, A. Marjanski, H. Markowitz, and S. M. Bailey, ‘‘The SIMSCRIPT III

Programming Language for Modular Object Oriented Simulation,’’ Proceedings of

the 2005 Winter Simulation Conference, pp. 621 630, 2005.

[19] J. A. Joines, and S. D. Roberts, ‘‘Design of Object Oriented Simulations in

C++,’’Proceedings of the 1996 Winter Simulation Conference, pp. 65 72, 1996.

[20] http://staff.um.edu.mt/jskl1/talk.html.

[21] http://www.answers.com/topic/simula 1.

[22] D.P. Sanderson, R. Sharma, R. Rozin, and S. Treu, ‘‘The Hierarchical Simulation

Language HSL: A Versatile Tool for Process Oriented Simulation,’’ ACM Trans

actions on Modeling and Computer Simulation, Vol. 1, No 2, pp. 113 153, 1991.

[23] ‘‘Agent Based Modeling Tutorial,’’ Available at: http://www.xjtek.com/files/docs/

en/AgentBasedModelingTutorial.pdf.

[24] http://web1.rsoftdesign.com/products/network_modeling/Artifex/pdfs/artifex.pdf.

[25] http://www.isi.edu/nsnam/ns/.

[26] S. Chung, andM.Clay Pool, ‘‘NS byExample,’’ Available at: http://nile.wpi.edu/NS/.

[27] A. Varga, ‘‘The OMNET++ Discrete Event Simulation System,’’ ACM Transac

tions on Modeling and Computer Simulation, pp. 212 218, 2001.

[28] www.omnetpp.org

[29] http://trace.eas.asu.edu/tools/index.html.

[30] http://poisson.ecse.rpi.edu/Bhema/qnat/.

[31] ‘‘Viptos Visual interface Between Ptolemy and Tiny OS,’’ Available at: http://

ptolemy.eecs.berkeley.edu/viptos/.

[32] X. Chang, ‘‘Network Simulations with OPNET,’’ Proceedings of the 1999 Winter

Simulation Conference, pp. 307 314, 1999.

[33] jimjansen.tripod.com/.../colis99/colis99.html

[34] http://www.tel.unomaha.edu

[35] http://www.caciasl.com/pdf/N25.pdf

[36] http://www.rsoftdesign.com

[37] ‘‘Opt Slim Provides Physical Layer Design Br FTTH/FTTP Access Networks’’

Available at: http://www.rsoftdesign.co.jp/pdfs/rsoft_review_vol4_no1.pdf.

[38] http://www.etse.urv.es/DEI/informacio/simuladors/comnet/ATM.pdf

[39] J. Jones, ‘‘COMNET III: Object Oriented Network Performance Prediction,’’

Proceedings of 1995 Winter Simulation Conference, pp. 545 547, 1995.

[40] ‘‘Glomosim A Library for parake Simulation of Large Scale Wireless Networks’’

Available at: http://www.scalable networks.com/pdf/glomosim.pdf

[41] W. D. Kelton, R. P. Sadowski, and D. T. Sturrock, ‘‘Simulation with Arena,’’ 3rd

Edition,’’ McGraw Hill, New York, 2003.

[42] H. Kaur, D. Manjunath, and S. K. Bose, ‘‘The Queuing Network Analysis Tool,’’

Proceedings of the 8th International Symposium on Modeling and Simulation of

Computer and Telecommunication Systems, pp. 162 167, 2000.

[43] D. Xu, G. F. Riley, M. Ammar, and R. Fujimoto, ‘‘Split Protocol Stack

Network Simulations Using the Dynamic Simulation Backplane,’’ Proceedings of

the 9th International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems, pp. 325 332, 2001.

REFERENCES 431

[44] X. Chang, ‘‘Network Simulations with OPNET,’’ Proceedings of the 1999 Winter

Simulation Conference, pp. 307 314, 1999.

[45] http://www.analyticalengines.com/

[46] M. McLoughlin, J. O’Neil, ‘‘Adapting Voice For ATM Networks An AAL2

Tutorial,’’ General DataComm Available at: http://www.gdc.com/, 1997.

[47] U. Black, ‘‘ATM: Foundation for Broadband Networks,’’ Volume 1, 2nd Edition

Prentice Hall Upper Saddle River, NJ, 1999.

[48] R. Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and R. Viswanathan, ‘‘ERICA

Switch Algorithm: A Complete Description,’’ ATM Forum/96 1172, 1996.

[49] P. T. Brady, ‘‘A Model for Generating ON OFF Speech Patterns in Two Way

Conversations,’’ Bell System Technology Journal, Vol. 48, pp 2445 2472, 1969.

[50] S. Deng, ‘‘Traffic Characteristics of Packet Voice,’’ IEEE International Conference

on Communications, Vol. 3, pp. 1369 1374, 1995.

EXERCISES

1. What are the main drawbacks of simulation packages?

2. Give examples of open-source simulation packages that are optimized for
modeling and simulation of network and telecommunication systems and
compare them.

3. Compare and contract object-oriented simulation languages and struc-
tured simulation languages. Give examples.

4. State the main differences between general-purpose programming lan-
guages and simulation languages. Explain when each category is used in
simulation.

5. Consider a time-shared computer system that contains a single central
processing unit/processor and n terminals; see Figure 12.42 below. The
user of each terminal ‘‘thinks’’ for a quantity of time that is exponentially
distributed with a mean of 15 S and then sends a job to CPU with a
service time that is exponentially distributed with a mean of 0.50 second.
Jobs arrive in a single queue in front of the Central Processing Unit
(CPU), however, they are served in a round robin rather than in a FIFO
fashion. In other words, the CPU allocates to each job a maximum
quantum of length q=0.2 second (s). If the (remaining) service time of
a job, s, is less than or equal to q, then the CPU spends time s plus a fixed
overhead t=0.01 s processing the job, and the job returns to the terminal.
If s is greater than q, then the CPU spends time q plus t processing the job,
the job joins the end of the queue, and its outstanding service time s
decremented by q seconds. This method is recurred until the job’s service is
finally completed, at which point the job goes back to its terminal and
another think time starts. The round robin scheduling scheme permits the
computer to process jobs with a small service faster than jobs with a large
service time without knowing the service time of each job in advance.

432 SIMULATION SOFTWARE AND CASE STUDIES

Define the response time of a job to be the time spent between the
instances the job departs its terminal and the instance that it is finished
being processed at the CPU. For each of these cases n=30, 35y100,
where n is the number of terminals, simulate the system for 1000, 5000,
10,000, and 15,000 job completions and collect statistics on the mean and
maximum response time, the time-average number of jobs waiting in the
queue, and the usage of the CPU. It is required to find out how many
terminals are needed on the system and still can provide users with a mean
response time of 25.

a. Write the required program using a general-purpose programming
language, run simulation experiments and show all your work.

b. Repeat (a) using a simulation language.

c. Comment on the efforts and results in parts (a) and (b).

6. Simulate an 802.3 Ethernet LAN system using the language or package
you prefer. Assume that the interarrival times of frames follow the
exponential distribution. Vary the number of nodes in the network
from 0 to 100 in steps of 10. Plot the throughput versus the number of
nodes in the system. Also, plot the average frame delay versus the number
of nodes. Then, plot the latency and throughput relation for different
number of nodes. Show all your assumptions and results.

Terminals

1

2

n

Computer

Unfinished jobs

Finished Jobs

Queue

CPU

FIGURE 12.42. The time shared computer system of problem 5.

EXERCISES 433

APPENDIX A
TABLE OF STANDARD NORMAL (Z)
DISTRIBUTION

0 Z

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0 0.004 0.008 0.012 0.016 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

(Continued)

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

434

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.475 0.4756 0.4761 0.4767

2 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

APPENDIX A TABLE OF STANDARD NORMAL (Z) DISTRIBUTION 435

APPENDIX B
COMMONLY USED NORMAL
QUANTILES

The list contains the commonly used normal quantiles. The confidence levels
shown in the first column are for the two-sided confidence intervals. For instance,
for a two-sided confidence interval at 90%, a=0.1, a/2=0.05 and Z0.95=1.645.

Confidence Level (%) a a/2 Z1� a/2

20 0.8 0.4 0.253

40 0.6 0.3 0.524

60 0.4 0.2 0.842

68.26 0.3174 0.1587 1.000

80 0.2 0.1 1.282

90 0.1 0.05 1.645

95 0.05 0.025 1.960

95.46 0.0454 0.0228 2.000

98.0 0.02 0.01 2.326

99 0.01 0.005 2.576

99.74 0.0026 0.0013 3.000

99.8 0.002 0.001 3.090

99.9 0.001 0.0005 3.29

99.98 0.0002 0.0001 3.72

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

436

APPENDIX C
QUANTILES OF UNIT NORMAL
DISTRIBUTION

Zp

The table records Zp for a given p. For instance, for a two-sided confidence
interval at 95%, a=0.04 and p=1� a/2=0.98. The entry in the row labeled
0.98 and column labeled 0.000 provides Zp=2.054.

p 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.5 0.000 0.025 0.050 0.075 0.100 0.126 0.151 0.176 0.202 0.228

0.6 0.253 0.279 0.305 0.332 0.358 0.385 0.412 0.440 0.468 0.496

0.7 0.524 0.553 0.583 0.613 0.643 0.674 0.706 0.739 0.772 0.806

0.8 0.842 0.878 0.915 0.954 0.994 1.036 1.080 1.126 1.175 1.227

(Continued)

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

437

p 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.90 1.282 1.287 1.293 1.299 1.305 1.311 1.317 1.323 1.329 1.335

0.91 1.341 1.347 1353 1.359 0.366 1.372 1.379 1.385 1.392 1.398

0.92 1.405 1.412 1.419 1.426 1.433 1.440 1.447 1.454 1.461 1.468

0.93 1.476 1.483 1.491 1.499 1.506 1.514 1.522 1.530 1.538 1.546

0.94 1.555 1.563 1.572 1.580 1.589 1.598 1.607 1616 1.626 1.635

0.95 1.645 1.655 1.665 1.675 1.685 1.695 1.706 1.717 1.728 1.739

0.96 1.751 1.762 1.774 1.787 1.799 1.812 1.825 1.838 1.852 1.866

0.97 1.881 1.896 1.911 1.927 1.943 1.960 1.977 1.995 2.014 2.034

0.98 2.054 2.075 2.097 2.210 2.144 2.170 2.197 2.226 2.257 2.290

p 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.990 2.326 2.330 2.334 2.338 2.342 2.346 2.349 2.353 2.357 2.362

0.991 2.366 2.370 2.374 2.378 2.382 2.387 2.391 2.395 2.400 2.404

0.992 2.409 2.414 2.418 2.423 2.428 2.432 2.437 2.442 2.447 2.452

0.993 2.457 2.462 2.468 2.473 2.478 2.484 2.489 2.495 2.501 2.506

0.994 2.512 2.518 2.524 2.530 2.536 2.543 2.549 2.556 2.562 2.569

0.995 2.576 2.583 2.590 2.597 2.605 2.612 2.620 2.628 2.636 2.644

0.996 2.652 2.661 2.669 2.678 2.687 2.697 2.706 2.716 2.727 2.737

0.997 2.748 2.759 2.770 2.782 2.794 2.807 2.82 2.834 2.848 2.863

0.998 2.878 2.894 2.911 2.929 2.948 2.968 2.989 3.011 3.036 3.062

0.999 3.090 3.121 3.156 3.195 3.239 3.291 3.353 3.432 3.540 3.719

438 APPENDIX C QUANTILES OF UNIT NORMAL DISTRIBUTION

APPENDIX D
QUANTILES OF STUDENT’S
T-DISTRIBUTION WITH V DEGREES
OF FREEDOM

tv,a where P(Zrtv,a)= a for a random variable ZBt(v)

v 0.9000 0.9500 0.9750 0.9900 0.9950 0.9990 0.9995

1 3.078 6.314 12.706 31.821 63.657 318.31 636.619

2 1.886 2.920 4.303 6.965 9.925 22.326 31.599

3 1.638 2.353 3.182 4.541 5.841 10.213 12.924

4 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959

7 1.415 1.895 2.365 2.998 3.499 4.785 5.408

8 1.397 1.860 2.306 2.896 3.355 4.501 5.041

9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 1.363 1.796 2.201 2.718 3.106 4.925 4.437

12 1.356 1.782 2.179 2.681 3.055 3.930 4.318

(Continued)

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

439

v 0.9000 0.9500 0.9750 0.9900 0.9950 0.9990 0.9995

13 1.350 1.771 2.160 2.650 3.012 3.852 4.221

14 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015

17 1.333 1.740 2.110 2.567 2.898 3.646 3.965

18 1.330 1.734 2.101 2.552 2.878 3.610 3.922

19 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819

22 1.321 1.717 2.074 2.508 2.819 3.505 3.792

23 1.319 1.714 2.069 2.50 2.807 3.485 3.768

24 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707

27 1.314 1.703 2.052 2.473 2.771 3.421 3.690

28 1.313 1.701 2.048 2.467 2.763 3.408 3.674

29 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 1.31 1.697 2.042 2.457 2.750 3.385 3.646

60 1.296 1.671 2.000 2.423 2.660 3.307 3.460

90 1.291 1.662 1.987 2.390 2.632 3.232 3.402

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373

N 1.282 1.645 1.960 2.326 2.576 3.090 3.291

For vZ30 the quantiles of the standard normal distribution are good
approximations.

440 APPENDIX D QUANTILES OF STUDENT’S T DISTRIBUTIONWITH V DEGREES OF FREEDOM

INDEX

Abstract execution, tracing strategies, 70

Acceptance rejection method (ARM), random

variate generation, 297 298

Accounting logs, measurement and testing,

74 75

Accreditation, validation and verification,

373

Accuracy, measurement techniques, 119 122

Ackermann’s function, benchmark

applications, 87

Activation method, software monitors, 72

Adaptive ABR Voice Over ATM networks case

study, simulator software applications in,

420 428

Addition instruction, benchmarks using, 81

Aggregate queue length (AQL) algorithm,

mean value analysis, 247 248

Allocation buffering, performance evaluation,

10 18

Alternative hypothesis, hypothesis testing,

59 62

Alternative system designs, performance

evaluation, 5

Analytical search procedures, linear regression

models, 42 43

Analytic modeling:

performance evaluation, 7 8

validation techniques, 362 363

Antibugging testing, verification process, 360

Anylogic 5.0.1 Tool, principles and

applications, 412 414

Application benchmarks, functions of, 83

Approximation algorithms:

binomial distribution, 340 341

mean value analysis, 244 248

Bard Schweitzer proportional estimation

algorithm, 244 246

Chandy Neuse linearizer algorithm,

246 247

Zahorjan Eager Sweillam aggregate queue

length algorithm, 247 248

Architecture properties, capacity planning for

web services, 102 107

Arrival processes:

operational analysis, circuit switching system

case study, 255 259

product form queuing network, 212 214

Arrival theorem, queuing networks, mean value

analysis, 209 218

Assembly languages, simulation software, 379

Fundamentals of Performance Evaluation of Computer and Telecommunication Systems,
By Mohammad S. Obaidat and Noureddine A. Boudriga
Copyright r 2010 John Wiley & Sons, Inc.

441

Asymptotic bounds:

bounding analysis, 247 251

circuit switching system case study, 258 259

ATM Adaptation Layer type 2 (AAL2)

transmission, Adaptive ABR Voice Over

ATM networks case study, 422 428

Autocovariance, random number sequence

testing, serial correlation test, 306 307

Autonomous replication:

moving mean, transient elimination

validation and verification, 371 372

stopping principles for simulations, 372 373

Auxiliary event metrics, measurement and

testing, 67

Availability, performance evaluation, 9

Averaging techniques, workload

characterization, 11 18

Back end systems performance, capacity

planning for web services, 107

Backward resource management (BRM),

Adaptive ABR Voice Over ATM networks

case study, 426 428

Balanced systems bounds, analysis of, 251 253

Bar charts, graphical representation, 116 117

Bard Schweitzer proportional estimation

algorithm, mean value analysis, 244 246

Batch averages, stopping principles for

simulations, 373

Batch means approach, transient elimination

validation and verification, 370 372

Batch workload:

bounding analysis, 250 251

queuing networks, 195

BCMP theorem, product form queuing

network, 209 214

Behavioral data, distribution simulation

verification and validation, 365 369

Benchmarking:

basic principles, 78 80

examples of, 83 96

frequent mistakes and games in, 96 100

performance evaluation, 10 18

program categories, 80 83

Bernoulli model:

binomial distribution, 339 340

hypothesis testing, 61 62

multinomial distribution, 323 324

Bernoulli random variable:

geometric distribution, 48

probability theory, 30 36

Beta distribution, 336 338

uniform distribution as, 318 319

Binary Phase Shift Keying (BPSK) system:

error estimation, 346 348

noise problems, 345 346

Binary random variable, probability theory,

30 36

Binomial distribution:

approximation, 340 341

defined, 338 340

hypothesis testing, 61 62

mean and deviation, 340

negative binomial distribution, 341

parameter estimation, 341

Poisson distribution and, 317 318

probability theory, 47

properties, 340 341

Bit error rate (BER), binary phase shift keying

system, 347 348

Bit to the user (BTU), benchmarking and

capacity planning, 91 92

Block departure time (BDT), General Purpose

Simulation System language, 384 385

Blocking after service (BAS), queuing

networks, 194

Blocking before service (BBS), queuing

networks, 194

Blocking probability:

circuit switching system case study, 256 259

loss queue systems, 185 186

Blocking tasks, queuing networks, 191, 194 195

Blum Blum Shub (BBS) technique, random

number generation simulation, 285 286

Boolean test, finite state machine model,

129 131

Boole’s inequalities, probability theory, 23 25

Bottleneck analysis, 236 239

balanced systems bounds, 251 253

Boundedness, Petri Net based modeling, 138 139

Bounding analysis, 248 255

asymptotic bounds, 249 251

balanced systems bounds, 251 253

example, 253 255

Box Pierce test, random number sequence

testing, 301

Breadth first search, finite state machine

model, 130

Buffer numbers, software monitors, 71

Buffer packets, sampling without replacement,

26 28

Buffer size:

benchmarking applications and, 97

software monitors, 71

Busy period distribution, queuing systems, 158

M/M/1 queuing systems, 175

442 INDEX

Cache effect:

benchmarking applications, 97

capacity planning for web services, 104 108

Call centers, queuing theory, 153

Capacity planning:

performance evaluation, 5

procedures and problems, 100 102

for web services, 102 108

Central limit theory (CLT):

hypothesis testing, 61 62

probability limits, 55 56

Chandy Neuse linearizer algorithm, mean

value analysis, 246 247

Characterization method, random variate

generation, 298

Chart design and components, graphical

representation, 115 117

Chebychev Markov inequality, probability

limits, 54

Chi distribution, 343 344

Chi square distribution:

chi distribution, 343 344

definition and properties, 342 343

F distribution, 344

inverse chi square, 343

random number sequence testing, 300 304

random variate generation, convolution

algorithm, 299

Circuit switching system, operational and mean

value analysis, 255 259

Classification tasks, simulation analysis,

278 279

CLOCK countervariable, structured

programming languages, 380

Closed queuing networks:

basic functions, 204 209

defined, 192

flow equivalent series (FES) analysis,

218 220

forced flow law, operational analysis,

229 230

mean value analysis, 243 244

Closing/closed state, finite state machine

model based TCP validation, 134 135

Clustering, workload characterization, 11 18

Coding errors, profiling process, 123 126

Coefficient of variation (COV), workload

characterization, 11 18

Colored Petri nets (CPNs):

boundedness, 139

protocol validation, 144 147

Column charts, in graphical representation,

117 118

Combined linear congruential generators,

random number generation

simulation, 283

Communicating finite state machine model,

128 129

Communication networks, queuing theory

and, 153

COMNET III Simulation Package, principles

and applications, 409 410

Comparators, monitor measurement and

testing, 71

Computational fluid dynamics (CFD), NAS

Parallel Benchmarks, 89

Computerized model verification, distribution

simulation verification and validation,

366 369

Computing utilization, operational analysis,

Little’s law and flow balance assumption,

234 235

COMSS benchmarking tool, 91

Conceptual model validation:

defined, 357

distribution simulation verification and

validation, 365 369

Conditional distribution function (CDF):

discrete time Markov chain, 51 52

Markov processes, 50

Conditional probability:

basic principles, 24 25

random variables, 32 36

Confidence intervals:

in graphical representation, 118

operational validation, 367 369

sample data, systems probability, 57 59

student’s t distribution, 345

Configuration differences, benchmark

analysis, 100

Conformance testing validation, finite state

machine model, 131 132

Connection requested/established state, finite

state machine model based TCP

validation, 134 135

Conservation law, queuing theory, 169 170

Consistency testing, verification process,

361 362

Contiguous sub sequence technique, parallel

random number generation, 289 290

Continuity testing, verification process, 361

Continuous independent variables, central limit

theory, 56

Continuous Markov chain, product form

queueing network, local balance property,

211 212

INDEX 443

Continuous probability distribution:

defined, 312 313

gamma distribution, 331 332

Weibull distribution, 326 327

Continuous random variables, 36 37

sums of, 39

Continuous time Markov chain (CMTC),

52 54

Control flow graph (CFG), profiling process,

124 126

Controlled partial search, finite state machine

model, 130 131

Controlled walk through scheme, verification

process, 360

Convolution algorithm:

random variate generation, 298 299

sum of continuous random variable, 39

Counters, monitor measurement and

testing, 71

Covariance:

multinomial distribution, 324

regression models, 40 47

C programming language, simulation software,

380 381

Cumulative distribution function (CDF):

beta distribution, 336 338

binomial distribution, 338 339

chi square distribution, 342 343

discrete variable, 30 36

Erlangian distribution, 335

exponential distribution, 313 315

gamma distribution, 332 334

geometric distribution, 330 331

normal distribution, 320 321

overview, 312 313

Pareto distribution, 329 330

random number sequence testing,

Kolmogorov Smirnov test, 304 306

random variate generation:

composition method, 299

inverse transform method, 294 296

uniform distribution, 318 319

Weibull distribution, 326 327

Curve analysis, normal distribution, 319 320

Customer distribution:

G/M/1 queues, 182 183

M/Er/1 queue, 178 179

M/G/1 queues, 180 181

queueing systems, 158

Little’s law, 162 167

Customer estimations, M/M/1 queueing

systems, 171 173

Customer population, queueing systems, 159

Database server, forced flow law, operational

analysis, 229 230

Data communication, queueing theory and, 153

Data compression, tracing strategies, 69

Data overload, benchmarking process, 98

Data repository for server performance,

capacity planning for web services, 108

Data representation:

graphical representation, 115 117

measurements, 118 122

errors, 119 121

precision, 120 121

ratio game, 122 123

results accuracy, 121

overview of techniques, 113 115

Petri Net based modeling, 135 143

basic definitions, 136 138

boundedness, 138 139

invariants, 142 143

liveness, 138

queueing petri nets, 139 141

reachability, 138

program profiling and outlining, 123 126

proper results plotting, 117 118

protocol validation, 143 147

state machine models, 127 135

conformance testing, 131 132

controlled partial search, 130 131

full search validation, 129 130

random simulation, 131

TCP validation, 132 135

validation, 129 131

Data transfer state, finite state machine model

based TCP validation, 134 135

Deadlock prevention and resolution, queueing

networks, 194 195

Debit Credit benchmark, benchmarking

applications, 88 89

Degeneracy testing:

validation techniques, 363

verification process, 316

Degree of parallelism (DOP), measurement and

testing, 67

Degrees of freedom:

chi distribution, 343 344

hypothesis testing in normal model, 60 62

random number sequence testing, chi square

test, 304

student’s t distribution, 344 346

Delay centers, inputs in, 196

Delay probability, M/M/M queueing system,

176 177

Density functions, probability theory, 47 50

444 INDEX

Density functions (continued)

binomial distribution, 47

exponential density, 48 49

gamma density, 49

geometric distribution, 48

multivariate distributions, 50

Poisson distribution, 47 48

Depth bounds search, finite state machine

model, 130 131

Depth first search, finite state machine model, 130

Deterministic in deterministic out (DIDO)

simulation paradigm, 275

Deterministic models, verification process, 360

Deterministic systems:

performance evaluation, 4 5

queueing theory, 156

simulation analysis, 267 268, 275

Deviation, binomial distribution, 340

Device demand skewness, benchmarking

process, 98

Device utilizations, benchmarking applications

and, 97

Diffie Hellman like system, protocol

validation, 145 147

Directed arcs, Petri Net based modeling, 135

Discrete event simulation (DES), 277 279

General Activity Simulation Program

language, 386 387

Discrete independent variables, central limit

theory, 56

Discrete probability distribution:

defined, 312 313

geometric distribution, 330 331

Discrete time Markov chain (DTMC),

probability theory, 51 52

Discrete uniform distribution, 318 319

Discrete variable:

probability theory, 30 36

sums of, 38 39

Dispersion measures, workload

characterization, 11 18

Distributed interactive simulation (DIS)

protocols, verification and validation in,

365 369

Distribution functions. See also specific

distributions, e.g . Probability distribution

probability theory, 47 50

binomial distribution, 47

exponential density, 48 49

gamma density, 49

geometric distribution, 48

multivariate distributions, 50

Poisson distribution, 47 48

Drystone kernel, benchmarking applications,

87 88

Dynamic content management, capacity

planning for web services, 105

Dynamic testing, distribution simulation

verification and validation, 367 369

Edge profiling, program profiling, 125 126

Electronic numerical integrator and computer

(ENIAC), 281 282

Elementary sampling, 26 29

Emulation, tracing strategies, 69

Enable/disable systems, software monitors, 72

Enabled transitions:

Petri Net based modeling, 136 138

queueing Petri nets, 140 141

Encapsulation, simulation software

programming languages, 381

End to end response time:

Adaptive ABR Voice Over ATM networks

case study, 423 428

capacity planning for web services, 103 108

Environmental inputs, performance evaluation,

10 18

Equilibrium probability, M/Er/1 queue,

178 179

Equivalent machine optimization, finite state

machine model, 129

Erlangian distribution:

defined, 334 336

M/Er/1 queue, 178 179

queueing theory, 156 157

Erlangs C formula, M/M/M queueing system

waiting time, 177

Erlang units, 335

Erlang variate, random variate generation,

convolution algorithm, 299

Error analysis:

benchmarking applications, 96 100

binary phase shift keying system, 346 347

capacity planning for web services, 103 108

measurement techniques, 119 122

noise description, 346

profiling process, 123 126

Error bounds, mean value analysis, large

customer population algorithm, 244 246

Euclidean space, random variables, 32 36

Event count metrics, measurement and

testing, 67

Event driven strategies, measurement and

testing, 67

Events validation, 363

Event tracing, measurement and testing, 67 70

INDEX 445

Exact solution algorithms, queueing networks,

193 194

Exchangeability rule, sampling with less precise

data, 28 29

Exclusive or (XOR) logic operation:

Mersenne twister algorithm, 287 288

Tausworthe generators, 283 284

Executable code modification, tracing

strategies, 69

Execution time, benchmarks using, 81 82

Exerciser loops, benchmarks using, 82 83

Explicit Rate Indication for Congestion

Avoidance (ERICA) algorithm, Adaptive

ABR Voice Over ATM networks case

study, 422 428

Exponential distribution:

defined, 313 314

Pareto distribution and, 330

Poisson distribution and, 317 318

variables properties, 314 315

Exponential probability density function,

48 49

Exponential regression models, 40 41

Express benchmark tool, 92

Extended (additive) Fibonacci generators,

random number generation

simulation, 285

Extreme condition testing, validation

techniques, 363 364

Fading channel modeling, Weibull

distribution, 327

Failure rate, Weibull distribution, 326 327

Failure state, finite state machine model based

TCP validation, 134 135

Fair progress heuristic, finite state machine

model, 131

F distribution, 344

student’s t distribution and, 345

Fibonacci sequences, random number

generation simulation, 285

Finite capacity queues, 193 195

Finite state machine (FSM) models, 127 135

conformance testing, 131 132

controlled partial search, 130 131

full search validation, 129 130

protocol validation, 144 147

random simulation, 131

TCP validation, 132 135

validation, 129 131

FIN packet, finite state machine model based

TCP validation, 133 135

Firing process, Petri Net based modeling, 135

First come first served (FCFS) queue, mean

value analysis:

multiple class systems, 242 244

single class system, 240 241

First in first out (FIFO):

Multiserver queue, 162

product form queueing network, BCMP

theorem, 212 214

queueing theory, 155

service disciplines, 159

Split and Match Queue, 160 161

Fisher Snedecor distribution, 344

Fixed computation technique, benchmarking

and capacity planning, 79

Fixed increment time advance, simulation

analysis, 276

Fixed time parameter, benchmarking and

capacity planning, 79 80

Flow balance assumption, 230 231

operational analysis, Little’s law and, 234 235

Flow equivalent series (FES) analysis, queueing

networks, 218 220

Flow scheme, simulation analysis, 270

Forced flow law, 229 230

bottleneck analysis, 236 239

operational analysis, Little’s law and,

234 235

Forward resource management (FRM),

Adaptive ABR Voice Over ATM networks

case study, 426 428

Frequency analysis, random number sequence

testing, 300 304

Frequency and time histogram, program

optimizers, 74

Frequency shift keying (FSK) system, error

estimation, 347 348

Full search validation, finite state machine

model, 129 130

Functional scheme, simulation analysis, 270

Game analysis, benchmarking applications,

96 100

Gamma distribution:

beta distribution and, 337 338

chi square distribution, 342 343

defined, 331 333

gamma random variate properties, 333 334

inverse gamma distribution, 334

Gamma probability density function, 49

beta distribution, 336 337

chi distribution, 343 344

chi square distribution, 342 343

Weibull distribution, 327

446 INDEX

Gamma random variate, gamma

distribution, 333

Gaussian function:

noise analysis, 346

normal distribution, 319 320

Gaussian normal distribution, random errors,

119 120

Gauss Newton method, nonlinear regression

models, 44 45

General Activity Simulation Program (GASP)

language, principles and applications, 382,

385 387

General distribution, queueing theory, 157

Generalized stochastic Petri nets (GSPNs),

boundedness, 139

General Purpose Simulation System (GPSS)

language, principles and applications,

382 385

GENESIS benchmarking tool, 93

Geometric distribution:

defined, 330 331

probability theory, 48

Geometric random variable, 35

Gibson mix, benchmarks using, 81 82

GloMoSim simulation package, principles and

applications, 403 405

G/M/1 queues, 182 183

Grain analysis, distribution simulation

verification and validation, 366 369

Graphical representation, 115 117

operational validation, 367 369

proper results plotting, 117 118

verification process, 361

Graphics and Workstation Performance

Group, SPEC benchmarking

applications, 96

Grey Relation Analysis (GRA) benchmark

program, 86

Gross errors, measurement techniques, 119 122

Hardware monitors, measurement and testing,

70 71

Hazard rate, Weibull distribution, 326 327

Hierarchical Simulation Language (HSL),

principles and applications, 396 398

Higher better (HB) metrics, performance

evaluation, 9

High Performance Group (HPG), SPEC

benchmarking applications, 95

HINT benchmarking tool, 90 91

Historical data, validation using, 364

Hit value, capacity planning for web services,

103 108

Hybrid monitors, measurement and testing,

72 73

Hyperexponential distribution, queueing

theory, 157

Hypothesis testing:

F distribution, 344

operational validation, 367 369

probability theory and, 59 62

IEEE 802.11 Wireless Networks case study, NS

2 software applications in, 418 420

Imprecise data, reasoning with, 28 29

Incidence functions, Petri Net based modeling,

136 138

Incoherent schemes, error estimation, 347 348

Independent and identically distributed (IID)

variates:

convoluted random variate generation, 298

299

random number sequence testing, chi square

testing, 300 304

Independent discrete random variables, 31 36

Independent validation and verification, basic

principles, 356 357

Indirect metrics, measurement and testing, 67

Inequality, measurement techniques, ratio

game, 122 123

Infinite queue systems:

insensitive length distribution, 184 185

mean value analysis:

multiple class server queue, 242 244

single class server queue, 240 241

Infinite server queue, 160

Information to ink/chalk ratio, graphical

representation, 117 118

Initial conditions similarities, benchmarking

process, 99

Initial data deletion, transient elimination

validation and verification, 370 372

Initialization, transient elimination validation

and verification, 371

Input/output (I/O), forced flow law,

operational analysis, 230

Inputs, queueing networks, 195 196

multiple class models, 197

Insensitive length distribution, queueing

models, 184 186

Instruction mix:

benchmarks using, 81 82

workload characterization, 16 18

Instrumentation errors, profiling process,

123 126

INDEX 447

Instrumentation means, program

optimizers, 74

Interactive response time law:

bottleneck analysis, 237 239

operational analysis, 235 236

Internal validity testing, 364

Internet service distribution, capacity planning

for web services, 106

Invariants, Petri Net based modeling, 142 143

Inverse chi square distribution, 343

Inverse cumulative distribution function,

exponential distribution, 315

Inverse gamma function, gamma

distribution, 334

Inverse transform method, random variate

generation, 294 296

I/O issues:

capacity planning for web services, 106 107

uneven distribution, benchmarking

applications, 97

Jackson network systems:

closed queueing networks, 205 209

mean value analysis, 215 218

open queueing networks, 200 204

operational analysis, circuit switching system

case study, 256 259

Jitter, capacity planning for web services,

103 108

Joint probability density function, normal

distribution, 322

Kendall Notation, queueing theory, 156 157

Kernels, benchmarks using, 82

Kirchoff’s flow law, program profiling, 124 126

Kolmogorov Smirenov test, random number

sequence testing, 304 306

LAN speed, capacity planning for web

services, 105

Laplace Stieljes transform, G/M/1 queues, 183

Large customer population (LCP) algorithm,

mean value analysis, 244 246

Large deviation, laws of, probability limits, 55

Large server engineering and management,

capacity planning for web services, 106

Last in first out (LIFO), queueing theory, 155

Lawrence Livermore loops, benchmarking

applications, 88

Leapfrog technique, parallel random number

generation, 290 291

Least squares criterion, nonlinear regression

models, 43 45

Lebesgue measure, multivariate distribution, 50

Linear congruential generators (LCGs),

random number generation simulation,

281 282

Linear feedback shift registers (LFSRs),

Tausworthe generators, 283 284

Linear regression models, 41 43

Line charts, in graphical representation,

117 118

LINPACK suite:

benchmarking and capacity planning, 90

workload characterization, 14 18

Listen state, finite state machine model based

TCP validation, 134 135

Little’s inequality, operational analysis,

231 235

Little’s law:

G/M/1 queues, 183

infinite queue systems, 184 185

loss queue systems, 185 186

operational analysis, 231 235

interactive response time law, 235 236

variants of, 231 235

queueing networks, mean value analysis,

215 218

queueing theory, 162 167

M/M/1 queueing systems, 174 175

non preemptive priority, 168

Liveness, Petri Net based modeling, 138

Ljung Box test, random number sequence

testing, 301

LMBENCH suite:

benchmarking and capacity planning, 90

workload characterization, 14 18

Loading level controls, benchmarking process,

98 99

Local balance property, product form queueing

network, 211 212

Local dependent service rates, product form

queueing network, 212 214

Logic gates, monitor measurement and

testing, 71

Logistic regression models, 40 41

Log likelihood function:

gamma distribution, 333 334

log normal distribution, 325 326

Pareto distribution, 329

Poisson distribution, 317 318

Log normal distribution, 325 326

Long run, transient elimination validation and

verification, 370 372

Loss queue systems, 185 186

448 INDEX

Lower better (LB) metrics, performance

evaluation, 9

Macrobenchmark:

defined, 80 81

workload characterization, 14 18

Manageability limitations, benchmarking

applications, 97

Man in the middle attack, protocol validation,

145 147

Manual optimization, benchmark analysis, 99

Marking process, Petri Net based modeling,

135 136

Markov models:

Adaptive ABR Voice Over ATM networks

case study, 422 428

queueing theory, 156

G/M/1 queues, 182 183

workload characterization, 11 18

Markov processes, probability theory, 50 54

continuous time Markov chain, 52 54

discrete time Markov chain, 51 52

Maximum likelihood estimation:

gamma distribution, 334

log normal distribution, 325 326

nonlinear regression models, 43 45

normal distribution, 321 323

Pareto distribution, 329

Poisson distribution, 317 318

Maximum parameter, uniform distribution,

318 319

Maximum progress heuristic, finite state

machine model, 131

Maximum utilization parameter, queueing

systems, 159 160

M/D/8 queue model, 184 185

Mean:

binomial distribution, 340

confidence interval for, 59

exponential distribution, 314 315

hypothesis testing in normal model, 60 62

operational analysis, Little’s law, 231 235

Mean behavior, benchmarking applications,

97, 99

Mean customer number:

closed queueing networks, 204 209

open queueing networks, 198 204

Mean response time:

bottleneck analysis, 237 239

M/M/1 queueing systems, 171 173

M/M/M queueing system, 176 177

open queueing networks, 198 204

Mean time between failures (MTBT),

performance evaluation, 9

Mean time to failure (MTTF), performance

evaluation, 9

Mean value analysis (MVA):

approximation algorithms, 244 248

Bard Schweitzer proportional estimation

algorithm, 245 246

Chandy Neuse linearizer algorithm,

246 247

Zahorjan Eager Sweillam aggregate queue

length algorithm, 247 248

circuit switching system case study, 256 259

classical technique, 239 244

multiple class systems, 241 244

queueing networks, 215 218

random variable, 35

single class systems, 239 241

Measurement techniques:

accounting logs, 74 75

data representation, 118 122

errors, 119 121

precision, 120 121

ratio game, 122 123

results accuracy, 121

event tracing, 67 70

forced flow law, operational analysis, 229 230

monitors, 70 73

performance evaluation, 7 8

program optimizers, 73 74

strategies for, 66 67

Memorylessness:

exponential distribution, 314 315

geometric distribution, 331

M/Er/1 queue, 178 179

Merging tasks, queueing networks, 191

Mersenne twister algorithm, random number

generation simulation, 286 288

MetroWAND software package, principles and

applications, 414 415

M/G/1 queues, 180 181

Microbenchmarks:

defined, 80 81

workload characterization, 14 18

Microcode modification, tracing strategies, 69

Midsquare generator, random number

generation simulation, 284 285

Minimum parameter, uniform distribution,

318 319

Minimum variance unbiased estimator

(MVUE), normal distribution, 321 323

Misalignment errors, benchmarking

applications, 97

INDEX 449

Mixed queueing networks, defined, 192

M/M/1 queueing system:

analysis of, 170 175

basic components, 157

busy period estimation, 175

characteristics estimation, 171 173

priorities management, 173 175

steady state probabilities, 170 171

M/M/8 queue model, 184 185

M/M/M queueing system, 176 177

Modelica programming language, principles

and applications, 389 390

Modeling techniques:

model scooping, 270

performance evaluation, 3 5

simulation analysis, 269 270, 273 275

validation and verification, 355 357

MODSIM III language, principles and

applications, 390 392

Moment estimates:

beta distribution, 337

mean value analysis approximation, 244 248

Moment generating function:

normal distribution, 321

Poisson distribution, 317

Monitors:

measurement and testing, 70 73

overhead performance evaluation, 98

Monte Carlo simulation:

linear congruential generator, 282

Mersenne twister algorithm, 286 288

parallel random number generation, 288 291

Moving mean of autonomous replications,

transient elimination validation and

verification, 371 372

Multinomial distribution, defined, 323 325

Multiparameter histogram, workload

characterization, 11 18

Multiple class queueing networks:

mean value analysis, 241 244

models of, 197 198

Multiplicative linear congruential generator,

random number generation, 291 292

Multiprocessor systems, queueing theory, 153

Multiserver queue, 161 162

Multistage validation, 364

Multivariate distribution, 50

NAS Parallel Benchmarks, 89

Negative binomial distribution, 341

NetBench program, 86

NetRule 7.1 tool, principles and applications,

415 417

Network II.2 Simulation Package, principles

and applications, 408 409

Networking applications, queueing theory, 153

Network Simulator 2 (NS 2) simulation software:

IEEE 802.11 Wireless Networks case study,

418 420

principles and applications, 398 400

Next event time advance, simulation analysis,

276 277

Node utilization:

Adaptive ABR Voice Over ATM networks

case study, 426 428

open queueing networks, 198 204

operational analysis, 227 228

Noise description, 346

Nominal better (NB) metrics, performance

evaluation, 9

Non central t distribution, hypothesis testing in

normal model, 60 62

Nondeterministic finite state machine model,

128 129

Nonlinear regression models, 43 45

Non preemptive priority, queueing theory, 168

M/M/1 queueing systems, 174 175

Normal distribution:

composition method, random variate

generation, 299

defined, 319 321

log normal, 325 326

multinomial distribution, 323 325

parameter estimation, 321 323

properties, 321 323

quantile function, 321

random variate generation, convolution

algorithm, 299

Normalization condition,G/M/1queues, 182 183

Normal probability density function, 49

NpBench program, 85 86

NPB suite, workload characterization, 15 18

nth moment/nth central moment, 35

Nuisance parameter, hypothesis testing in

normal model, 59 62

Null hypothesis:

F distribution, 344

probability theory and, 59 62

random number sequence testing, 299 300

Numerical search procedures, linear regression

models, 42 43

Object oriented programming (OOP)

languages. See also specific languages, e.g.

Modelica programming language

simulation software, 381 382

450 INDEX

OMNet++ simulation package, principles and

applications, 402 403

Online compression, tracing strategies, 69

Online transaction processing (OLTP),

benchmark applications, 83 84

Open queueing networks:

basic functions, 198 204

defined, 192

mean value analysis:

multiple class systems, 241 244

single class system, 239 241

Open System Group, SPEC benchmarking

applications, 95

Operational analysis, 226 236

distribution simulation verification and

validation, 367 369

example of, 227 228

flow balance assumption, 230 231

forced flow law, 229 230

interactive response time law, 235 236

Little’s law, 231 235

variants of, 232 235

notation and terminology, 226 227

service demand law, 228 229

Operational variables, notation and

terminology, 227

Optimistic bounds, analysis of, 251 253

Optimized Network Engineering Tool

(OPNET) simulation software, principles

and applications, 400 402

OptSim simulation software, principles and

applications, 410 412

Outputs, queueing networks, 196 197

multiple class models, 197 198

Overflow management, software monitors, 72

Overload control, capacity planning for web

services, 107

Packet switching mode, queueing systems, 159

Parallel computer systems, workload

characterization, 15 18

Parallel random number generation, simulation

modeling, 288 291

Parallel Simulation Environment for Complex

Systems (PARSEC), principles and

applications, 403, 405

Parallel Virtual Machine (PVM),

benchmarking applications, 92 93

Parameter estimation:

binomial distribution, 341

Erlangian distribution, 334 335

gamma distribution, 333 334

normal distribution, 321 323

Pareto distribution, 329

simulation analysis, 270

Parameter variability, sensitivity analysis, 364

Pareto distribution:

beta distribution and, 337 338

defined, 327 329

properties, 329 330

PARKBENCH suite:

benchmarking and capacity planning, 89 90

workload characterization, 15 18

Partial derivatives, nonlinear regression

models, 43 45

Partial orders, finite state machine model,

130 131

Partitioning tasks, queueing networks, 191

Pascal distribution:

binomial distribution and, 340

random variate generation, convolution

algorithm, 299

Pascal programming language, simulation

software, 380 381

PASTA property, M/M/1 queueing systems,

174 175

Pearson’s chi square test:

chi square distribution, 342 343

random number sequence testing, 301

Percent error, measurement precision and,

120 121

PERFECT benchmarking tool, 94

Performance debugging, 6

Performance evaluation:

applications, 6 7

basic principles, 2 3

goals of, 5 6

SOD concepts, 3 5

techniques, 7 8

Performance measurements, queueing

systems, 158

Pessimistic bounds, analysis of, 251 253

Petri Net based modeling, 135 143

basic definitions, 136 138

boundedness, 138 139

invariants, 142 143

liveness, 138

protocol validation, 143 147

queueing petri nets, 139 141

reachability, 138

Pie charts, graphical representation, 116 117

Place invariant (S invariant), Petri Net based

modeling, 142 143

Places, Petri Net based modeling, 135

Planning phase, simulation analysis, 269

Point estimator, linear regression models, 43

INDEX 451

Poisson distribution:

binomial distribution approximation,

340 341

defined, 315 317

infinite queue systems, 184 185

maximum likelihood, 317 318

M/Er/1 queue, 178 179

M/G/1 queues, 180 181

M/M/1 queueing systems, 174 175

moment generating function, 317

multinomial distribution and, 324

operational analysis, circuit switching system

case study, 255 259

probability theory, 47 48

product form queueing network, 212 214

queueing networks, 193

open queueing networks, 200 204

sums of random variables, 317

Poisson noise, 316

Poisson random variable, 35

Population constraints:

Erlangian distribution, 335 336

queueing networks, 192 193

Bard Schweitzer proportional estimation

algorithm, 244 246

Portmanteau test, random number sequence

testing, 301

Power function, hypothesis testing in normal

model, 61

Precision, measurement techniques, 119 122

Predictive validation, 364 365

Predictor variable selection, regression

analysis, 46

Preemptive last in first out (P LIFO), queueing

theory, 155

Preemptive resume priority, queueing

theory, 169

M/M/1 queueing systems, 173 174

Principal component analysis (PCA), workload

characterization, 11 18

Prioritization, software monitors, 72

Priority disciplines, queueing theory, 156

Priority management, queueing theory,

167 170

conservation law, 169 170

M/M/1 queueing systems, 173 175

non preemptive priority, 168

preemptive resume priority, 169

Proactive validation, basic principles, 114

Probabilistic search:

binary phase shift keying

system, 346 348

finite state machine model, 130 131

Probability density functions, 48 49

beta distribution, 336 338

chi square distribution, 342 343

Erlangian distribution, 335

exponential distribution, 313 314

inverse chi square distribution, 343

log normal distribution, 325 326

negative binomial distribution, 341

random number sequence testing, 300

random variate generation:

acceptance rejection method, 297 298

inverse transform method, 294 296

student’s t distribution, 345

Weibull distribution, 326 327

Probability distribution:

discrete variable, 30 36

overview, 312 313

Poisson distribution, 315 317

Probability mass function (PMF):

binomial distribution, 338 339

discrete variable, 30 36

Probability ratio tests, random number

sequence testing, 301

Probability space, 23 25

Probability theory:

basic principles, 21 25

conditional probability, 24 25

density and distribution functions, 47 50

binomial distribution, 47

exponential density, 48 49

gamma density, 49

geometric distribution, 48

multivariate distributions, 50

Poisson distribution, 47 48

elementary sampling, 26 29

limits, 54 56

Markov processes, 50 54

continuous time Markov chain, 52 54

discrete time Markov chain, 51 52

random variables, 29 37

continuous random variables, 36 37

discrete variables, 30 36

regression models, 40 47

linear regression models, 41 43

nonlinear regression models, 43 45

predictor variables, 45

regression relation, 45

scope, 46 47

sample data, systems comparisons, 57 62

confidence interval, 57 59

hypothesis testing, 59 62

sums of variables, 38 39

Probes, monitor measurement and testing, 71

452 INDEX

Probing (purchaser oriented benchmarking),

84 85

Procedural programming languages, simulation

software, 379 380

Processor sharing, queueing theory, 155

Procurement, performance evaluation, 5, 7

Product form queueing network:

basic functions, 209 214

BCMP theorem, 212 214

flow equivalent series (FES) analysis,

218 220

local balance, 210 212

Professional preparation, validation

techniques, 362

Profiling:

measurement and testing, 67

validation process, 123 126

Program counts, profiling with, 123 126

Program kernel, workload characterization,

16 18

Programming languages:

distribution simulation verification and

validation, 366 369

general purpose programming languages,

379 381

overview of, 378

simulation analysis, 270, 278 279

software monitors, 72

Program optimizers, measurement and testing,

73 74

Program profiling and outlining, validation

process, 123 126

Proportional estimation (PE), mean value

analysis, Bard Schweitzer algorithm,

244 246

Prospective validation, basic principles, 114

Protocol specific requirements, finite state

machine model, full search, 129 130

Protocol validation, 143 147

Proxy organization, capacity planning for web

services, 104 108

Pseudorandom number generation:

linear congruential generator, 282

Mersenne twister algorithm, 286 288

random number sequence testing, 299 307

Q test, of results accuracy, 121

Quadrature Phase Shift Keying (QPSK)

system, error estimation, 347 348

Quality of improvements per second (QUIPS),

benchmarking and capacity planning,

79 80

Quality of service (QoS) issues:

Adaptive ABR Voice Over ATM networks

case study, 425 428

capacity planning for web services, 106 108

QualNet Development Simulation Package,

principles and applications, 405 408

Quantile function, normal distribution, 321

Quartiles, exponential distribution, 315

Queueing Network Analysis Tool (QNAT),

principles and applications, 412 413

Queueing networks:

bottleneck analysis, 237 239

bounding analysis, 249 255

closed networks, 204 209

Jackson networks, 206 209

finite capacity queues, 193 195

flow equivalent servers analysis, 218 220

fundamentals of, 190 195

mean value analysis, 215 218

approximation algorithms, 244 248

model inputs, 195 196

model outputs, 196 197

models classification, 191 193

multiple class models, 197 198

open networks, 198 204

Jackson networks, 200 204

operational analysis:

circuit switching system case study, 255 259

interactive response time law, 235 236

Little’s law, 234 235

product form networks, 209 214

BCMP networks, 212 214

local balance, 210 212

Queueing Petri nets (QPNs), 139 141

Queueing service centers, inputs in, 196

Queueing theory:

applications, 166 167

basic models, 155 156

formula, 163 165

G/M/1 queues, 182 183

infinite queue systems, 184 185

insensitive length distribution models,

184 186

Kendall Notation, 156 157

Little’s law, 162

loss systems, 185 186

M/Er/1 queue, 178 179

M/G/1 queue, 180 181

M/M/1 systems analysis, 170 175

busy period estimation, 175

estimation techniques, 171 173

priorities management, 173 175

steady state probabilities, 170 171

INDEX 453

Queueing theory (continued)

M/M/M queue, 176 177

overview, 152

parameters, 157 162

priority management, 167 170

conservation law, 169 170

non preemptive priority, 168

preemptive resume priority, 169

simple queue models, 152 154, 160 162

Queue length, 197

Queue size, queueing systems, 159

QUIPS measurement, HINT benchmarking

tool, 91

Random errors, measurement techniques,

119 122

Random in random out (RIRO) simulation

paradigm, 275 276

Randomness, simulation analysis, 274 275

Random number generation (RNG)

techniques:

General Activity Simulation Program

language, 386 387

General Purpose Simulation System

language, 384 385

simulation modeling, 280 291

applications, 291 292

Blum Blum Shub technique, 285 286

combined linear congruential

generators, 283

contiguous subsequence technique, 289 290

extended (additive) Fibonacci

generators, 285

leapfrog technique, 290 291

linear congruential generators, 281 282

Mersenne twister algorithm, 286 288

midsquare generator, 284 285

parallel random number generation,

288 289

Tausworthe generator, 283 284

Random number sequence testing, simulation

modeling, 299 307

frequency analysis/chi square test, 300 304

Kolmogorov Smirnov test, 304 306

runs test, 306

serial correlation test, 306 307

serial test, 306

spectral test, 307

Random service, queueing theory, 155

Random simulation, finite state machine

model, 131

Random variables:

chi square distribution, 342 343

exponential distribution, 313 314

multivariate distribution, 50

Pareto distribution, 327 329

probability theory, 29 37

continuous random variables, 36 37

discrete variables, 30 36

sums of Poisson distributed random

variables, 317

Random variate generation (RVG), simulation

modeling, 294 299

acceptance rejection method, 297 298

characterization method, 298

composition method, 299

convolution method, 298 299

inverse transform method, 294 296

RANDU randomizer (IBM), random number

generation, 292

Rate parameter, exponential distribution,

313 315

Ratio game, measurement techniques, 122 123

Reachability analysis:

finite state machine model, full search,

129 130

Petri Net based modeling, 138

Real system measurements, validation

techniques, 363

Real time measurement, performance

evaluation, 8 9

Real valued function, random number

sequence testing, 300

Reasoning with less precise data, sampling and,

28 29

Rebirth technique, stopping principles for

simulations, 372 373

Recursive estimates, Erlangian distribution,

335 336

Regression models:

beta distribution and, 337 338

F distribution, 344

probability theory, 40 47

linear regression models, 41 43

nonlinear regression models, 43 45

predictor variables, 46

regression relation, 46

scope, 46 47

Regression relation, 46

Relative average deviation, measurement

precision and, 120 121

Relative performance recognition, performance

evaluation, 6

Reliability:

exponential distribution, 314

performance evaluation, 9

454 INDEX

Repetitive service blocking (RBS), queueing

networks, 194

Replacement, sampling without, 26 28

Representational models. See also Data

representation

defined, 115

Residence time, queueing networks, 197

Resource utilization, service demand law,

228 229

Response function, nonlinear regression

models, 43 45

Results accuracy:

measurement precision and, 121

validation techniques, 363

Round robin, queueing theory, 155

Runs test, random number sequence

testing, 306

Sampling techniques:

elementary sampling, 26 29

measurement and testing, 67

tracing strategies, 69 70

without replacement, 26 28

Scale ranges:

gamma distribution, 332

in graphical representation, 118

Scaling evaluation, capacity planning for web

services, 107

Scatterplots:

graphical representation, 116 117

operational validation, 368 369

Scheduling schemes:

Adaptive ABR Voice Over ATM networks

case study, 425 428

performance evaluation, 10 18

Scope of model, regression modeling, 46 47

Secure transaction performance issues, capacity

planning for web services, 107 108

Seed independence, verification process, 362

Seed selection, random number generation,

292 293

Self correcting approximation technique

(SCAT), mean value analysis, 244 248

Sensitivity analysis:

benchmarking process, 98

parameter variability, validation, 364

Serial correlation test, random number

sequence testing, 306 307

Serial test, random number sequence

testing, 306

Service centers, queueing theory, 153 154

Service demand law, operational analysis,

228 229

Service disciplines, queueing systems, 159

Service time distribution, product form

queueing network, 212 214

Set expectation, performance evaluation, 6

SFS/LADDIS benchmark program, 84

Shape parameter, gamma distribution, 332

Shortest job first (SJF), queueing theory, 156

Sieve kernel algorithm, benchmark

applications, 86 87

Signal to noise ratio, 346

error estimation, 347 348

Simple queues, components and applications,

152 153

SIMSCRIPT III language, principles and

applications, 382, 392 393

SIMULA programming language:

Ackermann’s function benchmark

applications, 87

principles and applications, 395 396

random number generation, 292

Simulation Language for Alternative Modeling

(SLAM) II, principles and applications,

382, 387 389

Simulation model comparisons, validation

techniques, 363

Simulation techniques:

advantages and disadvantages, 271 273

applications and experimentation, 271 275

components of, 266 267

discrete event simulation, 277 279

fixed increment time advance, 276

modeling phase, 269 270

next event time advance, 276 277

overview, 265 275

performance evaluation, 7 8

planning phase, 269

protocol validation, 143 147

random number generation techniques,

280 291

applications, 291 292

Blum Blum Shub technique, 285 286

combined linear congruential

generators, 283

contiguous subsequence technique,

289 290

extended (additive) Fibonacci

generators, 285

leapfrog technique, 290 291

linear congruential generators, 281 282

Mersenne twister algorithm, 286 288

midsquare generator, 284 285

parallel random number generation,

288 289

INDEX 455

Simulation techniques (continued)

Tausworthe generator, 283 284

random number sequence testing, 299 307

frequency analysis/chi square test,

300 304

Kolmogorov Smirnov test, 304 306

runs test, 306

serial correlation test, 306 307

serial test, 306

spectral test, 307

random variate generation, 294 299

acceptance rejection method, 297 298

characterization method, 298

composition method, 299

convolution method, 298 299

inverse transform method, 294 296

seed selection, 292 293

stochastic vs. deterministic systems, 267 268

terminology, 279 280

validation and verification and data

representation, 114, 270 271

Simulation time advance rate (STAR), discrete

event simulation, 279

Single class systems, mean value analysis,

239 241

Single parameter histogram, workload

characterization, 11 18

Single queue, basic parameters, 158 160

Single server queue, conservation law, 169 170

Site response time, capacity planning for web

services, 103 108

Size parameters, benchmark analysis, 99

SOD concepts, performance evaluation, 3 5

Software exception, tracing strategies, 68 69

Software monitors, measurement and testing,

71 72

Software selection:

distribution simulation verification and

validation, 366 369

simulation analysis, 270

adaptive ABR voice over ATM networks

case study, 420 428

general purpose programming languages,

379 381

IEEE 802.11 wireless network case study

with NS 2, 418 420

overview, 377 378

packaged software, 398 416

selection criteria, 378 379

simulation languages, 381 398

tools and languages comparisons, 417 418

Source code modification, tracing strategies,

68 69

Space Time Adaptive Processing (STAP),

benchmarking applications, 93 94

Spanning tree, program profiling, 125 126

SPEC suite:

benchmarking applications, 94 96

workload characterization, 15 18

Spectral test, random number sequence

testing, 307

SPECweb benchmark programs, 84

SPLASH benchmarking tool, 91

Split and Match Queue, 160 162

Standard deviation:

confidence interval for, 59

hypothesis testing in normal model, 60 62

random variables, 34

Standard error, confidence interval, 58 59

STAP suite, workload characterization,

15 18

Startup latency, capacity planning for web

services, 103 108

State change scheme, simulation analysis, 270

State machine models. See Finite state machine

model

State probability, open queueing networks,

Jackson theorem, 201 204

State transition diagram, workload

characterization, 12 18

State transition matrices, Petri Net based

modeling, 137 138

Static testing, distribution simulation

verification and validation, 367 369

Stationary state distribution, product form

queueing network, 210 214

Station balance property, product form

queueing network, 211 212

Steady state probabilities:

M/M/1 queueing systems, 170 171

M/M/M queueing system, 176 177

open queueing networks, 198 204

product form queueing network, 213 214

queueing Petri nets, 141

Stochastic Petri nets (SPNs), boundedness, 139

Stochastic systems:

internal validity testing, 364

performance evaluation, 4 5

simulation analysis, 267 268

random variate generation, 294 299

Stopping principles, simulation validation and

verification, 372 373

Storage device:

forced flow law, operational analysis,

229 230

monitor measurement and testing, 71

456 INDEX

STREAM benchmark:

benchmarking and capacity planning, 90

workload characterization, 14 18

Structured programming languages, simulation

software, 380

Student’s t distribution, 344 345

Subsystem modeling, simulation analysis, 270

Sums of variables:

Poisson distributed random variables, 317

probability theory, 38 39

Symbols, in graphical representation, 118

SYN acknowledgment, finite state machine

model based TCP validation, 132 135

Synthetic programs, benchmarks using, 82 83

System analysis:

capacity planning and, 100 102

performance evaluation, 7

Systematic errors, measurement techniques,

119 122

System models, performance evaluation, 3 5

System s design, performance evaluation, 6

System sizing studies, bounding analysis,

247 255

System throughput:

bottleneck analysis, 237 239

bounding analysis, batch and terminal

workloads, 250 251

operational analysis, Little’s law, 231 235

service demand law, 228 229

System tuning, performance evaluation, 5

System upgrade and tuning, performance

evaluation, 6 7

Tail probability, M/M/1 queueing systems,

171 173

Tausworthe generators (TGs), random

number generation simulation, 283 284

Taylor series approximation, normal

distribution, 321

t distribution:

confidence interval, 59

defined, 344 345

Team based model development, validation

and verification, 355 357

Telephone traffic, operational analysis, Little’s

law, 233 235

Terminal workload:

bounding analysis, 250 251

queueing networks, 195

Testing techniques:

accounting logs, 74 75

event tracing, 67 70

monitors, 70 73

performance evaluation

program optimizers, 73 74

protocol validation, 143 147

strategies for, 66 67

Test specification bias, benchmark analysis, 99

Test statistic, hypothesis testing, 59 62

Think time, bottleneck analysis, 237 239

Third party validation and verification, 356 357

Throughput speed, capacity planning for web

services, 103 108

Time charts, graphical representation, 116 117

Timed queueing place, queueing Petri nets,

139 141

Time duration, queueing Petri nets, 141

Timers, monitor measurement and testing, 71

TinyBench tool, 92

Top down modular design, verification of, 359

Tracing strategy:

distribution simulation verification and

validation, 366 369

measurement and testing, 67 70

verification process, 361

Traffic equations:

Erlangian distribution, 335 336

open queueing networks, 198 204

Traffic stream management, queueing

networks, 191

Transaction Processing Council (TPC):

WebTIP benchmark program, 83

workload characterization, 15 18

Transaction workload:

bounding analysis, 249 255

asymptotic bounds, 249 250

queueing networks, 195

Transient state:

benchmarking process, 98

validation and verification, 369 372

Transition function:

finite state machine model, 128 129

Petri Net based modeling, 135

Transition probability:

continuous time Markov chain, 52 54

G/M/1 queues, 182 183

M/G/1 queues, 180 181

Transmission Control Protocol (TCP), finite

state machine model based validation,

132 135

Triangle variates, random variate

generation, 299

Truncation technique, transient elimination

validation and verification, 370 372

INDEX 457

Twisted generalized feedback shift register

(TGFSR), Mersenne twister algorithm,

287 288

Unbiased parameter estimation, normal

distribution, 323

Uneven distribution, I/O requests,

benchmarking applications, 97

Uniform distribution, basic principles, 318 319

Unique case studies, verification process, 360

Utilization law:

bounding analysis:

batch and terminal workloads, 250 251

transaction workload, 249 250

operational analysis, 227

Utilization output:

bottleneck analysis, 236 239

queueing networks, 197

service demand law, 228 229

Validation and verification (V&V):

accreditation, 373

benchmarking process, 98

definitions, 353 355

distributed simulations, 365 369

graphical representation, 115 117

measurements, 118 122

errors, 119 121

precision, 120 121

ratio game, 122 123

results accuracy, 121

methods and procedures, 355 358

overview of techniques, 113 115, 353 355

performance evaluation applications, 3

Petri Net based modeling, 135 143

basic definitions, 136 138

boundedness, 138 139

invariants, 142 143

liveness, 138

queueing petri nets, 139 141

reachability, 138

program profiling and outlining, 123 126

proper results plotting, 117 118

protocol validation, 143 147

simulation analysis, 270 271

state machine models, 127 135

conformance testing, 131 132

controlled partial search, 130 131

full search validation, 129 130

procedures for, 129 131

random simulation, 131

TCP validation, 132 135

stopping principles, simulation modeling,

372 373

transient elimination, 369 372

validation techniques, 362 364

analytic results, 362 363

degeneracy check, 363

event validity, 363

extreme condition testing, 363 364

historical data, 364

internal validity, 364

multistage validation, 364

parameter variability sensitivity

analysis, 364

predictive validation, 364

professional perception, 362

results testing/real system

measurements, 363

simulation model comparisons, 363

verification techniques, 358 362

antibugging, 360

consistency testing, 361 362

continuity testing, 361

controlled walk through scheme, 360

degeneracy testing, 361

deterministic models, 360

graphical representation, 361

seed independence, 362

top down modular design, 359

tracing technique, 361

unique case study run, 360

Variable assessment, simulation

analysis, 270

Variance, exponential distribution, 314 315

Vertex profiling, program profiling, 125 126

Visitors per day, capacity planning for web

services, 103 108

Visit ratios, bottleneck analysis, 236 239

Waiting queue theory, geometric distribution,

330 331

Waiting time:

circuit switching system case study, 257 259

M/M/M queueing system, 177

queueing systems, 157

Web server scaling, capacity planning for web

services, 105 106

Web services, capacity planning for, 102 108

Website characterization, benchmark testing,

16 18

WebTIP benchmark program, 83

Weibull distribution, 326 327

Whetstone kernel, benchmarking

applications, 87

458 INDEX

White noise, 346

Workload characterization:

bounding analysis:

batch and terminal workloads,

250 251

transaction workload, 249 250

capacity planning and, 100 102

compiler arrangement, 99

performance evaluation, 10 18

queueing networks, 195

queueing systems, 158

Little’s law, 164 167

X variables, graphical representation,

116 118

Yet Another Network Simulation Language

(YANSL), principles and applications,

393 395

Y variables, graphical representation, 116 118

Zahorjan Eager Sweillam aggregate queue

length algorithm, mean value analysis,

247 248

Zero mean noise, 346

INDEX 459

	FUNDAMENTALS OF PERFORMANCE EVALUATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS
	CONTENTS
	PREFACE
	1 INTRODUCTION AND BASIC CONCEPTS
	1.1 Background
	1.2 Performance Evaluation Viewpoints and Concepts
	1.3 Goals of Performance Evaluation
	1.4 Applications of Performance Evaluation
	1.5 Techniques
	1.6 Metrics of Performance
	1.7 Workload Characterization and Benchmarking
	1.8 Summary
	References
	Exercises

	2 PROBABILITY THEORY REVIEW
	2.1 Basic Concepts on Probability Theory
	2.2 Elementary Sampling
	2.3 Random Variables
	2.4 Sums of Variables
	2.5 Regression Models
	2.6 Important Density and Distribution Functions
	2.7 Markov Processes
	2.8 Limits
	2.9 Comparing Systems using Sample Data
	2.10 Summary
	References
	Exercises

	3 MEASUREMENT/TESTING TECHNIQUE
	3.1 Measurement Strategies
	3.2 Event Tracing
	3.3 Monitors
	3.4 Program Optimizers
	3.5 Accounting Logs
	3.6 Summary
	References
	Exercises

	4 BENCHMARKING AND CAPACITY PLANNING
	4.1 Introduction
	4.2 Types of Benchmark Programs
	4.3 Benchmark Examples
	4.4 Frequent Mistakes and Games in Benchmarking
	4.5 Procedures of Capacity Planning and Related Main Problems
	4.6 Capacity Planning for Web Services
	4.7 Summary
	References
	Exercises

	5 DATA REPRESENTATION AND ADVANCED TOPICS ON VALIDATION MODELING
	5.1 Data Representation
	5.2 Measurements
	5.3 Program Profiling and Outlining
	5.4 State Machine Models
	5.5 Petri Net-Based Modeling
	5.6 Protocol Validation
	5.7 Summary
	References
	Exercises

	6 BASICS OF QUEUEING THEORY
	6.1 Queue Models
	6.2 Queue Parameters
	6.3 Little’s Law
	6.4 Priority Management
	6.5 Analysis of M/M/1 Systems
	6.6 The M/M/M Queue
	6.7 Other Queues
	6.8 Queueing Models with Insensitive Length Distribution
	6.9 Summary
	References
	Exercises

	7 QUEUEING NETWORKS
	7.1 Fundamentals of Queueing Networks
	7.2 Model Inputs and Outputs in Queueing Networks
	7.3 Open Networks
	7.4 Closed Queueing Networks
	7.5 Product Form Networks
	7.6 Mean Value Analysis
	7.7 Analysis Using Flow Equivalent Servers
	7.8 Summary
	References
	Exercises

	8 OPERATIONAL AND MEAN VALUE ANALYSIS
	8.1 Operational Laws
	8.2 Little’s Formula
	8.3 Bottleneck Analysis
	8.4 Standard MVA
	8.5 Approximation of MVA
	8.6 Bounding Analysis
	8.7 Case Study: A Circuit Switching System
	8.8 Summary
	References
	Exercises

	9 INTRODUCTION TO SIMULATION TECHNIQUE
	9.1 Introduction
	9.2 Types of Simulation
	9.3 Some Terminology
	9.4 Random-Number-Generation Techniques
	9.5 Survey of Commonly Used Random Number Generators
	9.6 Seed Selection
	9.7 Random Variate Generation
	9.8 Testing of Random Number Sequences
	9.9 Summary
	References
	Exercises

	10 COMMONLY USED DISTRIBUTIONS IN SIMULATION AND THEIR APPLICATIONS
	10.1 Exponential Distribution
	10.2 Poisson Distribution
	10.3 Uniform Distribution
	10.4 Normal Distribution
	10.5 Weibull Distribution
	10.6 Pareto Distribution
	10.7 Geometric Distribution
	10.8 Gamma distribution
	10.9 Erlang Distribution
	10.10 Beta Distribution
	10.11 Binomial Distribution
	10.12 Chi-Square Distribution
	10.13 Student’s t Distribution
	10.14 Examples of Applications
	10.15 Summary
	References
	Exercises

	11 ANALYSIS OF SIMULATION RESULTS
	11.1 Introduction
	11.2 Fundamental Approaches
	11.3 Verification Techniques
	11.4 Validation Techniques
	11.5 Verification and Validation in Distributed Environments
	11.6 Transient Elimination
	11.7 Stopping Principles for Simulations
	11.8 Accreditation
	11.9 Summary
	References
	Exercises

	12 SIMULATION SOFTWARE AND CASE STUDIES
	12.1 Introduction
	12.2 Selection of Simulation Software
	12.3 General-Purpose Programming Languages
	12.4 Simulation Languages
	12.5 Simulation Software Packages
	12.6 Comparing Simulation Tools and Languages
	12.7 Case Studies on Simulation of Computer and Telecommunication Systems
	12.8 Summary
	References
	Exercises

	APPENDIX A TABLE OF STANDARD NORMAL (Z) DISTRIBUTION
	APPENDIX B COMMONLY USED NORMAL QUANTILES
	APPENDIX C QUANTILES OF UNIT NORMAL DISTRIBUTION
	APPENDIX D QUANTILES OF STUDENT’S T-DISTRIBUTION WITH V DEGREES OF FREEDOM
	INDEX

