فصل ۴ دنبا<mark>له های متغیر های</mark> تصادفی

۱-4 بردار تصادفی

بردار تصادفی مانند X برداری است که یکایک عناصر و مؤلفه های آن مانند X یک متغیر تصادفی باشد .

$$X = [X_1, \dots, X_n] \quad (\Upsilon-1)$$

احتمال این که χ در ناحیه \square از فضای n بعدی قرار داشته باشد ،

با جرمهای احتمال درD برابر است یعنی

$$P\{\mathbb{X} \boldsymbol{\in} D\} = \int_D \!\! f(\mathbb{X}) d\mathbb{X} \ , \ \mathbb{X} = [\ X_1,...,X_n\] \ (\textbf{f-Y})$$

که در آن

$$f\left(\mathbf{X}\right)=f\left(x_{1},\ldots,x_{n}\right)=\frac{\partial^{n}F(x_{1},\ldots,x_{n})}{\partial x_{1}\ldots\ldots\partial x_{n}}\quad\text{(4-4)}$$

 X_i تابع چگالی احتمال توأم (یا چند متغیره) متغیرهای تصادفی X_i و یا تابع چگالی احتمال بردار

$$F\left(\mathbf{X}\right) = F\left(\left.\mathbf{x_{1}}\right.,.....\left.,\left.\mathbf{x_{n}}\right) = P\left\{\right.\mathbf{X_{1}} \leq \mathbf{x_{1}},.....\left.,\left.\mathbf{X_{n}} \leq \mathbf{x_{n}}\right\}\right.\left(\textbf{f-f}\right.\right)$$

. تابع توزیع توأم متغیرهای تصادفی \mathbf{X}_{i} یا تابع توزیع بردار \mathbf{X}) می باشد \mathbf{X}_{i} دو خاصیت زیر به آسانی قابل مشاهده و استنتاج است

$$F(x_{1}, x_{1}) = F(x_{1}, \infty, x_{1}, \infty)$$

$$(F-\Delta)$$

$$f(x_{1}, x_{1}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_{1}, x_{1}, x_{2}, x_{2}, x_{3}) dx_{1} dx_{4}$$

اکنون k تابع زیر را در نظر بگیرید:

$$g_{1}(\mathbb{X})\,,....\,g_{k}(\mathbb{X})\quad,\quad \mathbb{X}\!=\,[\,X_{1}\,,....\,,X_{n}\,]$$

متغیرهای تصادفی جدیدی را تشکیل می دهیم.

$$Y_1 = g_1(X), ..., Y_k = g_k(X)$$
 (4-5)

k = n

بوده و سیستم معادلات زیر را حل می کنیم

$$g_{\mathbf{l}}(\mathbf{X}) = Y_{\mathbf{l}}, \dots, g_{\mathbf{n}}(\mathbf{X}) = Y_{\mathbf{n}}$$
 (4-7)

 $f_y(y_1,...,y_n)=$ ه اگر سیستم معادلات فوق جواب نداشته باشد در آن صورت $\mathbf{x}=[x_1,...,x_n]$ ، در آن صورت است . اگر تنها جواب این سیستم عبارت باشد از

$$f_y(y_1,...,y_n) = \frac{f_X(x_1,...,x_n)}{|j(x_1,...,x_n)|}$$
 (16-A)

$$j(x_1,....,x_n) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \dots & \frac{\partial g_1}{\partial x_n} \\ \dots & \frac{\partial g_n}{\partial x_1} & \dots & \frac{\partial g_n}{\partial x_n} \end{vmatrix}$$

ژاکوبین تبدیل (۷-۴) است . اگر سیستم معادلات چند جواب داشته داشته باشد در آن صورت باید توابع چگالی حاصل از این جواب ها را با هم جمع کرد .

 $X_n,\,....,\,X_n$ متغیرهای تصادفی $X_n,\,....$ را هنگامی (متقابلاً) مستقل مینامند که پیشامدهای $\{\,X_1\le x_1\,\}\,,\,....\,,\,\{\,X_n\le x_n\,\,\}$

از یکدیگر مستقل باشند . بنابراین می توان گفت :

$$F(x_1,, x_n) = F(x_1) F(x_n)$$

 $f(x_1,, x_n) = f(x_1) f(x_n)$
(4-1.)

، می توان مفهوم استقلال را تعمیم داده و استقلال گروهی را تعریف کرد $X_{
m n},\,....\,\,X_{
m l}$ گروه $G_{
m x}$ متشکل از متغیرهای تصادفی

 Y_k , , Y_l مستقل از گروه G_y متشکل از متغیرهای تصادفی می نامیم که رابطه زیر برقرار باشد :

$$f(x_1,, x_n, y_1,, y_k) = f(x_1,, x_n) f(y_1,, y_k)$$

(*-11)

متوسط و کواریانس

با تعمیم رابطه (۳-۳۶) به n متغیر تصادفی میتوان نتیجه گرفت که متوسط $g\left(X_1,...,X_n\right)$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_1,...,x_n) f(x_1,...,x_n) dx_1 dx_n$$
 (*-17)

اگر متغیرهای تصادفی $Z_i = X_i + j Y_i$ مختلط باشند در آن صورت متوسط $g\left(Z_1,...,Z_n
ight)$

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(y_1,...,y_n) f(x_1,...,x_n,y_1,...,y_n) dx_1...dy_n$$

و به ازاء هر بردار تصادفی حقیقی یا مختلط 🗶 می توان گفت:

$$E \{ a_1 g_1(X) + + a_m g_m(X) \} = a_1 E\{g_1(X) \} + + a_m E\{g_m(X) \}$$

مثال ۱-۴:

متغيرهاي تصادفي

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \quad , \quad \overline{V} = \frac{1}{n-1} \sum_{i=1}^{n} (|X_{i} - \overline{X}|)^{r}$$

را بنا به تعریف به تر تیب متوسط نمونه و واریانس نمونه \mathbf{X}_i می نامند.

 X_i نشان دهید که اگر متغیرهای تصادفی

 $egin{aligned} \delta_i^{\, r} &= \delta^{\, r}$ ناهم بسته با متوسط یکسان $E\left(\, X_i
ight) &= \eta \,$ ناهم بسته با متوسط یکسان $E\left\{\overline{X}\right\} &= \eta \,,\; \delta_{\overline{X}}^{\, r} &= \delta^{\, r}/n \,\,,\; E\left\{\overline{V}\right\} &= \delta^{\, r} \end{aligned}$ باشند ، در آن صورت

است . برای حل با استناد به خاصیت خطی امید ریاضی می توان نوشت :

$$\mathrm{E}\{\overline{X}\}\!=\mathrm{E}\{\ \frac{1}{n}\!\sum_{i=1}^n |X_i|\}\!=\!\frac{1}{n}\!\sum_{i=1}^n \mathrm{E}(X_i)\!=\!\frac{1}{n}\!\sum_{i=1}^n \eta\equiv\!\eta$$

$$\begin{split} & \delta_{\overline{X}}^{r} = E\{ \mid \overline{X} - E(\overline{X}) \mid^{r} \} \\ &= E\{ \mid \frac{1}{n} \sum_{i=1}^{n} |X_{i} - \eta|^{r} \} = E\{ \mid \frac{1}{n} \sum_{i=1}^{n} |(X_{i} - \eta)|^{r} \} \\ &= \frac{1}{n^{r}} \sum_{i=1}^{n} |E\{X_{i} - \eta\}^{r} = \frac{1}{n^{r}} \sum_{i=1}^{n} |\delta_{i}^{r} = \frac{1}{n^{r}} \sum_{i=1}^{n} |\delta^{r} - \delta^{r} - \delta^{r} / n \end{split}$$

هم چنین می توان نوشت :

$$E\{(X_{i} - \eta)(\overline{X} - \eta)\} = \frac{1}{n} E\{(X_{i} - \eta) [(X_{i} - \eta) + + (X_{n} - \eta)]\}$$

$$= \frac{1}{n} E\{(X_{i} - \eta)(X_{i} - \eta)\} = \delta^{r}/n$$

چون بنا به فرض متغیرهای تصادفی $\chi_{_{\mathrm{i}}}$ و $\chi_{_{\mathrm{i}}}$ ناهم بسته هستند . بنابراین

$$E\{(X_i - \overline{X})^r\} = E\{[(X_i - \eta) - (\overline{X} - \eta)]^r\} =$$

$$\delta^r + \frac{\delta^r}{n} - \frac{r\delta^r}{n} = \frac{n-1}{n}\delta^r\delta^r$$

پس

$$\mathrm{E}\left\{\left.\overline{\mathrm{V}}\right.\right\} = \frac{1}{\left[n-1\right]} \sum_{i=1}^{n} \left(\left.\mathrm{X}_{i} - \overline{\mathrm{X}}\right.\right)^{r} = \frac{n}{\left[n-1\right]} \times \frac{\left[n-1\right]}{n} \, \delta^{r} = \delta^{r}$$

ماتریس همبستگی بردار تصادفی

$$X = [X_1, \dots, X_n]$$

و نیز ماتریس کوواریانس این بردار بنا به تعریف عبارت است از :

$$R_{n} = \begin{bmatrix} R_{11} & \dots & R_{1n} \\ & & & \\ R_{n1} & \dots & R_{nn} \end{bmatrix} \qquad C_{n} = \begin{bmatrix} C_{11} & \dots & C_{1n} \\ & & \\ C_{n1} & \dots & C_{nn} \end{bmatrix}$$

به طوری که

$$R_{ij} = E \; \{ \; X_i \, X_j^* \} = R_{ji}^* \qquad , \qquad C_{ij} = R_{ij} \; \text{-} \; \eta_i \eta_j^* = C_{ji}^*$$

بدیهی است که

$$R_n = E \{ \mathbf{x}^t \mathbf{x}^* \}$$

 R_n باید توجه کرد که خواص ماتریس کوواریانس C_n مشابه خواص ماتریس

می باشد ، چون C_n در واقع ماتریس همبستگی

، متغیرهای تصادفی " تمرکز یافته " $X_i - \eta_i$ هستند

ا – ماتریس معین غیر منفی است یعنی : \mathbb{R}_n یک ماتریس معین غیر

$$Q = \sum_{i,j} a_i a_j^* R_{ij} = AR_n A^h \ge \bullet \quad (\text{F-1T})$$

که در آن ${\Bbb A}^h$ بردار ترانسپوزه مزدوج مختلط بردار ${\Bbb A}=[\,a_1\,,\,....\,,\,a_n\,\,]$

برای اثبات این خاصیت می توان به ویژگی خطی بودن مقادیر امید ریاضی استناد کرد

$$\mathrm{E}\{\left|a_{i} X_{j} + + a_{n} X_{n}^{r}\right|^{r}\} = \sum_{i,j} a_{i} a_{j}^{*} \mathrm{E}[\left|X_{i} X_{j}^{*}\right|] \text{ (f-1f)}$$

اگر به ازاء هر ہeq A تابع Q مطلقاً مثبت باشد یعنی اگر o Q>0 باشد در آن صورت R_n را معین مثبت می نامند . تفاوت بین Q>0 و Q>0 با مستقل خطی بودن مر تبط است .

۱- متغیرهای تصادفی X_i را هنگامی مستقل خطی می نامند که به ازاء هر $A \neq \emptyset$ رابطهٔ زیر برقرار باشد.

$$E\{|a_1X_1 + ... + a_nX_n|^r\} > \circ (r-1\Delta)$$

در این حالت ماتریس هم بستگی آنها معین مثبت خواهد بود.

متغیرهای تصادفی X_i را هنگامی وابسته خطی می نامیم که به ازاء برخی A
eq A رابطهٔ زیر برقرار باشد.

$$a_1X_1 + \ldots + a_nX_n = \circ$$
 (4-18)

در این مورد ،Qمربوطه برابر صفر بوده و ماتریس R_n تکینQ، مربوطه برابر صفر بوده و ماتریس X_i نفی تصادفی X_i مستقل خطی باشند در آن صورت هر زیر مجموعه نیز مستقل خطی خواهد بود.

د ترمینان Δ_n ما تریس هم بستگی حقیقی است چون $\Lambda_n = R_{ij}^* = R_{ji}^*$ است . هم چنین می توان نشان داد که $\Delta_n \geq 0$ بوده و حالت تساوی هنگامی رخ می دهد که متغیرهای تصادفی X_i با یکدیگر رابطه خطی داشته باشند (وابسته خطی) .

در خاتمه باید اضافه کرد که

$$\Delta_n \leq R_H R_{YY} \dots R_{nn}$$

و حالت تساوی هنگامی برقرار خواهد بود که متغیرهای تصادفی X_i متغیرهای تصادفی X_i قطری باشد

نوابع چگالی احتمالی شرطی و توابع مشخصه

مشابه مورد دو متغیر تصادفی ،

می توان تابع چگالی احتمال شرطی متغیرهای تصادفی $X_n,....,X_n$ را به صورت زیر تعریف کرد. X_{k+1}

$$f(x_n, ..., x_{k+1}/x_k, ..., x_1) = \frac{f(x_1, ..., x_k, ..., x_n)}{f(x_1, ..., x_k)}$$
 (1°-17)

تابع توزيع احتمال مربوطه نيز بر اساس رابطهٔ زير قابل تعيين است

$$\begin{split} F(x_n,\ldots,x_{k+1}/x_k,\ldots,x_1) = \\ &= \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_{k+1}} f\left(\alpha_n,\ldots,\alpha_{k+1}/x_k,\ldots,x_1\right) d\alpha_{k+1}\ldots d\alpha_n \end{split}$$

برای مثال می توان نوشت

$$f \; (x_{\text{I}}/x_{\text{Y}}, x_{\text{Y}}) \; = \; \frac{f \; (x_{\text{I}} \; , x_{\text{Y}} \; , x_{\text{Y}})}{f \; (x_{\text{Y}}, x_{\text{Y}})} \; = \; \frac{dF(x_{\text{I}}/x_{\text{Y}} \; , x_{\text{Y}})}{dx_{\text{I}}}$$

قاعده زنجیره ای زیر نیز رابطهٔ مفیدی است

$$f (x_1,, x_n) = f (x_n/x_{n-1},, x_1)......f (x_r/x_l)f (x_l)$$
 (16-19)

هم چنین به رابطهٔ زیر که به طور گستردهای به کار میرود باید توجه کافی کرده و آن را به موارد مشابه دیگر تعمیم داد.

$$f(x_1/x_r) = \int_{-\infty}^{\infty} f(x_1/x_r, x_r) f(x_r/x_r) dx_r \qquad (r-r)$$

قاعده فوق به متغیرهای تصادفی گسسته نیز قابل اعمال است . برای $c_r\ , b_k\ , a_i\$ مثال اگر متغیر تصادفی $X_r\ , X_r\ , X_r\ , X_l$ به ترتیب مقادیر $X_r\ , X_r\ , X_r\ , X_l$ مثال اگر متغیر تصادفی را اختیار کنند ، در آن صورت

$$P[X_1 = a_i / X_r = c_k] = \sum_k P[X_1 = a_i / b_k, c_r] P[X_r = b_k / c_r]$$

بدیهی است به منظور تعیین متوسط شرطی یک متغیر تصادفی از تابع چگالی احتمال شرطی آن متغیر باید استفاده کرد یعنی

$$E\{X_1/x_1,...,x_n\} = \int_{-\infty}^{\infty} x_1 f(x_1/x_1,...,x_n) dx_1$$
 (f-Y1)

اگر بخواهیم یکی از متغیرهای موجود در شرط تابع چگالی احتمال شرطی را حذف کنیم باید از مفهوم زیر استفاده کرد

$$E\{X_{1}/x_{\mathbf{r}}\} = \int_{-\infty}^{\infty} E(X_{1}/x_{\mathbf{r}},x_{\mathbf{r}})f(x_{\mathbf{r}}/x_{\mathbf{r}})dx_{\mathbf{r}}$$
 (F-YY)

و در مورد حالت گسسته داریم

$$E\{X_{1}/c_{r}\}=\sum_{k}E(X_{1}/b_{k},c_{r})P(X_{r}=b_{k}/c_{r})$$
 (4-74)

تابع مشخصه یک بردار تصادفی بنا به تعریف عبارت است از

$$\Phi\left(\Omega\right)=E\{e^{j\Omega\mathbb{X}^{t}}\}=E\{e^{j(\omega_{l}X_{l}+\ldots+\omega_{n}X_{n})}\}=\Phi\left(j\Omega\right) \tag{f-TT)}$$

که در آن
$$\Omega = [\omega_1, \dots, \omega_n]$$
 و $X = [X_1, \dots, X_n]$ می باشد.

 $Z=X_{
m l}+....+X_{
m n}$ به عنوان یک کاربرد از تعریف و مفهوم فوق فرض کنید که بوده و متغیرهای تصادفی $X_{
m l}$ مستقل از یکدیگر میباشند .

می توان گفت

$$E\{e^{j(\omega_l X_l + \ldots + \omega_n X_n)}\} = \!\! E\{e^{j\,\omega_l X_l}\!\} \! \cdots \! \cdots \! E\{e^{j\,\omega_n X_n}\}$$

یس

$$\boldsymbol{\Phi}_{\!z}\left(\boldsymbol{\omega}\right)\!\!=\!\!E\{e^{j\,\omega(\boldsymbol{X}_{\!\boldsymbol{l}}^{+}\!.....+\boldsymbol{X}_{\!\boldsymbol{n}})}\}\!=\!\!\boldsymbol{\Phi}_{\boldsymbol{l}}\!\left(\boldsymbol{\omega}\right)\!.\,\ldots\,\boldsymbol{\Phi}_{\!\boldsymbol{n}}\!\left(\boldsymbol{\omega}\right)$$

که $\Phi_i(\omega)$ تابع مشخصه X_i می باشد. اگر از رابطهٔ فوق تبدیل فوریه عکس گرفته و همراه آن از خاصیت کانوولوشن – ضرب این تبدیل استفاده نماییم نتیجه عبارت خواهد بود :

$$f_z(3)=f_1(3)*f_1(3)*$$
 $*f_n(3)$

تابع چگالی احتمال و تابع مشخصهٔ یک بردار نرمال با متوسط صفر را تعیین کنید.

بردار نرمال به طول n برداری است که مولفه های آن n متغیر تصادفی توأماً نرمال باشند.

به عبارت دیگر متغیرهای تصادفی X_i هنگامی توأماً نرمال هستند که هرگونه ترکیب خطی آنها نیز خودیک متغیر نرمال باشد. یعنی به ازاء هر \mathbb{A}

$$a_1X_1 + \dots + a_nX_n = AX^t$$

خود نیز یک متغیر نرمال باشد .

با توجه به تعریف توأماً نرمال بودن میتوان گفت که $\mathbb W$ نیز یک متغیر نرمال است .

 $\mathrm{E}\left[\left[\mathrm{X}_{\mathrm{i}}\right]=\circ
ight.$ با توجه به فرض میتوان نتیجه گرفت که

$$E \{ W \} = \circ$$
 , $E \{ W^r \} = \sum_{i,i} w_i w_j C_{ij} = \delta_W^r$

با استفاده از تابع مشخصه یک متغیر تصادفی نرمال که در آن $\eta = \circ \ , \ \omega = 1$

$$E \{ e^{jw} \} = \exp \left[-\frac{\delta_W^{r}}{r} \right]$$

و بنابراین

$$\Phi(\Omega) = \mathrm{E} \left\{ e^{j\Omega X^{t}} \right\} = \exp \left\{ - \frac{1}{r} \sum_{i,j} \omega_{i} \omega_{j} C_{ij} \right\} \qquad (\text{F-rf})$$

حال اگر از رابطه فوق تبدیل فوریه عکس بگیریم . داریم

$$f(X) = \frac{1}{\sqrt{(Y\pi)^{n}\Delta}} \exp\left\{-\frac{1}{Y}XC^{-1}X^{t}\right\}$$
 (4-74)

که Δ د ترمینان ماتریس \bigcap است .

 X_i باید توجه کرد که در حالت خاص ، اگر متغیرهای تصادفی X_i تواماً نرمال و ناهم بسته باشند ، این متغیرها مستقل بوده و در نتیجه ماتریس کوواریانس آنها قطری با عناصر قطری $\delta_i^{
m r}$ خواهد بود .

در این حالت ماتریس C^{-1} نیز قطری با عناصر قطری \overline{G}_i^{Γ} بوده و تابع چگالی احتمال این بردار نرمال عبارت خواهد بود از

مثال ۳-۴

اگر X_i متغیرهای تصادفی توأماً نرمال با متوسط صفر بوده و $E \ \{ \ X_i X_j \ \} = C_{ij}$

$$E \{ X^{l} X^{h} X^{h} X^{k} \} = C^{lh} C^{hk} + C^{lh} C^{hk} + C^{lk} C^{hh}$$

از طرف دیگر

$$\begin{split} \exp \left\{ -\frac{1}{\mathbf{Y}} \sum_{i,j} \omega_i \omega_j C_{ij} \right\} &= +\frac{1}{\mathbf{Y}} \left(-\frac{1}{\mathbf{Y}} \sum_{i,j} \omega_i \omega_j C_{ij} \right)^{\mathbf{P}} + \dots \\ &= \dots + \frac{\mathbf{A}}{\mathbf{A}} \left(-C_{\mathbf{I}\mathbf{P}} C_{\mathbf{P}\mathbf{P}} + C_{\mathbf{I}\mathbf{P}} C_{\mathbf{P}\mathbf{P}} + C_{\mathbf{I}\mathbf{P}} C_{\mathbf{P}\mathbf{P}} \right) \omega_1 \omega_{\mathbf{P}} \omega_{\mathbf{P}} \omega_{\mathbf{P}} \end{split}$$

با مساوی قراردادن ضرایب $\omega_1\omega_1\omega_2\omega_3\omega_4$ در دو بسط فوق رابطه مورد نظر اثبات می شود .

2-4- تخمين متوسط مربع

موضوع تخمین یکی از مفاهیم اساسی در کاربردهای احتمال بوده و در فصول آتی با جزئیات بیشتر مورد بررسی و بحث قرار خواهد گرفت . m Y در این بخش ایده اصلی به صورت تخمین یک متغیر تصادفی مانند m Y بر حسب متغیر تصادفی دیگر مانند m X مطرح و معرفی می گردد .

در سراسر این تحلیل ، معیار بهینه بودن ، حداقل سازی مقدار متوسط مربع . خطای (Mean Square Error)(MSE) تخمین است . در تخمین با معیار MSE می توان از سه روش زیر استفاده کرد .

i) تخمین با مقدار ثابت

Yدر این نوع تخمین ، می خواهیم متغیر تصادفی مجهول Y را با مقدار ثابت Y به نحوی تخمین بزنیم که گشتاور دوم تفاضل (خطا) به نحوی Y حداقل شود .

$$e = E \{(y - C)^r\} = \int_{-\infty}^{\infty} (y - C)^r f(y) dy$$
 (4-75)

بدیهی است e به مقدار ثابت C وابسته بوده و حداقل آن عبارت است از :

$$\frac{\mathrm{de}}{\mathrm{dC}} = \int_{-\infty}^{\infty} \mathbf{Y}(y - C) f(y) \mathrm{d}y = \mathbf{0}$$

یعنی اگر

$$C = \int_{-\infty}^{\infty} y f(y) dy = E(y)$$
 (4-14)

در آن صورت متوسط مربع خطای تخمین حداقل خواهد بود .
این نتیجه در واقع همان اصل معروف در مکانیک است ،
که بر اساس آن گشتاور اینرسی (اجرام) نسبت به نقطه ۲ هنگامی حداقل است که ۲ مرکز ثقل آن جسم (اجرام) باشد .
هم چنین قابل توجه است که متوسط مربع خطای
حداقل در واقع واریانس متغیر تصادفی ۲ خواهد بود .

Min E{
$$(Y-C)^r$$
}=E{ $[Y-E(Y)]^r$ }= δ_y^r

i)**تخمین غیر خط**ی

در این حالت متغیر تصادفی Y را نه با مقدار ثابت بلکه به صورت تابعی از متغیر تصادفی X (داده ها) یعنی C(X) تخمین می زنیم . در اینجا نیز تابع C(X) را باید به نحوی تعیین کرد که متوسط مربع خطای تخمین حداقل باشد .

$$e = E\{[Y-C(X)]^r\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [y-c(x)]^r f(x,y) dxdy$$

رابطه فوق را می توان به صورت زیر نوشت

$$e = \int_{-\infty}^{\infty} f(x) \int_{-\infty}^{\infty} [y - c(x)]^{r} f(y/x) dy dx$$

از آنجا که انتگراندها (توابع زیر انتگرال) مثبت هستند می توان ادعا کرد ، C که برای حداقل شدن متوسط مربع خطا یا C کافی است ، C انتگرال داخلی به ازاء هر مقدار C حداقل شود . این انتگرال به شکل C(x) به روز C(x) به روز C(x) به شکل C(x) به شکل مذکور هنگامی تبدیل شده است ، بنابراین می توان نتیجه گرفت که انتگرال مذکور هنگامی حداقل است که C(x) به شکل C(x) تغییر یابد یعنی مشروط بر آن که C(x) به C(x) تغییر یابد یعنی

$$C(x)=E\{y/x\}=\int_{-\infty}^{\infty}y f(y/x)dy$$
 (۴-۲۸)

 ${
m Y}$ بدیهی است که در این حالت متوسط مربع خطاهای حداقل واریانس شرطی ${
m C}({
m \, X}\,)$ خواهد بود . باید توجه کرد که در حالت کلی تابع

یک تابع غیر خطی از متغیر تصادفی داده های Xمی باشد . نکته دیگری که باید روی آن تاکید شود عبارت است از این که Y,Xمستقل از یکدیگر باشند در آن صورت مقدار ثابتX

بوده و در این حالت اطلاع از Xهیچ گونه نقشی در تخمینYندارد .

iii) **تخمين خط**ي

همانگونه که ملاحظه شد در تخمین MSE غیرخطی به توابع چگالی احتمال توأم یا شرطی نیاز است . در بسیاری از موارد و کاربردها این توابع احتمال نامعلوم بوده و در دسترس نیستند و بدین سبب آسان تر خواهد بود اگر بتوان به جای توابع احتمال از گشتاورهای اول و دوم استفاده نمود .

در واقع چنین شرایطی در تخمین خطی وجود داشته و باعث میگردد ،

که این نوع تخمین به خاطر سهولت به طرز گسترده ای به کار رود ،

اگر چه فاقد دقت تخمین غیرخطی میباشد.

در این نوع تخمین میخواهیم متغیر تصادفی مجهولm Yرا بر حسب تابع خطی m B , m A تخمین بزنیم . ضرایب m B , m A

باید به نحوی تعیین شوند که متوسط مربع خطای تخمین زیر حداقل گردد.

$$e = E\{[Y-(AX+B)]^r\}$$
 (4-19)

با گرفتن مشتق از e نسبت ضرایب B , Aو مساوی صفر قرار دادن آنها مقادیر زیر به دست می آید

$$A = \frac{\mu_{\text{H}}}{\mu_{\text{Yo}}} = \frac{r\delta_{\text{y}}}{\delta_{\text{x}}} \quad , \quad B = \eta_{\text{y}} - A\eta_{\text{x}} \qquad \quad \text{(F-Y•)}$$

و بالطبع متوسط مربع خطای حداقل در تخمین خطی برابر است با

$$e = e_m \! = \! \mu_{\text{\tiny o} \text{\tiny f}} \text{\tiny -} \frac{\mu_{\text{\tiny II}}^{\text{\tiny f}}}{\mu_{\text{\tiny fo}}} = \delta_y^{\text{\tiny f}} \, (\text{\tiny I-r}^{\text{\tiny f}})$$

که در روابط فوق $\mathbf{r} = \mathbf{p}$ ضریب هم بستگی بین دو متغیر تصادفی \mathbf{Y}, \mathbf{X}

در تخمین خطی فوق یعنی C(X)=AX+B را تخمین خطی خطی X نامند . غیر همگن Y(Nonhomogeneous) بر حسب

Xاگر تخمین خطیYبرحسب

بدون مقدار ثابت باشد یعنی C(X)=AX (O(X)=AX) در آن صورت تخمین خطی را تخمین خطی همگن O(X)=AX (O(X)=AX) برحسب O(X) گویند . نکته شایان توجه در این رابطه موردی است که دو متغیر تصادفی O(X) متغیرهای تصادفی توأماً نرمال باشند . در این حالت تخمین غیرخطی بر اساس معیار متوسط مربع خطای حداقل برابر با تخمین خطی با همان معیار است . به عبارت دیگر تخمین خطی و غیرخطی O(X) دو متغیر تصادفی توأماً نرمال برابر بوده و به همین علت می توان گفت که بهترین تخمین دو متغیر تصادفی توأماً نرمال برابر بوده و به همین علت می توان گفت که

اصل تعامد Orthogonality

بر اساس این اصل ، متوسط مربع خطای تخمین خطی هنگامی حداقل است که خطای تخمین $Y_- (AX+B)$ بر داده های X متعامد باشد یعنی

$$E\{[Y-(AX+B)]X\}= \circ \qquad (r-r)$$

اصل مذکور در واقع پایه و اساس تخمین MS بوده و بطور گسترده ای به کار میرود. MS در این بخش ما آن را در حالت تخمین خطی همگن اثبات میکنیم . MS در چنین تخمینی ، یعنی MS فرض کنید که خطای تخمین

(Y - aX) بر X متعامد است یعنی

$$E\{(Y-aX)X\} = \circ$$

است (متغیر تصادفی داده های Xحقیقی فرض شده است) .

حال تخمین خطی دیگری مانند $_{
m bX}$ را در نظر گرفته و نشان میدهیم که خطای تخمین $_{
m MS}$ آن از خطای تخمین فوق بیشتر است $_{
m C}$ (به ازاء هر مقدار $_{
m b}$) . بدین منظور می توان نوشت

$$\begin{split} & E\{(\,Y\!-\,bX\,)^{r}\}\!=\!E\{(\,Y\!-\,aX\!+\!aX\,-\,bX\,)^{r}\}\!=\!E\{[(\,Y\!-\,aX\,)\!+\!(a\!-\!b\,)X\,]^{r}\}\\ & =\!E\{[\,Y\!-\,aX\,)]^{r}\}\!+\!(\,a\!-\!b\,)^{r}E[\,X^{r}\,]\!+\!r\!(\,a\!-\!b\,)E\{[\,Y\!-\,aX\,)X]\} \end{split}$$

جمله آخر برابر صفر بوده و جمله دوم همیشه مثبت است پس می توان نتیجه گرفت که به ازاء جمیع مقادیر b

$$\mathrm{E}\{\left[\left(\left.\mathrm{Y-bX}\right.\right)\right]^{r}\}\geq\mathrm{E}\{\left[\left(\mathrm{Y-aX}\right.\right)\right]^{r}\}$$

پس باید گفت که اگر خطای تخمین بر داده ها متعامد باشد متوسط مربع خطای تخمین حداقل خواهد بود . $\hat{\mathbb{E}}\{Y/X\}$ متغیر تصادفیY بر حسب X را به شکل $\mathbb{M}S$ نشان میدهند .

بنابراين

$$\hat{E}\{Y/X\}=aX$$
 , $a=\frac{E\{|XY|\}}{E\{|X|^r\}}$ (4-47)

و خطای MS برابر است.

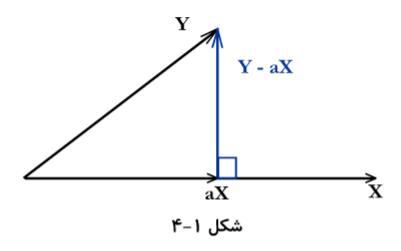
$$e = E\{(Y-aX)Y\} - E\{(Y-aX)aX\} = E\{Y^{r}\} - E\{(aX)^{r}\} \quad \text{(f-rr)}$$

 $a \chi$ در رابطه فوق عبارت دوم بنا به اصل تعامد صفر بوده و به جای γ تخمین خطی γ در رابطه فوق عبارت دوم بنا به اصل تعامد صفر بنا به اصل γ

تعبیر مفید دیگر برای اصل تعامد در واقع تعبیر هندسی است .

اگر متغیرهای تصادفی را بر طبق شکل 1-4 به صورت بردار نمایش دهیم X به X به X بدار تفاضل X بداری است که از نقطه X به X به X وصل شده و طول این بردار برابر X است .

. بدیهی است که این طول هنگامی حداقل خواهد بود که ${
m Y-aX}$ بر ${
m X}$ عمود باشد



تخمین خطی $_{
m MS}$ یک متغیر تصادفی مجهول مانند $_{
m S}$ را می $_{
m i}$ یا تخمین خطی $_{
m i}$ تصادفی $_{
m i}$ (بردار داده ها) بیان کرد . به عبارت دیگر $_{
m i}$ یا تخمین خطی $_{
m i}$ عبارت است از

$$\hat{S} = a_1 X_1 + \dots + a_n X_n$$
 (4-44)

که در آن $a_n,, a_n$ ضرایب ثابت بوده و به نحوی تعیین میشوند، که مقدار متوسط مربع خطای زیرحداقل گردد

$$P = E\{(S - \hat{S})^r\} = E\{[S - (a_1X_1 + + a_nX_n)]^r\}$$
 (*-\mathcal{Y}^\Delta)

با توجه به اصل تعامد ، P هنگامی حداقل است که خطای تخمین S - S بر داده های X_i متعامد باشد چون S هنگامی حداقل خواهد بود که

$$\frac{\partial P}{\partial a_i} = \mathrm{E}\{\text{-Y}[\;S\text{-}(a_1X_1 + + a_nX_n)]X_i\} = \bullet$$

و از رابطه فوق می توان رابطه تعامد را نتیجه گرفت

$$E\{[S - (a_1X_1 + + a_nX_n)]X_i\} = \circ \cdot i = 1,Y,.....,n$$
 (4-45)

مفاهیم فوق را می توان به صورت برداری بیان کرد . ابتدا بردارهای سطری را تعریف می کنیم .

$$X = [X_1, ..., X_n]$$
, $A = [a_1, ..., a_n]$

http://vc.iust.ac.ir/file.php/99/Chapter%204/session2/4-asle%20taamod-edameh/index.swf Screen clipping taken: ب.ظ 75/77/7

اگر $\{R_{ij} = E\{X_iX_j\}, R_{ij} = E\{X_iX_j\}, R_{ij} = E\{X_iX_j\}$ بوده و ماتریس هم بستگی داده ها $R_{\circ} = [R_{\circ i},, R_{\circ n}]$ و بردار هم بستگی مجهول و داده ها یعنی $R = E\{X_i^tX_j\}$ را در نظر بگیریم با استناد به اصل تعامد می توان نوشت:

$$E\{[S-AX^t]X\}=\circ, R_{\circ}-AR=\circ$$

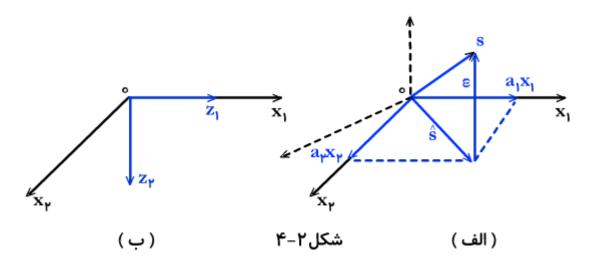
$$A=R_{\circ}\bar{R}^1 \qquad (\red{F-TV})$$

بنابراین ضرایب a_i از رابطه فوق به دست می آید . متوسط مربع خطای حداقل نیز از $S = \hat{S} \perp \hat{S}$ و رابطه زیر قابل تعیین است . این رابطه با توجه به اصل تعامد و $S = \hat{S} \perp \hat{S}$ نتیجه می شود .

$$P=E\{(S-\hat{S})S\}=E\{S^{r}\}-AR^{t}$$
 (4-4-4)

. تعبیر هندسی اصل تعامد نیز با توجه به شکل Y-Y قابل توصیف و بررسی می باشد S بردار تخمین S برداری در زیر فضای S با ابعاد داده های S بوده و بردار خطای $S=S-\hat{S}$ برداری است که از S به S وصل می شود .

قضیه تصویر ($Projection\ Theorem$) بیان می کند که طول $\mathfrak S_n$ هنگامی حداقل است که $\mathfrak S_n$ عمود باشد یعنی بر زیر فضای $\mathfrak S_n$ داده ها متعامد گردد .



بنابراین می توان گفت که تخمین \hat{S} "تصویر" \hat{S} بر زیر فضای \hat{S} است . اگر \hat{S} برداری در n+1 باشد در آن صورت $\hat{S}=S$ بوده و P= خواهد بود . در این مورد $\hat{S}=S$ باشد در آن صورت $\hat{S}=S$ بوده و $\hat{S}=S$ بوده و دترمینان \hat{S}_n متغیر های تصادفی \hat{S}_n ,..., \hat{S}_n , به طور خطی وابسته بوده و دترمینان \hat{S}_n متغیر های تصادفی \hat{S}_n آنها صفر است . اگر \hat{S} بر \hat{S} متغامد باشد ، در آن صورت ماتریس هم بستگی آنها صفر است . اگر \hat{S} بر تمام داده های \hat{S}_n عمود $\hat{S}=\hat{S}_i$ $\hat{S}=\hat{S}_i$ است بوده و به ازاء $\hat{S}=\hat{S}_i$ $\hat{S}=\hat{S}_i$ است

 $g(X_1,....,X_n)\!=\!g(X)$ تخمین غیر خطی MS شامل تعیین تابع داده ها MS به نحوی است که خطای MS

$$P = E\{[S - g(\mathbf{X})]^r\}$$

حداقل شود . به سهولت می توان نشان داد که برای حداقل شدن ${f P}$ کافی است که

$$g(X)=E(S/X)=\int_{-\infty}^{\infty}Sf_{s}(S/X)dS$$
 (4-49)

 $\mathbb{X} = \mathbb{X}$ متوسط شرطی متغیر تصادفی مجهول $\mathbb{E}(\operatorname{S}/\operatorname{X})$ است

مثال ۴-۴

متغیرهای تصادفی X_{r}, X_{n} متغیرهای تصادفی تواماً نرمال با متوسط صفر می باشند چگالی طیفی شرطی $f(x_{r}/x_{n})$ را تعیین کنید . با توجه به رابطه (۳۲-۴) می توان نوشت

$$\begin{split} E\{x_{r}/x_{l}\} = & ax_{l} \quad , a = \frac{R_{lr}}{R_{ll}} \\ \delta^{r}_{x_{r}/x_{l}} = & P = E\{(|X_{r}-aX_{l}|)X_{r}\} = R_{rr}-aR_{lr} \end{split}$$

بنابراین با توجه به اینکه چگالی احتمال شرطی مورد نظر نرمال است می توان نتیجه گرفت

$$f(|x_{\gamma}/x_{1}) = \frac{1}{\sqrt{\gamma \pi p}} e^{-(x_{\gamma}-ax_{1})/\gamma p}$$

مثال۵-4

 X_{r} در مثال f-f فرض کنید متغیرهای X_{r} , X_{r} معلوم بوده و متغیر X_{r} را بر اساس تخمین خطی MS بر حسب X_{r} , X_{r} تعیین مینماییم اکنون تابع چگالی احتمال $f(x_{r}/x_{r},x_{r})$ را به دست آورید . در این حالت

$$E\{X_{\mathbf{r}}/X_{\mathbf{l}},X_{\mathbf{r}}\}=a_{\mathbf{l}}X_{\mathbf{l}}+a_{\mathbf{r}}X_{\mathbf{r}}$$

بوده و ضرایب a_{r,a_1} با استفاده از اصل تعامد ، در واقع جواب دستگاه معادلات زیر میباشد .

$$R_{11}a_1 + R_{12}a_2 = R_{12}$$
 , $R_{12}a_1 + R_{22}a_2 = R_{22}$ علاوہ بر این

$$\boldsymbol{\delta_{x_{\boldsymbol{\gamma}}/x_{\boldsymbol{1}},\,x_{\boldsymbol{\gamma}}^{\boldsymbol{\Xi}}}^{\boldsymbol{\gamma}}} = \boldsymbol{P}^{\boldsymbol{\Xi}} \; \boldsymbol{R_{\boldsymbol{\gamma}\boldsymbol{\gamma}^{\boldsymbol{\Xi}}}} \; (\; \boldsymbol{R_{\boldsymbol{1}\boldsymbol{\gamma}}}\boldsymbol{a_{\boldsymbol{1}}} + \boldsymbol{R_{\boldsymbol{\gamma}\boldsymbol{\gamma}}}\boldsymbol{a_{\boldsymbol{\gamma}}})$$

و تابع چگالی احتمال شرطی عبارت است از

$$f(x_r/x_1,x_r) = \frac{1}{\sqrt{r \pi p}} e^{(x_r-a_1x_1-a_rx_r)/rp}$$

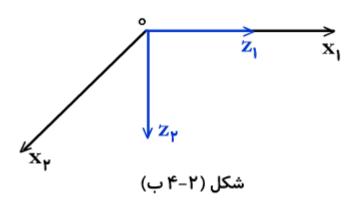
تبديل ارتونز مال داده ها

 $i \neq j$ ، $R_{ij} = \circ$ اگر داده های X_i متعامد باشند یعنی اگر به ازاء X_i معادله باشد در آن صورت ماتریس X_i یک ماتریس قطری بوده و حل معادله عاصل از اصل تعامد و محاسبهٔ ضرایب a_i ساده تر شده و به صورت زیر قابل تعیین است

$$a_i = \frac{R_{\circ i}}{R_{ii}} = \frac{E \{SX_i\}}{E \{X_i^r\}}$$
 (4-r·)

پس تعیین تصویر \hat{S} از S ساده تر خواهد شد مشروط بر آن که بتوان داده های X_i را بر حسب مجموعهٔ اور تونرمال از بردارها بیان کرد بدین منظور میخواهیم مجموعهٔ $\{Z_k\}$ از X_k است تعیین کنیم. را که معادل خطی مجموعهٔ داده های $\{X_k\}$ است تعیین کنیم.

هدف از عبارت معادل خطی آن است که هر Z_k تابعی خطی از عناصر مجموعهٔ $\{X_k\}$ بوده و هر X_k تابع خطی از عناصر مجموعهٔ $\{Z_k\}$ است. مجموعهٔ $\{X_k\}$ منحصر به فرد نیست و ما با استفاده از روش گرام مجموعهٔ $\{X_k\}$ منحصر به فرد نیست و ما با استفاده از روش گرام اشمیت ($\{X_k\}$ منحصر به فرد نیست و ما با استفاده از روش گرام است. اشمیت $\{X_k\}$ وابسته است. در این روش، هر $\{X_k\}$ فقط به $\{X_k\}$ داده های اول $\{X_k\}$ $\{X_k\}$ وابسته است.



بنابراين

$$Z_{1} = \gamma_{1}^{1} X_{1}$$

$$Z_{p} = \gamma_{1}^{p} X_{1} + \gamma_{p}^{p} X_{p}$$

$$\vdots$$

$$Z_{n} = \gamma_{1}^{n} X_{1} + \gamma_{p}^{n} X_{p} + \dots + \gamma_{n}^{n} X_{n}$$

$$Z_{n} = \gamma_{1}^{n} X_{1} + \gamma_{p}^{n} X_{p} + \dots + \gamma_{n}^{n} X_{n}$$

در نماد $_k$ ، $_k$ اندیس نشان دهندهٔ معادلهٔ $_k$ ام و $_1$ اندیسی است که مقادیر ۱ تا $_k$ را اختیار می کند . ضریب $_k$ از شرط نرمالیزه کردن به دست می آیند.

$$E\{Z_{i}^{r}\}=(\gamma_{i}^{r})^{r}R_{ii}=I$$

برای تعیین ضرایب γ_r^{r} و γ_r^{r} مشاهده می کنیم که $Z_r \perp X_1$ است . چون بنا به تعریف $Z_r \perp Z_1$ میباشد ، پس E $\{Z_r X_1\} = \circ = \gamma_r^{r} R_{11} + \gamma_r^{r} R_{r1}$

شرط $\{Z_{r}^{r}\}=1$ معادله دوم را بیان می کند . مشابها از آنجا که $\mathbb{E}\{Z_{r}^{r}\}=1$ به ازاء r< k است. r< k به ازاء r< k است نتیجه می گیریم که r< k به ازاء r< k است. اگر طرفین معادلهٔ r< k ام در رابطهٔ r= k را در r ضرب کرده و از مفاهیم فوق استفاده کنیم . می توان نوشت

kسیستم معادلات فوق شامل k-1 معادله برای $\mathbb{E}\{Z_k^r\}=1$ معادله $\mathbb{E}\{Z_k^r\}=1$ معادله دیگر خواهد بود . دستگاه معادلات $(\mathfrak{F}-\mathfrak{F})$ را به صورت برداری می توان بازنویسی کرد.

$$\mathbb{Z} = \mathbb{X} \mathbb{L} \qquad (k-kl)$$

که در آن \mathbb{Z} یک بردار سطری با عناصر \mathbb{Z}_k می باشد. با حل معادلات فوق، جواب \mathbb{X} را می توان به دست آورد.

$$X = Z \Gamma^{-1} = Z L$$

$$X_{1} = \ell_{1}^{1} Z_{1}$$

$$X_{r} = \ell_{1}^{r} Z_{1} + \ell_{r}^{r} Z_{r} \qquad (r-r)$$

$$X_{n} = \ell_{1}^{n} Z_{1} + \ell_{r}^{n} Z_{r} + \dots + \ell_{n}^{n} Z_{n}$$

در روابط فوق ماتریس 〗 و ماتریس عکس آن 〗 هر دو ماتریس های مثلثی بالا هستند

از آنجا که بنا به تعریف $\mathrm{E}\{Z_iZ_i\} \! = \! \delta(\,i \! - \! j\,)$ است نتیجه میگیریم که

$$E\{\mathbf{Z}^{t}\mathbf{Z}\} = \mathbf{1}_{n} = E\{\mathbf{\Gamma}^{t}\mathbf{X}^{t}\mathbf{X}\mathbf{\Gamma}\} = \mathbf{\Gamma}^{t}E\{\mathbf{X}^{t}\mathbf{X}\}\mathbf{\Gamma} \qquad (\mathbf{f}-\mathbf{f}\mathbf{f})$$

که در آن 1_n ماتریس واحد می باشد . بنابراین

$$\Gamma^{t}R\Gamma = 1_{n}$$
, $R = \Gamma^{t}L$, $R^{-1} = \Gamma^{t}\Gamma$ (۴-۴۵)

پس همانگونه که ملاحظه می شود ما ماتریس R و معکوس آن R^{-1} را به صورت حاصلضرب ماتریس های مثلثی بالا و مثلثی پایین بیان کرده ایم. مبنای اور تونرمال $\{Z_n\}$ در $\{F-F\}$ در واقع نسخه محدود فر آیند های ابداع مبنای اور $\{Z_n\}$ است که در فصول آتی مورد بررسی قرار می گیرد. ماتریس های $\{L_n\}$ به تر تیب به فیلتر سفید کننده و فیلتر ابداع مربوط ماتریس های $\{L_n\}$ را تجزیه به عوامل طیفی $\{F-F\}$ را تجزیه به عوامل طیفی $\{F-F\}$ می نامند

با توجه به معادل خطی بودن دو مجموعه $\{X_k\}, \{Z_k\}$ باید گفت که تخمین متغیر S تصادفی S بر حسب داده های $\{X_k\}$ را می توان به صورت تخمین S برحسب مجموعه $\{Z_k\}$ نیز بیان کرد .

$$\hat{\mathbf{S}} = \mathbf{b}_1 \mathbf{Z}_1 + \dots + \mathbf{b}_n \mathbf{Z}_n = \mathbf{B} \mathbf{Z}^t$$

که مجدداً ضرایب $\mathbf{b}_{\mathbf{k}}$ با استفاده از اصل تعامد تعیین می شوند

$$S - \hat{S} \perp Z_k$$
 $1 \le k \le n$

$$E\{(S-BZ^{t})Z\}= \circ = E\{SZ\}-B$$

و از آن می توان نتیجه گرفت که

$$\mathbb{B} = \mathbb{E} \{ S \mathbb{Z} \} = \mathbb{E} \{ S \mathbb{X} \mathbb{\Gamma} \} = \mathbb{R}_{\circ} \mathbb{\Gamma}$$

بنابراین تخمین S عبارت است از

$S = BZ^{t} = B \Gamma^{t} X^{t} = AX^{t}$, $A = B \Gamma^{t}$

در این حالت اگر ماتریسho معلوم و در دست باشد تعیین بردار ho ساده تر میشود .

3-4- همگرایی تصادفی

یک مساله اساسی در نظریه احتمال تعیین خواص مجانبی دنباله های تصادفی است . در این بخش ضمن بررسی موضوع ، مفاهیم مربوطه را طبقه بندی کرده و بحث را با یک مثال ساده آغاز میکنیم . فرض کنید می خواهیم طول a یک جسم را اندازه بگیریم .

 $X=a+\gamma$ به علت خطا های اندازه گیری مقدار اندازه گرفته شده به صورت خواهد بود که در آن γ عبارت خطا است .

اگر خطا های سیستماتیک رخ ندهد در این صورت γ یک متغیر تصادفی با متوسط صفر است . در این حالت اگر انحراف معیار δ مربوط به خطای γ نسبت به $\chi(\xi)$ مشاهده شده $\chi(\xi)$ در یک اندازه گیری $\chi(\xi)$ معین تخمین رضایت بخشی از طول مجهول $\chi(\xi)$ است . از دید مفاهیم احتمال این معین تخمین رضایت بخشی را به این صورت می توان بیان کرد .

متوسط متغیر تصادفی ${\mathbb X}$ برابر ${\mathbb A}$ و واریانس آن برابر ${\mathbb A}^r$ می باشد . با استناد به نامساوی چپی چف می توان نتیجه گرفت که

$$P\{|X-a|<\epsilon\}>1-\frac{\delta^r}{\epsilon^r}$$
 (*-**)

 $\|X-a\|$ بنابراین اگر ج $_6 < _6 \in _6$ باشد در این صورت احتمال این که بنابراین اگر تو باشد به یک نزدیک است .

با توجه به مطلب فوق ، می توان گفت ٔ تقریباً اطمینان ٔ $a+\varepsilon$ و $a-\varepsilon$ بین $X(\xi)$ بین $\alpha-\varepsilon$ و $X(\xi)$ بین $X(\xi)+\varepsilon$ و $X(\xi)-\varepsilon$ قرار دارد یا معادلاً مجهول α بین α بین $X(\xi)+\varepsilon$ و $X(\xi)$

در یک اندازه گیری معین " تقریباً با اطمینان " تخمین رضایت بخشی از طول a

6<< a خواهد بود مشروط بر آن که 6<< a باشد . اگر 6 در مقایسه با a کوچک نباشد ،

در آن صورت یک اندازه گیری به تنهایی نمی تواند تخمین کافی از a را ارائه دهد . به منظور بهبود دقت اندازه گیری را به دفعات زیاد انجام داده و از نتایج حاصله متوسط می گیریم .

مدل مبتنی بر احتمالات ، اکنون در فضای حاصلضربی

$$S^n = S \times \dots \times S$$

که از n بار تکرار آزمایش یک اندازه گیری تنها تشکیل یافته است قرار دارد .

اگر اندازه گیری ها مستقل باشند در آن صورت قرائت اندازه گیری 1 ام $X_i=a+\gamma_i$ مجموع

که در آن مؤلفه های نویز γ_i متغیرهای تصادفی مستقل با متوسط صفر و واریانس δ^{T} است .

نکته مذکور منجر به این نتیجه می شود که متوسط نمونه اندازه گیری ها

$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$

 $\frac{\delta^r}{n}$ و واریانس خود نیز یک متغیر تصادفی با متوسط و واریانس

 S^n متوسط نمونه \overline{X} در یک عملکرد تنها از آزمایش \overline{X} در یک عملکرد n اندازه گیری مستقل) تخمین رضایت بخشی از مجهول n خواهد بود .

به منظور تعیین کران خطا برای تخمین a توسط \overline{X} ، از رابطهٔ (۴-۴) استفاده $P\{|X-a|<\epsilon\}>1-\frac{\delta^r}{\epsilon^r}$ (۴-۴۶) کرده و فرض میکنیم که a به قدری بزرگ می باشد که a بوده و a بوده و میخواهیم احتمال اینکه a به قدری بزرگ می باشد که a ترابر گیرد را حساب کنیم . جواب بر اساس رابطهٔ (۴-۴۶) به ازاء a برابر است با

$$P\{\circ/\P_a < \overline{X} < 1/I_a\} \ge 1 - \frac{1 \circ \circ \delta}{na^r} = \circ/\P\P$$

بنابراین ، اگر آزمایش به تعداد $6^7/a^7$ ما تکرار شود در آن صورت n=1 ه $6^7/a^7$ بین n=1 و "تقریباً اطمینان" داریم که در ۹۹ درصد موارد تخمین n=1 از n=1 بین n=1 از n=1 به بحث فوق، حالات همگرائی مختلف دنباله های n=1 متغیرهای تصادفی را می توان به شکل زیر مطرح کرد.

بنا به تعریف ، دنباله تصادفی یا فر آیند تصادفی گسسته زمان در واقع دنباله ای از متغیرهای تصادفی

 X_1, \ldots, X_n, \ldots

 $X_n(\xi)$ ، می باشد . به ازاء یک ξ معین $X_n(\xi)$ معین که امکان دارد همگرا شود یا همگرا نشود. این نکته نشان می دهد که همگرائی دنبالههای تصادفی را می توان به صور مختلف تعبیر و تفسیر نمود .

(Every where)(e) همگرایی در همه جا

دنباله ای از اعداد $_{\rm x_n}$ هنگامی به حد $_{\rm x}$ میل میکند که به ازاء $_{\rm x_n}$ مفروض بتوان عددی مانند $_{\rm x_n}$ را تعیین کرد . و

اگر دنبالهٔ اعداد $(\xi)_n X_n$ مطابق رابطهٔ (۴۷–۴) به ازاء هر ξ همگرا شود در آن صورت گویند که دنبالهٔ تصادفی $X_n X_n$ در آن صورت گویند که دنبالهٔ تصادفی X_n بستگی دارد ، به عبارت دیگر حد همگرایی عددی است که به طور کلی به ξ بستگی دارد ، به عبارت دیگر حد دنباله های تصادفی X_n متغیر تصادفی X است .

 $X_n \stackrel{e}{\to} X$, $n \to \infty$ به ازاء

همگرایی تقریباً در همه جا (Almost Everywhere)

اگر مجموعهٔ نتایج 🖔 به نحوی باشد که

$$\lim X_n(\xi) = X(\xi)$$
 , $n \to \infty$ به ازاء (۴-۴۸)

 X_n بوده و احتمال آن برابر یک باشد در آن صورت گوییم که دنبالهٔ X_n تقریباً در همه جا (یا با احتمال ۱) همگرا میشود. این نوع همگرایی به شکل زیر توصیف میشود.

$$X_n \stackrel{ae}{\longrightarrow} X$$
 $P\{X_n \longrightarrow X\} = 1$ $n \longrightarrow \infty$ به ازاء

که در رابطهٔ فوق $\{X_n o X\}$ پیشامدی شامل تمام نتایج $\{X_n o X\}$ است که به ازاء آنها $\{X_n(\xi) o X\}$ میباشد

همگرایی به مفهوم متوسط مربع (Mean Square)(ms)

دنباله $\mathop{
m MS}_n$ هنگامی به متغیر تصادفی $\mathop{
m X}$ از نظر مفهوم $\mathop{
m MS}_n$ میل میکند که

$$\mathrm{E} \; \{ \left| X_{n} \text{-} X \right|^{r} \}
ightarrow \circ n
ightarrow \infty$$
 به ازاء $X_{n} \stackrel{\mathrm{MS}}{\longrightarrow} X$ (۴-۵۰)

همگرایی در احتمال (P)

احتمال $\{|X-X_n|>\epsilon\}$ مربوط به پیشامد $\{|X-X_n|>\epsilon\}$ دنباله ای از $\mathbb{P}\{|X-X_n|>\epsilon\}$ به مقدار صفر اعداد است که به \mathbb{S} بستگی دارند . اگر این دنباله به ازاء هر \mathbb{S} به مقدار صفر (\mathbb{S}) میل میکند.

$$P\left\{\left|X-X_{n}\right|\geq\epsilon\right\}
ightarrow \circ n
ightarrow\infty$$
 به ازاء $m
ightarrow\infty$ به ازاء (۴-۵۱)

X در آن صورت گوییم که دنباله X_n از نظر احتمال به متغیر تصادفی همگرایی را همگرایی تصادفی همگرایی را همگرایی تصادفی $(Stochastic\ Convergence)$

$$X_n \xrightarrow{p} X$$

همگرایی در توزیع (d **)**

 $F(\,x\,)$ اگر توابع توزیع متغیرهای تصادفی X_n و X_n و ابه ترتیب با $F(\,x\,)$ و اگر توابع نشان داده و اگر به ازاء هر نقطهٔ پیوسته ای از

$$F_n(x) \rightarrow F(x)$$
 به ازاء $m \rightarrow \infty$ به ازاء (۴-۵۲)

در آن صورت گوییم که دنباله X_n از نظر توزیع به متغیر تصادفی X همگرا میشود . شایان توجه است که در این مورد ، لزومی ندارد ، X_n به ازاء هر X_n شود .

$$X_n \xrightarrow{d} X$$

همانطور که گفته شد ، دنباله یقینی $_{\mathrm{X}_{\mathrm{n}}}$ اگر در رابطهٔ (۴۷–۴) صدق کند ، همگرا میشود . این تعریف شامل مقدار حدّی $_{\mathrm{X}_{\mathrm{n}}}$ یعنی $_{\mathrm{X}}$ میباشد .

 ${
m x_n}$ قضیهٔ زیر که به معیار کوشی معروف است ، شرایطی را برای همگرائی ${
m m}> \circ$ توصیف می کند که در آن از ${
m x}$ استفاده نمی شود . اگر به ازاء هر

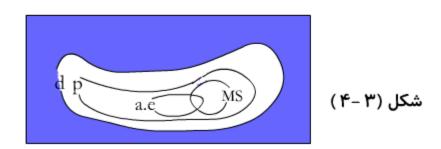
$$|x_{n+m}^- x_n^-| \to \infty$$
 به ازاء $\infty \to \infty$ به ازاء (۴–۵۳)

در آن صورت دنبالهٔ x_n همگرا می شود . قضیهٔ فوق هم چنین برای دنباله تصادفی قابل اعمال است. در این مورد، مقدارحدّی باید بر طبق مورد مربوطه تعبیر و تعیین گردد. m>0 برای مثال اگر به ازاء هر m>0

$$\mathrm{E}\,\left\{\left|\,X_{n+m}^{-}\,X_{n}^{-}\,\right|^{r}
ight\}$$
 ه ازاء ∞ n

باشد در آن صورت دنباله تصادفی χ از نظر MS همگرا می شود.

در شکل (۳ – ۴) رابطهٔ مفاهیم مختلف همگرایی نشان داده شده است . هر نقطه داخل مستطیل نمایندهٔ یک دنبالهٔ تصادفی میباشد . حرف مندرج روی هر منحنی بیان میکند که تمام دنبالههای داخل منحنی از نظر مفهوم آن حرف ، همگرا میشوند . ناحیه سایه دار شامل تمام دنباله هایی است که از نقطه نظر هر مفهومی همگرا نمیشوند . حرف b در منحنی بیرونی نشان میدهد که اگر دنباله ای همگرا شود در آن صورت از نظر توزیع نیز همگرا خواهد شد . نکتهٔ مهم دیگر آن است که اگر دنباله ای از نظر آن است که اگر دنباله ای از نظر آن است



در حقیقت بنا به نامساوی چیی چف می توان گفت :

$$P\left\{\left|\left.X_{n}^{-}X\right.\right|\geq\epsilon\right\}\leq\frac{\left.\mathrm{E}\left\{\left|\left.X_{n}^{-}X\right.\right|^{r}\right\}\right.}{\epsilon^{r}}$$

اگر از نظر ${
m MS} \to {
m X} \, {
m MS}$ میل کند ، در آن صورت به ازاء ${
m S} \to {
m X} \, {
m MS}$ راست نامساوی به مقدار صفر میل می کند و در نتیجه به ازاء ${
m m} \to {
m m}$ طرف چپ نامساوی به صفر میل نموده و رابطهٔ (۵۱–۴) اقناع می شود .

به هر حال عکس این مطلب صحت ندارد . اگر X_n محدود کراندار نباشد ، $P\{|X_n \text{-}X| > \epsilon\}$ در آن صورت $P\{|X_n \text{-}X| > \epsilon\}$ ممکن است به صفر میل کرده ولی

 $\mathbb{E}\left\{ \left| \mathbf{X}_{n}\text{-}\mathbf{X} \right|^{r} \right\}$

به صفر میل نکند .

در هر صورت ، اگر ${
m X}_{
m n}$ در خارج بازه ای مانند ${
m (-c,c)}$ به ازاء ${
m n} > {
m n}_{
m o}$

میرا و صفر گردد ، در آن صورت همگرایی P و همگرایی MS معادل هستند . بدیهی است که همگرایی به مفهوم تقریباً در همه جا بر اساس رابطهٔ (P-4) همگرایی به مفهوم احتمال (P) نیز میباشد. به طور شهودی می توان نشان داد که عکس این امر صحّت ندارد.

 $S=[\,\circ\,,1\,]$ فرض کنید که ξ به طور تصادفی از بازهٔ S قرار داشته باشد با طول آن زیر بازه انتخاب میشود . احتمال این که ξ در زیر بازهٔ ξ قرار داشته باشد با طول آن زیر بازه برابر است . به ازاء $\eta=1$ ،۲، $\eta=1$

$$\begin{split} &U_n(\,\xi\,) \!=\! \frac{\xi}{n} \quad , \quad V_n(\,\xi\,) \!=\! \, \xi\, (\textbf{1} \!-\! \frac{\textbf{1}}{n}) \qquad W_n(\,\xi\,) \!=\! \, \xi\, \, e^n \\ &Y_n(\,\xi\,) \!=\! Cos\textbf{Y}\pi n\xi \qquad \qquad Z_n(\,\xi\,) \!=\! e^{\,-n\,(n\,\xi-1)} \end{split}$$

کدام یک از این دنباله ها همه جا همگرا میشوند و کدام یک تقریباً در همه جا همگرا می گردند؟ متغیر تصادفی حدًی را که دنباله ها به آن میل می کنند، تعیین کنید.

دنباله $U_n(\xi)$ به ازاء جمیع مقادیر ξ به صفر میل میکند پس از نظر $U_n(\xi)$ همه جا همگرا می شود .

$$U_n(\,\xi\,){
ightarrow} U\,(\,\xi\,){=}$$
ه , $n{
ightarrow}\,\infty$, $\xi{\,\in\,} S$ به ازاء تمام مقادیر

توجه کنید که در این مورد تمام دنباله های نمونه به همان مقدار حدّی یعنی صفر همگرا میشوند.

دنباله $V_n(\xi)$ به ازاء تمام مقادیر ξ به ξ همگرا می شود و در نتیجه می توان گفت که از نظر همه جا همگرا می شود.

$$V_n(\,\xi\,){\to}V(\,\xi\,){=}\,\xi$$
 , $n{\to}\,\infty$, $\xi\,{\in}\,S$ به ازاء تمام مقادیر

در این حالت تمام دنباله های نمونه به مقادیر متفاوت همگرا شده و متغیر تصادفی حدّی $V(\xi)$ در واقع متغیر تصادفی با توزیع یکنواخت در بازهٔ $V(\xi)$ است .

دنباله $(\xi)_n$ به ازاء $\circ = \xi$ به صفر همگرا میشود ولی به ازاء سایر مقادیر ξ به بی نهایت واگرا میشود . بنابراین این دنبالهٔ تصادفی همگرا نمیشود . دنباله $Y_n(\xi)$ به ازاء $\circ = \xi$ و $Y_n(\xi)$ به ازاء $Y_n(\xi)$ به ازاء سایر مقادیر $Y_n(\xi)$ بین $Y_n(\xi)$ بین $Y_n(\xi)$ بین $Y_n(\xi)$ بین $Y_n(\xi)$ بین $Y_n(\xi)$ بین $Y_n(\xi)$ بین دنبالهٔ متغیرهای تصادفی همگرا نمیشود. دنباله $Y_n(\xi)$ مورد جالب توجهی است . به ازاء $Y_n(\xi)$ می توان نوشت

$$Z(\bullet)=e^n \to \infty$$
 , $n \to \infty$

 $Z_n(\xi)$ دنباله ، $n > \frac{1}{\xi}$ و مقادیر $n > \frac{1}{\xi}$ ، دنباله ، دنباله به صورت نمایی کاهش یافته و به مقدار صفر میل میکند. پس

ولی $P[\xi > \circ] = 1$ پس $Z_n(\xi)$ به مقدار صفر به مفهوم تقریباً در همه جا همگرا میشود. به هر حال $Z_n(\xi)$ به مقدار صفر به مفهوم همه جا همگرا نمیشود.

مثال ۷-4

(MS) در مثال ۶–۴ آیا دنباله های تصادفی $V_n(\xi)$ و $V_n(\xi)$ از نظر متوسط مربع $V_n(\xi)$ همگرا میشوند؟ در مثال ۶–۴ ملاحظه کردیم که دنباله $V_n(\xi)$ به متغیر تصادفی ξ همه جا همگرا میشود .

$$\mathrm{E}\left[\left(V_{n}(\xi) - \xi\right)^{r}\right] = \mathrm{E}\left[\left(\frac{\xi}{n}\right)^{r}\right] = \int_{a}^{l} \left(\frac{\xi}{n}\right)^{r} \mathrm{d}\xi = \frac{l}{r_{n}r}$$
 بنابراین

که در رابطه فوق توزیع یکنواخت در بازهٔ [0,1] برای متغیرهای تصادفی ξ منظور شده است. حال با میل کردن n به بینهایت ، متوسط مربع خطا به صفر همگرا شده و می توان گفت که دنبالهٔ $\nabla_n(\xi)$ از نظر متوسط مربع همگرا می شود. هم چنین در مثال ξ ، مشاهده شد که $Z_n(\xi)$ تقریباً در همه جا به صفر همگرا می شود.

$$\mathrm{E}\!\left[\left(\left.Z_{n}\!\left(\,\xi\,\right)_{\text{-}\,\,\bullet}\,\right)^{\text{r}}\,\right]\!=\mathrm{E}\!\left[e^{-\text{r}_{n}\left(n\,\,\xi_{\text{-}\,\text{1}}\right)}\,\right]\!=e^{\,\text{r}_{n}}\int_{\circ}^{\text{1}}\!e^{-\text{r}_{n}^{\text{r}}\xi}\;\mathrm{d}\xi=\frac{e^{\,\text{r}_{n}}}{\text{r}_{n}^{\text{r}}}\;\left(\text{1-}e^{\,\text{r}_{n}^{\text{r}}}\right)$$

با میل کردن n به بی نهایت ، طرف راست رابطهٔ فوق نامحدود و بینهایت شده و در نتیجه می توان گفت که دنبالهٔ تصادفی $Z_{
m n}(\xi)$ از نظر مفهوم متوسط مربع همگرا نمی شود اگر چه این دنباله از نظر مفهوم تقریباً در همه جا همگرا می شود .

می توان نشان داد که در یک آزمایش مفروض ، اگر احتمال وقوع پیشآمد A برابر B بوده و تعداد رخداد B در B بار تکرار آزمایش برابر B باشد، در آن صورت B

$$P\left\{\left|\frac{k}{n}-p\right.\right|<\epsilon\right\} \to 1 \quad , \quad n\to\infty \qquad \qquad \text{(4-64)}$$

بدین منظور ، متغیرهای تصادفی زیر را در نظر بگیرید

$$X_{i} = \begin{cases} 1 & i & i \\ & i \end{cases}$$
 اگر A در آزمایش ام رخ دهد در غیر این صورت در غیر این صورت

حال متوسط نمونه این متغیرهای تصادفی عبارت است از

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

و ضمناً مىدانيم كه

$$E\{X_i\}=E\{\overline{X}_n\}=p$$
 , $\delta_{\overline{x}_i}^{r}=pq$, $\delta_{\overline{x}_n}^{r}=\frac{pq}{n}$

علاوہ بر آن

$$pq = p(1 - p) \le \frac{1}{r}$$

بنابراین با استناد به نامساوی چپی چف می توان گفت :

نتیجه فوق در واقع رابطه (۵۴–۴) را اثبات میکند چون اگر A به تعداد k رخ دهد ، در آن صورت $\overline{X}_n(\,\xi\,)=rac{k}{n}$ خواهد بود .

بنابراین با توجه به بحث فوق نشان دادیم که $\overline{\chi}_n$ یا متوسط نمونه از نظر احتمال به p همگرا میشود . میدانیم که

$$\eta = E\{\overline{X}_n\} = p$$

$$P\{\,|\,\overline{X}_{n}^-\,\,\eta\,\mid\, \geq \epsilon\,\} \to \circ \qquad , \qquad n \to \infty$$

و به عبارت دیگر متوسط نمونه به متوسط آماری

$$\overline{X}_n \xrightarrow{P} \eta$$

 $n \to \infty$ از نظر احتمال میل کرده و همگرا میشود . این مفهوم که در شرایط $m \to \infty$ اعتبار و صحّت دارد به قانون ضعیف اعداد بزرگ (برنولی) شهرت دارد . می توان اثبات کرد که متوسط نمونه \overline{X}_i به p یا متوسط \overline{X}_i میشود. از نظر مفهوم تقریباً در همه جا نیز همگرا می شود.

$$\overline{X}_n \xrightarrow{ac} \eta$$

این مفهوم را که نیز در شرایط $\infty \longrightarrow n$ اعتبار دارد قانون قوی اعداد بزرگ (بورل) مینامند . در این مرحله از بررسی ، بهتر است نگاهی به قضیهٔ مارکوف

انداخته و با آن آشنا شویم . دنباله X_i متشکل از متغیرهای تصادفی را در نظر گرفته و متوسط نمونه آن

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

 $\overline{X}_n(\xi)$ میباشد . بدیهی است \overline{X}_n خود نیز یک متغیر تصادفی است که مقادیر $\overline{X}_n(\xi)$ به نتیجه آزمایشی ξ بستگی دارد . بنا به این قضیه اگرمتغیرهای تصادفی \overline{X}_n به نحوی باشند که به ازاء ∞ متوسط $\overline{\eta}_n$ متغیرهای به حد η میل کرده

، و نیز به ازاء $\infty \to n$ واریانس متغیرهای $\overline{\chi}_n$ یعنی به حدّ صفر میل کند $n \to \infty$ به خدّ صفر میل کند χ

$$\mathrm{E}\{\ \overline{\mathrm{X}}_{n}\} = \ \overline{\eta}_{n} \xrightarrow[n \to \infty]{} \eta \quad , \quad \overline{\delta}_{n}^{\, \boldsymbol{r}} = \mathrm{E}\{(\, \overline{\mathrm{X}}_{n} - \overline{\eta}_{n})^{\! \boldsymbol{r}}\} \xrightarrow[n \to \infty]{} \bullet$$

. در آن صورت ، متغیر تصادفی $\overline{\chi}_{
m n}$ از نظر مفهوم ${
m MS}$ به η همگرا میشود $\chi_{
m n}$

$$\overline{X}_n \xrightarrow{MS} \eta$$
 μ $E\{(\overline{X}_n - \eta)^r\} \xrightarrow[n \to \infty]{} \circ$

4-4 قضية حدّ مركزي

. متغیر تصادفی مستقل χ را در نظر گرفته و مجموع آنها را تشکیل می دهیم $_{
m n}$

$$X = X_1 + \dots + X_n$$

مجموع فوق یک متغیر تصادفی با متوسط $\eta = \eta_1 + \ldots + \eta_n$ و واریانس

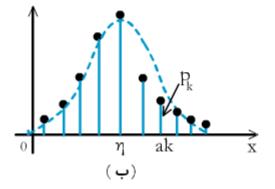
مي باشد.

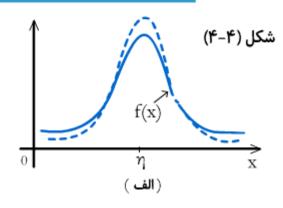
بنا به قضیه حد مرکزی (Central Limit Theorem) تحت شرایط عمومی معینی ، F(x) توزیع F(x) متغیر مجموع E(x) با افزایش E(x) به توزیع نرمال با همان متوسط و واریانس میل میکند .

$$F(x) \simeq G(\frac{x-\eta}{\delta}) \qquad \qquad \text{(1^e-dd)}$$

علاوه بر این ، اگر متغیرهای تصادفی X_i از نوع پیوسته باشند در آن صورت تابع چگالی احتمال $f\left(x
ight)$ به چگالی نرمال همگرا میشود . (شکل $f\left(x
ight)$ الف)

$$f\left(x\right)\simeq rac{1}{6\sqrt{\gamma_{\pi}}} \ e^{-\left(x-\eta
ight)^{r}/\gamma_{\pi}} \ \left(\gamma_{\pi}^{r}-\gamma_{\pi}^{r}\right)^{r}$$





این قضیهٔ مهم را میتوان به صورت حدی نیز بیان کرد . اگر $Z=(X-\eta)/\delta$ فرض شود ، در این صورت برای متغیر تصادفی کلی یا پیوسته به ترتیب میتوان نوشت :

$$F_{z}(\,\mathbf{3}\,) \xrightarrow[n\to\infty]{} G(\,\mathbf{3}\,)\,,\quad f_{z}(\,\mathbf{3}\,) \xrightarrow[n\to\infty]{} \frac{1}{\sqrt{\gamma_{\pi}}} \,\,e^{-3^{\gamma}/\gamma_{\pi}}$$

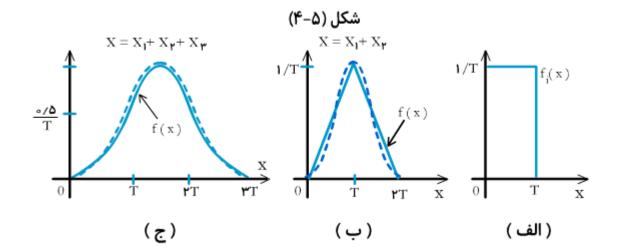
قبل از آن که به اثبات این قضیه بپردازیم باید گفت که CLT را میتوان به عنوان خاصیتی از کانوولوشن تعبیر نمود . کانوولوشن تعداد زیادی از توابع مثبت تقریباً یک تابع نرمال خواهد شد .

ماهیت تقریب CLT و مقدار مورد لزوم n به ازاء یک کران خطای مشخص به شکل توابع چگالی احتمال $\operatorname{f}_i\left(x\right)$ بستگی دارد . اگر متغیرهای تصادفی $\operatorname{n}=n$ تا حد ۵ را می توان به کار برد . مثال زیر این نکته را به خوبی نشان می دهد . تا حد ۵ را می توان به کار برد . مثال زیر این نکته را به خوبی نشان می دهد .

مثال ۸-۴

متغیرهای تصادفی X_i متغیرهای (i.i.d) با توزیع یکنواخت در بازهٔ (i.i.d) معنیرهای n=1 و n=1 و n=1 و n=1 و n=1 میخواهیم مقایسه کنیم . در این مسئله

$$\eta_i = \frac{T}{\textbf{r}} \quad , \quad \delta_i^{\textbf{r}} = \frac{T^{\textbf{r}}}{\textbf{1}\textbf{r}} \quad , \quad \delta^{\textbf{r}} = n \frac{T}{\textbf{r}} \quad , \quad \delta^{\textbf{r}} = n \frac{T^{\textbf{r}}}{\textbf{1}\textbf{r}}$$



به ازاء n=1 ، تابع چگالی f(x) یک مثلث است که از کانوولوشن یک پالس چهار گوش با خود به وجود می آید (شکل ۵-۴) .

$$\eta = T \quad , \quad \delta^{\mbox{\scriptsize r}} = \frac{T^{\mbox{\scriptsize r}}}{\mbox{\scriptsize \digamma}} \quad \mbox{\scriptsize ,} \quad f\left(x\right) \simeq \frac{\mbox{\scriptsize l}}{T} \sqrt{\frac{\mbox{\scriptsize \rlap{/}}}{\pi}} \ e^{\mbox{\scriptsize -}\mbox{\scriptsize \rlap{/}} \left(x-T\right)^{\mbox{\scriptsize \rlap{/}}}\!\!/} T^{\mbox{\scriptsize \rlap{/}}}$$

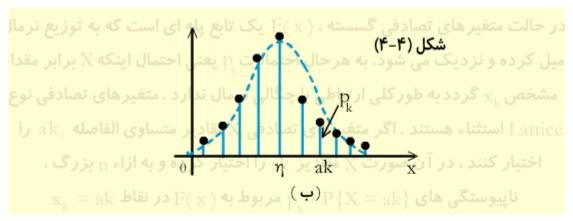
$$f(x)$$
 ، $n =$ ازاء η

از سه قطعه سهمی شکل تشکیل شده که از کانوولوشن یک مثلث با پالس چهارگوش ایجاد گردیده است .

$$\delta \eta = \frac{\mathbf{r} T}{\mathbf{r}}$$
, $\delta^{\mathbf{r}} = \frac{T^{\mathbf{r}}}{\mathbf{r}}$, $f(x) \approx \frac{1}{T} \sqrt{\frac{\mathbf{r}}{\pi}} e^{-\mathbf{r}(x-1/\Delta T)^{\mathbf{r}}/T^{\mathbf{r}}}$

n همان گونه که در شکل (α - α) مشاهده می شود حتی برای چنین مقادیر کوچک α خطای تقریب کوچک و ناچیز می باشد .

در حالت متغیرهای تصادفی گسسته ، F(x) یک تابع پله ای است که به توزیع نرمال میل کرده و نزدیک می شود. به هرحال احتمالات p_k یعنی احتمال اینکه X برابر مقدار مشخص x_k گردد به طور کلی ار تباطی با چگالی نرمال ندارد . متغیرهای تصادفی نوع مشخص x_k گردد به طور کلی ار تباطی با چگالی نرمال ندارد . متغیرهای تصادفی نوع Lattice استثناء هستند . اگر متغیرهای تصادفی X_i مقادیر متساوی الفاصله x_i را اختیار کرده و به ازاء x_i بزرگ ، اختیار کنند ، در آن صورت x_k مقادیر x_k را اختیار کرده و به ازاء x_k بزرگ ، x_k علی وستگی های $x_k = x_k$ مربوط به $x_k = x_k$ در نقاط $x_k = x_k$



برابر نمونه های چگالی نرمال (شکل ۴-۴ ب) خواهد بود .

$$P\{X = ak\} \simeq \frac{1}{6\sqrt{r\pi}} e^{-(ak-\eta)^r/r\delta^r}$$
 (۴-۵۷)

نکته قابل توجه دیگر ، مورد متغیرهای تصادفی X_i میباشد که مستقل با توزیع یکسان بوده و مقادیر 1 ، 0 ، 1 با احتمالات به ترتیب 1 بختیار می کنند . تحت این شرایط مجموع آنها یا 1 متغیر تصادفی از نوع 1 بوده و مقادیر 1 با اختیار می کند .در این حالت :

E {X} = nE {X_i} = np ,
$$\delta_x^{\,\textbf{r}} = \, n \, \delta_1^{\,\textbf{r}} = npq$$

با قرار دادن مقادیر فوق در رابطه (۵۷-۴) تقریب زیر حاصل می شود

$$P\left\{X\equiv ak\right\} = \left(\frac{n}{k}\right)p^{|k|}q^{|n-k|} \simeq \frac{1}{\sqrt{\gamma \gamma_{npq}}} e^{-(k-np)^{|\gamma|}/\gamma_{npq}}$$

این رابطه نشان میدهد که قضیه دوموار –لاپلاس (تقریب نرمال) مورد خاصی از نوع Lattice قضیه حد مرکزی میباشد . به منظور اثبات قضیه حد مرکزی ، صحت رابطه (۴-۵۶) را می توان با استفاده از توابع مشخصه نشان داد .

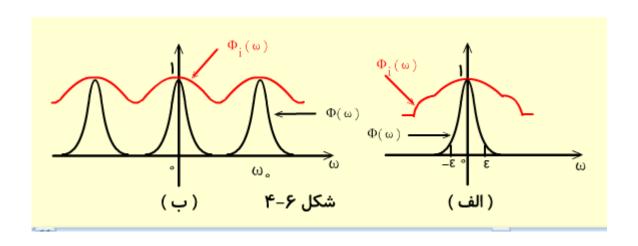
برای سهولت محاسبات ، فرض میکنیم که $\alpha=1$ بوده و توابع مشخصه متغیرهای $X=X_1+...+X_n\,,\;X_i$ تصادفی $X=X_1+...+X_n\,,\;X_i$ نشان میدهیم . با توجه به استقلال $X=X_1$ ها می توان گفت :

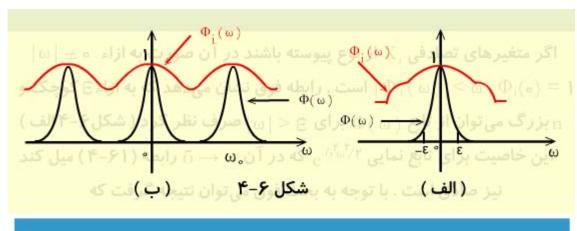
$$\Phi(\omega) = \Phi_1(\omega) \dots \Phi_n(\omega)$$

.در مجاورت مبداء ، توابع $\Phi_{i}(\omega) = \operatorname{Ln} \Phi_{i}(\omega)$ در مجاورت مبداء ، توابع

$$\psi_{i}\left(\omega
ight)\simeq-rac{1}{r}\,\delta_{i}^{r}\omega^{r}$$
 , $\Phi_{i}\left(|\omega|
ight)=\,e^{-\delta_{i}^{r}\,\omega^{r}\!/r}$ $|\omega|<\epsilon$ به ازاء (۴-۵۸)

 $|\omega|\neq 0$ اگر متغیرهای تصادفی X_i از نوع پیوسته باشند در آن صورت به ازاء ∞ از نوع پیوسته باشند در آن صورت به ازاء ∞ و و ∞ و ∞ به ازاء ∞ کوچک و ∞ به ازاء ∞ کوچک و است . رابطه فوق نشان می دهد که به ازاء ∞ کوچک و بازرگ می توان از تابع ∞ برای ∞ برای ∞ برای ∞ برای ∞ برای کند این خاصیت برای تابع نمایی ∞ خوت که در آن ∞ که در آن ∞ که در آن شخه گرفت که نیز صادق است . با توجه به بحث فوق می توان نتیجه گرفت که





$$\Phi(\,\omega\,)\,\simeq\,{
m e}^{-\delta_1^{r}\omega^{r}\!/r}\ldots\,{
m e}^{-\delta_n^{r}\omega^{r}\!/r}\,=\,{
m e}^{-\delta_n^{r}\omega^{r}\!/r}$$
 به ازاء تمام مقادیرها (۴–۵۹)

و این نتیجه کاملاً هماهنگ با رابطه (۵۶-۴) است . شکل دقیق قضیه بیان میکند که متغیر تصادفی نرمالیزه شده

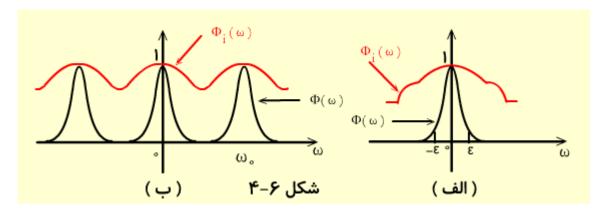
$$Z = \frac{X_1 + \ldots + X_n}{\delta}$$
 , $\delta^{\mathbf{r}} = \delta_1^{\mathbf{r}} + \ldots + \delta_n^{\mathbf{r}}$

. به ازاء $\infty o n$ به متغیر تصادفی $N(\ \circ\ ,\ 1)$ میل می کند

$$f_z(3) \xrightarrow[n \to \infty]{} \frac{1}{\sqrt{\gamma_{\pi}}} e^{-3/\gamma}$$
 (4-5.)

برای اثبات فرض می کنیم که متغیرهای تصادفی χ_{i} از نوع i . i . i . هستند و در این

$$\delta = \delta_i \sqrt{n}$$
 , $\Phi_1(\omega) = \ldots = \Phi_n(\omega)$: حالت



بنابراين

$$\Phi_{z}\left(\,\omega\,\right) = \Phi_{i}^{n}\left(\,\frac{\omega}{-\delta_{i}\sqrt{n}}\,\right)$$

- حال با بسط توابع $\Phi_i \left(\omega\right) = \operatorname{Ln}\Phi_i \left(\omega\right)$ حول مبدأ مى توان گفت

$$\psi_{i}\left(\,\omega\,\right) = -\,\,\frac{\delta_{i}^{\boldsymbol{r}}\!\omega^{\boldsymbol{r}}}{\boldsymbol{r}}\,+\,O(\,\omega^{\boldsymbol{r}})$$

بنابراين

$$\psi_{z}\left(\,\omega\,\right) \equiv n\psi_{i}\,\left(\,\frac{\omega}{\delta_{i}\sqrt{n}}\,\right) \; \equiv -\,\frac{\omega^{\,\nu}}{\,\,\boldsymbol{Y}}\; + \,O\,\left(\,\frac{\,\boldsymbol{I}\,\,}{\sqrt{n}}\,\right) \underset{n\to\infty}{\longrightarrow}\,\frac{\omega^{\,\nu}}{\,\,\boldsymbol{Y}}$$

رابطه بالا نشان میدهد که به ازاء ∞ بالا نشان میدهد که به ازاء ∞ تابع Φ_z (ω) تابع و در نتیجه رابطه (۶۰ – ۴) حاصل میشود .

همان گونه که ملاحظه شد ، قضیه همیشه صادق نبوده و واقعیت ندارد . مجموعه ای از شرایط کافی برای صحت قضیه حد مرکزی عبارت است از :

$$\delta_1^r + \ldots + \delta_n^r \xrightarrow[n \to \infty]{} \infty$$
 (۴-۶۱) (الف)

ب) عددی مانند $\alpha > 1$ و ثابت محدودی مانند k را می توان یافت که

$$\int_{-\infty}^{+\infty} x^{\alpha} f_{i}(x) dx < k < \infty$$
 (۴-۶۲)

البته این شرایط کلی ترین شرایط نیستند . به هرحال آنها گستره وسیعی از کاربردها $\delta_i > \epsilon > 0$ را به نحوی تعیین کرد که $\epsilon > 0$ را در برمی گیرند . برای مثال اگر بتوان ثابت $\epsilon > 0$ را به نحوی تعیین کرد که $\epsilon > 0$ به ازاء تمام مقادیر $\epsilon > 0$ باشد در آن صورت رابطه $\epsilon > 0$ اقناع خواهد شد . هم چنین اگر تمام توابع چگالی احتمال $\epsilon = 0$ در خارج بازه محدود $\epsilon = 0$ ارضاء صفر باشند ، (مستقل از طول کم یا زیاد بازه) در آن صورت رابطه ($\epsilon = 0$) ارضاء خواهد شد . قضیه حد مرکزی را می توان برای حاصل ضرب متغیرهای تصادفی نیز مطرح کرد . فرض کنید $\epsilon = 0$ متغیر تصادفی مستقل مثبت $\epsilon = 0$ در دست بوده و حاصل ضرب آنها را در نظر می گیریم .

$$Y = X_1 X_1 \dots X_n, X_i > \bullet$$

می توان به سهولت نشان داد که برای n بزرگ، تابع چگالی احتمال Y تقریباً تابع لوگ نرمال Y نرمال Y نرمال لگاریتمی خواهد بود لوگ نرمال Y نرمال رایان از کاریتمی خواهد بود

$$\begin{split} &f_{y}\left(y\right) = \frac{1}{y\delta\sqrt{r_{\pi}}} \exp\left\{-\frac{1}{r\delta^{r}}(\operatorname{Ln}y - \eta)^{r}\right\} \operatorname{U}\left(y\right) \\ &\eta = \sum_{i=1}^{n} \operatorname{E}\left\{\operatorname{Ln}X_{i}\right\} \quad , \quad \delta^{r} = \sum_{i=1}^{n} \operatorname{var}\left(\operatorname{Ln}X_{i}\right) \end{split} \tag{F-ST'}$$

 $Z=\operatorname{Ln}\, Y=\operatorname{Ln}\, X_1+.....+\operatorname{Ln}\, X_n$ را تعریف کرده و با استناد به قضیه حد مرکزی (برای مجموع متغیرهای تصادفی نتیجه گرفت که متغیر تصادفی Z به ازاء z بزرگ یک متغیر تصادفی تقریبا نتیجه گرفت که متغیر z و واریانسz است . از طرف دیگر میدانیم که

$$Y = e^{Z}$$
 , $g'(3) = e^{3}$

اگر $Y>\circ$ باشد معادله $Y=e^3$ فقط یک جواب $Y>\circ$ باشد معادله

$$f_y(y) = \frac{1}{y} f_Z(Ln y)$$
, $y \ge 0$

اگر < < > باشد ، در آن صورت < > < > < خواهد بود . حال با توجه به اینکه X متغیر تصادفی $N(\eta,\delta^{r})$ است می توان نتیجه گرفت که

$$f_y(y) \approx \frac{1}{y\delta\sqrt{Y\pi}} e^{-(\ln y - \eta)^{Y}/r\delta^{Y}}$$

یعنی γ متغیر تصادفی با توزیع لوگ نرمال است بدیهی است که نتیجه فوق هنگامی اعتبار دارد که متغیرهای تصادفی $L_{\rm II}$ شرایط لازم برای اعتبار قضیه حد مرکزی را اقناع کنند .

. یکنواخت هستند که متغیرهای تصادفی X_i در بازه (0,1) یکنواخت هستند در این حالت :

$$E \{\operatorname{Ln} X_{i}\} = \int_{a}^{1} \operatorname{Ln} x \, dx = -1$$

$$E \{(\operatorname{Ln} X_{i})^{r}\} = \int_{a}^{1} (\operatorname{Ln} x)^{r} dx = r$$

بنابراین چون $\eta=n$ بنابراین چون میباشد ، با استناد به رابطه ($\eta=-n$) تابع چگالی احتمال $Y=X_1,\dots,X_n$

$$f_{y}(y) = \frac{1}{y\sqrt{r_{\pi n}}} \exp \left\{-\frac{1}{r_{n}}(\operatorname{Ln} y + n)^{r}\right\} U(y)$$

مسایل فصل ۴

یک توزیع مشترک باشد، آن گاه برای F(|x|,y|,z|) یک توزیع مشترک باشد، آن گاه برای جا نشان دهید که اگر $y_1 \le y_2$, $y_2 \le y_3 \le y_4$ داریم:

$$\begin{split} &F(\,x_{\textcolor{red}{\textbf{P}}},\,y_{\textcolor{red}{\textbf{P}}},\,z_{\textcolor{red}{\textbf{P}}}) + F(\,x_{\textcolor{red}{\textbf{1}}},\,y_{\textcolor{red}{\textbf{1}}},\,z_{\textcolor{red}{\textbf{1}}}) + F(\,x_{\textcolor{red}{\textbf{1}}},\,y_{\textcolor{red}{\textbf{P}}},\,z_{\textcolor{red}{\textbf{1}}}) + F(\,x_{\textcolor{red}{\textbf{P}}},\,y_{\textcolor{red}{\textbf{1}}},\,z_{\textcolor{red}{\textbf{1}}}) \\ &-F(\,x_{\textcolor{red}{\textbf{1}}},\,y_{\textcolor{red}{\textbf{P}}},\,z_{\textcolor{red}{\textbf{P}}}) - F(\,x_{\textcolor{red}{\textbf{P}}},\,y_{\textcolor{red}{\textbf{P}}},\,z_{\textcolor{red}{\textbf{1}}}) - F(\,x_{\textcolor{red}{\textbf{1}}},\,y_{\textcolor{red}{\textbf{1}}},\,y_{\textcolor{red}{\textbf{1}}},\,z_{\textcolor{red}{\textbf{1}}}) \geq \circ \end{split}$$

نشان دهید که اگر متغیرهای تصادفی $\mathbb{Z}_{,Y,X}$ به صورت مشترک نرمال و جفت، جفت مستقل باشند، آن گاه مستقل هستند.

دارای چگالی یکسان و مستقل و در فاصلهٔ X_i دارای چگالی یکسان و مستقل و در فاصلهٔ (-0.70,0.0) یکنواخت هستند. نشان دهید که داریم:

$$E\{(X_1+X_2+X_4)^*\}=\frac{1}{\Lambda}$$

نشان دهید که اگر متغیرهای تصادفی $\mathbb{Z}_{,Y,X}$ مستقل و چگالی مشترک آنها دارای تقارن کروی :

$$f(x,y,z)=f\sqrt{(x+y+z^r)}$$

باشند، آن گاه آن ها نرمال هستند.

نشان دهید که اگر متغیرهای تصادفی $Z_{,Y,X}$ طوری باشند که r_{xz} نشان دهید $r_{xy}=r_{yz}$ است.

۴-۶ نشان دهید که

$$\begin{split} & \mathrm{E}\{\mathrm{X}_{1}\,\mathrm{X}_{p}\big|\mathrm{X}_{p}\}\!=\!\mathrm{E}\{\mathrm{E}\{\mathrm{X}_{1}\,\mathrm{X}_{p}\big|\mathrm{X}_{p}\,,\,\mathrm{X}_{p}\}\big|\mathrm{X}_{p}\}\\ & =\!\mathrm{E}\{\,\mathrm{X}_{p}\mathrm{E}\{\mathrm{X}_{1}\,\mathrm{X}_{p}\big|\mathrm{X}_{p}\,,\,\mathrm{X}_{p}\}\big|\mathrm{X}_{p}\} \end{split}$$

۷-۴ نشان دهید که

$$\hat{E}\{Y | X_1\} = \hat{E}\{\hat{E}\{Y | X_1, X_r\} | X_1\}$$

است، در جایی که

$$\hat{E}\{Y | X_1, X_r\} = a_1 X_1 + a_r X_r$$

یک تخمین MS خطی از Y بر حسب X_1 و X است.

۸-۴ نشان دهیدکه اگر داشته باشیم:

$$X_i \ge \cdot$$
 , $E\{X_i^r\} = M$ • $S = \sum_{i=1}^n X_i$

آن گاه:

$$\mathrm{E}\{\;s^{\textbf{\textit{Y}}}\} \leq \mathrm{ME}\{\;N^{\textbf{\textit{Y}}}\}$$

با پارامتر a می باشد. M تعداد تصادفات در یک روز یک متغیر تصادفی M با پارامتر a می باشد. احتمال این که یک تصادف کشنده رخ دهد برابر a است. نشان دهید که تعداد a تصادف خطرناک در یک روز یک متغیر تصادفی پواسون با پارامتر a است.

راهنمایی:

$$\mathrm{E}\{e^{j\omega M}\Big|N=n\}\!=\!\sum_{k=_{o}}^{n}e^{j\omega k}\left(\begin{array}{c}n\\k\end{array}\right)\;p^{k}\,q^{n-k}\!=\!\left(pe^{j\omega}\!+\!q\right)^{n}$$

متغیرهای تصادفی X_k مستقل با چگالی های $f_k(x)$ و متغیر تصادفی Y_k مستقل از X_k با X_k با Y_k مستقل از X_k با X_k مستقل از X_k با X_k مستقل از X_k با

$$S = \sum_{k=1}^{n} X_k$$

باشد آنگاه داریم:

$$f_s(S) = \sum_{k=1}^{\infty} P_k [f_1(S)_* ... * f_k(S)]$$

دارای چگالی یکسان و مستقل با تابع گشتاور X_i متغیرهای تصادفی X_i دارای چگالی یکسان و مستقل با تابع گشتاور و. $\Phi_x(S)=E\{e^{sX_i}\}$ می باشند. متغیر تصادفی $\Phi_x(S)=E\{e^{sX_i}\}$ و تابع گشتاور آن برابر $\Phi_x(S)=E\{Z^n\}$ است.

نشان دهید که اگر

$$Y = \sum_{i=1}^{n} X_{i}$$

باشد آنگاه داریم:

$$\Phi_{x}(S)=E\{e^{sY}\}=\Gamma_{n}[\Phi_{x}(S)]$$

$$E\{e^{sY}|N=k\}=E\{e^{s(X_1+...+X_k)}\}=\Phi_x^k(S)$$

حالت خاص اگر $_{
m N}$ پواسون با پارامتر $_{
m a}$ باشد، آن گاه

$$\Phi_y(\,S\,){=}e^{a\Phi_x(\,S\,){\text{-}}a}$$

می باشد.

در فاصلهٔ X_i متغیرهای تصادفی X_i دارای چگالی یکسان و مستقل و در فاصلهٔ $Y=\max_i X_i$ باشد، نشان دهید که اگر $Y=\max_i X_i$ باشد، آن گاه برای $Y=\min_i Y$ است.

یا تعداد N(η_i , ۱) با توزیع N(η_i , ۱) داده شده اند. $W=Z_1^{\sf r}+...+Z_n^{\sf r}$ متغیر تصادفی $W=Z_1^{\sf r}+...+Z_n^{\sf r}$ را تشکیل می دهیم.

این متغیر تصادفی را مربع – کای غیر متمرکز با $_{
m n}$ درجه آزادی با خروج از

مرکز
$$e=\eta_1^r+...+\eta_n^r$$
 گویند.

نشان دهید که تابع مولد گشتاور آن

$$\Phi_{w}(s) = \frac{1}{\sqrt{(1-r^{2}s)^{n}}} \exp\left\{\frac{es}{1-r^{2}s}\right\}$$

است.

نشان دهید که اگر $X_1+lpha_1X_1+lpha_1X_1+lpha_2$ تخمین MS نشان دهید که اگر $X_1+lpha_1X_1+lpha_2$ باشد، آن گاه از X_1 برحسب X_2 باشد، آن گاه

$$\hat{E}\{S-\eta_s|X_1-\eta_1,X_r-\eta_r\}=\alpha(X_1-\eta_1)+\alpha_r(X_r-\eta_r)$$
 نشان دهید که

$$\hat{E}\{Y|X_{j}\}=\hat{E}\{\hat{E}\{Y|X_{j},X_{r}\}|X_{j}\}$$

با X و Y به طور تصادفی n نقطه را در فاصلهٔ f f و رار می دهیم. با f به تر تیب فاصلهٔ اولین و آخرین نقطه را مبدأ نمایش می دهیم. f(x,y) و f(x,y) را بیابید.

به صورت $N(\,{}_{\!\!6}\,;\,\delta\,)$ و مستقل می باشند. که اگر نشان دهید که اگر

$$Z = \frac{\sqrt{\pi}}{\text{Y}n} \sum_{i=1}^{n} \left| X_{\text{Y}i} - X_{\text{Y}i-1} \right|$$

باشد آن گاه دا*ر*یم:

$$E\{Z\} = \delta$$
 $\delta_z^r = \frac{\pi - r}{r_n} \delta_z^r$

نشان دهید که اگر R ماتریس همبستگی بردار تصادفی $[X_1,...,X_n]$: X و R^{-1} معکوس آن باشد، آن گاه داریم:

$$\mathrm{E}\{\,\mathbb{X}\,\bar{R^{^{1}}}\,\mathbb{X}^{^{t}}\}\!=\!n$$

از نوع پیوسته و مستقل باشند، X_i نشان دهید که اگر متغیرهای تصادفی X_i از نوع پیوسته و مستقل باشند، $\sin(X_1 + ... + X_n)$ تقریباً مساوی آن گاه برای $\sin(X_1 + ... + X_n)$ با چگالی $\sin(X_1 + ... + X_n)$ است، که $\sin(X_1 + ... + X_n)$ متغیر تصادفی یکنواخت در فاصلهٔ $\sin(X_1 + ... + X_n)$ می باشد.

۲۰-۴ نشان دهید که اگر

$$E\{|X_n-a_n|^r\} \longrightarrow \circ \quad a_n \longrightarrow a$$

باشد، آن گاه همچنان که ∞ باشد، آن گاه همچنان که ∞ باشد، آن گاه همچنان که میرود.

۴-۲۱ یک مجموع نامحدود به سبب تعریف حد زیر است:

$$\sum_{k=1}^{n} X_{k} = \lim_{n \to \infty} Y_{n} \qquad Y_{n} = \sum_{k=1}^{n} X_{k}$$

نشان دهید که اگر متغیرهای تصادفی X_k مستقل خطی با میانگین صفر و واریانس δ_k^r باشند، آن گاه مجموع از دید MS وجود دارد، اگر و فقط اگر و البطهٔ زیر را داشته باشیم:

$$\sum_{k=1}^n \delta_k^{\, \mathbf{r}} \! < \infty$$

راهنمایی:

$$E\{(Y_{n+m}-Y_n)^r\}=\sum_{k=n+1}^{n+m} \delta_k^r$$

دارای چگالی یکسان و مستقل با چگالی X_i دارای چگالی یکسان و مستقل با چگالی $X=X_1,...,X_n$ باشد، $X=X_1,...,X_n$ میباشند. نشان دهید که اگر $X=X_1,...,X_n$ باشد، آن گاه $X=X_1,...$ یک چگالی ارلنگ است.

مقاومتهای r_1, r_2, r_3, r_4 متغیرهای تصادفی مستقل و هر یک در فاصلهٔ r_1, r_2, r_3, r_4, r_5 یکنواخت می باشند. با استفاده از قضیهٔ حد مرکزی

را بیابید.
$$P\{19... \le r_1 + r_p + r_p + r_p + r_p \le Y1...\}$$

دارای چگالی کوشی باشند، X_i نشان دهید که اگر متغیرهای تصادفی نشان دهید که اگر متغیرهای تصادفی آن گاه قضیه حد مرکزی برقرار نمی باشد.

