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Ergodicity Theory 

• probability of being in state 𝑗 

– 𝜋𝑗 = lim
𝑛→∞

𝑃𝑖𝑗 
𝑛 is an ensemble average. 

• Under what conditions does the limiting distribution 
exist? 

• How does the limiting probability of being in state 𝑗, 
𝜋𝑗  , compare with the long-run time-average fraction 

of time spent in state 𝑗, 𝑃𝑗? 

• What can we say about the mean time between 
visits to state 𝑗, and how is this related to 𝜋𝑗  ? 
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Finite-State DTMCs 

• Existence of the Limiting Distribution 

 

 

 

• This chain is periodic; 𝜋𝑗  does not exist, although 

lim
𝑛→∞

𝑃𝑗𝑗
(2𝑛)

does exist. 
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Finite-State DTMCs 

• The period of state 𝑗 is the greatest common divisor 
(GCD) of the set of integers 𝑛, such that 𝑃𝑗,𝑗

𝑛  . A state is 

aperiodic if it has period 1. A chain is said to be aperiodic 
if all of its states are aperiodic. 

 

• State 𝑗 is accessible from state 𝑖 if 𝑃𝑖,𝑗
𝑛 for some 𝑛 > 0. 

States 𝑖 and 𝑗 communicate if 𝑖 is accessible from 𝑗 and 
vice versa. 

 

• A Markov chain is irreducible if all its states communicate 
with each other. 
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Finite-State DTMCs 

• Theorem Given an aperiodic, irreducible, finite-state 
DTMC with transition matrix 𝑃, as 𝑛 → ∞, 𝑃𝑛 → 𝐿 
where 𝐿 is a limiting matrix all of whose rows are the 
same vector, π. The vector π has all positive 
components, summing to 1.  

 

 

• For any aperiodic, irreducible, finite-state Markov 
chain, the limiting probabilities exist. 
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Mean Time between Visits to a State 

• Consider an irreducible finite-state Markov chain 
with M states and transition matrix 𝑃.  

 

• Let 𝑚𝑖𝑗  denote the expected number of time steps 

needed to first get to state 𝑗, given we are currently 
at state 𝑖. Likewise, let 𝑚𝑖𝑗  denote the expected 

number of steps between visits to state 𝑗.  
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Mean Time between Visits to a State 

• Theorem For an irreducible, aperiodic finite-state 
Markov chain with transition matrix 𝑃 

 

 

 

 where 𝑚𝑖𝑗  is the mean time between visits to 

 state 𝑗 and 𝜋𝑗= lim
𝑛→∞

𝑃𝑖𝑗 
𝑛 .  
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 Time Averages 

• For a finite-state Markov chain, the limiting 
distribution 𝜋 = (𝜋0, 𝜋1, … , 𝜋𝑀−1), when it exists, is 
equal to the unique stationary distribution. 

 

• The fraction of time that the Markov chain spends in 
state j, 𝑃𝑗  is equal to 𝜋𝑗. 
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 Infinite-State Markov Chains 

• 𝑓𝑗  = probability that a chain starting in state j ever returns 

to state j. 

 

• A state j is either recurrent or transient: 

–  If 𝑓𝑗 = 1, then j is a recurrent state. 

– If 𝑓𝑗 < 1, then j is a transient state. 

 

• Every time we visit state j we have probability 1 − 𝑓𝑗  of 

never visiting it again. Hence the number of visits is 
distributed Geometrically with mean 1/(1 − 𝑓𝑗  ). 
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 Infinite-State Markov Chains 

• Theorem With probability 1, the number of visits to a 
recurrent state is infinite. With probability 1, the number of 
visits to a transient state is finite. 

 

• Theorem  

– 𝐸 # 𝑣𝑖𝑠𝑖𝑡𝑠 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑖𝑛 𝑛 𝑠𝑡𝑒𝑝𝑠  𝑠𝑡𝑎𝑟𝑡 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖] =  𝑃𝑖𝑖
𝑛𝑠

𝑛=0  

– 𝐸 𝑇𝑜𝑡𝑎𝑙 # 𝑣𝑖𝑠𝑖𝑡𝑠 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑖  𝑠𝑡𝑎𝑟𝑡 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖] =  𝑃𝑖𝑖
𝑛∞

𝑛=0  

• Theorem  
– If state i is recurrent, then  𝑃𝑖𝑖

𝑛∞
𝑛=0 =∞  

– If state i is transient, then  𝑃𝑖𝑖
𝑛∞

𝑛=0 < ∞  
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 Infinite-State Markov Chains 

• Theorem If state i is recurrent and i communicates with j, (i ↔j), 
then j is recurrent. 

• Theorem If state i is transient and i communicates with j, (i ↔ j), 
then j is transient. 

• Theorem For a transient Markov chain: 

 

• Theorem If for a Markov chain 

 

       Then  

 

 so the limiting distribution does not exist. 
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 Infinite-State Markov Chains 

• Theorem For a transient Markov chain the limiting 
distribution does not exist. 

 

• Theorem Given an aperiodic, irreducible chain. 
Suppose that the limiting probabilities are all zero. 
That is, πj = lim

n→∞
(Pij
n)  , ∀j . Then the stationary 

distribution does not exist. 
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 Infinite Random Walk Example 
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• All states are transient or all are recurrent. To 
determine whether the chain is recurrent or 
transient, it suffices to look at state 0. 

 



 Infinite Random Walk Example 
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• If V is finite, then state 0 is transient, Otherwise it is 
recurrent 

 

• Since one cannot get from 0 to 0 in an odd number 
of steps, it follows that 

 

 

• The equation simplified by using Lavrov’s lemma 

 



 Infinite Random Walk Example 
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• Lavrov’s lemma (due to Misha Lavrov) For n ≥ 1, 

 

 

 

 

• Theorem The random walk shown in previous slide is 
recurrent only when p = 1/2  and is transient 
otherwise 

 

 



 Positive Recurrent versus Null Recurrent 
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• Recurrent Markov chains fall into two types: positive 
recurrent and null recurrent. In a positive-recurrent 
MC, the mean time between recurrences (returning 
to same state) is finite. In a null-recurrent MC, the 
mean time between recurrences is infinite. 

 



 Positive Recurrent versus Null Recurrent 
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• Theorem If state 𝑖 is positive recurrent and 𝑖 ↔ 𝑗 , 
then 𝑗 is positive recurrent. If state i is null recurrent 
and 𝑖 ↔ 𝑗, then 𝑗 is null recurrent. 

 

• Theorem For the symmetric random walk shown in 
previous slide with 𝑝 = 1/2 ,the mean number of 
time steps between visits to state 0 is infinite. 



 Ergodic Theorem of Markov Chains 
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• An ergodic DTMC is one that has all three desirable 
properties: aperiodicity, irreducibility, and positive 
recurrence. 

 

• Theorem (Ergodic Theorem of Markov Chains) Given a 
recurrent, aperiodic, irreducible DTMC, 𝜋𝑗
= lim
𝑛→∞

𝑃𝑖𝑗 
𝑛 exists and  

 

 For a positive recurrent, aperiodic, irreducible 
 DTMC, 𝜋𝑗 > 0, ∀ 𝑗 > 0 . 



 Ergodic Theorem of Markov Chains 
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• Theorem For an aperiodic, null-recurrent Markov 
chain, the limiting probabilities are all zero and the 
limiting distribution and stationary distribution do 
not exist. 

 



 Ergodic Theorem of Markov Chains 
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• Theorem (Summary Theorem) An irreducible, aperiodic DTMC 
belongs to one of the following two classes: Either: 

i. All the states are transient, or all are null recurrent. In this 
caseπj = lim

n→∞
Pij 
n = 0, ∀j, and there does NOT exist a stationary 

distribution. 

ii. All states are positive recurrent. Then the limiting distribution 
π = (π0, π1, … ),exists, and there is a positive probability of being 
in each state. Here πj = lim

n→∞
Pij 
n > 0, ∀j is the limiting probability 

of being in state j. In this case π is a stationary distribution, and no 

other stationary distribution exists. Also, πj is equal to 
1

mij
, where 

mij is the mean number of steps between visits to state j. 



 Time Averages 
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• Theorem  For a positive recurrent, irreducible 
Markov chain, with probability 1, 

 

 

 where mjj is the (ensemble) mean number of 

 time steps between visits to state j and Nj(t) be 

 the number of times that the Markov chain 
 enters state j by time t (t transitions) 

 



 Time Averages 
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• Corollary  For an ergodic DTMC, with probability 1, 

 

 

  

 Where pj = lim
t→∞

Nj(t)

t
 and πj = lim

n→∞
Pij 
n and mjj is 

 the (ensemble) mean number of time steps 
 between visits to state j. 

• Corollary  For an ergodic DTMC, the limiting probabilities 

sum to 1 (i.e.,  πj
j=∞
j=0 = 1). 

 

 



 Time Averages 
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• Theorem  (SLLN) Let 𝑋1, 𝑋2, . . . be a sequence of 
independent, identically distributed random variables 
each with mean E[X]. Let 𝑆𝑛 =  𝑋𝑖

𝑛
𝑖=1 . Then with 

probability 1, 

 

 

 

• A renewal process is any process for which the times 
between events are i.i.d. random variables with a 
distribution F. 



 Time Averages 
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• Theorem (Renewal Theorem) For a renewal process, 
if E[X] is the mean time between renewals, we have 

 

 

 

 



 Limiting Probabilities Interpreted as 
Rates 
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• 𝜋𝑖𝑃𝑖𝑗 = “rate” of transitions from state 𝑖 to state 𝑗. 

•  𝜋𝑖𝑃𝑖𝑗𝑗  is the total rate of transitions out of state 𝑖, 

including possibly returning right back to state 𝑖. 

•  𝜋𝑗𝑃𝑗𝑖𝑗  This is the total rate of transitions into state 𝑖, 

from any state, including possibly from state 𝑖. 

 

• Total rate leaving state 𝑖 = Total rate entering state 𝑖 

 



 Limiting Probabilities Interpreted as 
Rates 
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• balance equations 

 

 

 

 

 

 



 Time-Reversibility Theorem 
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• Theorem (Time-reversible DTMC) Given an aperiodic, 
irreducible Markov chain, if there exist 𝑥1, 𝑥2,  . . . 
s.t.,∀ 𝑖, 𝑗, 

 

 

 

Then 

1.  𝜋𝑖 = 𝑥𝑖(the 𝑥𝑖 ’s are the limiting probabilities). 

2.   We say that the Markov chain is time-reversible. 

 

 

 

 

 

 



 Time-Reversibility Theorem 
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 Periodic Chains 
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Lemma  In an irreducible DTMC, all states have the 
same period. 

Theorem  In an irreducible, positive-recurrent DTMC 
with period d < ∞, the solution π to the stationary 
equations 

 

 

 exists, is unique, and represents the time-
 average proportion of time spent in each state. 

 



 Periodic Chains 
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• Theorem  (Summary Theorem for Periodic Chains) 
Given an irreducible DTMC with period d < ∞, if a 
stationary distribution π exists for the chain, then the 
chain must be positive recurrent. 

 



 Equivalent representations of limiting 
probabilities 
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